US20080260551A1 - Rolling diaphragm pump - Google Patents

Rolling diaphragm pump Download PDF

Info

Publication number
US20080260551A1
US20080260551A1 US12/020,539 US2053908A US2008260551A1 US 20080260551 A1 US20080260551 A1 US 20080260551A1 US 2053908 A US2053908 A US 2053908A US 2008260551 A1 US2008260551 A1 US 2008260551A1
Authority
US
United States
Prior art keywords
psi
diaphragm
pressure
pump
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/020,539
Inventor
Walter Neal Simmons
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terrasimco Inc
Original Assignee
Terrasimco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terrasimco Inc filed Critical Terrasimco Inc
Priority to US12/020,539 priority Critical patent/US20080260551A1/en
Assigned to TERRASIMCO INC. reassignment TERRASIMCO INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIMMONS, WALTER NEAL
Publication of US20080260551A1 publication Critical patent/US20080260551A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/043Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms two or more plate-like pumping flexible members in parallel

Definitions

  • the invention relates to a pump and product delivery. More particularly, the invention relates to rolling diaphragm type pumps.
  • Prior art rolling diaphragm pump designs create a positive differential pressure by sizing the driving cylinders to match the diaphragm diameter. This limits the diaphragm size to one that will match with commercial cylinders. Additionally, the greater the mismatch, the more the differential pressure will vary with the pump's output pressure.
  • the differential pressure across the diaphragm is determined by the pump dimensions and the working pressure. For a given pump size, the differential pressure increases as the working pressure increases. This not only reduces the lifetime of the diaphragms but also limits the maximum pressure of the pump.
  • a dual-unit pump e.g., a rolling diaphragm piston pump
  • the pump is suitable for pumping an abrasive high-viscosity slurry, and is adapted to operate at a constant flow rate by means for detecting and correcting a pressure differential in the two units before the units switch from the pumping cycle to the filling cycle and vice versa.
  • the flow of liquids is controlled by valves of the type which switch the flow to and from the units with essentially no volume change in the liquid inlet and outlet lines.
  • FIG. 1 a rolling diaphragm pump 10 of the prior art is shown.
  • Piston 12 which for example may be formed of nylon, is disposed within a cylindrical housing 13 and seated with respect to top-hat shaped rubber diaphragm 14 .
  • a working fluid 16 such as oil and a discharge fluid 18 (the fluid that is being pumped) are shown.
  • a standard hydraulic cylinder 19 (such as a double-rodded cylinder with a vented top) includes a fluid region 20 such as having oil therein, rods 22 a and 22 b , and a vented region 24 .
  • Piston 12 is used to maintain the shape of diaphragm 14 .
  • Diaphragm 14 is coupled along its circumference to housing 13 at regions 27 along axis 25 b which is normal to axis 25 a (along which rods 22 a , 22 b for example are axially disposed).
  • P 1 is the discharge pressure of the medium that is being pumped (e.g., to a packaging machine so that the medium may be used to fill a chub)
  • P 2 is the pressure of the hydraulic fluid under piston 12 (e.g., the working fluid pressure)
  • P 3 is vented to atmosphere and assumed as zero pressure with respect to atmosphere
  • P 4 is connected to P 2 and thus is the same as the pressure of the hydraulic pressure P 2 .
  • a 1 is the effective area that pressure P 1 acts upon to produce force in a direction parallel to axis 25 a
  • a 2 is the effective area that pressure P 2 acts upon to produce force in a direction parallel to axis 25 a
  • a 3 is the internal area of the hydraulic cylinder 19 about a plane normal to axis 25 a .
  • Product is discharged from pump 10 in direction E.
  • P 1 >P 2 in FIG. 1 .
  • Equation 1 the downward force is determined by the following Equation 1 below:
  • Equation 2 The upward force is determined by Equation 2 below:
  • Equation 6 ⁇ P is dependent on working pressure.
  • High viscosities slurries may be between 10,000 and 5,000,000 centipoise, and may be abrasive and include large particulates such as rocks 1 ⁇ 8 inch in general size.
  • pumping pressures in prior art rolling diaphragm pumps are limited by the pressure that the diaphragm can withstand.
  • the differential pressure ⁇ P varies with discharge pressure P 1 and therefore if P 1 becomes too high, ⁇ P can become so high that the diaphragm integrity is lost and the diaphragm breaks.
  • differential pressure ⁇ P is in the range of 10 psi to 20 psi so that the diaphragm is maintained in the correct shape and position, while not being overstressed.
  • the prior art rolling diaphragm pump permits this but only for a fixed range of discharge pressure P 1 as will be further described herein.
  • a rolling diaphragm pump may include a housing, a rolling seal diaphragm disposed in the housing, a piston for driving the diaphragm, and a valve for regulating the flow of working fluid in a portion of the housing.
  • a constant differential pressure may be maintained across the diaphragm independent of discharge pressure of the pump.
  • the rolling seal diaphragm is top hat shaped.
  • the constant differential pressure may be between 1 psi and 100 psi, between 10 psi and 50 psi, or between 10 psi and 20 psi.
  • the discharge pressure may be greater than 1000 psi or greater than 500 psi.
  • a method of pumping a viscous medium may include: pumping the viscous medium by maintaining a constant differential pressure across a rolling seal diaphragm independent of discharge pressure of the viscous medium, with the diaphragm disposed between the viscous medium and a working medium and being driven by a piston.
  • the viscous medium may be discharged at a constant flow rate or discharged at a constant pressure.
  • the method may further include: regulating the flow of the working medium.
  • the rolling seal diaphragm may be top hat shaped.
  • the constant differential pressure may be between 1 psi and 100 psi, between 10 psi and 50 psi, or between 10 psi and 20 psi.
  • the discharge pressure may be greater than 1000 psi or greater than 500 psi.
  • the viscous medium may be a slurry with a viscosity between 10,000 and 5,000,000 centipoise.
  • the viscous medium may include aggregate with a maximum lateral dimension of 1 ⁇ 4 inch or aggregate with a maximum lateral dimension of 1 ⁇ 8 inch.
  • a rolling diaphragm pump creates a positive differential pressure through the use of an adjustable check valve that regulates the flow of a working fluid, such as oil, between the driving cylinder and the bottom of the diaphragm by opening when a threshold pressure is met.
  • a working fluid such as oil
  • P 1 discharge pressure
  • a rolling diaphragm allows continuously variable control of the differential pressure across the diaphragm, which is independent of the discharge pressure.
  • FIG. 1 shows a prior art rolling diaphragm pump
  • FIG. 2 shows an exemplary embodiment of an inventive rolling diaphragm pump.
  • Pump 100 is suitable, for example, for use in pumping mine roof bolt anchoring compositions, water-bearing explosives, food products, concrete, fraccing fluids for oil and gas wells, coal/water slurries, nuclear waste slurries, asphalt, paint, and filled epoxy resins.
  • mine roof bolt anchoring compositions water-bearing explosives
  • food products concrete, fraccing fluids for oil and gas wells
  • coal/water slurries coal/water slurries
  • nuclear waste slurries nuclear waste slurries
  • asphalt, paint, and filled epoxy resins asphalt, paint, and filled epoxy resins.
  • Inventive rolling diaphragm pump 100 includes a piston 112 , which for example may be formed of nylon, is disposed within a cylindrical housing 113 , and is seated with respect to a rolling seal diaphragm 114 such as a top-hat shaped rubber diaphragm.
  • a working medium 116 such as oil fluid and a discharge medium 118 (the medium that is being pumped) are shown.
  • a standard hydraulic cylinder 119 (such as a single-rodded cylinder) includes a fluid region 120 such as having oil therein, and a rod 122 .
  • Portion 121 is in communication with housing 113 .
  • Piston 112 is used to maintain the shape of diaphragm 114 .
  • Diaphragm 114 is coupled along its circumference to housing 113 at regions 127 along axis 125 b which is normal to axis 125 a (along which rod 122 for example is axially disposed).
  • Pt is the discharge pressure of the medium that is being pumped (e.g., to a packaging machine so that the medium may be used to fill a chub)
  • P 2 is the pressure of the hydraulic fluid under piston 112 (e.g., the working fluid pressure)
  • P 4 is connected to P 2 and is the pressure in fluid region 120 and is greater than P 2 by the setting of check valve 126 .
  • a 1 is the effective area that pressure P 1 acts upon to produce force in a direction parallel to axis 125 a
  • a 2 is the effective area that pressure P 2 acts upon to produce force in a direction parallel to axis 125 a
  • a 3 is the internal area of the hydraulic cylinder 119 about a plane normal to axis 125 a .
  • Product is discharged from pump 100 in direction E.
  • P 1 >P 2 in FIG. 2 , so that diaphragm 114 does not invert (resulting in accelerated wear of the diaphragm).
  • P 4 >P 2 .
  • a 1 is the same as A 2 .
  • the pressure of check valve 126 , P check is fully adjustable to suit a given need, the check valve being designed to open when a threshold differential pressure is met.
  • a constant pressure can be created across diaphragm 114 regardless of the pumping pressure.
  • the differential pressure ⁇ P calculated as P 1 ⁇ P 2 , is always the same.
  • inventive pump 100 provides constant flow rate or constant pressure performance. Unlike prior art pump 10 , inventive pump 100 advantageously permits pumping of viscous mediums with large aggregates (1) at high pressure and/or (2) at constant pressure or constant flow rate over wide pressure ranges. In addition, inventive pump 100 advantageously may permit longer life of operation in high pressure usage than rotating or progressive-type pumps which suffer from substantial wear when pumping media having large aggregates.
  • Equation 8 The upward force is determined by Equation 8 below:
  • Equation 12 ⁇ P is independent of the working pressure.
  • a suitable diaphragm 114 may be a rolling seal diaphragm obtained for example from Bellofram Corporation, of Newell, W. Va. Exemplary diaphragms and methods of use are disclosed in U.S. Pat. Nos. 3,137,215 and 3,373,236, each of which is incorporated herein by reference thereto.

Abstract

A rolling diaphragm pump includes a housing, a rolling seal diaphragm disposed in the housing, a piston for driving the diaphragm, and a valve for regulating the flow of working fluid in a portion of the housing. A constant differential pressure is maintained across the diaphragm independent of discharge pressure of the pump. A method of pumping a viscous medium includes pumping the viscous medium by maintaining a constant differential pressure across a rolling seal diaphragm independent of discharge pressure of the viscous medium, with the diaphragm disposed between the viscous medium and a working medium and being driven by a piston.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The benefits of U.S. Provisional Application No. 60/886,919 filed Jan. 26, 2007 and entitled “Rolling Diaphragm Pump” are claimed under 35 U.S.C. § 119(e), and the entire contents of this provisional application are expressly incorporated herein by reference thereto.
  • FIELD OF THE INVENTION
  • The invention relates to a pump and product delivery. More particularly, the invention relates to rolling diaphragm type pumps.
  • BACKGROUND OF THE INVENTION
  • In a rolling diaphragm type pump, a small amount of positive differential pressure is needed to keep the diaphragm in the correct orientation (convoluted orientation). However, if the differential pressure is too high, the diaphragm will wear out at a faster rate or even burst in extreme cases.
  • Prior art rolling diaphragm pump designs create a positive differential pressure by sizing the driving cylinders to match the diaphragm diameter. This limits the diaphragm size to one that will match with commercial cylinders. Additionally, the greater the mismatch, the more the differential pressure will vary with the pump's output pressure.
  • In a prior art rolling diaphragm pump, the differential pressure across the diaphragm is determined by the pump dimensions and the working pressure. For a given pump size, the differential pressure increases as the working pressure increases. This not only reduces the lifetime of the diaphragms but also limits the maximum pressure of the pump.
  • A dual-unit pump, e.g., a rolling diaphragm piston pump, is disclosed in U.S. Pat. No. 4,543,044, the entire contents of which are incorporated herein by reference thereto. The pump is suitable for pumping an abrasive high-viscosity slurry, and is adapted to operate at a constant flow rate by means for detecting and correcting a pressure differential in the two units before the units switch from the pumping cycle to the filling cycle and vice versa. The flow of liquids is controlled by valves of the type which switch the flow to and from the units with essentially no volume change in the liquid inlet and outlet lines.
  • Turning to FIG. 1, a rolling diaphragm pump 10 of the prior art is shown. Piston 12, which for example may be formed of nylon, is disposed within a cylindrical housing 13 and seated with respect to top-hat shaped rubber diaphragm 14. A working fluid 16 such as oil and a discharge fluid 18 (the fluid that is being pumped) are shown. A standard hydraulic cylinder 19 (such as a double-rodded cylinder with a vented top) includes a fluid region 20 such as having oil therein, rods 22 a and 22 b, and a vented region 24. Piston 12 is used to maintain the shape of diaphragm 14. Diaphragm 14 is coupled along its circumference to housing 13 at regions 27 along axis 25 b which is normal to axis 25 a (along which rods 22 a, 22 b for example are axially disposed).
  • In FIG. 1, P1 is the discharge pressure of the medium that is being pumped (e.g., to a packaging machine so that the medium may be used to fill a chub), P2 is the pressure of the hydraulic fluid under piston 12 (e.g., the working fluid pressure), P3 is vented to atmosphere and assumed as zero pressure with respect to atmosphere, and P4 is connected to P2 and thus is the same as the pressure of the hydraulic pressure P2. In addition, for the purposes of this analysis, A1 is the effective area that pressure P1 acts upon to produce force in a direction parallel to axis 25 a, A2 is the effective area that pressure P2 acts upon to produce force in a direction parallel to axis 25 a, and A3 is the internal area of the hydraulic cylinder 19 about a plane normal to axis 25 a. Product is discharged from pump 10 in direction E. Preferably, P1>P2 in FIG. 1.
  • According to the design of pump 10 in FIG. 1, the downward force is determined by the following Equation 1 below:

  • F down =P 1 ·A 1 +P 2 ·A 4 +P 3·(A 3 −A 4)  (Eq. 1)
  • The upward force is determined by Equation 2 below:

  • F up=(P 2 ·A 2)+[P 4·(A 3 −A 4)]  (Eq. 2)
  • Area A1 is the same as area A2, pressure P2 is the same as pressure P4, and pressure P3 is zero pressure with respect to atmosphere. Thus, the upward force must balance the downward force as in Equation 3 below:

  • (P 1 ·A 1)+(P 2 ·A 4)=(P 2 −A 1)+[P 2·(A 3 −A 4)]  (Eq. 3)
  • This balance can be simplified as shown in Equations 4-6 below:
  • [ A 1 · ( P 1 - P 2 ) ] = [ P 2 · ( A 3 - A 4 ) ] - ( P 2 · A 4 ) ( Eq . 4 ) [ A 1 · ( P 1 - P 2 ) ] = P 2 · [ A 3 - ( 2 · A 4 ) ] ( Eq . 5 ) Δ P = P 1 - P 2 = ( A 3 - 2 · A 4 ) A 1 ( Eq . 6 )
  • Thus, as shown in Equation 6, ΔP is dependent on working pressure.
  • Pumping high viscosity liquids and slurries at high pressure and/or at constant pressure or constant flow rate is particularly difficult. High viscosities slurries, for example, may be between 10,000 and 5,000,000 centipoise, and may be abrasive and include large particulates such as rocks ⅛ inch in general size. However, pumping pressures in prior art rolling diaphragm pumps are limited by the pressure that the diaphragm can withstand. The differential pressure ΔP varies with discharge pressure P1 and therefore if P1 becomes too high, ΔP can become so high that the diaphragm integrity is lost and the diaphragm breaks.
  • It is desired that the differential pressure ΔP is in the range of 10 psi to 20 psi so that the diaphragm is maintained in the correct shape and position, while not being overstressed. The prior art rolling diaphragm pump permits this but only for a fixed range of discharge pressure P1 as will be further described herein.
  • SUMMARY OF THE INVENTION
  • A rolling diaphragm pump may include a housing, a rolling seal diaphragm disposed in the housing, a piston for driving the diaphragm, and a valve for regulating the flow of working fluid in a portion of the housing. A constant differential pressure may be maintained across the diaphragm independent of discharge pressure of the pump. In some embodiments, the rolling seal diaphragm is top hat shaped. Also, the constant differential pressure may be between 1 psi and 100 psi, between 10 psi and 50 psi, or between 10 psi and 20 psi. The discharge pressure may be greater than 1000 psi or greater than 500 psi.
  • A method of pumping a viscous medium may include: pumping the viscous medium by maintaining a constant differential pressure across a rolling seal diaphragm independent of discharge pressure of the viscous medium, with the diaphragm disposed between the viscous medium and a working medium and being driven by a piston. The viscous medium may be discharged at a constant flow rate or discharged at a constant pressure. The method may further include: regulating the flow of the working medium. In the method, the rolling seal diaphragm may be top hat shaped. Also in the method, the constant differential pressure may be between 1 psi and 100 psi, between 10 psi and 50 psi, or between 10 psi and 20 psi. In the method, the discharge pressure may be greater than 1000 psi or greater than 500 psi. Further, in the method, the viscous medium may be a slurry with a viscosity between 10,000 and 5,000,000 centipoise. Also, the viscous medium may include aggregate with a maximum lateral dimension of ¼ inch or aggregate with a maximum lateral dimension of ⅛ inch.
  • In one embodiment of the invention, a rolling diaphragm pump creates a positive differential pressure through the use of an adjustable check valve that regulates the flow of a working fluid, such as oil, between the driving cylinder and the bottom of the diaphragm by opening when a threshold pressure is met. This provides control of the differential pressure (ΔP) while being independent of the discharge pressure (P1). Advantageously, an increased pressure range is realized in which the rolling diaphragm pump can operate, and variable control of diaphragm stress is permitted.
  • In some embodiments, a rolling diaphragm allows continuously variable control of the differential pressure across the diaphragm, which is independent of the discharge pressure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Preferred features of embodiments are disclosed in the accompanying drawings, wherein:
  • FIG. 1 shows a prior art rolling diaphragm pump; and
  • FIG. 2 shows an exemplary embodiment of an inventive rolling diaphragm pump.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Turning to FIG. 2, an exemplary embodiment of an inventive rolling diaphragm pump 100 is shown. Pump 100 is suitable, for example, for use in pumping mine roof bolt anchoring compositions, water-bearing explosives, food products, concrete, fraccing fluids for oil and gas wells, coal/water slurries, nuclear waste slurries, asphalt, paint, and filled epoxy resins. However, this list is non-exhaustive and a variety of high viscosity liquids and slurries are amendable to pumping in accordance with the exemplary embodiment.
  • Inventive rolling diaphragm pump 100 includes a piston 112, which for example may be formed of nylon, is disposed within a cylindrical housing 113, and is seated with respect to a rolling seal diaphragm 114 such as a top-hat shaped rubber diaphragm. A working medium 116 such as oil fluid and a discharge medium 118 (the medium that is being pumped) are shown. A standard hydraulic cylinder 119 (such as a single-rodded cylinder) includes a fluid region 120 such as having oil therein, and a rod 122. Portion 121 is in communication with housing 113. Piston 112 is used to maintain the shape of diaphragm 114. Diaphragm 114 is coupled along its circumference to housing 113 at regions 127 along axis 125 b which is normal to axis 125 a (along which rod 122 for example is axially disposed).
  • In FIG. 2, Pt is the discharge pressure of the medium that is being pumped (e.g., to a packaging machine so that the medium may be used to fill a chub), P2 is the pressure of the hydraulic fluid under piston 112 (e.g., the working fluid pressure), and P4 is connected to P2 and is the pressure in fluid region 120 and is greater than P2 by the setting of check valve 126. In addition, for the purposes of this analysis, A1 is the effective area that pressure P1 acts upon to produce force in a direction parallel to axis 125 a, A2 is the effective area that pressure P2 acts upon to produce force in a direction parallel to axis 125 a, and A3 is the internal area of the hydraulic cylinder 119 about a plane normal to axis 125 a. Product is discharged from pump 100 in direction E. Preferably, P1>P2 in FIG. 2, so that diaphragm 114 does not invert (resulting in accelerated wear of the diaphragm). Moreover, P4>P2.
  • Because rod 122 is threadably associated with piston 112, oil flows around the threads and on top of rod 122 so that A4 does not effect A2. Therefore, A1 is the same as A2. The pressure of check valve 126, Pcheck, is fully adjustable to suit a given need, the check valve being designed to open when a threshold differential pressure is met. Thus, a constant pressure can be created across diaphragm 114 regardless of the pumping pressure. In other words, regardless of whether the pumping pressure is 500 psi, 1000 psi, or 10,000 psi, the differential pressure ΔP, calculated as P1−P2, is always the same. In contrast, the prior art pump 10 would not function properly at wide ranges of pressures (e.g., 1,000 psi as compared to 10,000 psi) because the differential pressure ΔP would increase as P1 increases and become so great as to compromise the diaphragm. Pump 100 provides constant flow rate or constant pressure performance. Unlike prior art pump 10, inventive pump 100 advantageously permits pumping of viscous mediums with large aggregates (1) at high pressure and/or (2) at constant pressure or constant flow rate over wide pressure ranges. In addition, inventive pump 100 advantageously may permit longer life of operation in high pressure usage than rotating or progressive-type pumps which suffer from substantial wear when pumping media having large aggregates.
  • The theory of operation of exemplary inventive pump 100 now will be explained. In pump 100, the downward force is determined by the following Equation 7:

  • F down=(P 1 ·A 1)+(P 2 −A 3)  (Eq. 7)
  • The upward force is determined by Equation 8 below:

  • F up=(P 2 ·A 2)+(P 4 ·A 3)  (Eq. 8)
  • Area A2 is the same as area A1, and the check valve pressure Pcheck is P4−P2. The upward force must balance the downward force as in Equation 9 below:

  • (P 1 ·A 1)+(P 2 ·A 3)=(P 2 ·A 1)+(P 4 ·A 3)  (Eq. 9)
  • This balance can be simplified as shown in Equations 10-12 below:
  • [ A 1 · ( P 1 - P 2 ) ] = ( P 4 · A 3 ) - ( P 2 · A 3 ) ( Eq . 10 ) [ A 1 · ( P 1 - P 2 ) ] = A 3 · ( P 4 - P 2 ) ( Eq . 11 ) Δ P = P 1 - P 2 = ( P 4 - P 2 ) · ( A 3 A 1 ) = P check · ( A 3 A 1 ) ( Eq . 12 )
  • Thus, as shown in Equation 12, ΔP is independent of the working pressure.
  • A theoretical performance comparison, based on the above Equations 1-12, is presented below for an exemplary resin pump assuming the following: diaphragm area A1 of 101.6234 in.2, cylinder area A3 of 8.295768 in.2, rod area A4 of 1.484893 in.2, check pressure of 90 psi, diaphragm diameter 11.75 in., piston diameter 11 in., cylinder diameter 3.25 in., and rod diameter 1.375 in. Table 1 shows the theoretical performance of the prior art rolling diaphragm pump while Table 2 shows the performance according to the inventive design, with P1 being the discharge pressure of the medium that is being pumped, P2 being the pressure of the hydraulic fluid under the piston, and ΔP being P1−P2.
  • TABLE 1
    P1 (psi) P2 (psi) ΔP (psi)
    100 95.02009 4.979909
    200 190.0402 9.959817
    300 285.0603 14.93973
    400 380.0804 19.91963
    500 475.1005 24.89954
    600 570.1205 29.87945
    700 665.1406 34.85936
    800 760.1607 39.83927
    900 855.1808 44.81918
    1000 950.2009 49.79909
    1100 1045.221 54.77899
    1200 1140.241 59.75890
    1300 1235.261 64.73881
    1400 1330.281 69.71872
    1500 1425.301 74.69863
    1600 1520.321 79.67854
    1700 1615.342 84.65845
    1800 1710.362 89.63836
    1900 1805.382 94.61826
    2000 1900.402 99.59817
  • TABLE 2
    P1 (psi) P2 (psi) ΔP (psi)
    100 92 8.0
    200 192 8.0
    300 292 8.0
    400 392 8.0
    500 492 8.0
    600 592 8.0
    700 692 8.0
    800 792 8.0
    900 892 8.0
    1000 992 8.0
    1100 1092 8.0
    1200 1192 8.0
    1300 1292 8.0
    1400 1392 8.0
    1500 1492 8.0
    1600 1592 8.0
    1700 1692 8.0
    1800 1792 8.0
    1900 1892 8.0
    2000 1992 8.0
  • As evident from Table 1, in the prior art design the ΔP is dependent on the working pressure, while in the exemplary inventive design ΔP is independent of the working pressure.
  • A theoretical performance comparison, based on the above Equations 1-12, also is presented below for an exemplary catalyst pump assuming the following: diaphragm area A1 of 44.17875 in.2, cylinder area A3 of 8.295768 in., rod area A4 of 1.484893 in.2, check pressure of 35 psi, diaphragm diameter 7.75 in., piston diameter 7.25 in., cylinder diameter 3.25 in., and rod diameter 1.375 in. Table 3 shows the theoretical performance of the prior art rolling diaphragm pump while Table 4 shows the performance according to the inventive design, with P1 being the discharge pressure of the medium that is being pumped, P2 being the pressure of the hydraulic fluid under the piston, and ΔP being P1−P2 as in the examples above.
  • TABLE 3
    P1 (psi) P2 (psi) ΔP (psi)
    100 89.24147 10.75853
    200 178.4829 21.51706
    300 267.7244 32.27559
    400 356.9659 43.03412
    500 446.2074 53.79265
    600 535.4488 64.55118
    700 624.6903 75.30971
    800 713.9318 86.06824
    900 803.1732 96.82677
    1000 892.4147 107.5853
    1100 981.6562 118.3438
    1200 1070.898 129.1024
    1300 1160.139 139.8609
    1400 1249.381 150.6194
    1500 1338.622 161.3779
    1600 1427.864 172.1365
    1700 1517.105 182.895
    1800 1606.346 193.6535
    1900 1695.588 204.4121
    2000 1784.829 215.1706
  • TABLE 4
    P1 (psi) P2 (psi) ΔP (psi)
    100 91.90837 8.091632
    200 191.9084 8.091632
    300 291.9084 8.091632
    400 391.9084 8.091632
    500 491.9084 8.091632
    600 591.9084 8.091632
    700 691.9084 8.091632
    800 791.9084 8.091632
    900 891.9084 8.091632
    1000 991.9084 8.091632
    1100 1091.908 8.091632
    1200 1191.908 8.091632
    1300 1291.908 8.091632
    1400 1391.908 8.091632
    1500 1491.908 8.091632
    1600 1591.908 8.091632
    1700 1691.908 8.091632
    1800 1791.908 8.091632
    1900 1891.908 8.091632
    2000 1991.908 8.091632
  • A suitable diaphragm 114 may be a rolling seal diaphragm obtained for example from Bellofram Corporation, of Newell, W. Va. Exemplary diaphragms and methods of use are disclosed in U.S. Pat. Nos. 3,137,215 and 3,373,236, each of which is incorporated herein by reference thereto.
  • While various descriptions of the present invention are described above, it should be understood that the various features can be used singly or in any combination thereof. Therefore, this invention is not to be limited to only the specifically preferred embodiments depicted herein.
  • Further, it should be understood that variations and modifications within the spirit and scope of the invention may occur to those skilled in the art to which the invention pertains. Accordingly, all expedient modifications readily attainable by one versed in the art from the disclosure set forth herein that are within the scope and spirit of the present invention are to be included as further embodiments of the present invention. The scope of the present invention is accordingly defined as set forth in the appended claims.

Claims (20)

1. A rolling diaphragm pump comprising:
a housing;
a rolling seal diaphragm disposed in the housing;
a piston for driving the diaphragm; and
a valve for regulating the flow of working fluid in a portion of the housing;
wherein a constant differential pressure is maintained across the diaphragm independent of discharge pressure of the pump.
2. The pump of claim 1, wherein the rolling seal diaphragm is top hat shaped.
3. The pump of claim 1, wherein the constant differential pressure is between 1 psi and 100 psi.
4. The pump of claim 1, wherein the constant differential pressure is between 10 psi and 50 psi.
5. The pump of claim 1, wherein the constant differential pressure is between 10 psi and 20 psi.
6. The pump of claim 1, wherein the discharge pressure is greater than 1000 psi.
7. The pump of claim 1, wherein the discharge pressure is greater than 500 psi.
8. A method of pumping a viscous medium comprising:
pumping the viscous medium by maintaining a constant differential pressure across a rolling seal diaphragm independent of discharge pressure of the viscous medium, with the diaphragm disposed between the viscous medium and a working medium and being driven by a piston.
9. The method of claim 8, wherein the viscous medium is discharged at a constant flow rate.
10. The method of claim 8, wherein the viscous medium is discharged at a constant pressure.
11. The method of claim 8, further comprising:
regulating the flow of the working medium.
12. The method of claim 8, wherein the rolling seal diaphragm is top hat shaped.
13. The method of claim 8, wherein the constant differential pressure is between 1 psi and 100 psi.
14. The method of claim 8, wherein the constant differential pressure is between 10 psi and 50 psi.
15. The method of claim 8, wherein the constant differential pressure is between 10 psi and 20 psi.
16. The method of claim 8, wherein the discharge pressure is greater than 1000 psi.
17. The method of claim 8, wherein the discharge pressure is greater than 500 psi.
18. The method of claim 8, wherein the viscous medium comprises a slurry with a viscosity between 10,000 and 5,000,000 centipoise.
19. The method of claim 8, wherein the viscous medium comprises aggregate with a maximum lateral dimension of ¼ inch.
20. The method of claim 8, wherein the viscous medium comprises aggregate with a maximum lateral dimension of ⅛ inch.
US12/020,539 2007-01-26 2008-01-26 Rolling diaphragm pump Abandoned US20080260551A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/020,539 US20080260551A1 (en) 2007-01-26 2008-01-26 Rolling diaphragm pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88691907P 2007-01-26 2007-01-26
US12/020,539 US20080260551A1 (en) 2007-01-26 2008-01-26 Rolling diaphragm pump

Publications (1)

Publication Number Publication Date
US20080260551A1 true US20080260551A1 (en) 2008-10-23

Family

ID=39872367

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/020,539 Abandoned US20080260551A1 (en) 2007-01-26 2008-01-26 Rolling diaphragm pump

Country Status (1)

Country Link
US (1) US20080260551A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090178188A1 (en) * 2008-01-15 2009-07-16 Campau Daniel N On-Tank Toilet Dispenser
US9084845B2 (en) 2011-11-02 2015-07-21 Smith & Nephew Plc Reduced pressure therapy apparatuses and methods of using same
US9427505B2 (en) 2012-05-15 2016-08-30 Smith & Nephew Plc Negative pressure wound therapy apparatus
US9901664B2 (en) 2012-03-20 2018-02-27 Smith & Nephew Plc Controlling operation of a reduced pressure therapy system based on dynamic duty cycle threshold determination
US9956121B2 (en) 2007-11-21 2018-05-01 Smith & Nephew Plc Wound dressing
US10307517B2 (en) 2010-09-20 2019-06-04 Smith & Nephew Plc Systems and methods for controlling operation of a reduced pressure therapy system
US10682446B2 (en) 2014-12-22 2020-06-16 Smith & Nephew Plc Dressing status detection for negative pressure wound therapy
CN111630273A (en) * 2018-01-19 2020-09-04 日本皮拉工业株式会社 Rotary diaphragm pump

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2419993A (en) * 1945-01-22 1947-05-06 Engineering Lab Inc Pumping mechanism
US2667129A (en) * 1952-06-19 1954-01-26 Dorr Co Twin diaphragm pump with stressrelieved diaphragms
US2703055A (en) * 1950-07-21 1955-03-01 Shell Dev Diaphragm-type mud pump
US2831302A (en) * 1954-10-06 1958-04-22 Mayer & Co Inc O Packaging machine
US2866415A (en) * 1953-07-15 1958-12-30 Bratt John Hydraulic transformers
US3137215A (en) * 1962-10-26 1964-06-16 John F Taplin Rolling seal diaphragms
US3201031A (en) * 1964-01-10 1965-08-17 Harwood Engineering Company Differential pressure control for pipless pumping
US3234882A (en) * 1964-06-03 1966-02-15 Rexall Drug Chemical Intensifier assembly system and method
US3320901A (en) * 1965-09-15 1967-05-23 F W Gartner Company Concrete pump
US3363575A (en) * 1966-01-24 1968-01-16 Cicero C Brown Fluid pressure-driven multiplex pump
US3373236A (en) * 1962-12-28 1968-03-12 John F. Taplin Method of making rolling seal diaphragms
US3637328A (en) * 1970-02-26 1972-01-25 Inouye Shokai Kk Slurry-pumping means
US3646000A (en) * 1969-04-23 1972-02-29 Phillips Petroleum Co Polymerization catalyst
US3667869A (en) * 1970-03-04 1972-06-06 Karl Schlecht Dual cylinder-concrete pump
US3795801A (en) * 1971-06-15 1974-03-05 Thomson Csf Ultrasonic data-processing systems
US3814548A (en) * 1971-08-05 1974-06-04 Rupp Co Warren Diaphragm pump apparatus
US3893790A (en) * 1971-04-30 1975-07-08 Bendix Corp Dual single action ram intensifier
US3951572A (en) * 1974-07-08 1976-04-20 Ray Jr Jess B Apparatus for pumping cement slurry
US4021156A (en) * 1976-01-15 1977-05-03 Western Electric Co. High pressure hydraulic system
US4280943A (en) * 1979-11-08 1981-07-28 E. I. Du Pont De Nemours & Co. Organic grouting composition for anchoring a bolt in a hole
US4321016A (en) * 1979-04-04 1982-03-23 Hitachi, Ltd. Apparatus for continuous slurry displacement transfer
US4543044A (en) * 1983-11-09 1985-09-24 E. I. Du Pont De Nemours And Company Constant-flow-rate dual-unit pump
US4741252A (en) * 1986-09-24 1988-05-03 Allied-Signal Inc. Diaphragm of the rolling type having a membrane portion and a reinforcing portion
US4749342A (en) * 1984-12-21 1988-06-07 Lewa Herbert Ott Gmbh & Co. Diaphragm pump with hydraulically driven rolling diaphragm
US5213478A (en) * 1989-09-18 1993-05-25 Takeshi Hoya Slurry pumping method and apparatus
US5883299A (en) * 1996-06-28 1999-03-16 Texaco Inc System for monitoring diaphragm pump failure
US6419462B1 (en) * 1997-02-24 2002-07-16 Ebara Corporation Positive displacement type liquid-delivery apparatus

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2419993A (en) * 1945-01-22 1947-05-06 Engineering Lab Inc Pumping mechanism
US2703055A (en) * 1950-07-21 1955-03-01 Shell Dev Diaphragm-type mud pump
US2667129A (en) * 1952-06-19 1954-01-26 Dorr Co Twin diaphragm pump with stressrelieved diaphragms
US2866415A (en) * 1953-07-15 1958-12-30 Bratt John Hydraulic transformers
US2831302A (en) * 1954-10-06 1958-04-22 Mayer & Co Inc O Packaging machine
US3137215A (en) * 1962-10-26 1964-06-16 John F Taplin Rolling seal diaphragms
US3373236A (en) * 1962-12-28 1968-03-12 John F. Taplin Method of making rolling seal diaphragms
US3201031A (en) * 1964-01-10 1965-08-17 Harwood Engineering Company Differential pressure control for pipless pumping
US3234882A (en) * 1964-06-03 1966-02-15 Rexall Drug Chemical Intensifier assembly system and method
US3320901A (en) * 1965-09-15 1967-05-23 F W Gartner Company Concrete pump
US3363575A (en) * 1966-01-24 1968-01-16 Cicero C Brown Fluid pressure-driven multiplex pump
US3646000A (en) * 1969-04-23 1972-02-29 Phillips Petroleum Co Polymerization catalyst
US3637328A (en) * 1970-02-26 1972-01-25 Inouye Shokai Kk Slurry-pumping means
US3667869A (en) * 1970-03-04 1972-06-06 Karl Schlecht Dual cylinder-concrete pump
US3893790A (en) * 1971-04-30 1975-07-08 Bendix Corp Dual single action ram intensifier
US3795801A (en) * 1971-06-15 1974-03-05 Thomson Csf Ultrasonic data-processing systems
US3814548A (en) * 1971-08-05 1974-06-04 Rupp Co Warren Diaphragm pump apparatus
US3951572A (en) * 1974-07-08 1976-04-20 Ray Jr Jess B Apparatus for pumping cement slurry
US4021156A (en) * 1976-01-15 1977-05-03 Western Electric Co. High pressure hydraulic system
US4321016A (en) * 1979-04-04 1982-03-23 Hitachi, Ltd. Apparatus for continuous slurry displacement transfer
US4280943A (en) * 1979-11-08 1981-07-28 E. I. Du Pont De Nemours & Co. Organic grouting composition for anchoring a bolt in a hole
US4543044A (en) * 1983-11-09 1985-09-24 E. I. Du Pont De Nemours And Company Constant-flow-rate dual-unit pump
US4749342A (en) * 1984-12-21 1988-06-07 Lewa Herbert Ott Gmbh & Co. Diaphragm pump with hydraulically driven rolling diaphragm
US4741252A (en) * 1986-09-24 1988-05-03 Allied-Signal Inc. Diaphragm of the rolling type having a membrane portion and a reinforcing portion
US5213478A (en) * 1989-09-18 1993-05-25 Takeshi Hoya Slurry pumping method and apparatus
US5883299A (en) * 1996-06-28 1999-03-16 Texaco Inc System for monitoring diaphragm pump failure
US6419462B1 (en) * 1997-02-24 2002-07-16 Ebara Corporation Positive displacement type liquid-delivery apparatus

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10231875B2 (en) 2007-11-21 2019-03-19 Smith & Nephew Plc Wound dressing
US11179276B2 (en) 2007-11-21 2021-11-23 Smith & Nephew Plc Wound dressing
US11129751B2 (en) 2007-11-21 2021-09-28 Smith & Nephew Plc Wound dressing
US10555839B2 (en) 2007-11-21 2020-02-11 Smith & Nephew Plc Wound dressing
US11364151B2 (en) 2007-11-21 2022-06-21 Smith & Nephew Plc Wound dressing
US11351064B2 (en) 2007-11-21 2022-06-07 Smith & Nephew Plc Wound dressing
US10016309B2 (en) 2007-11-21 2018-07-10 Smith & Nephew Plc Wound dressing
US10744041B2 (en) 2007-11-21 2020-08-18 Smith & Nephew Plc Wound dressing
US9956121B2 (en) 2007-11-21 2018-05-01 Smith & Nephew Plc Wound dressing
US20090178188A1 (en) * 2008-01-15 2009-07-16 Campau Daniel N On-Tank Toilet Dispenser
US8015628B2 (en) 2008-01-15 2011-09-13 S.C. Johnson & Son, Inc. On-tank toilet dispenser
US10307517B2 (en) 2010-09-20 2019-06-04 Smith & Nephew Plc Systems and methods for controlling operation of a reduced pressure therapy system
US11534540B2 (en) 2010-09-20 2022-12-27 Smith & Nephew Plc Pressure control apparatus
US11623039B2 (en) 2010-09-20 2023-04-11 Smith & Nephew Plc Systems and methods for controlling operation of a reduced pressure therapy system
US11027051B2 (en) 2010-09-20 2021-06-08 Smith & Nephew Plc Pressure control apparatus
US10143783B2 (en) 2011-11-02 2018-12-04 Smith & Nephew Plc Reduced pressure therapy apparatuses and methods of using same
US11253639B2 (en) 2011-11-02 2022-02-22 Smith & Nephew Plc Reduced pressure therapy apparatuses and methods of using same
US11648342B2 (en) 2011-11-02 2023-05-16 Smith & Nephew Plc Reduced pressure therapy apparatuses and methods of using same
US9084845B2 (en) 2011-11-02 2015-07-21 Smith & Nephew Plc Reduced pressure therapy apparatuses and methods of using same
US11730877B2 (en) 2012-03-20 2023-08-22 Smith & Nephew Plc Controlling operation of a reduced pressure therapy system based on dynamic duty cycle threshold determination
US10881764B2 (en) 2012-03-20 2021-01-05 Smith & Nephew Plc Controlling operation of a reduced pressure therapy system based on dynamic duty cycle threshold determination
US9901664B2 (en) 2012-03-20 2018-02-27 Smith & Nephew Plc Controlling operation of a reduced pressure therapy system based on dynamic duty cycle threshold determination
US9427505B2 (en) 2012-05-15 2016-08-30 Smith & Nephew Plc Negative pressure wound therapy apparatus
US10299964B2 (en) 2012-05-15 2019-05-28 Smith & Nephew Plc Negative pressure wound therapy apparatus
US10702418B2 (en) 2012-05-15 2020-07-07 Smith & Nephew Plc Negative pressure wound therapy apparatus
US9545465B2 (en) 2012-05-15 2017-01-17 Smith & Newphew Plc Negative pressure wound therapy apparatus
US10682446B2 (en) 2014-12-22 2020-06-16 Smith & Nephew Plc Dressing status detection for negative pressure wound therapy
US10737002B2 (en) 2014-12-22 2020-08-11 Smith & Nephew Plc Pressure sampling systems and methods for negative pressure wound therapy
US10973965B2 (en) 2014-12-22 2021-04-13 Smith & Nephew Plc Systems and methods of calibrating operating parameters of negative pressure wound therapy apparatuses
US10780202B2 (en) 2014-12-22 2020-09-22 Smith & Nephew Plc Noise reduction for negative pressure wound therapy apparatuses
US11654228B2 (en) 2014-12-22 2023-05-23 Smith & Nephew Plc Status indication for negative pressure wound therapy
US11313361B2 (en) * 2018-01-19 2022-04-26 Nippon Pillar Packing Co., Ltd. Rolling diaphragm pump
CN111630273A (en) * 2018-01-19 2020-09-04 日本皮拉工业株式会社 Rotary diaphragm pump

Similar Documents

Publication Publication Date Title
US20080260551A1 (en) Rolling diaphragm pump
US5165869A (en) Diaphragm pump
US6089837A (en) Pump inlet stabilizer with a control unit for creating a positive pressure and a partial vacuum
US9249915B2 (en) Pump pulsation discharge dampener with dual pressure drop tube assemblies having unequal sizes
US20150260178A1 (en) Piston membrane pump
CN103154517A (en) Membrane pump having an inertially controlled leak extension valve
US20100008804A1 (en) Pump having improved and adjustable packing
NO158475B (en) PUMP OF THE DEVELOPMENT TYPE.
EP3947968B1 (en) Pump and associated system and methods
DE10392934T5 (en) diaphragm pump
CN103210216A (en) Membrane pump and method for adjusting same
US7343969B1 (en) Secondary packing arrangement for reciprocating pump polished rod
US4540346A (en) Diaphragm pumps
CN209325112U (en) A kind of unidirectional speed regulation screw-in cartridge valve
CN208900339U (en) A kind of plunger type reciprocating booster pump
CN208778206U (en) A kind of liquid plunger locellus pump head
US1235112A (en) Pump.
JPH04228881A (en) Double extruding pump
US2214683A (en) Hydraulic pump pulsation absorbing device
US20210222813A1 (en) Reactive fluid system accounting for thermal expansion in replacement of nitrogen within charged pulsation control equipment
WO2004016947A1 (en) Energy recycling pump
CN110242551A (en) A kind of oil well pump that oilfield exploitation pumping efficiency is stable
US1060816A (en) Pump.
CN109268245A (en) A kind of vacuum oil pumping system
GB2607592A (en) Pump pulsation damping

Legal Events

Date Code Title Description
AS Assignment

Owner name: TERRASIMCO INC., WEST VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIMMONS, WALTER NEAL;REEL/FRAME:021223/0141

Effective date: 20080618

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION