US20080199930A1 - Method and apparatus for the rapid disruption of cells or viruses using micro beads and laser - Google Patents

Method and apparatus for the rapid disruption of cells or viruses using micro beads and laser Download PDF

Info

Publication number
US20080199930A1
US20080199930A1 US12/031,947 US3194708A US2008199930A1 US 20080199930 A1 US20080199930 A1 US 20080199930A1 US 3194708 A US3194708 A US 3194708A US 2008199930 A1 US2008199930 A1 US 2008199930A1
Authority
US
United States
Prior art keywords
laser
cells
beads
cell lysis
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/031,947
Inventor
Jeong-Gun Lee
Young-nam Kwon
Young-A Kim
Myo-yong Lee
Shin-i Yoo
Yeon-ja Cho
Kwang-ho Cheong
Chang-eun Yoo
Seung-yeon Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020050038988A external-priority patent/KR20060046032A/en
Priority claimed from KR1020050078886A external-priority patent/KR100695160B1/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to US12/031,947 priority Critical patent/US20080199930A1/en
Assigned to SAMSUNG ELECTRONICS CO., LTD. reassignment SAMSUNG ELECTRONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEONG, KWANG-HO, CHO, YEON-JA, KIM, YOUNG-A, KWON, YOUNG-NAM, LEE, JEONG-GUN, LEE, MYO-YONG, YANG, SEUNG-YEON, YOO, CHANG-EUN, YOO, SHIN-I
Publication of US20080199930A1 publication Critical patent/US20080199930A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/06Hydrolysis; Cell lysis; Extraction of intracellular or cell wall material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/86Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations with vibration of the receptacle or part of it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/06Lysis of microorganisms
    • C12N1/066Lysis of microorganisms by physical methods
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions

Definitions

  • the present invention relates to a method and apparatus for rapid disruption of cells or viruses using micro beads and a laser.
  • a molecular diagnosis of a specific pathogenic bacteria is performed in four steps: 1) cell lysis, 2) DNA isolation, 3) DNA amplification and 4) DNA detection.
  • the molecular diagnosis is generally performed by DNA amplification after DNA extraction.
  • the DNA amplification includes a polymerase chain reaction (PCR), a ligase chain reaction, a stranded-displacement amplification, a nucleic acid-based amplification, a repair chain reaction, a helicase chain reaction, a QB replicase amplification, an a ligation activated transcription.
  • a method of isolating DNA from a cell is performed using materials having a tendency of bonding to DNA.
  • materials having a tendency of bonding to DNA include silica, glass fiber, anion exchange resin and magnetic beads (Rudi, K. et al., Biotechniqures 22, 506-511 (1997); and Deggerdal, A. et al., Biotechniqures 22, 554-557 (1997)).
  • Cell lysis is conventionally performed by a mechanical, chemical, thermal, electrical, ultrasonic or microwave method (Michael T. Taylor et al., Anal. Chem., 73, 492-496 (2001)).
  • a chemical method includes the use of lyzing agents for disrupting cells to release DNA.
  • An additional treatment of cell extracts with a chaotropic reagent is necessary to denature proteins.
  • the chemical lysis method is disadvantageous in that harsh chemicals are used to disrupt the cells. Since they can interfere with the subsequent PCR, it is necessary to purify the DNA prior to the PCR.
  • the chemical method is labor-intensive and time-consuming, requires expensive consumables and has often a low DNA yield.
  • a thermal method involves cycles of freezing/thawing, but cannot often disrupt many structures within cells.
  • Heating is an alternative method of disrupting cell walls or membranes. Simple heating is disadvantageous in that it results in the denaturation of proteins, which can be attached to released DNA. They can also interfere with DNA amplification.
  • a physical method uses a bulky and expensive pressure apparatus, which is not suitable for a Lab-on-a-Chip (LOC) application.
  • LOC Lab-on-a-Chip
  • An ultrasonic treatment is an alternative of the physical method, wherein a cell solution or suspension is placed in a chamber located in an ultrasonic bath.
  • Ultrasonic disruption has many disadvantages in cell lysis. First, a distribution of ultrasonic energy is not uniform. The nonuniform distribution of ultrasonic energy leads to inconsistent results. Second, due to the energy divergence in the ultrasonic bath, it takes often several minutes to completely disrupt cells. Lastly, the ultrasonic method generates unpleasant sounds.
  • a laser has many advantages in the disruption of cells and can be readily applied to LOC (Huaina Li et al., Anal Chem, 73, 4625-4631 (2001)).
  • U.S. Patent Publication No. 2003/96429 A1 discloses a laser-induced cell lysis system. When only a laser is used, an efficient cell lysis does not occur. As a result of performing an experiment using E. coli placed in a very clear solution, it is confirmed that when irradiating only with a laser, a low cell lysis efficiency is obtained.
  • a concentration of DNA measured after irradiating a laser for 150 seconds is 3.77 ng/ ⁇ l because laser energy is not effectively transferred to cells.
  • a concentration of DNA measured after boiling cells at 95° C. for 5 minutes by means of a conventional heating method is 6.15 ng/ ⁇ l.
  • U.S. Pat. No. 6,685,730 discloses optically-absorbing nanoparticles for enhanced tissue repair.
  • This patent includes a method of joining tissue comprising: delivering nanoparticles having dimensions of from 1 to 1000 nanometers that absorb light at one or more wavelengths to the tissue to be joined; and exposing the nanoparticles to light at one or more wavelengths that are absorbed by the nanoparticles.
  • This method causes only a loss of function of the cells by using a laser and nanoparticles and there is no description of a method of disrupting cells by vibrating a solution containing cells and particles.
  • the present invention provides a method of disrupting cells or viruses, the method including: mixing beads with a solution containing cells or viruses; vibrating the beads; and irradiating the beads to heat and disrupt the cells or viruses.
  • the present invention also provides an apparatus for the disruption of cells or viruses including: (i) a member for receiving a cell lysis chamber, wherein the cell lysis chamber is for receiving a mixture of beads and a solution containing cells or viruses; (ii) a vibrator connected to the member for vibrating the beads in the chamber; and (iii) a laser generator for supplying a laser to the cell lysis chamber.
  • the present invention also provides an apparatus for the disruption of cells or viruses, including: a member for receiving a cell lysis chip; optionally a cell lysis chip having an inlet hole through which a sample and magnetic beads are introduced; a vibrator connected to the chip through a vibration transfer part to mix the sample and the magnetic beads in the chip, the vibration transfer part attached to the member for transferring vibration to the cell lysis chip; a laser generator attached to the chip for supplying a laser; and an anti-evaporation part attached to the chip to prevent the sample from evaporating.
  • the present invention also provides a cell lysis chip for the apparatus for the disruption of cells or viruses, including: a chip body having opened top surface and bottom surface and including a reaction chamber, an inlet hole, and an outlet hole; a chip cover which is attached to the top surface of the chip body to close the upper portion of the reaction chamber, allows a laser to pass through, and has an inlet hole and an outlet hole; and a chip bottom attached to the bottom surface of the chip body through a chip bonding part to close the lower portion of the reaction chamber, the inlet hole, and the outlet hole.
  • FIG. 1 is a schematic diagram of a system used for cell lysis using micro magnetic beads and a laser;
  • FIG. 2A is a schematic diagram of a system used in cell lysis on a microchip using a laser and micro magnetic beads according to an embodiment of the present invention
  • FIG. 2B is a design of the system illustrated in FIG. 2A ;
  • FIG. 3 is a photograph of a septa part of a cell lysis apparatus
  • FIG. 4 is a schematic diagram of an embodiment of a microchip used in an apparatus for disrupting cells using micro magnetic beads and a laser;
  • FIG. 5 is a photograph of a microchip according to an embodiment of the present invention.
  • FIG. 6 is a plan view showing a disk-shaped micro-fluidic apparatus which employs an apparatus for disrupting cells or viruses according to an embodiment of the present invention
  • FIG. 7 is a cross-section showing an open valve employed by the disk-shaped micro-fluidic apparatus in FIG. 6 ;
  • FIG. 8 is a cross-section of a closed valve employed by the disk-shaped micro-fluidic apparatus in FIG. 6 ;
  • FIG. 9 illustrates the results of determining cell viability after laser irradiation
  • FIG. 10 shows that laser irradiation efficiently releases bacterial DNA only in the presence of magnetic beads
  • FIG. 11 shows that DNA released by laser ablation is more efficiently amplified by Taq polymerase than DNA prepared by a conventional method
  • FIG. 12 shows the effects of the size of magnetic beads
  • FIG. 13 is a graph illustrating the transmittance of Pyrex 7740 and anti-reflection (AR) coated Pyrex 7740;
  • FIG. 14 is a photograph of a cell lysis chip according to an embodiment of the present invention after laser irradiation
  • FIG. 15 is a graph illustrating PCR results of DNA released from E. coli cells with respect to the concentration of magnetic beads
  • FIG. 16 is a graph illustrating PCR results of DNA released from E. coli cells with respect to the voltage of a vibrator
  • FIG. 17 is a graph illustrating PCR results of DNA released from Staphylococcus epidermidis cells (1 ⁇ 10 5 cells/ ⁇ l) with respect to laser power;
  • FIG. 18 is a graph illustrating PCR results of DNA released from Staphylococcus epidermidis cells (1 ⁇ 10 2 cells/ ⁇ l) with respect to laser power;
  • FIG. 19 is a graph illustrating PCR results of DNA released from Staphylococcus epidermidis cells and DNA released from Streptococcus mutans cells;
  • FIG. 20 is a graph illustrating PCR results of DNA released from E. coli cells (1 ⁇ 10 5 cells/ ⁇ l) with respect to laser power;
  • FIG. 21 is a graph illustrating PCR results of DNA released from E. coli cells (1 ⁇ 10 2 cells/ ⁇ l) with respect to laser power;
  • FIG. 22 is a graph illustrating the temperature of E. coli sample with respect to laser power
  • FIG. 23 is a graph illustrating PCR results of DNA released from E. coli cells (1 ⁇ 10 5 cells/ ⁇ l) with respect to surface charge of magnetic beads and material of beads;
  • FIG. 24 illustrates a process of synthesizing iminodiacetic acid (IDA), Cu-IDA, pyrene, and thiol functional groups on the surface of a magnetic bead according to an embodiment of the present invention
  • FIG. 25 is a graph illustrating the PCR results [crossing point (Cp)] of DNA released from E. coli cells with respect to functional groups on the surface of magnetic beads;
  • FIG. 26 illustrates an embodiment of synthesizing a polycarboxy functional group on the surface of a magnetic bead
  • FIG. 27 is a graph illustrating the PCR results (Cp) of DNA released from E. coli cells with respect to functional groups on the surface of magnetic beads and pH of a bead solution;
  • FIG. 28 is a graph illustrating the PCR results (Cp) of DNA released from E. coli cells with respect to functional groups on the surface of magnetic beads in the presence of 10% serum;
  • FIG. 29 is a graph illustrating the PCR results (the concentration of PCR product) of DNA released from Hepatitis B virus (HBV) with respect to functional groups on the surface of magnetic beads in the presence of 10% serum;
  • FIG. 30 is a photograph illustrating viability of E. coli cells with respect to laser irradiation.
  • FIG. 31 is a photograph of DNA analysis after laser irradiation to an E. coli BL21 cell harbouring pCR®II-TOPO® (Invitrogen) plasmid.
  • a method of disrupting cells or viruses according to an embodiment of the present invention includes: mixing beads with a solution containing cells or viruses; vibrating the beads; and irradiating the beads to heat and disrupt the cells or viruses.
  • the irradiation may be conducted with a laser.
  • the irradiation for example, with a laser can be conducted onto a solution containing beads, preferably magnetic beads and the beads cause an ablation due to the energy of the laser to transfer shock waves, vapor pressure and heat to the cell surface.
  • physical shocks are also applied to the cell surface.
  • the beads heated by the laser raise the temperature of the solution and directly disrupt the cells.
  • the beads in the solution do not act as a simple heat conductor but apply thermal, mechanical and physical shocks to the cell surface, thereby efficiently disrupting the cell surface.
  • beads used in this specification include anything that absorbs energy provided by an irradiation, for example, a laser irradiation and transforms the energy into heat.
  • the beads include both magnetic and non-magnetic heat-generating particles, preferably magnetic beads.
  • the rapid cell lysis using beads preferably magnetic beads and a laser is performed by heating and laser ablation in a liquid medium.
  • the laser in combination with the micro beads, preferably magnetic beads converts the heat source into physical and mechanical shocks of highly heated beads, preferably magnetic beads to improve cell lysis.
  • LOC Lap-on-a-Chip
  • the laser can concentrate the power and energy on a specific region on a chip by means of an optical fiber, mirror or lens or directly do so.
  • the best advantage of the beads preferably magnetic beads are to reduce DNA isolation steps because the cell lysis by means of the micro magnetic beads and laser results in the denaturation of proteins.
  • the denatured proteins and cell debris are attached to the magnetic beads to be removed by gravity or magnetic force.
  • a detection limit is lowered, a DNA extraction time is significantly shortened due to an omission of one step in the DNA extraction process, polymerase chain reaction (PCR) analysis results are significantly improved due to an increase in the signal amplitude.
  • PCR polymerase chain reaction
  • the total time required to disrupt a cell using the micro magnetic beads and laser is only 40 seconds.
  • a laser ablation refers to a phenomenon caused by materials exposed to a laser beam.
  • the laser ablation rapidly raises the temperature of a material surface from several hundred to several thousand degrees. If the temperature of the material surface is raised to the evaporation point or higher, the saturated vapor pressure on the surface rapidly increases according to an evaporation of the liquid phase material.
  • the saturated vapor pressure is expressed as a function of temperature by a Clausius-Clapeyron equation, and is usually raised to several ten atm or more in the case of a high power pulse laser process.
  • a pressure applied to a material surface by vapor upon the spurt of vapor is referred to as “repulsive pressure” and the magnitude of the repulsive pressure is about 0.56 P sat where P sat denotes a vapor pressure.
  • a shock wave is generated in a process using a laser with very large instantaneous intensity, such as a pulse laser.
  • the vapor generated on the surface of a material heated to the evaporation point or higher for short time ranging from several nano second to several ten nano second is increased to the pressure from several atm to several ten atm and forms shock wave while expanding into the surrounding air. Due to the very high pressure, the expanding vapor applies about 0.56 P s (where P s denotes a saturated vapor pressure in the surface) to a material.
  • the laser can include a pulse laser or continuous wave (CW) laser.
  • CW continuous wave
  • the laser power is 10 mW or more for the CW laser and 1 mJ/pulse or more for the pulse laser.
  • the pulse laser is 3 mJ/pulse or more and the CW laser has the power of 100 mW or more. This is because when the CW is less than 10 mW and the pulse laser is less than 1 mJ/pulse, sufficient energy to disrupt the cells is not transferred.
  • the laser should be generated in a specific wavelength range where magnetic beads absorb the energy of the laser.
  • the laser is generated preferably in the wavelength range of 400 nm or more, and more preferably in the wavelength range from 750 nm to 1300 nm. This is because DNA is denatured or damaged at a wavelength less than 400 nm.
  • the laser can also be generated in one or more wavelength ranges. That is, the laser can have one wavelength or two or more different wavelengths within the above range.
  • the diameter of the beads, preferably magnetic beads is preferably from 50 nm to 1,000 ⁇ m, and more preferably from 1 ⁇ m to 50 ⁇ m.
  • the diameter of the magnetic beads is less than 50 nm, physical and mechanical shocks are insufficient to cause cell lysis.
  • the diameter of the beads, preferably magnetic beads is greater than 1,000 ⁇ m, it is not suitable for LOC.
  • the beads, preferably magnetic beads can also be a mixture of beads with two or more sizes. That is, the beads, preferably magnetic beads can have equal sizes to each other or be a mixture of beads with different sizes.
  • the magnetic beads can be any material magnetized.
  • the magnetic beads preferably include at least one material selected from the group consisting of ferromagnetic Fe, Ni, Cr and oxides thereof.
  • the magnetic beads can be polymers, organic materials, silicon or glass coated with a ferromagnetic metal.
  • the surface of the magnetic bead is preferably negatively charged so that DNA is not attached thereto. Since DNA is negatively charged, it is not attached to the magnetic bead, which is negatively charged, due to repulsive forces. When DNA is attached to the magnetic bead, it is difficult to isolate DNA from magnetic beads after disrupting cells, which makes DNA purification difficult.
  • a functional group on the surface of magnetic beads may be hydrophilic and the solution containing magnetic beads may have a pH of 6-9.
  • the amplification efficiency of DNA obtained from lyzed cells can vary depending on the functional group on the surface of magnetic beads and the pH of the solution containing magnetic beads. As hydrophilicity of the functional group increases, the amplification efficiency of DNA after cell lysis increases.
  • the functional group is a carboxy group with a negative charge or a derivative thereof.
  • the derivative of the carboxy group includes iminodiacetic acid (IDA), ethylenediaminetetraacetic acid (EDTA), citric acid, polycarboxylic acid, etc.
  • the pH of the solution containing magnetic beads is preferably 6-9. If the pH is outside the above range, the amplification efficiency of DNA after cell lysis decreases.
  • the solution can be selected from the group consisting of saliva, urine, blood, serum and cell culture solutions.
  • the solution can be any solution having nucleic acids, such as animal cells, plant cells, bacteria, viruses, phage and the like.
  • the step of vibrating can be performed by using vibrators selected from the group consisting of sonicators, vibrators using a magnetic field, vibrators using an electric field, mechanical vibrators, and piezoelectric materials.
  • the above mechanical vibrators can take as an axis the body supporting the chamber that includes the above mixture, repeatedly moving in clockwise and counter-clockwise angular motion about the above axis. That is, by changing the direction and rotating the disk-shaped plate containing the chamber, vibration may occur.
  • An apparatus for the rapid disruption of cells or viruses includes: a member for receiving a cell lysis chamber which receives a mixture of a solution containing cells or viruses and beads; a vibrator attached to the chamber and vibrating the beads in the chamber; and a laser generator supplying a laser to the cell lysis chamber.
  • beads used in this specification include anything that absorbs energy provided by an irradiation, for example, a laser irradiation and transforms it into heat.
  • the examples of aforementioned beads include both magnetic and non-magnetic heat-releasing particles, preferably magnetic beads.
  • the vibrator can include sonicators, vibrators using a magnetic field, vibrators using an electric field, mechanical vibrators such as a vortex etc., or piezoelectric materials.
  • the vibrator is attached to the cell lysis chamber and can be any device capable of vibrating the mixed solution of the cells and the micro magnetic beads.
  • the above mechanical vibrators can take as an axis the body supporting the chamber that includes the above mixture, repeatedly moving in a clockwise and counter-clockwise angular motion on the above axis. That is, by changing the rotating direction of the disk-shaped plate containing the chamber, vibration may occur.
  • the laser can be a pulse laser having a power of 1 mJ/pulse or more or continuous wave (CW) laser having a power of 10 mW or more.
  • CW continuous wave
  • the laser can be generated preferably in the wavelength range of 400 nm or more, and more preferably in the wavelength range from 750 nm to 1300 nm.
  • the member may be a disk-shaped plate comprising a cell lysis chamber therewithin, and the cell lysis chamberis connected to the inlet and an outlet through a channel.
  • FIG. 1 is a schematic diagram of an embodiment of a system used for cell lysis using a laser and micro magnetic beads.
  • Samples are supplied through an inlet hole.
  • the samples are thoroughly mixed with magnetic beads.
  • the thorough mixing of the samples and the magnetic beads is achieved by a vibrator.
  • a laser is irradiated while vibrating the mixture.
  • a cell lysis chamber window should be composed of a material through which the laser can sufficiently pass.
  • the magnetic beads exposed to the laser transform light to heat, i.e. occur laser ablation. Heat, vibration, shock wave, vapor pressure, etc. are efficiently transferred due to effective heat transfer and collision of the magnetic beads with cells by continuous vibration.
  • a paraffin valve is opened, which can be controlled by the thickness of the paraffin valve. After enough cells are disrupted, the laser is turned off and remaining micro magnetic beads are removed with an electromagnet. If the paraffin valve is removed by heat, the resulting solution runs to a PCR chamber where the purified DNA is amplified.
  • the vibrator can include sonicators, vibrators using a magnetic field, vibrators using an electric field, mechanical vibrators such as a vortex etc., or piezoelectric materials.
  • the vibrator is attached to the cell lysis chamber and can be any device capable of vibrating the mixed solution of the cells and the micro magnetic beads.
  • the apparatus for the rapid disruption of cells or viruses can further include an electromagnet attached to the cell lysis chamber and removing the magnetic beads in the cell lysis chamber after cell lysis is completed.
  • the electromagnet can be attached to the cell lysis chamber, and for the purpose of the LOC implementation, the magnetic beads are removed by the electromagnet after cell lysis is completed so that the disrupted cell solution can directly run to a PCR chamber without performing separation of the magnetic beads.
  • the beads should be magnetized in order to be removed by the electromagnet.
  • the apparatus for the rapid disruption of cells or viruses can further include a DNA purification chamber connected to the cell lysis chamber through a channel before a PCR chamber.
  • the DNA purification chamber is attached to the cell lysis chamber in order to purify the DNA if the paraffin valve or a valve of a MEMS structure using magnetic field or electric field is opened after cell lysis is completed.
  • the apparatus for the rapid disruption of cells or viruses can further include a paraffin valve located in a channel connected to the cell lysis chamber, the thickness of which is controlled by the cell lysis time. While the temperature of the cell lysis chamber is raised by the laser, the paraffin valve is opened, which can be controlled by the thickness of the paraffin valve.
  • the apparatus for the rapid disruption of cells or viruses can further include a DNA amplification chamber connected to the cell lysis chamber through a channel. Since the effects of purification by the micro magnetic beads are generated as described above, the DNA amplification chamber can be directly attached to the cell lysis chamber.
  • the apparatus for the rapid disruption of cells or viruses can further include a DNA amplification chamber connected to the DNA purification chamber through a channel.
  • a DNA amplification chamber connected to the DNA purification chamber through a channel.
  • an amplification system of the purified DNA is necessary.
  • the purified DNA can be detected using a spectrophotometer, micro magnetic beads, an electrochemical method, electrochemiluminescence, radiation and fluorescent label, a real-time PCR method, and the like.
  • the PCR method is most suitable to sufficiently amplify a desired DNA. Other DNA amplification methods can be applied and direct detection through the real-time PCR method, etc. is also possible.
  • An apparatus for the disruption of cells or viruses includes: a cell lysis chip having an inlet hole through which a sample and magnetic beads are introduced; a vibrator connected to the chip through a vibration transfer part to mix the sample and the magnetic beads in the chip, the vibration transfer part attached to the chip to transfer vibration to the chip; a laser generator attached to the chip to supply a laser; and an anti-evaporation part attached to the chip to prevent the sample from evaporating.
  • FIG. 2A is a schematic diagram of an embodiment of a system used in cell lysis using a laser and micro magnetic beads on a microchip and FIG. 2B is a design of the system illustrated in FIG. 2A .
  • a cell lysis chip is a device for lyzing cells or viruses using a sample and magnetic beads introduced through an inlet hole.
  • the cell lysis chip includes a chip cover, a chip body, a chip bonding part, and a chip bottom. The elements of the cell lysis chip will be described in more detail later.
  • the cell lysis chip functions as a reaction chamber in which cells or viruses are lyzed.
  • the vibrator is connected to the cell lysis chip through a vibration transfer part and mixes a sample and magnetic beads in the cell lysis chip.
  • the vibrator may vertically vibrate.
  • the vibrator can include sonicators, vibrators using a magnetic field, vibrators using an electric field, mechanical vibrators such as a vortex etc., or piezoelectric materials.
  • the vibrator can be any device capable of vibrating the mixed solution of cells and micro magnetic beads.
  • the vibrator may be a vibration motor for mobile phones.
  • the vibration transfer part transfers vibration generated by the vibrator to the chamber through the bottom surface of the cell lysis chip.
  • the vibration transfer part may be composed of a metal such as aluminum.
  • the laser generator is attached to the cell lysis chip and supplies a laser to the cell lysis chip.
  • the anti-evaporation part is attached to the cell lysis chip to prevent the sample from evaporating.
  • the anti-evaporation part is necessary to reduce the evaporation.
  • the anti-evaporation part should have a structure capable of withstanding a pressure of 10 psi or more.
  • the anti-evaporation part can comprise septa. It is possible that an optic tape is attached to the inlet hole and the outlet hole, and then septa are fixed to the cell lysis chip.
  • FIG. 3 is a photograph of septa of the cell lysis apparatus.
  • the septa may be valves, polymer structures or metal structures, but they are not particularly restricted to these as long as they can prevent evaporation.
  • the laser can include a pulse laser or continuous wave (CW) laser.
  • CW continuous wave
  • the laser power is 10 mW or more for the CW laser and 1 mJ/pulse or more for the pulse laser. This is because when the CW is less than 10 mW and the pulse laser is less than 1 mJ/pulse, sufficient energy to disrupt the cells is not transferred.
  • the laser should be generated in a specific wavelength range where magnetic beads absorb the energy of the laser.
  • the laser is generated preferably in the wavelength range of 400 nm or more, and more preferably in the wavelength range from 750 nm to 1300 nm. This is because DNA is denatured or damaged at a wavelength less than 400 nm.
  • the laser can also be generated in one or more wavelength ranges. That is, the laser can have one wavelength or two or more different wavelengths within the above range.
  • the diameter of the magnetic beads is preferably from 50 nm to 1,000 ⁇ m, and more preferably from 1 ⁇ m to 50 ⁇ m.
  • the diameter of the magnetic beads is less than 50 nm, physical and mechanical shocks are insufficient to cause cell lysis.
  • the diameter of the magnetic beads is greater than 1,000 ⁇ m, it is not suitable for LOC.
  • the magnetic beads can also be a mixture of beads with two or more sizes. That is, the magnetic beads can have equal sizes to each other or be a mixture of beads with different sizes.
  • the magnetic beads can be any material magnetized.
  • the magnetic beads preferably include at least one material selected from the group consisting of ferromagnetic Fe, Ni, Cr and oxides thereof.
  • the magnetic beads can be polymers, organic materials, silicon or glass coated with a ferromagnetic metal.
  • the surface of the magnetic bead is preferably negatively charged so that DNA is not attached thereto. Since DNA is negatively charged, it is not attached to the magnetic bead, which is negatively charged, due to repulsive forces. When DNA is attached to the magnetic bead, it is difficult to isolate DNA from magnetic beads after disrupting cells, which makes DNA purification difficult.
  • the sample can be selected from the group consisting of saliva, urine, blood, serum and cell culture solutions.
  • the sample can be any material having nucleic acids, such as animal cells, plant cells, bacteria, viruses, phage and the like.
  • a cell lysis chip for the apparatus for the disruption of cells or viruses includes: a chip body having opened top surface and bottom surface and including a reaction chamber, an inlet hole, and an outlet hole; a chip cover which is attached to the top surface of the chip body to close the upper portion of the reaction chamber, allows a laser to pass through, and has an inlet hole and an outlet hole; and a chip bottom of the chip body attached to the bottom surface through a chip bonding part to close the lower portion of the reaction chamber, the inlet hole and the outlet hole.
  • FIG. 4 is a schematic diagram of an embodiment of a microchip used in an apparatus for disrupting cells using micro magnetic beads and a laser.
  • a chip body has opened top surface and bottom surface and includes a reaction chamber, an inlet hole, and an outlet hole.
  • the chip body may be a silicon wafer which can withstand a temperature of 100° C. or higher.
  • the chip body may be composed of glass, polymer or silicone. Glass is preferably Pyrex 7740.
  • the chip body has a top surface to which a chip cover is attached and a bottom surface to which a chip bonding part is attached.
  • the inner surface of the chip body may be hydrophobically treated in order to prevent bubbles from generating.
  • the inner surface of the chip body may be coated with SIGMACOTE®.
  • a chip cover is attached to the top surface of the chip body to close the upper portion of the reaction chamber.
  • the chip cover allows a laser to pass through and has an inlet hole and an outlet hole.
  • the chip cover may be composed of glass, polymer, indium tin oxide (ITO) glass, etc. Glass is preferably Pyrex 7740.
  • the material for the chip cover withstands a high temperature and has a transmittance of 90% or more.
  • the chip cover can have an anti-reflection (AR) coating to increase the transmittance of a laser.
  • the anti-reflection coating can be formed using a method known in the art.
  • the chip cover can be prepared using an AR coated Pyrex 7740.
  • a chip bottom is attached to the bottom surface of the chip body through a chip bonding part to close the lower portion of the reaction chamber, the inlet hole and the outlet hole.
  • the chip bottom may be composed of polymer, silicone, glass, ITO glass, etc.
  • the material for the chip bottom withstands a high temperature and is flexible.
  • the chip bottom is preferably composed of a material capable of effectively transferring vibration generated by a vibrator to the chip body, for example, a polycarbonate film.
  • the chip bonding part attaches the chip bottom to the chip body and acts as an aid of the reaction chamber containing a sample.
  • the attachment is achieved by means of an adhesive material selected from the group consisting of an adhesive tape and an adhesive.
  • the reaction chamber can be formed using only the chip body and the chip bottom, leakage of a reaction solution may take place.
  • the chip bonding part can prevent the leakage of a reaction solution.
  • FIG. 5 is a photograph of a microchip according to an embodiment of the present invention.
  • the method and apparatus of disrupting cells or viruses using an irradiation for example a laser irradiation, as described, not only can be applied to a microfluidic apparatus in the form of a chip, but it can also be applied to a disk-shaped microfluidic apparatus.
  • a centrifugal force-based, disk-shaped microfluidic apparatus that concentrates target cells from biological samples through serial manipulation using the rotation of a platform, and amplifies the extracted gene by polymerase chain reaction (PCR) to detect the gene in a microfluidic construct comprising a chamber, a channel, and a valve prepared in the rotating platform is introduced.
  • PCR polymerase chain reaction
  • FIG. 6 is a plan view showing an example of a disk-shaped microfluidic apparatus that employs an apparatus that disrupts cells or viruses according to an embodiment of the invention.
  • This embodiment shows how the method and the apparatus for disrupting cells or viruses using a irradiation, for example a laser of the previously described invention can be applied to the disk-shaped microfluidic apparatus (namely, Lab-on-a-disk).
  • the centrifugal force-based microfluidic apparatus 101 has a rotatable, disk-shaped platform 100 .
  • the platform 100 is not limited to a disk shape.
  • One or more microfluidic constructs can be disposed in the platform 100 .
  • the platform 100 can be divided into several sectors, and in each sector independently operating microfluidic construct can be disposed.
  • the microfluidic construct prepared in the platform includes a plurality of chambers, channels connecting the chambers, and valves that control the flow of fluids through the multiple channels.
  • the microfluidic constructs can be consisted of two disk bonded each other, and the microfluidic structures such as a chamber, a channel or a valve can be formed by 3 dimensional pattern formed on either one side or both sides of the facing two disks that forms the above disk-shaped platform.
  • a transparent material may be used to make the detection of the movement of fluids or a reaction possible.
  • a method of manufacturing such microfluidic constructs is already known in the field of the invention.
  • the microfluidic constructs can be mainly divided into two groups by their functions.
  • One is a so-called target cell nucleic acid extraction unit, which separates, purifies, and concentrates target cells from the injected biological sample, and disrupts the concentrated target cells to extract the nucleic acids.
  • the other group is a polymerase chain reaction unit which mixes the fluid containing the extracted nucleic acids and performs PCR on the mixture.
  • the two groups are connected structurally through a channel, and functionally they are coupled organically to extract the target cells, particularly pathogens, from the injected biological sample, and complete the tasks through a series of automatically performing operation to allow identification of the genetic properties.
  • the cell nucleic acid extracting unit includes a cell lysis chamber 70 which exposes nucleic acid by disrupting the cell captured on the surface of the bead particle.
  • cell lysis chamber 70 which exposes nucleic acid by disrupting the cell captured on the surface of the bead particle.
  • cell lysing operation is performed according to the aforesaid method of disrupting cells and viruses of the invention.
  • the microfluidic construct includes a sample chamber 21 receiving the fluid sample, and a buffer chamber 40 receiving a buffer solution.
  • the sample chamber 21 and the buffer chamber 40 each include an inlet (not shown), and the user can inject samples and appropriate buffer through the inlets.
  • the buffer can be pre-injected when manufacturing the disk-shaped microfluidic device.
  • a mixing chamber 50 is allocated, and the mixing chamber 50 is connected to the sample chamber 21 and the buffer chamber 40 through the fluid transporting channel.
  • opening valves 131 , 134 , and 139 controlling the flow of the fluid are prepared.
  • a centrifugal unit 20 which centrifuges the sample and releases only a portion of the separated part to the mixing chamber 50 can also be prepared.
  • the opening valve 131 that is connected to the sample chamber 21 can be allocated at the outlet of the centrifugal unit 20 , as shown in FIG. 6 , without being connected directly to the sample chamber.
  • a precipitate-collecting unit 23 and the sample chamber 21 or a supernatant channel 22 can be connected through an exhaustion pipe and an excess sample-collecting chamber 24 .
  • the centrifugal unit 20 comprises supernatant channel 22 extending from the outlet of the sample chamber 21 to the outside of the platform 100 and a precipitate collecting unit 23 with expanded cross-sectional area prepared in an end of the supernatant channel 22 , and a part of the supernatant channel 22 can be connected to the mixing chamber 50 through the opening valve 131 .
  • the function of the centrifugal unit 20 is as follows: For example, if whole blood is injected into the sample chamber 21 and the platform 100 is spun, the heavier blood cells will be collected in the precipitate collecting unit 23 , and the supernatant channel will be mostly filled with plasma.
  • the opening valve 131 connected to the mixing chamber 50 is opened, the plasma that was filled in the part closer to the center of the platform 100 than the opening valve within the supernatant channel 22 is transferred to the mixing chamber 50 .
  • the possibility of elements that can inhibit PCR being incorporated into the nucleic acid extract can be reduced beforehand.
  • the opening valve 131 can be allocated in the outlet of the sample chamber 21 .
  • the mixing chamber 50 has an outlet on the farthest side from the center of the platform 100 , and an opening valve 136 is prepared on the outlet.
  • the closer part of the opening valve on the outlet may have the smaller cross-sectional area.
  • an inner part of the opening valve 136 can be made in the form of a channel.
  • the mixing chamber 50 receives the bead particles (not shown), and the sample flowing in from the sample chamber 21 and the bead particles can be mixed. In the mixing chamber 50 , a specific reaction of the target cell within the sample attaching to the surface of the bead particle is performed.
  • the mixing chamber 50 also receives the buffer solution from the buffer chamber 40 .
  • a separate bead particle chamber 30 that receives bead particles closer from the center of the platform 100 than the mixing chamber 50 may also be included, and in this case an opening valve 132 may be included on the channel connecting bead chamber 30 and the mixing chamber 50 .
  • the bead particles (not shown), dispersed in a predetermined amount of fluid, can be injected into the bead particle chamber 30 , and enter the mixing chamber through the opening valve 132 .
  • the bead particles in order to trap the target cells (mainly pathogens) from biological samples such as blood (plasma, serum), saliva and urine, has a surface that can specifically bind the target cells.
  • the surface of the bead particles may be treated with antibodies or metal oxides with an affinity to the target cells.
  • Antibody-coupled bead particles that can specifically bind to a particular pathogen are commercially available from Invitrogen, Qiagen etc., and as specific examples, DYNABEADS Genomic DNA Blood (Invitrogen), DYNABEADS anti- E. coli O157 (Invitrogen), CELLectionTM Biotin Binder Kit (Invitrogen), MagAttract Virus Min M48 Kit (Qiagen) are available.
  • pathogens such as Diphtheria toxin, Enterococcus faecium, Helicobacter pylori , HBV, HCV, HIV, Influenza A, Influenza B, Listeria, Mycoplasma pneumoniae, Pseudomonas sp., Rubella virus, Rotavirus can be separated.
  • the metal oxides include, but are not limited to, Al2O3, TiO2, Ta2O3, Fe2O3, Fe3O4, and HfO2.
  • the metal oxide is Al2O3 or TiO2, and more preferably Al2O3.
  • the vapor deposition may be carried out by PVD (physical vapor deposition), ALD (atomic layer deposition), sol-gel method, etc.
  • the method of vapor deposition of metal oxides on the surface of the bead particles is a widely known technique, generally performed by PVD, ALD, or sol-gel method. The matter regarding the size and material of bead particles is as previously described.
  • the waste chamber 60 is disposed farther from the center of the platform 100 than the mixing chamber 50 .
  • the waste chamber 60 may be connected to the closer part of the outlet of the mixing chamber 50 , which is the part with the narrow cross-sectional area as previously described, through multiple channels. However, between the part connected to the channel and the opening valve 136 of the mixing chamber 50 , it is preferable that there is enough space for the bead particles received by the mixing chamber 50 to be gathered together by centrifugal force.
  • the opening valves 133 , 135 that open the channels and the closing valves 141 , 142 that close the channels to control the fluid flow are provided.
  • the cell lysis chamber 70 is allocated farther than the outlet of the mixing chamber 50 from the center of the platform 100 .
  • the inlet of the cell lysis chamber 70 is connected to the opening valve 136 on the outlet of the mixing chamber 50 through a channel.
  • the outlet of the cell lysis chamber 70 can be allocated so that after performing cell lysis on the fluid including the bead particles, only the fluid is discharged with the bead particles remaining. For example, to trap the bead particles in the cell lysis chamber 70 by centrifugal force, a space may be saved for trapping the bead particles in the outer part than the outlet with a prepared opening valve 137 .
  • the bead particles can be disposed close to the cell lysis chamber, including more magnetic field generating materials that gather magnetic beads by magnetic force.
  • An example of a magnetic field-generating material may be a permanent magnet.
  • it is not required to trap the bead particles in the above cell lysis chamber 70 .
  • a closing valve 142 can be prepared in addition.
  • the closing valve 142 acts as a seal to the cell lysis chamber 70 using electromagnetic wave when cells are lysed.
  • the opening valve 137 and the closing valve 142 on the cell lysis chamber 70 's outlet act as an evaporation suppressing unit.
  • the cell lysis chamber 70 traps the bead particles with collected target cells or viruses on their surface and performs cell lysis which accompanies extraneous electromagnetic wave emission, such as cell lysis by laser ablation. Rapid cell lysis using laser and bead particles is carried out by heating from liquid medium and ablation by laser. The laser supplies energy to the bead particles, supplying heat to the cells attached to the bead particles and lysing the cells by applying physical and mechanical impact on the bead particles at the same time.
  • nucleic acid separating step can be reduced.
  • Cell lysis generally accompanies protein denaturation, and denatured proteins and cell debris may negatively affect nucleic acid amplification using PCR.
  • bead particles for cell lysis such as the apparatus of this invention, matters other than nucleic acids, i.e. denatured proteins and cell debris are reattached on the surface of the bead particles.
  • the time required to disrupt the cells using laser and bead particles may be about 30-40 seconds. Matters such as the principles and procedures of ablation using laser, the available wavelength and the output of the laser are as previously described.
  • target cell nucleic acid extracting unit principles of operation and specific method of operation are described in detail in the article published in the Lab on a Chip Journal [One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device, Lab Chip, 2007, 7, 565-573] by co-inventors of this invention.
  • magnetic micro beads are prepared.
  • Biotinylated secondary antibodies with a specific affinity for type B Hepatitis virus surface antigen (Virostat, 1817, host animal:rabbit) is prepared in 10 ⁇ l solution.
  • the bead particles 100 ⁇ l of Dynabeads® Streptavidin C1, a magnetic bead labeled with streptavidin with 1.0 ⁇ m in diameter, is mixed into a homogeneous solution. 100 ⁇ l of the resultant solution was placed in a tube and placed on a magnet for 2 minutes. The supernatant was taken using a pipette and discarded. The tube was removed from the magnet, and 100 ⁇ l of buffer 1 (PBS, pH7.4 with 0.1% BSA) was added and mixed. The resulting material was left on the magnet for another 2 minutes. The supernatant was taken with a pipette and discarded. The tube was removed from the magnet, and 100 ⁇ l of buffer 1 (PBS, pH7.4 with 0.1% BSA) was added and mixed.
  • buffer 1 PBS, pH7.4 with 0.1% BSA
  • HBV secondary antibodies (Virostat, 1817) attached to biotin 8 ⁇ g was added and mixed. It was inverted several times to mix and incubated at room temperature for 30 minutes. Wash buffer (PBS, pH7.4 with 1% BSA) was added and inverted several times to mix. The magnetic beads were collected using a magnet for 1 minute and the supernatant was removed. Buffer 1 (PBS pH7.4 with 0.1% BSA) 100 ⁇ l was added to resuspend the pre-coated magnetic beads.
  • the experiment extracting the HBV DNA from blood sample was carried out as follows:
  • 100 ⁇ l of the blood spiked with HBV is injected into the sample chamber 21 , 100 ⁇ l of the magnetic bead Ml solution with antibodies attached on the surface are injected into the bead particles chamber 30 , and 100 ⁇ l of the PBS buffer solution is injected into the buffer chamber 40 , then the platform 100 is spun to centrifuge the blood samples using the centrifuge unit 20
  • valve 131 between the centrifuge unit 20 and the mixing chamber 50 is opened to transfer 30 ⁇ l of the plasma to the mixing chamber 50
  • the opening valve 132 between the bead particle chamber 30 and the mixing chamber 50 is opened to transfer magnetic bead solution to the mixing chamber 50 .
  • the platform 100 By spinning the platform 100 to both directions alternately for 5 minutes, the magnetic beads are mixed with the plasma, and the target virus HBV is collected on the surface of the magnetic beads. Then, the platform 100 re-spun in one direction to separate the magnetic beads towards the outlet of the mixing chamber 50 .
  • the opening valve 133 between the mixing chamber 50 and the waste chamber 60 is opened to emit the supernatant (the remaining plasma after HBV separation) to the waste chamber 60 , and the closing valve 141 disposed in the same channel as the opening valve 133 is closed. Then, the opening valve 134 between the buffer chamber 40 and the mixing chamber 50 is opened to transfer the buffer solution to the mixing solution.
  • the platform above 100 is spun in both directions alternately for 20 seconds, and the magnetic beads are washed with the buffer solution. Then, the magnetic beads are re-separated, and the second opening valve 135 of the channel connected to the waste chamber 60 is opened to emit the buffer. The opening valve 136 prepared in the outlet of the mixing chamber 50 is opened, and the magnetic beads within the mixing chamber 50 are transferred to the cell lysis chamber 70 .
  • the closing valve 142 leading to the cell lysis chamber 70 is closed, and laser ablation is carried out by irradiating the cell lysis chamber 70 with a laser beam.
  • HBV attached to the magnetic bead surface is disrupted, releasing the DNA, and the debris produced by HBV disruption is re-attached to the magnetic bead surface. Therefore, when the opening valve 137 on the outlet of the cell lysis chamber 70 is opened, DNA solution is eluted with enough DNA to perform PCR immediately.
  • the reagent chamber 80 which stores PCR reagent is disposed at a farther location from the center of the platform 100 than the cell lysis chamber 70 .
  • PCR reagent includes materials necessary for nucleic acid amplification.
  • the reagent chamber 80 receives nucleic acid-including fluid from the cell lysis chamber 70 , and mixes the fluid with the PCR reagent to elute through the opening valve 138 prepared on the outlet.
  • the PCR reagent may be reagent for real-time PCR.
  • the reagent chamber 80 is connected to the PCR chamber 92 through a channel.
  • the inlet 91 of the PCR chamber 92 is disposed farther from the center of the platform 100 than the reagent chamber 80 .
  • the PCR chamber 92 can be a space integrated to the platform 100 or, it can be a space within the combined PCR chip 94 which is detachable. In the latter case, the PCR chip 94 contains an inlet 91 and an outlet 93 connected to the PCR chamber 92 , and the inlet 92 and the outlet 93 can each be connected to the prepared channels within the platform 100 .
  • the channel connected to the outlet 93 can be connected to the exhaustion port, and the exhaustion port may be disposed closer to the platform center 100 than the reagent chamber 80 as shown in the FIG. 6 .
  • the PCR chip 94 may be fixed to the platform 100 in various forms; for example, the PCR chip 94 may be fixed by a rear cover 95 closed on the platform 100 .
  • the PCR chip 94 and the rear cover 95 will be collectively called the PCR chip unit 90 .
  • the channel connected to the inlet 91 and the outlet 93 of the PCR chamber 92 each can have a closing valve 143 , 144 .
  • the closing valves 143 , 144 act as a sealant of the PCR chamber 92 while PCR is running.
  • PCR chip 94 For a specific example of the PCR chip 94 , refer to the paper published in “Lab on a Chip Journal” [Microchip-based on step DNA extraction and real-time PCR in one chamber for rapid pathogen identification, Lab Chip, 2006, 6, 886-895] by co-inventors of this invention.
  • FIG. 7 is a cross-sectional diagram showing the opening valve employed by the disk-shaped microfluidic device in FIG. 6 .
  • Various forms of normally closed valve can be employed for the centrifuge-based microfluidic device according to this invention.
  • This drawing depicts one of the examples regarding a phase-shift type opening valve installed within the platform and operated by irradiated electromagnetic wave from the external from the platform 100 .
  • the opening valve 131 is made in an cubic or flat form between the upper plate 110 and the lower plate 120 , and includes a valve plug V 1 with particles dispersed in a phase-shift matter which is in solid-phase at room-temperature.
  • the solid-phase valve plug V 1 is disposed at an initial position with a narrow cross sectional area in channel C, and close to it the width or depth of channel C is expanded to provide free space.
  • the above valve plug V 1 is inserted through the opening 110 A of the upper plate 110 in a fused state, and blocks the channel C by filling the part with a narrow area.
  • the valve plug V 1 is fused under high temperature and moves to a nearby free space and resolidifies, opening the channel.
  • a laser source (not shown) that emits laser is allocated external to the platform, and the laser source can emit laser to the area including the initial location of the valve plug V 1 .
  • the laser source can be selected according to the electromagnetic wavelength that the particles within the valve plug V 1 can absorb.
  • the particles dispersed across the valve plug V 1 may have a size small enough to move freely within the channel C with a diameter of several thousand micrometers.
  • an electromagnetic wave such as laser
  • temperature of the particles is rapidly increased by the provided energy, releasing heat and dispersing across the wax evenly.
  • the particles may have a structure with a metallic core and a hydrophobic shell.
  • the particles may contain a core formed of Fe and a shell made of multiple surfactants covering the Fe through bonding.
  • dispersed in carrier oil may be employed. By mixing phase shift materials with the carrier oil with dispersed particles, the valve material that composes the valve plug V 1 can be made.
  • the type of particles is not limited to the type shown in the embodiment, and may also be polymer beads, quantum dots, or magnetic beads.
  • the phase-shift material may be wax.
  • the wax When the particles transfers the electromagnetic energy absorbed in the form of heat energy, the wax is fused and become fluidic, thereby collapsing the valve plug form and opening the channel.
  • the wax may have a reasonable melting point. If the melting point is too high, the time taken from the start of electromagnetic irradiation to fusion is too long, making it difficult to precisely control the opening point, and if the melting point is too low, partial fusion can occur without electromagnetic irradiation, causing fluid leakage.
  • Wax such as paraffin wax, microcrystalline wax, synthetic wax, natural wax may be employed.
  • the phase shift material can be a gel or a thermoplastic resin.
  • polyacrylamide polyacrylates, polymethacrylates, or polyvinylamides
  • polyvinylamides may be employed.
  • thermoplastic resin COC, PMMA, PC, PS, POM, PFA, PVC, PP, PET, PEEK, PA, PSU, or PVDF may be employed.
  • FIG. 8 is a cross-sectional diagram showing a closed valve employed in the disk-shaped microfluidic apparatus in the above FIG. 6 .
  • Various types of normally opening valves may be employed in the centrifugal microfluidic apparatus according to this invention.
  • the phase-shift closing valve is installed within the platform 100 and operated by irradiated electromagnetic wave external to the platform 100 .
  • Phase-shift closing valve 141 comprises a channel C, a valve chamber 122 connected to a part of the channel C, and a valve material V 2 which at initial room temperature is charged in the valve chamber 122 in solid phase, and when heated, is fused and expanded to enter the channel C, resolidifying to block the flow of fluids through the channel C.
  • the phase-shift closing valve 141 may be provided by the 3 dimensional pattern formed on the inner side of the upper 110 or the lower 120 plate forming the platform.
  • An opening 110 B may be formed in an upper part of the valve chamber 122 .
  • the B acts as an injecting port through which the fused valve material V 2 is injected when the microfluidic apparatus is produced.
  • phase-shift material and the particles are as previously described with reference to the opening valve 131 .
  • the laser source that provides electromagnetic wave to the valve material V 2 is also as previously described.
  • the particles absorb the energy and heat the phase-shift material. Consequently the valve material V 2 is fused and expands its volume, overflowing to the channel C through the connected tunnel 123 .
  • the resolidified valve material V 2 within the channel C forms a valve plug, blocking the flow of fluid through the channel C.
  • bacterial cells prepared as describe below (90 ⁇ l) and micro magnetic beads (30 ⁇ l, Dynabeads® M-270 Carboxylic Acid, DYNAL, Norway) were mixed in a vial located in a vial guide (AMITECH, Korea).
  • 808 nm, 13.8 W high power laser beam (HLU25F100-808, LIMO, Germany) was applied to the mixture for disrupting cells for a specific time in individual experiments while stirring the vial by vortexing (see FIG. 1 ).
  • BHI brain heart infusion
  • the bacterial cells were harvested by centrifugation and washed twice with 3 ml of phosphate-buffered saline (PBS) solution.
  • PBS phosphate-buffered saline
  • the cells were resuspended in PBS (cell density; 1 ⁇ 10 5 cells/ ⁇ l).
  • the number of viable cells was determined by the ability of single cells to form colonies.
  • Aliquots of E. coli cells (1 ⁇ 10 3 ) after laser beam radiation were spread onto BHI plates. The plates were incubated at 37° C. overnight, and the number of colonies was counted.
  • the bacterial cells were harvested by centrifugation and washed twice with 3 ml of phosphate-buffered saline (PBS) solution.
  • PBS phosphate-buffered saline
  • the cells were resuspended in PBS (cell density; 1 ⁇ 10 5 cells/ ⁇ l).
  • the number of viable cells was determined by the ability of single cells to form colonies.
  • Aliquots of Staphylococcus epidermidis cells (1 ⁇ 10 3 ) after laser beam radiation were spread onto NA plates. The plates were incubated at 37° C. overnight, and the number of colonies was counted.
  • E. coli genomic DNA (from 0.9 ⁇ 10 5 cells equivalent to the number of cells used for each laser lysis) was prepared using the boiling method for 5 min at 95° C.
  • PCR polymerase chain reaction
  • E. coli PCR amplification was carried out using Taq polymerase (Solgent. Co, Ltd, Korea) for 25 cycles (95° C. for 1 min to pre-denature, 95° C. for 5 s to denature, 60° C. for 13 s to anneal, and 72° C. for 15 s to extend, and 72° C. for 1 min to additionally extend).
  • Taq polymerase Solgent. Co, Ltd, Korea
  • Streptococcus mutans and Staphylococcus epidermidis PCR amplification were carried out using Taq polymerase (Solgent. Co, Ltd, Korea) for 30 cycles (95° C. for 1 min to pre-denature, 95° C. for 5 s to denature, 60° C.
  • a melting curve was acquired by slowly heating (0.1° C./s) the sample from 60 to 90° C.
  • the PCR was performed by LightCycler® (Roche Diagnostics Corporation, 1N, USA) with a total volume of 20 ⁇ l reaction mixture containing 1 ⁇ FastStart DNA Master SYBR (Roche Diagnostics Corporation, 1N, USA), 0.25 ⁇ M of forward and reverse primers (Genotech, Korea), 4 mM MgCl 2 (Roche Diagnostics Corporation), D.W (PCR grade, Roche Diagnostics Corporation, IN, USA).
  • the amplified DNAs were analyzed in an Agilent BioAnalyzer 2100 (Agilent Technologies, Palo Alto, Calif.) using commercially available DNA 500 assay sizing reagent sets.
  • Microchips with a chip size of 7.5 mm ⁇ 15 mm for 10 ⁇ l sample volume were fabricated using silicone, glass, polycarbonate film, and Double Coated Tape (9495MP, 3M, MN, USA).
  • the fabrication process consisted of two photolithography steps and a bonding step by double-coated tapes with polycarbonate film.
  • the glass wafer with six inches diameter and a thickness of 500 ⁇ m was cleaned and laminated by a BF410 film photoresist.
  • the photoresist was patterned by photolithography to form holes with a diameter of 1.5 mm for inlet and outlet sample passages. Holes were formed on the glass wafer by sand blast technique.
  • the silicon wafer was a double-sided polished silicon substrate with a diameter of six inches and a thickness of 680 ⁇ m. Chamber was formed on the silicon wafer by sand blast technique due to the cost concerns. For optimization of sample loading, Sigmacoat® (Sigma-aldrich, MO, USA) was coated on the sand blasted surface of silicon wafer. And then, polycarbonate film with a thickness of 100 ⁇ m was bonded to silicon wafer using Double Coated Tape with a thickness of 150 ⁇ m.
  • bacterial cells (1 ⁇ l) prepared as below and micro magnetic beads (9 ⁇ l, approximately 9 ⁇ 10 6 beads/ ⁇ l, Dynabeads® MyOneTM Carboxylic Acid, DYNAL, Norway) were mixed in a microchip (SAIT, Korea) placed in a chip guide module (AMITECH, Korea).
  • silica beads (3.0 ⁇ m, Bangs Laboratories Inc., IN, USA), amine-terminated polystyrene magnetic beads (1.5 ⁇ m, Bangs Laboratories Inc., IN, USA), polystyrene beads (4.16 ⁇ m, Bangs Laboratories Inc., IN, USA) and carboxylic acid-terminated polystyrene magnetic beads were prepared additionally.
  • High power laser beam at 808 nm (1 W) was applied to disrupt cells for indicated periods using fiber-coupled laser systems (HLU25F100-808, LIMO, Germany) with 0.22 NA divergence in each experiment while the microchip was vibrated by coin-type vibration motor (DMJBRK20X, Samsung electro-mechanics, Korea) using aluminum vibration bar.
  • the laser power was measured by 30 W Broadband Power/Energy Meter (MELLES GRIOT, US).
  • Laser wavelength was selected by absorption coefficient of wavelength in water. Most laser beam of 808 nm with absorption coefficient of 0.021773 (cm ⁇ 1 ) in water is transmitted through the water and reaches the micro magnetic beads.
  • a visible laser beam is also applicable, but a high power laser diode has not been developed as a portable device and is not cost effective.
  • the absorption coefficient of IR wavelength in water is very high; most of IR laser energy will be absorbed in water making it unsuitable for this usage.
  • UV laser beam is not good for cell lysis and DNA purification, because it is known that UV irradiation causes DNA damage. DNA irradiated with UV accumulates a thymine dimmer as the major photoproduct. Thus, a continuous laser diode with 808 nm spectrum was used.
  • a vibration system for on-chip sample preparation test module using vibration motor that mostly used in mobile phone (DMJBRK20X, Samsung electro-mechanics, Korea) with aluminum (AMITECH, Korea) was designed to vibrate flexible polycarbonate film of microchip only sample chamber zone with a 12,000 rpm. Vibration power of vibration motor was adjusted by power supply (E3620A, Agilent, Calif., USA). Temperature of sample in a chamber of microchip was measured by thermocouple (K type, Omega) with data acquisition system (34970A, Agilent, Calif., USA). As shown in FIG. 3 , both inlet and outlet holes were sealed with optically transparent adhesive tapes (Applied Biosystems, CA, USA) after loading sample solution with magnetic beads.
  • both inlet and outlet holes were compressed with two elastomers (thermogreen LB-2, Sigma-Aldrich, MO, USA) located on the top cover of the on-chip sample preparation test module.
  • Genomic and plasmid DNAs were isolated from the same numbers of BL21 cells containing pCR®II-TOPO® (Invitrogen) plasmids using various methods.
  • For the laser lysis cells were mixed with magnetic beads and irradiated with laser for 40 sec and DNA was purified by ethanol precipitation with 0.3 M sodium acetate after Phenol/Chloroform/lsoamylalcohol cleaning.
  • For the boiling lysis cells were heated at 95° C. for 5 min and DNA was purified as laser lysis.
  • Qiagen QIAprep® Miniprep kit was used to isolate the plasmids.
  • Qiagen QIAamp® DNA Mini kit was used to isolate the genomic DNA of BL21. DNAs were run with 0.7% agarose gel with 1 kb marker.
  • FIG. 9 illustrates the results of determining cell viability after laser irradiation.
  • Cells (3 ⁇ 10 3 ) were irradiated with a laser in the presence (A and B) or absence (C) of micro magnetic beads for designated times and then spread on LB plates.
  • A cells in a suspension after laser irradiation in the presence of micro magnetic beads for designated times
  • B cells recovered by washing magnetic beads after laser irradiation
  • C cells under the same condition as the cells of A, except that laser irradiation was performed in the absence of micro magnetic beads; note that cells were irradiated with laser beam for prolonged periods
  • D a positive control without laser irradiation
  • bacterial cells lost viability due to laser irradiation As seen from FIG. 9 , bacterial cells lost viability due to laser irradiation. The loss of viability was sharply increased by adding the magnetic beads. After laser irradiation for 3 seconds, 5% of the initial cells (153 cells among 3000 cells) were survived in the presence of the magnetic beads and after laser irradiation for 10 seconds, no cell survived ( FIG. 9A ). In contrast, in the absence of the magnetic beads, even after laser irradiation for 30 seconds, about two thirds of the initial cells (about 2000 cells) survived ( FIG. 9C ). To identify that cells nonspecifically bonded to the beads, the beads were washed with a high salt buffering solution (PBS+0.3 M NaCl) and the washing solution was also inspected for living cells ( FIG.
  • PBS+0.3 M NaCl high salt buffering solution
  • FIG. 10 shows that laser irradiation efficiently releases bacterial DNA only in the presence of magnetic beads.
  • the bars represent the concentration (ng/ ⁇ l) of the amplified DNA.
  • the amount of the PCR product was quantified by means of Agilent BioAnalyzer 2100.
  • the error bars represent the standard deviation of the mean.
  • FIG. 11 shows that DNA released by laser ablation is more efficiently amplified by Taq polymerase than DNA prepared by the conventional method.
  • DNA was prepared by using the same number of cells.
  • the bars represent the concentration (ng/ ⁇ l) of the amplified DNA.
  • the amount of the PCR product was quantified by means of Agilent BioAnalyzer 2100.
  • the error bars represent the standard deviation of the mean.
  • the 16S rDNA was more efficiently amplified with DNA obtained after laser irradiation in the presence of magnetic beads.
  • the Qiagen kit is not optimal with samples containing small cell numbers ( ⁇ 1 ⁇ 10 9 )
  • the amounts of DNA recovered using the Qiagen kit is less than expected.
  • cell lysis by laser in conjunction with magnetic beads could provide a greater versatility in application due to easiness in integrating this technique to the LOC.
  • the efficiency of PCR amplification with DNA release by laser ablation is greater than DNA obtained with either Qiagen kit or boiling method. This indicates that laser irradiation releases DNA at least the same as or greater amounts of DNA than the other two conventional methods. If the same amounts of DNA are released, the more efficient PCR amplification with DNA from laser ablation indicates that the release of inhibiting materials is minimized by laser ablation.
  • FIG. 12 shows the effects of the size of the magnetic beads.
  • the bars represent the concentration (ng/ ⁇ l) of the amplified DNA.
  • the amount of the PCR product was quantified by means of Agilent BioAnalyzer 2100.
  • the error bars represent the standard deviation of the mean.
  • the magnetic beads of 2.7 ⁇ m in diameter were much more efficient in cell lysis than the 5-nm gold particles (G1402, Sigma, MO, USA).
  • FIG. 13 shows laser transmittance on Pyrex 7740 and AR coated Pyrex 7740.
  • AR coated Pyrex 7740 had about 1.75% higher laser transmittance than AR uncoated Pyrex 7740.
  • the AR coated Pyrex 7740 is suitable to efficiently provide a laser into a cell lysis chip.
  • FIG. 14 is a photograph of the cell lysis chip of the present invention after laser irradiation. At the laser power of 2 W or less, vapor pressure increased due to increased temperature of the sample solution, and evaporation within the cell lysis chip did not occur.
  • FIG. 15 is a graph illustrating PCR results of DNA released from E. coli cells with respect to the amount of magnetic beads.
  • a crossing point (Cp) is the cycle number when detectable fluorescence is first determined in real-time PCR. That is, as the starting concentration of DNA increases, the Cp value decreases.
  • Cp is also related to DNA purification. As the purity of DNA increases, the Cp value decreases. Thus, when the Cp value is lower, DNA in the solution is more purified form.
  • FIG. 16 is a graph illustrating PCR results of DNA released from E. coli cells with respect to the voltage of vibration motor.
  • Boiling positive control refers to the case when a PCR was performed on DNA released after boiling E.
  • Negative control refers to the case when a PCR was performed using only distilled water without DNA.
  • the bars represent the concentration (ng/ ⁇ l) of the amplified DNA.
  • the amount of the PCR product was quantified by means of Agilent BioAnalyzer 2100.
  • the error bars represent the standard deviation of the mean. As the amount of the amplified DNA increases, the number of lyzed cells increases, indicating that cell lysis efficiency increases.
  • FIG. 17 is a graph illustrating the PCR results of DNA released from Staphylococcus epidermidis cells (1 ⁇ 10 5 cells/ ⁇ l).
  • Control refers to the case when a PCR was performed on supernatant obtained after centrifuging Staphylococcus epidermidis cells at 13,200 rpm for 5 min;
  • Boiling positive control refers to the case when a PCR was performed on DNA released after boiling Staphylococcus epidermidis cells at 9° C. for 5 min;
  • Negative control refers to the case when a PCR was performed using only distilled water without DNA.
  • the bars represent the concentration (ng/ ⁇ l) of the amplified DNA.
  • the amount of the PCR product was quantified by means of Agilent BioAnalyzer 2100.
  • the error bars represent the standard deviation of the mean.
  • FIG. 17 as laser radiation power increases, cell lysis efficiency increases. Specifically, the laser radiation power above 1 W was sufficient for obtaining the same or higher cell lysis efficiency than using the boiling method. Thus, when cells or viruses are lyzed using the microchip of the present invention, laser radiation power can be significantly reduced.
  • Staphylococcus epidermidis cells (1 ⁇ 10 2 cells/ ⁇ l), which are Gram-positive bacterial cells, were used.
  • FIG. 18 is a graph illustrating the PCR results of DNA released from Staphylococcus epidermidis cells (1 ⁇ 10 2 cells/ ⁇ l) with respect to the laser power.
  • Control refers to the case when a PCR was performed on supernatant obtained after centrifuging Staphylococcus epidermidis cells at 13,200 rpm for 5 min;
  • Boiling positive control refers to the case when a PCR was performed on DNA released after boiling Staphylococcus epidermidis cells at 95° C. for 5 min;
  • Negative control refers to the case when a PCR was performed using only distilled water without DNA.
  • the bars represent the concentration (ng/ ⁇ l) of the amplified DNA.
  • the amount of the PCR product was quantified by means of Agilent BioAnalyzer 2100.
  • the error bars represent the standard deviation of the mean.
  • cell lysis efficiency increases. Specifically, the laser radiation power of 3 W provided much higher cell lysis efficiency than using the boiling method.
  • FIG. 19 is a graph illustrating the PCR results of DNAs released from Staphylococcus epidermidis cells and Streptococcus mutans cells.
  • Sample 1 refers to the case when a PCR was performed on DNA released from Staphylococcus epidermidis cells
  • Sample 2 refers to the case when a PCR was performed on DNA released after boiling Staphylococcus epidermidis cells at 95° C. for 5 min
  • Sample 3 refers to the case when a PCR was performed on DNA released from Streptococcus mutans cells
  • Sample 4 refers to the case when a PCR was performed on DNA released after boiling Streptococcus mutans cells at 95° C.
  • the cell lysis method of the present invention has better cell lysis efficiency on both Staphylococcus epidermidis cell and Streptococcus mutans cell than using boiling method.
  • FIG. 20 is a graph illustrating the PCR results of DNA released from E. coli cells (1 ⁇ 10 5 cells/ ⁇ l).
  • Boiling positive control
  • Negative control refers to the case when a PCR was performed using only distilled water without DNA.
  • the bars represent the concentration (ng/ ⁇ l) of the amplified DNA.
  • the amount of the PCR product was quantified by means of Agilent BioAnalyzer 2100.
  • the error bars represent the standard deviation of the mean.
  • cell lysis efficiency increased. Specifically, the laser radiation power above 1 W was sufficient for the higher cell lysis efficiency than using the boiling method.
  • the Cp value decreased, indicating that the amount of released DNA increased. But, the laser radiation power above 2 W was saturated. This result suggests that starting target copy number increased as laser radiation power increased until all of cells were lyzed.
  • E. coli cells (1 ⁇ 10 2 cells/ ⁇ l), which are Gram-negative bacterial cells, were used.
  • FIG. 21 is a graph illustrating the PCR result of DNA released from E. coli cells (1 ⁇ 10 2 cells/ ⁇ l).
  • Control refers to the case when a PCR was performed on supernatant obtained after centrifuging E. coli cells at 13,200 rpm for 5 min;
  • Boiling positive control refers to the case when a PCR was performed on DNA released after boiling E. coli cells at 95° C. for 5 min;
  • Negative control refers to the case when a PCR was performed using only distilled water without DNA.
  • the bars represent the concentration (ng/ ⁇ l) of the amplified DNA.
  • the amount of the PCR product was quantified by means of Agilent BioAnalyzer 2100.
  • the error bars represent the standard deviation of the mean.
  • the laser radiation power increases. Specifically, the laser radiation power above 0.5 W was sufficient for the higher cell lysis efficiency than using the boiling method. The laser radiation power of 3 W provides much higher cell lysis efficiency than using the boiling method. Thus, when cells or viruses are lyzed using the microchip of the present invention, the laser radiation power can be significantly reduced.
  • Gram-negative bacterial cells can be efficiently lyzed using the method of the present invention.
  • FIG. 22 is a graph illustrating variation in temperature of E. coli sample with respect to laser radiation power. As shown in FIG. 22 , the temperature of sample increased with the laser radiation power. In particular, after irradiating laser radiation power above 1 W for several seconds, the temperature of sample was rapidly raised above 65° C.
  • FIG. 23 is a graph illustrating the PCR results of DNA released from E. coli cells (1 ⁇ 10 5 cells/ ⁇ l) with respect to surface charge of magnetic beads and material of beads.
  • Samples 1, 2, 3, and 4 refer to the cases when a PCR was performed on DNA released using amine-terminated polystyrene magnetic beads, silica beads, polystyrene beads, and carboxylic acid-terminated polystyrene magnetic beads, respectively.
  • Sample 5 (positive control) refers to the case when a PCR was performed on DNA released after boiling E.
  • Temperature of sample solution with silica beads was increased very slowly, because silica beads absorbed laser beams insufficiently with 1 W laser radiation power.
  • Temperature of sample solution with amine-terminated polystyrene microbeads increased like carboxylic acid terminated polystyrene microbeads, but released DNA bind to microbeads because of the electrostatic interaction by the positive charge of amine functional group of the surface of the beads.
  • Temperature of sample solution of polystyrene beads increased with middle speed between silica beads and magnetic beads, because of heat capacity of microbeads.
  • carboxylic acid terminated polystyrene magnetic beads The greatest advantage of carboxylic acid terminated polystyrene magnetic beads is to reduce DNA isolation steps, because cell lysis using laser and micro magnetic beads lead to the denaturation and removal of proteins. Denatured proteins and cell debris stick to polystyrene surface of magnetic beads by adsorption, which facilitate easy removal by gravity or magnetic field. DNA does not bind to the beads because of the charge repulsion by the negative charge of carboxylic acid of the beads. This significantly improves PCR yield by lowering the limit of detection, reducing the time of DNA extraction, and increasing the signal amplitude.
  • FIG. 24 illustrates embodiments of synthesizing iminoacetic acid (IDA), pyrene, and thiol functional groups on the surface of magnetic beads.
  • IDA iminoacetic acid
  • pyrene pyrene
  • thiol thiol functional groups
  • the solution was removed using magnet, and then 500 ⁇ l of a 1:1 (v/v) mixed solution of 1 N NaOH and ethanol was added to the beads and left at room temperature for 1 hour. After the reaction was completed, the beads were washed with 500 ⁇ l of ethanol ( ⁇ 3), and then with 500 ⁇ l of tertiary distilled water ( ⁇ 3). Thereafter, the solution was removed and 500 ⁇ l of desired buffered solution was added thereto. The resultant was kept in cold storage.
  • the beads was washed with 500 ⁇ l of NMP ( ⁇ 3), 500 ⁇ l of ethanol ( ⁇ 3), and 500, of tertiary distilled water ( ⁇ 3). Thereafter, the solution was removed and 500 ⁇ l of desired buffered solution was added thereto. The resultant was kept in cold storage.
  • the solution was removed using magnet, and then 500 ⁇ l of a 1:1 (v/v) mixed solution of 1N NaOH and ethanol was added to the beads and left at room temperature for 1 hour. After the reaction was completed, beads was washed with 500 ⁇ l of ethanol ( ⁇ 3) and 500 ⁇ l of tertiary distilled water ( ⁇ 3). Thereafter, the solution was removed and 500 ⁇ l of desired buffered solution was added thereto. The resultant was kept in cold storage.
  • FIG. 25 is a graph illustrating the PCR results (Cp) of DNA released from E. coli cells with respect to functional group of the surface of magnetic beads.
  • Carboxy bead refers to the case when a PCR was performed after lyzing cells using Dynabeads® MyOneTM Carboxylic Acid (DYNAL, Norway);
  • Boiling positive control refers to the case when a PCR was performed on DNA released after boiling E. coli cells at 95° C.
  • Control refers to the case when a PCR was performed on supernatant after centrifuging E. coli cells at 13,200 rpm for 5 min; and Negative control (NTC) refers to the case when a PCR was performed using only distilled water without DNA.
  • NTC Negative control
  • IDA among functional groups had the lowest Cp value and the Cp value of thiol was smaller than the Cp value of Cu-IDA. Further, as the hydrophilicity of the functional group increased, the Cp value decreased. That is, IDA had lower Cp value than thiol. It can be seen from above results that the beads with carboxy functional group, which is hydrophilic, have best cell lysis efficiency and the Cu-IDA beads with blocked functional group have low cell lysis efficiency.
  • FIG. 26 illustrates a process of synthesizing polycarboxy functional group on the surface of a magnetic bead. The process of synthesizing said functional group on magnetic beads (Dynabeads®) was as follows:
  • the solution was removed using magnet, and then 500 ⁇ l of a 100 mM Tris-HCl buffered solution (pH 9.0) was added to the beads and left at room temperature for 1 hour. After the reaction was completed, the beads were washed with 500 ⁇ l of ethanol ( ⁇ 3), and then with 500 ⁇ l of tertiary distilled water ( ⁇ 3). Thereafter, the solution was removed and 500 ⁇ l of desired buffered solution was added thereto. The resultant was kept in cold storage.
  • Tris-HCl buffered solution pH 9.0
  • FIG. 27 is a graph illustrating the PCR results (Cp) of DNA released from E. coli cells with respect to functional group on the surface of magnetic beads and pH of bead solutions.
  • Control refers to the case when a PCR was performed after lyzing cells using Dynabeads® MyOneTM Carboxylic Acid (DYNAL, Norway).
  • the Cp value decreased as pH increased.
  • the cell lysis efficiency increases with the pH of the solution containing magnetic beads.
  • the cell lysis efficiency is not significantly changed due to functional group.
  • Example 13 and 14 when pure E. coli cells were used, the cell lysis efficiency depended on the pH of the solution containing magnetic beads.
  • the surface functional group is a carboxy group, the cell lysis efficiency is not significantly varied due to the structure thereof. This is because when only pure E. coli cells are used, the inhibition effects of cell debris on a PCR are insignificant. Therefore, to check the effects of functional group of the surface of beads on the removal of a PCR inhibitor, cell lysis efficiency according to the type of magnetic beads and pH was compared.
  • FIG. 28 is a graph illustrating the PCR results (Cp) of DNA released from E. coli cells with respect to functional group of the surface of magnetic beads in the presence of 10% serum.
  • Control refers to the case when a PCR was performed after lyzing cells using Dynabeads® MyOneTM Carboxylic Acid (DYNAL, Norway) in the presence of 10% serum; and PTC (positive control) refers to the case when a PCR was performed after adding 10% serum to DNA released from E. coli .
  • Control refers to the case when a PCR was performed after lyzing cells using Dynabeads® MyOneTM Carboxylic Acid (DYNAL, Norway) in the presence of 10% serum
  • PTC positive control refers to the case when a PCR was performed after adding 10% serum to DNA released from E. coli .
  • the Cp values of magnetic beads having the same functional group varied depending on pH. That is, carboxy and IDA had a lower Cp value at pH 7 than at pH 9 and polycarboxy had a lower Cp value at pH 9 than at pH 7.
  • carboxy and IDA had a lower Cp value at pH 7 than at pH 9
  • polycarboxy had a lower Cp value at pH 9 than at pH 7.
  • FIG. 29 is a graph illustrating the PCR results (concentration of PCR product) of DNA released from HBV with respect to functional group of the surface of magnetic beads in the presence of 10% serum.
  • HBV Hepatitis B virus
  • Control refers to the case when a PCR was performed after lyzing HBV using Dynabeads® MyOneTM Carboxylic Acid (DYNAL, Norway) in the presence of 10% serum; and PTC (positive control) refers to the case when a PCR was performed on DNA isolated from HBV without 10% serum.
  • PTC positive control
  • the PCR product was also generated even in the presence of 10% serum.
  • FIG. 30 is a photograph showing the viability of E. coli cells according to laser irradiation.
  • Panel A is an image of E. coli cells without micro magnetic beads before the laser irradiation
  • Panel B is an image of E. coli cells in the presence of micro magnetic beads after the laser irradiation for 40 sec at 808 nm with 0.5 W laser radiation power
  • Panel C is an image of E. coli cells in the presence of micro magnetic beads after the laser irradiation for 40 sec at 808 nm with 1 W laser radiation power.
  • Green-stained cells are live cells and red-stained cells are dead cells. As shown in FIG. 30 , most cells are alive before the laser irradiation and the proportion of dead cells increases with laser radiation power.
  • FIG. 31 is a photograph of DNA analysis after laser irradiation on an E. coli BL21 cell harbouring pCR®II-TOPO® (Invitrogen) plasmid.
  • Lane 1 refers to the case when DNA was isolated using the method of the present invention
  • Lane 2 refers to the case when DNA was isolated after boiling at 95° C.
  • Lane 3 refers to the case when plasmid DNA was isolated using Qiagen QIAprep® miniprep kit
  • Lane 4 refers to the case when genomic DNA of BL21 was isolated using Qiagen QIAamp® DNA minikit
  • Lane 5 refers to the case when genomic DNA of BL21 was isolated from E. coli BL21 cells without the plasmid using Qiagen QIAamp® DNA mini kit. Lane 5 was used to identify the correct band for genomic DNA. As shown in FIG. 31 , there was no damage on DNA. As expected, with QIAprep Mini kit (Qiagen) for plasmid preparation, there was little contamination with the genomic DNA (Lane 3).
  • genomic DNA was preferentially isolated with much less contamination with plasmid DNA.
  • QIAamp Mini kit for the genomic DNA isolation that uses silica-gel-membrane technology after proteinase K treatment to the bacteria, there was a lot of plasmid DNA contamination (Lane 4). This might explain why better yield for PCR amplification with DNA isolated by the method of the present invention than with DNA isolated by Qiagen kit could be obtained.
  • a novel method for efficient cell lysis have been developed by combining laser and micro-magnetic beads; micro magnetic-beads present in cell suspension caused rapid cell lysis when laser beam was applied to this sample, allowing bacterial cells to be disrupted in a few seconds.
  • DNAs released from cells disrupted this way was far more efficiently amplified by PCR than those from cells lyzed by other two conventional means, indicating that the release of a substance(s) during cell lysis that interferes with amplification of DNA is minimal compared to other methods.
  • the easiness, efficient cell lysis and release of DNA render a new cell lysis method well-suited to be integrated into LOC application.
  • an apparatus for the disruption of cells or viruses can be miniaturized using a laser diode, a DNA purification step can be directly performed after a disruption of cells or viruses, and a solution containing DNA can be transferred to a subsequent step after cell debris and magnetic beads to which inhibitors of a subsequent reaction are attached are removed with an electromagnet.
  • a cell lysis chip of the present invention an evaporation problem is solved, vibrations can be efficiently transferred to cells through magnetic beads, a microfluidics problem on a rough surface is solved by hydrophobically treating the inner surface of the chip, and the cell lysis chip can be applied to LOC.

Abstract

A method and apparatus for rapid disruption of cells or viruses using beads and a laser are provided. According to the method and apparatus for rapid disruption of cells or viruses using beads and a laser, cell lysis within 40 seconds is possible, the apparatus can be miniaturized using a laser diode, a DNA purification step can be directly performed after a disruption of cells or viruses, and a solution containing DNA can be transferred to a subsequent step after cell debris and beads to which inhibitors of a subsequent reaction are attached are removed with an electromagnet. In addition, by means of the cell lysis chip, an evaporation problem is solved, vibrations can be efficiently transferred to cells through magnetic beads, a microfluidics problem on a rough surface is solved by hydrophobically treating the inner surface of the chip, and the cell lysis chip can be applied to LOC.

Description

    CROSS-REFERENCE TO RELATED PATENT APPLICATIONS
  • This application is a continuation-in-part of U.S. application Ser. No. 11/253,541, filed Oct. 19, 2005, which claims priority to Korean Patent Application No. 10-2004-0083586, filed on Oct. 19, 2004, Korean Patent Application No. 10-2005-0038988, filed on May 10, 2005, and Korean Patent Application No. 10-2005-0078886, filed on Aug. 26, 2005, in the Korean Intellectual Property Office, the disclosures of which are incorporated herein in their entirety by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a method and apparatus for rapid disruption of cells or viruses using micro beads and a laser.
  • 2. Description of the Related Art
  • Generally, a molecular diagnosis of a specific pathogenic bacteria is performed in four steps: 1) cell lysis, 2) DNA isolation, 3) DNA amplification and 4) DNA detection.
  • An efficient extraction of DNA from a cell is required in many applications and is essential in the molecular diagnosis, in particular, an identification and quantification of a pathogenic bacteria. The molecular diagnosis is generally performed by DNA amplification after DNA extraction. The DNA amplification includes a polymerase chain reaction (PCR), a ligase chain reaction, a stranded-displacement amplification, a nucleic acid-based amplification, a repair chain reaction, a helicase chain reaction, a QB replicase amplification, an a ligation activated transcription.
  • A method of isolating DNA from a cell is performed using materials having a tendency of bonding to DNA. Examples of the materials for DNA separation include silica, glass fiber, anion exchange resin and magnetic beads (Rudi, K. et al., Biotechniqures 22, 506-511 (1997); and Deggerdal, A. et al., Biotechniqures 22, 554-557 (1997)). To avoid manual steps and to remove operator error, several automatic machines are developed for high-throughput DNA extractions.
  • Cell lysis is conventionally performed by a mechanical, chemical, thermal, electrical, ultrasonic or microwave method (Michael T. Taylor et al., Anal. Chem., 73, 492-496 (2001)).
  • A chemical method includes the use of lyzing agents for disrupting cells to release DNA. An additional treatment of cell extracts with a chaotropic reagent is necessary to denature proteins. The chemical lysis method is disadvantageous in that harsh chemicals are used to disrupt the cells. Since they can interfere with the subsequent PCR, it is necessary to purify the DNA prior to the PCR. The chemical method is labor-intensive and time-consuming, requires expensive consumables and has often a low DNA yield. A thermal method involves cycles of freezing/thawing, but cannot often disrupt many structures within cells.
  • Heating is an alternative method of disrupting cell walls or membranes. Simple heating is disadvantageous in that it results in the denaturation of proteins, which can be attached to released DNA. They can also interfere with DNA amplification. A physical method uses a bulky and expensive pressure apparatus, which is not suitable for a Lab-on-a-Chip (LOC) application.
  • An ultrasonic treatment is an alternative of the physical method, wherein a cell solution or suspension is placed in a chamber located in an ultrasonic bath. Ultrasonic disruption has many disadvantages in cell lysis. First, a distribution of ultrasonic energy is not uniform. The nonuniform distribution of ultrasonic energy leads to inconsistent results. Second, due to the energy divergence in the ultrasonic bath, it takes often several minutes to completely disrupt cells. Lastly, the ultrasonic method generates unpleasant sounds.
  • A laser has many advantages in the disruption of cells and can be readily applied to LOC (Huaina Li et al., Anal Chem, 73, 4625-4631 (2001)).
  • U.S. Patent Publication No. 2003/96429 A1 discloses a laser-induced cell lysis system. When only a laser is used, an efficient cell lysis does not occur. As a result of performing an experiment using E. coli placed in a very clear solution, it is confirmed that when irradiating only with a laser, a low cell lysis efficiency is obtained. A concentration of DNA measured after irradiating a laser for 150 seconds is 3.77 ng/μl because laser energy is not effectively transferred to cells. A concentration of DNA measured after boiling cells at 95° C. for 5 minutes by means of a conventional heating method is 6.15 ng/μl.
  • U.S. Pat. No. 6,685,730 discloses optically-absorbing nanoparticles for enhanced tissue repair. This patent includes a method of joining tissue comprising: delivering nanoparticles having dimensions of from 1 to 1000 nanometers that absorb light at one or more wavelengths to the tissue to be joined; and exposing the nanoparticles to light at one or more wavelengths that are absorbed by the nanoparticles. This method causes only a loss of function of the cells by using a laser and nanoparticles and there is no description of a method of disrupting cells by vibrating a solution containing cells and particles.
  • Thus, the inventors intensively studied in order to overcome the above problems and discovered that cells or viruses can be rapidly disrupted when vibrating a solution containing them using micro magnetic beads and a laser.
  • SUMMARY OF THE INVENTION
  • The present invention provides a method of disrupting cells or viruses, the method including: mixing beads with a solution containing cells or viruses; vibrating the beads; and irradiating the beads to heat and disrupt the cells or viruses.
  • The present invention also provides an apparatus for the disruption of cells or viruses including: (i) a member for receiving a cell lysis chamber, wherein the cell lysis chamber is for receiving a mixture of beads and a solution containing cells or viruses; (ii) a vibrator connected to the member for vibrating the beads in the chamber; and (iii) a laser generator for supplying a laser to the cell lysis chamber.
  • The present invention also provides an apparatus for the disruption of cells or viruses, including: a member for receiving a cell lysis chip; optionally a cell lysis chip having an inlet hole through which a sample and magnetic beads are introduced; a vibrator connected to the chip through a vibration transfer part to mix the sample and the magnetic beads in the chip, the vibration transfer part attached to the member for transferring vibration to the cell lysis chip; a laser generator attached to the chip for supplying a laser; and an anti-evaporation part attached to the chip to prevent the sample from evaporating.
  • The present invention also provides a cell lysis chip for the apparatus for the disruption of cells or viruses, including: a chip body having opened top surface and bottom surface and including a reaction chamber, an inlet hole, and an outlet hole; a chip cover which is attached to the top surface of the chip body to close the upper portion of the reaction chamber, allows a laser to pass through, and has an inlet hole and an outlet hole; and a chip bottom attached to the bottom surface of the chip body through a chip bonding part to close the lower portion of the reaction chamber, the inlet hole, and the outlet hole.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other features and advantages of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings in which:
  • FIG. 1 is a schematic diagram of a system used for cell lysis using micro magnetic beads and a laser;
  • FIG. 2A is a schematic diagram of a system used in cell lysis on a microchip using a laser and micro magnetic beads according to an embodiment of the present invention;
  • FIG. 2B is a design of the system illustrated in FIG. 2A;
  • FIG. 3 is a photograph of a septa part of a cell lysis apparatus;
  • FIG. 4 is a schematic diagram of an embodiment of a microchip used in an apparatus for disrupting cells using micro magnetic beads and a laser;
  • FIG. 5 is a photograph of a microchip according to an embodiment of the present invention;
  • FIG. 6 is a plan view showing a disk-shaped micro-fluidic apparatus which employs an apparatus for disrupting cells or viruses according to an embodiment of the present invention;
  • FIG. 7 is a cross-section showing an open valve employed by the disk-shaped micro-fluidic apparatus in FIG. 6;
  • FIG. 8 is a cross-section of a closed valve employed by the disk-shaped micro-fluidic apparatus in FIG. 6;
  • FIG. 9 illustrates the results of determining cell viability after laser irradiation;
  • FIG. 10 shows that laser irradiation efficiently releases bacterial DNA only in the presence of magnetic beads;
  • FIG. 11 shows that DNA released by laser ablation is more efficiently amplified by Taq polymerase than DNA prepared by a conventional method;
  • FIG. 12 shows the effects of the size of magnetic beads;
  • FIG. 13 is a graph illustrating the transmittance of Pyrex 7740 and anti-reflection (AR) coated Pyrex 7740;
  • FIG. 14 is a photograph of a cell lysis chip according to an embodiment of the present invention after laser irradiation;
  • FIG. 15 is a graph illustrating PCR results of DNA released from E. coli cells with respect to the concentration of magnetic beads;
  • FIG. 16 is a graph illustrating PCR results of DNA released from E. coli cells with respect to the voltage of a vibrator;
  • FIG. 17 is a graph illustrating PCR results of DNA released from Staphylococcus epidermidis cells (1×105 cells/μl) with respect to laser power;
  • FIG. 18 is a graph illustrating PCR results of DNA released from Staphylococcus epidermidis cells (1×102 cells/μl) with respect to laser power;
  • FIG. 19 is a graph illustrating PCR results of DNA released from Staphylococcus epidermidis cells and DNA released from Streptococcus mutans cells;
  • FIG. 20 is a graph illustrating PCR results of DNA released from E. coli cells (1×105 cells/μl) with respect to laser power;
  • FIG. 21 is a graph illustrating PCR results of DNA released from E. coli cells (1×102 cells/μl) with respect to laser power;
  • FIG. 22 is a graph illustrating the temperature of E. coli sample with respect to laser power;
  • FIG. 23 is a graph illustrating PCR results of DNA released from E. coli cells (1×105 cells/μl) with respect to surface charge of magnetic beads and material of beads;
  • FIG. 24 illustrates a process of synthesizing iminodiacetic acid (IDA), Cu-IDA, pyrene, and thiol functional groups on the surface of a magnetic bead according to an embodiment of the present invention;
  • FIG. 25 is a graph illustrating the PCR results [crossing point (Cp)] of DNA released from E. coli cells with respect to functional groups on the surface of magnetic beads;
  • FIG. 26 illustrates an embodiment of synthesizing a polycarboxy functional group on the surface of a magnetic bead;
  • FIG. 27 is a graph illustrating the PCR results (Cp) of DNA released from E. coli cells with respect to functional groups on the surface of magnetic beads and pH of a bead solution;
  • FIG. 28 is a graph illustrating the PCR results (Cp) of DNA released from E. coli cells with respect to functional groups on the surface of magnetic beads in the presence of 10% serum;
  • FIG. 29 is a graph illustrating the PCR results (the concentration of PCR product) of DNA released from Hepatitis B virus (HBV) with respect to functional groups on the surface of magnetic beads in the presence of 10% serum;
  • FIG. 30 is a photograph illustrating viability of E. coli cells with respect to laser irradiation; and
  • FIG. 31 is a photograph of DNA analysis after laser irradiation to an E. coli BL21 cell harbouring pCR®II-TOPO® (Invitrogen) plasmid.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Hereinafter, the present invention will be described in more detail.
  • A method of disrupting cells or viruses according to an embodiment of the present invention includes: mixing beads with a solution containing cells or viruses; vibrating the beads; and irradiating the beads to heat and disrupt the cells or viruses.
  • In this method, the irradiation may be conducted with a laser. The irradiation, for example, with a laser can be conducted onto a solution containing beads, preferably magnetic beads and the beads cause an ablation due to the energy of the laser to transfer shock waves, vapor pressure and heat to the cell surface. At this time, physical shocks are also applied to the cell surface. The beads heated by the laser raise the temperature of the solution and directly disrupt the cells. The beads in the solution do not act as a simple heat conductor but apply thermal, mechanical and physical shocks to the cell surface, thereby efficiently disrupting the cell surface. Examples of “beads” used in this specification include anything that absorbs energy provided by an irradiation, for example, a laser irradiation and transforms the energy into heat. For example, the beads include both magnetic and non-magnetic heat-generating particles, preferably magnetic beads.
  • The rapid cell lysis using beads, preferably magnetic beads and a laser is performed by heating and laser ablation in a liquid medium. The laser in combination with the micro beads, preferably magnetic beads converts the heat source into physical and mechanical shocks of highly heated beads, preferably magnetic beads to improve cell lysis. Recently, small size, high power laser diodes are rapidly being developed and a very small cell lysis apparatus using the same will be capable of being installed on a Lap-on-a-Chip (LOC) or a Lap-on-a-Disk. Moreover, the laser can concentrate the power and energy on a specific region on a chip by means of an optical fiber, mirror or lens or directly do so.
  • The best advantage of the beads, preferably magnetic beads are to reduce DNA isolation steps because the cell lysis by means of the micro magnetic beads and laser results in the denaturation of proteins. The denatured proteins and cell debris are attached to the magnetic beads to be removed by gravity or magnetic force. As a result, a detection limit is lowered, a DNA extraction time is significantly shortened due to an omission of one step in the DNA extraction process, polymerase chain reaction (PCR) analysis results are significantly improved due to an increase in the signal amplitude. The total time required to disrupt a cell using the micro magnetic beads and laser is only 40 seconds.
  • A laser ablation refers to a phenomenon caused by materials exposed to a laser beam. The laser ablation rapidly raises the temperature of a material surface from several hundred to several thousand degrees. If the temperature of the material surface is raised to the evaporation point or higher, the saturated vapor pressure on the surface rapidly increases according to an evaporation of the liquid phase material. The saturated vapor pressure is expressed as a function of temperature by a Clausius-Clapeyron equation, and is usually raised to several ten atm or more in the case of a high power pulse laser process. A pressure applied to a material surface by vapor upon the spurt of vapor is referred to as “repulsive pressure” and the magnitude of the repulsive pressure is about 0.56 Psat where Psat denotes a vapor pressure.
  • A shock wave is generated in a process using a laser with very large instantaneous intensity, such as a pulse laser. The vapor generated on the surface of a material heated to the evaporation point or higher for short time ranging from several nano second to several ten nano second is increased to the pressure from several atm to several ten atm and forms shock wave while expanding into the surrounding air. Due to the very high pressure, the expanding vapor applies about 0.56 Ps (where Ps denotes a saturated vapor pressure in the surface) to a material.
  • In an embodiment of the present invention, the laser can include a pulse laser or continuous wave (CW) laser.
  • At too low laser power, the laser ablation cannot effectively occur. The laser power is 10 mW or more for the CW laser and 1 mJ/pulse or more for the pulse laser. Preferably, the pulse laser is 3 mJ/pulse or more and the CW laser has the power of 100 mW or more. This is because when the CW is less than 10 mW and the pulse laser is less than 1 mJ/pulse, sufficient energy to disrupt the cells is not transferred.
  • In an embodiment of the present invention, the laser should be generated in a specific wavelength range where magnetic beads absorb the energy of the laser. The laser is generated preferably in the wavelength range of 400 nm or more, and more preferably in the wavelength range from 750 nm to 1300 nm. This is because DNA is denatured or damaged at a wavelength less than 400 nm. The laser can also be generated in one or more wavelength ranges. That is, the laser can have one wavelength or two or more different wavelengths within the above range.
  • In an embodiment of the present invention, the diameter of the beads, preferably magnetic beads is preferably from 50 nm to 1,000 μm, and more preferably from 1 μm to 50 μm. When the diameter of the magnetic beads is less than 50 nm, physical and mechanical shocks are insufficient to cause cell lysis. When the diameter of the beads, preferably magnetic beads is greater than 1,000 μm, it is not suitable for LOC. The beads, preferably magnetic beads can also be a mixture of beads with two or more sizes. That is, the beads, preferably magnetic beads can have equal sizes to each other or be a mixture of beads with different sizes.
  • In an embodiment of the present invention, the magnetic beads can be any material magnetized. In particular, the magnetic beads preferably include at least one material selected from the group consisting of ferromagnetic Fe, Ni, Cr and oxides thereof.
  • In an embodiment of the present invention, the magnetic beads can be polymers, organic materials, silicon or glass coated with a ferromagnetic metal.
  • In an embodiment of the present invention, the surface of the magnetic bead is preferably negatively charged so that DNA is not attached thereto. Since DNA is negatively charged, it is not attached to the magnetic bead, which is negatively charged, due to repulsive forces. When DNA is attached to the magnetic bead, it is difficult to isolate DNA from magnetic beads after disrupting cells, which makes DNA purification difficult.
  • In an embodiment of the present invention, a functional group on the surface of magnetic beads may be hydrophilic and the solution containing magnetic beads may have a pH of 6-9. The amplification efficiency of DNA obtained from lyzed cells can vary depending on the functional group on the surface of magnetic beads and the pH of the solution containing magnetic beads. As hydrophilicity of the functional group increases, the amplification efficiency of DNA after cell lysis increases. Preferably, the functional group is a carboxy group with a negative charge or a derivative thereof. The derivative of the carboxy group includes iminodiacetic acid (IDA), ethylenediaminetetraacetic acid (EDTA), citric acid, polycarboxylic acid, etc. The pH of the solution containing magnetic beads is preferably 6-9. If the pH is outside the above range, the amplification efficiency of DNA after cell lysis decreases.
  • In an embodiment of the present invention, the solution can be selected from the group consisting of saliva, urine, blood, serum and cell culture solutions. The solution can be any solution having nucleic acids, such as animal cells, plant cells, bacteria, viruses, phage and the like.
  • In an embodiment of the present invention, the step of vibrating can be performed by using vibrators selected from the group consisting of sonicators, vibrators using a magnetic field, vibrators using an electric field, mechanical vibrators, and piezoelectric materials.
  • The above mechanical vibrators can take as an axis the body supporting the chamber that includes the above mixture, repeatedly moving in clockwise and counter-clockwise angular motion about the above axis. That is, by changing the direction and rotating the disk-shaped plate containing the chamber, vibration may occur.
  • An apparatus for the rapid disruption of cells or viruses according to another embodiment of the present invention includes: a member for receiving a cell lysis chamber which receives a mixture of a solution containing cells or viruses and beads; a vibrator attached to the chamber and vibrating the beads in the chamber; and a laser generator supplying a laser to the cell lysis chamber.
  • Examples of “beads” used in this specification include anything that absorbs energy provided by an irradiation, for example, a laser irradiation and transforms it into heat. For instance, the examples of aforementioned beads include both magnetic and non-magnetic heat-releasing particles, preferably magnetic beads.
  • In the apparatus of the present embodiment, the vibrator can include sonicators, vibrators using a magnetic field, vibrators using an electric field, mechanical vibrators such as a vortex etc., or piezoelectric materials. The vibrator is attached to the cell lysis chamber and can be any device capable of vibrating the mixed solution of the cells and the micro magnetic beads.
  • The above mechanical vibrators can take as an axis the body supporting the chamber that includes the above mixture, repeatedly moving in a clockwise and counter-clockwise angular motion on the above axis. That is, by changing the rotating direction of the disk-shaped plate containing the chamber, vibration may occur.
  • The laser can be a pulse laser having a power of 1 mJ/pulse or more or continuous wave (CW) laser having a power of 10 mW or more.
  • The laser can be generated preferably in the wavelength range of 400 nm or more, and more preferably in the wavelength range from 750 nm to 1300 nm.
  • In an embodiment of the present invention, the member may be a disk-shaped plate comprising a cell lysis chamber therewithin, and the cell lysis chamberis connected to the inlet and an outlet through a channel.
  • FIG. 1 is a schematic diagram of an embodiment of a system used for cell lysis using a laser and micro magnetic beads. Samples are supplied through an inlet hole. The samples are thoroughly mixed with magnetic beads. The thorough mixing of the samples and the magnetic beads is achieved by a vibrator. A laser is irradiated while vibrating the mixture. A cell lysis chamber window should be composed of a material through which the laser can sufficiently pass. The magnetic beads exposed to the laser transform light to heat, i.e. occur laser ablation. Heat, vibration, shock wave, vapor pressure, etc. are efficiently transferred due to effective heat transfer and collision of the magnetic beads with cells by continuous vibration. While the temperature of the cell lysis chamber is raised by the laser, a paraffin valve is opened, which can be controlled by the thickness of the paraffin valve. After enough cells are disrupted, the laser is turned off and remaining micro magnetic beads are removed with an electromagnet. If the paraffin valve is removed by heat, the resulting solution runs to a PCR chamber where the purified DNA is amplified.
  • In an embodiment of the present invention, the vibrator can include sonicators, vibrators using a magnetic field, vibrators using an electric field, mechanical vibrators such as a vortex etc., or piezoelectric materials. The vibrator is attached to the cell lysis chamber and can be any device capable of vibrating the mixed solution of the cells and the micro magnetic beads.
  • In an embodiment of the present invention, the apparatus for the rapid disruption of cells or viruses can further include an electromagnet attached to the cell lysis chamber and removing the magnetic beads in the cell lysis chamber after cell lysis is completed. The electromagnet can be attached to the cell lysis chamber, and for the purpose of the LOC implementation, the magnetic beads are removed by the electromagnet after cell lysis is completed so that the disrupted cell solution can directly run to a PCR chamber without performing separation of the magnetic beads. The beads should be magnetized in order to be removed by the electromagnet.
  • In an embodiment of the present invention, if more completely purified DNA is desired, the apparatus for the rapid disruption of cells or viruses can further include a DNA purification chamber connected to the cell lysis chamber through a channel before a PCR chamber. The DNA purification chamber is attached to the cell lysis chamber in order to purify the DNA if the paraffin valve or a valve of a MEMS structure using magnetic field or electric field is opened after cell lysis is completed.
  • In an embodiment of the present invention, the apparatus for the rapid disruption of cells or viruses can further include a paraffin valve located in a channel connected to the cell lysis chamber, the thickness of which is controlled by the cell lysis time. While the temperature of the cell lysis chamber is raised by the laser, the paraffin valve is opened, which can be controlled by the thickness of the paraffin valve.
  • In an embodiment of the present invention, the apparatus for the rapid disruption of cells or viruses can further include a DNA amplification chamber connected to the cell lysis chamber through a channel. Since the effects of purification by the micro magnetic beads are generated as described above, the DNA amplification chamber can be directly attached to the cell lysis chamber.
  • In an embodiment of the present invention, the apparatus for the rapid disruption of cells or viruses can further include a DNA amplification chamber connected to the DNA purification chamber through a channel. For the purpose of the LOC implementation, an amplification system of the purified DNA is necessary. The purified DNA can be detected using a spectrophotometer, micro magnetic beads, an electrochemical method, electrochemiluminescence, radiation and fluorescent label, a real-time PCR method, and the like. The PCR method is most suitable to sufficiently amplify a desired DNA. Other DNA amplification methods can be applied and direct detection through the real-time PCR method, etc. is also possible.
  • An apparatus for the disruption of cells or viruses according to another embodiment of the present invention includes: a cell lysis chip having an inlet hole through which a sample and magnetic beads are introduced; a vibrator connected to the chip through a vibration transfer part to mix the sample and the magnetic beads in the chip, the vibration transfer part attached to the chip to transfer vibration to the chip; a laser generator attached to the chip to supply a laser; and an anti-evaporation part attached to the chip to prevent the sample from evaporating.
  • FIG. 2A is a schematic diagram of an embodiment of a system used in cell lysis using a laser and micro magnetic beads on a microchip and FIG. 2B is a design of the system illustrated in FIG. 2A. A cell lysis chip is a device for lyzing cells or viruses using a sample and magnetic beads introduced through an inlet hole. The cell lysis chip includes a chip cover, a chip body, a chip bonding part, and a chip bottom. The elements of the cell lysis chip will be described in more detail later. The cell lysis chip functions as a reaction chamber in which cells or viruses are lyzed.
  • The vibrator is connected to the cell lysis chip through a vibration transfer part and mixes a sample and magnetic beads in the cell lysis chip. The vibrator may vertically vibrate. The vibrator can include sonicators, vibrators using a magnetic field, vibrators using an electric field, mechanical vibrators such as a vortex etc., or piezoelectric materials. The vibrator can be any device capable of vibrating the mixed solution of cells and micro magnetic beads. The vibrator may be a vibration motor for mobile phones.
  • The vibration transfer part transfers vibration generated by the vibrator to the chamber through the bottom surface of the cell lysis chip. The vibration transfer part may be composed of a metal such as aluminum.
  • The laser generator is attached to the cell lysis chip and supplies a laser to the cell lysis chip.
  • The anti-evaporation part is attached to the cell lysis chip to prevent the sample from evaporating. When cells are lyzed using a laser, evaporation occurs due to increase in temperature. Thus, the anti-evaporation part is necessary to reduce the evaporation. The anti-evaporation part should have a structure capable of withstanding a pressure of 10 psi or more. The anti-evaporation part can comprise septa. It is possible that an optic tape is attached to the inlet hole and the outlet hole, and then septa are fixed to the cell lysis chip. FIG. 3 is a photograph of septa of the cell lysis apparatus. The septa may be valves, polymer structures or metal structures, but they are not particularly restricted to these as long as they can prevent evaporation.
  • In an embodiment of the present invention, the laser can include a pulse laser or continuous wave (CW) laser.
  • At too low laser power, the laser ablation cannot effectively occur. The laser power is 10 mW or more for the CW laser and 1 mJ/pulse or more for the pulse laser. This is because when the CW is less than 10 mW and the pulse laser is less than 1 mJ/pulse, sufficient energy to disrupt the cells is not transferred.
  • In an embodiment of the present invention, the laser should be generated in a specific wavelength range where magnetic beads absorb the energy of the laser. The laser is generated preferably in the wavelength range of 400 nm or more, and more preferably in the wavelength range from 750 nm to 1300 nm. This is because DNA is denatured or damaged at a wavelength less than 400 nm. The laser can also be generated in one or more wavelength ranges. That is, the laser can have one wavelength or two or more different wavelengths within the above range.
  • In an embodiment of the present invention, the diameter of the magnetic beads is preferably from 50 nm to 1,000 μm, and more preferably from 1 μm to 50 μm. When the diameter of the magnetic beads is less than 50 nm, physical and mechanical shocks are insufficient to cause cell lysis. When the diameter of the magnetic beads is greater than 1,000 μm, it is not suitable for LOC. The magnetic beads can also be a mixture of beads with two or more sizes. That is, the magnetic beads can have equal sizes to each other or be a mixture of beads with different sizes.
  • In an embodiment of the present invention, the magnetic beads can be any material magnetized. In particular, the magnetic beads preferably include at least one material selected from the group consisting of ferromagnetic Fe, Ni, Cr and oxides thereof.
  • In an embodiment of the present invention, the magnetic beads can be polymers, organic materials, silicon or glass coated with a ferromagnetic metal.
  • In an embodiment of the present invention, the surface of the magnetic bead is preferably negatively charged so that DNA is not attached thereto. Since DNA is negatively charged, it is not attached to the magnetic bead, which is negatively charged, due to repulsive forces. When DNA is attached to the magnetic bead, it is difficult to isolate DNA from magnetic beads after disrupting cells, which makes DNA purification difficult.
  • In an embodiment of the present invention, the sample can be selected from the group consisting of saliva, urine, blood, serum and cell culture solutions. The sample can be any material having nucleic acids, such as animal cells, plant cells, bacteria, viruses, phage and the like.
  • A cell lysis chip for the apparatus for the disruption of cells or viruses according to another embodiment of the present invention includes: a chip body having opened top surface and bottom surface and including a reaction chamber, an inlet hole, and an outlet hole; a chip cover which is attached to the top surface of the chip body to close the upper portion of the reaction chamber, allows a laser to pass through, and has an inlet hole and an outlet hole; and a chip bottom of the chip body attached to the bottom surface through a chip bonding part to close the lower portion of the reaction chamber, the inlet hole and the outlet hole.
  • FIG. 4 is a schematic diagram of an embodiment of a microchip used in an apparatus for disrupting cells using micro magnetic beads and a laser. Referring to FIG. 4, a chip body has opened top surface and bottom surface and includes a reaction chamber, an inlet hole, and an outlet hole. The chip body may be a silicon wafer which can withstand a temperature of 100° C. or higher. The chip body may be composed of glass, polymer or silicone. Glass is preferably Pyrex 7740. The chip body has a top surface to which a chip cover is attached and a bottom surface to which a chip bonding part is attached. The inner surface of the chip body may be hydrophobically treated in order to prevent bubbles from generating. For example, the inner surface of the chip body may be coated with SIGMACOTE®.
  • A chip cover is attached to the top surface of the chip body to close the upper portion of the reaction chamber. The chip cover allows a laser to pass through and has an inlet hole and an outlet hole. The chip cover may be composed of glass, polymer, indium tin oxide (ITO) glass, etc. Glass is preferably Pyrex 7740. Preferably, the material for the chip cover withstands a high temperature and has a transmittance of 90% or more. The chip cover can have an anti-reflection (AR) coating to increase the transmittance of a laser. The anti-reflection coating can be formed using a method known in the art. Thus, the chip cover can be prepared using an AR coated Pyrex 7740.
  • A chip bottom is attached to the bottom surface of the chip body through a chip bonding part to close the lower portion of the reaction chamber, the inlet hole and the outlet hole. The chip bottom may be composed of polymer, silicone, glass, ITO glass, etc. Preferably, the material for the chip bottom withstands a high temperature and is flexible. The chip bottom is preferably composed of a material capable of effectively transferring vibration generated by a vibrator to the chip body, for example, a polycarbonate film.
  • The chip bonding part attaches the chip bottom to the chip body and acts as an aid of the reaction chamber containing a sample. The attachment is achieved by means of an adhesive material selected from the group consisting of an adhesive tape and an adhesive. Although the reaction chamber can be formed using only the chip body and the chip bottom, leakage of a reaction solution may take place. The chip bonding part can prevent the leakage of a reaction solution. FIG. 5 is a photograph of a microchip according to an embodiment of the present invention.
  • In this invention, the method and apparatus of disrupting cells or viruses using an irradiation, for example a laser irradiation, as described, not only can be applied to a microfluidic apparatus in the form of a chip, but it can also be applied to a disk-shaped microfluidic apparatus. Hereinafter, a centrifugal force-based, disk-shaped microfluidic apparatus that concentrates target cells from biological samples through serial manipulation using the rotation of a platform, and amplifies the extracted gene by polymerase chain reaction (PCR) to detect the gene in a microfluidic construct comprising a chamber, a channel, and a valve prepared in the rotating platform is introduced.
  • FIG. 6 is a plan view showing an example of a disk-shaped microfluidic apparatus that employs an apparatus that disrupts cells or viruses according to an embodiment of the invention. This embodiment shows how the method and the apparatus for disrupting cells or viruses using a irradiation, for example a laser of the previously described invention can be applied to the disk-shaped microfluidic apparatus (namely, Lab-on-a-disk). The centrifugal force-based microfluidic apparatus 101 has a rotatable, disk-shaped platform 100. However, the platform 100 is not limited to a disk shape. One or more microfluidic constructs can be disposed in the platform 100. For example, the platform 100 can be divided into several sectors, and in each sector independently operating microfluidic construct can be disposed.
  • The microfluidic construct prepared in the platform includes a plurality of chambers, channels connecting the chambers, and valves that control the flow of fluids through the multiple channels. The microfluidic constructs, can be consisted of two disk bonded each other, and the microfluidic structures such as a chamber, a channel or a valve can be formed by 3 dimensional pattern formed on either one side or both sides of the facing two disks that forms the above disk-shaped platform. For the upper disk of the two disks, a transparent material may be used to make the detection of the movement of fluids or a reaction possible. A method of manufacturing such microfluidic constructs is already known in the field of the invention.
  • In the microfluidic apparatus 101 according to this embodiment, the microfluidic constructs can be mainly divided into two groups by their functions. One is a so-called target cell nucleic acid extraction unit, which separates, purifies, and concentrates target cells from the injected biological sample, and disrupts the concentrated target cells to extract the nucleic acids. The other group is a polymerase chain reaction unit which mixes the fluid containing the extracted nucleic acids and performs PCR on the mixture. The two groups are connected structurally through a channel, and functionally they are coupled organically to extract the target cells, particularly pathogens, from the injected biological sample, and complete the tasks through a series of automatically performing operation to allow identification of the genetic properties. Here, the cell nucleic acid extracting unit includes a cell lysis chamber 70 which exposes nucleic acid by disrupting the cell captured on the surface of the bead particle. In the cell lysis chamber 70, cell lysing operation is performed according to the aforesaid method of disrupting cells and viruses of the invention.
  • First, the microfluidic construct in the target cell nucleic acid extracting unit will now be explained. The microfluidic construct includes a sample chamber 21 receiving the fluid sample, and a buffer chamber 40 receiving a buffer solution. The sample chamber 21 and the buffer chamber 40 each include an inlet (not shown), and the user can inject samples and appropriate buffer through the inlets. The buffer can be pre-injected when manufacturing the disk-shaped microfluidic device.
  • In the position farther from the center of the above platform 100 than the two chambers, a mixing chamber 50 is allocated, and the mixing chamber 50 is connected to the sample chamber 21 and the buffer chamber 40 through the fluid transporting channel. In each of the chambers 21 and 40, opening valves 131, 134, and 139 controlling the flow of the fluid are prepared. In the sample chamber 21, a centrifugal unit 20 which centrifuges the sample and releases only a portion of the separated part to the mixing chamber 50 can also be prepared. In this case, the opening valve 131 that is connected to the sample chamber 21 can be allocated at the outlet of the centrifugal unit 20, as shown in FIG. 6, without being connected directly to the sample chamber. A precipitate-collecting unit 23 and the sample chamber 21 or a supernatant channel 22 can be connected through an exhaustion pipe and an excess sample-collecting chamber 24.
  • The centrifugal unit 20 comprises supernatant channel 22 extending from the outlet of the sample chamber 21 to the outside of the platform 100 and a precipitate collecting unit 23 with expanded cross-sectional area prepared in an end of the supernatant channel 22, and a part of the supernatant channel 22 can be connected to the mixing chamber 50 through the opening valve 131. The function of the centrifugal unit 20 is as follows: For example, if whole blood is injected into the sample chamber 21 and the platform 100 is spun, the heavier blood cells will be collected in the precipitate collecting unit 23, and the supernatant channel will be mostly filled with plasma. Then, once the opening valve 131 connected to the mixing chamber 50 is opened, the plasma that was filled in the part closer to the center of the platform 100 than the opening valve within the supernatant channel 22 is transferred to the mixing chamber 50. By using this centrifugal unit 20, the possibility of elements that can inhibit PCR being incorporated into the nucleic acid extract can be reduced beforehand. However, for operation of tasks for samples which centrifugation is not necessary, the opening valve 131 can be allocated in the outlet of the sample chamber 21.
  • The mixing chamber 50 has an outlet on the farthest side from the center of the platform 100, and an opening valve 136 is prepared on the outlet. For the mixing chamber 50, the closer part of the opening valve on the outlet may have the smaller cross-sectional area. To this end, an inner part of the opening valve 136 can be made in the form of a channel. The mixing chamber 50 receives the bead particles (not shown), and the sample flowing in from the sample chamber 21 and the bead particles can be mixed. In the mixing chamber 50, a specific reaction of the target cell within the sample attaching to the surface of the bead particle is performed. The mixing chamber 50 also receives the buffer solution from the buffer chamber 40.
  • A separate bead particle chamber 30 that receives bead particles closer from the center of the platform 100 than the mixing chamber 50 may also be included, and in this case an opening valve 132 may be included on the channel connecting bead chamber 30 and the mixing chamber 50. The bead particles (not shown), dispersed in a predetermined amount of fluid, can be injected into the bead particle chamber 30, and enter the mixing chamber through the opening valve 132.
  • The bead particles, in order to trap the target cells (mainly pathogens) from biological samples such as blood (plasma, serum), saliva and urine, has a surface that can specifically bind the target cells. The surface of the bead particles may be treated with antibodies or metal oxides with an affinity to the target cells.
  • Because the above antibodies can selectively capture specifically desired pathogens, they are useful for detecting pathogens with a very low concentration. Antibody-coupled bead particles that can specifically bind to a particular pathogen are commercially available from Invitrogen, Qiagen etc., and as specific examples, DYNABEADS Genomic DNA Blood (Invitrogen), DYNABEADS anti-E. coli O157 (Invitrogen), CELLection™ Biotin Binder Kit (Invitrogen), MagAttract Virus Min M48 Kit (Qiagen) are available. Using the mentioned bead particles, pathogens such as Diphtheria toxin, Enterococcus faecium, Helicobacter pylori, HBV, HCV, HIV, Influenza A, Influenza B, Listeria, Mycoplasma pneumoniae, Pseudomonas sp., Rubella virus, Rotavirus can be separated.
  • The metal oxides include, but are not limited to, Al2O3, TiO2, Ta2O3, Fe2O3, Fe3O4, and HfO2. Preferably the metal oxide is Al2O3 or TiO2, and more preferably Al2O3. The vapor deposition may be carried out by PVD (physical vapor deposition), ALD (atomic layer deposition), sol-gel method, etc. The method of vapor deposition of metal oxides on the surface of the bead particles is a widely known technique, generally performed by PVD, ALD, or sol-gel method. The matter regarding the size and material of bead particles is as previously described.
  • The waste chamber 60 is disposed farther from the center of the platform 100 than the mixing chamber 50. The waste chamber 60 may be connected to the closer part of the outlet of the mixing chamber 50, which is the part with the narrow cross-sectional area as previously described, through multiple channels. However, between the part connected to the channel and the opening valve 136 of the mixing chamber 50, it is preferable that there is enough space for the bead particles received by the mixing chamber 50 to be gathered together by centrifugal force. For the channels connecting to the waste chamber 60 the opening valves 133, 135 that open the channels and the closing valves 141, 142 that close the channels to control the fluid flow are provided.
  • Meanwhile, the cell lysis chamber 70 is allocated farther than the outlet of the mixing chamber 50 from the center of the platform 100. The inlet of the cell lysis chamber 70 is connected to the opening valve 136 on the outlet of the mixing chamber 50 through a channel. The outlet of the cell lysis chamber 70 can be allocated so that after performing cell lysis on the fluid including the bead particles, only the fluid is discharged with the bead particles remaining. For example, to trap the bead particles in the cell lysis chamber 70 by centrifugal force, a space may be saved for trapping the bead particles in the outer part than the outlet with a prepared opening valve 137. As another example, if the bead particles have magnetic properties, they can be disposed close to the cell lysis chamber, including more magnetic field generating materials that gather magnetic beads by magnetic force. An example of a magnetic field-generating material may be a permanent magnet. However, it is not required to trap the bead particles in the above cell lysis chamber 70. Once the cell lysis is performed, the bead particles can be discharged along with the solution with dissolved nucleic acids.
  • In the channel connecting the opening valve 136 of the outlet of the mixing chamber 50 and the cell lysis chamber 70, a closing valve 142 can be prepared in addition. In this case, the closing valve 142 acts as a seal to the cell lysis chamber 70 using electromagnetic wave when cells are lysed. In other words, the opening valve 137 and the closing valve 142 on the cell lysis chamber 70's outlet act as an evaporation suppressing unit.
  • The cell lysis chamber 70 traps the bead particles with collected target cells or viruses on their surface and performs cell lysis which accompanies extraneous electromagnetic wave emission, such as cell lysis by laser ablation. Rapid cell lysis using laser and bead particles is carried out by heating from liquid medium and ablation by laser. The laser supplies energy to the bead particles, supplying heat to the cells attached to the bead particles and lysing the cells by applying physical and mechanical impact on the bead particles at the same time.
  • One of the biggest advantages of the cell lysis using bead particle and laser is that the nucleic acid separating step can be reduced. Cell lysis generally accompanies protein denaturation, and denatured proteins and cell debris may negatively affect nucleic acid amplification using PCR. Using bead particles for cell lysis such as the apparatus of this invention, matters other than nucleic acids, i.e. denatured proteins and cell debris are reattached on the surface of the bead particles. By separating these bead particles from the nucleic acid extraction solution by gravity, centrifugal force, or magnetic force, a separate step of purifying the nucleic acid solution after cell lysis can be skipped. This lowers the detection limit of the target materials, reduces a step of the nucleic acid extracting procedure which saves a great amount of time in nucleic acid extraction, and increases the amplitude of the signals, which significantly improves the PCR-mediated analyses. The time required to disrupt the cells using laser and bead particles may be about 30-40 seconds. Matters such as the principles and procedures of ablation using laser, the available wavelength and the output of the laser are as previously described.
  • The target cell nucleic acid extracting unit principles of operation and specific method of operation are described in detail in the article published in the Lab on a Chip Journal [One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device, Lab Chip, 2007, 7, 565-573] by co-inventors of this invention.
  • In order to aid in understanding the disk-shaped microfluidic apparatus according to the working example, the procedure for extracting the DNA of HBV from a blood sample in the target cell nucleic acid extraction unit is shown according to the embodiment of FIG. 6
  • First, magnetic micro beads are prepared.
  • 1) Preparing Antibodies for Surface Modification of the Magnetic Micro Beads
  • Biotinylated secondary antibodies with a specific affinity for type B Hepatitis virus surface antigen (Virostat, 1817, host animal:rabbit) is prepared in 10 μl solution.
  • 2) Preparing Magnetic Micro Beads
  • As an example of the bead particles, 100 μl of Dynabeads® Streptavidin C1, a magnetic bead labeled with streptavidin with 1.0 μm in diameter, is mixed into a homogeneous solution. 100 μl of the resultant solution was placed in a tube and placed on a magnet for 2 minutes. The supernatant was taken using a pipette and discarded. The tube was removed from the magnet, and 100 μl of buffer 1 (PBS, pH7.4 with 0.1% BSA) was added and mixed. The resulting material was left on the magnet for another 2 minutes. The supernatant was taken with a pipette and discarded. The tube was removed from the magnet, and 100 μl of buffer 1 (PBS, pH7.4 with 0.1% BSA) was added and mixed.
  • 3) Pre-Coating of Bead Particles Using Antibodies
  • On 100 μl of the magnetic bead solution prepared as above, HBV secondary antibodies (Virostat, 1817) attached to biotin 8 μg was added and mixed. It was inverted several times to mix and incubated at room temperature for 30 minutes. Wash buffer (PBS, pH7.4 with 1% BSA) was added and inverted several times to mix. The magnetic beads were collected using a magnet for 1 minute and the supernatant was removed. Buffer 1 (PBS pH7.4 with 0.1% BSA) 100 μl was added to resuspend the pre-coated magnetic beads.
  • Using the magnetic beads prepared from the procedure above and the target cell nucleic acid extraction unit of the microfluidic apparatus 101 according to the working example in FIG. 6, the experiment extracting the HBV DNA from blood sample was carried out as follows:
  • First, 100 μl of the blood spiked with HBV is injected into the sample chamber 21, 100 μl of the magnetic bead Ml solution with antibodies attached on the surface are injected into the bead particles chamber 30, and 100 μl of the PBS buffer solution is injected into the buffer chamber 40, then the platform 100 is spun to centrifuge the blood samples using the centrifuge unit 20
  • Then, the valve 131 between the centrifuge unit 20 and the mixing chamber 50 is opened to transfer 30 μl of the plasma to the mixing chamber 50, while the opening valve 132 between the bead particle chamber 30 and the mixing chamber 50 is opened to transfer magnetic bead solution to the mixing chamber 50.
  • By spinning the platform 100 to both directions alternately for 5 minutes, the magnetic beads are mixed with the plasma, and the target virus HBV is collected on the surface of the magnetic beads. Then, the platform 100 re-spun in one direction to separate the magnetic beads towards the outlet of the mixing chamber 50.
  • The opening valve 133 between the mixing chamber 50 and the waste chamber 60 is opened to emit the supernatant (the remaining plasma after HBV separation) to the waste chamber 60, and the closing valve 141 disposed in the same channel as the opening valve 133 is closed. Then, the opening valve 134 between the buffer chamber 40 and the mixing chamber 50 is opened to transfer the buffer solution to the mixing solution.
  • The platform above 100 is spun in both directions alternately for 20 seconds, and the magnetic beads are washed with the buffer solution. Then, the magnetic beads are re-separated, and the second opening valve 135 of the channel connected to the waste chamber 60 is opened to emit the buffer. The opening valve 136 prepared in the outlet of the mixing chamber 50 is opened, and the magnetic beads within the mixing chamber 50 are transferred to the cell lysis chamber 70.
  • Next, the closing valve 142 leading to the cell lysis chamber 70 is closed, and laser ablation is carried out by irradiating the cell lysis chamber 70 with a laser beam. At this time, as previously described, HBV attached to the magnetic bead surface is disrupted, releasing the DNA, and the debris produced by HBV disruption is re-attached to the magnetic bead surface. Therefore, when the opening valve 137 on the outlet of the cell lysis chamber 70 is opened, DNA solution is eluted with enough DNA to perform PCR immediately.
  • Furthermore, the microfluidic structure of the PCR reaction unit above will now be explained. The reagent chamber 80 which stores PCR reagent is disposed at a farther location from the center of the platform 100 than the cell lysis chamber 70. PCR reagent includes materials necessary for nucleic acid amplification. The reagent chamber 80 receives nucleic acid-including fluid from the cell lysis chamber 70, and mixes the fluid with the PCR reagent to elute through the opening valve 138 prepared on the outlet. The PCR reagent may be reagent for real-time PCR.
  • The reagent chamber 80 is connected to the PCR chamber 92 through a channel. The inlet 91 of the PCR chamber 92 is disposed farther from the center of the platform 100 than the reagent chamber 80. The PCR chamber 92, like the other chambers above, can be a space integrated to the platform 100 or, it can be a space within the combined PCR chip 94 which is detachable. In the latter case, the PCR chip 94 contains an inlet 91 and an outlet 93 connected to the PCR chamber 92, and the inlet 92 and the outlet 93 can each be connected to the prepared channels within the platform 100. The channel connected to the outlet 93 can be connected to the exhaustion port, and the exhaustion port may be disposed closer to the platform center 100 than the reagent chamber 80 as shown in the FIG. 6. The PCR chip 94 may be fixed to the platform 100 in various forms; for example, the PCR chip 94 may be fixed by a rear cover 95 closed on the platform 100. Hereinafter, the PCR chip 94 and the rear cover 95 will be collectively called the PCR chip unit 90.
  • The channel connected to the inlet 91 and the outlet 93 of the PCR chamber 92 each can have a closing valve 143, 144. The closing valves 143, 144 act as a sealant of the PCR chamber 92 while PCR is running.
  • For a specific example of the PCR chip 94, refer to the paper published in “Lab on a Chip Journal” [Microchip-based on step DNA extraction and real-time PCR in one chamber for rapid pathogen identification, Lab Chip, 2006, 6, 886-895] by co-inventors of this invention.
  • FIG. 7 is a cross-sectional diagram showing the opening valve employed by the disk-shaped microfluidic device in FIG. 6. Various forms of normally closed valve can be employed for the centrifuge-based microfluidic device according to this invention. This drawing depicts one of the examples regarding a phase-shift type opening valve installed within the platform and operated by irradiated electromagnetic wave from the external from the platform 100.
  • The opening valve 131 is made in an cubic or flat form between the upper plate 110 and the lower plate 120, and includes a valve plug V1 with particles dispersed in a phase-shift matter which is in solid-phase at room-temperature. The solid-phase valve plug V1 is disposed at an initial position with a narrow cross sectional area in channel C, and close to it the width or depth of channel C is expanded to provide free space. The above valve plug V1 is inserted through the opening 110A of the upper plate 110 in a fused state, and blocks the channel C by filling the part with a narrow area. The valve plug V1 is fused under high temperature and moves to a nearby free space and resolidifies, opening the channel.
  • In order to apply heat to the valve plug V1, a laser source (not shown) that emits laser is allocated external to the platform, and the laser source can emit laser to the area including the initial location of the valve plug V1. The laser source can be selected according to the electromagnetic wavelength that the particles within the valve plug V1 can absorb.
  • The particles dispersed across the valve plug V1 may have a size small enough to move freely within the channel C with a diameter of several thousand micrometers. When particles are irradiated with an electromagnetic wave (such as laser), temperature of the particles is rapidly increased by the provided energy, releasing heat and dispersing across the wax evenly. To this end, the particles may have a structure with a metallic core and a hydrophobic shell. For example, the particles may contain a core formed of Fe and a shell made of multiple surfactants covering the Fe through bonding. As for the particles, those available on the market, dispersed in carrier oil, may be employed. By mixing phase shift materials with the carrier oil with dispersed particles, the valve material that composes the valve plug V1 can be made. The type of particles is not limited to the type shown in the embodiment, and may also be polymer beads, quantum dots, or magnetic beads.
  • The phase-shift material may be wax. When the particles transfers the electromagnetic energy absorbed in the form of heat energy, the wax is fused and become fluidic, thereby collapsing the valve plug form and opening the channel. The wax may have a reasonable melting point. If the melting point is too high, the time taken from the start of electromagnetic irradiation to fusion is too long, making it difficult to precisely control the opening point, and if the melting point is too low, partial fusion can occur without electromagnetic irradiation, causing fluid leakage. Wax such as paraffin wax, microcrystalline wax, synthetic wax, natural wax may be employed. Meanwhile, the phase shift material can be a gel or a thermoplastic resin. For a gel, polyacrylamide, polyacrylates, polymethacrylates, or polyvinylamides may be employed. Also, for a thermoplastic resin, COC, PMMA, PC, PS, POM, PFA, PVC, PP, PET, PEEK, PA, PSU, or PVDF may be employed.
  • FIG. 8 is a cross-sectional diagram showing a closed valve employed in the disk-shaped microfluidic apparatus in the above FIG. 6. Various types of normally opening valves may be employed in the centrifugal microfluidic apparatus according to this invention. The phase-shift closing valve is installed within the platform 100 and operated by irradiated electromagnetic wave external to the platform 100.
  • Phase-shift closing valve 141 comprises a channel C, a valve chamber 122 connected to a part of the channel C, and a valve material V2 which at initial room temperature is charged in the valve chamber 122 in solid phase, and when heated, is fused and expanded to enter the channel C, resolidifying to block the flow of fluids through the channel C.
  • The phase-shift closing valve 141, the in the same way as the aforementioned opening valve 131, may be provided by the 3 dimensional pattern formed on the inner side of the upper 110 or the lower 120 plate forming the platform. An opening 110B may be formed in an upper part of the valve chamber 122. The B acts as an injecting port through which the fused valve material V2 is injected when the microfluidic apparatus is produced.
  • Descriptions regarding the phase-shift material and the particles are as previously described with reference to the opening valve 131. Moreover, the laser source that provides electromagnetic wave to the valve material V2 is also as previously described. When the phase-shift material and the valve material V2 which includes the particles are irradiated with the electromagnetic wave, the particles absorb the energy and heat the phase-shift material. Consequently the valve material V2 is fused and expands its volume, overflowing to the channel C through the connected tunnel 123. The resolidified valve material V2 within the channel C forms a valve plug, blocking the flow of fluid through the channel C.
  • The present invention will now be described in greater detail with reference to the following examples. The following examples are for illustrative purposes only and are not intended to limit the scope of the invention.
  • PREPARATION EXAMPLE 1 Cell Lysis System
  • As illustrated in FIG. 1, bacterial cells prepared as describe below (90 μl) and micro magnetic beads (30 μl, Dynabeads® M-270 Carboxylic Acid, DYNAL, Norway) were mixed in a vial located in a vial guide (AMITECH, Korea). 808 nm, 13.8 W high power laser beam (HLU25F100-808, LIMO, Germany) was applied to the mixture for disrupting cells for a specific time in individual experiments while stirring the vial by vortexing (see FIG. 1).
  • PREPARATION EXAMPLE 2 Bacterial Strain and the Determination of Bacterial Cell Viability
  • E. coli strain BL21 and Streptococcus mutans (ATCC# 35668) were cultured at 37° C. with vigorous aeration in brain heart infusion (BHI) media to exponential phase (OD600=0.5˜1.0). The bacterial cells were harvested by centrifugation and washed twice with 3 ml of phosphate-buffered saline (PBS) solution. The cells were resuspended in PBS (cell density; 1×105 cells/μl). The number of viable cells was determined by the ability of single cells to form colonies. Aliquots of E. coli cells (1×103) after laser beam radiation were spread onto BHI plates. The plates were incubated at 37° C. overnight, and the number of colonies was counted.
  • A Staphylococcus epidermidis (ATCC#14990→12228) was cultured at 37° C. with vigorous aeration in Nutrient Agar (NA) media to exponential phase (OD600=0.5˜1.0). The bacterial cells were harvested by centrifugation and washed twice with 3 ml of phosphate-buffered saline (PBS) solution. The cells were resuspended in PBS (cell density; 1×105 cells/μl). The number of viable cells was determined by the ability of single cells to form colonies. Aliquots of Staphylococcus epidermidis cells (1×103) after laser beam radiation were spread onto NA plates. The plates were incubated at 37° C. overnight, and the number of colonies was counted.
  • PREPARATION EXAMPLE 3 Extraction of Bacterial Genomic DNA
  • In order to compare the efficiency of DNA release by laser method with the efficiency of other known conventional methods, E. coli genomic DNA (from 0.9×105 cells equivalent to the number of cells used for each laser lysis) was prepared using the boiling method for 5 min at 95° C.
  • PREPARATION EXAMPLE 4 Quantitation of DNA Release from Bacteria
  • To monitor cell lysis and to quantitate the amount of DNA released from lyzed cells, Agilent Bioanalyzer followed by polymerase chain reaction (PCR) amplification was used. The following pair of primers were used for PCR: primer A (SEQ ID No: 1); primer B (SEQ ID No: 2). This pair of primer is complementary to each end of a gene encoding the 16S ribosomal RNA, allowing the amplification of its entire coding region during PCR.
  • E. coli PCR amplification was carried out using Taq polymerase (Solgent. Co, Ltd, Korea) for 25 cycles (95° C. for 1 min to pre-denature, 95° C. for 5 s to denature, 60° C. for 13 s to anneal, and 72° C. for 15 s to extend, and 72° C. for 1 min to additionally extend). For Gram-positive bacterial cells; Streptococcus mutans and Staphylococcus epidermidis PCR amplification were carried out using Taq polymerase (Solgent. Co, Ltd, Korea) for 30 cycles (95° C. for 1 min to pre-denature, 95° C. for 5 s to denature, 60° C. for 13 s to anneal, and 72° C. for 15 s to extend, and 72° C. for 1 min to additionally extend). After amplification cycles are completed, a melting curve was acquired by slowly heating (0.1° C./s) the sample from 60 to 90° C. The PCR was performed by LightCycler® (Roche Diagnostics Corporation, 1N, USA) with a total volume of 20 μl reaction mixture containing 1× FastStart DNA Master SYBR (Roche Diagnostics Corporation, 1N, USA), 0.25 μM of forward and reverse primers (Genotech, Korea), 4 mM MgCl2 (Roche Diagnostics Corporation), D.W (PCR grade, Roche Diagnostics Corporation, IN, USA). The amplified DNAs were analyzed in an Agilent BioAnalyzer 2100 (Agilent Technologies, Palo Alto, Calif.) using commercially available DNA 500 assay sizing reagent sets.
  • PREPARATION EXAMPLE 5 Fabrication of Cell Lysis Chip of the Present Invention
  • Microchips with a chip size of 7.5 mm×15 mm for 10 μl sample volume were fabricated using silicone, glass, polycarbonate film, and Double Coated Tape (9495MP, 3M, MN, USA). As shown in FIG. 4, for laser-induced sample preparation, the fabrication process consisted of two photolithography steps and a bonding step by double-coated tapes with polycarbonate film. The glass wafer with six inches diameter and a thickness of 500 μm was cleaned and laminated by a BF410 film photoresist. The photoresist was patterned by photolithography to form holes with a diameter of 1.5 mm for inlet and outlet sample passages. Holes were formed on the glass wafer by sand blast technique. The silicon wafer was a double-sided polished silicon substrate with a diameter of six inches and a thickness of 680 μm. Chamber was formed on the silicon wafer by sand blast technique due to the cost concerns. For optimization of sample loading, Sigmacoat® (Sigma-aldrich, MO, USA) was coated on the sand blasted surface of silicon wafer. And then, polycarbonate film with a thickness of 100 μm was bonded to silicon wafer using Double Coated Tape with a thickness of 150 μm.
  • PREPARATION EXAMPLE 6 Laser Induced on-Chip Sample Preparation System
  • As shown in FIG. 2A, for bacterial cell lysis, bacterial cells (1 μl) prepared as below and micro magnetic beads (9 μl, approximately 9×106 beads/μl, Dynabeads® MyOne™ Carboxylic Acid, DYNAL, Norway) were mixed in a microchip (SAIT, Korea) placed in a chip guide module (AMITECH, Korea). For effect of surface charge of magnetic beads and material of beads, silica beads (3.0 μm, Bangs Laboratories Inc., IN, USA), amine-terminated polystyrene magnetic beads (1.5 μm, Bangs Laboratories Inc., IN, USA), polystyrene beads (4.16 μm, Bangs Laboratories Inc., IN, USA) and carboxylic acid-terminated polystyrene magnetic beads were prepared additionally.
  • High power laser beam at 808 nm (1 W) was applied to disrupt cells for indicated periods using fiber-coupled laser systems (HLU25F100-808, LIMO, Germany) with 0.22 NA divergence in each experiment while the microchip was vibrated by coin-type vibration motor (DMJBRK20X, Samsung electro-mechanics, Korea) using aluminum vibration bar. The laser power was measured by 30 W Broadband Power/Energy Meter (MELLES GRIOT, US). Laser wavelength was selected by absorption coefficient of wavelength in water. Most laser beam of 808 nm with absorption coefficient of 0.021773 (cm−1) in water is transmitted through the water and reaches the micro magnetic beads. For the purpose of the present invention, a visible laser beam is also applicable, but a high power laser diode has not been developed as a portable device and is not cost effective. In addition, the absorption coefficient of IR wavelength in water is very high; most of IR laser energy will be absorbed in water making it unsuitable for this usage. UV laser beam is not good for cell lysis and DNA purification, because it is known that UV irradiation causes DNA damage. DNA irradiated with UV accumulates a thymine dimmer as the major photoproduct. Thus, a continuous laser diode with 808 nm spectrum was used.
  • A vibration system for on-chip sample preparation test module using vibration motor that mostly used in mobile phone (DMJBRK20X, Samsung electro-mechanics, Korea) with aluminum (AMITECH, Korea) was designed to vibrate flexible polycarbonate film of microchip only sample chamber zone with a 12,000 rpm. Vibration power of vibration motor was adjusted by power supply (E3620A, Agilent, Calif., USA). Temperature of sample in a chamber of microchip was measured by thermocouple (K type, Omega) with data acquisition system (34970A, Agilent, Calif., USA). As shown in FIG. 3, both inlet and outlet holes were sealed with optically transparent adhesive tapes (Applied Biosystems, CA, USA) after loading sample solution with magnetic beads. To confirm that there is no leaking occurring during laser irradiation, both inlet and outlet holes were compressed with two elastomers (thermogreen LB-2, Sigma-Aldrich, MO, USA) located on the top cover of the on-chip sample preparation test module.
  • PREPARATION EXAMPLE 7 Photographs of Live and Dead Cells with Magnetic Beads
  • In order to observe live and dead cells remaining in the sample solution following laser irradiation was stained using the Live/Dead® BacLight™ Bacterial Viability kit (L7012, Molecular Probe, OR, USA) according to the procedure recommended by the suppliers. Images were taken by microscopy (Eclipse TE 300, Nikon, Japan).
  • PREPARATION EXAMPLE 8 DNA Analysis after Laser Irradiation
  • Genomic and plasmid DNAs were isolated from the same numbers of BL21 cells containing pCR®II-TOPO® (Invitrogen) plasmids using various methods. For the laser lysis, cells were mixed with magnetic beads and irradiated with laser for 40 sec and DNA was purified by ethanol precipitation with 0.3 M sodium acetate after Phenol/Chloroform/lsoamylalcohol cleaning. For the boiling lysis, cells were heated at 95° C. for 5 min and DNA was purified as laser lysis. Qiagen QIAprep® Miniprep kit was used to isolate the plasmids. Qiagen QIAamp® DNA Mini kit was used to isolate the genomic DNA of BL21. DNAs were run with 0.7% agarose gel with 1 kb marker.
  • EXAMPLE 1 Effects of Laser Irradiation on Cell Survival in the Presence of Magnetic Beads
  • The effects of laser irradiation on cell survival in the presence of magnetic beads were investigated. FIG. 9 illustrates the results of determining cell viability after laser irradiation. Cells (3×103) were irradiated with a laser in the presence (A and B) or absence (C) of micro magnetic beads for designated times and then spread on LB plates. The plates were incubated overnight at 37° C., and then the number of formed colonies was scored (A: cells in a suspension after laser irradiation in the presence of micro magnetic beads for designated times; B: cells recovered by washing magnetic beads after laser irradiation; C: cells under the same condition as the cells of A, except that laser irradiation was performed in the absence of micro magnetic beads; note that cells were irradiated with laser beam for prolonged periods; D: a positive control without laser irradiation).
  • As seen from FIG. 9, bacterial cells lost viability due to laser irradiation. The loss of viability was sharply increased by adding the magnetic beads. After laser irradiation for 3 seconds, 5% of the initial cells (153 cells among 3000 cells) were survived in the presence of the magnetic beads and after laser irradiation for 10 seconds, no cell survived (FIG. 9A). In contrast, in the absence of the magnetic beads, even after laser irradiation for 30 seconds, about two thirds of the initial cells (about 2000 cells) survived (FIG. 9C). To identify that cells nonspecifically bonded to the beads, the beads were washed with a high salt buffering solution (PBS+0.3 M NaCl) and the washing solution was also inspected for living cells (FIG. 9B). A small number of living cells were recovered and a survival kinetics was the same as that of cells recovered from the suspension, which indicated that cells from beads were similar to those trapped with solution between the beads. These results suggest that since laser irradiation can results in the rapid disruption of cells in the presence of magnetic beads, it can be used to release any type of DNA such as genomic, episomal or viral DNA present in living cells.
  • EXAMPLE 2 Effects of Laser Irradiation on DNA Release from Cells
  • Since the loss of viability as observed above was not necessarily related to cell lysis required for releasing DNA from cells, the presence of DNA in a solution was inspected by amplifying 16S rDNA using above-described PCR. FIG. 10 shows that laser irradiation efficiently releases bacterial DNA only in the presence of magnetic beads. The bars represent the concentration (ng/μl) of the amplified DNA. The amount of the PCR product was quantified by means of Agilent BioAnalyzer 2100. The error bars represent the standard deviation of the mean.
  • As shown in FIG. 10, 16S rDNA was most efficiently amplified when a solution was used as a template DNA source. Moreover, the amount of the PCR product was proportional to the irradiation time and the magnetic beads sharply (20 times or more) increased the PCR efficiency. These results are consistent with cell viability. That is, these results demonstrate that the loss of cell viability does not result from thermal inactivation of cells without cell lysis, but results from the physical disruption of cells.
  • EXAMPLE 3 Comparison of DNA Release Efficiency of Laser Ablation Cell Lysis with Micro Magnetic Beads and Chemical Cell Lysis
  • To directly compare a DNA release efficiency of cell lysis according to the present invention with that of a conventional chemical cell lysis, DNeasy, which was a Qiagen kit for cell lysis and the purification of released DNA, was used. FIG. 11 shows that DNA released by laser ablation is more efficiently amplified by Taq polymerase than DNA prepared by the conventional method. In all experiments, DNA was prepared by using the same number of cells. The bars represent the concentration (ng/μl) of the amplified DNA. The amount of the PCR product was quantified by means of Agilent BioAnalyzer 2100. The error bars represent the standard deviation of the mean.
  • As shown in FIG. 11, the 16S rDNA was more efficiently amplified with DNA obtained after laser irradiation in the presence of magnetic beads. Considering that the Qiagen kit is not optimal with samples containing small cell numbers (<1×109), it is possible that the amounts of DNA recovered using the Qiagen kit is less than expected. Despite this, cell lysis by laser in conjunction with magnetic beads could provide a greater versatility in application due to easiness in integrating this technique to the LOC. In addition, it was observed that the efficiency of PCR amplification with DNA release by laser ablation is greater than DNA obtained with either Qiagen kit or boiling method. This indicates that laser irradiation releases DNA at least the same as or greater amounts of DNA than the other two conventional methods. If the same amounts of DNA are released, the more efficient PCR amplification with DNA from laser ablation indicates that the release of inhibiting materials is minimized by laser ablation.
  • EXAMPLE 4 Effects of the Size of Magnetic Beads on Cell Lysis Efficiency
  • Effects of the size of magnetic beads on release of DNA from cells were investigated. FIG. 12 shows the effects of the size of the magnetic beads. The bars represent the concentration (ng/μl) of the amplified DNA. The amount of the PCR product was quantified by means of Agilent BioAnalyzer 2100. The error bars represent the standard deviation of the mean.
  • As shown in FIG. 12, the magnetic beads of 2.7 μm in diameter were much more efficient in cell lysis than the 5-nm gold particles (G1402, Sigma, MO, USA).
  • EXAMPLE 5 Laser Transmittance Test on Chip Cover
  • To check that the laser generated by a laser generator can efficiently transmit a chip cover, Pyrex 7740 and AR coated Pyrex 7740 (Corning) were used as chip covers. The laser transmittance was measured using 30 W Broadband Power/Energy meter (MELLES GRIOT, US) at the laser power of 1, 2, 3, and 4 W. FIG. 13 shows laser transmittance on Pyrex 7740 and AR coated Pyrex 7740. As shown in FIG. 13, AR coated Pyrex 7740 had about 1.75% higher laser transmittance than AR uncoated Pyrex 7740. Thus, the AR coated Pyrex 7740 is suitable to efficiently provide a laser into a cell lysis chip.
  • EXAMPLE 6 Anti-Evaporation Test on Cell Lysis Chip
  • To check that the cell lysis chip of the present invention causes evaporation due to vapor pressure generated by a laser, an evaporation test was performed. For the cell lysis chip as prepared above, the same experiment was performed at least 200 times at the laser power of 1, 2, 3, and 4 W. FIG. 14 is a photograph of the cell lysis chip of the present invention after laser irradiation. At the laser power of 2 W or less, vapor pressure increased due to increased temperature of the sample solution, and evaporation within the cell lysis chip did not occur.
  • EXAMPLE 7 Effects of the Amount of Magnetic Beads on Cell Lysis Efficiency
  • The effects of the amount of magnetic beads on cell lysis efficiency, i.e., the amount of released DNA was investigated. Different amount of beads was added to a sample solution (0 to 9×106 beads/μl) and 1 W laser radiation power was irradiated for 40 sec at 808 nm. FIG. 15 is a graph illustrating PCR results of DNA released from E. coli cells with respect to the amount of magnetic beads. A crossing point (Cp) is the cycle number when detectable fluorescence is first determined in real-time PCR. That is, as the starting concentration of DNA increases, the Cp value decreases. Cp is also related to DNA purification. As the purity of DNA increases, the Cp value decreases. Thus, when the Cp value is lower, DNA in the solution is more purified form.
  • As shown in FIG. 15, the amount of DNA released increased as more magnetic beads were added. At the bead concentration above 5×106 beads/μl, a good efficiency for the efficient cell lysis and DNA release was yielded. Also, for accurate determination of starting target copy number, value of Cp of E. Coli DNA amplification by LightCycler® (Roche Diagnostics Corporation, IN, USA) as known real time PCR machine was checked. As shown in FIG. 15, the value of Cp decreased as more magnetic beads were added. This result suggests that starting target copy number increased as more magnetic beads were added.
  • EXAMPLE 8 Effects of Vibration Power on Cell Lysis Efficiency
  • To check the effects of vibration power on cell lysis efficiency, the voltage of vibration motor of 0-4 V was used. In each reaction, E. coli cells (1×105 cells/μl), which are Gram-negative bacterial cells, were used. 10 μl of a sample was irradiated with 0.5 W laser radiation power for 40 sec at 808 nm. The distance between the cell lysis chip and optical fiber was 1 mm. The concentration of beads in the sample was 5×106 beads/μl and three replicates of each condition were tested. FIG. 16 is a graph illustrating PCR results of DNA released from E. coli cells with respect to the voltage of vibration motor. In FIG. 16, Boiling (positive control) refers to the case when a PCR was performed on DNA released after boiling E. coli cells at 95° C. for 5 min; and Negative control refers to the case when a PCR was performed using only distilled water without DNA. The bars represent the concentration (ng/μl) of the amplified DNA. The amount of the PCR product was quantified by means of Agilent BioAnalyzer 2100. The error bars represent the standard deviation of the mean. As the amount of the amplified DNA increases, the number of lyzed cells increases, indicating that cell lysis efficiency increases.
  • As shown in FIG. 16, as the voltage of vibration motor increases, cell lysis efficiency increases. The voltage of vibration motor above 3 V was sufficient for the higher cell lysis efficiency than using boiling method. In addition, as the voltage of vibration motor increases, the amount of released DNA increases due to increased cell lysis efficiency, and thus, the Cp value decreases.
  • Thus, cell lysis efficiency is increased by vibration after mixing cells or viruses with magnetic beads.
  • EXAMPLE 9 Effects of Laser Radiation Power on Lysis Efficiency for Gram Positive Bacterial Cells
  • To check the effects of laser radiation power on lysis efficiency for Gram-positive bacterial cells, laser radiation power of 0.5-3 W was used. The same experiment as in Example 8 was carried out, except that Staphylococcus epidermidis cells (1×105 cells/μl), which are Gram-positive bacterial cells, were used, the distance between the cell lysis chip and optical fiber was 3 mm, and the concentration of beads in the sample was 9×106 beads/μl. FIG. 17 is a graph illustrating the PCR results of DNA released from Staphylococcus epidermidis cells (1×105 cells/μl). In FIG. 17, Control refers to the case when a PCR was performed on supernatant obtained after centrifuging Staphylococcus epidermidis cells at 13,200 rpm for 5 min; Boiling (positive control) refers to the case when a PCR was performed on DNA released after boiling Staphylococcus epidermidis cells at 9° C. for 5 min; and Negative control refers to the case when a PCR was performed using only distilled water without DNA. The bars represent the concentration (ng/μl) of the amplified DNA. The amount of the PCR product was quantified by means of Agilent BioAnalyzer 2100. The error bars represent the standard deviation of the mean. As shown in FIG. 17, as laser radiation power increases, cell lysis efficiency increases. Specifically, the laser radiation power above 1 W was sufficient for obtaining the same or higher cell lysis efficiency than using the boiling method. Thus, when cells or viruses are lyzed using the microchip of the present invention, laser radiation power can be significantly reduced.
  • To check the effects of the concentration of cells on cell lysis efficiency, the same experiment as described above was carried out, except that Staphylococcus epidermidis cells (1×102 cells/μl), which are Gram-positive bacterial cells, were used.
  • FIG. 18 is a graph illustrating the PCR results of DNA released from Staphylococcus epidermidis cells (1×102 cells/μl) with respect to the laser power. In FIG. 15, Control refers to the case when a PCR was performed on supernatant obtained after centrifuging Staphylococcus epidermidis cells at 13,200 rpm for 5 min; Boiling (positive control) refers to the case when a PCR was performed on DNA released after boiling Staphylococcus epidermidis cells at 95° C. for 5 min; and Negative control refers to the case when a PCR was performed using only distilled water without DNA. The bars represent the concentration (ng/μl) of the amplified DNA. The amount of the PCR product was quantified by means of Agilent BioAnalyzer 2100. The error bars represent the standard deviation of the mean. As shown in FIG. 18, as laser radiation power increases, cell lysis efficiency increases. Specifically, the laser radiation power of 3 W provided much higher cell lysis efficiency than using the boiling method. Thus, regardless of the concentration of cells, Gram-positive bacterial cells can be efficiently lyzed using the method of the present invention.
  • In addition, to check that another Gram-positive bacterial cell Streptococcus mutans can be efficiently lyzed using the cell lysis chip of the present invention, the same experiment as described above was carried out, except that Staphylococcus epidermidis cells and Streptococcus mutans cells were used and laser radiation power of 1 W was used for 40 sec.
  • FIG. 19 is a graph illustrating the PCR results of DNAs released from Staphylococcus epidermidis cells and Streptococcus mutans cells. In FIG. 19, Sample 1 refers to the case when a PCR was performed on DNA released from Staphylococcus epidermidis cells; Sample 2 refers to the case when a PCR was performed on DNA released after boiling Staphylococcus epidermidis cells at 95° C. for 5 min; Sample 3 refers to the case when a PCR was performed on DNA released from Streptococcus mutans cells; Sample 4 refers to the case when a PCR was performed on DNA released after boiling Streptococcus mutans cells at 95° C. for 5 min; and Sample 5 refers to the case when a PCR was performed using only distilled water without DNA. The bars represent the concentration (ng/μl) of the amplified DNA. The amount of the PCR product was quantified by means of Agilent BioAnalyzer 2100. The error bars represent the standard deviation of the mean. As shown in FIG. 16, the cell lysis method of the present invention has better cell lysis efficiency on both Staphylococcus epidermidis cell and Streptococcus mutans cell than using boiling method.
  • EXAMPLE 10 Effects of Laser Power on Lysis Efficiency for Gram-Negative Bacterial Cells
  • To check the effects of laser radiation power on lysis efficiency for Gram-negative bacterial cells, laser radiation power of 0-3 W was used. The same experiment as in Example 9 was performed, except that E. coli cells (1×105 cells/μl), which are Gram-negative bacterial cell, were used. FIG. 20 is a graph illustrating the PCR results of DNA released from E. coli cells (1×105 cells/μl). In FIG. 20, Boiling (positive control) refers to the case when a PCR was performed on DNA released after boiling E. coli cells at 95° C. for 5 min; and Negative control refers to the case when a PCR was performed using only distilled water without DNA. The bars represent the concentration (ng/μl) of the amplified DNA. The amount of the PCR product was quantified by means of Agilent BioAnalyzer 2100. The error bars represent the standard deviation of the mean. As shown in FIG. 20, as laser radiation power increased, cell lysis efficiency increased. Specifically, the laser radiation power above 1 W was sufficient for the higher cell lysis efficiency than using the boiling method. In addition, as laser radiation power increases, the Cp value decreased, indicating that the amount of released DNA increased. But, the laser radiation power above 2 W was saturated. This result suggests that starting target copy number increased as laser radiation power increased until all of cells were lyzed.
  • Thus, when cells or viruses are lyzed using the microchip of the present invention, laser radiation power can be significantly reduced.
  • To check the effects of the concentration of cells on cell lysis efficiency, the same experiment as described above carried out, except that E. coli cells (1×102 cells/μl), which are Gram-negative bacterial cells, were used.
  • FIG. 21 is a graph illustrating the PCR result of DNA released from E. coli cells (1×102 cells/μl). In FIG. 21, Control refers to the case when a PCR was performed on supernatant obtained after centrifuging E. coli cells at 13,200 rpm for 5 min; Boiling (positive control) refers to the case when a PCR was performed on DNA released after boiling E. coli cells at 95° C. for 5 min; and Negative control refers to the case when a PCR was performed using only distilled water without DNA. The bars represent the concentration (ng/μl) of the amplified DNA. The amount of the PCR product was quantified by means of Agilent BioAnalyzer 2100. The error bars represent the standard deviation of the mean. As shown in FIG. 21, as laser radiation power increases, cell lysis efficiency increases. Specifically, the laser radiation power above 0.5 W was sufficient for the higher cell lysis efficiency than using the boiling method. The laser radiation power of 3 W provides much higher cell lysis efficiency than using the boiling method. Thus, when cells or viruses are lyzed using the microchip of the present invention, the laser radiation power can be significantly reduced.
  • Therefore, regardless of the concentration of cells, Gram-negative bacterial cells can be efficiently lyzed using the method of the present invention.
  • EXAMPLE 11 Effects of Laser Radiation Power on Temperature of E. Coli Sample
  • To check the effects of laser radiation power on the temperature of E. coli sample, laser radiation power of 0.5, 1, and 2 W were used. The same experiment as in Example 10 was carried out, except that E. coli cells (1×105 cells/μl), which are Gram-negative bacterial cells, were used. FIG. 22 is a graph illustrating variation in temperature of E. coli sample with respect to laser radiation power. As shown in FIG. 22, the temperature of sample increased with the laser radiation power. In particular, after irradiating laser radiation power above 1 W for several seconds, the temperature of sample was rapidly raised above 65° C.
  • EXAMPLE 12 Effects of Surface Charge of Magnetic Beads and Material of Beads
  • To check the effects of surface charge of magnetic beads and material of beads on cell lysis efficiency, four different types of beads were used. The same experiment as in Example 10 was carried out, except that the concentration of beads was 0.5%. FIG. 23 is a graph illustrating the PCR results of DNA released from E. coli cells (1×105 cells/μl) with respect to surface charge of magnetic beads and material of beads. In FIG. 20, Samples 1, 2, 3, and 4 refer to the cases when a PCR was performed on DNA released using amine-terminated polystyrene magnetic beads, silica beads, polystyrene beads, and carboxylic acid-terminated polystyrene magnetic beads, respectively. Sample 5 (positive control) refers to the case when a PCR was performed on DNA released after boiling E. coli cells at 95° C. for 5 min and Sample 6 (negative control) refers to the case when a PCR was performed using only distilled water without DNA. The bars represent the concentration (ng/μl) of the amplified DNA. The amount of the PCR product was quantified by means of Agilent BioAnalyzer 2100. The error bars represent the standard deviation of the mean. As shown in FIG. 23, laser irradiation released E. coli DNA efficiently only in the presence of carboxylic acid terminated polystyrene magnetic beads.
  • In addition, the temperature of sample solution was investigated with four type microbeads (data not shown). Temperature of sample solution with silica beads was increased very slowly, because silica beads absorbed laser beams insufficiently with 1 W laser radiation power. Temperature of sample solution with amine-terminated polystyrene microbeads increased like carboxylic acid terminated polystyrene microbeads, but released DNA bind to microbeads because of the electrostatic interaction by the positive charge of amine functional group of the surface of the beads. Temperature of sample solution of polystyrene beads increased with middle speed between silica beads and magnetic beads, because of heat capacity of microbeads.
  • The greatest advantage of carboxylic acid terminated polystyrene magnetic beads is to reduce DNA isolation steps, because cell lysis using laser and micro magnetic beads lead to the denaturation and removal of proteins. Denatured proteins and cell debris stick to polystyrene surface of magnetic beads by adsorption, which facilitate easy removal by gravity or magnetic field. DNA does not bind to the beads because of the charge repulsion by the negative charge of carboxylic acid of the beads. This significantly improves PCR yield by lowering the limit of detection, reducing the time of DNA extraction, and increasing the signal amplitude.
  • EXAMPLE 13 Effects of Functional Group of Magnetic Bead Surface on DNA Amplification Efficiency
  • To check the effects of functional group of the surface of magnetic beads on cell lysis efficiency, the amplification efficiency of DNA released from cell lysis was investigated. First, various functional groups were synthesized on the surface of magnetic beads. FIG. 24 illustrates embodiments of synthesizing iminoacetic acid (IDA), pyrene, and thiol functional groups on the surface of magnetic beads. The process of synthesizing each functional group on magnetic beads (Dynabeads®) was as follows:
  • (1) IDA-Beads
  • 500 μl of magnetic beads with amine functional group (Dynabeads′M-270 Amine, 30 mg/ml) was taken, and then the solution was removed using magnet. 500 μl of NMP (1-methyl-2-pyrrolidone) was sufficiently mixed with the beads, and then the solution was removed. This procedure was three times repeated. A solution of ethylbromoacetate (6 μl) and triethylamine (10 μl) in NMP (500 μl) was sufficiently mixed with the beads and left at 45° C. for 1 day. After the reaction was completed, the beads was washed with 500 μl of NMP (×3) and then with 500 μl of ethanol (×3). The solution was removed using magnet, and then 500 μl of a 1:1 (v/v) mixed solution of 1 N NaOH and ethanol was added to the beads and left at room temperature for 1 hour. After the reaction was completed, the beads were washed with 500 μl of ethanol (×3), and then with 500 μl of tertiary distilled water (×3). Thereafter, the solution was removed and 500 μl of desired buffered solution was added thereto. The resultant was kept in cold storage.
  • (2) Cu-IDA-Beads
  • A solution of Cu(NO3)2 (100 mg) and TEA (100 μl) in NMP (500 μl) was added to IDA beads, and then the resultant was left for 1 day. After the reaction was completed, the beads were washed with 500 μl of NMP (×3), 500 μl of ethanol (×3), and tertiary distilled water (×3). Thereafter, the solution was removed and 500 μl of desired buffered solution was added thereto. The resultant was kept in cold storage.
  • (3) Pyrene-Beads
  • 500 μl of magnetic beads with amine functional group (Dynabeads®M-270 Amine, 30 mg/ml) was taken, and then the solution was removed using magnet. 500 μl of NMP (1-methyl-2-pyrrolidone) was sufficiently mixed with the beads, and then the solution was removed. This procedure was three times repeated. A solution of 1-pyrenebutyric acid (15 mg), HBTU (o-benzotriazole-1-yl-N,N,N′,N′-tetramethyluroniumhexafluorophosphate) (22 mg) and TEA (triethylamine) (7 μl) in NMP (500 μl) was sufficiently mixed with the beads and left at room temperature for 1 day. After the reaction was completed, the beads was washed with 500 μl of NMP (×3), 500 μl of ethanol (×3), and 500, of tertiary distilled water (×3). Thereafter, the solution was removed and 500 μl of desired buffered solution was added thereto. The resultant was kept in cold storage.
  • (4) Thiol-Beads
  • 500 μl of magnetic beads with amine functional group (Dynabeads®M-270 Amine, 30 mg/ml) was taken, and then the solution was removed using magnet. 500 μl of NMP was sufficiently mixed with the beads, and then the solution was removed. This procedure was three times repeated. A solution of 3-mercaptopropionic acid (10 μl), HBTU (22 mg) and TEA (7 μl) in NMP (500 μl) was sufficiently mixed with the beads and left at room temperature for 1 day. After the reaction was completed, beads was washed with 500 μl of NMP (×3) and 500 μl of ethanol (×3). The solution was removed using magnet, and then 500 μl of a 1:1 (v/v) mixed solution of 1N NaOH and ethanol was added to the beads and left at room temperature for 1 hour. After the reaction was completed, beads was washed with 500 μl of ethanol (×3) and 500 μl of tertiary distilled water (×3). Thereafter, the solution was removed and 500 μl of desired buffered solution was added thereto. The resultant was kept in cold storage.
  • DNA amplification efficiency was investigated using the magnetic beads on which each functional group was synthesized. The same experiment as in Example 12 was carried out, except that E. coli cells (1×107 cells/μl) were used. FIG. 25 is a graph illustrating the PCR results (Cp) of DNA released from E. coli cells with respect to functional group of the surface of magnetic beads. In FIG. 25, Carboxy bead refers to the case when a PCR was performed after lyzing cells using Dynabeads® MyOne™ Carboxylic Acid (DYNAL, Norway); Boiling (positive control) refers to the case when a PCR was performed on DNA released after boiling E. coli cells at 95° C. for 5 min; Control refers to the case when a PCR was performed on supernatant after centrifuging E. coli cells at 13,200 rpm for 5 min; and Negative control (NTC) refers to the case when a PCR was performed using only distilled water without DNA. As shown in FIG. 25, IDA among functional groups had the lowest Cp value and the Cp value of thiol was smaller than the Cp value of Cu-IDA. Further, as the hydrophilicity of the functional group increased, the Cp value decreased. That is, IDA had lower Cp value than thiol. It can be seen from above results that the beads with carboxy functional group, which is hydrophilic, have best cell lysis efficiency and the Cu-IDA beads with blocked functional group have low cell lysis efficiency.
  • EXAMPLE 14 Effects of pH of Solution Containing Magnetic Beads on DNA Amplification Efficiency
  • To check the effects of pH of a solution containing magnetic beads on DNA amplification efficiency, three types of beads, i.e., magnetic beads with carboxy (Dynabeads®), magnetic beads with IDA, and polycarboxy magnetic beads were used. Since in the experimental results described above, beads with carboxy functional group had the highest cell lysis efficiency, polycarboxy beads having many carboxy functional groups were synthesized. FIG. 26 illustrates a process of synthesizing polycarboxy functional group on the surface of a magnetic bead. The process of synthesizing said functional group on magnetic beads (Dynabeads®) was as follows:
  • 500 μl of magnetic beads with amine functional group (Dynabeads®M-270 Amine, 30 mg/ml) was taken, and then the solution was removed using magnet. 500 μl of NMP was sufficiently mixed with the beads, and then the solution was removed. This procedure was three times repeated. A solution of poly(ethylene-alt-maleic anhydride) (100 mg) and triethylamine (10 μl) in NMP (500 μl) was sufficiently mixed with the beads and left at room temperature for 1 day. After the reaction was completed, beads was washed with 500 μl of NMP (×3) and then with 500 μl of ethanol (×3). The solution was removed using magnet, and then 500 μl of a 100 mM Tris-HCl buffered solution (pH 9.0) was added to the beads and left at room temperature for 1 hour. After the reaction was completed, the beads were washed with 500 μl of ethanol (×3), and then with 500 μl of tertiary distilled water (×3). Thereafter, the solution was removed and 500 μl of desired buffered solution was added thereto. The resultant was kept in cold storage.
  • The same experiment as in Example 13 was carried out, except that the three types of beads were adjusted to pH 5, 7 and 9. FIG. 27 is a graph illustrating the PCR results (Cp) of DNA released from E. coli cells with respect to functional group on the surface of magnetic beads and pH of bead solutions. In FIG. 27, Control refers to the case when a PCR was performed after lyzing cells using Dynabeads® MyOne™ Carboxylic Acid (DYNAL, Norway). As shown in FIG. 27, the Cp value decreased as pH increased. Thus, It can be seen that the cell lysis efficiency increases with the pH of the solution containing magnetic beads. However, at the same pH, the cell lysis efficiency is not significantly changed due to functional group.
  • EXAMPLE 15 Comparison of PCR Efficiency in the Presence of Inhibitor
  • In Examples 13 and 14, when pure E. coli cells were used, the cell lysis efficiency depended on the pH of the solution containing magnetic beads. When the surface functional group is a carboxy group, the cell lysis efficiency is not significantly varied due to the structure thereof. This is because when only pure E. coli cells are used, the inhibition effects of cell debris on a PCR are insignificant. Therefore, to check the effects of functional group of the surface of beads on the removal of a PCR inhibitor, cell lysis efficiency according to the type of magnetic beads and pH was compared.
  • First, the same experiment as in Example 14 was carried out, except that 10% serum was added as an inhibitor and the pH of a solution containing magnetic beads was adjusted to 7 and 9. FIG. 28 is a graph illustrating the PCR results (Cp) of DNA released from E. coli cells with respect to functional group of the surface of magnetic beads in the presence of 10% serum. In FIG. 28, Control refers to the case when a PCR was performed after lyzing cells using Dynabeads® MyOne™ Carboxylic Acid (DYNAL, Norway) in the presence of 10% serum; and PTC (positive control) refers to the case when a PCR was performed after adding 10% serum to DNA released from E. coli. As shown in FIG. 28, the Cp values of magnetic beads having the same functional group varied depending on pH. That is, carboxy and IDA had a lower Cp value at pH 7 than at pH 9 and polycarboxy had a lower Cp value at pH 9 than at pH 7. Thus, it can be seen that when a carboxy functional group and the pH of the solution containing magnetic beads are properly combined, the effects of an inhibitor on a PCR can be significantly reduced.
  • Next, the same experiment as described above was carried out, except that Hepatitis B virus (HBV) was used instead of E. coli and the pH of a solution containing magnetic beads was adjusted to 7. The following pair of primer was used for PCR: forward primer (SEQ ID No: 3); reverse primer (SEQ ID No: 4). This pair of primer is a site corresponding to a core region of HBV genome. FIG. 29 is a graph illustrating the PCR results (concentration of PCR product) of DNA released from HBV with respect to functional group of the surface of magnetic beads in the presence of 10% serum. In FIG. 29, Control refers to the case when a PCR was performed after lyzing HBV using Dynabeads® MyOne™ Carboxylic Acid (DYNAL, Norway) in the presence of 10% serum; and PTC (positive control) refers to the case when a PCR was performed on DNA isolated from HBV without 10% serum. As shown in FIG. 29, the PCR product was also generated even in the presence of 10% serum. Thus, when the carboxy functional group and the pH of the solution containing magnetic beads are properly combined, the effects of an inhibitor on PCR can be significantly reduced.
  • EXAMPLE 16 Investigation of Cell Viability According to Laser Irradiation
  • To observe live and dead cells present in a sample solution according to laser irradiation, E. coli cells were used. FIG. 30 is a photograph showing the viability of E. coli cells according to laser irradiation. In FIG. 30, Panel A is an image of E. coli cells without micro magnetic beads before the laser irradiation; Panel B is an image of E. coli cells in the presence of micro magnetic beads after the laser irradiation for 40 sec at 808 nm with 0.5 W laser radiation power; and Panel C is an image of E. coli cells in the presence of micro magnetic beads after the laser irradiation for 40 sec at 808 nm with 1 W laser radiation power. Green-stained cells are live cells and red-stained cells are dead cells. As shown in FIG. 30, most cells are alive before the laser irradiation and the proportion of dead cells increases with laser radiation power.
  • EXAMPLE 17 Effects of Laser Irradiation on Damage of Genomic DNA
  • To check whether the laser irradiation damages genomic DNA, it was checked whether the isolated DNAs are sheared after 40 sec irradiation with laser. FIG. 31 is a photograph of DNA analysis after laser irradiation on an E. coli BL21 cell harbouring pCR®II-TOPO® (Invitrogen) plasmid. In FIG. 28, Lane 1 refers to the case when DNA was isolated using the method of the present invention; Lane 2 refers to the case when DNA was isolated after boiling at 95° C. for 5 min; Lane 3 refers to the case when plasmid DNA was isolated using Qiagen QIAprep® miniprep kit; Lane 4 refers to the case when genomic DNA of BL21 was isolated using Qiagen QIAamp® DNA minikit; and Lane 5 refers to the case when genomic DNA of BL21 was isolated from E. coli BL21 cells without the plasmid using Qiagen QIAamp® DNA mini kit. Lane 5 was used to identify the correct band for genomic DNA. As shown in FIG. 31, there was no damage on DNA. As expected, with QIAprep Mini kit (Qiagen) for plasmid preparation, there was little contamination with the genomic DNA (Lane 3). Interestingly, with the method of the present invention, genomic DNA was preferentially isolated with much less contamination with plasmid DNA. In contrast, with QIAamp Mini kit for the genomic DNA isolation that uses silica-gel-membrane technology after proteinase K treatment to the bacteria, there was a lot of plasmid DNA contamination (Lane 4). This might explain why better yield for PCR amplification with DNA isolated by the method of the present invention than with DNA isolated by Qiagen kit could be obtained.
  • In the present invention, a novel method for efficient cell lysis have been developed by combining laser and micro-magnetic beads; micro magnetic-beads present in cell suspension caused rapid cell lysis when laser beam was applied to this sample, allowing bacterial cells to be disrupted in a few seconds. Most importantly, DNAs released from cells disrupted this way was far more efficiently amplified by PCR than those from cells lyzed by other two conventional means, indicating that the release of a substance(s) during cell lysis that interferes with amplification of DNA is minimal compared to other methods. The easiness, efficient cell lysis and release of DNA render a new cell lysis method well-suited to be integrated into LOC application.
  • As described above, according to the method of the present invention, rapid cell lysis within 40 seconds is possible, an apparatus for the disruption of cells or viruses can be miniaturized using a laser diode, a DNA purification step can be directly performed after a disruption of cells or viruses, and a solution containing DNA can be transferred to a subsequent step after cell debris and magnetic beads to which inhibitors of a subsequent reaction are attached are removed with an electromagnet. In addition, by means of the cell lysis chip of the present invention, an evaporation problem is solved, vibrations can be efficiently transferred to cells through magnetic beads, a microfluidics problem on a rough surface is solved by hydrophobically treating the inner surface of the chip, and the cell lysis chip can be applied to LOC.
  • The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. The terms “a” and “an” do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item. The term “or” means “and/or”. The terms “comprising”, “having”, “including”, and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to”).
  • Recitation of ranges of values are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. The endpoints of all ranges are included within the range and independently combinable.
  • All methods described herein can be performed in a suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”), is intended merely to better illustrate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention as used herein. Unless defined otherwise, technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs.
  • Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.

Claims (13)

1. A method of disrupting cells or viruses, the method comprising:
(i) mixing beads with a solution containing cells or viruses;
(ii) vibrating the beads; and
(iii) irradiating the beads to heat and disrupt the cells or viruses.
2. The method of claim 1, wherein vibrating the beads is performed by a vibrator, the vibrator is a sonicator, a vibrator using a magnetic field, a vibrator using an electric field, a mechanical vibrator, or a piezoelectric material.
3. The method of claim 2, wherein the mechanical vibrator has as an axis a body supporting a chamber which contains the mixture, and the mechanical vibrator moves the body clockwise and counterclockwise repeatedly in an angular motion around the axis.
4. The method of claim 3, wherein the beads are magnetic beads.
5. The method of claim 1, wherein the irradiation is conducted with a laser; the laser being a pulse laser having a power of 1 mJ/pulse or more or a continuous wave (CW) laser having a power of 10 mW or more.
6. The method of claim 1, wherein the irradiation is at a wavelength of 400 nm or more.
7. An apparatus for disruption of cells or viruses comprising:
(i) a member for receiving a cell lysis chamber, wherein the cell lysis chamber is for receiving a mixture of beads and a solution containing cells or viruses;
(ii) a vibrator connected to the member for vibrating the beads in the cell lysis chamber; and
(iii) a laser generator for supplying a laser to the cell lysis chamber.
8. The apparatus of claim 7, wherein the vibrator is a sonicator, a vibrator using a magnetic field, a vibrator using an electric field, a mechanical vibrator, or a piezoelectric material.
9. The apparatus of claim 8, wherein the mechanical vibrator is a rotating motor which takes a body supporting the cell lysis chamber as an axis, and moves in an angular motion clockwise and counterclockwise repeatedly around the axis.
10. The apparatus of claim 7, wherein the beads are magnetic beads.
11. The apparatus of claim 7, wherein the laser generator is a pulse laser having a power of 1 mJ/pulse or more or a continuous wave (CW) laser having a power of 10 mW or more.
12. The apparatus of claim 7, wherein the laser is generated in the wavelength range of 400 nm or more.
13. The apparatus of claim 7, wherein the cell lysis chamber is a construct within a disk-shaped plate and the cell lysis chamber is connected to an inlet and an outlet through a channel.
US12/031,947 2004-10-19 2008-02-15 Method and apparatus for the rapid disruption of cells or viruses using micro beads and laser Abandoned US20080199930A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/031,947 US20080199930A1 (en) 2004-10-19 2008-02-15 Method and apparatus for the rapid disruption of cells or viruses using micro beads and laser

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20040083586 2004-10-19
KR10-2004-0083586 2004-10-19
KR1020050038988A KR20060046032A (en) 2004-10-19 2005-05-10 Method and apparatus for the rapid disruption of cells or viruses using laser and micro magnetic beads
KR10-2005-0038988 2005-05-10
KR10-2005-078886 2005-08-26
KR1020050078886A KR100695160B1 (en) 2004-10-19 2005-08-26 Method and apparatus for the rapid disruption of cells or viruses using LASER and micro magnetic beads
US11/253,541 US7855069B2 (en) 2004-10-19 2005-10-19 Method and apparatus for the rapid disruption of cells or viruses using micro magnetic beads and laser
US12/031,947 US20080199930A1 (en) 2004-10-19 2008-02-15 Method and apparatus for the rapid disruption of cells or viruses using micro beads and laser

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/253,541 Continuation US7855069B2 (en) 2004-10-19 2005-10-19 Method and apparatus for the rapid disruption of cells or viruses using micro magnetic beads and laser

Publications (1)

Publication Number Publication Date
US20080199930A1 true US20080199930A1 (en) 2008-08-21

Family

ID=35709345

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/253,541 Active 2026-11-20 US7855069B2 (en) 2004-10-19 2005-10-19 Method and apparatus for the rapid disruption of cells or viruses using micro magnetic beads and laser
US12/031,947 Abandoned US20080199930A1 (en) 2004-10-19 2008-02-15 Method and apparatus for the rapid disruption of cells or viruses using micro beads and laser

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/253,541 Active 2026-11-20 US7855069B2 (en) 2004-10-19 2005-10-19 Method and apparatus for the rapid disruption of cells or viruses using micro magnetic beads and laser

Country Status (3)

Country Link
US (2) US7855069B2 (en)
EP (1) EP1650297B1 (en)
JP (1) JP4354447B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080269388A1 (en) * 2005-03-17 2008-10-30 Markovich Ronald P Cap Liners, Closures, and Gaskets from Multi-Block Polymers
US20110111987A1 (en) * 2009-10-19 2011-05-12 Jonathan Siegrist Centrifugal microfluidic system for nucleic acid sample preparation, amplification, and detection
US20110121196A1 (en) * 2009-11-20 2011-05-26 Samsung Electronics Co., Ltd. Microfluidic device, light irradiation apparatus, micorfluidic system comprising the same and method for driving the system
US20110262919A1 (en) * 2008-12-25 2011-10-27 Hideji Tajima Method for pretreating specimen and method for assaying biological substance
US20130115135A1 (en) * 2008-10-01 2013-05-09 Samsung Electronics Co., Ltd. Centrifugal-based microfluidic apparatus, method of fabricating the same, and method of testing samples using the microfluidic apparatus
US8859272B2 (en) * 2010-10-29 2014-10-14 Samsung Electronics, Ltd. Micro-device and methods for disrupting cells
US8986986B2 (en) 2010-10-29 2015-03-24 Samsung Electronics Co., Ltd. Cell lysis device and methods of lysing cells or viruses
US9062342B2 (en) 2012-03-16 2015-06-23 Stat-Diagnostica & Innovation, S.L. Test cartridge with integrated transfer module
US20150179900A1 (en) * 2009-09-23 2015-06-25 Nanoco Technologies Ltd. Semiconductor Nanoparticle-Based Materials
CN105784570A (en) * 2016-04-21 2016-07-20 大连海事大学 Online particle detection device and method based on microfluidic chip
US10221443B2 (en) 2013-09-27 2019-03-05 Arizona Board Of Regents On Behalf Of Arizona State University System and method for laser lysis
US11135583B2 (en) * 2015-10-13 2021-10-05 University Of Virginia Patent Foundation Devices and methods for extraction, separation and thermocycling
US11293919B2 (en) * 2019-12-13 2022-04-05 Autonomous Medical Devices Inc. Apparatus and method for overcoming minimal mass sensitivity limitations in a shear horizontal surface acoustic wave biosensor

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100601972B1 (en) 2004-11-03 2006-07-18 삼성전자주식회사 Apparatus and method for the purification of nucleic acids by phase separation using Laser and beads
KR100601974B1 (en) * 2004-11-25 2006-07-18 삼성전자주식회사 Apparatus and method for the purification of nucleic acids by different laser absorption of beads
KR100700093B1 (en) * 2005-09-23 2007-03-28 삼성전자주식회사 Apparatus for lysing cells or viruses using LASER and magnetic beads
KR101157174B1 (en) * 2005-11-24 2012-06-20 삼성전자주식회사 Method and apparatus for rapidly lysing cells or virus
KR100754399B1 (en) * 2006-04-05 2007-08-31 삼성전자주식회사 Method and apparatus for disrupting cells and purifying nucleic acids using one chamber
KR100829585B1 (en) * 2006-04-07 2008-05-14 삼성전자주식회사 Method and apparatus for target cell separation and rapid nucleic acids isolation
US20100216657A1 (en) * 2006-05-16 2010-08-26 Arcxis Biotechnologies, Inc. Pcr-free sample preparation and detection systems for high speed biologic analysis and identification
KR100790880B1 (en) * 2006-07-05 2008-01-02 삼성전자주식회사 A microfluidic device comprising a microchannel or microchamber bonded to a hydrophobic porous polymer having a magnetic bead therewihin at the wall thereof and method of using the same
US8273310B2 (en) * 2006-09-05 2012-09-25 Samsung Electronics Co., Ltd. Centrifugal force-based microfluidic device for nucleic acid extraction and microfluidic system including the microfluidic device
KR100862660B1 (en) 2006-09-25 2008-10-10 삼성전자주식회사 Method and apparatus for isolating and purifying nucleic acid by single bead
KR100763925B1 (en) 2006-09-29 2007-10-05 삼성전자주식회사 Method and apparatus for isolating nucleic aicd from cells or viruses using carbon nanotube and silica bead
EP2089410A4 (en) * 2006-10-11 2011-08-03 Arcxis Biotechnologies Inc Disposable micropurification cards, methods, and systems thereof
US8338166B2 (en) * 2007-01-04 2012-12-25 Lawrence Livermore National Security, Llc Sorting, amplification, detection, and identification of nucleic acid subsequences in a complex mixture
WO2008104916A2 (en) * 2007-02-27 2008-09-04 Koninklijke Philips Electronics N.V. A cell lysis and/or mixing device
WO2008114025A1 (en) 2007-03-21 2008-09-25 University Of The West Of England, Bristol Particle facilitated testing
EP2149610B1 (en) * 2007-03-26 2018-05-16 Fundacion Gaiker Device for detecting genetic material by means of polymerase chain reaction
TWI580778B (en) 2007-06-19 2017-05-01 再生海藻能源公司 Process for microalgae conditioning and concentration
US10125388B2 (en) 2007-10-31 2018-11-13 Akonni Biosystems, Inc. Integrated sample processing system
KR20090074397A (en) * 2008-01-02 2009-07-07 삼성전자주식회사 Microfluidic device and fabricating method of the same
US8367976B2 (en) * 2008-03-21 2013-02-05 Lawrence Livermore National Security, Llc Laser heating of aqueous samples on a micro-optical-electro-mechanical system
DE102009007230A1 (en) * 2009-02-03 2010-08-12 Siemens Aktiengesellschaft Measurement cell for use in biochemical analytics application, for detecting e.g. bacteria in aqueous medium, has side wall element including flexible silicone foil that provides sealing to sensor chip and cover
JP5625269B2 (en) * 2009-06-25 2014-11-19 大日本印刷株式会社 Cell observation sample stand kit, cell observation sample stand, and method for manufacturing cell observation sample stand
AT508394B1 (en) * 2009-07-06 2011-12-15 Mayer Robert DEVICE AND METHOD FOR THE APPLICATION OF RINGSTROMINDUCTION MODULATED BY MAGNETIC FIELD VARIATION IN ELECTRICALLY CONDUCTIVE NANO PARTICLES FOR MECHANICAL IMPACT ON CELLULAR MEMBRANES
CA3041540C (en) 2009-09-21 2021-08-24 Bio-Rad Laboratories, Inc. Magnetic lysis method and device
KR101155085B1 (en) * 2009-12-18 2012-06-11 광주과학기술원 Device for cell lysis and method for producing the same
GB201009998D0 (en) * 2010-06-15 2010-07-21 Bg Res Cell disruption
JP5931347B2 (en) * 2011-04-12 2016-06-08 株式会社東芝 Automatic analyzer
WO2013147233A1 (en) * 2012-03-30 2013-10-03 国立大学法人岡山大学 Method for producing reagent for antibody detection and use thereof
SG194247A1 (en) * 2012-04-16 2013-11-29 Biofactory Pte Ltd Method and apparatus for cell disruption
LT6018B (en) * 2012-08-13 2014-04-25 Uab "Unera" The method and system of algae cell disturbance and isolation of bioproduts
DE102013203655B4 (en) * 2013-03-04 2023-03-23 Robert Bosch Gmbh Method and device for the selective lysis of cellular particles
JP6884562B2 (en) * 2016-11-30 2021-06-09 シスメックス株式会社 Specimen processing method and sample processing equipment
US10610843B2 (en) 2017-11-28 2020-04-07 Talis Biomedical Corporation Magnetic mixing apparatus
EP3980349A4 (en) * 2019-06-05 2023-07-12 Viome Life Sciences, Inc. Sample collection methods and devices
US10820847B1 (en) 2019-08-15 2020-11-03 Talis Biomedical Corporation Diagnostic system
TWI806062B (en) * 2021-06-07 2023-06-21 新加坡商克雷多生醫有限公司 Method and device for opening the external layer structure of cells using laser

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234809A (en) * 1989-03-23 1993-08-10 Akzo N.V. Process for isolating nucleic acid
US5403710A (en) * 1989-10-12 1995-04-04 Amoco Corporation Nucleic acid probes and methods for detecting pathogenic candida yeasts
US5705628A (en) * 1994-09-20 1998-01-06 Whitehead Institute For Biomedical Research DNA purification and isolation using magnetic particles
US5942425A (en) * 1996-03-12 1999-08-24 Walters; Adriann H. Method to access nucleic acids from cells
US6156576A (en) * 1998-03-06 2000-12-05 The Regents Of The University Of California Fast controllable laser lysis of cells for analysis
US6335201B1 (en) * 1998-03-06 2002-01-01 The Regents Of The University Of California Method and apparatus for detecting enzymatic activity using molecules that change electrophoretic mobility
US20020039783A1 (en) * 1998-12-24 2002-04-04 Cepheid Device and method for lysing cells, spores, or microorganisms
US6368800B1 (en) * 1997-01-21 2002-04-09 Promega Corporation Kits for isolating biological target materials using silica magnetic particles
US6428811B1 (en) * 1998-03-11 2002-08-06 Wm. Marsh Rice University Temperature-sensitive polymer/nanoshell composites for photothermally modulated drug delivery
US6465225B1 (en) * 1998-06-29 2002-10-15 Evotec Oai Ag Method and device for manipulating particles in microsystems
US20030003464A1 (en) * 2000-11-27 2003-01-02 Phan Brigitte C. Dual bead assays including optical biodiscs and methods relating thereto
US20030095897A1 (en) * 2001-08-31 2003-05-22 Grate Jay W. Flow-controlled magnetic particle manipulation
US20030096429A1 (en) * 2001-11-16 2003-05-22 Cornell Research Foundation, Inc. Laser-induced cell lysis system
WO2003046511A2 (en) * 2001-11-27 2003-06-05 Burstein Technologies, Inc. Magneto-optical bio-discs and systems including related methods
US6613525B2 (en) * 1996-07-30 2003-09-02 Aclara Biosciences, Inc. Microfluidic apparatus and method for purification and processing
US20030180993A1 (en) * 2002-03-20 2003-09-25 Taiwan Semiconductor Manufacturing Co., Ltd. Effective MIM fabrication method and apparatus to avoid breakdown and leakage on damascene copper process
US6685730B2 (en) * 2001-09-26 2004-02-03 Rice University Optically-absorbing nanoparticles for enhanced tissue repair
US20040058423A1 (en) * 2002-05-03 2004-03-25 Nancy Albritton Fast electrical lysis of cells and rapid collection of the contents thereof using capillary electrophoresis
US6739531B2 (en) * 2001-10-04 2004-05-25 Cepheid Apparatus and method for rapid disruption of cells or viruses
US20040137644A1 (en) * 2002-08-28 2004-07-15 Kimon Angelides Screening for cell-targeting ligands attached to metal nanoshells for use in target-cell killing
US20060094051A1 (en) * 2004-11-03 2006-05-04 Jeong-Gun Lee Apparatus and method for purification of nucleic acids by phase separation using laser and beads
US20060110725A1 (en) * 2004-11-25 2006-05-25 Jeong-Gun Lee Apparatus for and method of purifying nucleic acids by different laser absorption of beads
US20060188876A1 (en) * 2002-07-01 2006-08-24 Sinvent Ventures A S Binding a target substance
US7192560B2 (en) * 2001-12-20 2007-03-20 3M Innovative Properties Company Methods and devices for removal of organic molecules from biological mixtures using anion exchange

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5856174A (en) * 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
US5863502A (en) * 1996-01-24 1999-01-26 Sarnoff Corporation Parallel reaction cassette and associated devices
US6914137B2 (en) * 1997-12-06 2005-07-05 Dna Research Innovations Limited Isolation of nucleic acids
JP2000029541A (en) 1998-07-15 2000-01-28 Hitachi Ltd Temperature controller
WO2000073413A2 (en) * 1999-05-28 2000-12-07 Cepheid Apparatus and method for cell disruption
JP4190223B2 (en) 2002-07-19 2008-12-03 照剛 上野 Cell disruption device, cell disruption method, treatment device, and selective separation method of cell components

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234809A (en) * 1989-03-23 1993-08-10 Akzo N.V. Process for isolating nucleic acid
US5403710A (en) * 1989-10-12 1995-04-04 Amoco Corporation Nucleic acid probes and methods for detecting pathogenic candida yeasts
US5705628A (en) * 1994-09-20 1998-01-06 Whitehead Institute For Biomedical Research DNA purification and isolation using magnetic particles
US5942425A (en) * 1996-03-12 1999-08-24 Walters; Adriann H. Method to access nucleic acids from cells
US6613525B2 (en) * 1996-07-30 2003-09-02 Aclara Biosciences, Inc. Microfluidic apparatus and method for purification and processing
US6368800B1 (en) * 1997-01-21 2002-04-09 Promega Corporation Kits for isolating biological target materials using silica magnetic particles
US6156576A (en) * 1998-03-06 2000-12-05 The Regents Of The University Of California Fast controllable laser lysis of cells for analysis
US6335201B1 (en) * 1998-03-06 2002-01-01 The Regents Of The University Of California Method and apparatus for detecting enzymatic activity using molecules that change electrophoretic mobility
US6428811B1 (en) * 1998-03-11 2002-08-06 Wm. Marsh Rice University Temperature-sensitive polymer/nanoshell composites for photothermally modulated drug delivery
US6465225B1 (en) * 1998-06-29 2002-10-15 Evotec Oai Ag Method and device for manipulating particles in microsystems
US20020039783A1 (en) * 1998-12-24 2002-04-04 Cepheid Device and method for lysing cells, spores, or microorganisms
US20030003464A1 (en) * 2000-11-27 2003-01-02 Phan Brigitte C. Dual bead assays including optical biodiscs and methods relating thereto
US20030095897A1 (en) * 2001-08-31 2003-05-22 Grate Jay W. Flow-controlled magnetic particle manipulation
US6685730B2 (en) * 2001-09-26 2004-02-03 Rice University Optically-absorbing nanoparticles for enhanced tissue repair
US6739531B2 (en) * 2001-10-04 2004-05-25 Cepheid Apparatus and method for rapid disruption of cells or viruses
US20030096429A1 (en) * 2001-11-16 2003-05-22 Cornell Research Foundation, Inc. Laser-induced cell lysis system
WO2003046511A2 (en) * 2001-11-27 2003-06-05 Burstein Technologies, Inc. Magneto-optical bio-discs and systems including related methods
US7192560B2 (en) * 2001-12-20 2007-03-20 3M Innovative Properties Company Methods and devices for removal of organic molecules from biological mixtures using anion exchange
US20030180993A1 (en) * 2002-03-20 2003-09-25 Taiwan Semiconductor Manufacturing Co., Ltd. Effective MIM fabrication method and apparatus to avoid breakdown and leakage on damascene copper process
US20040058423A1 (en) * 2002-05-03 2004-03-25 Nancy Albritton Fast electrical lysis of cells and rapid collection of the contents thereof using capillary electrophoresis
US20060188876A1 (en) * 2002-07-01 2006-08-24 Sinvent Ventures A S Binding a target substance
US20040137644A1 (en) * 2002-08-28 2004-07-15 Kimon Angelides Screening for cell-targeting ligands attached to metal nanoshells for use in target-cell killing
US20060094051A1 (en) * 2004-11-03 2006-05-04 Jeong-Gun Lee Apparatus and method for purification of nucleic acids by phase separation using laser and beads
US7429470B2 (en) * 2004-11-03 2008-09-30 Samsung Electronics Co., Ltd. Method for purification of nucleic acids by phase separation using laser and beads
US20060110725A1 (en) * 2004-11-25 2006-05-25 Jeong-Gun Lee Apparatus for and method of purifying nucleic acids by different laser absorption of beads

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Pitsillides, CM et al. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophysical Journal. June 2003. 84: 4023-4032. *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080269388A1 (en) * 2005-03-17 2008-10-30 Markovich Ronald P Cap Liners, Closures, and Gaskets from Multi-Block Polymers
US20130115135A1 (en) * 2008-10-01 2013-05-09 Samsung Electronics Co., Ltd. Centrifugal-based microfluidic apparatus, method of fabricating the same, and method of testing samples using the microfluidic apparatus
US9616424B2 (en) * 2008-10-01 2017-04-11 Samsung Electronics Co., Ltd. Centrifugal-based microfluidic apparatus, method of fabricating the same, and method of testing samples using the microfluidic apparatus
US9753032B2 (en) 2008-12-25 2017-09-05 Universal Bio Research Co., Ltd. Method for pretreating specimen and method for assaying biological substance
US20110262919A1 (en) * 2008-12-25 2011-10-27 Hideji Tajima Method for pretreating specimen and method for assaying biological substance
US9182395B2 (en) * 2008-12-25 2015-11-10 Universal Bio Research Co., Ltd. Method for pretreating specimen and method for assaying biological substance
US10032964B2 (en) * 2009-09-23 2018-07-24 Nanoco Technologies Ltd. Semiconductor nanoparticle-based materials
US20150179900A1 (en) * 2009-09-23 2015-06-25 Nanoco Technologies Ltd. Semiconductor Nanoparticle-Based Materials
US8303911B2 (en) * 2009-10-19 2012-11-06 The Regents Of The University Of California Centrifugal microfluidic system for nucleic acid sample preparation, amplification, and detection
US20110111987A1 (en) * 2009-10-19 2011-05-12 Jonathan Siegrist Centrifugal microfluidic system for nucleic acid sample preparation, amplification, and detection
US20110121196A1 (en) * 2009-11-20 2011-05-26 Samsung Electronics Co., Ltd. Microfluidic device, light irradiation apparatus, micorfluidic system comprising the same and method for driving the system
US9057456B2 (en) * 2009-11-20 2015-06-16 Samsung Electronics Co., Ltd. Microfluidic device, light irradiation apparatus, micorfluidic system comprising the same and method for driving the system
US8859272B2 (en) * 2010-10-29 2014-10-14 Samsung Electronics, Ltd. Micro-device and methods for disrupting cells
US8986986B2 (en) 2010-10-29 2015-03-24 Samsung Electronics Co., Ltd. Cell lysis device and methods of lysing cells or viruses
US9334528B2 (en) 2012-03-16 2016-05-10 Stat-Diagnostica & Innovation, S.L. Test cartridge with integrated transfer module
US9757725B2 (en) 2012-03-16 2017-09-12 Stat-Diagnostica & Innovation, S.L. Test cartridge with integrated transfer module
US9914119B2 (en) 2012-03-16 2018-03-13 Stat-Diagnostica & Innovation, S.L. Test cartridge with integrated transfer module
US9062342B2 (en) 2012-03-16 2015-06-23 Stat-Diagnostica & Innovation, S.L. Test cartridge with integrated transfer module
US10221443B2 (en) 2013-09-27 2019-03-05 Arizona Board Of Regents On Behalf Of Arizona State University System and method for laser lysis
US11135583B2 (en) * 2015-10-13 2021-10-05 University Of Virginia Patent Foundation Devices and methods for extraction, separation and thermocycling
CN105784570A (en) * 2016-04-21 2016-07-20 大连海事大学 Online particle detection device and method based on microfluidic chip
US11293919B2 (en) * 2019-12-13 2022-04-05 Autonomous Medical Devices Inc. Apparatus and method for overcoming minimal mass sensitivity limitations in a shear horizontal surface acoustic wave biosensor

Also Published As

Publication number Publication date
US7855069B2 (en) 2010-12-21
EP1650297A3 (en) 2006-07-12
US20060084165A1 (en) 2006-04-20
EP1650297A2 (en) 2006-04-26
JP2006115841A (en) 2006-05-11
EP1650297B1 (en) 2011-04-13
JP4354447B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
US20080199930A1 (en) Method and apparatus for the rapid disruption of cells or viruses using micro beads and laser
Lee et al. Microchip-based one step DNA extraction and real-time PCR in one chamber for rapid pathogen identification
KR101422572B1 (en) Centrifugal force-based microfluidic device for nucleic acid detection and microfluidic system comprising the device
JP4252058B2 (en) Nucleic acid purification apparatus and nucleic acid purification method
US7959862B2 (en) Microfluidic device and method for concentration and lysis of cells or viruses
US20100255573A1 (en) Extraction and purification of biologigal cells using ultrasound
US20110127222A1 (en) Trapping magnetic cell sorting system
US20110137018A1 (en) Magnetic separation system with pre and post processing modules
US20060110725A1 (en) Apparatus for and method of purifying nucleic acids by different laser absorption of beads
JP2008167722A (en) Nucleic acid isolation method by heating on magnetic support
EP1870449B1 (en) Method of concentrating and disrupting cells or viruses
JP2008061649A (en) Centrifugal force based microflow apparatus for extracting nucleic acid and microflow system equipped with the microflow appararus
CN1818054B (en) Method and apparatus for destroying cell or virus
KR100695160B1 (en) Method and apparatus for the rapid disruption of cells or viruses using LASER and micro magnetic beads
WO2008110019A1 (en) Clinical sample preparation on a microfluidic platform

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, JEONG-GUN;KWON, YOUNG-NAM;KIM, YOUNG-A;AND OTHERS;REEL/FRAME:020913/0989

Effective date: 20080428

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION