US20080208336A1 - Spray Method For Forming Shells For Prostheses - Google Patents

Spray Method For Forming Shells For Prostheses Download PDF

Info

Publication number
US20080208336A1
US20080208336A1 US11/573,666 US57366605A US2008208336A1 US 20080208336 A1 US20080208336 A1 US 20080208336A1 US 57366605 A US57366605 A US 57366605A US 2008208336 A1 US2008208336 A1 US 2008208336A1
Authority
US
United States
Prior art keywords
mandrel
dispersion
shell
silicone
prosthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/573,666
Inventor
Keith Job
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mentor Worldwide LLC
Original Assignee
Mentor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mentor Corp filed Critical Mentor Corp
Priority to US11/573,666 priority Critical patent/US20080208336A1/en
Assigned to MENTOR CORPORATION reassignment MENTOR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOB, KEITH
Publication of US20080208336A1 publication Critical patent/US20080208336A1/en
Assigned to MENTOR WORLDWIDE LLC reassignment MENTOR WORLDWIDE LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MENTOR CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/12Mammary prostheses and implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/02Devices for expanding tissue, e.g. skin tissue

Definitions

  • This invention relates to devices that are implantable in the human body such as prostheses and tissue expanders.
  • Implantable prostheses are commonly used to replace or augment body tissue.
  • Such prostheses include a shell formed of an elastomeric material, e.g., silicone.
  • the shell is filled with filling material such as saline or some other liquid or a gel.
  • the filling of the shell commonly takes place after the shell is inserted through an incision.
  • the shell includes a valve that can accept a filling tube that passes through the incision and is used to fill the shell with a suitable liquid or gel. Once the shell is filled to the desired degree, the filling tube is removed and the incision is closed.
  • Implantable prostheses are also used more generally for restoring the normal appearance of soft tissue in various areas of the body.
  • Tissue expanders generally resemble implantable prostheses except that they include a means for adding additional liquid or gel after the device had been inserted under the skin and the incision has been closed.
  • the shell is gradually inflated using a liquid or gel, usually over a period of weeks, in order to expand the overlying skin either so that a prosthesis can later be inserted or so that skin can be generated for grafting.
  • the liquid or gel is usually introduced by means of a needle that pierces the skin and a self-seal valve that is integral to the shell or that is remote from the shell and connected to the shell by tubing.
  • Silicone shells for implantable prosthesis and tissue expanders are generally formed by dipping a suitably shaped mandrel into a silicone dispersion.
  • the mandrel is withdrawn from the dispersion and the excess silicone dispersion is allowed to drain from the mandrel.
  • After the excess dispersion has drained from the mandrel at least a portion of the solvent is allowed to evaporate to stabilize the silicone coating.
  • the process is then repeated one or more times until a shell of the desired thickness is formed. Because the flow of the silicone dispersion as it drains from the mandrel depends on the shape and orientation of the mandrel, the resulting shell can vary substantially in thickness.
  • dip casting requires a relatively large vat of silicone dispersion and because solvent evaporates from the silicone dispersion in the vat during the casting process, considerable silicone dispersion waste is created during dip casting.
  • Methods for forming the shell of a body implant are described.
  • the methods can also be used to make other articles formed from an elastomeric material (e.g., a patch for an implant) and for applying a coating of an elastomeric material (e.g., silicone) to a device to be implanted into the body (e.g., a pacemaker or implantable pump).
  • the methods entail spraying a silicone dispersion onto a mandrel or other object.
  • the silicone dispersion is sprayed using, for example, a high volume, low pressure (HVLP) spray device or a rotary atomizer or some other device that sprays the silicone dispersion at a low pressure.
  • HVLP high volume, low pressure
  • the methods described herein can be used, for example, to create an implant shell that is both thinner and more uniform in thickness than that which can be formed using traditional dip casting techniques for forming the shell of body implant.
  • the methods can be used to create a shell that varies in thickness in a controlled manner. Further, allow the production of shells having complex shapes that cannot be efficiently formed using traditional dip casting methods.
  • the methods can be used to make generally spherical, cylindrical, crescent, half moon, rectangular solids, and cubic shell as well as other shapes, including shapes having edges, corners, recessed regions and other complex geometries. Shells created by the methods of the invention have a generally smoother surface than shells created by traditional dip casting methods.
  • the method comprises: a) providing a mandrel, e.g., a mandrel that is appropriately sized and shaped for form a desired shell, such as the shell of a body implant; b) spraying a silicone dispersion onto the mandrel until a desired thickness of silicone dispersion is formed on the mandrel; c) curing the silicone dispersion to form a silicone device; and d) removing the silicone device from the mandrel.
  • the silicone dispersion comprises high temperature vulcanization (HTV) silicone
  • the silicone dispersion comprises room temperature vulcanization (RTV) silicone.
  • the method for creating a silicone shell comprises: a) providing a mandrel; b) applying a coating silicone dispersion to the mandrel by spraying the silicon dispersion at low pressure; c) allowing evaporation of at least a portion of the solvent in the coating silicone dispersion; d) repeating steps b) and c) until a silicone shell having a desired thickness is formed; e) at least partially curing the silicone shell; and f) removing the silicone shell from the mandrel.
  • the method further comprising applying a coat of silicone dispersion to a portion of the mandrel to create a partial coat of dispersion;
  • the mandrel includes an anterior surface and a posterior surface that meet at a perimeter region;
  • the partial coat of dispersion is applied to the perimeter region of the mandrel;
  • the mandrel has at least one relatively planar region and at least on region that is curved;
  • the partial coat of dispersion is applied to the at least one region that is curved;
  • the mandrel has a first region having a first radius of curvature and a second region having a second smaller radius of curvature;
  • the region having the partial coat of dispersion is applied to the region having a second, smaller radius of curvature; and at least one partial coat of dispersion is applied to at least a first portion of the mandrel.
  • the invention also features a shell for a tissue expander formed by above-described method and a shell for an implantable prosthesis made by the above-described method.
  • the invention also features a prosthesis formed by a method comprising providing a shell formed by the above-described method and sealing the shell or sealing the shell while providing the shell with a filling port.
  • the silicone dispersion comprises 20-70% silicone solids, 20-60% silicone solids, 20-50% silicone solids, 25-45% silicone solids, 28-40% silicone solids, 28-39% silicone solids, 28-38% silicone solids, 28-36% silicone solids, or 28-34% silicone solids.
  • the RTV dispersion contains 308-35% solids, preferably 31%+/ ⁇ 3% silicone solids, 31%+/ ⁇ 2% silicone solids, or 31%+/ ⁇ 1% silicone solids.
  • the dispersion contains xylene or another suitable solvent.
  • the silicone dispersion comprises 20-70% silicone solids, 20-60% silicone solids, 20-50% silicone solids, 25-45% silicone solids, 30-38% silicone solids, or 32-36% silicone solids.
  • the HTV dispersion contains 34% +/ ⁇ 3% silicone solids, 34%+/ ⁇ 2% silicone solids, or 34%+/ ⁇ 1% silicone solids.
  • the dispersion contains xylene or another suitable solvent.
  • the shell is formed of RTV silicone in some embodiments and is formed using a dispersion having a viscosity of 700 to 820 centipoise.
  • the shell is formed of HTV silicone in some embodiments and is formed using a dispersion having a viscosity of 500 to 600 centipoise.
  • the invention also features a silicone device formed by: a) providing a mandrel; b) spraying a silicone dispersion onto the mandrel until a coating of the desired thickness is formed on the mandrel; c) curing the coating of silicone dispersion on; and d) removing the silicone device from the mandrel.
  • the method can be used to form an HTV silicone shell with a thickness of: 0.013′′ ⁇ 0.007′′, ⁇ 0.006′′, ⁇ 0.005′′, ⁇ 0.004′′, ⁇ 0.003′′, ⁇ 0.0025′′ or ⁇ 0.002′′; 0.012′′ ⁇ 0.007′′, ⁇ 0.006′′, ⁇ 0.005′′, ⁇ 0.004′′, ⁇ 0.003′′, ⁇ 0.0025′′ or ⁇ 0.002′′; 0.011′′ ⁇ 0.007′′, ⁇ 0.006′′, ⁇ 0.005′′, ⁇ 0.004′′, ⁇ 0.003′′, ⁇ 0.0025′′ or ⁇ 0.002′′; 0.010′′ ⁇ 0.007′′, ⁇ 0.006′′, ⁇ 0.005′′, ⁇ 0.004′′, ⁇ 0.003′′, ⁇ 0.0025′′ or ⁇ 0.002′′; or 0.009′′ ⁇ 0.007′′, 0.006′′, ⁇ 0.005′′, ⁇ 0.004′′, ⁇ 0.003′′, ⁇ 0.0025′′ or ⁇ 0.002′′.
  • the method is used to create a first
  • the method of the invention is used to form an RTV shell with a thickness of: 0.015′′ ⁇ 0.007′′, ⁇ 0.006′′, ⁇ 0.005′′, ⁇ 0.004′′, ⁇ 0.003′′, ⁇ 0.0025′′ or ⁇ 0.002′′; 0.014′′ ⁇ 0.007′′, ⁇ 0.006′′, ⁇ 0.005′′, ⁇ 0.004′′, ⁇ 0.003′′, ⁇ 0.0025′′ or ⁇ 0.002′′; 0.013′′ ⁇ 0.007′′, ⁇ 0.006′′, ⁇ 0.005′′, ⁇ 0.004′′, ⁇ 0.003′′, ⁇ 0.0025′′ or ⁇ 0.002′′; 0.012′′ ⁇ 0.007′′, ⁇ 0.006′′, ⁇ 0.005′′, ⁇ 0.004′′, ⁇ 0.003′′, ⁇ 0.0025′′ or ⁇ 0.002′′; 0.011′′ ⁇ 0.007′′, ⁇ 0.006′′, ⁇ 0.005′′, ⁇ 0.004′′, ⁇ 0.003′′, ⁇ 0.0025′′ or ⁇ 0.002′′; 0.010′′ ⁇ 0.007′′,
  • the mandrel is sprayed with 3, 4, 5, 6, 7 or more coats of silicone dispersion.
  • solvent is allowed to evaporate from the dispersion for 1, 2, 3, 4, 5, 10, 15, 20 or more minutes between coats.
  • the mandrel is rotated during application of the one or more coats of silicone dispersion.
  • the first coat of dispersion on the mandrel contains less dispersion than subsequent coats.
  • the first coat is formed by two passes of the spray head over each portion of the mandrel and subsequent coats are formed by three passes of the spray head over each portion of the mandrel.
  • the first coat contains less material that subsequent coats and is generally thinner than subsequent coats.
  • the mandrel is appropriately sized and shaped for forming an implantable prosthesis; the mandrel is appropriately sized and shaped for forming an implantable mammary prosthesis; the mandrel is appropriately sized and shaped for forming a tissue expander; the mandrel is and shaped for forming a round body implant; the mandrel is shaped for forming a crescent-shaped body implant; the mandrel is appropriately sized and shaped for forming an oval body implant.
  • a prosthesis formed by a method comprising: a) providing a mandrel that is appropriately sized and shaped for forming a body implant; b) applying a coating silicone dispersion to the mandrel by spraying the silicone dispersion at low pressure; c) allowing evaporation of at least a portion of the solvent in the coating silicone dispersion; d) repeating steps b) and c) until a silicone shell having a desired thickness is formed; e) at least partially curing the silicone shell; f) removing the silicone shell from the mandrel; and g) applying a seal to the shell.
  • the shell is shaped and sized for use as a mammary prosthesis.
  • tissue expander formed by a method comprising: a) providing a mandrel that is appropriately sized and shaped for forming a body implant; b) applying a coating silicone dispersion to the mandrel by spraying the silicon dispersion at low pressure; c) allowing evaporation of at least a portion of the solvent in the coating silicone dispersion; d) repeating steps b) and c) until a silicone shell having a desired thickness is formed; e) at least partially curing the silicone shell; f) removing the silicone shell from the mandrel; g) providing the shell with a filling port; and h) sealing the shell.
  • the mandrel is appropriately sized and shaped for forming an implantable prosthesis; the mandrel is appropriately sized and shaped for forming an implantable mammary prosthesis; the mandrel is appropriately sized and shaped for forming a tissue expander; is appropriately sized and shaped for forming a round body implant; the mandrel is appropriately sized and shaped for forming a crescent-shaped body implant; the mandrel is appropriately sized and shaped for forming an oval body implant; the mandrel is appropriately sized and shaped for forming a testicular implant; the shell is shaped and sized for use as a mammary tissue expander.
  • the method for forming a prosthesis can further include: filling the prosthesis with a liquid; filling the prosthesis with a gel; filling the prosthesis with a saline solution and filling the prosthesis with silicone filler.
  • FIG. 1 is a plan view of the anterior face of the shell of a mammary prosthesis.
  • FIG. 2 is schematic drawing of a cross-section of the shell of a mammary prosthesis taken along A-A′ in FIG. 1 .
  • a silicone article e.g., a shell for soft tissue prostheses.
  • the methods entail spraying a silicone dispersion onto a suitably shaped mandrel or an object to be coated using, for example, a high volume, low pressure (HVLP) spray device or a rotary atomizer.
  • HVLP high volume, low pressure
  • the methods of the invention allow one to control the thickness of shell, permitting the creation of shells that are of a uniform thickness as well as shells that vary in thickness in a controlled manner.
  • the spraying of the silicone dispersion can be accomplished using HVLP systems.
  • the spraying can be accomplished by atomizing the dispersion using relatively low pressure air.
  • the spraying can also be accomplished by rotary atomization.
  • rotary atomization the dispersion is feed to a cone or bell spinning at, e.g., 10,000-40,000 RPM.
  • the dispersion is feed to the cone or bell at low pressure (e.g., the dispersion pressure is at or below 30 psi, below 20 psi, 10 ⁇ 4 psi or between 0.1 and 10 psi).
  • Rotary atomization forms a very smooth, uniform layer of silicone that has very few pits or other imperfections.
  • Rotary atomizers are described well known in the art (see, e.g., U.S. Pat. Nos. 5,633,306 and 4,887,770). Rotary atomizers are available from Ransburg Corporation (Toledo, Ohio) and other suppliers.
  • the spray head (cone or bell) of a rotary atomizer can be controlled by a programmable computer so that the spray head makes the same number of passes over all portions of the mandrel or so that the spray head makes more passes over some portions of the mandrel than other portions.
  • a shell is formed by first dipping a mandrel into a silicone dispersion. Once the mandrel is removed from the dispersion, excess dispersion is allowed to drain from the mandrel. Solvent is allowed to evaporate from the coating of silicone dispersion remaining on the mandrel until the coating is sufficiently stabilized to allow the mandrel to be dipped into the dispersion again. This process is repeated until a shell of the desired thickness is created. Because the flow of the silicone dispersion as it drains from the mandrel depends on the shape and orientation of the mandrel, the resulting shell can vary substantially in thickness.
  • the thickness of the shell of a mammary prosthesis formed by dip casting might vary from 0.009 to 0.024′′ from one region to another, a variation of more than 100%.
  • the thickness of the various regions of the shell is dictated for the most part by the shape of the mandrel and the orientation of the mandrel during the period that the silicone dispersion is draining from the mandrel.
  • FIG. 1 is a plan view of a mammary prosthesis.
  • the anterior face 100 is the outward face when the prosthesis is inserted under the skin of a patient's chest.
  • the prosthesis includes an upper pole region 120 (i.e., the upper half of the shell when the prosthesis recipient is standing) and a lower pole region 130 (i.e., the lower half of the shell when the prosthesis recipient is standing).
  • the region 135 where the anterior face 100 meets the posterior face (not shown) is sometime referred to as the radius, perimeter or edge
  • FIG. 2 is a cross-sectional view of a mammary prosthesis taken along A-A′ in FIG. 1 .
  • This type of shell has a shape that resembles that of a human breast in that it is fuller in the lower portion than in the upper portion.
  • the shell has an anterior face region 100 , a posterior face region 110 (i.e., the face placed against the patient's chest wall when the prosthesis is implanted), an upper pole region 120 and a lower pole region.
  • the region where the posterior and anterior face or surface meet 135 is relatively curved compared to the posterior face and to some extent even the anterior face.
  • the radius of curvature of the perimeter in the upper pole region is relatively small.
  • the radius of curvature of the perimeter in the lower pole region is larger.
  • the shell depicted in FIG. 2 has a shape that more closely resembles the human breast than other types of shells, e.g., shells that are symmetrically dome shaped.
  • the mandrel In dip casting the mandrel is held such that the portion corresponding to the anterior face of the shell faces downward.
  • the bracket or rod used to hold the mandrel as it is dipped into the dispersion extends outward from that portion of the mandrel corresponding to the posterior face of the shell.
  • dispersion drains from the mandrel after it is withdrawn from the dispersion it can be appreciated that it drains relatively rapidly from the perimeter region.
  • the shell in the perimeter region tends to be thinner than the shell in the anterior face region. For this reason, additional dips are required to create an adequate shell thickness in the perimeter region. This can result in shell that is thicker than desired in the anterior face region.
  • the posterior face region is generally thicker than the shell anterior face region and can be thicker than desired.
  • the radius of curvature in upper pole transition region 180 between the anterior face region 100 and posterior face region 110 is quite small. It can be desirable for the shell in this region to be thicker than, for example, the anterior face region 100 , which should be relatively thin to preserve a natural appearance when implanted in a patient.
  • the method of the invention allows for creating a thicker shell in upper pole perimeter or radius region while maintaining a thinner shell in other regions, e.g., the anterior face region 100 by simply controlling the spray head to apply additional coats of silicone dispersion in the upper pole perimeter or radius region.
  • the methods of the invention can be used to create a shell for a mammary implant or other that varies in thickness from, e.g., 0.009′′ ⁇ 0.003′′ on the faces (e.g., the anterior and posterior faces) to 0.024′′ ⁇ 0.003 on the edges or comers where two or more faces meet.
  • the method can also be used to create shells with greater variation in thickness.
  • the methods of the invention can also be used to create shells that vary in diameter in a controlled manner, i.e., a manner that is not dictated by the shape of the mandrel.
  • a silicone dispersion is applied to a mandrel using a robotically controlled rotary atomizer spray head.
  • the rotary atomizer can operate electrostatically, wherein there is a difference in electrical potential between the silicone and the mandrel. For example, a charge can be applied to the dispersion and the mandrel can be grounded, such that the atomized silicone dispersion is attracted through electrical forces to the mandrel.
  • the spray head makes one or more (e.g., 1, 2, 3, 4, 5, or more) passes over an area of the mandrel to apply one coat of silicone to the entire mandrel or desired portion thereof.
  • the spray head or the mandrel or both can be moved during the application of a coat of silicone dispersion.
  • a number of coats are applied depending on various factors such as the type of silicone used (HTV or RTV), the percent of silicone solids in the dispersion, and the desired thickness of the shell. Between the application of each coat of silicone dispersion solvent is allowed to evaporate so that the coat of silicone dispersion is at least somewhat stabilized prior to the application of the next coat of silicone dispersion. Thus, there is an interval of several minutes (e.g., 2, 3, 4, 5, 6, 10, 12, 15, 20. 25 minutes or more) between the application of one coat of dispersion (which may require 1, 2, 3, 4 or more passes of the spray head over all or a portion of the mandrel) and the next coat of dispersion.
  • HTV type of silicone used
  • RTV percent of silicone solids in the dispersion
  • desired thickness of the shell Between the application of each coat of silicone dispersion solvent is allowed to evaporate so that the coat of silicone dispersion is at least somewhat stabilized prior to the application of the next coat of silicone dispersion. Thus, there is an interval of several minutes (e.g
  • each coat applied is quite uniform in thickness, i.e., it is not significantly thicker in the posterior face region than it is in the anterior face region.
  • some portions of the mandrel can receive more coats of dispersion than other portions of the mandrel.
  • the perimeter region can receive more coats of dispersion than the anterior face.
  • the mandrel can be desirable to apply more coats of silicone dispersion to some portions of the mandrel than other portions.
  • a partial coat of dispersion i.e. a coat that does not cover the entire mandrel, but instead covers only a portion of the mandrel.
  • Additional partial coats can be applied to the mandrel so that one or more portions of the mandrel have 1, 2, 3, 4 or more additional coats of dispersion compared to other portions of the mandrel.
  • additional partial coats can be applied to two or more different regions of the mandrel.
  • the entire mandrel can receive a total 4 coats of dispersion, one portion can receive a total of 5 coats of dispersion and yet another portion can receive a total of 6 coats of dispersion.
  • silicone dispersion having a defined percent solids so that the thickness of the layer of silicone dispersion applied in each coat is relatively predictable. This is in contrast to traditional dip casting methods in which it is desirable to use a silicone dispersion having a defined viscosity.
  • a silicone dispersion having a defined viscosity is desirable in dip casting because the formation of the shell is highly dependent on the bulk flow characteristics of the silicone dispersion. In many instances the relationship between viscosity and percent solids is not predictable. Thus, for shells produced by spray techniques it is desirable to use a dispersion with a defined percent solids rather than a defined viscosity.
  • An appropriately shaped mandrel for forming the shell of a mammary prosthesis is arranged approximately 3′′ to 6′′ inches from a robotically controlled spray head of rotary atomizer spray device (e.g., the Aerobell RMA-101; ITW Ransburg, Inc.; Toledo Ohio).
  • the mandrel is arranged so that the portion of the mandrel corresponding to the posterior face of the shell is facing downward.
  • the mandrel is held on a rod that extends from the downward facing portion of the mandrel and this rod is arranged so as to allow the mandrel to be rotated on the axis of the rod.
  • the mandrel and the spray head are contained in a cabinet where the air temperature is held at 90° F. ⁇ 10° F.
  • a RTV silicone dispersion having 31% ( ⁇ 2%) solids in a xylene dispersion is applied to the mandrel using a spray head that travels in an arc from above the mandrel (90° above the horizontal) to below the mandrel (90° below horizontal) completing one pass from above the mandrel (the portion of the mandrel corresponding to the anterior face of the shell) to below the mandrel (the portion of the mandrel corresponding to the posterior face of the shell) in about 5 seconds as the mandrel is rotated at about 20 rpm.
  • the spray head is supplied by a 3 ⁇ 8′′ diameter supply line and the dispersion is pumped through the line at 8-20 p.s.i.
  • the dispersion can be electrically charged and the mandrel grounded in order to electrostatically attract the silicone dispersion to the mandrel.
  • RTV silicone dispersion is not particularly conductive, similar results can be achieved with and without charging the dispersion.
  • the spray head travels from above the mandrel to below the mandrel and returns to above the mandrel during which time the mandrel rotates about 5 full revolutions. The application of a single coat of dispersion takes about 15 seconds.
  • Solvent is allowed to evaporate from the silicone dispersion coated on the mandrel for 10 to 20 minutes in a devolatilization step. This process is repeated so that 4 to 5 additional coats of dispersion are applied in the same manner with a devolatilization step occurring between each coat.
  • the final thickness of the shell is 0.014′′ ⁇ 0.002′′.
  • the process can be automated by mounting a number of mandrels on a track that passes the mandrels by the spray head. The spray head can move with the line or the line can pause with a mandrel positioned near the spray head.
  • the shell is cured by placing the coated mandrel in an oven set to 150° F. for at least 20 to 30 minutes. The shell is stripped from the mandrel and can be used in a tissue expander or prosthesis.
  • An appropriately shaped mandrel for forming the shell of a mammary prosthesis is arranged approximately 3′′ to 6′′ inches from a robotically controlled spray head of rotary atomizer spray device (e.g., the Aerobell RMA-101; ITW Ransburg, Inc.; Toledo Ohio).
  • the mandrel is arranged so that the portion of the mandrel corresponding to the posterior face of the shell is facing downward.
  • the mandrel is held on a rod that extends from the downward facing portion of the mandrel and this rod is arranged so as to allow the mandrel to be rotated on the axis of the rod.
  • the mandrel is heated to about 145° F. by an infrared heating device that allows the surrounding air temperature to be significantly lower.
  • the mandrel and the spray head are contained in a cabinet where the air temperature is held at 115° F. ⁇ 10° F. and about 35-45% relative humidity.
  • a HTV silicone dispersion having 31% ( ⁇ 2%) solids in a xylene dispersion is applied to the mandrel using a spray head that travels in an arc from above the mandrel (90° above the horizontal) to below the mandrel (90° below horizontal) completing one pass from above the mandrel (the portion of the mandrel corresponding to the anterior face of the shell) to below the mandrel (the portion of the mandrel corresponding to the posterior face of the shell) in about 5 seconds as the mandrel is rotated at about 20 rpm.
  • the spray head is supplied by a 3 ⁇ 8′′ diameter supply line and the dispersion is pumped through the line at 8-20 psi. Shaping air can be employed to shape the stream of silicone dispersion.
  • the dispersion can be electrically charged (e.g., by applying 80,00 to 100,000 volts at low amperage) and the mandrel grounded in order to electrostatically attract the silicone dispersion to the mandrel. Because HTV silicone dispersion is conductive, superior results can be achieved by charging the dispersion. To apply one coat, the spray head travels from above the mandrel to below the mandrel and returns to above the mandrel during which time the mandrel rotates about 5 full revolutions.
  • the application of a single coat of dispersion takes about 15 seconds. Solvent is allowed to evaporate from the silicone dispersion coated on the mandrel for 10 to 20 minutes in a devolatilization step. This process is repeated so that 3 to 4 additional coats of dispersion are applied in the same manner with a devolatilization step occurring between each coat.
  • the final thickness of the shell is 0.012′′ ⁇ 0.002′′.
  • the process can be automated by mounting a number of mandrels on a track that passes the mandrels by the spray head. The spray head can move with the line or the line can pause with a mandrel positioned near the spray head. After the final coat has been applied, the shell is cured by placing the coated mandrel in an oven set to 325° F. for at least 55 to 65 minutes. The shell is stripped from the mandrel and can be used in a tissue expander or prosthesis.
  • a textured shell can be created by applying solid particles of silicone to a shell between coats of silicone dispersion.
  • a shell of the desired thickness is created as described in Example 1 or Example 2.
  • the shell is partially or fully cured by heating. Alternatively, the shell is not cured at all.
  • the tackiness of an uncured or partially cured silicone shell fosters adhesion of the solid particles.
  • Particles of fully cured ground silicone gum rubber having an average diameter of 50 to 1500 microns are applied to the surface of the shell, e.g., by dipping the mandrel into a bed of particles or by blowing particles onto the shell. Because the surface of the shell is tacky and because the silicone particles have a static charge, the silicone particles adhere readily.
  • the silicone particles can be applied at a density that allows almost complete coverage of the shell or partial coverage.
  • the particles can be applied relatively densely so that there is little exposed shell or they can be applied relatively sparsely so that there is considerable exposed shell.
  • the particles can be applied to only a portion of the shell, e.g., the particles can be applied only to the posterior face of the shell.
  • the shell is heated (at 250-325° F. for 30 to 60 minutes in the case of HTV silicone) to partially cure or gel the silicone layer to which the particles are adhered. Particles that do not adhere to the shell are removed by gently blowing air over the surface of the shell.
  • the shell is then sprayed again with a silicone dispersion (e.g., HTV silicone diluted to, e.g., 10 to 13% solids with xylene, toluene, tetrahydeofuran or some other suitable solvent) to apply a particle coating layer that envelops the applied particles.
  • a silicone dispersion e.g., HTV silicone diluted to, e.g., 10 to 13% solids with xylene, toluene, tetrahydeofuran or some other suitable solvent
  • the particle coating layer is partially cured or gelled by, for example, heating the shell to 250-325° F. for 30 to 60 minutes in the case of particles coated with an HTV silicone dispersion.
  • the application of particles, curing, coating with silicone dispersion and curing is repeated two more times for a total of three application of particles and three applications of silicone dispersion.
  • the shell is fully cured.
  • Silicone particles can be created, for example, from fully cured silicone that is cryogenically ground to yield particles ranging in size from 50-600 microns in diameter, e.g., 50-100, 100-200, 200-300, 300-400, 400-500, or 500-600 microns in diameter.
  • 1 ⁇ 4 to 1 ⁇ 2 inch thick silicone sheets can be cryogenically ground to yield suitable particles.
  • the particles are subsequently size selected, e.g., by sieving, such that the particles have a selected average size, e.g., 200-300 microns. In some cases the size selection is limited to removing very small particles and very large particles.
  • the silicone particles can be applied several times. In some cases that average size of the silicone particles applied will vary. Thus, the particles applied in the first application of particles can have a first average size and the particles applied in the second application of particles can have a second average size. If there is a third application of particles, the particles in this third application can have a third average particle size. Thus, the particles used in each application can have a different average particle size. In some cases, several of the applications of particles can have the same or very similar average particle size. In some cases a given application of particles can include two different groups of particles, one having a first average particle size and the other having a second, different average particle size.
  • the surface created on the shell is microporous. There are cavities, overhangs, bridges and passageways. However, because each layer of particles is enveloped in silicone, the surface is relatively smoothly modeled. Because the surface of the shell includes cavities, overhangs and passageways, upon implantation, tissue will grow into the cavities, beneath the overhangs and through the passageways. In this manner, the tissue is engaged with the implant. This engagement secures the implant.
  • Implantable mammary prostheses generally have a relatively flat posterior face that is placed against the patient's chest and a domed anterior face. It is often desirable for the region where the anterior face meets the posterior face, the perimeter region, to have a relatively small radius of curvature, particularly at the upper pole of the prosthesis, i.e., the portion of the prosthesis that is uppermost when the patient is standing. A relatively small radius of curvature in the transition between the anterior face and the posterior face in the upper pole of the prosthesis is desirable because it permits a relatively smooth transition between the mammary tissue and the implant when the prosthesis is implanted. However, a small radius of curvature is sometimes associated with the appearance of creases that extend inward from the perimeter of the prosthesis in the region of relatively small radius.
  • Scalloping tend to occur when the prosthesis is filled with fluid and the patient is upright such that the weight of the filling material is pulling downward on the prosthesis.
  • the creases often appear on the anterior face of the prosthesis. This is aesthetically undesirable as the creases can sometimes be discerned through the overlying skin of the patient.
  • the spray methods described herein prosthesis can be used to create a shell of non-uniform thickness, e.g., a shell in which the average thickness of the shell in the region where the posterior and anterior faces meet is greater, e.g., at least 25%, 50%, 75%, 100% greater than the thickness of the shell in the region of the anterior face.
  • This reinforcement can reduce or eliminate undesirable scalloping effects.
  • the average thickness of the shell in the region of posterior face is also greater, e.g., at least 25%, 550%, 75%, 100% greater than the thickness of the shell in the region of the anterior face.
  • the reinforcement can be confined to the perimeter (or radius) of the shell and, optionally, posterior face of the shell, it is possible for nearly the entire anterior face of the prosthesis to be formed of relatively thin material. This preserves a natural appearance of the prosthesis when it is implanted.
  • a shell having varying thickness can be created by spraying more coats of dispersion on one or more some parts of the mandrel or by applying the dispersion more heavily to one or more parts of the mandrel, e.g., by adjust spray volume or the speed at which the mandrel is rotated as the dispersion is applied.
  • a shell having variable thickness can have created such that: the average thickness of the shell in the perimeter region is about 0.02 to 0.08 inches, the average thickness of the shell in the entire perimeter region is greater than the average thickness of the shell in the anterior face, the average thickness of the posterior face of the shell is about 0.02 to 0.08 inches, the average thickness of the anterior face of the shell is less than about 0.04 inches, or the average thickness of the anterior face of the shell is less than about 0.03 inches.
  • the invention also features a kit comprising a prosthesis of the invention and a means for filling the prosthesis with a liquid or a gel.
  • the filling means comprises a syringe and a tube adapted to connect the syringe to the filling port of the shell of the prosthesis.
  • the invention further features a method for forming a prosthesis, the method comprising: (a) providing a mandrel adapted for dip molding a mammary prosthesis, the mandrel having an anterior face, a posterior face and a perimeter region where the anterior face and the posterior face meet; (b) masking both the anterior face and the posterior face of the mandrel while leaving at least a portion of the perimeter region free of masking; (c) dipping the masked mandrel into a silicone dispersion
  • a soft tissue prosthesis can have any desired shape, e.g., the shell of the prosthesis can be circular, oval, or crescent shaped.
  • the prosthesis can have a single lumen or multiple lumens. It can be formed of silicone rubber, a laminate of various forms of silicone, silicone copolymers, polyurethane, and various other elastomers in various combinations. Various materials are described in U.S. Pat. Nos. 4,592,755 and 4,205,401.
  • the opening in the posterior face of the shell is sealed using a patch comprising a vulcanized layer of silicone sheeting and an unvulcanized layer of silicone.
  • the patch is shaped and sized to be somewhat larger than the opening in the posterior face of the shell.
  • the patch is positioned inside the shell such that the unvulcanized layer of the patch faces outward and the perimeter of the patch overlaps the edge of the shell surrounding the opening.
  • the assembly is compressed either between hot platens at, e.g., 325° F. and 60 p.s.i. or platens at room temperature and 60 p.s.i. for about two to three minutes.
  • the patched shell is then cured in an oven at 325° F. for about one half hour to cure fully.
  • the shell can be filled with a fluid or gel.
  • an amount of solid material can be combined with the fluid or gel to adjust the density or compressibility of the filling.
  • Elastomers other than silicone may be used.
  • the mandrel can be sprayed with a dispersion of any elastomer.
  • the prosthesis of the invention can be provided as a kit with a shell and a means for filling the shell, e.g., a syringe.
  • the kit can further include an adapter tube for connecting the syringe to the filling port of the shell.

Abstract

Shells for mammary prostheses and other devices are created by spraying a silicone dispersion onto a mandrel. Several coats of dispersion are applied with an interval for evaporation of solvent from the dispersion between application of coats. The shells created are uniform in thickness and have a desirably defect-free surface.

Description

    TECHNICAL FIELD
  • This invention relates to devices that are implantable in the human body such as prostheses and tissue expanders.
  • BACKGROUND
  • Implantable prostheses are commonly used to replace or augment body tissue. Such prostheses include a shell formed of an elastomeric material, e.g., silicone. The shell is filled with filling material such as saline or some other liquid or a gel. The filling of the shell commonly takes place after the shell is inserted through an incision. The shell includes a valve that can accept a filling tube that passes through the incision and is used to fill the shell with a suitable liquid or gel. Once the shell is filled to the desired degree, the filling tube is removed and the incision is closed.
  • In the case of the female breast, it sometimes necessary to remove some or all of the mammary gland and surrounding tissue in order to treat breast cancer. This surgery leaves a void that can be filled with an implantable prosthesis. The implant serves to support surrounding tissue and to maintain the appearance of the body. The restoration of the normal appearance of the body has an extremely beneficial psychological effect on post-operative patients, eliminating much of the shock and depression that often follows extensive surgical procedures.
  • Implantable prostheses are also used more generally for restoring the normal appearance of soft tissue in various areas of the body.
  • Tissue expanders generally resemble implantable prostheses except that they include a means for adding additional liquid or gel after the device had been inserted under the skin and the incision has been closed. After implantation the shell is gradually inflated using a liquid or gel, usually over a period of weeks, in order to expand the overlying skin either so that a prosthesis can later be inserted or so that skin can be generated for grafting. The liquid or gel is usually introduced by means of a needle that pierces the skin and a self-seal valve that is integral to the shell or that is remote from the shell and connected to the shell by tubing.
  • Silicone shells for implantable prosthesis and tissue expanders are generally formed by dipping a suitably shaped mandrel into a silicone dispersion. The mandrel is withdrawn from the dispersion and the excess silicone dispersion is allowed to drain from the mandrel. After the excess dispersion has drained from the mandrel at least a portion of the solvent is allowed to evaporate to stabilize the silicone coating. The process is then repeated one or more times until a shell of the desired thickness is formed. Because the flow of the silicone dispersion as it drains from the mandrel depends on the shape and orientation of the mandrel, the resulting shell can vary substantially in thickness. In addition, because dip casting requires a relatively large vat of silicone dispersion and because solvent evaporates from the silicone dispersion in the vat during the casting process, considerable silicone dispersion waste is created during dip casting.
  • SUMMARY
  • Methods for forming the shell of a body implant (e.g., a prosthesis or tissue expander) are described. The methods can also be used to make other articles formed from an elastomeric material (e.g., a patch for an implant) and for applying a coating of an elastomeric material (e.g., silicone) to a device to be implanted into the body (e.g., a pacemaker or implantable pump). The methods entail spraying a silicone dispersion onto a mandrel or other object. The silicone dispersion is sprayed using, for example, a high volume, low pressure (HVLP) spray device or a rotary atomizer or some other device that sprays the silicone dispersion at a low pressure. The methods described herein can be used, for example, to create an implant shell that is both thinner and more uniform in thickness than that which can be formed using traditional dip casting techniques for forming the shell of body implant. In addition, the methods can be used to create a shell that varies in thickness in a controlled manner. Further, allow the production of shells having complex shapes that cannot be efficiently formed using traditional dip casting methods. Thus, the methods can be used to make generally spherical, cylindrical, crescent, half moon, rectangular solids, and cubic shell as well as other shapes, including shapes having edges, corners, recessed regions and other complex geometries. Shells created by the methods of the invention have a generally smoother surface than shells created by traditional dip casting methods.
  • In one aspect the method comprises: a) providing a mandrel, e.g., a mandrel that is appropriately sized and shaped for form a desired shell, such as the shell of a body implant; b) spraying a silicone dispersion onto the mandrel until a desired thickness of silicone dispersion is formed on the mandrel; c) curing the silicone dispersion to form a silicone device; and d) removing the silicone device from the mandrel. In various embodiments: the silicone dispersion comprises high temperature vulcanization (HTV) silicone, the silicone dispersion comprises room temperature vulcanization (RTV) silicone.
  • In one aspect the method for creating a silicone shell comprises: a) providing a mandrel; b) applying a coating silicone dispersion to the mandrel by spraying the silicon dispersion at low pressure; c) allowing evaporation of at least a portion of the solvent in the coating silicone dispersion; d) repeating steps b) and c) until a silicone shell having a desired thickness is formed; e) at least partially curing the silicone shell; and f) removing the silicone shell from the mandrel.
  • In various embodiments: the silicone dispersion is sprayed onto the mandrel using a high volume low pressure spray device; the silicone dispersion is sprayed onto the mandrel using a rotary atomizer; the silicone dispersion is an HTV silicone dispersion; the silicone dispersion is an RTV silicone dispersion; at least two coats of dispersion are applied to the mandrel; at least three coats of dispersion are applied to the mandrel; at least four coats of dispersion are applied to the mandrel; at least five coats of dispersion are applied to the mandrel; at least six coats of dispersion are applied to the mandrel; the dispersion is sprayed by atomizing the dispersion using a flow of air below 20 psi; the dispersion is sprayed by atomizing the dispersion using a flow of air below 10 psi; the shell is 0.00±0.004″ thick; the shell is 0.012″±0.004″ thick; the shell is 0.014±0.004″ thick; and the shell is 0.013±0.004″ thick.
  • In other embodiments, the method further comprising applying a coat of silicone dispersion to a portion of the mandrel to create a partial coat of dispersion; the mandrel includes an anterior surface and a posterior surface that meet at a perimeter region; the partial coat of dispersion is applied to the perimeter region of the mandrel; the mandrel has at least one relatively planar region and at least on region that is curved; the partial coat of dispersion is applied to the at least one region that is curved; the mandrel has a first region having a first radius of curvature and a second region having a second smaller radius of curvature; the region having the partial coat of dispersion is applied to the region having a second, smaller radius of curvature; and at least one partial coat of dispersion is applied to at least a first portion of the mandrel.
  • The invention also features a shell for a tissue expander formed by above-described method and a shell for an implantable prosthesis made by the above-described method.
  • The invention also features a prosthesis formed by a method comprising providing a shell formed by the above-described method and sealing the shell or sealing the shell while providing the shell with a filling port.
  • For RTV silicone the silicone dispersion comprises 20-70% silicone solids, 20-60% silicone solids, 20-50% silicone solids, 25-45% silicone solids, 28-40% silicone solids, 28-39% silicone solids, 28-38% silicone solids, 28-36% silicone solids, or 28-34% silicone solids. In certain embodiments the RTV dispersion contains 308-35% solids, preferably 31%+/−3% silicone solids, 31%+/−2% silicone solids, or 31%+/−1% silicone solids. In some embodiments the dispersion contains xylene or another suitable solvent.
  • For HTV silicone the silicone dispersion comprises 20-70% silicone solids, 20-60% silicone solids, 20-50% silicone solids, 25-45% silicone solids, 30-38% silicone solids, or 32-36% silicone solids. In certain embodiments the HTV dispersion contains 34% +/−3% silicone solids, 34%+/−2% silicone solids, or 34%+/−1% silicone solids. In some embodiments the dispersion contains xylene or another suitable solvent.
  • For products filled with saline, the shell is formed of RTV silicone in some embodiments and is formed using a dispersion having a viscosity of 700 to 820 centipoise. For products filled with silicone gel, the shell is formed of HTV silicone in some embodiments and is formed using a dispersion having a viscosity of 500 to 600 centipoise.
  • The invention also features a silicone device formed by: a) providing a mandrel; b) spraying a silicone dispersion onto the mandrel until a coating of the desired thickness is formed on the mandrel; c) curing the coating of silicone dispersion on; and d) removing the silicone device from the mandrel.
  • The method can be used to form an HTV silicone shell with a thickness of: 0.013″±0.007″, ±0.006″, ±0.005″, ±0.004″, ±0.003″, ±0.0025″ or ±0.002″; 0.012″±0.007″, ±0.006″, ±0.005″, ±0.004″, ±0.003″, ±0.0025″ or ±0.002″; 0.011″±0.007″, ±0.006″, ±0.005″, ±0.004″, ±0.003″, ±0.0025″ or ±0.002″; 0.010″±0.007″, ±0.006″, ±0.005″, ±0.004″, ±0.003″, ±0.0025″ or ±0.002″; or 0.009″±0.007″, 0.006″, ±0.005″, ±0.004″, ±0.003″, ±0.0025″ or ±0.002″. In certain embodiments the method is used to create a silicone shell that varies in thickness by no more than 0.006″, 0.005″, 0.004″, 0.003″, 0.0025″ or 0.002″.
  • The method of the invention is used to form an RTV shell with a thickness of: 0.015″±0.007″, ±0.006″, ±0.005″, ±0.004″, ±0.003″, ±0.0025″ or ±0.002″; 0.014″±0.007″, ±0.006″, ±0.005″, ±0.004″, ±0.003″, ±0.0025″ or ±0.002″; 0.013″±0.007″, ±0.006″, ±0.005″, ±0.004″, ±0.003″, ±0.0025″ or ±0.002″; 0.012″±0.007″, ±0.006″, ±0.005″, ±0.004″, ±0.003″, ±0.0025″ or ±0.002″; 0.011″±0.007″, ±0.006″, ±0.005″, ±0.004″, ±0.003″, ±0.0025″ or ±0.002″; 0.010″±0.007″, ±0.006″, ±0.005″, ±0.004″, ±0.003″, ±0.0025″ or ±0.002″; or 0.009″±0.007″, ±0.006″, ±0.005″, ±0.004″, ±0.003″, ±0.0025″ or ±0.002″. In certain embodiments the method is used to create a silicone shell that varies in thickness by no more than 0.006″, 0.005″, 0.004″, 0.003″, 0.0025″ or 0.002″.
  • In some embodiments the mandrel is sprayed with 3, 4, 5, 6, 7 or more coats of silicone dispersion. In some embodiments solvent is allowed to evaporate from the dispersion for 1, 2, 3, 4, 5, 10, 15, 20 or more minutes between coats. In some embodiments the mandrel is rotated during application of the one or more coats of silicone dispersion.
  • In certain embodiments the first coat of dispersion on the mandrel contains less dispersion than subsequent coats. For example, the first coat is formed by two passes of the spray head over each portion of the mandrel and subsequent coats are formed by three passes of the spray head over each portion of the mandrel. Thus, the first coat contains less material that subsequent coats and is generally thinner than subsequent coats.
  • In various embodiments: the mandrel is appropriately sized and shaped for forming an implantable prosthesis; the mandrel is appropriately sized and shaped for forming an implantable mammary prosthesis; the mandrel is appropriately sized and shaped for forming a tissue expander; the mandrel is and shaped for forming a round body implant; the mandrel is shaped for forming a crescent-shaped body implant; the mandrel is appropriately sized and shaped for forming an oval body implant.
  • Also described is a prosthesis formed by a method comprising: a) providing a mandrel that is appropriately sized and shaped for forming a body implant; b) applying a coating silicone dispersion to the mandrel by spraying the silicone dispersion at low pressure; c) allowing evaporation of at least a portion of the solvent in the coating silicone dispersion; d) repeating steps b) and c) until a silicone shell having a desired thickness is formed; e) at least partially curing the silicone shell; f) removing the silicone shell from the mandrel; and g) applying a seal to the shell. In some embodiments, the shell is shaped and sized for use as a mammary prosthesis.
  • Also featured is a tissue expander formed by a method comprising: a) providing a mandrel that is appropriately sized and shaped for forming a body implant; b) applying a coating silicone dispersion to the mandrel by spraying the silicon dispersion at low pressure; c) allowing evaporation of at least a portion of the solvent in the coating silicone dispersion; d) repeating steps b) and c) until a silicone shell having a desired thickness is formed; e) at least partially curing the silicone shell; f) removing the silicone shell from the mandrel; g) providing the shell with a filling port; and h) sealing the shell. In various embodiments: the mandrel is appropriately sized and shaped for forming an implantable prosthesis; the mandrel is appropriately sized and shaped for forming an implantable mammary prosthesis; the mandrel is appropriately sized and shaped for forming a tissue expander; is appropriately sized and shaped for forming a round body implant; the mandrel is appropriately sized and shaped for forming a crescent-shaped body implant; the mandrel is appropriately sized and shaped for forming an oval body implant; the mandrel is appropriately sized and shaped for forming a testicular implant; the shell is shaped and sized for use as a mammary tissue expander.
  • The method for forming a prosthesis can further include: filling the prosthesis with a liquid; filling the prosthesis with a gel; filling the prosthesis with a saline solution and filling the prosthesis with silicone filler.
  • The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
  • DESCRIPTION OF DRAWINGS
  • FIG. 1 is a plan view of the anterior face of the shell of a mammary prosthesis.
  • FIG. 2 is schematic drawing of a cross-section of the shell of a mammary prosthesis taken along A-A′ in FIG. 1.
  • DETAILED DESCRIPTION
  • Described below are methods for forming a silicone articles, e.g., a shell for soft tissue prostheses. The methods entail spraying a silicone dispersion onto a suitably shaped mandrel or an object to be coated using, for example, a high volume, low pressure (HVLP) spray device or a rotary atomizer. The methods of the invention allow one to control the thickness of shell, permitting the creation of shells that are of a uniform thickness as well as shells that vary in thickness in a controlled manner.
  • The spraying of the silicone dispersion can be accomplished using HVLP systems. The spraying can be accomplished by atomizing the dispersion using relatively low pressure air. The spraying can also be accomplished by rotary atomization. In rotary atomization the dispersion is feed to a cone or bell spinning at, e.g., 10,000-40,000 RPM. The dispersion is feed to the cone or bell at low pressure (e.g., the dispersion pressure is at or below 30 psi, below 20 psi, 10±4 psi or between 0.1 and 10 psi). Rotary atomization forms a very smooth, uniform layer of silicone that has very few pits or other imperfections. Rotary atomizers are described well known in the art (see, e.g., U.S. Pat. Nos. 5,633,306 and 4,887,770). Rotary atomizers are available from Ransburg Corporation (Toledo, Ohio) and other suppliers. The spray head (cone or bell) of a rotary atomizer can be controlled by a programmable computer so that the spray head makes the same number of passes over all portions of the mandrel or so that the spray head makes more passes over some portions of the mandrel than other portions.
  • The methods of the invention have numerous advantages over the traditional dip casting technique used to create shells for soft tissue implants. In dip casting, a shell is formed by first dipping a mandrel into a silicone dispersion. Once the mandrel is removed from the dispersion, excess dispersion is allowed to drain from the mandrel. Solvent is allowed to evaporate from the coating of silicone dispersion remaining on the mandrel until the coating is sufficiently stabilized to allow the mandrel to be dipped into the dispersion again. This process is repeated until a shell of the desired thickness is created. Because the flow of the silicone dispersion as it drains from the mandrel depends on the shape and orientation of the mandrel, the resulting shell can vary substantially in thickness. For example, the thickness of the shell of a mammary prosthesis formed by dip casting might vary from 0.009 to 0.024″ from one region to another, a variation of more than 100%. Importantly, the thickness of the various regions of the shell is dictated for the most part by the shape of the mandrel and the orientation of the mandrel during the period that the silicone dispersion is draining from the mandrel.
  • FIG. 1 is a plan view of a mammary prosthesis. The anterior face 100 is the outward face when the prosthesis is inserted under the skin of a patient's chest. The prosthesis includes an upper pole region 120 (i.e., the upper half of the shell when the prosthesis recipient is standing) and a lower pole region 130 (i.e., the lower half of the shell when the prosthesis recipient is standing). The region 135 where the anterior face 100 meets the posterior face (not shown) is sometime referred to as the radius, perimeter or edge FIG. 2 is a cross-sectional view of a mammary prosthesis taken along A-A′ in FIG. 1. This type of shell has a shape that resembles that of a human breast in that it is fuller in the lower portion than in the upper portion. The shell has an anterior face region 100, a posterior face region 110 (i.e., the face placed against the patient's chest wall when the prosthesis is implanted), an upper pole region 120 and a lower pole region. The region where the posterior and anterior face or surface meet 135, sometimes referred to as the radius, perimeter or edge, is relatively curved compared to the posterior face and to some extent even the anterior face. In the shell depicted here, the radius of curvature of the perimeter in the upper pole region is relatively small. The radius of curvature of the perimeter in the lower pole region is larger. As noted above the shell depicted in FIG. 2 has a shape that more closely resembles the human breast than other types of shells, e.g., shells that are symmetrically dome shaped.
  • In dip casting the mandrel is held such that the portion corresponding to the anterior face of the shell faces downward. The bracket or rod used to hold the mandrel as it is dipped into the dispersion extends outward from that portion of the mandrel corresponding to the posterior face of the shell. As dispersion drains from the mandrel after it is withdrawn from the dispersion it can be appreciated that it drains relatively rapidly from the perimeter region. As a result, the shell in the perimeter region tends to be thinner than the shell in the anterior face region. For this reason, additional dips are required to create an adequate shell thickness in the perimeter region. This can result in shell that is thicker than desired in the anterior face region. In addition, because the dispersion flows over the mandrel and onto the portion corresponding to the posterior face of the shell, the posterior face region is generally thicker than the shell anterior face region and can be thicker than desired.
  • As can be seen, the radius of curvature in upper pole transition region 180 between the anterior face region 100 and posterior face region 110 is quite small. It can be desirable for the shell in this region to be thicker than, for example, the anterior face region 100, which should be relatively thin to preserve a natural appearance when implanted in a patient. The method of the invention allows for creating a thicker shell in upper pole perimeter or radius region while maintaining a thinner shell in other regions, e.g., the anterior face region 100 by simply controlling the spray head to apply additional coats of silicone dispersion in the upper pole perimeter or radius region.
  • In contrast, the methods of the invention can be used to create a shell for a mammary implant or other that varies in thickness from, e.g., 0.009″±0.003″ on the faces (e.g., the anterior and posterior faces) to 0.024″±0.003 on the edges or comers where two or more faces meet. The method can also be used to create shells with greater variation in thickness. Thus, as described in greater detail below, the methods of the invention can also be used to create shells that vary in diameter in a controlled manner, i.e., a manner that is not dictated by the shape of the mandrel.
  • In one embodiment of the invention, a silicone dispersion is applied to a mandrel using a robotically controlled rotary atomizer spray head. The rotary atomizer can operate electrostatically, wherein there is a difference in electrical potential between the silicone and the mandrel. For example, a charge can be applied to the dispersion and the mandrel can be grounded, such that the atomized silicone dispersion is attracted through electrical forces to the mandrel. The spray head makes one or more (e.g., 1, 2, 3, 4, 5, or more) passes over an area of the mandrel to apply one coat of silicone to the entire mandrel or desired portion thereof. The spray head or the mandrel or both can be moved during the application of a coat of silicone dispersion. A number of coats are applied depending on various factors such as the type of silicone used (HTV or RTV), the percent of silicone solids in the dispersion, and the desired thickness of the shell. Between the application of each coat of silicone dispersion solvent is allowed to evaporate so that the coat of silicone dispersion is at least somewhat stabilized prior to the application of the next coat of silicone dispersion. Thus, there is an interval of several minutes (e.g., 2, 3, 4, 5, 6, 10, 12, 15, 20. 25 minutes or more) between the application of one coat of dispersion (which may require 1, 2, 3, 4 or more passes of the spray head over all or a portion of the mandrel) and the next coat of dispersion. Once the desired number of coats of silicone dispersion have been applied, the shell is allowed to fully cure and it is then removed from the mandrel. Because there is no need for excess dispersion to drain from the mandrel, each coat applied is quite uniform in thickness, i.e., it is not significantly thicker in the posterior face region than it is in the anterior face region.
  • In applying the dispersion, some portions of the mandrel can receive more coats of dispersion than other portions of the mandrel. For example, in the case of a mammary implant the perimeter region can receive more coats of dispersion than the anterior face. In general it can be desirable to apply more coats of material (resulting in a thicker shell) in those regions that correspond to an edge or corner or that otherwise have a smaller radius of curvature than in those regions that are relatively planar.
  • To provide shells or other devices with one or more regions that are thicker than one or more other regions, it can be desirable to apply more coats of silicone dispersion to some portions of the mandrel than other portions. Thus, one can apply a partial coat of dispersion, i.e. a coat that does not cover the entire mandrel, but instead covers only a portion of the mandrel. Additional partial coats can be applied to the mandrel so that one or more portions of the mandrel have 1, 2, 3, 4 or more additional coats of dispersion compared to other portions of the mandrel. Moreover, additional partial coats can be applied to two or more different regions of the mandrel. Thus, the entire mandrel can receive a total 4 coats of dispersion, one portion can receive a total of 5 coats of dispersion and yet another portion can receive a total of 6 coats of dispersion.
  • It is desirable to use a silicone dispersion having a defined percent solids so that the thickness of the layer of silicone dispersion applied in each coat is relatively predictable. This is in contrast to traditional dip casting methods in which it is desirable to use a silicone dispersion having a defined viscosity. A silicone dispersion having a defined viscosity is desirable in dip casting because the formation of the shell is highly dependent on the bulk flow characteristics of the silicone dispersion. In many instances the relationship between viscosity and percent solids is not predictable. Thus, for shells produced by spray techniques it is desirable to use a dispersion with a defined percent solids rather than a defined viscosity.
  • EXAMPLE 1 RTV Silicone Shell
  • An appropriately shaped mandrel for forming the shell of a mammary prosthesis is arranged approximately 3″ to 6″ inches from a robotically controlled spray head of rotary atomizer spray device (e.g., the Aerobell RMA-101; ITW Ransburg, Inc.; Toledo Ohio). The mandrel is arranged so that the portion of the mandrel corresponding to the posterior face of the shell is facing downward. The mandrel is held on a rod that extends from the downward facing portion of the mandrel and this rod is arranged so as to allow the mandrel to be rotated on the axis of the rod. The mandrel and the spray head are contained in a cabinet where the air temperature is held at 90° F.±10° F. and about 35-45% relative humidity. A RTV silicone dispersion having 31% (±2%) solids in a xylene dispersion is applied to the mandrel using a spray head that travels in an arc from above the mandrel (90° above the horizontal) to below the mandrel (90° below horizontal) completing one pass from above the mandrel (the portion of the mandrel corresponding to the anterior face of the shell) to below the mandrel (the portion of the mandrel corresponding to the posterior face of the shell) in about 5 seconds as the mandrel is rotated at about 20 rpm. The spray head is supplied by a ⅜″ diameter supply line and the dispersion is pumped through the line at 8-20 p.s.i. The dispersion can be electrically charged and the mandrel grounded in order to electrostatically attract the silicone dispersion to the mandrel. However, since RTV silicone dispersion is not particularly conductive, similar results can be achieved with and without charging the dispersion. To apply one coat, the spray head travels from above the mandrel to below the mandrel and returns to above the mandrel during which time the mandrel rotates about 5 full revolutions. The application of a single coat of dispersion takes about 15 seconds. Solvent is allowed to evaporate from the silicone dispersion coated on the mandrel for 10 to 20 minutes in a devolatilization step. This process is repeated so that 4 to 5 additional coats of dispersion are applied in the same manner with a devolatilization step occurring between each coat. The final thickness of the shell is 0.014″±0.002″. The process can be automated by mounting a number of mandrels on a track that passes the mandrels by the spray head. The spray head can move with the line or the line can pause with a mandrel positioned near the spray head. After the final coat has been applied, the shell is cured by placing the coated mandrel in an oven set to 150° F. for at least 20 to 30 minutes. The shell is stripped from the mandrel and can be used in a tissue expander or prosthesis.
  • EXAMPLE 2 HTV Silicone Shell
  • An appropriately shaped mandrel for forming the shell of a mammary prosthesis is arranged approximately 3″ to 6″ inches from a robotically controlled spray head of rotary atomizer spray device (e.g., the Aerobell RMA-101; ITW Ransburg, Inc.; Toledo Ohio). The mandrel is arranged so that the portion of the mandrel corresponding to the posterior face of the shell is facing downward. The mandrel is held on a rod that extends from the downward facing portion of the mandrel and this rod is arranged so as to allow the mandrel to be rotated on the axis of the rod. The mandrel is heated to about 145° F. by an infrared heating device that allows the surrounding air temperature to be significantly lower. The mandrel and the spray head are contained in a cabinet where the air temperature is held at 115° F.±10° F. and about 35-45% relative humidity. A HTV silicone dispersion having 31% (±2%) solids in a xylene dispersion is applied to the mandrel using a spray head that travels in an arc from above the mandrel (90° above the horizontal) to below the mandrel (90° below horizontal) completing one pass from above the mandrel (the portion of the mandrel corresponding to the anterior face of the shell) to below the mandrel (the portion of the mandrel corresponding to the posterior face of the shell) in about 5 seconds as the mandrel is rotated at about 20 rpm. The spray head is supplied by a ⅜″ diameter supply line and the dispersion is pumped through the line at 8-20 psi. Shaping air can be employed to shape the stream of silicone dispersion. The dispersion can be electrically charged (e.g., by applying 80,00 to 100,000 volts at low amperage) and the mandrel grounded in order to electrostatically attract the silicone dispersion to the mandrel. Because HTV silicone dispersion is conductive, superior results can be achieved by charging the dispersion. To apply one coat, the spray head travels from above the mandrel to below the mandrel and returns to above the mandrel during which time the mandrel rotates about 5 full revolutions. The application of a single coat of dispersion takes about 15 seconds. Solvent is allowed to evaporate from the silicone dispersion coated on the mandrel for 10 to 20 minutes in a devolatilization step. This process is repeated so that 3 to 4 additional coats of dispersion are applied in the same manner with a devolatilization step occurring between each coat. The final thickness of the shell is 0.012″±0.002″. The process can be automated by mounting a number of mandrels on a track that passes the mandrels by the spray head. The spray head can move with the line or the line can pause with a mandrel positioned near the spray head. After the final coat has been applied, the shell is cured by placing the coated mandrel in an oven set to 325° F. for at least 55 to 65 minutes. The shell is stripped from the mandrel and can be used in a tissue expander or prosthesis.
  • EXAMPLE 3 Textured Shell
  • A textured shell can be created by applying solid particles of silicone to a shell between coats of silicone dispersion. A shell of the desired thickness is created as described in Example 1 or Example 2. The shell is partially or fully cured by heating. Alternatively, the shell is not cured at all. The tackiness of an uncured or partially cured silicone shell fosters adhesion of the solid particles. Particles of fully cured ground silicone gum rubber having an average diameter of 50 to 1500 microns are applied to the surface of the shell, e.g., by dipping the mandrel into a bed of particles or by blowing particles onto the shell. Because the surface of the shell is tacky and because the silicone particles have a static charge, the silicone particles adhere readily. The silicone particles can be applied at a density that allows almost complete coverage of the shell or partial coverage. Thus, the particles can be applied relatively densely so that there is little exposed shell or they can be applied relatively sparsely so that there is considerable exposed shell. In addition the particles can be applied to only a portion of the shell, e.g., the particles can be applied only to the posterior face of the shell. The shell is heated (at 250-325° F. for 30 to 60 minutes in the case of HTV silicone) to partially cure or gel the silicone layer to which the particles are adhered. Particles that do not adhere to the shell are removed by gently blowing air over the surface of the shell. The shell is then sprayed again with a silicone dispersion (e.g., HTV silicone diluted to, e.g., 10 to 13% solids with xylene, toluene, tetrahydeofuran or some other suitable solvent) to apply a particle coating layer that envelops the applied particles. The particle coating layer is partially cured or gelled by, for example, heating the shell to 250-325° F. for 30 to 60 minutes in the case of particles coated with an HTV silicone dispersion. The application of particles, curing, coating with silicone dispersion and curing is repeated two more times for a total of three application of particles and three applications of silicone dispersion. Finally, the shell is fully cured.
  • Silicone particles can be created, for example, from fully cured silicone that is cryogenically ground to yield particles ranging in size from 50-600 microns in diameter, e.g., 50-100, 100-200, 200-300, 300-400, 400-500, or 500-600 microns in diameter. For example, ¼ to ½ inch thick silicone sheets can be cryogenically ground to yield suitable particles. In some cases the particles are subsequently size selected, e.g., by sieving, such that the particles have a selected average size, e.g., 200-300 microns. In some cases the size selection is limited to removing very small particles and very large particles.
  • As noted above, the silicone particles can be applied several times. In some cases that average size of the silicone particles applied will vary. Thus, the particles applied in the first application of particles can have a first average size and the particles applied in the second application of particles can have a second average size. If there is a third application of particles, the particles in this third application can have a third average particle size. Thus, the particles used in each application can have a different average particle size. In some cases, several of the applications of particles can have the same or very similar average particle size. In some cases a given application of particles can include two different groups of particles, one having a first average particle size and the other having a second, different average particle size.
  • The surface created on the shell is microporous. There are cavities, overhangs, bridges and passageways. However, because each layer of particles is enveloped in silicone, the surface is relatively smoothly modeled. Because the surface of the shell includes cavities, overhangs and passageways, upon implantation, tissue will grow into the cavities, beneath the overhangs and through the passageways. In this manner, the tissue is engaged with the implant. This engagement secures the implant.
  • EXAMPLE 4 Shell with Varying Thickness
  • Implantable mammary prostheses generally have a relatively flat posterior face that is placed against the patient's chest and a domed anterior face. It is often desirable for the region where the anterior face meets the posterior face, the perimeter region, to have a relatively small radius of curvature, particularly at the upper pole of the prosthesis, i.e., the portion of the prosthesis that is uppermost when the patient is standing. A relatively small radius of curvature in the transition between the anterior face and the posterior face in the upper pole of the prosthesis is desirable because it permits a relatively smooth transition between the mammary tissue and the implant when the prosthesis is implanted. However, a small radius of curvature is sometimes associated with the appearance of creases that extend inward from the perimeter of the prosthesis in the region of relatively small radius. This is sometimes referred to as a scalloping effect. Scalloping tend to occur when the prosthesis is filled with fluid and the patient is upright such that the weight of the filling material is pulling downward on the prosthesis. The creases often appear on the anterior face of the prosthesis. This is aesthetically undesirable as the creases can sometimes be discerned through the overlying skin of the patient.
  • The spray methods described herein prosthesis can be used to create a shell of non-uniform thickness, e.g., a shell in which the average thickness of the shell in the region where the posterior and anterior faces meet is greater, e.g., at least 25%, 50%, 75%, 100% greater than the thickness of the shell in the region of the anterior face. This reinforcement can reduce or eliminate undesirable scalloping effects. In some cases, the average thickness of the shell in the region of posterior face is also greater, e.g., at least 25%, 550%, 75%, 100% greater than the thickness of the shell in the region of the anterior face. Moreover, because the reinforcement can be confined to the perimeter (or radius) of the shell and, optionally, posterior face of the shell, it is possible for nearly the entire anterior face of the prosthesis to be formed of relatively thin material. This preserves a natural appearance of the prosthesis when it is implanted.
  • A shell having varying thickness can be created by spraying more coats of dispersion on one or more some parts of the mandrel or by applying the dispersion more heavily to one or more parts of the mandrel, e.g., by adjust spray volume or the speed at which the mandrel is rotated as the dispersion is applied. A shell having variable thickness can have created such that: the average thickness of the shell in the perimeter region is about 0.02 to 0.08 inches, the average thickness of the shell in the entire perimeter region is greater than the average thickness of the shell in the anterior face, the average thickness of the posterior face of the shell is about 0.02 to 0.08 inches, the average thickness of the anterior face of the shell is less than about 0.04 inches, or the average thickness of the anterior face of the shell is less than about 0.03 inches.
  • The invention also features a kit comprising a prosthesis of the invention and a means for filling the prosthesis with a liquid or a gel. In a preferred embodiment, the filling means comprises a syringe and a tube adapted to connect the syringe to the filling port of the shell of the prosthesis.
  • The invention further features a method for forming a prosthesis, the method comprising: (a) providing a mandrel adapted for dip molding a mammary prosthesis, the mandrel having an anterior face, a posterior face and a perimeter region where the anterior face and the posterior face meet; (b) masking both the anterior face and the posterior face of the mandrel while leaving at least a portion of the perimeter region free of masking; (c) dipping the masked mandrel into a silicone dispersion
  • OTHER EMBODIMENTS
  • A soft tissue prosthesis can have any desired shape, e.g., the shell of the prosthesis can be circular, oval, or crescent shaped. The prosthesis can have a single lumen or multiple lumens. It can be formed of silicone rubber, a laminate of various forms of silicone, silicone copolymers, polyurethane, and various other elastomers in various combinations. Various materials are described in U.S. Pat. Nos. 4,592,755 and 4,205,401.
  • To form a prosthesis from the shell, e.g., a shell formed of HTV silicone, the opening in the posterior face of the shell is sealed using a patch comprising a vulcanized layer of silicone sheeting and an unvulcanized layer of silicone. The patch is shaped and sized to be somewhat larger than the opening in the posterior face of the shell. The patch is positioned inside the shell such that the unvulcanized layer of the patch faces outward and the perimeter of the patch overlaps the edge of the shell surrounding the opening. The assembly is compressed either between hot platens at, e.g., 325° F. and 60 p.s.i. or platens at room temperature and 60 p.s.i. for about two to three minutes. The patched shell is then cured in an oven at 325° F. for about one half hour to cure fully.
  • The shell can be filled with a fluid or gel. In addition, an amount of solid material can be combined with the fluid or gel to adjust the density or compressibility of the filling.
  • Elastomers other than silicone may be used. Thus, the mandrel can be sprayed with a dispersion of any elastomer.
  • The prosthesis of the invention can be provided as a kit with a shell and a means for filling the shell, e.g., a syringe. The kit can further include an adapter tube for connecting the syringe to the filling port of the shell.
  • A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention.

Claims (52)

1. A method for creating a silicone shell, the method comprising:
a) providing a mandrel suitably sized and shaped for forming a desired shell;
b) applying a coating silicone dispersion to the mandrel by spraying the silicon dispersion at low pressure to create a shell having a desired thickness;
c) at least partially curing the silicone shell; and
d) removing the silicone shell from the mandrel.
2. A method for creating a silicone shell, the method comprising:
a) providing a mandrel suitably sized and shaped for forming a desired shell;
b) applying a coating silicone dispersion to the mandrel by spraying the silicon dispersion at low pressure;
c) allowing evaporation of at least a portion of the solvent in the coating silicone dispersion;
d) repeating steps b) and c) until a silicone shell having a desired thickness is formed;
c) at least partially curing the silicone shell; and
d) removing the silicone shell from the mandrel.
3. The method of claim 1 wherein the silicone dispersion is sprayed onto the mandrel using a high volume low pressure spray device.
4. The method of claim 1 wherein the silicone dispersion is sprayed onto the mandrel using a rotary atomizer.
5. The method of claim 1 wherein the silicone dispersion is an HTV silicone dispersion.
6. The method of claim 1 wherein the silicone dispersion is an RTV silicone dispersion.
7. The method of claim 2 wherein at least two coats of dispersion are applied to the mandrel.
8. The method of claim 2 wherein at least three coats of dispersion are applied to the mandrel.
9. The method of claim 2 wherein at least four coats of dispersion are applied to the mandrel.
10. The method of claim 1 wherein at least five coats of dispersion are applied to the mandrel.
11. The method of claim 1 wherein the dispersion is sprayed by atomizing the dispersion using a flow of air below 20 psi.
12. The method of claim 1 wherein the dispersion is sprayed by atomizing the dispersion using a flow of air below 10 psi.
13. The method of claim 1 wherein the shell is 0.00±0.004″ thick.
14. The method of claim 1 wherein the shell is 0.012″±0.004″ thick.
15. The method of claim 1 wherein the shell is 0.014±0.004″ thick.
16. The method of claim 1 wherein the shell is 0.013″±0.004″ thick.
17. The method of claim 1 further comprising applying a coat of silicone dispersion to a portion of the mandrel to create a partial coat of dispersion.
18. The method of claim 17 wherein the mandrel includes an anterior surface and a posterior surface that meet at a perimeter region.
19. The method of claim 18 wherein the partial coat of dispersion is applied to the perimeter region of the mandrel.
20. The method of claim 17 wherein the mandrel has at least one relatively planar region and at least on region that is curved.
21. The method of claim 20 wherein the partial coat of dispersion is applied to the at least one region that is curved.
22. The method of claim 20 wherein the mandrel has a first region having a first radius of curvature and a second region having a second smaller radius of curvature.
23. The method of claim 22 wherein the region having the partial coat of dispersion is applied to the region having a second, smaller radius of curvature.
24. The method of claim 17 wherein at least one partial coat of dispersion is applied to at least a first portion of the mandrel.
25. The method of claim 1 wherein the mandrel is appropriately sized and shaped for forming an implantable prosthesis.
26. The method of claim 25 wherein the mandrel is appropriately sized and shaped for forming an implantable mammary prosthesis.
27. The method of claim 1 wherein the mandrel is appropriately sized and shaped for forming a tissue expander.
28. The method of claim 1 wherein the mandrel is appropriately sized and shaped for forming a round body implant.
29. The method of claim 1 wherein the mandrel is appropriately sized and shaped for forming a crescent-shaped body implant.
30. The method of claim 1 wherein the mandrel is appropriately sized and shaped for forming an oval body implant.
31. A shell for a tissue expander formed by the method of claim 1.
32. A shell for an implantable prosthesis formed by the method of claim 1.
33. A prosthesis formed by a method comprising:
a) providing a mandrel that is appropriately sized and shaped for forming a body implant;
b) applying a coating silicone dispersion to the mandrel by spraying the silicon dispersion at low pressure;
c) allowing evaporation of at least a portion of the solvent in the coating silicone dispersion;
d) repeating steps b) and c) until a silicone shell having a desired thickness is formed;
e) at least partially curing the silicone shell;
f) removing the silicone shell from the mandrel; and
g) applying a seal to the shell.
34. The prosthesis of claim 33 wherein the shell is shaped and sized for use as a mammary prosthesis.
35. A tissue expander formed by a method comprising:
a) providing a mandrel that is appropriately sized and shaped for forming a body implant;
b) applying a coating silicone dispersion to the mandrel by spraying the silicon dispersion at low pressure;
c) allowing evaporation of at least a portion of the solvent in the coating silicone dispersion;
d) repeating steps b) and c) until a silicone shell having a desired thickness is formed;
e) at least partially curing the silicone shell;
f) removing the silicone shell from the mandrel;
g) providing the shell with a filling port; and
h) sealing the shell.
36. The prosthesis of claim 33 wherein the mandrel is appropriately sized and shaped for forming an implantable prosthesis.
37. The prosthesis of claim 33 wherein the mandrel is appropriately sized and shaped for forming an implantable mammary prosthesis.
38. The prosthesis of claim 33 wherein the mandrel is appropriately sized and shaped for forming a tissue expander.
39. The prosthesis of claim 33 wherein the mandrel is appropriately sized and shaped for forming a round body implant.
40. The prosthesis of claim 33 wherein the mandrel is appropriately sized and shaped for forming a crescent-shaped body implant.
41. The prosthesis of claim 33 wherein the mandrel is appropriately sized and shaped for forming an oval body implant.
42. The prosthesis of claim 33 wherein at least a portion of the external surface of the shell is textured.
43. The tissue expander of claim 34 wherein the shell is shaped and sized for use as a mammary tissue expander.
44. The tissue expander of claim 34 wherein at least a portion of the external surface of the shell is textured.
45. The method of claim 1 wherein the silicone dispersion contains 10% to 50% silicone solids.
46. The method of claim 1 wherein the silicone dispersion contains 20% to 40% silicone solids.
47. The method of claim 1 wherein the silicone dispersion contains 25% to 35% silicone solids.
48. The method of claim 1 wherein the dispersion contains 28% to 32% solids.
49. The method of claim 33 further comprising filling the prosthesis with a liquid.
50. The method of claim 33 further comprising filling the prosthesis with a gel.
51. The method of claim 33 further comprising filling the prosthesis with a saline solution.
52. The method of claim 33 further comprising filling the prosthesis with silicone filler.
US11/573,666 2004-08-13 2005-08-15 Spray Method For Forming Shells For Prostheses Abandoned US20080208336A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/573,666 US20080208336A1 (en) 2004-08-13 2005-08-15 Spray Method For Forming Shells For Prostheses

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/918,277 US7758788B2 (en) 2004-08-13 2004-08-13 Spray method for forming shells for prostheses
PCT/US2005/029166 WO2006020993A1 (en) 2004-08-13 2005-08-15 Spray method for forming shells for prostheses
US11/573,666 US20080208336A1 (en) 2004-08-13 2005-08-15 Spray Method For Forming Shells For Prostheses

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/918,277 Continuation-In-Part US7758788B2 (en) 2004-08-13 2004-08-13 Spray method for forming shells for prostheses

Publications (1)

Publication Number Publication Date
US20080208336A1 true US20080208336A1 (en) 2008-08-28

Family

ID=35385745

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/918,277 Active 2029-05-20 US7758788B2 (en) 2004-08-13 2004-08-13 Spray method for forming shells for prostheses
US11/573,666 Abandoned US20080208336A1 (en) 2004-08-13 2005-08-15 Spray Method For Forming Shells For Prostheses
US12/720,715 Active 2025-07-16 US8562677B2 (en) 2004-08-13 2010-03-10 Spray method for forming shells for prostheses

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/918,277 Active 2029-05-20 US7758788B2 (en) 2004-08-13 2004-08-13 Spray method for forming shells for prostheses

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/720,715 Active 2025-07-16 US8562677B2 (en) 2004-08-13 2010-03-10 Spray method for forming shells for prostheses

Country Status (7)

Country Link
US (3) US7758788B2 (en)
EP (3) EP2446858B1 (en)
CN (1) CN101035489B (en)
BR (1) BRPI0514315B1 (en)
ES (2) ES2704655T3 (en)
HK (1) HK1113535A1 (en)
WO (1) WO2006020993A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090255618A1 (en) * 2008-04-11 2009-10-15 American Breast Care Breast Prosthesis for Patients with Edema
US20100178414A1 (en) * 2008-11-20 2010-07-15 Allergan, Inc. System and method for molding soft fluid-filled implant shells
US20140180412A1 (en) * 2012-12-13 2014-06-26 Allergan, Inc. Device and method for making a variable surface breast implant

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7758788B2 (en) * 2004-08-13 2010-07-20 Mentor Worldwide Llc Spray method for forming shells for prostheses
US20080119587A1 (en) * 2006-11-17 2008-05-22 Johnny Snyder Method of forming resin-based article and article formed therefrom
US8313527B2 (en) 2007-11-05 2012-11-20 Allergan, Inc. Soft prosthesis shell texturing method
US8070809B2 (en) * 2008-04-28 2011-12-06 Allergan, Inc. Flush patch for elastomeric implant shell
US8377128B2 (en) 2008-04-28 2013-02-19 Allergan, Inc. Flush patch for elastomeric implant shell
US8506627B2 (en) 2008-08-13 2013-08-13 Allergan, Inc. Soft filled prosthesis shell with discrete fixation surfaces
US9050184B2 (en) 2008-08-13 2015-06-09 Allergan, Inc. Dual plane breast implant
EP2349051A1 (en) 2008-08-20 2011-08-03 Allergan, Inc. Self-sealing shell for inflatable prostheses
US20100249924A1 (en) 2009-03-27 2010-09-30 Allergan, Inc. Bioerodible matrix for tissue involvement
WO2010132586A1 (en) * 2009-05-13 2010-11-18 Allergan, Inc. Implants and methods for manufacturing same
US20110093069A1 (en) 2009-10-16 2011-04-21 Allergan, Inc. Implants and methdos for manufacturing same
KR101067475B1 (en) * 2009-11-19 2011-09-27 유원석 Breast implant that has surface with silicone open cell foam layer, and its manufacturing method
CA2787824A1 (en) * 2010-01-28 2011-08-04 Allergan, Inc. Open celled foams, implants including them and processes for making same
US9072821B2 (en) 2010-02-05 2015-07-07 Allergan, Inc. Biocompatible structures and compositions
US20110196488A1 (en) * 2010-02-03 2011-08-11 Allergan, Inc. Degradation resistant implantable materials and methods
US8877822B2 (en) 2010-09-28 2014-11-04 Allergan, Inc. Porogen compositions, methods of making and uses
US9044897B2 (en) 2010-09-28 2015-06-02 Allergan, Inc. Porous materials, methods of making and uses
US9138308B2 (en) 2010-02-03 2015-09-22 Apollo Endosurgery, Inc. Mucosal tissue adhesion via textured surface
US8889751B2 (en) 2010-09-28 2014-11-18 Allergan, Inc. Porous materials, methods of making and uses
KR20130004575A (en) 2010-02-05 2013-01-11 알러간, 인코포레이티드 Inflatable prostheses and methods of making same
US9205577B2 (en) 2010-02-05 2015-12-08 Allergan, Inc. Porogen compositions, methods of making and uses
US9138309B2 (en) 2010-02-05 2015-09-22 Allergan, Inc. Porous materials, methods of making and uses
CA2797691A1 (en) 2010-04-27 2011-11-03 Alexei Goraltchouk Foam-like materials and methods for producing same
US11202853B2 (en) 2010-05-11 2021-12-21 Allergan, Inc. Porogen compositions, methods of making and uses
KR101854481B1 (en) 2010-05-11 2018-05-03 알러간, 인코포레이티드 Porogen compositions, methods of making and uses
KR20120032392A (en) * 2010-09-28 2012-04-05 유원석 Process of silicon implant having shell improved durability
US8679279B2 (en) 2010-11-16 2014-03-25 Allergan, Inc. Methods for creating foam-like texture
US8546458B2 (en) 2010-12-07 2013-10-01 Allergan, Inc. Process for texturing materials
US20130116783A1 (en) * 2011-11-07 2013-05-09 Applied Silicone Corporation Method for forming bilayer patches
US8801782B2 (en) 2011-12-15 2014-08-12 Allergan, Inc. Surgical methods for breast reconstruction or augmentation
US10092392B2 (en) 2014-05-16 2018-10-09 Allergan, Inc. Textured breast implant and methods of making same
US9539086B2 (en) 2014-05-16 2017-01-10 Allergan, Inc. Soft filled prosthesis shell with variable texture
US20160052178A1 (en) * 2014-08-21 2016-02-25 Applied Silicone Corporation Automated prosthesis shell system and method
US10156240B2 (en) * 2016-06-16 2018-12-18 Scott C. Mancl Motor-driven fan with trapped adhesive for minimizing vibration
JP7153790B2 (en) 2018-09-13 2022-10-14 アラーガン、インコーポレイテッド tissue stretcher
USD896383S1 (en) 2018-09-13 2020-09-15 Allergan, Inc. Tissue expansion device

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3094704A (en) * 1960-09-29 1963-06-25 Plastomeric Products Corp Plastic glove
US4761299A (en) * 1987-03-31 1988-08-02 James E. Hynds Method and apparatus for electrostatic spray coating
US4822549A (en) * 1985-07-15 1989-04-18 "Gechem" Method for preparing a shaped layer by gun spraying
US4946464A (en) * 1981-07-22 1990-08-07 Pevsner Paul H Method of manufacturing miniature balloon catheter and product thereof
US4955909A (en) * 1989-01-31 1990-09-11 Bioplasty, Inc. Textured silicone implant prosthesis
US4960425A (en) * 1987-05-27 1990-10-02 Mentor Corporation Textured surface frosthesis implants
US5022942A (en) * 1987-05-27 1991-06-11 Mentor Corporation Method of making textured surface prosthesis implants
US5064119A (en) * 1989-02-03 1991-11-12 Binks Manufacturing Company High-volume low pressure air spray gun
US5296069A (en) * 1991-12-27 1994-03-22 Silimed-Silicone E. Instrumental Medico Cirurgico E. Hosiptalar Ltda. Process for manufacturing implants having coated surfaces
US5525275A (en) * 1993-07-27 1996-06-11 Pmt Corporation Method of manufacture of enhanced surface implant
US5630844A (en) * 1995-06-07 1997-05-20 Novamed Medical Products Manufacturing, Inc. Biocompatible hydrophobic laminate with thermoplastic elastomer layer
US5935164A (en) * 1997-02-25 1999-08-10 Pmt Corporaton Laminated prosthesis and method of manufacture
US5961552A (en) * 1997-08-02 1999-10-05 Pmt Corporation Internally configured prosthesis
US5964803A (en) * 1993-07-27 1999-10-12 Pmt Corporation Enhanced surface implant and method of manufacture
US6056993A (en) * 1997-05-30 2000-05-02 Schneider (Usa) Inc. Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel
US20020136907A1 (en) * 1999-02-16 2002-09-26 Andreas Weber Method of protecting glass substrate surfaces
US20020143396A1 (en) * 2001-04-03 2002-10-03 Falcon Anita M. Reinforced radius mammary prostheses and soft tissue expanders
US20030059599A1 (en) * 2001-03-30 2003-03-27 Beckley Ronald Scott Coating and coating composition
US20030197311A1 (en) * 1996-12-11 2003-10-23 Peter John Stephenson Process and apparatus for forming a thin-walled elastomeric article
US6784222B2 (en) * 2001-03-07 2004-08-31 Frank David Zychowski 100% solids radiation curable conductive primer
US20040254545A1 (en) * 2003-06-16 2004-12-16 Rider Dean Loller Method and apparatus for extending feeding tube longevity
US20050216094A1 (en) * 2004-03-03 2005-09-29 Prewett Donovan D Devices having a textured surface

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3094A (en) * 1843-05-19 Improvement in the arrangement of feeding or delivery rollers of carding-engines
US3094804A (en) 1961-03-30 1963-06-25 Carroll Walton Engineering Co Fishing lure
US4205401A (en) 1978-05-25 1980-06-03 Dow Corning Corporation Mammary prosthesis which resists capsular contracture
US4592755A (en) 1985-06-11 1986-06-03 Ethyl Corporation Mammary implant
US4887770A (en) 1986-04-18 1989-12-19 Nordson Corporation Electrostatic rotary atomizing liquid spray coating apparatus
CA2023922A1 (en) * 1989-09-05 1991-03-06 James M. Curtis Method of manufacturing an implantable article provided with a micropillared surface
US5633306A (en) 1992-12-03 1997-05-27 Ransburg Corporation Nonincendive rotary atomizer
US20020055710A1 (en) * 1998-04-30 2002-05-09 Ronald J. Tuch Medical device for delivering a therapeutic agent and method of preparation
US6692527B1 (en) * 1999-12-01 2004-02-17 Howard T. Bellin Non-rotating breast implant
US6602452B2 (en) * 2001-07-18 2003-08-05 Mcghan Medical Corporation Rotational molding of medical articles
US7758788B2 (en) * 2004-08-13 2010-07-20 Mentor Worldwide Llc Spray method for forming shells for prostheses

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3094704A (en) * 1960-09-29 1963-06-25 Plastomeric Products Corp Plastic glove
US4946464A (en) * 1981-07-22 1990-08-07 Pevsner Paul H Method of manufacturing miniature balloon catheter and product thereof
US4822549A (en) * 1985-07-15 1989-04-18 "Gechem" Method for preparing a shaped layer by gun spraying
US4761299B1 (en) * 1987-03-31 1997-04-01 Ransburg Corp Method and apparatus for electrostatic spray coating
US4761299A (en) * 1987-03-31 1988-08-02 James E. Hynds Method and apparatus for electrostatic spray coating
US5022942A (en) * 1987-05-27 1991-06-11 Mentor Corporation Method of making textured surface prosthesis implants
US4960425A (en) * 1987-05-27 1990-10-02 Mentor Corporation Textured surface frosthesis implants
US4955909A (en) * 1989-01-31 1990-09-11 Bioplasty, Inc. Textured silicone implant prosthesis
US5064119A (en) * 1989-02-03 1991-11-12 Binks Manufacturing Company High-volume low pressure air spray gun
US5296069A (en) * 1991-12-27 1994-03-22 Silimed-Silicone E. Instrumental Medico Cirurgico E. Hosiptalar Ltda. Process for manufacturing implants having coated surfaces
US5964803A (en) * 1993-07-27 1999-10-12 Pmt Corporation Enhanced surface implant and method of manufacture
US5525275A (en) * 1993-07-27 1996-06-11 Pmt Corporation Method of manufacture of enhanced surface implant
US5630844A (en) * 1995-06-07 1997-05-20 Novamed Medical Products Manufacturing, Inc. Biocompatible hydrophobic laminate with thermoplastic elastomer layer
US20030197311A1 (en) * 1996-12-11 2003-10-23 Peter John Stephenson Process and apparatus for forming a thin-walled elastomeric article
US5935164A (en) * 1997-02-25 1999-08-10 Pmt Corporaton Laminated prosthesis and method of manufacture
US6056993A (en) * 1997-05-30 2000-05-02 Schneider (Usa) Inc. Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel
US5961552A (en) * 1997-08-02 1999-10-05 Pmt Corporation Internally configured prosthesis
US20020136907A1 (en) * 1999-02-16 2002-09-26 Andreas Weber Method of protecting glass substrate surfaces
US6784222B2 (en) * 2001-03-07 2004-08-31 Frank David Zychowski 100% solids radiation curable conductive primer
US20030059599A1 (en) * 2001-03-30 2003-03-27 Beckley Ronald Scott Coating and coating composition
US20020143396A1 (en) * 2001-04-03 2002-10-03 Falcon Anita M. Reinforced radius mammary prostheses and soft tissue expanders
US6605116B2 (en) * 2001-04-03 2003-08-12 Mentor Corporation Reinforced radius mammary prostheses and soft tissue expanders
US20040254545A1 (en) * 2003-06-16 2004-12-16 Rider Dean Loller Method and apparatus for extending feeding tube longevity
US20050216094A1 (en) * 2004-03-03 2005-09-29 Prewett Donovan D Devices having a textured surface

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090255618A1 (en) * 2008-04-11 2009-10-15 American Breast Care Breast Prosthesis for Patients with Edema
US7753954B2 (en) * 2008-04-11 2010-07-13 American Breast Care LP Breast prosthesis for patients with edema
US20100178414A1 (en) * 2008-11-20 2010-07-15 Allergan, Inc. System and method for molding soft fluid-filled implant shells
EP2511062A1 (en) * 2008-11-20 2012-10-17 Allergan, Inc. System and method for molding soft fluid-filled implant shells
US8431179B2 (en) 2008-11-20 2013-04-30 Allergan, Inc. System and method for molding soft fluid-filled implant shells
US20140180412A1 (en) * 2012-12-13 2014-06-26 Allergan, Inc. Device and method for making a variable surface breast implant
US9688006B2 (en) * 2012-12-13 2017-06-27 Allergan, Inc. Device and method for making a variable surface breast implant
US20170290652A1 (en) * 2012-12-13 2017-10-12 Allergan, Inc. Device and method for making a variable surface breast implant
US10864661B2 (en) * 2012-12-13 2020-12-15 Allergan, Inc. Device and method for making a variable surface breast implant

Also Published As

Publication number Publication date
WO2006020993A1 (en) 2006-02-23
EP2446858A1 (en) 2012-05-02
EP1796595A1 (en) 2007-06-20
BRPI0514315A (en) 2008-06-10
HK1113535A1 (en) 2008-10-10
EP1796595B1 (en) 2020-06-03
US20100168853A1 (en) 2010-07-01
CN101035489B (en) 2012-11-07
EP3300693A1 (en) 2018-04-04
CN101035489A (en) 2007-09-12
ES2704655T3 (en) 2019-03-19
US20060036320A1 (en) 2006-02-16
BRPI0514315B1 (en) 2022-07-19
EP3300693B1 (en) 2020-01-01
EP2446858B1 (en) 2018-11-07
ES2804752T3 (en) 2021-02-09
US7758788B2 (en) 2010-07-20
US8562677B2 (en) 2013-10-22

Similar Documents

Publication Publication Date Title
US8562677B2 (en) Spray method for forming shells for prostheses
US20240041586A1 (en) Soft filled prosthesis shell with discrete fixation surfaces
AU617667B2 (en) Open-cell, silicone-elastomer medical implant and method for making
EP1727497B1 (en) Method for producing implants having a textured surface
CA2733925C (en) Soft filled prosthesis shell with discrete fixation surfaces
US5007929A (en) Open-cell, silicone-elastomer medical implant
US20120321777A1 (en) Iimplants and methods for manufacturing same
AU2015205876A1 (en) Soft filled prosthesis shell with discrete fixation surfaces

Legal Events

Date Code Title Description
AS Assignment

Owner name: MENTOR CORPORATION,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JOB, KEITH;REEL/FRAME:020471/0974

Effective date: 20080128

AS Assignment

Owner name: MENTOR WORLDWIDE LLC,CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:MENTOR CORPORATION;REEL/FRAME:024023/0607

Effective date: 20091204

Owner name: MENTOR WORLDWIDE LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:MENTOR CORPORATION;REEL/FRAME:024023/0607

Effective date: 20091204

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION