US20080230329A1 - Wheel Chock Assembly - Google Patents

Wheel Chock Assembly Download PDF

Info

Publication number
US20080230329A1
US20080230329A1 US11/690,499 US69049907A US2008230329A1 US 20080230329 A1 US20080230329 A1 US 20080230329A1 US 69049907 A US69049907 A US 69049907A US 2008230329 A1 US2008230329 A1 US 2008230329A1
Authority
US
United States
Prior art keywords
wheel
cord
support members
handle
main member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/690,499
Other versions
US7753177B2 (en
Inventor
Rita Slager
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/690,499 priority Critical patent/US7753177B2/en
Publication of US20080230329A1 publication Critical patent/US20080230329A1/en
Application granted granted Critical
Publication of US7753177B2 publication Critical patent/US7753177B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T3/00Portable devices for preventing unwanted movement of vehicles, e.g. chocks

Definitions

  • This invention is related generally to wheel chocks and, more particularly, to a portable wheel chock assembly for securing a wheel of a cart.
  • Wheel chock assemblies are used to secure a wheel in place for a limited amount of time. Such assemblies in the prior art typically consist of flanges of a particular shape that interact with the wheel to keep it in a certain desired position. Examples of these prior art wheel chock assemblies are disclosed in the following United States patents: Pat. No. 3,120.292 (Rambat), Pat. No. 4,854,790 (Andre) and Pat. No. 6,378,956 (Van De Walker).
  • wheel chock assemblies of the prior art have, however, a number of problems and shortcomings. They are often bulky, thereby making them difficult to transport and manage. Given the nature of the use of a wheel chock assembly, it has to be transported to the location where it is needed. While it would be desirable to store the wheel chock assembly in the trunk of a vehicle or other storage space, most wheel chock assemblies in the prior art are hard to manage since they usually require a large amount of storage space given their large size. This storage space could be allocated to other and better uses if the assembly was smaller. A wheel chock assembly that is easily collapsible would therefore be greatly appreciated not only for being conveniently portable but also for its advantages when stored between uses.
  • This invention meets these needs and overcomes other problems and shortcomings in the prior art with an apparatus that is simple and inexpensive to construct, not at all complicated to maintain, and also highly reliable to use.
  • This invention is for a wheel chock assembly that includes a base member extending axially from a top end to a bottom end, first and second support members where the upper ends of the support members are pivotally and slidably engaged with respect to the base member, first and second wheel chocks that are mounted with respect to the lower ends of the support members, and an adjustment mechanism mounted to the base member.
  • the adjustment mechanism is operatively engaged to the support members to achieve axial movement of the upper ends with respect to the base member so that the support members can be extended and retracted within a range that permits its the assembly to obtain the desired spacing between the wheel chocks for gripping the wheel of a cart.
  • the adjustment mechanism is a cord and the base member has a main member and a handle.
  • the main member is sized to fit into the bottom opening of the handle.
  • both the main member and the handle are cylindrical in shape and the main member has an outside diameter less than the inside diameter of the handle.
  • the handle has at least two sections telescopically connected to allow it to reversibly expand and collapse.
  • the cord secured to the main member such that upward movement of the cord draws the main member within the handle which extends the support members outward and moving the cord downward withdraws the main member from the handle to retract the support members inward. More desirable is where the cord has proximal and distal ends, the proximal end extending outward from the top end of the handle and the distal end being attached to an upper portion of the main member.
  • the terms “upward” and “downward” provide relative positioning with respect to a vertical dimension and are used in this application for ease in discussing the embodiments of the present invention although the wheel chock assembly can be used in a variety of orientations.
  • the terms “proximal” and “distal” also provide relative positioning with respect to the user of the wheel chock assembly and are similarly used in this application for ease in discussing the embodiments of the present invention.
  • the base member further including a plunger and compression spring.
  • the plunger has a bore passing through it that is large enough to receive the cord.
  • the handle has a passageway that extends from the bottom opening to the top end and an aperture communicating with the passageway.
  • the aperture is positioned radial or orthogonal to the axis of the passageway and is sized to receive the plunger.
  • the spring is also radial to the passageway, abutting and in alignment with the plunger so that the plunger is biased by the spring to move outward away from the passageway.
  • the cord extends from one end of the passageway to the other by way of the bore of the plunger.
  • the upper ends of the support members are pivotally secured to a slide-bar.
  • the slide-bar extends through the lower end of the handle between the upper ends of the support members.
  • the main member has a slot along its upper portion that includes two longitudinal notches in radial alignment. Each notch is sized to slidably receive the slide-bar. Axial movement of the main member in one direction with respect to the handle, typically upward or downward, results in axial movement of the slide-bar within the slot in the opposite direction. The axial movement of the slide-bar is limited, however, by the length of the slot.
  • the wheel chock assembly also includes first and second inner links.
  • the inside ends of the links are pivotally secured adjacent to the lower portion of the main member.
  • the outside ends of the links are pivotally connected at points proximal to the respective lower end of the first and second support members.
  • axial movement of the slide-bar in a downward direction i.e., towards the distal end of the slot
  • Axial movement of the slide-bar in the opposite or upward direction draws the inner links inward towards the main member, thereby collapsibly retracting the support members.
  • Highly preferred embodiments find the inside ends of the inner links are joined by a torsion spring to cause the inner links to be drawn inward towards the main member by the spring.
  • each wheel chock is pivotally mounted to a respective support member so that the wheel chock is free to move between open and closed positions. More desirable is where the wheel chocks are cylindrical in shape.
  • Another aspect of this invention is directed to a method for securing the wheel of a cart.
  • the method includes the steps of providing an assembly that is expandable to form a wheel-receiving space defined by wheel chocks; expanding the assembly; and gripping the wheel between the wheel chocks.
  • the assembly has a base member, first and second support members pivotally and slidably engaged to the base member, first and second wheel chocks mounted to the lower ends of the first and second support members, and an adjustment mechanism mounted with respect to the base member that is operatively engaged to the support members to axially move them with respect to the base member
  • a desired embodiment includes the step of adjusting the assembly spacing by extending and retracting the support members between certain limits to firmly grip the wheel between the wheel chocks. In certain cases, the step is added of unloading the contents of the cart with the wheel chock assembly firmly gripping the wheel.
  • the adjustment mechanism is a cord and the adjusting step includes placing the wheel between the wheel chocks when the assembly is in the expanded position and lowering the cord to cause the support members to pivot inward to create a pinching effect on the wheel between the wheel chocks, thereby securely gripping the wheel between the wheel chocks.
  • the wheel which is secured with the assembly is on a shopping cart.
  • FIG. 1 is an exploded perspective view of a preferred wheel chock assembly in accordance with this invention.
  • FIG. 2 is an exploded view of the cap, plunger and compression pin of the assembly in FIG. 1 .
  • FIG. 3 is a front perspective view of the assembly in FIG. 1 in the open position.
  • FIG. 4 is a back perspective view of the assembly in FIG. 1 in the closed position.
  • FIG. 5 is a back view of the assembly in FIG. 1 in the open position gripping a wheel.
  • FIG. 6 is a side view of the assembly in FIG. 5 .
  • FIG. 7 is a front view of the assembly in FIG. 5 .
  • FIG. 8 is a fragmentary detailed view of the assembly in FIG. 1 illustrating from a back perspective the support members and the wheel chocks in the open position gripping a wheel.
  • FIG. 9 is a fragmentary detailed view of the assembly in FIG. 1 illustrating from a front perspective the support members and the wheel chocks in the open position gripping a wheel.
  • FIG. 10 is a side perspective view of a shopping cart illustrating the wheel chocks of the assembly in FIG. 1 in the open position gripping a wheel
  • FIG. 1 illustrates a wheel chock assembly 10 in accordance with this invention.
  • the wheel chock assembly 10 is comprised of base member 12 , first and second support members 14 , 16 , first and second wheel chocks 56 , 58 , and adjustment mechanism 98 .
  • Adjustment mechanism 98 in the preferred embodiment shown in FIGS. 1 and 3 - 7 is cord 40 .
  • Base member includes handle 24 and main member 22 .
  • Main member 22 fits securely within handle 24 as shown in FIGS. 3 , 5 and 10 .
  • Main member 22 is cylindrical having outside diameter 23 that is less than the inside diameter 25 of cylindrical handle 24 , thereby allowing main member 22 to be slidably received in bottom opening 28 of handle 24 as shown in FIG. 1 .
  • Main member 22 is oriented in a co-axial manner with handle 24 along axis 92 as illustrated in FIGS. 1 and 3 .
  • first and second support members 14 , 16 are pivotably connected to handle 24 by slide-bar 48 .
  • slide-bar 48 first passes through hole 27 in upper end 18 of second support member 16 .
  • slide-bar 48 passes through the first of two aligned apertures 29 (only one being shown) in handle 24 . Since handle 24 is positioned over the proximal or upper portion 30 of main member 22 , slide-bar 48 is free to pass through slot 46 in main member 22 and then through the remaining aperture 29 .
  • slide-bar 48 proceeds through hole 27 in upper end 18 of first support member 14 before being capped to secure slide-bar 48 with attached support members 14 . 16 to handle 24 .
  • Slot 46 has two identical notches 114 (only one being shown) in radial alignment along upper portion 30 of main member 22 .
  • Notches 114 are sized to slidably receive slide-bar 48 .
  • slide-bar 48 is free to axially move within slot 46 within the limits of notches 114 .
  • Top stop 100 and bottom stop 102 at both ends of notches 114 therefore define axial movement of slide-bar 48 within slot 46 .
  • Cord 40 passes from main member 22 into handle 24 through hole 31 in main-member cap 42 securely mounted at the proximal end of main member 22 .
  • Cord 40 is secured to main member 22 at upper portion 30 by cord knot 44 distal to main-member cap 42 and sized not to pass through hole 31 .
  • Handle 24 has bottom opening 28 which allows cord 40 to pass into handle 24 and through handle 24 to cap 38 that frictionally fits upon top end 33 of handle 24 .
  • FIG. 2 illustrates that cap 38 includes recess 85 and aperture 88 .
  • Compression spring 36 is seated within recess 85 which extends radially or orthogonal to passageway 90 of handle 24 .
  • Plunger 34 abuts compression spring 36 and is supported laterally within cap 38 by aperture 88 .
  • Aperture 88 communicates with the exterior of handle 24 and is positioned opposite to recess 85 , also extending orthogonal to passageway 90 .
  • Aperture 88 allows plunger 34 to have its distal portion 87 extend into passageway 90 while its proximal portion 89 protrudes outward from handle 24 .
  • plunger 34 is biased to move outward through aperture 88 by compression spring 36 and that pushing plunger 34 inward to expose more of distal portion 87 to passageway 90 requires compression of spring 36 .
  • Distal portion 87 of plunger 34 includes bore 86 .
  • Bore 86 extends linearly through distal portion 87 and is cylindrical in shape, having a diameter large enough to slidably receive cord 40 .
  • Cord 40 extends through passageway 90 which runs through the center of handle 24 from bottom opening 28 through cap 38 at top end 33 . In cap 38 , passageway 90 passes axially from bottom to top. Cord 40 enters through the bottom of passageway 90 and proceeds through bore 86 before exiting cap 38 and extending outward from handle 24 at top opening 91 .
  • plunger 34 When plunger 34 is pushed inward, plunger 34 aligns bore 86 with passageway 90 , allowing cord 40 to move freely within passageway 90 .
  • plunger 34 When plunger 34 is released, plunger 34 moves outward by action of compression spring 36 to crimp cord 40 outside of bore 86 at both of its ends between plunger 34 and the inner walls of aperture 88 .
  • Aperture 88 is sized so that it can receive plunger 34 and cord 40 but still securely pinch cord 40 when drawn within it by plunger 34 .
  • Handle 24 consists of three telescoping sections, first extension 116 , second extension 118 and third extension 120 as shown in FIGS. 3-7 and 10 . This allows handle 24 to extend and collapse axially. The telescoping nature of handle 24 allows users of wheel chock assembly 10 to adjust handle 24 for ease of use.
  • support members 14 , 16 are pivotally connected to main member 22 by inner links 50 , 51 .
  • inner links 50 , 51 is pivotably secured to bottom or distal end 32 of main member 22 by assembly pin fastener 72 .
  • Assembly pin fastener 72 passes through hole 106 on inside end 52 of first inner link 50 before extending through torsion spring 70 .
  • Assembly pin fastener 72 finally proceeds through apertures 108 in registry at bottom end 32 (only one being shown) before finally passing through inside end 52 of second inner link 51 .
  • Inside pin 82 secures the end of assembly pin fastener 72 .
  • Outside ends 54 of inner links 50 , 51 are pivotally secured at points proximal to lower end 20 of first and second support members 14 , 16 .
  • Outside ends 54 are connected to support members 14 , 16 by pins 76 , cylindrical nut 78 and end piece 80 as shown in FIG. 1 .
  • Each pin 76 passes through support hole 110 in support member 14 , 16 , through cylindrical nut 78 , and then through inner link 50 . 51 .
  • End piece 80 caps pin 76 to secure outside end 54 of each inner link 50 , 51 to its respective support member 14 , 16 .
  • first and second wheel chocks 56 , 58 are pivotably secured to lower ends 20 of first and second support members 14 , 16 .
  • Attached end 68 of each wheel chock 56 , 58 is pivotably connected to cylindrical protrusion 60 .
  • Cylindrical protrusion 60 extends outward from lower end 20 of each support member 14 , 16 and is received into pivot slot 61 on attached end 68 .
  • Pivot pin 64 is then pushed into pivot holes 62 in linear alignment extending through both attached end 68 and protrusion 60 , thereby pivotably securing first and second wheel chocks 56 , 58 to first and second support members 14 , 16 .
  • each wheel chock 56 , 58 can be pivoted so that free end 66 is positioned adjacent to the respective support member 14 , 16 to which wheel chock 56 , 58 is attached as shown in FIG. 4 .
  • Pivotability of wheel chocks 56 , 58 may be optional in that wheel chocks 56 , 58 can always remain in an open position as seen in FIGS. 1 , 3 , 5 - 10 .
  • First and second support members 14 , 16 are preferably flat bars chosen to have a desired length when extended outward from base member 12 . These bars also have sufficient width to attach to first and second wheel chocks 56 , 58 but a narrow depth so that when first and second support members 14 , 16 are retracted, they are able to lie flat or nest against the exterior of main member 22 as illustrated in FIG. 4 .
  • wheel chock assembly 10 can secure wheel 84 on shopping cart 112 in a parking lot as shown in FIG. 10 .
  • Wheel chock assembly 10 is easily stored in a vehicle trunk. Once an individual is done shopping, wheel chock assembly 10 is removed from the vehicle trunk and expanded outward as illustrated in FIG. 3 .
  • Wheel chock assembly 10 is expanded by pushing in on plunger 34 to pull upward on cord 40 . This draws main member 22 within handle 24 , thereby extending first and second support members 14 , 16 outward. Handle 24 can then be expanded telescopically as shown in FIG. 3 to a length that is comfortable to the individual.
  • first and second wheel chocks 56 , 58 into their open position, i.e., where free end 66 of each wheel chock 56 , 58 is extended outward as illustrated in FIGS. 1 , 3 , 5 - 10 and is not adjacent to or nesting against first and second support members 14 , 16 .
  • the individual then places wheel 84 in the space between first and second wheel chocks 56 , 58 .
  • Cord 40 is now released in a downward direction, causing main member 22 to withdraw from handle 24 and retracting support members 14 , 16 to have wheel chocks 56 , 58 firmly grip wheel 84 as seen in FIGS. 5-10 .
  • the user releases the pressure that had been placed upon plunger 34 , allowing plunger 34 to move outward from handle 24 , crimping cord 40 within aperture 88 so that support members 14 , 16 and thereby wheel chocks 56 , 58 are held in this desired position.
  • First and second wheel chocks 56 , 58 can then be moved by the user into their closed position so that free ends 66 rest adjacent to first and second support members 14 . 16 .
  • Wheel chock assembly 10 is then stored, preferably in the trunk of the vehicle, until its next use.

Abstract

A wheel chock assembly is provided having a base member extending axially from a top end to a bottom end, first and second support members whose upper ends are pivotally and slidably engaged with respect to the base member, first and second wheel chocks mounted with respect to the lower ends of the support members, and an adjustment mechanism mounted to the base member. The adjustment mechanism is operatively engaged to the support members to achieve axial movement of their upper ends with respect to the base member to extend and retract them within a range that permits the assembly to grip the wheel of a cart between the wheel chocks. Preferably, the adjustment mechanism is a cord secured to the main member of the base member such that pulling the cord upward draws the main member into the handle of the base member, extending the support members outward, while releasing the cord withdraws the main member from the handle, retracting the support members inward. A method is also provided for securing the wheel of a cart.

Description

    FIELD OF THE INVENTION
  • This invention is related generally to wheel chocks and, more particularly, to a portable wheel chock assembly for securing a wheel of a cart.
  • BACKGROUND OF THE INVENTION
  • Wheel chock assemblies are used to secure a wheel in place for a limited amount of time. Such assemblies in the prior art typically consist of flanges of a particular shape that interact with the wheel to keep it in a certain desired position. Examples of these prior art wheel chock assemblies are disclosed in the following United States patents: Pat. No. 3,120.292 (Rambat), Pat. No. 4,854,790 (Andre) and Pat. No. 6,378,956 (Van De Walker).
  • These wheel chock assemblies of the prior art have, however, a number of problems and shortcomings. They are often bulky, thereby making them difficult to transport and manage. Given the nature of the use of a wheel chock assembly, it has to be transported to the location where it is needed. While it would be desirable to store the wheel chock assembly in the trunk of a vehicle or other storage space, most wheel chock assemblies in the prior art are hard to manage since they usually require a large amount of storage space given their large size. This storage space could be allocated to other and better uses if the assembly was smaller. A wheel chock assembly that is easily collapsible would therefore be greatly appreciated not only for being conveniently portable but also for its advantages when stored between uses.
  • In addition, utilization of most wheel chock assemblies can be difficult and time consuming. There has therefore long been a need for a wheel chock assembly that is quick and easy to operate when the need for such a device arises. In particular, there have been many occasions where a shopper will be attempting to empty the contents of his or her shopping cart into the trunk of their vehicle when the wheeled cart begins to roll away from both the shopper and the vehicle. Not only does this make unloading the contents of the cart difficult, but oftentimes the cart rolls away unnoticed, colliding with other objects, including other vehicles. Having available a wheel chock assembly that is both simple to store and easy to use in such situations would be a great convenience to such individuals.
  • This invention meets these needs and overcomes other problems and shortcomings in the prior art with an apparatus that is simple and inexpensive to construct, not at all complicated to maintain, and also highly reliable to use.
  • SUMMARY OF THE INVENTION
  • This invention is for a wheel chock assembly that includes a base member extending axially from a top end to a bottom end, first and second support members where the upper ends of the support members are pivotally and slidably engaged with respect to the base member, first and second wheel chocks that are mounted with respect to the lower ends of the support members, and an adjustment mechanism mounted to the base member. The adjustment mechanism is operatively engaged to the support members to achieve axial movement of the upper ends with respect to the base member so that the support members can be extended and retracted within a range that permits its the assembly to obtain the desired spacing between the wheel chocks for gripping the wheel of a cart.
  • In certain preferred embodiments, the adjustment mechanism is a cord and the base member has a main member and a handle. The main member is sized to fit into the bottom opening of the handle. Most preferred is where both the main member and the handle are cylindrical in shape and the main member has an outside diameter less than the inside diameter of the handle. Highly desirable is where the handle has at least two sections telescopically connected to allow it to reversibly expand and collapse.
  • These preferred embodiments find the cord secured to the main member such that upward movement of the cord draws the main member within the handle which extends the support members outward and moving the cord downward withdraws the main member from the handle to retract the support members inward. More desirable is where the cord has proximal and distal ends, the proximal end extending outward from the top end of the handle and the distal end being attached to an upper portion of the main member. The terms “upward” and “downward” provide relative positioning with respect to a vertical dimension and are used in this application for ease in discussing the embodiments of the present invention although the wheel chock assembly can be used in a variety of orientations. Likewise, the terms “proximal” and “distal” also provide relative positioning with respect to the user of the wheel chock assembly and are similarly used in this application for ease in discussing the embodiments of the present invention.
  • Some desirable embodiments have the base member further including a plunger and compression spring. The plunger has a bore passing through it that is large enough to receive the cord. In these embodiments, the handle has a passageway that extends from the bottom opening to the top end and an aperture communicating with the passageway. The aperture is positioned radial or orthogonal to the axis of the passageway and is sized to receive the plunger. The spring is also radial to the passageway, abutting and in alignment with the plunger so that the plunger is biased by the spring to move outward away from the passageway. In addition, the cord extends from one end of the passageway to the other by way of the bore of the plunger. Therefore, pushing the plunger inward aligns the bore axially with the passageway to permit free axial movement of the cord within the passageway. Releasing the plunger, on the other hand, allows the plunger to retract outward from the passageway which crimps the cord within the aperture and prevents any axial movement of the cord since the aperture is sized so that it can snugly receive both the plunger and the cord.
  • In other desirable embodiments, the upper ends of the support members are pivotally secured to a slide-bar. The slide-bar extends through the lower end of the handle between the upper ends of the support members. In these embodiments, the main member has a slot along its upper portion that includes two longitudinal notches in radial alignment. Each notch is sized to slidably receive the slide-bar. Axial movement of the main member in one direction with respect to the handle, typically upward or downward, results in axial movement of the slide-bar within the slot in the opposite direction. The axial movement of the slide-bar is limited, however, by the length of the slot.
  • Most preferred is where the wheel chock assembly also includes first and second inner links. The inside ends of the links are pivotally secured adjacent to the lower portion of the main member. The outside ends of the links are pivotally connected at points proximal to the respective lower end of the first and second support members. In these embodiments, axial movement of the slide-bar in a downward direction (i.e., towards the distal end of the slot) forces the inner links outward from the main member, openly extending the support members. Axial movement of the slide-bar in the opposite or upward direction draws the inner links inward towards the main member, thereby collapsibly retracting the support members. Highly preferred embodiments find the inside ends of the inner links are joined by a torsion spring to cause the inner links to be drawn inward towards the main member by the spring.
  • In other embodiments that are desirable, each wheel chock is pivotally mounted to a respective support member so that the wheel chock is free to move between open and closed positions. More desirable is where the wheel chocks are cylindrical in shape.
  • Another aspect of this invention is directed to a method for securing the wheel of a cart. The method includes the steps of providing an assembly that is expandable to form a wheel-receiving space defined by wheel chocks; expanding the assembly; and gripping the wheel between the wheel chocks. The assembly has a base member, first and second support members pivotally and slidably engaged to the base member, first and second wheel chocks mounted to the lower ends of the first and second support members, and an adjustment mechanism mounted with respect to the base member that is operatively engaged to the support members to axially move them with respect to the base member
  • A desired embodiment includes the step of adjusting the assembly spacing by extending and retracting the support members between certain limits to firmly grip the wheel between the wheel chocks. In certain cases, the step is added of unloading the contents of the cart with the wheel chock assembly firmly gripping the wheel.
  • Most preferred is where the adjustment mechanism is a cord and the adjusting step includes placing the wheel between the wheel chocks when the assembly is in the expanded position and lowering the cord to cause the support members to pivot inward to create a pinching effect on the wheel between the wheel chocks, thereby securely gripping the wheel between the wheel chocks. Highly desirable is where the wheel which is secured with the assembly is on a shopping cart.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an exploded perspective view of a preferred wheel chock assembly in accordance with this invention.
  • FIG. 2 is an exploded view of the cap, plunger and compression pin of the assembly in FIG. 1.
  • FIG. 3 is a front perspective view of the assembly in FIG. 1 in the open position.
  • FIG. 4 is a back perspective view of the assembly in FIG. 1 in the closed position.
  • FIG. 5 is a back view of the assembly in FIG. 1 in the open position gripping a wheel.
  • FIG. 6 is a side view of the assembly in FIG. 5.
  • FIG. 7 is a front view of the assembly in FIG. 5.
  • FIG. 8 is a fragmentary detailed view of the assembly in FIG. 1 illustrating from a back perspective the support members and the wheel chocks in the open position gripping a wheel.
  • FIG. 9 is a fragmentary detailed view of the assembly in FIG. 1 illustrating from a front perspective the support members and the wheel chocks in the open position gripping a wheel.
  • FIG. 10 is a side perspective view of a shopping cart illustrating the wheel chocks of the assembly in FIG. 1 in the open position gripping a wheel
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • FIG. 1 illustrates a wheel chock assembly 10 in accordance with this invention. As shown in FIGS. 1 and 3, the wheel chock assembly 10 is comprised of base member 12, first and second support members 14,16, first and second wheel chocks 56,58, and adjustment mechanism 98. Adjustment mechanism 98 in the preferred embodiment shown in FIGS. 1 and 3-7 is cord 40. Base member includes handle 24 and main member 22.
  • Main member 22 fits securely within handle 24 as shown in FIGS. 3, 5 and 10. Main member 22 is cylindrical having outside diameter 23 that is less than the inside diameter 25 of cylindrical handle 24, thereby allowing main member 22 to be slidably received in bottom opening 28 of handle 24 as shown in FIG. 1. Main member 22 is oriented in a co-axial manner with handle 24 along axis 92 as illustrated in FIGS. 1 and 3.
  • Upper ends 18 of first and second support members 14,16 are pivotably connected to handle 24 by slide-bar 48. As illustrated in FIG. 1, slide-bar 48 first passes through hole 27 in upper end 18 of second support member 16. Next, slide-bar 48 passes through the first of two aligned apertures 29 (only one being shown) in handle 24. Since handle 24 is positioned over the proximal or upper portion 30 of main member 22, slide-bar 48 is free to pass through slot 46 in main member 22 and then through the remaining aperture 29. Finally, slide-bar 48 proceeds through hole 27 in upper end 18 of first support member 14 before being capped to secure slide-bar 48 with attached support members 14.16 to handle 24.
  • Slot 46, as seen in FIG. 1, has two identical notches 114 (only one being shown) in radial alignment along upper portion 30 of main member 22. Notches 114 are sized to slidably receive slide-bar 48. One skilled in the art will recognize that slide-bar 48 is free to axially move within slot 46 within the limits of notches 114. Top stop 100 and bottom stop 102 at both ends of notches 114 therefore define axial movement of slide-bar 48 within slot 46.
  • Cord 40 passes from main member 22 into handle 24 through hole 31 in main-member cap 42 securely mounted at the proximal end of main member 22. Cord 40 is secured to main member 22 at upper portion 30 by cord knot 44 distal to main-member cap 42 and sized not to pass through hole 31. Handle 24 has bottom opening 28 which allows cord 40 to pass into handle 24 and through handle 24 to cap 38 that frictionally fits upon top end 33 of handle 24.
  • Plunger 34 and compression spring 36 are positioned within cap 38. FIG. 2 illustrates that cap 38 includes recess 85 and aperture 88. Compression spring 36 is seated within recess 85 which extends radially or orthogonal to passageway 90 of handle 24. Plunger 34 abuts compression spring 36 and is supported laterally within cap 38 by aperture 88. Aperture 88 communicates with the exterior of handle 24 and is positioned opposite to recess 85, also extending orthogonal to passageway 90. Aperture 88 allows plunger 34 to have its distal portion 87 extend into passageway 90 while its proximal portion 89 protrudes outward from handle 24. One skilled in the art will recognize that plunger 34 is biased to move outward through aperture 88 by compression spring 36 and that pushing plunger 34 inward to expose more of distal portion 87 to passageway 90 requires compression of spring 36.
  • Distal portion 87 of plunger 34 includes bore 86. Bore 86 extends linearly through distal portion 87 and is cylindrical in shape, having a diameter large enough to slidably receive cord 40. Cord 40 extends through passageway 90 which runs through the center of handle 24 from bottom opening 28 through cap 38 at top end 33. In cap 38, passageway 90 passes axially from bottom to top. Cord 40 enters through the bottom of passageway 90 and proceeds through bore 86 before exiting cap 38 and extending outward from handle 24 at top opening 91.
  • When plunger 34 is pushed inward, plunger 34 aligns bore 86 with passageway 90, allowing cord 40 to move freely within passageway 90. When plunger 34 is released, plunger 34 moves outward by action of compression spring 36 to crimp cord 40 outside of bore 86 at both of its ends between plunger 34 and the inner walls of aperture 88. One skilled in the art will recognize that once cord 40 is crimped by plunger 34, cord 40 is no longer able to move axially in either direction, maintaining main member 22 in its position with respect to handle 24. Aperture 88 is sized so that it can receive plunger 34 and cord 40 but still securely pinch cord 40 when drawn within it by plunger 34.
  • Handle 24 consists of three telescoping sections, first extension 116, second extension 118 and third extension 120 as shown in FIGS. 3-7 and 10. This allows handle 24 to extend and collapse axially. The telescoping nature of handle 24 allows users of wheel chock assembly 10 to adjust handle 24 for ease of use.
  • As illustrated in FIG. 1, support members 14,16 are pivotally connected to main member 22 by inner links 50,51. Inside end 52 of each inner link 50,51 is pivotably secured to bottom or distal end 32 of main member 22 by assembly pin fastener 72. Assembly pin fastener 72 passes through hole 106 on inside end 52 of first inner link 50 before extending through torsion spring 70. Assembly pin fastener 72 finally proceeds through apertures 108 in registry at bottom end 32 (only one being shown) before finally passing through inside end 52 of second inner link 51. Inside pin 82 secures the end of assembly pin fastener 72.
  • Outside ends 54 of inner links 50,51 are pivotally secured at points proximal to lower end 20 of first and second support members 14,16. Outside ends 54 are connected to support members 14,16 by pins 76, cylindrical nut 78 and end piece 80 as shown in FIG. 1. Each pin 76 passes through support hole 110 in support member 14,16, through cylindrical nut 78, and then through inner link 50.51. End piece 80 caps pin 76 to secure outside end 54 of each inner link 50,51 to its respective support member 14,16.
  • As illustrated in FIGS. 1, 3-6 and 8-9, first and second wheel chocks 56,58 are pivotably secured to lower ends 20 of first and second support members 14,16. Attached end 68 of each wheel chock 56,58 is pivotably connected to cylindrical protrusion 60. Cylindrical protrusion 60 extends outward from lower end 20 of each support member 14,16 and is received into pivot slot 61 on attached end 68. Pivot pin 64 is then pushed into pivot holes 62 in linear alignment extending through both attached end 68 and protrusion 60, thereby pivotably securing first and second wheel chocks 56,58 to first and second support members 14,16.
  • Attached end 68 of each wheel chock 56,58 can be pivoted so that free end 66 is positioned adjacent to the respective support member 14,16 to which wheel chock 56,58 is attached as shown in FIG. 4. Pivotability of wheel chocks 56,58 may be optional in that wheel chocks 56,58 can always remain in an open position as seen in FIGS. 1, 3, 5-10.
  • Upper movement of cord 40 draws main member 22 into handle 24, causing slide-bar 48 positioned at the bottom of handle 24 to pass downward within slot 46. When slide-bar 48 is moved in a downward direction, inner links 50,51 are forced outward from main member 22 as shown in FIGS. 3, 5, 8, 9-10. This movement causes first and second support members 14,16 to open in an outward direction, thereby creating a wide wheel receiving space 104 (defined as the space between first and second wheel chocks 56,58) as illustrated in FIG. 3.
  • Downward movement of cord 40, on the other hand, allows main member 22 to drop or withdraw from handle 24, causing handle 24 to thereby move upward with respect to main member 22. This relative movement by handle 24 results in slide-bar 48 to rise upward within slot 46. When slide-bar 48 is moved in an upward direction, inner links 50,51 are pulled inward towards main member 22. Support members 14,16 with their attached wheel chocks 56, 58 are in turn drawn inward, reducing or, when collapsed, eliminating wheel receiving space 104 as seen in FIG. 4. This narrowing of wheel receiving space 104 permits wheel 84 of shopping cart 112 to be held firmly between wheel chocks 56,58 as shown in FIGS. 5-10.
  • One skilled in the art will therefore readily see that axial movement of main member 22 in a first direction with respect to handle 24 results in axial movement of slide-bar 48 within slot 46 in an opposite second direction. Slide-bar 48 will thus always move in a direction opposite to that of the movement of main member 22.
  • First and second support members 14,16 are preferably flat bars chosen to have a desired length when extended outward from base member 12. These bars also have sufficient width to attach to first and second wheel chocks 56,58 but a narrow depth so that when first and second support members 14,16 are retracted, they are able to lie flat or nest against the exterior of main member 22 as illustrated in FIG. 4.
  • Among its many uses, wheel chock assembly 10 can secure wheel 84 on shopping cart 112 in a parking lot as shown in FIG. 10. Wheel chock assembly 10 is easily stored in a vehicle trunk. Once an individual is done shopping, wheel chock assembly 10 is removed from the vehicle trunk and expanded outward as illustrated in FIG. 3. Wheel chock assembly 10 is expanded by pushing in on plunger 34 to pull upward on cord 40. This draws main member 22 within handle 24, thereby extending first and second support members 14,16 outward. Handle 24 can then be expanded telescopically as shown in FIG. 3 to a length that is comfortable to the individual. The user then moves first and second wheel chocks 56, 58 into their open position, i.e., where free end 66 of each wheel chock 56,58 is extended outward as illustrated in FIGS. 1, 3, 5-10 and is not adjacent to or nesting against first and second support members 14,16.
  • As shown in FIGS. 5-10, the individual then places wheel 84 in the space between first and second wheel chocks 56,58. Cord 40 is now released in a downward direction, causing main member 22 to withdraw from handle 24 and retracting support members 14,16 to have wheel chocks 56,58 firmly grip wheel 84 as seen in FIGS. 5-10. At this point, the user releases the pressure that had been placed upon plunger 34, allowing plunger 34 to move outward from handle 24, crimping cord 40 within aperture 88 so that support members 14,16 and thereby wheel chocks 56,58 are held in this desired position.
  • Once wheel 84 is gripped as illustrated in FIG. 10, the contents of cart 112 are unloaded. After the contents of cart 112 are unloaded, the user pushes plunger 34 inward again to cause bore 86 to return to an axial alignment with passageway 90, thereby permitting movement of cord 40 within passageway 90. The individual then allows cord 40 to proceed in a downward direction, thereby having main member 22 drop from handle 24. This retracts first and second support members 14,16 until they are nesting against main member 22 as shown in FIG. 4. Furthermore, this results in inner links 50 being positioned so that outside ends 54 are angled upward towards handle 24. First and second wheel chocks 56,58 can then be moved by the user into their closed position so that free ends 66 rest adjacent to first and second support members 14.16. Wheel chock assembly 10 is then stored, preferably in the trunk of the vehicle, until its next use.
  • A wide variety of materials are available for the various parts discussed and illustrated herein. Although the invention have been shown and described in conjunction with specific embodiments thereof, it is to be understood that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.

Claims (20)

1. A wheel chock assembly comprising:
a base member having an axis extending from a top end to a bottom end;
first and second support members, each support member having upper and lower ends, the upper ends being pivotally and slidably engaged with respect to the base member;
first and second wheel chocks mounted with respect to the respective lower end of the first and second support members; and
an adjustment mechanism mounted with respect to the base member and operatively engaged to the support members for axial movement of the upper ends with respect to the base member,
whereby the support members can be extended and retracted between limits so as to permit a range of spacing between the wheel chocks for the gripping of a wheel on a cart between the wheel chocks.
2. The wheel chock assembly of claim 1 wherein the adjustment mechanism includes a cord and the base member includes a main member and a handle, the main member being sized to be received in a bottom opening of the handle and the cord being secured to the main member, whereby upper movement of the cord draws the main member within the handle to extend the support members outward and downward movement of the cord withdraws the main member from the handle to retract the support members inward.
3. The wheel chock assembly of claim 2 wherein the cord has proximal and distal ends, the proximal end extending outward from the top end and the distal end being secured to an upper portion of the main member.
4. The wheel chock assembly of claim 2 wherein:
the base member further includes a plunger and compression spring, the plunger having a bore extending therethrough, the bore being sized to receive the cord;
the handle defines a passageway connecting the bottom opening with the top end and includes an aperture communicating with the passageway, the aperture being positioned radial to the passageway and receiving the plunger therein, the spring being positioned radial to the passageway and abutting and being in alignment with the plunger such that the plunger is biased to move outward from the passageway by the compression spring; and
the cord extends through the passageway and through the bore,
whereby pushing the plunger inward aligns the bore axially with the passageway so as to permit free axial movement of the cord within the passageway and releasing the plunger allows the plunger to retract outward so as to crimp the cord within the aperture to prevent axial movement of the cord, the aperture being sized to snugly receive the plunger and the cord.
5. The wheel chock assembly of claim 2 wherein the upper ends of the support members are pivotally secured to a slide-bar, the slide-bar extending through a lower end of the handle between the upper ends of the support members, and the main member has a slot having a length, the slot including two longitudinal notches in radial alignment along an upper portion of the main member, each notch being sized to slidably receive the slide-bar, whereby axial movement of the main member in a first direction with respect to the handle results in axial movement of the slide-bar within the slot in an opposite second direction, the axial movement of the slide-bar being limited by the length of the slot.
6. The wheel chock assembly of claim 5 further comprising first and second inner links having inside and outside ends, the inside ends being pivotally secured adjacent to the lower portion of the main member and the first and second outside ends being pivotally connected at a point proximal to the respective lower end of the first and second support members, whereby axial movement of the slide-bar in a downward direction forces the inner links outward from the main member to openly extend the support members and axial movement of the slide-bar in an upward direction draws the inner links inward towards the main member to collapsibly retract the support members.
7. The wheel chock assembly of claim 6 wherein the inside ends of the inner links are joined by a torsion spring such that the inner links are biased to be drawn inward towards the main member by the torsion spring.
8. The wheel chock assembly of claim 2 wherein the handle is provided with at least two sections telescopically connected to allow the handle to reversibly expand and collapse axially.
9. The wheel chock assembly of claim 2 wherein the main member and handle are cylindrical in shape, the main member having an outside diameter less than an inside diameter of the handle such that the main member can be received in the bottom opening of the handle.
10. The wheel chock assembly of claim 1 wherein the support members are bars.
11. The wheel chock assembly of claim 1 wherein each wheel chock is pivotally mounted to a respective support member such that the wheel chock may move between open and closed positions.
12. The wheel chock assembly of claim 1 wherein the wheel chocks are cylindrical.
13. A method for securing a wheel of a cart, the method comprising:
providing an assembly that is expandable to form a wheel-receiving space defined by wheel chocks, the assembly having a base member with an axis, first and second support members pivotally and slidably engaged with respect to the base member, first and second wheel chocks mounted at the lower end of the first and second support members, and an adjustment mechanism mounted with respect to the base member and operatively engaged to the support members for axial movement of the support members with respect to the base member;
expanding the assembly; and
gripping the wheel between the wheel chocks.
14. The method of claim 13 further comprising adjusting the assembly spacing to firmly grip the wheel, the support members being expanded and retracted between limits to grip the wheel between the wheel chocks.
15. The method of claim 14 wherein the adjustment mechanism includes a cord and the base member includes a main member and a handle, the main member being sized to be received in a bottom opening of the handle and upward movement of the cord being secured to the upper portion of the main member, whereby the cord draws the main member within the handle to extend the support members outward, a downward movement of the cord withdraws the main member from the handle to retract the support members inward to allow the wheel chocks to grip the wheel.
16. The method of claim 15 wherein adjusting the assembly spacing to firmly grip the wheel includes placing the wheel between the wheel chocks when the assembly is in the expanded position, lowering the cord causing the support members to pivot inward creating a pinching effect on the wheel between the wheel chocks, thereby securely gripping the wheel between the wheel chocks.
17. The method of claim 15 wherein the handle is provided with at least two sections telescopically connected to allow the handle to reversibly expand and collapse axially.
18. The method of claim 13 further comprising unloading the contents of the cart with the wheel chock assembly firmly gripping the wheel.
19. The method of claim 13 wherein the base member further includes:
a plunger and compression spring, the plunger having a bore extending therethrough, the bore being sized to receive the cord;
the handle defines a passageway connecting the bottom opening with the top end and includes an aperture communicating with the passageway, the aperture being positioned radial to the passageway and receiving the plunger therein the spring being positioned radial to the passageway and abutting and being in alignment with the plunger such that the plunger is biased to move outward from passageway by the compression spring; and
the cord extends through the passageway and through the bore,
whereby pushing the plunger inward aligns the bore axially with the passageway so as to permit free axial movement of the cord within the passageway and releasing the plunger allows the plunger to retract outward so as to crimp the cord within the aperture to prevent axial movement of the cord, the aperture being sized to snugly receive the plunger and the cord.
20. The method of claim 13 wherein the cart is a shopping cart.
US11/690,499 2007-03-23 2007-03-23 Wheel chock assembly Expired - Fee Related US7753177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/690,499 US7753177B2 (en) 2007-03-23 2007-03-23 Wheel chock assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/690,499 US7753177B2 (en) 2007-03-23 2007-03-23 Wheel chock assembly

Publications (2)

Publication Number Publication Date
US20080230329A1 true US20080230329A1 (en) 2008-09-25
US7753177B2 US7753177B2 (en) 2010-07-13

Family

ID=39773594

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/690,499 Expired - Fee Related US7753177B2 (en) 2007-03-23 2007-03-23 Wheel chock assembly

Country Status (1)

Country Link
US (1) US7753177B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010118768A1 (en) * 2009-04-14 2010-10-21 Chockcart Sweden Ab Chock arrangement
FR2949217A1 (en) * 2009-08-20 2011-02-25 Expresso France TRUCK LOCK AND HIS MEANS OF HOUSING
US20180222515A1 (en) * 2017-02-07 2018-08-09 Canon Kabushiki Kaisha Tipping prevention unit, feeding apparatus, and image forming apparatus
US10179572B2 (en) * 2014-07-07 2019-01-15 Dl Manufacturing Convex wheel chock and chock extractor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9156436B2 (en) 2012-02-29 2015-10-13 Pra Group, Inc. Vehicle immobilizing devices, systems, and methods
US9108657B2 (en) 2012-05-16 2015-08-18 Cooper Technologies Company Cart braking system
USD775579S1 (en) 2015-10-13 2017-01-03 Mark D. Hughes Safety wheel chock
US9937750B1 (en) 2017-02-14 2018-04-10 Chris Nelson Caster wheel tilt bar
US10836362B2 (en) * 2017-12-28 2020-11-17 James Barry Waddell Dual chocking device
USD859278S1 (en) 2018-05-31 2019-09-10 Richard White Wheel chock

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1592192A (en) * 1923-12-10 1926-07-13 Edward S Evans Chock block
US1648472A (en) * 1926-10-21 1927-11-08 Jr Harold Avery Spare-tire carrier
US1837657A (en) * 1929-06-27 1931-12-22 Auto Loading Device Mfg Compan Means for holding auto-chock blocks
US2461248A (en) * 1947-01-16 1949-02-08 Alva T Wright Vehicle chocking device
US2465551A (en) * 1947-03-13 1949-03-29 Harold O Otterness Wheel anchor
US2522328A (en) * 1947-12-26 1950-09-12 Arthur M Wiswell Wheel block
US2771162A (en) * 1952-04-14 1956-11-20 Eastern Rotorcraft Corp Adjustable wheel chock
US2844909A (en) * 1957-04-15 1958-07-29 George E Treyz Caster holders
US2895569A (en) * 1957-01-08 1959-07-21 Arthur W Nystrom Safety car block
US3120292A (en) * 1962-03-22 1964-02-04 Harry F Rambat Vehicle wheel chock
US3297111A (en) * 1965-04-07 1967-01-10 Lisboa Miguel Automotive wheel block
US3391760A (en) * 1966-08-08 1968-07-09 Harry A. Gonser Wheel lock block
US3542157A (en) * 1969-02-13 1970-11-24 Frederick G Noah Automatic dock wheel chock for trailers
US3684233A (en) * 1970-11-13 1972-08-15 Lockley Mfg Co Inc Leveling device
US3695071A (en) * 1971-10-14 1972-10-03 Jon R West Vehicle wheel immobilizing apparatus
US3811536A (en) * 1972-07-24 1974-05-21 F Haynes Chock
US3993167A (en) * 1974-04-22 1976-11-23 Suburban Metal Industries, Ltd. Wheel chock
US4140206A (en) * 1976-09-21 1979-02-20 Aisin Seiki Kabushiki Kaisha Collapsible wheel chock
US4186823A (en) * 1978-09-28 1980-02-05 Dayco Corporation Wheel wedge
US4506417A (en) * 1983-05-06 1985-03-26 Nifco Inc. Fastener for string
US4638744A (en) * 1983-02-23 1987-01-27 Clive Smith Martin Corner mechanism for collapsable container
US4649724A (en) * 1983-12-22 1987-03-17 Raine Edward M Vehicle immobilization device
US4679818A (en) * 1986-02-10 1987-07-14 Aadams Merchandising, Inc. Display table attachment for shopping carts
US4711325A (en) * 1986-06-16 1987-12-08 Ammco Tools, Inc. Wheel chock assembly
US4781271A (en) * 1986-07-15 1988-11-01 Arthur Wokeck Wheel chock blocks
US4854790A (en) * 1987-01-16 1989-08-08 Lohr Industrie Vehicle wheel support and fastening device
US4854144A (en) * 1987-08-17 1989-08-08 Double Helix Enterprises Vehicle immobilization device
US4856659A (en) * 1988-10-14 1989-08-15 Krebs Jimmy M Interlocking support system
US4895225A (en) * 1988-09-30 1990-01-23 Parnell John R Cylindrical hose guide wheel chock
US4911270A (en) * 1989-02-22 1990-03-27 Hudson Timothy S Chock for wheeled vehicle
US4913265A (en) * 1986-11-25 1990-04-03 Richards Nigel W Vehicle immobilizing device
US5069311A (en) * 1990-06-04 1991-12-03 Young Ferris F Infant exerciser guard
US5210903A (en) * 1991-12-16 1993-05-18 Horning Jerry L Furniture caster stop and process of immobilizing a caster
US5333477A (en) * 1993-07-20 1994-08-02 Phillip Davis Vehicle parking boot
US5383639A (en) * 1992-07-10 1995-01-24 Byard; Robert B. Apparatus for securing a shopping cart
US5427209A (en) * 1994-03-14 1995-06-27 Tannehill; William B. Vehicle washing aid
US6948593B2 (en) * 2003-08-13 2005-09-27 Horton Steven K Wheel chock

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5513727A (en) 1993-05-11 1996-05-07 Belanger; Michael Circumferential chock with lockable, concave clamping jaws
US5444949A (en) 1994-03-24 1995-08-29 Ciaccio; Rick Collapsible ground piercing wheel anchor for motor vehicle
US5685397A (en) 1995-10-20 1997-11-11 Central Sales And Service Inc. Wheel chock for chocking railroad car wheel
USD389796S (en) 1996-01-19 1998-01-27 Olson Donald G Jack wheel holder
USD385080S (en) 1996-09-05 1997-10-14 Great Northern Corporation Roll support
US5927108A (en) 1998-05-18 1999-07-27 Pierce; Carl W. Wheel lock
US5927443A (en) 1998-09-17 1999-07-27 Collins, Jr.; Charles E. Wheel chock assembly
US5913389A (en) 1998-10-30 1999-06-22 Clark; Chester L. Wheel chock
USD420277S (en) 1999-03-03 2000-02-08 First Services, L.L.C. Stabilizer for elongated objects
AU4648100A (en) 1999-04-22 2000-11-10 Larry George Van De Walker Wheel chock assembly
US6223864B1 (en) 1999-05-07 2001-05-01 Margaret Phelps Foot pressure activated braking wedge, shopping cart wheel restraint
USD439720S1 (en) 1999-07-08 2001-03-27 John Lemon Wheel chock for a grocery cart
US6425465B1 (en) 1999-09-14 2002-07-30 Norco Industries, Inc. Locking wheel chock apparatus for single tire
US6648103B2 (en) 1999-09-15 2003-11-18 Ronald Scheffer Method and apparatus for securing a shopping cart
EP1214234A4 (en) 1999-09-15 2006-09-13 Ronald L Scheffer Method and apparatus for securing a shopping cart
US6390245B1 (en) 2000-05-16 2002-05-21 Donald Metz Wheel chock with handle
US6290029B1 (en) 2000-12-26 2001-09-18 Tyler Wilson Gubler Compact adjustable wheel chock assembly for retainment of multi-size wheels
US6336527B1 (en) 2001-01-05 2002-01-08 Donald Metz Wheel chock with handle and tire sensing device
CA2419680C (en) 2002-02-25 2010-05-11 Gaetan Jette Wheel chock restraint system
US6742752B1 (en) 2003-01-24 2004-06-01 Marvin Fenyves Pallet jack stop
US6938734B2 (en) 2003-03-26 2005-09-06 Richard Curl Universal wheel locking system
US6755599B1 (en) 2003-04-29 2004-06-29 Randall L. Plyler Recessed wheel chock
US7036637B1 (en) 2004-11-10 2006-05-02 Randy Wiens Tire chocking apparatus

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1592192A (en) * 1923-12-10 1926-07-13 Edward S Evans Chock block
US1648472A (en) * 1926-10-21 1927-11-08 Jr Harold Avery Spare-tire carrier
US1837657A (en) * 1929-06-27 1931-12-22 Auto Loading Device Mfg Compan Means for holding auto-chock blocks
US2461248A (en) * 1947-01-16 1949-02-08 Alva T Wright Vehicle chocking device
US2465551A (en) * 1947-03-13 1949-03-29 Harold O Otterness Wheel anchor
US2522328A (en) * 1947-12-26 1950-09-12 Arthur M Wiswell Wheel block
US2771162A (en) * 1952-04-14 1956-11-20 Eastern Rotorcraft Corp Adjustable wheel chock
US2895569A (en) * 1957-01-08 1959-07-21 Arthur W Nystrom Safety car block
US2844909A (en) * 1957-04-15 1958-07-29 George E Treyz Caster holders
US3120292A (en) * 1962-03-22 1964-02-04 Harry F Rambat Vehicle wheel chock
US3297111A (en) * 1965-04-07 1967-01-10 Lisboa Miguel Automotive wheel block
US3391760A (en) * 1966-08-08 1968-07-09 Harry A. Gonser Wheel lock block
US3542157A (en) * 1969-02-13 1970-11-24 Frederick G Noah Automatic dock wheel chock for trailers
US3684233A (en) * 1970-11-13 1972-08-15 Lockley Mfg Co Inc Leveling device
US3695071A (en) * 1971-10-14 1972-10-03 Jon R West Vehicle wheel immobilizing apparatus
US3811536A (en) * 1972-07-24 1974-05-21 F Haynes Chock
US3993167A (en) * 1974-04-22 1976-11-23 Suburban Metal Industries, Ltd. Wheel chock
US4140206A (en) * 1976-09-21 1979-02-20 Aisin Seiki Kabushiki Kaisha Collapsible wheel chock
US4186823A (en) * 1978-09-28 1980-02-05 Dayco Corporation Wheel wedge
US4638744A (en) * 1983-02-23 1987-01-27 Clive Smith Martin Corner mechanism for collapsable container
US4506417A (en) * 1983-05-06 1985-03-26 Nifco Inc. Fastener for string
US4649724A (en) * 1983-12-22 1987-03-17 Raine Edward M Vehicle immobilization device
US4679818A (en) * 1986-02-10 1987-07-14 Aadams Merchandising, Inc. Display table attachment for shopping carts
US4711325A (en) * 1986-06-16 1987-12-08 Ammco Tools, Inc. Wheel chock assembly
US4781271A (en) * 1986-07-15 1988-11-01 Arthur Wokeck Wheel chock blocks
US4913265A (en) * 1986-11-25 1990-04-03 Richards Nigel W Vehicle immobilizing device
US4854790A (en) * 1987-01-16 1989-08-08 Lohr Industrie Vehicle wheel support and fastening device
US4854144A (en) * 1987-08-17 1989-08-08 Double Helix Enterprises Vehicle immobilization device
US4895225A (en) * 1988-09-30 1990-01-23 Parnell John R Cylindrical hose guide wheel chock
US4856659A (en) * 1988-10-14 1989-08-15 Krebs Jimmy M Interlocking support system
US4911270A (en) * 1989-02-22 1990-03-27 Hudson Timothy S Chock for wheeled vehicle
US5069311A (en) * 1990-06-04 1991-12-03 Young Ferris F Infant exerciser guard
US5210903A (en) * 1991-12-16 1993-05-18 Horning Jerry L Furniture caster stop and process of immobilizing a caster
US5383639A (en) * 1992-07-10 1995-01-24 Byard; Robert B. Apparatus for securing a shopping cart
US5333477A (en) * 1993-07-20 1994-08-02 Phillip Davis Vehicle parking boot
US5427209A (en) * 1994-03-14 1995-06-27 Tannehill; William B. Vehicle washing aid
US6948593B2 (en) * 2003-08-13 2005-09-27 Horton Steven K Wheel chock

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010118768A1 (en) * 2009-04-14 2010-10-21 Chockcart Sweden Ab Chock arrangement
FR2949217A1 (en) * 2009-08-20 2011-02-25 Expresso France TRUCK LOCK AND HIS MEANS OF HOUSING
EP2292481A1 (en) * 2009-08-20 2011-03-09 Expresso France Sarl Lorry wheel chock and its storage device
US10179572B2 (en) * 2014-07-07 2019-01-15 Dl Manufacturing Convex wheel chock and chock extractor
US20190152449A1 (en) * 2014-07-07 2019-05-23 DL Manufacturing Inc. Convex wheel chock
US11260834B2 (en) * 2014-07-07 2022-03-01 DL Manufacturing, Inc. Convex wheel chock and method of extraction
US20220185243A1 (en) * 2014-07-07 2022-06-16 DL Manufacturing Inc. Convex wheel chock
US20180222515A1 (en) * 2017-02-07 2018-08-09 Canon Kabushiki Kaisha Tipping prevention unit, feeding apparatus, and image forming apparatus
US11046345B2 (en) * 2017-02-07 2021-06-29 Canon Kabushiki Kaisha Tipping prevention unit, feeding apparatus, and image forming apparatus

Also Published As

Publication number Publication date
US7753177B2 (en) 2010-07-13

Similar Documents

Publication Publication Date Title
US7753177B2 (en) Wheel chock assembly
US11166867B2 (en) Collapsible rolling walker
US7600765B2 (en) Hand truck
US9896118B2 (en) Connecting and stabilizing mechanism of foldable cart and foldable cart having same
US5367743A (en) Telescopic handle for luggage carts
US5547053A (en) Spring loaded luggage handle
US6719319B2 (en) collapsing device for the third wheel of a golf cart
US7240961B2 (en) Portable sling chair
US20170066463A1 (en) Foldable truck
US8714528B1 (en) Trailer jack plunger pin release lever system
US20030038007A1 (en) Telescopic handle for luggage cart
EP2275321A2 (en) Folding stroller
US20110220594A1 (en) Stand for Bicycle
US5335759A (en) Extendible handle assembly for wheeled luggage
US20100117336A1 (en) Wheel frame assembly for quickly expansion and folding
US10455914B2 (en) Portable storage apparatus that includes an integrated arrangement for converting the apparatus to a bed or a chaise
US7815201B2 (en) Dolly assembly
JP2007525377A (en) Compact cart
USRE38436E1 (en) Push cart
US7766368B2 (en) Retractable frame structure of a baby stroller
US8307500B2 (en) Convertible wheeled luggage handle
US8622415B2 (en) Convertible transport apparatus
JP3851278B2 (en) Bag with handle and puller combined with stopper
US11142231B2 (en) Utility handcart
CN202368613U (en) Folding luggage barrow

Legal Events

Date Code Title Description
CC Certificate of correction
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140713