US20080199877A1 - Oligonucleotide probes for detecting enterobacteriaceae and quinolone-resistant enterobacteriaceae - Google Patents

Oligonucleotide probes for detecting enterobacteriaceae and quinolone-resistant enterobacteriaceae Download PDF

Info

Publication number
US20080199877A1
US20080199877A1 US12/105,243 US10524308A US2008199877A1 US 20080199877 A1 US20080199877 A1 US 20080199877A1 US 10524308 A US10524308 A US 10524308A US 2008199877 A1 US2008199877 A1 US 2008199877A1
Authority
US
United States
Prior art keywords
seq
probe
nucleic acid
enterobacteriaceae
quinolone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/105,243
Inventor
Linda M. Weigel
Fred C. Tenover
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GOVERNMENT OF United States, HEALTH AND HUMAN SERVICES C/O CENTERS FOR DISEASE CONTROL AND PREVENTION OFFICE OF TECHNOLOGY TRANSFER, Secretary of, Department of
US Government
Centers of Disease Control and Prevention CDC
Original Assignee
US Government
Centers of Disease Control and Prevention CDC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US1999/006963 external-priority patent/WO1999050458A2/en
Application filed by US Government, Centers of Disease Control and Prevention CDC filed Critical US Government
Priority to US12/105,243 priority Critical patent/US20080199877A1/en
Assigned to THE GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES C/O CENTERS FOR DISEASE CONTROL AND PREVENTION, OFFICE OF TECHNOLOGY TRANSFER reassignment THE GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES C/O CENTERS FOR DISEASE CONTROL AND PREVENTION, OFFICE OF TECHNOLOGY TRANSFER ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TENOVER, FRED C., WEIGEL, LINDA M.
Publication of US20080199877A1 publication Critical patent/US20080199877A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]

Definitions

  • This invention relates in general to the field of diagnostic microbiology.
  • the invention relates to the species-specific detection of Enterobacteriaceae.
  • Enterobacteriaceae is a family of closely related, Gram-negative organisms associated with gastrointestinal diseases and a wide range of opportunistic infections. They are leading causes of bacteremia and urinary tract infections and are associated with wound infections, pneumonia, meningitis, and various gastrointestinal disorders. (Farmer, J. J., III. Enterobacteriaceae: Introduction and Identification. in Murray, P. R., et al., Manual of Clinical Microbiology , Washington, D.C., ASM Press, 6th (32): 438-449 (1998)). Many of these infections are life threatening and are often nosocomial (hospital-acquired) infections. (Schaberg et al., The Am. J. Med., 91:72s-75s (1991) and CDC NNIS System Report Am. J. Infect. Control., 24:380-388 (1996)).
  • Quinolones are broad-spectrum antibacterial agents effective in the treatment of a wide range of infections, particularly those caused by Gram-negative pathogens. (Stein, Clin. Infect. Diseases, 23(Suppl 1):S19-24 (1996) and Maxwell, J. Antimicrob. Chemother., 30:409-416 (1992)).
  • nalidixic acid is a first-generation quinolone.
  • Ciprofloxacin is an example of a second generation quinolone, which is also a fluoroquinolone.
  • Sparfloxacin is an example of a third generation quinolone, which is also a fluoroquinolone.
  • quinolone is intended to include this entire spectrum of antibacterial agents, including the fluoroquinolones.
  • This class of antibiotics has many advantages, including oral administration with therapeutic levels attained in most tissues and body fluids, and few drawbacks. As a result, indiscriminate use has led to the currently increasing incidence of quinolone/fluoroquinolone resistance. Hooper, Adv. Expmtl. Medicine and Biology, 390:49-57 (1995). Mechanisms of resistance to quinolones include alterations in DNA gyrase and/or topoisomerase IV and decreased intracellular accumulation of the antibiotic due to alterations in membrane proteins. (Hooper et al., Antimicrob. Agents Chemother., 36:1151-1154 (1992)).
  • DNA gyrase a type II topoisomerase required for DNA replication and transcription.
  • DNA gyrase composed of two A subunits and two B subunits, is encoded by the gyrA and gyrB genes. Resistance to quinolones has been shown to be associated most frequently with alterations in gyrA. (Yoshida et al., Antimicrob. Agents Chemother.
  • the prior art has not provided enough information about different Enterobacteriaceae to develop probes capable of distinguishing between as many species as desirable, nor for determining the quinolone resistance-status of the species. It would be desirable to characterize additional gyrA genes and mutations from quinolone-resistant Enterobacteriaceae for species-specific identification and quinolone resistance determination using oligonucleotide probes.
  • the present invention relates to oligonucleotide probes for detecting Enterobacteriaceae species.
  • Unique gyrA coding regions permit the development of probes specific for identifying eight different species: Escherichia coli, Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii and Serratia marcescens .
  • the invention thereby provides methods for the species-specific identification of these Enterobacteriaceae in a sample, and detection and diagnosis of Enterobacteriaceae infection in a subject.
  • the described unique DNA sequences from the 5′ end of gyrA, within or flanking the quinolone resistance-determining region permit the development of probes specific for determining the quinolone-resistant status of eight different species: Escherichia coli, Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii and Serratia marcescens .
  • the invention thereby provides methods for the species-specific identification of these quinolone-resistant Enterobacteriaceae, and detection and diagnosis of quinolone-resistant Enterobacteriaceae infection in a subject.
  • FIGS. 1A and 1B show the nucleic acid sequence (SEQ ID NOS:1-8) alignments for a portion of the gyrA gene in Escherichia coli (EC), Citrobacter freundii (CF), Enterobacter aerogenes (EA), Enterobacter cloacae (ECL), Klebsiella oxytoca (KO), Klebsiella pneumoniae (KP), Providencia stuartii (PS) and Serratia marcescens (SM).
  • EC Escherichia coli
  • CF Citrobacter freundii
  • EA Enterobacter aerogenes
  • ECL Enterobacter cloacae
  • KP Klebsiella oxytoca
  • KP Klebsiella pneumoniae
  • PS Providencia stuartii
  • SM Serratia marcescens
  • FIG. 2 shows the DNA sequence (SEQ ID NOS:9-16) similarity of the quinolone resistance-determining region (QRDR) in Escherichia coli, Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii and Serratia marcescens.
  • QRDR quinolone resistance-determining region
  • FIG. 3 shows the deduced amino acid sequences (SEQ ID NOS:36-43) of the QRDR for Escherichia coli, Citobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii , and Serratia marcescens.
  • FIGS. 4A and 4B show the alterations in GyrA amino acid sequences and susceptibilities of quinolone resistant clinical isolates of Escherichia coli, Citobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii , and Serratia marcescens.
  • the present invention provides a simple, rapid and useful method for differentiating Enterobacteriaceae species and determining their quinolone-resistance status.
  • This invention provides materials and methods to apply the species-specific probes to isolated DNA from host samples for an in vitro diagnosis of Enterobacteriaceae infection.
  • the present invention provides the nucleic acid sequences of conserved and unique regions of the gyrA gene of the following species of the Family Enterobacteriaceae: Escherichia coli, Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii and Serratia marcescens .
  • the present invention provides the nucleic acid sequences of the quinolone resistance-determining region (QRDR) and surrounding regions of gyrA of each species listed above.
  • QRDR quinolone resistance-determining region
  • gyrA DNA sequence analyses revealed that gyrA is unique to each species and highly conserved within the species. However, the gyrA mutations resulting in amino acid substitutions which confer quinolone resistance vary in number, type, and position depending on the species. The invention demonstrates that these unique sequences can be used for identification of enteric organisms (genus and species) as well as detection of quinolone resistance within a given species. In addition, comparisons of Enterobacteriaceae gyrA with gyrA sequences from bacteria not closely related to Enterobacteriaceae species suggest that gyrA sequences are unique for all bacterial species and may be used for identification of any species.
  • the invention provides unique, isolated nucleic acids containing regions of specificity for eight different members of the Family Enterobacteriaceae. These nucleic acids are from the gyrA gene of the Enterobacteriaceae genome.
  • the invention provides isolated nucleic acids from Escherichia coli (SEQ ID NO:1), Citrobacter freundii (SEQ ID NO:2), Enterobacter aerogenes (SEQ ID NO:3), Enterobacter cloacae (SEQ ID NO:4), Klebsiella oxytoca (SEQ ID NO:5), Klebsiella pneumoniae (SEQ ID NO:6), Providencia stuartii (SEQ ID NO:7) and Serratia marcescens (SEQ ID NO:8).
  • FIGS. 1A and 1B show the nucleic acids of SEQ ID NOS:1-8.
  • the sequences correspond to nucleotides #25-613, based on the E. coli gyrA sequence numbers of Swanberg et al., J. Mol. Biol., 197:729-736 (1987).
  • the invention also provides unique, isolated nucleic acids from the quinolone resistance-determining region of Escherichia coli (SEQ ID NO:9), Citrobacter freundii (SEQ ID NO:10), Enterobacter aerogenes (SEQ ID NO:11), Enterobacter cloacae (SEQ ID NO:12), Klebsiella oxytoca (SEQ ID NO:13), Klebsiella pneumoniae (SEQ ID NO:14), Providencia stuartii (SEQ ID NO:15) and Serratia marcescens (SEQ ID NO:16). These sequences can be used to determine the quinolone resistance status of each species.
  • the QRDR nucleic acids are shown in FIG. 2 .
  • the invention provides specific examples of isolated nucleic acid probes derived from the above nucleic acid sequences which may be used as species-specific identifiers of Escherichia coli (SEQ ID NO:17), Citrobacter freundii (SEQ ID NO:18), Enterobacter aerogenes (SEQ ID NO:19), Enterobacter cloacae (SEQ ID NO:20), Klebsiella oxytoca (SEQ ID NO:21), Klebsiella pneumoniae (SEQ ID NO:22), Providencia stuartii (SEQ ID NO:23) and Serratia marcescens (SEQ ID NO:24).
  • Escherichia coli SEQ ID NO:17
  • Citrobacter freundii SEQ ID NO:18
  • Enterobacter aerogenes SEQ ID NO:19
  • Enterobacter cloacae SEQ ID NO:20
  • Klebsiella oxytoca SEQ ID NO:21
  • Klebsiella pneumoniae SEQ
  • the invention also provides specific examples of isolated nucleic acid probes derived from the QRDR of the above nucleic acid sequences which may be used as determinants of quinolone resistance for Escherichia coli (SEQ ID NOS:25 and 26), Citrobacter freundii (SEQ ID NO:27), Enterobacter aerogenes (SEQ ID NO:28), Enterobacter cloacae (SEQ ID NO:29), Klebsiella oxytoca (SEQ ID NO:30), Klebsiella pneumoniae (SEQ ID NO:31), Providencia stuartii (SEQ ID NO:32) and Serratia marcescens (SEQ ID NO:33).
  • Such probes can be used to selectively hybridize with samples containing nucleic acids from species of Enterobacteriaceae.
  • the probes can be incorporated into hybridization assays using polymerase chain reaction, ligase chain reaction, or oligonucleotide arrays on chips or membranes, for example. Additional probes can routinely be derived from the sequences given in SEQ ID NOs:1-8, which are specific for identifying the respective species or for determining quinolone resistance. Therefore, the probes shown in SEQ ID NOs:17-24 and 25-33 are only provided as examples of the species-specific probes or quinolone resistance-determining probes, respectively, that can be derived from SEQ ID NOs:1-8.
  • isolated nucleic acid free from at least some of the components with which it naturally occurs.
  • selective or “selectively” is meant a sequence that does not hybridize with other nucleic acids to prevent adequate determination of an Enterobacteriaceae species or quinolone resistance, depending upon the intended result.
  • selective hybridizes excludes the occasional randomly hybridizing nucleic acids, and thus has the same meaning as “specifically hybridizing”.
  • a hybridizing nucleic acid should have at least 70% complementarity with the segment of the nucleic acid to which it hybridizes.
  • the selectively hybridizing nucleic acids of the invention can have at least 70%, 80%, 85%, 90%, 95%, 97%, 98%, and 99% complementarity with the segment of the sequence to which it hybridizes.
  • the exemplary probes shown in SEQ ID NOs:17-24 and 25-33 are designed to have 100% hybridization with the target DNA.
  • probe is meant a nucleic acid sequence that can be used as a probe or primer for selective hybridization with complementary nucleic acid sequences for their detection or amplification, which probe can vary in length from about 5 to 100 nucleotides, or preferably from about 10 to 50 nucleotides, or most preferably about 25 nucleotides.
  • the invention provides isolated nucleic acids that selectively hybridize with the species-specific nucleic acids under stringent conditions. See generally, Maniatis, et al., Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., (1982) latest edition.
  • Molecular biology techniques permit the rapid detection of hybridization, such as through confocal laser microscopy and high density oligonucleotide arrays and chips. See, Kozal et al., Nat. Med., 2(7): 753-759 (1996), Schummer et al., Biotech., 23:1087-1092 (1997) or Lockhart et al., Nat. Biotech. 14:1675-1680 (1996).
  • Another example of a detection format is the use of controlled electric fields that permit the rapid determination of single base mismatches, as described in Sosnowski et al., Proc. Natl. Acad. Sci. USA, 94:1119-1123 (1997).
  • the invention contemplates the use of the disclosed nucleic acid sequences and probes derived therefrom with these currently available techniques and those new techniques discovered in the future.
  • compositions including at least two oligonucleotides (i.e., nucleic acids) that hybridize with different regions of DNA so as to amplify the desired region between the two primers.
  • the target region can range between 70% complementary bases and full complementarity and still hybridize under stringent conditions.
  • the degree of complementarity between the nucleic acid (probe or primer) and the target sequence to which it hybridizes is at least enough to distinguish hybridization with a non-target nucleic acid from other Enterobacteriaceae.
  • the invention provides examples of nucleic acids having sequences unique to Enterobacteriaceae such that the degree of complementarity required to distinguish selectively hybridizing from nonselectively hybridizing nucleic acids under stringent conditions can be clearly determined for each nucleic acid.
  • the nucleic acid probes can be designed to have homology with nucleotide sequences present in more than one species of Enterobacteriaceae. Such a nucleic acid probe can be used to selectively identify a group of Enterobacteriaceae species. Additionally, the invention provides that the nucleic acids can be used to differentiate Enterobacteriaceae species in general from other species. Such a determination is clinically significant, since therapies for these infections differ.
  • the invention further provides methods of using the nucleic acids to detect and identify the presence of Enterobacteriaceae, or particular species thereof.
  • the methods involve the steps of obtaining a sample suspected of containing Enterobacteriaceae.
  • the sample such as blood, urine, lung lavage fluids, spinal fluid, bone marrow aspiration, vaginal mucosa, tissues, etc.
  • the Enterobacteriaceae cells in the sample can then be lysed, and the DNA released (or made accessible) for hybridization with oligonucleotide probes.
  • the DNA sample is preferably amplified prior to hybridization using primers derived from the gyrA regions of the Enterobacteriaceae DNA that are designed to amplify several species. Examples of such primers are shown below as GYRA6 (SEQ ID NO:34) and or GYRA631R (SEQ ID NO:35).
  • GYRA6 SEQ ID NO:34
  • GYRA631R SEQ ID NO:35
  • Detection of and/or the determination of quinolone resistance in the target species of Enterobacteriaceae is achieved by hybridizing the amplified gyrA DNA with an Enterobacteriaceae species-specific probe that selectively hybridizes with the DNA. Detection of hybridization is indicative of the presence of the particular species of Enterobacteriaceae or quinolone resistance, depending upon the probe.
  • detection of nucleic acid hybridization can be facilitated by the use of reporter or detection moieties.
  • the species-specific probes can be labeled with digoxigenin, and a universal-Enterobacteriaceae species probe can be labeled with biotin and used in a streptavidin-coated microtiter plate assay.
  • detectable moieties include radioactive labeling, enzyme labeling, and fluorescent labeling.
  • the invention further contemplates a kit containing one or more species-specific and/or quinolone resistance-determining probes, which can be used for the identification and/or quinolone resistance determination of particular Enterobacteriaceae species.
  • a kit can also contain the appropriate reagents for hybridizing the probe to the sample and detecting bound probe.
  • the invention may be further demonstrated by the following non-limiting examples.
  • the DNA sequence of the gyrA was determined for eight species of Enterobacteriaceae. Oligonucleotide primers were designed from conserved gyrA gene sequences flanking the QRDR and used to amplify and sequence the 5′ region of gyrA from ATCC type strains and fluoroquinolone-resistant clinical isolates. The nucleotide and the inferred amino acid sequences were aligned and compared.
  • the QRDR sequences from 60 clinical isolates with decreased fluoroquinolone susceptibilities were analyzed for alterations associated with fluoroquinolone resistance.
  • the primer sequences at the 3′ and 5′ ends have been removed leaving nucleotides #25-613, based on the E. coli gyrA sequence numbers of Swanberg et al., J. Mol. Biol., 197:729-736 (1987).
  • the organisms, abbreviations and ATCC type strain designation numbers are as follows.
  • Type strains of Enterobacteriaceae were from American Type Culture Collection (ATCC). Fluoroquinolone resistant and susceptible clinical isolates were selected from the Intensive Care Antimicrobial Resistance Epidemiology (ICARE) study, collected from 39 hospitals across the U.S. between June, 1994 and April 1997 (Archibald et al., CID, 24(2):211-215 (1997)). ICARE isolates were screened to exclude duplicate strains from the same patient.
  • ATCC American Type Culture Collection
  • ICARE Intensive Care Antimicrobial Resistance Epidemiology
  • MICs Minimal inhibitory concentrations were determined by the broth microdilution method with cation-adjusted Müeller-Hinton broth according to the methods of the National Committee for Clinical Laboratory Standards (NCCLS M7-A4 (1997)).
  • Ciprofloxacin was purchased from Bayer Corporation (West Haven, Conn.)
  • ofloxacin and nalidixic acid were from Sigma (St. Louis, Mo.)
  • sparfloxacin was from Rhône-Poulenc Rorer (Collegeville, Pa.).
  • Oligonucleotide primers were designed based on homologous regions of gyrA sequences in E. coli (Swanberg et al., J. Mol. Biol., 1987. 197:729-736) and K. oxytoca (published by Dimri et al., Nuc. Acids Res., 1990. 18:(1):151-156 as K. pneumonia ), as follows:
  • GYRA6 5′-CGACCTTGCGAGAGAAAT-3′ (SEQ ID NO:34)
  • GYRA631R 5′-GTTCCATCAGCCCTTCAA-3′ SEQ ID NO:35
  • Primer GYRA6 corresponds to nucleotides 6 to 23 and primer GYRA631R is complementary to nucleotides 610 to 631 of the E. coli gyrA sequence.
  • DNA fragments were amplified from chromosomal DNA in cell lysates. Amplifications were carried out in a GeneAmp 9600 PCR System (Perkin-Elmer, Applied Biosystems Division, Foster City, Calif.) in 50 ⁇ l volume containing 50 ⁇ mol of each primer, 200 ⁇ M deoxynucleoside triphosphates, 10 ul cell lysate containing approximately 100 ng template DNA, 1 ⁇ reaction buffer with 1.5 mM MgCl 2 and 1 U native Taq polymerase (Perkin Elmer). An initial 4 minute period of denaturation at 94° C.
  • PCR products were purified on QIAquick spin columns (QIAGEN, Chatsworth, Calif.) and sequenced with the ABI Prism Dye Terminator or dRhodomine Terminator Cycle Sequencing Kit and an ABI 377 automated sequencer (Perkin Elmer).
  • the resultant sequences of the gyrA regions for Escherichia coli, Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii and Serratia marcescens are shown below in Table 1 and in FIGS. 1A-1B .
  • the sequences provided correspond to nucleotide positions 25 to 613 of the gyrA regions for Escherichia coli .
  • QRDR sequences from positions 199 to 318 are shown below in Table 2.
  • Oligonucleotide primers GYRA6 and GYRA631R successfully amplified the expected 626 bp DNA fragment from Escherichia coli, Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii and Serratia marcescens ( FIGS. 1A-1B ).
  • amplification with GYRA6 and GYRA631 produced the expected GYRA fragment from S. typhimurium (data not shown).
  • the PCR products were sequenced and the 120 bp regions of gyrA known as the QRDR were analyzed. Alignment of the QRDR DNA sequences of the type strains revealed numerous nucleotide substitutions when compared with the E. coli sequence ( FIG. 2 ). Eighty-seven of 120 nucleotides (72.5%) were conserved. Similarity to the E. coli sequence varied from 93.3% for E. cloacae to 80.8% for P. stuartii ( FIGS. 4A-4B ). Significant diversity was noted when the gyrA QRDR sequences of two species from one genus were aligned. E. aerogenes and E. cloacae shared 90.5% identity and K. pneumoniae and K. oxytoca shared 89.3% identity in this region, less similarity than between several of the different genera.
  • the gyrA QRDR sequence of the E. coli type strain was compared with the E. coli K12 gyrA sequence published by Swanberg and Wang ( J. Mol. Biol. 197:729-736 (1997)) and 4 nucleotide differences were detected at positions 255 (C->T), 267 (T->C), 273 (C->T), and 300 (T->C).
  • the QRDR was identical to the sequence published by Kim et al. (ATCC 14756) ( Antimicrob. Agents Chemother., 42:190-193 (1998)).
  • One nucleotide difference was found in the flanking region (nt 321, T to C) with no change in amino acid sequence (data not shown).
  • the C. freundii QRDR sequence was identical to that of Nishino et al. ( FEMS Microbiology Letters, 154:409-414 (1997)), however, an additional 393 nucleotides are presented herein.
  • coli revealed single mutations in codon 83 in gyrA associated with low levels of resistance and double mutations (codons 83 and 87) with high levels of resistance ( ⁇ 16 ug/ml ciprofloxacin) as previously described (Vila et al., Antimicrob. Agents Chemother., 38:2477-2479 (1994) and Heisig et al., Antimicrob. Agents Chemother., 37:696-701 (1993)).
  • high levels of resistance were found in strains with single as well as double gyrA mutations.
  • Clinical isolates of E. cloacae exhibited numerous substitutions resulting in Ser-83 changes to Phe, Tyr, or Ile with no single amino acid change associated with either low level or high level resistance. There was no alteration of Ser-83 in the clinical isolate E. cloacae 1524 which had a marginal decrease in susceptibility to the fluoroquinolones. However, Asp-87 was changed to Asn. This alteration, found as part of a double mutation in E. cloacae 1224, may contribute to high-level resistance if additional changes occur in the QRDR of E. cloacae 1524.
  • K. pneumoniae isolates exhibited either single or double mutations involving Ser-83 and Asp-87, and ciprofloxacin MICs ranged from 1-16 ⁇ g/ml. Again, double mutations were not required for high-level resistance and no specific mutation (Ser-83 to Phe or Tyr) was associated with low or high levels of fluoroquinolone resistance.
  • K. oxytoca mutations were confined to the Thr-83 codon and were consistent C-to-T substitutions in the second position resulting in amino acid change to Ile, similar to C. freundii and E. aerogenes .
  • MICs associated with this alteration ranged from 0.5-16 ⁇ g/ml ciprofloxacin.
  • S. marcescens displayed the greatest diversity in mutations with Gly-81, Ser-83, or Asp-87 involved. No double mutations were detected in the QRDR of gyrA from 6 fluoroquinolone-resistant clinical isolates. An unusual mutation of Gly-81 to Cys was found in two isolates. However, this mutation has been described in E. coli (Yoshida et al., Antimicrob. Agents Chemother., 34:1271-1272 (1990)).
  • the data in this Example provides for the first time enough comparative nucleic acid sequence data for the gyrA gene to enable one to prepare probes that will selectively hybridize to target nucleic acid to identify the species and/or quinolone resistance of Escherichia coli, Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii and Serratia marcescens.
  • Oligonucleotide probes can be selected for species-specific identification of Enterobacteriaceae in or near the QRDR of gyrA.
  • the region which includes the codons most often associated with fluoroquinolone resistance was not used for the reason that if identification were based on one or more nucleotide changes, the changes associated with resistance would interfere with identification.
  • Each probe for identification was selected for maximum difference, and it is recognized that a smaller region within some probes could be used, based on single base changes. However, most of the probes have at least two nucleotide differences compared with the same region in other strains.
  • the position of the probe was shifted to a region which was completely conserved for all strains sequenced. For this reason, the probes were in the region 5′ of the QRDR.
  • Simultaneous identification of the species and mutations leading to resistance can be determined by using one of the above oligonucleotide probes in combination with the resistance probes set forth below. All oligonucleotide probes shown in Table 4 for quinolone resistance span the region containing the amino acid codons most frequently associated with resistance (nucleotides 239-263). Susceptible strains will hybridize to the resistance probe for that species and resistance will be detected as one or more basepair mismatch with the susceptible strain sequence.

Abstract

Oligonucleotide probes for detecting Enterobacteriaceae species. Unique gyrA coding regions permit the development of probes specific for eight different species: Escherichia coli, Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii and Serratia marcescens. The invention thereby provides methods for the species-specific identification of these Enterobacteriaceae in a sample, and detection and diagnosis of Enterobacteriaceae infection in a subject. Further, nucleic acids are provided for determining quinolone-resistant status of these Enterobacteriaceae.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This is a continuation of U.S. patent application Ser. No. 10/798,827, filed Mar. 10, 2004, which is a continuation of U.S. patent application Ser. No. 09/647,563, filed Jan. 16, 2001, issued as U.S. Pat. No. 6,706,475. U.S. patent application Ser. No. 09/647,563 is a § 371 U.S. national phase of PCT/US99/06963, filed Mar. 30, 1999, which was published in English under PCT Article 21(2), and which in turn claims the benefit of U.S. Provisional Patent Application No. 60/080,375, filed Apr. 1, 1998. U.S. patent application Ser. No. 10/798,827 is incorporated by reference herein in its entirety.
  • This invention was made in the Centers for Disease Control and Prevention, an agency of the United States Government. The U.S. Government has certain rights in this invention.
  • TECHNICAL FIELD OF THE INVENTION
  • This invention relates in general to the field of diagnostic microbiology. In particular, the invention relates to the species-specific detection of Enterobacteriaceae.
  • BACKGROUND OF THE INVENTION
  • Enterobacteriaceae is a family of closely related, Gram-negative organisms associated with gastrointestinal diseases and a wide range of opportunistic infections. They are leading causes of bacteremia and urinary tract infections and are associated with wound infections, pneumonia, meningitis, and various gastrointestinal disorders. (Farmer, J. J., III. Enterobacteriaceae: Introduction and Identification. in Murray, P. R., et al., Manual of Clinical Microbiology, Washington, D.C., ASM Press, 6th (32): 438-449 (1998)). Many of these infections are life threatening and are often nosocomial (hospital-acquired) infections. (Schaberg et al., The Am. J. Med., 91:72s-75s (1991) and CDC NNIS System Report Am. J. Infect. Control., 24:380-388 (1996)).
  • Conventional methods for isolation and identification of these organisms include growth on selective and/or differential media followed by biochemical tests of the isolated organism. Total incubation times require 24-48 hours. Slow-growing or fastidious strains require-extended incubation times. An additional 18-24 hours is required for susceptibility testing, usually by disk diffusion or broth dilution. More recently, the identification of bacteria by direct hybridization of probes to bacterial genes or by detection of amplified genes has proven to be more time efficient.
  • Quinolones are broad-spectrum antibacterial agents effective in the treatment of a wide range of infections, particularly those caused by Gram-negative pathogens. (Stein, Clin. Infect. Diseases, 23(Suppl 1):S19-24 (1996) and Maxwell, J. Antimicrob. Chemother., 30:409-416 (1992)). For example, nalidixic acid is a first-generation quinolone. Ciprofloxacin is an example of a second generation quinolone, which is also a fluoroquinolone. Sparfloxacin is an example of a third generation quinolone, which is also a fluoroquinolone. As used herein, the term “quinolone” is intended to include this entire spectrum of antibacterial agents, including the fluoroquinolones. This class of antibiotics has many advantages, including oral administration with therapeutic levels attained in most tissues and body fluids, and few drawbacks. As a result, indiscriminate use has led to the currently increasing incidence of quinolone/fluoroquinolone resistance. Hooper, Adv. Expmtl. Medicine and Biology, 390:49-57 (1995). Mechanisms of resistance to quinolones include alterations in DNA gyrase and/or topoisomerase IV and decreased intracellular accumulation of the antibiotic due to alterations in membrane proteins. (Hooper et al., Antimicrob. Agents Chemother., 36:1151-1154 (1992)).
  • The primary target of quinolones, including the fluoroquinolones, in Gram-negative bacteria is DNA gyrase, a type II topoisomerase required for DNA replication and transcription. (Cambau et al., Drugs, 45(Suppl. 3):15-23 (1993) and Deguchi et al., J. Antimicrob. Chemother., 40:543-549 (1997)). DNA gyrase, composed of two A subunits and two B subunits, is encoded by the gyrA and gyrB genes. Resistance to quinolones has been shown to be associated most frequently with alterations in gyrA. (Yoshida et al., Antimicrob. Agents Chemother. 34:1271-1272 (1990)). These mutations are localized at the 5′ end of the gene (nucleotides 199-318 in the E. coli gene sequence) in an area designated as the quinolone resistance-determining region, or QRDR, located near the active site of the enzyme, Tyr-122. (Hooper, Adv. Expmtl. Medicine and Biology, 390:49-57 (1995)).
  • Previous studies of fluoroquinolone-resistant strains of Escherichia coli, Citrobacter freundii, Serratia marcescens and Enterobacter cloacae have revealed that codons 81, 83, and 87 of gyrA are the sites most frequently mutated in Gram-negative organisms. (Nishino et al., FEMS Microbiology Letters, 154:409-414 (1997), and Kim et al., Antimicrob. Agents Chemother., 42:190-193 (1998)). However, the association of gyrA mutations with fluoroquinolone resistance in Enterobacter aerogenes, Klebsiella oxytoca, and Providencia stuartii has not been established.
  • Previous publications have referred to the use of gyrA sequences to identify species within a single genus, such as Husmann et al., J. Clin. Microbiol., 35(9):2398-2400 (1997) for Campylobacters, and Guillemin et al., Antimicrob. Agents Chemo., 39(9):2145-2149 (1995) for Mycobacterium. The complete gene sequences of DNA gyrase A has previously been published for Escherichia coli (Swanberg, et al., J. Mol. Biol., 197:729-736 (1987)) and Serratia marcescens (Kim et al., Antimicrob. Agents Chemother., 42:190-193 (1998)). Fragments of gyrA including the QRDR have been published for Enterobacter cloacae (Deguchi, J. Antimicrob. Chemother. 40:543-549 (1997)) and Citobacter freundii (Nishino et al., FEMS Microbiology Letters, 154:409-414 (1997)). Additionally, the putative gyrA sequence for Klebsiella pneumoniae was published (Dimri et al., Nucleic Acids Research, 18:151-156 (1990)), however, the present invention demonstrates that the most likely organism used in that work was Klebsiella oxytoca.
  • The prior art has not provided enough information about different Enterobacteriaceae to develop probes capable of distinguishing between as many species as desirable, nor for determining the quinolone resistance-status of the species. It would be desirable to characterize additional gyrA genes and mutations from quinolone-resistant Enterobacteriaceae for species-specific identification and quinolone resistance determination using oligonucleotide probes.
  • SUMMARY OF THE INVENTION
  • The present invention relates to oligonucleotide probes for detecting Enterobacteriaceae species. Unique gyrA coding regions permit the development of probes specific for identifying eight different species: Escherichia coli, Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii and Serratia marcescens. The invention thereby provides methods for the species-specific identification of these Enterobacteriaceae in a sample, and detection and diagnosis of Enterobacteriaceae infection in a subject.
  • Furthermore, the described unique DNA sequences from the 5′ end of gyrA, within or flanking the quinolone resistance-determining region, permit the development of probes specific for determining the quinolone-resistant status of eight different species: Escherichia coli, Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii and Serratia marcescens. The invention thereby provides methods for the species-specific identification of these quinolone-resistant Enterobacteriaceae, and detection and diagnosis of quinolone-resistant Enterobacteriaceae infection in a subject.
  • Therefore, it is an object of the invention to provide improved materials and methods for detecting and differentiating Enterobacteriaceae species and/or quinolone resistance in the clinical laboratory and research settings.
  • These and other objects, features and advantages of the present invention will become apparent after a review of the following detailed description of the disclosed embodiments and the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A and 1B show the nucleic acid sequence (SEQ ID NOS:1-8) alignments for a portion of the gyrA gene in Escherichia coli (EC), Citrobacter freundii (CF), Enterobacter aerogenes (EA), Enterobacter cloacae (ECL), Klebsiella oxytoca (KO), Klebsiella pneumoniae (KP), Providencia stuartii (PS) and Serratia marcescens (SM).
  • FIG. 2 shows the DNA sequence (SEQ ID NOS:9-16) similarity of the quinolone resistance-determining region (QRDR) in Escherichia coli, Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii and Serratia marcescens.
  • FIG. 3 shows the deduced amino acid sequences (SEQ ID NOS:36-43) of the QRDR for Escherichia coli, Citobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii, and Serratia marcescens.
  • FIGS. 4A and 4B show the alterations in GyrA amino acid sequences and susceptibilities of quinolone resistant clinical isolates of Escherichia coli, Citobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii, and Serratia marcescens.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides a simple, rapid and useful method for differentiating Enterobacteriaceae species and determining their quinolone-resistance status. This invention provides materials and methods to apply the species-specific probes to isolated DNA from host samples for an in vitro diagnosis of Enterobacteriaceae infection.
  • The present invention provides the nucleic acid sequences of conserved and unique regions of the gyrA gene of the following species of the Family Enterobacteriaceae: Escherichia coli, Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii and Serratia marcescens. The present invention provides the nucleic acid sequences of the quinolone resistance-determining region (QRDR) and surrounding regions of gyrA of each species listed above.
  • DNA sequence analyses revealed that gyrA is unique to each species and highly conserved within the species. However, the gyrA mutations resulting in amino acid substitutions which confer quinolone resistance vary in number, type, and position depending on the species. The invention demonstrates that these unique sequences can be used for identification of enteric organisms (genus and species) as well as detection of quinolone resistance within a given species. In addition, comparisons of Enterobacteriaceae gyrA with gyrA sequences from bacteria not closely related to Enterobacteriaceae species suggest that gyrA sequences are unique for all bacterial species and may be used for identification of any species.
  • The invention provides unique, isolated nucleic acids containing regions of specificity for eight different members of the Family Enterobacteriaceae. These nucleic acids are from the gyrA gene of the Enterobacteriaceae genome. In particular, the invention provides isolated nucleic acids from Escherichia coli (SEQ ID NO:1), Citrobacter freundii (SEQ ID NO:2), Enterobacter aerogenes (SEQ ID NO:3), Enterobacter cloacae (SEQ ID NO:4), Klebsiella oxytoca (SEQ ID NO:5), Klebsiella pneumoniae (SEQ ID NO:6), Providencia stuartii (SEQ ID NO:7) and Serratia marcescens (SEQ ID NO:8). These sequences can be used to identify and distinguish the respective species of Enterobacteriaceae. FIGS. 1A and 1B show the nucleic acids of SEQ ID NOS:1-8. The sequences correspond to nucleotides #25-613, based on the E. coli gyrA sequence numbers of Swanberg et al., J. Mol. Biol., 197:729-736 (1987).
  • The invention also provides unique, isolated nucleic acids from the quinolone resistance-determining region of Escherichia coli (SEQ ID NO:9), Citrobacter freundii (SEQ ID NO:10), Enterobacter aerogenes (SEQ ID NO:11), Enterobacter cloacae (SEQ ID NO:12), Klebsiella oxytoca (SEQ ID NO:13), Klebsiella pneumoniae (SEQ ID NO:14), Providencia stuartii (SEQ ID NO:15) and Serratia marcescens (SEQ ID NO:16). These sequences can be used to determine the quinolone resistance status of each species. The QRDR nucleic acids are shown in FIG. 2.
  • Furthermore, the invention provides specific examples of isolated nucleic acid probes derived from the above nucleic acid sequences which may be used as species-specific identifiers of Escherichia coli (SEQ ID NO:17), Citrobacter freundii (SEQ ID NO:18), Enterobacter aerogenes (SEQ ID NO:19), Enterobacter cloacae (SEQ ID NO:20), Klebsiella oxytoca (SEQ ID NO:21), Klebsiella pneumoniae (SEQ ID NO:22), Providencia stuartii (SEQ ID NO:23) and Serratia marcescens (SEQ ID NO:24).
  • The invention also provides specific examples of isolated nucleic acid probes derived from the QRDR of the above nucleic acid sequences which may be used as determinants of quinolone resistance for Escherichia coli (SEQ ID NOS:25 and 26), Citrobacter freundii (SEQ ID NO:27), Enterobacter aerogenes (SEQ ID NO:28), Enterobacter cloacae (SEQ ID NO:29), Klebsiella oxytoca (SEQ ID NO:30), Klebsiella pneumoniae (SEQ ID NO:31), Providencia stuartii (SEQ ID NO:32) and Serratia marcescens (SEQ ID NO:33).
  • Such probes can be used to selectively hybridize with samples containing nucleic acids from species of Enterobacteriaceae. The probes can be incorporated into hybridization assays using polymerase chain reaction, ligase chain reaction, or oligonucleotide arrays on chips or membranes, for example. Additional probes can routinely be derived from the sequences given in SEQ ID NOs:1-8, which are specific for identifying the respective species or for determining quinolone resistance. Therefore, the probes shown in SEQ ID NOs:17-24 and 25-33 are only provided as examples of the species-specific probes or quinolone resistance-determining probes, respectively, that can be derived from SEQ ID NOs:1-8.
  • By “isolated” is meant nucleic acid free from at least some of the components with which it naturally occurs. By “selective” or “selectively” is meant a sequence that does not hybridize with other nucleic acids to prevent adequate determination of an Enterobacteriaceae species or quinolone resistance, depending upon the intended result. As used herein to describe nucleic acids, the term “selectively hybridizes” excludes the occasional randomly hybridizing nucleic acids, and thus has the same meaning as “specifically hybridizing”.
  • A hybridizing nucleic acid should have at least 70% complementarity with the segment of the nucleic acid to which it hybridizes. The selectively hybridizing nucleic acids of the invention can have at least 70%, 80%, 85%, 90%, 95%, 97%, 98%, and 99% complementarity with the segment of the sequence to which it hybridizes. The exemplary probes shown in SEQ ID NOs:17-24 and 25-33 are designed to have 100% hybridization with the target DNA.
  • The invention contemplates sequences, probes and primers which selectively hybridize to the complementary, or opposite, strand of nucleic acid as those specifically provided herein. Specific hybridization with nucleic acid can occur with minor modifications or substitutions in the nucleic acid, so long as functional species-specific or quinolone resistance determining hybridization capability is maintained. By “probe” is meant a nucleic acid sequence that can be used as a probe or primer for selective hybridization with complementary nucleic acid sequences for their detection or amplification, which probe can vary in length from about 5 to 100 nucleotides, or preferably from about 10 to 50 nucleotides, or most preferably about 25 nucleotides. The invention provides isolated nucleic acids that selectively hybridize with the species-specific nucleic acids under stringent conditions. See generally, Maniatis, et al., Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., (1982) latest edition.
  • Molecular biology techniques permit the rapid detection of hybridization, such as through confocal laser microscopy and high density oligonucleotide arrays and chips. See, Kozal et al., Nat. Med., 2(7): 753-759 (1996), Schummer et al., Biotech., 23:1087-1092 (1997) or Lockhart et al., Nat. Biotech. 14:1675-1680 (1996). Another example of a detection format is the use of controlled electric fields that permit the rapid determination of single base mismatches, as described in Sosnowski et al., Proc. Natl. Acad. Sci. USA, 94:1119-1123 (1997). The invention contemplates the use of the disclosed nucleic acid sequences and probes derived therefrom with these currently available techniques and those new techniques discovered in the future.
  • If used as primers, the invention provides compositions including at least two oligonucleotides (i.e., nucleic acids) that hybridize with different regions of DNA so as to amplify the desired region between the two primers. Depending on the length of the probe or primer, the target region can range between 70% complementary bases and full complementarity and still hybridize under stringent conditions. For example, for the purpose of diagnosing the presence of the Enterobacteriaceae in a clinical sample, the degree of complementarity between the nucleic acid (probe or primer) and the target sequence to which it hybridizes (e.g., Enterobacteriaceae DNA from a sample) is at least enough to distinguish hybridization with a non-target nucleic acid from other Enterobacteriaceae. The invention provides examples of nucleic acids having sequences unique to Enterobacteriaceae such that the degree of complementarity required to distinguish selectively hybridizing from nonselectively hybridizing nucleic acids under stringent conditions can be clearly determined for each nucleic acid.
  • Alternatively, the nucleic acid probes can be designed to have homology with nucleotide sequences present in more than one species of Enterobacteriaceae. Such a nucleic acid probe can be used to selectively identify a group of Enterobacteriaceae species. Additionally, the invention provides that the nucleic acids can be used to differentiate Enterobacteriaceae species in general from other species. Such a determination is clinically significant, since therapies for these infections differ.
  • The invention further provides methods of using the nucleic acids to detect and identify the presence of Enterobacteriaceae, or particular species thereof. The methods involve the steps of obtaining a sample suspected of containing Enterobacteriaceae. The sample, such as blood, urine, lung lavage fluids, spinal fluid, bone marrow aspiration, vaginal mucosa, tissues, etc., may be taken from an individual, or taken from the environment. The Enterobacteriaceae cells in the sample can then be lysed, and the DNA released (or made accessible) for hybridization with oligonucleotide probes.
  • The DNA sample is preferably amplified prior to hybridization using primers derived from the gyrA regions of the Enterobacteriaceae DNA that are designed to amplify several species. Examples of such primers are shown below as GYRA6 (SEQ ID NO:34) and or GYRA631R (SEQ ID NO:35). Detection of and/or the determination of quinolone resistance in the target species of Enterobacteriaceae is achieved by hybridizing the amplified gyrA DNA with an Enterobacteriaceae species-specific probe that selectively hybridizes with the DNA. Detection of hybridization is indicative of the presence of the particular species of Enterobacteriaceae or quinolone resistance, depending upon the probe. In the case where the species of Enterobacteriaceae is known, for example through previous hybridization with a species-specific identifying probe of SEQ ID NOS:17-24, the lack of subsequent hybridization with a species-specific quinolone resistance-determining probe of SEQ ID NOS:25-33 is indicative of quinolone resistance in the sample.
  • Preferably, detection of nucleic acid hybridization can be facilitated by the use of reporter or detection moieties. For example, the species-specific probes can be labeled with digoxigenin, and a universal-Enterobacteriaceae species probe can be labeled with biotin and used in a streptavidin-coated microtiter plate assay. Other examples of detectable moieties include radioactive labeling, enzyme labeling, and fluorescent labeling.
  • The invention further contemplates a kit containing one or more species-specific and/or quinolone resistance-determining probes, which can be used for the identification and/or quinolone resistance determination of particular Enterobacteriaceae species. Such a kit can also contain the appropriate reagents for hybridizing the probe to the sample and detecting bound probe. The invention may be further demonstrated by the following non-limiting examples.
  • EXAMPLES Example 1
  • In this Example, the DNA sequence of the gyrA was determined for eight species of Enterobacteriaceae. Oligonucleotide primers were designed from conserved gyrA gene sequences flanking the QRDR and used to amplify and sequence the 5′ region of gyrA from ATCC type strains and fluoroquinolone-resistant clinical isolates. The nucleotide and the inferred amino acid sequences were aligned and compared.
  • The QRDR sequences from 60 clinical isolates with decreased fluoroquinolone susceptibilities were analyzed for alterations associated with fluoroquinolone resistance. The primer sequences at the 3′ and 5′ ends have been removed leaving nucleotides #25-613, based on the E. coli gyrA sequence numbers of Swanberg et al., J. Mol. Biol., 197:729-736 (1987). The organisms, abbreviations and ATCC type strain designation numbers are as follows.
  • EC=Escherichia coli (E. coli) ATCC 11775
    CF=Citrobacter freundii (C. freundii) ATCC 8090
    EA=Enterobacter aerogenes (E. aerogenes) ATCC 13048
    ECL=Enterobacter cloacae (E. cloacae) ATCC 13047
    KO=Klebsiella oxytoca (K. oxytoca) ATCC 13182
    KP=Klebsiella pneumoniae (K. pneumoniae) ATCC 13883
    PS=Providencia stuartii (P. stuartii) ATCC 29914
    SM=Serratia marcescens (S. marcescens) ATCC 13880
  • Amplification of gyrA Bacterial Strains and Determination of Antibiotic Susceptibility Profiles.
  • Type strains of Enterobacteriaceae were from American Type Culture Collection (ATCC). Fluoroquinolone resistant and susceptible clinical isolates were selected from the Intensive Care Antimicrobial Resistance Epidemiology (ICARE) study, collected from 39 hospitals across the U.S. between June, 1994 and April 1997 (Archibald et al., CID, 24(2):211-215 (1997)). ICARE isolates were screened to exclude duplicate strains from the same patient.
  • Minimal inhibitory concentrations (MICs) were determined by the broth microdilution method with cation-adjusted Müeller-Hinton broth according to the methods of the National Committee for Clinical Laboratory Standards (NCCLS M7-A4 (1997)). Ciprofloxacin was purchased from Bayer Corporation (West Haven, Conn.), ofloxacin and nalidixic acid were from Sigma (St. Louis, Mo.) and sparfloxacin was from Rhône-Poulenc Rorer (Collegeville, Pa.).
  • Amplification of 5′ Region of gyrA.
  • Oligonucleotide primers were designed based on homologous regions of gyrA sequences in E. coli (Swanberg et al., J. Mol. Biol., 1987. 197:729-736) and K. oxytoca (published by Dimri et al., Nuc. Acids Res., 1990. 18:(1):151-156 as K. pneumonia), as follows:
  • GYRA6
    5′-CGACCTTGCGAGAGAAAT-3′ (SEQ ID NO:34)
    GYRA631R
    5′-GTTCCATCAGCCCTTCAA-3′ (SEQ ID NO:35)
  • Primer GYRA6 corresponds to nucleotides 6 to 23 and primer GYRA631R is complementary to nucleotides 610 to 631 of the E. coli gyrA sequence.
  • DNA fragments were amplified from chromosomal DNA in cell lysates. Amplifications were carried out in a GeneAmp 9600 PCR System (Perkin-Elmer, Applied Biosystems Division, Foster City, Calif.) in 50 μl volume containing 50 μmol of each primer, 200 μM deoxynucleoside triphosphates, 10 ul cell lysate containing approximately 100 ng template DNA, 1× reaction buffer with 1.5 mM MgCl2 and 1 U native Taq polymerase (Perkin Elmer). An initial 4 minute period of denaturation at 94° C. was followed by 30 cycles including: denaturation for 1 minute at 94° C., annealing for 30 seconds at 55° C., extending for 45 seconds at 72° C., followed by a final cycle of 72° C. for 10 minutes. Amplification products were visualized by agarose gel electrophoresis and ethidium bromide staining to determine specificity and size of gene fragments. PCR products were purified on QIAquick spin columns (QIAGEN, Chatsworth, Calif.) and sequenced with the ABI Prism Dye Terminator or dRhodomine Terminator Cycle Sequencing Kit and an ABI 377 automated sequencer (Perkin Elmer). To eliminate errors due to amplification artifacts, the forward and reverse sequences of each QRDR were determined using products from independent PCR reactions. The GCG (Genetics Computer Group, Madison, Wis.) analyses programs were used for the construction of DNA and amino acid sequence alignments.
  • The resultant sequences of the gyrA regions for Escherichia coli, Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii and Serratia marcescens are shown below in Table 1 and in FIGS. 1A-1B. The sequences provided correspond to nucleotide positions 25 to 613 of the gyrA regions for Escherichia coli.
  • TABLE 1
    Gyrase A 5′ Region Sequences
    Escherichia coli
    ACACCGGT CAACATTGAG GAAGAGCTGA AGAGCTCCTA
    TCTGGATTAT GCGATGTCGG TCATTGTTGG CCGTGCGCTG
    CCAGATGTCC GAGATGGCCT GAAGCCGGTA CACCGTCGCG
    TACTTTACGC CATGAACGTA CTAGGCAATG ACTGGAACAA
    AGCCTATAAA AAATCTGCCC GTGTCGTTGG TGACGTAATG
    GGTAAATACC ATCCCCATGG TGACTCGGCG GTTTATGACA
    CGATCGTCCG TATGGCGCAG CCATTCTCGC TGCGTTACAT
    GCTGGTAGAC GGTCAGGGTA ACTTCGGTTC CATCGACGGC
    GACTCTGCGG CGGCAATGCG TTATACGGAA ATCCGTCTGG
    CGAAAATTGC CCATGAACTG ATGGCTGATC TCGAAAAAGA
    GACGGTCGAT TTCGTTGATA ACTATGACGG TACGGAAAAA
    ATTCCGGACG TCATGCCAAC CAAAATTCCT AACCTGCTGG
    TGAACGGTTC TTCCGGTATC GCCGTAGGTA TGGCAACCAA
    CATCCCGCCG CACAACCTGA CGGAAGTCAT CAACGGTTGT
    CTGGCGTATA TCGATGATGA AGACATCAGC A
    (SEQ ID NO:1)
    Citrobacter freundii
    ACACCGGT CAACATTGAG GAAGAGCTGA AGAGCTCCTA
    TCTGGATTAT GCGATGTCGG TCATTGTTGG CCGTGCGCTG
    CCAGACGTCC GAGATGGCCT GAAGCCGGTT CACCGTCGCG
    TACTTTACGC CATGAACGTA TTGGGCAACG ACTGGAATAA
    AGCCTATAAA AAATCTGCCC GTGTCGTTGG TGACGTAATC
    GGTAAATACC ACCCTCATGG TGATACCGCC GTTTACGACA
    CCATTGTTCG TATGGCGCAG CCATTCTCCT TGCGTTACAT
    GCTGGTAGAT GGTCAGGGTA ACTTTGGTTC TGTCGATGGC
    GACTCCGCAG CGGCGATGCG TTATACGGAA ATCCGTATGT
    CGAAAATCGC CCATGAGCTG ATGGCTGACG TGGAAAAAGA
    AACGGTTGAT TTCGTCGATA ACTACGACGG CACCGAACAA
    ATTCCTGACG TCATGCCGAC CAAAATTCCT AACCTGCTGG
    TGAACGGTTC GTCCGGTATC GCGGTAGGTA TGGCGACCAA
    CATTCCGCCG CACAACCTGA CTGAAGTGAT CAACGGCTGT
    CTGGCATATA TTGACGATGA AGACATCAGC A
    (SEQ ID NO:2)
    Enterobacter aerogenes
    ACACGGGT CAACATTGAG GAAGAGCTGA AAAGCTCGTA
    TCTGGATTAT GCGATGTCGG TCATTGTTGG CCGTGCGCTG
    CCGGATGTCC GAGATGGCCT GAAGCCGGTA CACCGTCGCG
    TACTATACGC CATGAACGTA TTGGGCAATG ACTGGAACAA
    AGCCTATAAA AAATCAGCCC GTGTCGTTGG CGACGTAATC
    GGTAAATACC ACCCGCATGG TGATACCGCC GTTTATGACA
    CCATCGTACG TATGGCGCAG CCGTTCTCCT TGCGTTATAT
    GCTGGTCGAT GGCCAGGGTA ACTTTGGTTC TGTCGATGGC
    GACTCCGCTG CAGCGATGCG TTATACGGAA ATCCGTATGT
    CGAAGATCGC TCATGAGCTG ATGGCCGATC TCGAAAAAGA
    GACGGTTGAT TTCGTCGACA ACTATGACGG CACGGAGAAA
    ATCCCTGACG TCATGCCGAC AAAAATCCCT AACCTGCTGG
    TGAACGGTTC TTCCGGTATC GCCGTAGGTA TGGCGACCAA
    CATTCCGCCG CATAACCTGA CGGAAGTTAT CAACGGCTGC
    CTGGCATACG TTGATAACGA AGACATCAGC A
    (SEQ ID NO:3)
    Enterobacter cloacae
    ACACCGGTTA ACATCGAGGA AGAGCTGAAG AGCTCCTATC
    TGGACTATGC GATGTCGGTC ATTGTTGGCC GTGCGCTGCC
    GGACGTCCGC GATGGCCTGA AGCCGGTACA CCGTCGCGTA
    CTATACGCCA TGAACGTATT GGGCAATGAC TGGAATAAAG
    CCTACAAAAA ATCTGCCCGT GTCGTTGGTG ACGTAATCGG
    TAAATACCAT CCCCATGGTG ATTCCGCGGT GTACGACACC
    ATCGTTCGTA TGGCGCAGCC TTTCTCGCTG CGTTACATGC
    TGGTAGATGG TCAGGGTAAC TTTGGTTCTA TCGACGGCGA
    CTCCGCCGCG GCAATGCGTT ATACGGAAAT CCGTCTGGCG
    AAAATTGCCC ATGAGCTGAT GGCCGACCTG GAAAAAGAGA
    CGGTTGATTT CGTTGATAAC TACGATGGCA CGGAAAAAAT
    TCCTGACGTC ATGCCAACGA AGATCCCTAA CCTGCTGGTG
    AACGGTTCGT CCGGTATCGC CGTAGGGATG GCGACCAACA
    TTCCGCCGCA CAACATCACC GAAGTGATCA ACGGCTGCCT
    GGCCTATATC GACGATGAAG ACATCAGCA
    (SEQ ID NO:4)
    Klebsiella oxytoca
    ACACCGGT CAACATTGAG GAAGAGCTGA AGAGCTCCTA
    TCTGGATTAT GCGATGTCGG TCATTGTTGG CCGTGCGCTG
    CCGGATGTCC GAGATGGCCT GAAGCCGGTA CACCGTCGCG
    TACTATACGC CATGAACGTA TTGGGCAATG ACTGGAACAA
    AGCCTATAAA AAATCTGCCC GTGTCGTGGG TGACGTCATC
    GGTAAATACC ACCCTCATGG TGATACTGCC GTATAGGACA
    CCATTGTACG TATGGCGCAG CCATTCTCCC TGCGTTACAT
    GCTGGTAGAT GGCCAGGGTA ACTTTGGTTC GGTCGACGGC
    GACTCCGCCG CAGCGATGCG TTATACGGAA ATCCGTATGT
    CGAAGATCGC CCATGAACTG ATGGCCGACC TCGAAAAAGA
    GACGGTGGAT TTCGTCGATA ACTATGACGG CACGGAGAAA
    ATCCCTGACG TTATGCCGAC CAAAATCCCG AACCTGCTAG
    TCAACGGTTC GTCCGGTATC GCGGTAGGTA TGGCGACTAA
    TATTCCGCCG CACAACCTGA CCGAAGTGAT CAACGGCTGT
    CTGGCCTACG TTGAAAACGA AGACATCAGC A
    (SEQ ID NO:5)
    Klebsiella pneumoniae
    ACACCGGT CAACATTGAG GAAGAGCTTA AGAACTCTTA
    TCTGGATTAT GCGATGTCGG TCATTGTTGG CCGTGCGCTG
    CCGGATGTCC GAGATGGCCT GAAGCCGGTA CACCGTCGCG
    TACTTTACGC CATGAACGTA TTGGGCAATG ACTGGAACAA
    AGCCTATAAA AAATCAGCCC GTGTCGTTGG TGACGTAATC
    GGTAAATACC ACCCGCACGG CGACTCCGCG GTATACGACA
    CCATCGTGCG TATGGCGCAG CCGTTCTCGC TGCGTTACAT
    GCTGGTGGAC GGCCAGGGTA ACTTTGGTTC CATCGACGGC
    GACTCCGCCG CGGCGATGCG TTATACCGAA ATTCGTCTGG
    CGAAAATCGC TCATGAGCTG ATGGCCGATC TTGAAAAAGA
    GACGGTCGAT TTCGTCGACA ACTATGACGG TACGGAGCGT
    ATTCCGGACG TCATGCCGAC CAAAATTCCT AACCTGCTGG
    TGAACGGCGC CTCCGGGATC GCCGTAGGGA TGGCCACCAA
    CATACCGCCA CATAACGTGA CGGAAGTGAT TAACGGCTGT
    CTGGCGTATG TTGACGATGA AGACATCAGC A
    (SEQ ID NO:6)
    Providencia stuartii
    ACACCGGT CAATATCGAA GAAGAACTCA AAAGTTCGTA
    TTTGGATTAT GCGATGTCCG TTATTGTCGG GCGCGCGCTT
    CCAGATGTTC GAGATGGACT GAAGCCAGTACACCGCAGAG
    TACTGTTTGC GATGAATGTA TTGGGAAATG ATTGGAATAA
    ACCCTATAAA AAATCTGCCC GTATAGTCGG GGACGTTATC
    GGTAAATACC ATCCACATGG TGATAGCGCT GTTTATGAGA
    CAATCGTTCG TCTTGCTCAG CCTTTTTCTA TGCGTTATAT
    GCTGGTAGAT GGTCAGGGGA ACTTTGGTTC AGTTGACGGA
    GATTCCGCAG CTGCAATGCG TTATACGGAA ATCCGTATGG
    CGAAAATTGC CCATGAAATG TTAGCGGATC TTGAAAAAGA
    GACCGTTGAT TTCGTCCCAA ACTATGATGG TACAGAGCAA
    ATCCCTGAAG TTATGCCTAC GAAAATCCCT AACCTATTGG
    TTAATGGTTC GTCAGGTATT GCTGTTGGGA TGGCAACGAA
    CATTCCTCCA CACAACCTAG GGGAAGTGAT CAGCGGTTGC
    CTTGCTTATA TAGATGATGA AGATATTAGC A
    (SEQ ID NO:7)
    Serratia marcescens
    ACACCGGT AAACATCGAA GACGAGTTGA AAAACTCGTA
    TCTGGACTAT GCGATGTCCG TTATTGTCGG ACGTGCCCTG
    CCAGATGTTC GTGATGGACT GAAGCCGGTT CACCGCCGCG
    TTCTGTACGC GATGAGCGTA TTGGGTAACG ACTGGAATAA
    ACCATACAAG AAATCGGCCC GTGTCGTCGG GGACGTGATC
    GGTAAATATC ACCCGCACGG TGACAGCGCG GTTTACGACA
    CTATCGTGCG TATGGCTCAG CCGTTTTCAC TGCGCTACAT
    GCTGGTGGAC GGTCAGGGTA ACTTCGGTTC CGTCGACGGC
    GACTCCGCGG CGGCGATGCG TTATACCGAA GTGCGCATGT
    CCAAGATTGC TCACGAACTG TTGGCGGATC TGGAAAAAGA
    AACCGTCGAC TTCGTGCCTA ACTATGATGG CACCGAGCAG
    ATCCCGGCCG TCATGCCGAC CAAGATCCCG AACCTGCTGG
    TCAACGGCTC GTCGGGCATC GCCGTGGGCA TGGCTACCAA
    TATTCCGCCG CACAACCTGG CGGAAGTCGT CAACGGCTGC
    CTGGCCTATA TCGACGATGA AAACATCAGC A
    (SEQ ID NO:8)
  • The QRDR sequences from positions 199 to 318 (relative to E. coli) are shown below in Table 2.
  • TABLE 2
    Quinolone Resistance-Determining Region Sequences
    Escherichia coli
    GCCCG TGTCGTTGGT GACGTAATCG GTAAATACCA TCCCCATGGT
    GACTCGGCGG TTTATGACAC GATCGTCCGT ATGGCGCAGC
    CATTCTCGCT GCGTTACATG CTGGTAGACG GTCAG
    (SEQ ID NO:9)
    Citrobacter freundii
    GCCCG TGTCGTTGGT GACGTAATCG GTAAATACCA CCCTCATGGT
    GATACCGCCG TTTACGACAC CATTGTTCGT ATGGCGCAGC
    CATTCTCCTT GCGTTACATG CTGGTAGATG GTCAG
    (SEQ ID NO:10)
    Enterobacter aerogenes
    GC CCGTGTCGTT GGCGACGTAA TCGGTAAATA CCACCCGCAT
    GGTGATACCG CCGTTTATGA CACCATCGTA CGTATGGCGC
    AGCCGTTCTC CTTGCGTTAT ATGCTGGTCG ATGGCCAG
    (SEQ ID NO:11)
    Enterobacter cloacae
    GC CCGTGTCGTT GGTGACGTAA TCGGTAAATA CCATCCCCAT
    GGTGATTCCG CGGTGTACGA CACCATCGTT CGTATGGCGC
    AGCCTTTCTC GCTGCGTTAC ATGCTGGTAG ATGGTCAG
    (SEQ ID NO:12)
    Klebsiella oxytoca
    GCCCGTGTC GTGGGTGACG TCATCGGTAA ATACCACCCT
    CATGGTGATA CTGCCGTATA CGACACCATT GTACGTATGG
    CGCAGCCATT CTCCCTGCGT TACATGCTGG TAGATGGCCA G
    (SEQ ID NO:13)
    Klebsiella pneumoniae
    GC CCGTGTCGTT GGTGACGTAA TCGGTAAATA CCACCCGCAC
    GGCGACTCCG CGGTATACGA CACCATCGTG CGTATGGCGC
    AGCCGTTCTC GCTGCGTTAC ATGCTGGTGG ACGGCCAG
    (SEQ ID NO:14)
    Providencia stuartii
    GCCCGTATAG TCGGGGACGT TATCGGTAAA TACCATCCAC
    ATGGTGATAG CGCTGTTTAT GAGACAATCG TTCGTCTTGC
    TCAGCCTTTT TCTATGCGTT ATATGCTGGT AGATGGTCAG
    (SEQ ID NO:15)
    Serratia marcescens
    GCCCGTGTC GTCGGGGACG TGATCGGTAA ATATCACCCG
    CACGGTGACA GCGCGGTTTA CGACACTATC GTGCGTATGG
    CTCAGCCGTT TTCACTGCGC TACATGCTGG TGGACGGTCA G
    (SEQ ID NO:16)
  • Oligonucleotide primers GYRA6 and GYRA631R successfully amplified the expected 626 bp DNA fragment from Escherichia coli, Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii and Serratia marcescens (FIGS. 1A-1B). In additional experiments, amplification with GYRA6 and GYRA631 produced the expected GYRA fragment from S. typhimurium (data not shown).
  • The PCR products were sequenced and the 120 bp regions of gyrA known as the QRDR were analyzed. Alignment of the QRDR DNA sequences of the type strains revealed numerous nucleotide substitutions when compared with the E. coli sequence (FIG. 2). Eighty-seven of 120 nucleotides (72.5%) were conserved. Similarity to the E. coli sequence varied from 93.3% for E. cloacae to 80.8% for P. stuartii (FIGS. 4A-4B). Significant diversity was noted when the gyrA QRDR sequences of two species from one genus were aligned. E. aerogenes and E. cloacae shared 90.5% identity and K. pneumoniae and K. oxytoca shared 89.3% identity in this region, less similarity than between several of the different genera.
  • The gyrA QRDR sequence of the E. coli type strain (ATCC 11775) was compared with the E. coli K12 gyrA sequence published by Swanberg and Wang (J. Mol. Biol. 197:729-736 (1997)) and 4 nucleotide differences were detected at positions 255 (C->T), 267 (T->C), 273 (C->T), and 300 (T->C).
  • When the QRDR sequence from the K. pneumoniae type strain was compared with the gyrA gene sequence from K. pneumoniae strain M5a1 published by Dimri and Das (Nucleic Acids Research, 18:151-156 (1990)), differences were detected in 15 of 120 nucleotides. Of these 15 nucleotides, only one resulted in an amino acid change. At nucleotide position 247 a T to A change altered the deduced amino acid from Ser-83 (ATCC type strain) to Thr (M5a1). When the M5a1 gyrA sequence was compared with that of the K. oxytoca type strain, only 4 nucleotide differences were detected. In addition, Ser was consistently found at position 83 in the fluoroquinolone-susceptible strains of K. pneumoniae and Thr was consistently found at this position in the K. oxytoca strains (FIGS. 4A and 4B). These data indicate that the Dimri and Das sequence of the M5a1 strain most likely was from a strain of K. oxytoca and not K. pneumoniae.
  • In the sequence from the S. marcescens type strain (ATCC 13880), the QRDR was identical to the sequence published by Kim et al. (ATCC 14756) (Antimicrob. Agents Chemother., 42:190-193 (1998)). One nucleotide difference was found in the flanking region (nt 321, T to C) with no change in amino acid sequence (data not shown). The C. freundii QRDR sequence was identical to that of Nishino et al. (FEMS Microbiology Letters, 154:409-414 (1997)), however, an additional 393 nucleotides are presented herein.
  • The deduced amino acid sequences of the QRDR were highly conserved (FIG. 3). E. cloacae, K. pneumoniae and S. marcescens shared identical amino acid sequences with E. coli. In C. freundii, E. aerogenes and K. oxytoca, one conservative substitution, Ser-83 to Thr was found. Only P. stuartii exhibited more than one amino acid substitution in this region. In this organism two conservative changes were detected, Val-69 to Ile and Asp-87 to Glu. In addition, the Leu-92 and Met-98 positions were reversed when compared with the amino acid sequences of other members of the Enterobacteriaceae family included in this study. The Glu at position 87 is typical for gyrA in Gram-positive organisms (Tankovic et al., Antimicrob. Agents Chemother., 40:2505-2510 (1996)), but has not previously been described for a Gram-negative organism.
  • After determining the DNA sequence of the QRDR from the quinolone-susceptible type strains, the 5′ region of gyrA in ciprofloxacin-resistant and -susceptible clinical isolates was amplified, sequenced, and analyzed for mutations leading to amino acid changes associated with fluoroquinolone resistance (FIGS. 4A and 4B). Comparisons of the fluoroquinolone-susceptible type strain and the resistant clinical isolates of E. coli revealed single mutations in codon 83 in gyrA associated with low levels of resistance and double mutations (codons 83 and 87) with high levels of resistance (≧16 ug/ml ciprofloxacin) as previously described (Vila et al., Antimicrob. Agents Chemother., 38:2477-2479 (1994) and Heisig et al., Antimicrob. Agents Chemother., 37:696-701 (1993)). However, in all other species in this study, high levels of resistance were found in strains with single as well as double gyrA mutations. MICs varied significantly among strains with the same mutation, confirming that factors other than gyrA are involved in determining the level of resistance to fluoroquinolones (Everett et al., Antimicrob. Agents Chemother., 40:2380-2386 (1996) and Piddock, Drugs, 49 (Suppl):29-35 (1995)).
  • All clinical isolates of C. freundii with reduced susceptibility to fluoroquinolones were found to have Thr-83 to Ile mutations, resulting from C-to-T substitutions at nucleotide position 248. Two isolates also displayed alterations of Asp-87 to Gly. However, as noted for isolate C. freundii 9023 (FIGS. 4A and 4B), the presence of a double mutation was not required for high-level resistance (MICs of 16 μg/ml ciprofloxacin). The nucleotide substitutions in codon 83 of E. aerogenes gyrA (Thr-83 to Ile) were identical to those of C. freundii. No double mutations were detected in gyrA from 7 strains of E. aerogenes with reduced levels of susceptibility to fluoroquinolones. However, MICs of isolates with the single mutation ranged from 2-16 μg/ml ciprofloxacin.
  • Clinical isolates of E. cloacae exhibited numerous substitutions resulting in Ser-83 changes to Phe, Tyr, or Ile with no single amino acid change associated with either low level or high level resistance. There was no alteration of Ser-83 in the clinical isolate E. cloacae 1524 which had a marginal decrease in susceptibility to the fluoroquinolones. However, Asp-87 was changed to Asn. This alteration, found as part of a double mutation in E. cloacae 1224, may contribute to high-level resistance if additional changes occur in the QRDR of E. cloacae 1524.
  • K. pneumoniae isolates exhibited either single or double mutations involving Ser-83 and Asp-87, and ciprofloxacin MICs ranged from 1-16 μg/ml. Again, double mutations were not required for high-level resistance and no specific mutation (Ser-83 to Phe or Tyr) was associated with low or high levels of fluoroquinolone resistance.
  • K. oxytoca mutations were confined to the Thr-83 codon and were consistent C-to-T substitutions in the second position resulting in amino acid change to Ile, similar to C. freundii and E. aerogenes. MICs associated with this alteration ranged from 0.5-16 μg/ml ciprofloxacin.
  • Changes in the QRDR of P. stuartii gyrA were also confined to codon 83, however, the nucleotide substitutions varied. The single nucleotide substitutions included A-to-C at the first position or C-to-G at the third position, both resulting in Ser-to-Arg mutations, or G-to-T in the second position resulting in Ser-to-Ile mutations. MICs ranged from 2 to 16 μg/ml ciprofloxacin.
  • S. marcescens displayed the greatest diversity in mutations with Gly-81, Ser-83, or Asp-87 involved. No double mutations were detected in the QRDR of gyrA from 6 fluoroquinolone-resistant clinical isolates. An unusual mutation of Gly-81 to Cys was found in two isolates. However, this mutation has been described in E. coli (Yoshida et al., Antimicrob. Agents Chemother., 34:1271-1272 (1990)).
  • The data in this Example provides for the first time enough comparative nucleic acid sequence data for the gyrA gene to enable one to prepare probes that will selectively hybridize to target nucleic acid to identify the species and/or quinolone resistance of Escherichia coli, Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii and Serratia marcescens.
  • Example 2 Development of Probes Identification of Enterobacteriaceae Species
  • Oligonucleotide probes can be selected for species-specific identification of Enterobacteriaceae in or near the QRDR of gyrA. The region which includes the codons most often associated with fluoroquinolone resistance (nucleotides 239-263) was not used for the reason that if identification were based on one or more nucleotide changes, the changes associated with resistance would interfere with identification. Each probe for identification was selected for maximum difference, and it is recognized that a smaller region within some probes could be used, based on single base changes. However, most of the probes have at least two nucleotide differences compared with the same region in other strains. When there were variations, other than those associated with resistance, within the susceptible and/or the resistance strains for any given species, the position of the probe was shifted to a region which was completely conserved for all strains sequenced. For this reason, the probes were in the region 5′ of the QRDR.
  • TABLE 3
    Oligonucleotide probes for
    identification of Enterobacteriaceae
    E. coli 5′ ACT TTA CGC CAT GAA CGT ACT AGG
    (SEQ ID NO:17) C 3′
    (144-168)
    C. freundii 5′ TGG GCA ACG ACT GGA ATA AAG CC 3′
    (SEQ ID NO:18) (164-186)
    E. aerogenes 5′ TTA TAT GCT GGT CGA TGG CCA G 3′
    (SEQ ID NO:19) (297-323)
    E. cloacae 5′ GCC GGA CGT CCG CGA TGG CCT 3′
    (SEQ ID NO:20) (102-122)
    K. oxytoca 5′ GTA GAT GGC CAG GGT AAC TTT GGT
    (SEQ ID NO:21) TCG GTC 3′
    (307-336)
    K. pneumoniae 5′ GTG CGT ATG GCG CAG CCG TTC TCG
    (SEQ ID NO:22) CTG 3′
    (268-294)
    P. stuartii 5′ CGT CTT GCT CAG CCT TTT TCT ATG
    (SEQ ID NO:23) C 3′
    (271-295)
    S. marcescens 5′ GGA ATA AAC CAT ACA AGA AA 3′
    (SEQ ID NO:24) (176-195)
    Note:
    Numbers in parentheses refer to base positions in E. coli sequence
  • Fluoroquinolone Resistance Probes
  • Simultaneous identification of the species and mutations leading to resistance can be determined by using one of the above oligonucleotide probes in combination with the resistance probes set forth below. All oligonucleotide probes shown in Table 4 for quinolone resistance span the region containing the amino acid codons most frequently associated with resistance (nucleotides 239-263). Susceptible strains will hybridize to the resistance probe for that species and resistance will be detected as one or more basepair mismatch with the susceptible strain sequence.
  • TABLE 4
    Oligonucleotide probes for quinolone
    resistance in Enterobacteriaceae
    E. coli 5′ ATG GTG ACT CGG CGG TTT ATG ACA
    (SEQ ID NO:25) C 3′
    OR
    5′ ATG GTG ACT CGG CGG TCT ATG ACA
    (SEQ ID NO:26) C 3′
    C. freundii 5′ ATG GTG ATA CCG CCG TTT ACG ACA
    (SEQ ID NO:27) C 3′
    E. aerogenes 5′ ATG GTG ATA CCG CCG TTT ATG ACA
    (SEQ ID NO:28) C 3′
    E. cloacae 5′ ATG GTG ATT CCG CGG TGT ACG ACA
    (SEQ ID NO:29) C 3′
    K. oxytoca 5′ ATG GTG ATA CTG CCG TAT ACG ACA
    (SEQ ID NO:30) C 3′
    K. pneumoniae 5′ ACG GCG ACT CCG CGG TAT ACG ACA
    (SEQ ID NO:31) C 3′
    P. stuartii 5′ ATG GTG ATA GCG CTG TTT ATG AGA
    (SEQ ID NO:32) C 3′
    S. marcescens 5′ ACG GTG ACA GCG CGG TTT ACG ACA
    (SEQ ID NO:33) C 3′

Claims (20)

1. An isolated nucleic acid probe of 20 to 50 nucleotides in length for identifying an Enterobacteriaceae species in a sample, wherein the probe is at least 90% homologous to the 5′ region of the gyraseA gene of an Enterobacteriaceae species selected from the group consisting of Citrobacter freundii (SEQ ID NO: 2), Enterobacter aerogenes (SEQ ID NO: 3), Enterobacter cloacae (SEQ ID NO: 4), Klebsiella oxytoca (SEQ ID NO: 5), Klebsiella pneumoniae (SEQ ID NO: 6), Providencia stuartii (SEQ ID NO: 7), Serratia marcescens (SEQ ID NO: 8), a complementary sequence of anone of SEQ ID NOS: 2-8, but is not at least 90% homologous to the to the 5′ region of the gyraseA gene of. Escherichia coli (SEQ ID NO: 1) or the complementary sequence thereof.
2. The isolated nucleic acid probe of claim 1, comprising the nucleotide sequence set forth as one of SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, or SEQ ID NO: 24, or a complementary sequence thereof.
3. The isolated nucleic acid probe of claim 1, length for identifying an Enterobacteriaceae species in a sample, wherein the probe is at least 95% homologous to the 5′ region of the gyraseA gene of Citrobacter freundii (SEQ ID NO: 2), Enterobacter aerogenes (SEQ ID NO: 3), Enterobacter cloacae (SEQ ID NO: 4), Klebsiella oxytoca (SEQ ID NO: 5), Klebsiella pneumoniae (SEQ ID NO: 6), Providencia stuartii (SEQ ID NO: 7), or Serratia marcescens (SEQ ID NO: 8), or a complementary sequence thereof, but is not at least 95% homologous to the to the 5′ region of the gyraseA gene of. Escherichia coli (SEQ ID NO: 1) or the complementary sequence thereof.
4. The isolated nuclear acid probe of claim 1, wherein the probe is at least 100% homologous to the 5′ region of the gyraseA gene of Citrobacter freundii (SEQ ID NO: 2), Enterobacter aerogenes (SEQ ID NO: 3), Enterobacter cloacae (SEQ ID NO: 4), Klebsiella oxytoca (SEQ ID NO: 5), Klebsiella pneumoniae (SEQ ID NO: 6), Providencia stuartii (SEQ ID NO: 7), or Serratia marcescens (SEQ ID NO: 8), or a complementary sequence thereof, but is not at least 100% homologous to the to the 5′ region of the gyraseA gene of. Escherichia coli (SEQ ID NO: 1) or the complementary sequence thereof.
5. A method of identifying in a sample an Enterobacteriaceae species selected from the group consisting of Escherichia coli, Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii and Serratia marcescens, comprising:
contacting the sample with a nucleic acid probe of claim 1; and
detecting the presence of hybridization with a nucleic acid indicating the presence of the respective species;
thereby identifying an Enterobacteriaceae species selected from the group consisting of Escherichia coli, Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii and Serratia marcescens in the sample.
6. An isolated nucleic acid probe of 20 to 50 nucleotides in length capable of determining quinolone resistance status of an Enterobacteriaceae species selected from the group consisting of Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Providencia stuartii and Serratia marcescens in a sample, wherein the probe hybridizes to the 5′ region of the gyraseA gene of Citrobacter freundii (SEQ ID NO: 2), Enterobacter aerogenes (SEQ ID NO: 3), Enterobacter cloacae (SEQ ID NO: 4), Klebsiella oxytoca (SEQ ID NO: 5), Klebsiella pneumoniae (SEQ ID NO: 6), Providencia stuartii (SEQ ID NO: 7), or Serratia marcescens (SEQ ID NO: 8), or a fully complementary sequence thereof, and wherein a nucleic acid a quinolone susceptible strain hybridizes to the probe, and wherein a nucleic acid a quinolone resistant strain has a one or more base pair mismatch with the probe.
7. The probe of claim 6, comprising the nucleotide sequence set forth as one of SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, or SEQ ID NO: 33, or a complementary sequence thereof.
8. The probe of claim 6, wherein the probe is labeled.
9. A method for determining the quinolone resistance of an Enterobacteriaceae species selected from the group consisting of Escherichia coli Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella Pneumoniae, Providencia stuartii and Serratia marcescens in a sample, comprising
contacting the sample with a nucleic acid probe, wherein the probe selectively hybridizes to a nucleic acid sequence set forth as one of SEQ ID NOs: 9-16, or a complementary sequence thereof, respectively, the presence of hybridization with a nucleic acid indicating the quinolone susceptibility of the respective species.
10. The method of determining the quinolone resistance status of an Enterobacteriaceae species of claim 9, comprising contacting the sample with a nucleic acid probe, wherein the probe selectively hybridizes to a nucleic acid of SEQ ID NO: 9, or a complementary sequence thereof, the presence of hybridization indicating quinolone resistance of the Escherichia coli in the sample.
11. The method of determining the quinolone resistance status of an Enterobacteriaceae species of claim 9, wherein hybridization of the probe to the nucleic acid sequence of SEQ ID NOs: 1-9 indicates that the Enterobacteriaceae species is susceptible to quinolone and a one or more base pair mismatch of the probe to the nucleic acid sequence of one or more of SEQ ID NOs: 1-9 indicates that Enterobacteriaceae species is resistant to quinolone.
12. The method of claim 9, wherein the probe is from about 10 to 50 nucleotides in length.
13. The method of claim 9, wherein the probe consists of the nucleic acid sequence set forth as one of SEQ ID NOs: 25-33.
14. The method of claim 10, wherein the probe selectively hybridizes to nucleotides 25 to 613 of SEQ ID NO: 9.
15. The method of claim 10, wherein the probe selectively hybridizes to nucleotides 199 to 318 of SEQ ID NO:9, or a complementary sequence thereof.
16. The method of claim 10, wherein the probe selectively hybridizes to nucleotides 239 to 663 of SEQ ID NO: 9, or a complementary sequence thereof.
17. The method of claim 9, wherein the probe is about 25 nucleotides in length.
18. The method of claim 9, wherein the method comprises the use of a polymerase chain reaction (PCR), ligase chain reaction, or a nucleotide array.
19. The method of claim 9, wherein the probe is labeled.
20. The method of claim 10, wherein the nucleic acid sequence set forth as SEQ ID NO: 9 is amplified prior to combining the sample with the nucleic acid probe.
US12/105,243 1998-04-01 2008-04-17 Oligonucleotide probes for detecting enterobacteriaceae and quinolone-resistant enterobacteriaceae Abandoned US20080199877A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/105,243 US20080199877A1 (en) 1998-04-01 2008-04-17 Oligonucleotide probes for detecting enterobacteriaceae and quinolone-resistant enterobacteriaceae

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US8037598P 1998-04-01 1998-04-01
US09/647,563 US6706475B1 (en) 1998-04-01 1999-03-30 Oligonucleotide probes for detecting Enterobacteriaceae and quinolone-resistant Enterobacteriaceae
PCT/US1999/006963 WO1999050458A2 (en) 1998-04-01 1999-03-30 OLIGONUCLEOTIDE PROBES FOR DETECTING ENTEROBACTERIACEAE AND QUINOLONE-RESISTANT $i(ENTEROBACTERIACEAE)
US10/798,827 US20050009044A1 (en) 1998-04-01 2004-03-10 Oligonucleotide probes for detecting Enterobacteriaceae and quinolone-resistant Enterobacteriaceae
US12/105,243 US20080199877A1 (en) 1998-04-01 2008-04-17 Oligonucleotide probes for detecting enterobacteriaceae and quinolone-resistant enterobacteriaceae

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/798,827 Continuation US20050009044A1 (en) 1998-04-01 2004-03-10 Oligonucleotide probes for detecting Enterobacteriaceae and quinolone-resistant Enterobacteriaceae

Publications (1)

Publication Number Publication Date
US20080199877A1 true US20080199877A1 (en) 2008-08-21

Family

ID=33566953

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/647,563 Expired - Fee Related US6706475B1 (en) 1998-04-01 1999-03-30 Oligonucleotide probes for detecting Enterobacteriaceae and quinolone-resistant Enterobacteriaceae
US10/798,827 Abandoned US20050009044A1 (en) 1998-04-01 2004-03-10 Oligonucleotide probes for detecting Enterobacteriaceae and quinolone-resistant Enterobacteriaceae
US12/105,243 Abandoned US20080199877A1 (en) 1998-04-01 2008-04-17 Oligonucleotide probes for detecting enterobacteriaceae and quinolone-resistant enterobacteriaceae

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/647,563 Expired - Fee Related US6706475B1 (en) 1998-04-01 1999-03-30 Oligonucleotide probes for detecting Enterobacteriaceae and quinolone-resistant Enterobacteriaceae
US10/798,827 Abandoned US20050009044A1 (en) 1998-04-01 2004-03-10 Oligonucleotide probes for detecting Enterobacteriaceae and quinolone-resistant Enterobacteriaceae

Country Status (1)

Country Link
US (3) US6706475B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107795A1 (en) 2019-11-26 2021-06-03 Proteon Pharmaceuticals S.A. Method and system for detection of extraintestinal e. coli strains pathogenic to poultry

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018518180A (en) * 2015-06-19 2018-07-12 ケンブリッジ エンタープライズ リミテッド Diagnosis and treatment of infectious diseases
CN105002270A (en) * 2015-06-29 2015-10-28 张贵海 Primers and probes for specifically detecting enterobacteriaceae bacteria and use thereof
CN105087773A (en) * 2015-06-29 2015-11-25 张贵海 Primer and probe for specific detection on enterobacter sakazakii and applications of primer and probe
US11441167B2 (en) * 2019-11-20 2022-09-13 Roche Molecular Systems, Inc. Compositions and methods for rapid identification and phenotypic antimicrobial susceptibility testing of bacteria and fungi

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4958013A (en) * 1989-06-06 1990-09-18 Northwestern University Cholesteryl modified oligonucleotides
US5645994A (en) * 1990-07-05 1997-07-08 University Of Utah Research Foundation Method and compositions for identification of species in a sample using type II topoisomerase sequences

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4421901A1 (en) 1994-06-23 1996-01-04 Bayer Ag A rapid DNA test for the detection of quinolone-resistant Staphylococcus aureus pathogens in clinical specimens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4958013A (en) * 1989-06-06 1990-09-18 Northwestern University Cholesteryl modified oligonucleotides
US5645994A (en) * 1990-07-05 1997-07-08 University Of Utah Research Foundation Method and compositions for identification of species in a sample using type II topoisomerase sequences

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107795A1 (en) 2019-11-26 2021-06-03 Proteon Pharmaceuticals S.A. Method and system for detection of extraintestinal e. coli strains pathogenic to poultry

Also Published As

Publication number Publication date
US6706475B1 (en) 2004-03-16
US20050009044A1 (en) 2005-01-13

Similar Documents

Publication Publication Date Title
Yu et al. Development and validation of a diagnostic DNA microarray to detect quinolone-resistant Escherichia coli among clinical isolates
JP2007125032A (en) Specific and universal probes and amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistant genes from clinical specimens for routine diagnosis in microbiology laboratories
Lindler et al. Detection of ciprofloxacin-resistant Yersinia pestis by fluorogenic PCR using the LightCycler
JP2021072868A (en) Diagnosis and treatment of infectious disease
AU762314B2 (en) Oligonucleotide probes for detecting enterobacteriaceae and quinolone-resistant enterobacteriaceae
US20080199877A1 (en) Oligonucleotide probes for detecting enterobacteriaceae and quinolone-resistant enterobacteriaceae
CN104278082A (en) Specific fragment composition of mycobacterium tuberculosis drug-resistant gene of four second-line drugs and application thereof
EP1375677B1 (en) Probes for detecting and identifying helicobacter pylori
US5985569A (en) Primers for amplification of a genus specific sequence of the mycobacterium 16S rRNA gene
Capoor et al. Molecular analysis of high-level ciprofloxacin resistance in Salmonella enterica serovar Typhi and S. Paratyphi A: need to expand the QRDR region?
JP2010515451A (en) DNA chip for E. coli detection
US20050058985A1 (en) Method and kit for identifying vancomycin-resistant enterococcus
WO1998042845A1 (en) PROBES FOR THE DIAGNOSIS OF INFECTIONS CAUSED BY $i(STREPTOCOCCUS PYOGENES)
AU2006315715A1 (en) Identification of USA300 community-associated methicillin-resistant staphylococcus aureus
US20100167951A1 (en) Dna chip for detection of staphylococcus aureus
Burteau et al. Design and validation of a low density array (Nosochip) for the detection and identification of the main pathogenic bacteria and fungi responsible for nosocomial pneumonia
KR100577438B1 (en) DNA chips for Detection of Bacteroides ovatus bacilli
KR100617640B1 (en) DNA chips for Detection of Kingella kingaep
KR100577440B1 (en) DNA chips for Detection of Streptococcus mutans bacilli
KR100577404B1 (en) DNA chips for Detection of Bacteroides vulgatus bacilli
KR100577453B1 (en) DNA chips for Detection of Chryseobacterium meningosepticum bacilli
KR100577454B1 (en) DNA chips for Detection of Anaerobiospirillum succiniciproducens bacilli
KR100577397B1 (en) DNA chips for Detection of Branhamella catarrhalis bacilli
KR100617645B1 (en) DNA chips for Detection of Eikenella corrodens
KR100577412B1 (en) DNA chips for Detection of Bacteroides thetaiotaomicron bacilli

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE GOVERNMENT OF THE UNITED STATES OF AMERICA, AS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEIGEL, LINDA M.;TENOVER, FRED C.;REEL/FRAME:020874/0662

Effective date: 19980430

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION