US20080156013A1 - Cooling unit and refrigeration assembly - Google Patents

Cooling unit and refrigeration assembly Download PDF

Info

Publication number
US20080156013A1
US20080156013A1 US11/782,841 US78284107A US2008156013A1 US 20080156013 A1 US20080156013 A1 US 20080156013A1 US 78284107 A US78284107 A US 78284107A US 2008156013 A1 US2008156013 A1 US 2008156013A1
Authority
US
United States
Prior art keywords
container
coolant
unit
assembly
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/782,841
Inventor
G. Joseph Mayer
Thomas Jalowiec
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/782,841 priority Critical patent/US20080156013A1/en
Publication of US20080156013A1 publication Critical patent/US20080156013A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/003Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors with respect to movable containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/006Other cooling or freezing apparatus specially adapted for cooling receptacles, e.g. tanks

Definitions

  • the invention relates to a refrigeration assembly for cooling a chemical container, particularly in cooling stored polyols and blowing agent ingredients used in the production of polyurethane foam used for insulation, and to a cooling unit of use in said assembly.
  • Polyurethane form insulation of use in interwall cavities of buildings and in other duties is generally produced on-site, by the in situ mixing of the major isocyanate and polyols ingredients having blowing agents to produce the polymeric foam, which subsequently hardens.
  • the isocyanate and polyol/blowing agent ingredients are each provided in separate standard 55 gallon metallic drums (500 lbs chemical), which are metered through a proportionator in generally a 1:1 to 2:1 isocyanate:polyols ratio, mixed and fed through a nozzle to the cavity, at a temperature of about 105° F.
  • a proportionator in generally a 1:1 to 2:1 isocyanate:polyols ratio, mixed and fed through a nozzle to the cavity, at a temperature of about 105° F.
  • the ambient temperature surrounding the drums, most particularly, the polyol/blowing agent drum is high enough to cause the contents of the drum to reach about 26-28° C., the blowing agent expands to such a degree as to cause the drum to billow outwards under the gaseous pressure and cause the drum to explode. This is a most dangerous problem.
  • An alternative solution is to store the drums in an air conditioned environment, which involves wasteful, significant power usage, since vast volumes of space are, inevitably also cooled, particularly, when the drums are present and/or stored on-site in a truck or like vehicle where the chemical ingredients are to be mixed under the direction of manual operators, and truck doors and rear ends are, constantly, if not always maintained, open during foaming operations.
  • the present invention provides such a solution that satisfies these criteria by, in effect, providing customized, individual cooling units, assembly and system.
  • the invention provides a cooling unit operably retainable to (i) a metallic container for holding chemicals to be cooled and having a container outer surface, and (ii) refrigeration means; said unit comprising
  • the container is a 55 gallon iron drum, around which the cooling unit, preferably, in the form of an arc is retained against 20% to 50% of the drum's surface.
  • the coolant conduit means is between said conductor first surface and said second surface.
  • the metallic conductor is preferably a plate formed of an iron, copper, aluminum or an alloy thereof, which is preferably held by magnets to the drum.
  • the coolant conduit in a preferred embodiment runs essentially within the metallic plate while having a cooling inlet and outlet at the ends of the plate.
  • the unit insulation layer can, for example, comprise polyurethane foam, fiber glass and/or thermoplastic bubblepack material.
  • liquid coolant e.g. a Freon coolant
  • the invention provides a cooling assembly for cooling chemicals held in a container comprising a cooling unit and a refrigeration means in communication with said coolant first conduit means.
  • the invention provides an assembly of such dimensions and weight, as to be manually portable.
  • the invention provides an individual cooling system, in effect, customized for use with standard drums.
  • the invention further provides a cooling assembly wherein the refrigerator may have a plurality of coolant conduit connections, leads and the like to supply and receive spent fresh coolant to a plurality of drums, simultaneously.
  • the refrigerator may be powered by electric power supplied by a suitable power source, such as a battery, local utility supply of a building, truck or the like.
  • a suitable power source such as a battery, local utility supply of a building, truck or the like.
  • the invention provides an apparatus comprising an assembly and a metallic container containing chemicals, as hereinabove defined, said container having a container outer surface, and wherein said retaining means retains said cooling unit to said container outer surface.
  • the drum has a thermal insulation covering during storage.
  • FIG. 1 is a diagrammatic perspective view of a cooling unit according to the invention
  • FIG. 2 is a diagrammatic cross-sectional view of a width on the line 2 - 2 ′ of the cooling unit shown in FIG. 1 , affixed to a drum;
  • FIG. 3 is a diagrammatic perspective view of a cooling assembly according to the invention affixed to a drum;
  • FIG. 4 is a diagrammatic perspective view of the cooling assembly of FIG. 3 with the drum having an insulation cover;
  • FIG. 5 is a diagrammatic perspective view of a refrigeration unit, according to the prior art, with major inner components in view;
  • FIG. 6 is the cooling assembly shown in FIG. 3 modified to receive a plurality of coolant leads
  • FIG. 1 shows generally as 10 , an arcuate-shaped aluminum belt-plate 12 of about 3 mm thickness, 20 cm height and 1 m curved length of a shape to intimately, partially follow the outer circumferential surface 14 of drum 16 .
  • a plurality (four) of magnets (4 cm) 18 extend from the inner surface 20 of plate 12 and by which magnets unit 10 is affixed to drum surface 14 .
  • Outer surface 22 of plate 12 is covered with a 10 cm thick polyurethane foam insulation layer 24 .
  • Plate 12 has an inner conduit coolant network 26 between surfaces 20 and 22 having a fresh liquid coolant inlet 28 and spent gaseous coolant outlet 30 , and through which network 26 refrigerant passes.
  • Coolant inlet 28 and outlet 30 are each connected to respective copper (1.5 mm ID) conduits within lead 32 for communication with a coolant supply and receiver refrigeration unit 34 .
  • Receiver 34 has a typical 1/12 HP compressor 36 , condensing coil 38 and associated conduits 40 within housing 42 .
  • Power is supplied to refrigeration unit 34 by electrical lead 44 from an electrical source (not shown).
  • a temperature probe 46 (AQUASTATTM gas bulb thermometer) is connected to refrigeration unit 34 .
  • the assembly may have an insulation layer, for example, a metallic reflective bubble pack covering 48 .
  • a single refrigeration unit 34 may be suitably modified to receive a plurality of leads 32 from individual cooling packs 10 being used, simultaneously, with a plurality of individual drums 14 .
  • a refrigeration temperature controller 50 (T4031A,B,P-Honeywell) is suitable for temperature control.
  • each of cooling pack 10 and refrigeration unit 34 also provide ease of manual transportation.
  • a typical size of unit 34 enables it to be carried in a 40 cm ⁇ 40 cm ⁇ 25 cm carry case.
  • An example of a typical polyol/blowing agent blended starting ingredient contains 60-70% w/w polyols, 7-13% w/w 1,1,1,3,3-pentafluoropropane, 7-13% w/w tris-iso-chloropropyl phosphate, 1-5% w/w tertiary amine blend, with the balance being inert additives.
  • An example of a typical aromatic isocyanate starting chemical example is 4,4′-diphenyl methane diisocyanate. A mixing ratio of 1:1 at a mixing temperature of 40° C. is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

An individual, customized individual cooling unit operably retainable to (i) a metallic container for holding chemicals, such as polyols/blowing agent mixture for use in the production of polyurethane foam to be cooled, wherein the container has an outer surface, and (ii) a refrigerator. The cooling unit has
    • (a) a metallic thermal conductor having a first surface contractable with the container adjacent the container outer surface; and a second surface;
    • (b) a thermal insulation layer adjacent the second surface;
    • (c) coolant first conduit between the outer surface of the container and the thermal insulation layer, and having a coolant first inlet and a coolant first outlet; and
    • (d) a retainer for retaining the cooling unit to the container outer surface. The cooling unit and the refrigerator provide for the storage of the chemical at a safe temperature in a convenient, clean manner, with minimum energy usage in temperature control.

Description

  • This application claims priority to U.S. appl'n. Ser. No. 60/882,953, filed 31 Dec. 2006, the complete disclosure of which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The invention relates to a refrigeration assembly for cooling a chemical container, particularly in cooling stored polyols and blowing agent ingredients used in the production of polyurethane foam used for insulation, and to a cooling unit of use in said assembly.
  • BACKGROUND OF THE INVENTION
  • Polyurethane form insulation of use in interwall cavities of buildings and in other duties is generally produced on-site, by the in situ mixing of the major isocyanate and polyols ingredients having blowing agents to produce the polymeric foam, which subsequently hardens.
  • Typically, the isocyanate and polyol/blowing agent ingredients are each provided in separate standard 55 gallon metallic drums (500 lbs chemical), which are metered through a proportionator in generally a 1:1 to 2:1 isocyanate:polyols ratio, mixed and fed through a nozzle to the cavity, at a temperature of about 105° F. However, if the ambient temperature surrounding the drums, most particularly, the polyol/blowing agent drum, is high enough to cause the contents of the drum to reach about 26-28° C., the blowing agent expands to such a degree as to cause the drum to billow outwards under the gaseous pressure and cause the drum to explode. This is a most dangerous problem.
  • To-date, this problem has been addressed, in one manner, by covering the drum with a cooling, but messy wet, horse blanket, which also involves the inconvenience of the need for constant water dousing.
  • An alternative solution is to store the drums in an air conditioned environment, which involves wasteful, significant power usage, since vast volumes of space are, inevitably also cooled, particularly, when the drums are present and/or stored on-site in a truck or like vehicle where the chemical ingredients are to be mixed under the direction of manual operators, and truck doors and rear ends are, constantly, if not always maintained, open during foaming operations.
  • There is, therefore, a need for a method or system of storing the drums at a safe temperature, in a convenient manner, that minimize temperature-controlled energy usage.
  • The present invention provides such a solution that satisfies these criteria by, in effect, providing customized, individual cooling units, assembly and system.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a cooling unit, assembly and apparatus for cooling and maintaining the temperature of drum-stored chemicals, particularly, polyols/blowing agent mixtures for use in the on-site production of polyurethane foam.
  • Accordingly, in one aspect, the invention provides a cooling unit operably retainable to (i) a metallic container for holding chemicals to be cooled and having a container outer surface, and (ii) refrigeration means; said unit comprising
      • (a) a metallic thermal conductor having a first surface contactable with said container adjacent said container outer surface; and a second surface
      • (b) a thermal insulation layer adjacent said second surface;
      • (c) coolant first conduit means between said outer surface of said container and said thermal insulation layer, and having coolant first inlet means and coolant first outlet means; and
      • (d) retaining means for retaining said unit to said container outer surface.
  • Typically, the container is a 55 gallon iron drum, around which the cooling unit, preferably, in the form of an arc is retained against 20% to 50% of the drum's surface.
  • The coolant conduit means is between said conductor first surface and said second surface.
  • The metallic conductor is preferably a plate formed of an iron, copper, aluminum or an alloy thereof, which is preferably held by magnets to the drum.
  • The coolant conduit in a preferred embodiment runs essentially within the metallic plate while having a cooling inlet and outlet at the ends of the plate.
  • The unit insulation layer can, for example, comprise polyurethane foam, fiber glass and/or thermoplastic bubblepack material.
  • External coolant input and output leads openly communicate the unit as hereinabove defined with a refrigerator having a temperature probe and which provides liquid coolant, e.g. a Freon coolant and receives gaseous spent coolant from the unit, for compression recycling.
  • Accordingly, in a further aspect, the invention provides a cooling assembly for cooling chemicals held in a container comprising a cooling unit and a refrigeration means in communication with said coolant first conduit means.
  • In a further aspect, the invention provides an assembly of such dimensions and weight, as to be manually portable.
  • Thus, the invention provides an individual cooling system, in effect, customized for use with standard drums. However, the invention further provides a cooling assembly wherein the refrigerator may have a plurality of coolant conduit connections, leads and the like to supply and receive spent fresh coolant to a plurality of drums, simultaneously.
  • The refrigerator may be powered by electric power supplied by a suitable power source, such as a battery, local utility supply of a building, truck or the like.
  • Thus, in a further aspect, the invention provides an apparatus comprising an assembly and a metallic container containing chemicals, as hereinabove defined, said container having a container outer surface, and wherein said retaining means retains said cooling unit to said container outer surface.
  • Preferably, the drum has a thermal insulation covering during storage.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In order that the invention may be better understood, preferred embodiments will now be described, by way of example only, with reference to the accompanying drawings, wherein
  • (a) FIG. 1 is a diagrammatic perspective view of a cooling unit according to the invention;
  • (b) FIG. 2 is a diagrammatic cross-sectional view of a width on the line 2-2′ of the cooling unit shown in FIG. 1, affixed to a drum;
  • (c) FIG. 3 is a diagrammatic perspective view of a cooling assembly according to the invention affixed to a drum;
  • (d) FIG. 4 is a diagrammatic perspective view of the cooling assembly of FIG. 3 with the drum having an insulation cover;
  • (e) FIG. 5 is a diagrammatic perspective view of a refrigeration unit, according to the prior art, with major inner components in view;
  • (f) FIG. 6 is the cooling assembly shown in FIG. 3 modified to receive a plurality of coolant leads; and
  • (g) wherein the same numerals denote like parts.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • FIG. 1 shows generally as 10, an arcuate-shaped aluminum belt-plate 12 of about 3 mm thickness, 20 cm height and 1 m curved length of a shape to intimately, partially follow the outer circumferential surface 14 of drum 16. A plurality (four) of magnets (4 cm) 18 extend from the inner surface 20 of plate 12 and by which magnets unit 10 is affixed to drum surface 14. Outer surface 22 of plate 12 is covered with a 10 cm thick polyurethane foam insulation layer 24.
  • Plate 12 has an inner conduit coolant network 26 between surfaces 20 and 22 having a fresh liquid coolant inlet 28 and spent gaseous coolant outlet 30, and through which network 26 refrigerant passes.
  • Coolant inlet 28 and outlet 30 are each connected to respective copper (1.5 mm ID) conduits within lead 32 for communication with a coolant supply and receiver refrigeration unit 34. Receiver 34 has a typical 1/12 HP compressor 36, condensing coil 38 and associated conduits 40 within housing 42. Power is supplied to refrigeration unit 34 by electrical lead 44 from an electrical source (not shown). A temperature probe 46 (AQUASTAT™ gas bulb thermometer) is connected to refrigeration unit 34.
  • To enhance thermal insulation and electrical efficiency, the assembly may have an insulation layer, for example, a metallic reflective bubble pack covering 48.
  • A single refrigeration unit 34 may be suitably modified to receive a plurality of leads 32 from individual cooling packs 10 being used, simultaneously, with a plurality of individual drums 14.
  • A refrigeration temperature controller 50 (T4031A,B,P-Honeywell) is suitable for temperature control.
  • The dimensions of each of cooling pack 10 and refrigeration unit 34 also provide ease of manual transportation. A typical size of unit 34 enables it to be carried in a 40 cm×40 cm×25 cm carry case.
  • While a typical 24,000 BTU air conditioning unit, typically located in a truck used to maintain a 55 gallon drum of polyol/blowing agent at a temperature of between 15°-25° C. consumes about 3,800 watts, an individual cooling pack and assembly of use in the present invention consumes between 300-400 watts.
  • An example of a typical polyol/blowing agent blended starting ingredient contains 60-70% w/w polyols, 7-13% w/w 1,1,1,3,3-pentafluoropropane, 7-13% w/w tris-iso-chloropropyl phosphate, 1-5% w/w tertiary amine blend, with the balance being inert additives. An example of a typical aromatic isocyanate starting chemical example is 4,4′-diphenyl methane diisocyanate. A mixing ratio of 1:1 at a mixing temperature of 40° C. is used.
  • Although this disclosure has described and illustrated certain preferred embodiments of the invention, it is to be understood that the invention is not restricted to those particular embodiments. Rather, the invention includes all embodiments which are functional or mechanical equivalence of the specific embodiments and features that have been described and illustrated.

Claims (15)

1. A cooling unit operably retainable to (i) a metallic container for holding chemicals to be cooled and having a container outer surface, and (ii) refrigeration means; said unit comprising
(a) a metallic thermal conductor having a first surface contactable with said container adjacent said container outer surface; and a second surface
(b) a thermal insulation layer adjacent said second surface;
(c) coolant first conduit means between said outer surface of said container and said thermal insulation layer, and having coolant first inlet means and coolant first outlet means; and
(d) retaining means for retaining said unit to said container outer surface.
2. A unit as claimed in claim 1 wherein said coolant conduit means is within said thermal conductor between said conductor first surface and said second surface.
3. A unit as claimed in claim 1 wherein said container is a right-vertical cylinder and said first surface is arcuate and is intimately abutable with said container outer surface.
4. A unit as claimed in claim 3 wherein said arcuate surface extends between 20%-50% around the circumference of said container outer surface.
5. A unit as claimed in claim 1 wherein said retaining means comprises magnetic means retained to said unit.
6. A unit as claimed in claim 1 wherein said thermal insulation layer is selected from polyurethane foam, fiber glass and thermoplastic bubblepack material.
7. A unit as claimed in claim 1 wherein said thermal conductor is formed of a metal selected from iron, copper, aluminum and alloys thereof.
8. A unit as claimed in claim 1 further comprising coolant second conduit means comprising (i) coolant second inlet means in communication with said first inlet means, (ii) coolant second outlet means in communication with said first outlet means, (iii) refrigerant receiving means and refrigerant retaining means.
9. A cooling assembly for cooling chemicals held in a container comprising a cooling unit as claimed in claim 1 and a refrigeration means in communication with said coolant first conduit means.
10. An assembly as claimed in claim 9 wherein said unit further comprises coolant second conduit means comprising (i) coolant second inlet means in communication with said first inlet means, (ii) coolant second outlet means in communication with said first outlet means, (iii) refrigeration receiving means and refrigeration retaining means and said refrigeration means comprises connection means; in communication with said refrigerant receiving means and refrigerant returning means of said unit.
12. An assembly as claimed in claim 10 comprising a plurality of said connection means.
13. An assembly as claimed in claim 9 further comprising temperature probe means for determining the temperature of said chemicals.
14. An assembly as claimed in claim 9 having dimensions and weight as to be manually portable.
15. Apparatus comprising an assembly as claimed in claim 9 and a metallic container containing chemicals, said container having a container outer surface, and wherein said retaining means retains said cooling unit to said container outer surface.
16. Apparatus as claimed in claim 15 further comprising an insulation covering on said metallic container.
US11/782,841 2006-12-31 2007-07-25 Cooling unit and refrigeration assembly Abandoned US20080156013A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/782,841 US20080156013A1 (en) 2006-12-31 2007-07-25 Cooling unit and refrigeration assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88295306P 2006-12-31 2006-12-31
US11/782,841 US20080156013A1 (en) 2006-12-31 2007-07-25 Cooling unit and refrigeration assembly

Publications (1)

Publication Number Publication Date
US20080156013A1 true US20080156013A1 (en) 2008-07-03

Family

ID=39582032

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/782,841 Abandoned US20080156013A1 (en) 2006-12-31 2007-07-25 Cooling unit and refrigeration assembly

Country Status (1)

Country Link
US (1) US20080156013A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220012A (en) * 1976-09-13 1980-09-02 Brister Beryle D Apparatus for freezing a slug of liquid in a section of a large diameter fluid transmission line
US4309875A (en) * 1979-05-14 1982-01-12 Gerald M. D'Agostino Pipe freezer or the like
US4492095A (en) * 1981-12-08 1985-01-08 Brister, Incorporated Apparatus and method for forming a temporary plug in a fluid conduit
US5007248A (en) * 1988-04-18 1991-04-16 Lordan & Co. Beverage cooling system
US5083441A (en) * 1990-03-01 1992-01-28 Zeitlin Eric S Comestible cooling device
US5836167A (en) * 1995-09-18 1998-11-17 Nowsco Well Service Ltd. Method and apparatus for freezing large pipe
US6148619A (en) * 1999-08-17 2000-11-21 Evans; Daniel J. Method and apparatus for non-invasively freezing a content of a pipe
US6286329B1 (en) * 1999-05-06 2001-09-11 Arthur Radichio Pipe freezer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220012A (en) * 1976-09-13 1980-09-02 Brister Beryle D Apparatus for freezing a slug of liquid in a section of a large diameter fluid transmission line
US4309875A (en) * 1979-05-14 1982-01-12 Gerald M. D'Agostino Pipe freezer or the like
US4492095A (en) * 1981-12-08 1985-01-08 Brister, Incorporated Apparatus and method for forming a temporary plug in a fluid conduit
US5007248A (en) * 1988-04-18 1991-04-16 Lordan & Co. Beverage cooling system
US5083441A (en) * 1990-03-01 1992-01-28 Zeitlin Eric S Comestible cooling device
US5836167A (en) * 1995-09-18 1998-11-17 Nowsco Well Service Ltd. Method and apparatus for freezing large pipe
US6286329B1 (en) * 1999-05-06 2001-09-11 Arthur Radichio Pipe freezer
US6148619A (en) * 1999-08-17 2000-11-21 Evans; Daniel J. Method and apparatus for non-invasively freezing a content of a pipe

Similar Documents

Publication Publication Date Title
US20170292759A1 (en) A refrigerated container, a system for refrigeration, and a method of refrigerating the container
ES2399801T3 (en) Device for cooling the batteries of an especially electric vehicle and vehicle equipped with such a device
AU2006233750B2 (en) Portable air conditioner
US20040108014A1 (en) Device for overheat protection for a type 4 compressed gas container
EP2147242A2 (en) High pressure gas tank heat management by circulation of the refueling gas
CN101668682B (en) Cooling system and freight container for cooling cargo on airplane
CN1552108A (en) Thermal jacket for battery
JP2012172906A (en) Heat insulation container with cooling device and vehicle with heat insulation container mounted therein
US20080016884A1 (en) Method and Device for Filling Pressure Containers with Low-Boiling Permanent Gases or Gas Mixtures
US20160186917A1 (en) Systems For Efficient Heating And/Or Cooling And Having Low Climate Change Impact
US20080156013A1 (en) Cooling unit and refrigeration assembly
KR101396184B1 (en) A freeze container have a setting position veriable insulation wall
CN101754913A (en) Tank for accommodating a fluid
CN104859400B (en) LNG cold energy recycles system and its application method
WO2004000693A1 (en) A thermally insulated container and use thereof
US11125493B2 (en) Method and system for controlling use of a portable cooling container
US20160126603A1 (en) Hybrid bus battery pack cooling structure
US20200112037A1 (en) System and method for heat exchange between gaseous fuel tank and heat transfer medium
CN113396116A (en) Low-temperature logistics system
JP2008116165A (en) Low temperature transport system, and its manufacturing method
JP5681388B2 (en) Liquefied carbon dioxide supply device and polyurethane foam production apparatus provided with the same
US20150316310A1 (en) Thermal accumulator for a transport refrigeration system
US20060107680A1 (en) Electricially heated jacket for refrigerant containers for charging air conditioners, freezers and heat pumps
CN106299221B (en) Lithium cell partition and its manufacturing method
CN211601304U (en) Refrigerator cover, refrigerator and refrigerating system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION