US20080274108A1 - Polypeptide variants with altered effector function - Google Patents

Polypeptide variants with altered effector function Download PDF

Info

Publication number
US20080274108A1
US20080274108A1 US12/171,888 US17188808A US2008274108A1 US 20080274108 A1 US20080274108 A1 US 20080274108A1 US 17188808 A US17188808 A US 17188808A US 2008274108 A1 US2008274108 A1 US 2008274108A1
Authority
US
United States
Prior art keywords
region
binding
amino acid
variant
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/171,888
Inventor
Leonard Presta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genentech Inc
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genentech Inc filed Critical Genentech Inc
Priority to US12/171,888 priority Critical patent/US20080274108A1/en
Publication of US20080274108A1 publication Critical patent/US20080274108A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • C07K16/4283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig
    • C07K16/4291Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig against IgE
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2839Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2887Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/524CH2 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/71Decreased effector function due to an Fc-modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/734Complement-dependent cytotoxicity [CDC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • C12N2799/022Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from an adenovirus

Definitions

  • the present invention concerns polypeptides comprising a variant Fc region. More particularly, the present invention concerns Fc region-containing polypeptides that have altered effector function as a consequence of one or more amino acid modifications in the Fc region thereof.
  • Antibodies are proteins which exhibit binding specificity to a specific antigen.
  • Native antibodies are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies between the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (V H ) followed by a number of constant domains.
  • V H variable domain
  • Each light chain has a variable domain at one end (V L ) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light and heavy chain variable domains.
  • variable refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are responsible for the binding specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed through the variable domains of antibodies. It is concentrated in three segments called complementarity determining regions (CDRs) both in the light chain and the heavy chain variable domains. The more highly conserved portions of the variable domains are called the framework regions (FRs).
  • CDRs complementarity determining regions
  • FRs framework regions
  • the variable domains of native heavy and light chains each comprise four FRs, largely adopting a ⁇ -sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the ⁇ -sheet structure.
  • the CDRs in each chain are held together in close proximity by the FRs and, with the CDRs from the other chain, contribute to the formation of the antigen binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)).
  • the constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions.
  • antibodies or immunoglobulins can be assigned to different classes.
  • the heavy chain constant regions that correspond to the different classes of immunoglobulins are called ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ , respectively.
  • human immunoglobulin classes only human IgG1, IgG2, IgG3 and IgM are known to activate complement; and human IgG1 and IgG3 mediate ADCC more effectively than IgG2 and IgG4.
  • FIG. 1 A schematic representation of the native IgG1 structure is shown in FIG. 1 , where the various portions of the native antibody molecule are indicated.
  • Papain digestion of antibodies produces two identical antigen binding fragments, called Fab fragments, each with a single antigen binding site, and a residual “Fc” fragment, whose name reflects its ability to crystallize readily.
  • the crystal structure of the human IgG Fc region has been determined (Deisenhofer, Biochemistry 20:2361-2370 (1981)).
  • the Fc region is generated by papain cleavage N-terminal to Cys 226.
  • the Fc region is central to the effector functions of antibodies.
  • effector functions mediated by the antibody Fc region can be divided into two categories: (1) effector functions that operate after the binding of antibody to an antigen (these functions involve the participation of the complement cascade or Fc receptor (FcR)-bearing cells); and (2) effector functions that operate independently of antigen binding (these functions confer persistence in the circulation and the ability to be transferred across cellular barriers by transcytosis).
  • effector functions that operate after the binding of antibody to an antigen these functions involve the participation of the complement cascade or Fc receptor (FcR)-bearing cells
  • effector functions that operate independently of antigen binding these functions confer persistence in the circulation and the ability to be transferred across cellular barriers by transcytosis.
  • an antibody While binding of an antibody to the requisite antigen has a neutralizing effect that might prevent the binding of a foreign antigen to its endogenous target (e.g. receptor or ligand), binding alone may not remove the foreign antigen.
  • an antibody To be efficient in removing and/or destructing foreign antigens, an antibody should be endowed with both high affinity binding to its antigen, and efficient effector functions.
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • CDC complement dependent cytotoxicity
  • Fc receptors which bind the Fc region of an antibody.
  • FcRs are defined by their specificity for immunoglobulin isotypes; Fc receptors for IgG antibodies are referred to as Fc ⁇ R, for IgE as Fc ⁇ R, for IgA as Fc ⁇ R and so on.
  • Fc ⁇ RI CD64
  • Fc ⁇ RII CD32
  • Fc ⁇ RIII CD16
  • the three genes encoding the Fc ⁇ RI subclass are clustered in region 1q21.1 of the long arm of chromosome 1; the genes encoding Fc ⁇ RII isoforms (Fc ⁇ RIIA, Fc ⁇ RIIB and Fc ⁇ RIIC) and the two genes encoding Fc ⁇ RIII (Fc ⁇ RIIIA and Fc ⁇ RIIIB) are all clustered in region 1q22.
  • Fc ⁇ RIIA, Fc ⁇ RIIB and Fc ⁇ RIIC the genes encoding Fc ⁇ RIII
  • Fc ⁇ RIIIA and Fc ⁇ RIIIB are all clustered in region 1q22.
  • Fc ⁇ RIIIB is found only on neutrophils
  • Fc ⁇ RIIIA is found on macrophages, monocytes, natural killer (NK) cells, and a subpopulation of T-cells.
  • Fc ⁇ RIIIA is the only FcR present on NK cells, one of the cell types implicated in ADCC.
  • Fc ⁇ RI, Fc ⁇ RII and Fc ⁇ RIII are immunoglobulin superfamily (IgSF) receptors; Fc ⁇ RI has three IgSF domains in its extracellular domain, while Fc ⁇ RII and Fc ⁇ RII have only two IgSF domains in their extracellular domains.
  • IgSF immunoglobulin superfamily
  • FcRn neonatal Fc receptor
  • MHC major histocompatibility complex
  • G316-K338 human IgG for human Fc ⁇ RI (by sequence comparison only; no substitution mutants were evaluated) (Woof et al. Molec. Immunol. 23:319-330 (1986)); K274-R301 (human IgG1) for human Fc ⁇ RIII (based on peptides) (Sarmay et al. Molec. Immunol. 21:43-51 (1984)); Y407-R416 (human IgG) for human Fc ⁇ RIII (based on peptides) (Gergely et al. Biochem. Soc. Trans.
  • Pro331 in IgG3 was changed to Ser, and the affinity of this variant to target cells analyzed.
  • the affinity was found to be six-fold lower than that of unmutated IgG3, indicating the involvement of Pro331 in Fc ⁇ RI binding.
  • C1q is a hexavalent molecule with a molecular weight of approximately 460,000 and a structure likened to a bouquet of tulips in which six collagenous “stalks” are connected to six globular head regions.
  • CDC complement dependent cytotoxicity
  • the residue Pro331 has been implicated in C1q binding by analysis of the ability of human IgG subclasses to carry out complement mediated cell lysis. Mutation of Ser331 to Pro331 in IgG4 conferred the ability to activate complement. (Tao et al., J. Exp. Med., 178:661-667 (1993); Brekke et al., Eur. J. Immunol., 24:2542-47 (1994)).
  • IgG ability of IgG to bind C1q and activate the complement cascade also depends on the presence, absence, or modification of the carbohydrate moiety positioned between the two CH2 domains (which is normally anchored at Asn297). Ward and Ghetie, Therapeutic Immunology 2:77-94 (1995) at page 81.
  • the present invention provides a variant of a parent polypeptide comprising an Fc region, which variant mediates antibody-dependent cell-mediated cytotoxicity (ADCC) in the presence of human effector cells more effectively, or binds an Fc gamma receptor (Fc ⁇ R) with better affinity, than the parent polypeptide and comprises at least one amino acid modification in the Fc region.
  • the polypeptide variant may, for example, comprise an antibody or an immunoadhesin.
  • the Fc region of the parent polypeptide preferably comprises a human Fc region; e.g., a human IgG1, IgG2, IgG3 or IgG4 Fc region.
  • the polypeptide variant preferably comprises an amino acid modification (e.g.
  • the invention provides a polypeptide comprising a variant Fc region with altered Fc gamma receptor (Fc ⁇ R) binding affinity, which polypeptide comprises an amino acid modification at any one or more of amino acid positions 238, 239, 248, 249, 252, 254, 255, 256, 258, 265, 267, 268, 269, 270, 272, 276, 278, 280, 283, 285, 286, 289, 290, 292, 293, 294, 295, 296, 298, 301, 303, 305, 307, 309, 312, 315, 320, 322, 324, 326, 327, 329, 330, 331, 333, 334, 335, 337, 338, 340, 360, 373, 376, 378, 382, 388, 389, 398, 414, 416, 419, 430, 434, 435, 437, 438 or 439 of the Fc region, wherein the numbering of the residues in the Fc region is that of
  • the variant Fc region preferably comprises a variant human IgG Fc region, e.g., a variant human IgG1, IgG2, IgG3 or IgG4 Fc region.
  • a variant human IgG Fc region e.g., a variant human IgG1, IgG2, IgG3 or IgG4 Fc region.
  • different residues from those identified herein were thought to impact FcR binding.
  • IgG E318 was found to be important for binding (Lund et al. Molec. Immunol. 27(1):53-59 (1992)), whereas E318A had no effect in the human IgG/human Fc ⁇ RII system (Table 6 below).
  • the polypeptide variant with altered Fc ⁇ R binding activity displays reduced binding to an Fc ⁇ R and comprises an amino acid modification at any one or more of amino acid positions 238, 239, 248, 249, 252, 254, 265, 268, 269, 270, 272, 278, 289, 292, 293, 294, 295, 296, 298, 301, 303, 322, 324, 327, 329, 333, 335, 338, 340, 373, 376, 382, 388, 389, 414, 416, 419, 434, 435, 437, 438 or 439 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • the polypeptide variant may display reduced binding to an Fc ⁇ RI and comprise an amino acid modification at any one or more of amino acid positions 238, 265, 269, 270, 327 or 329 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • the polypeptide variant may display reduced binding to an Fc ⁇ RII and comprise an amino acid modification at any one or more of amino acid positions 238, 265, 269, 270, 292, 294, 295, 298, 303, 324, 327, 329, 333, 335, 338, 373, 376, 414, 416, 419, 435, 438 or 439 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • the polypeptide variant of interest may display reduced binding to an Fc ⁇ RIII and comprise an amino acid modification at one or more of amino acid positions 238, 239, 248, 249, 252, 254, 265, 268, 269, 270, 272, 278, 289, 293, 294, 295, 296, 301, 303, 322, 327, 329, 338, 340, 373, 376, 382, 388, 389, 416, 434, 435 or 437 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • the polypeptide variant with altered Fc ⁇ R binding affinity displays improved binding to the Fc ⁇ R and comprises an amino acid modification at any one or more of amino acid positions 255, 256, 258, 267, 268, 272, 276, 280, 283, 285, 286, 290, 298, 301, 305, 307, 309, 312, 315, 320, 322, 326, 330, 331, 333, 334, 337, 340, 360, 378, 398 or 430 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • polypeptide variant may display increased binding to an Fc ⁇ RIII and, optionally, may further display decreased binding to an Fc ⁇ RII.
  • An exemplary such variant comprises amino acid modification(s) at position(s) 298 and/or 333 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • the polypeptide variant may display increased binding to an Fc ⁇ RII and comprise an amino acid modification at any one or more of amino acid positions 255, 256, 258, 267, 268, 272, 276, 280, 283, 285, 286, 290, 301, 305, 307, 309, 312, 315, 320, 322, 326, 330, 331, 337, 340, 378, 398 or 430 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • Such polypeptide variants with increased binding to an Fc ⁇ RII may optionally further display decreased binding to an Fc ⁇ RIII and may, for example, comprise an amino acid modification at any one or more of amino acid positions 268, 272, 298, 301, 322 or 340 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • the invention further provides a polypeptide comprising a variant Fc region with altered neonatal Fc receptor (FcRn) binding affinity, which polypeptide comprises an amino acid modification at any one or more of amino acid positions 238, 252, 253, 254, 255, 256, 265, 272, 286, 288, 303, 305, 307, 309, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 386, 388, 400, 413, 415, 424, 433, 434, 435, 436, 439 or 447 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • FcRn neonatal Fc receptor
  • Such polypeptide variants with reduced binding to an FcRn may comprise an amino acid modification at any one or more of amino acid positions 252, 253, 254, 255, 288, 309, 386, 388, 400, 415, 433, 435, 436, 439 or 447 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • polypeptide variants may, alternatively, display increased binding to FcRn and comprise an amino acid modification at any one or more of amino acid positions 238, 256, 265, 272, 286, 303, 305, 307, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 413, 424 or 434 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • the invention also provides a composition comprising the polypeptide variant and a physiologically or pharmaceutically acceptable carrier or diluent.
  • This composition for potential therapeutic use is sterile and may be lyophilized.
  • the invention provides a method for determining the presence of an antigen of interest comprising exposing a sample suspected of containing the antigen to the polypeptide variant and determining binding of the polypeptide variant to the sample.
  • the invention provides a method of treating a mammal suffering from or predisposed to a disease or disorder, comprising administering to the mammal a therapeutically effective amount of a polypeptide variant as disclosed herein, or of a composition comprising the polypeptide variant and a pharmaceutically acceptable carrier.
  • the invention further provides: isolated nucleic acid encoding the polypeptide variant; a vector comprising the nucleic acid, optionally, operably linked to control sequences recognized by a host cell transformed with the vector; a host cell containing the vector; a method for producing the polypeptide variant comprising culturing this host cell so that the nucleic acid is expressed and, optionally, recovering the polypeptide variant from the host cell culture (e.g. from the host cell culture medium).
  • the invention further provides a method for making a variant Fc region with altered Fc receptor (FcR) binding affinity, or altered antibody-dependent cell-mediated cytotoxicity (ADCC) activity, comprising:
  • Step (b) of the method may comprise determining binding of the variant Fc region to one or more FcRs in vitro. Moreover, the method may result in the identification of a variant Fc region with, improved FcR binding affinity, or with improved ADCC activity, in step (b) thereof.
  • the FcR may, for example, be human Fc gamma receptor III (Fc ⁇ RIII).
  • step (b) comprises determining binding of the variant Fc region to at least two different FcRs
  • the FcRs tested preferably include human Fc gamma receptor II (Fc ⁇ RII) and human Fc gamma receptor III (Fc ⁇ RIII).
  • FIG. 1 is a schematic representation of a native IgG. Disulfide bonds are represented by heavy lines between CH1 and CL domains and the two CH2 domains. V is variable domain; C is constant domain; L stands for light chain and H stands for heavy chain.
  • FIG. 2 shows C1q binding of wild type (wt) C2B8 antibody; C2B8 antibody with a human IgG2 constant region (IgG2); and variants K322A, K320A and E318A.
  • FIG. 3 depicts C1q binding of variants P331A, P329A and K322A.
  • FIGS. 4A and 4B depict the amino acid sequences of E27 anti-IgE antibody light chain ( FIG. 4A ; SEQ ID NO:1) and heavy chain ( FIG. 4B ; SEQ ID NO:2).
  • FIG. 5 is a schematic diagram of the “immune complex” prepared for use in the FcR assay described in Example 1.
  • the hexamer comprising three anti-IgE antibody molecules (the “Fc region-containing polypeptide”) and three IgE molecules (the “first target molecule”) is shown.
  • IgE has two “binding sites” for the anti-IgE antibody (E27) in the Fc region thereof.
  • Each IgE molecule in the complex is further able to bind two VEGF molecules (“the second target polypeptide”).
  • VEGF has two “binding sites” for IgE.
  • FIG. 6 shows C1q binding results obtained for variants D270K and D270V compared to wild type C2B8.
  • FIG. 7 depicts complement dependent cytotoxicity (CDC) of variants D270K and D270V, compared to wild type C2B8.
  • FIG. 8 shows C1 q binding ELISA results for 293 cell-produced wild type C2B8 antibody (293-Wt-C2B8), CHO-produced wild type C2B8 antibody (CHO-Wt-C2B8) and various variant antibodies.
  • FIG. 9 shows C1 q binding ELISA results obtained for wild type (wt) C2B8 and various variant antibodies as determined in Example 3.
  • FIG. 10 depicts the three-dimensional structure of a human IgG Fc region, highlighting residues: Asp270, Lys326, Pro329, Pro331, Lys322 and Glu333.
  • FIG. 11 shows C1 q binding ELISA results obtained for wild type C2B8 and various variant antibodies as determined in Example 3.
  • FIG. 12 shows C1q binding ELISA results obtained for wild type C2B8 and double variants, K326M-E333S and K326A-E333A.
  • FIG. 13 shows CDC of wild type C2B8 and double variants, K326M-E333S and K326A-E333A.
  • FIG. 14 depicts C1q binding ELISA results obtained for C2B8 with a human IgG4 (IgG4), wild type C2B8 (Wt-C2B8), C2B8 with a human IgG2 constant region (IgG2), and variant antibodies as described in Example 3.
  • IgG4 human IgG4
  • Wt-C2B8 wild type C2B8
  • IgG2 constant region IgG2 constant region
  • variant antibodies as described in Example 3.
  • FIGS. 15A and 15B show binding patterns for parent antibody (E27) to Fc ⁇ RIIB and Fc ⁇ RIIIA.
  • FIG. 15A shows the binding pattern for the humanized anti-IgE E27 IgG1 as a monomer (open circles), hexamer (closed squares), and immune complex consisting of multiple hexamers (closed triangles) to a recombinant GST fusion protein of the human Fc ⁇ RIIB (CD32) receptor ⁇ subunit.
  • the hexameric complex (closed squares) was formed by the mixture of equal molar concentrations of E27 (which binds to the Fc region of human IgE) and a human myeloma IgE.
  • the hexamer is a stable 1.1 kD complex consisting of 3 IgG molecules (150 kD each) and 3 IgE molecules (200 kD each).
  • the immune complex (closed triangles) was formed sequentially by first mixing equal molar concentrations of E27 and recombinant anti-VEGF IgE (human IgE with Fab variable domains that bind human VEGF) to form the hexamer. Hexamers were then linked to form an immune complex by the addition of 2 ⁇ molar concentration of human VEGF, a 44 kD homodimer which has two binding sites for the anti-VEGF IgE per mole of VEGF.
  • FIG. 15B shows the binding pattern to a recombinant GST fusion protein of the human Fc ⁇ RIIIA (CD16) receptor ⁇ subunit.
  • FIG. 16A shows the binding of immune complexes using different antigen-antibody pairs to recombinant GST fusion protein of the Fc ⁇ RIIA receptor ⁇ subunit.
  • FIG. 16B shows the binding of the same antigen-antibody pairs to the GST fusion protein of the Fc ⁇ RIIIA receptor ⁇ subunit. Closed circles represent binding of human IgE:anti-IgE E27 IgG1; open circles represent binding of human VEGF:humanized anti-VEGF IgG1.
  • FIG. 17 summarizes differences in binding selectivity of some alanine variants between the different Fc ⁇ Rs. Binding of alanine variants at residues in the CH2 domain of anti-IgE E27 IgG1 are shown to Fc ⁇ RIIA, Fc ⁇ RIIB, and Fc ⁇ RIIIA. Type 1 abrogates binding to all three receptors: D278A (265 in EU numbering). Type 2 improves binding to Fc ⁇ RIIA and Fc ⁇ RIIB, while binding to Fc ⁇ RIIIA is unaffected: S280A (267 in EU numbering). Type 3 improves binding to Fc ⁇ RIIA and Fc ⁇ RIIB, but reduces binding to Fc ⁇ RIIIA: H281A (268 in EU numbering).
  • Type 4 reduces binding to Fc ⁇ RIIA and Fc ⁇ RIIB, while improving binding to Fc ⁇ RIIIA: S317A (298 in EU numbering).
  • Type 5 improves binding to Fc ⁇ RIIIA, but does not affect binding to Fc ⁇ RIIA and Fc ⁇ RIIB: E352A, K353A (333 and 334 in EU numbering).
  • FIGS. 18A and 18B compare the Fc ⁇ RIIIA protein/protein assay and CHO GPI-Fc ⁇ RIIIA cell based assay, respectively.
  • FIG. 18A illustrates binding of selected alanine variants to Fc ⁇ RIIIA-GST fusion protein. S317A (298 in EU numbering) and S317A/K353A (298 and 334 in EU numbering) bind better than E27 wildtype, while D278A (265 in EU numbering) almost completely abrogates binding.
  • FIG. 18B illustrates that a similar pattern of binding is found on CHO cells expressing a recombinant GPI-linked form of Fc ⁇ RIIIA.
  • FIGS. 19A and 19B compare the Fc ⁇ RIIB protein/protein assay and CHO GPI-Fc ⁇ RIIB cell based assay, respectively.
  • FIG. 19A illustrates binding of selected alanine variants to Fc ⁇ RIIB-GST fusion protein. H281A (268 in EU numbering) binds better than E27 wildtype while S317A (298 in EU numbering) shows reduced binding.
  • FIG. 19B illustrates that a similar pattern of binding is found on CHO cells expressing a recombinant membrane bound form of Fc ⁇ RIIB.
  • FIG. 20 shows single alanine substitutions in the CH2 domain of anti-HER2 IgG1 (HERCEPTIN®) that influence Fc ⁇ RIIIA binding in both the protein-protein and cell-based assays alter the ability to bind to Fc ⁇ RIIIA on peripheral blood mononuclear cell (PBMC) effector cells.
  • PBMC peripheral blood mononuclear cell
  • a single alanine mutation that only slightly increased binding to Fc ⁇ RIIIA, variant G30 K307A (290 in EU numbering), also showed slightly improved ADCC (i.e., a 1.1 fold improvement in ADCC activity, calculated as area under the curve) at 1.25 ng/ml at all E:T ratios (filled diamonds) compared to wildtype antibody at 1.25 ng/ml (filled square).
  • a single alanine mutation that decreased binding to Fc ⁇ RIIIA, variant G34 Q312A (295 in EU numbering), also showed decreased ADCC activity (filled inverted triangles).
  • G36 displayed a 1.7 fold improvement in ADCC activity, calculated as area under the curve.
  • the effector cells were PBMCs.
  • FIG. 22A depicts alignments of native sequence IgG Fc regions.
  • Native sequence human IgG Fc region sequences humIgG1 (non-A and A allotypes) (SEQ ID NOs:3 and 4, respectively), humIgG2 (SEQ ID NO:5), humIgG3 (SEQ ID NO:6) and humIgG4 (SEQ ID NO:7), are shown.
  • the human IgG1 sequence is the non-A allotype, and differences between this sequence and the A allotype (at positions 356 and 358; EU numbering system) are shown below the human IgG1 sequence.
  • FIG. 22B shows percent identity among the Fc region sequences of FIG. 22A .
  • FIG. 23 depicts alignments of native sequence human IgG Fc region sequences, humIgG1 (non-A and A allotypes; SEQ ID NOs:3 and 4, respectively), humIgG2 (SEQ ID NO:5), humIgG3 (SEQ ID NO:6) and humIgG4 (SEQ ID NO:7) with differences between the sequences marked with asterisks.
  • FIG. 24 shows area under curve (AUC) for selected variants compared to anti-HER2 IgG1 (HERCEPTIN®) in a 4 hour ADCC assay.
  • Variant G36 (S317A; 298 in Eu numbering) with improved binding to Fc ⁇ RIIIA showed improved ADCC activity; variant G31 (R309A; 292 in Eu numbering) which did not display altered Fc ⁇ RIIIA binding, also had unaltered ADCC activity; and G14 (D265A; 278 in Eu numbering) which had reduced Fc ⁇ RIIIA binding, also had reduced ADCC activity.
  • the numbering of the residues in an immunoglobulin heavy chain is that of the EU index as in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991), expressly incorporated herein by reference.
  • the “EU index as in Kabat” refers to the residue numbering of the human IgG1 EU antibody.
  • a “parent polypeptide” is a polypeptide comprising an amino acid sequence which lacks one or more of the Fc region modifications disclosed herein and which differs in effector function compared to a polypeptide variant as herein disclosed.
  • the parent polypeptide may comprise a native sequence Fc region or an Fc region with pre-existing amino acid sequence modifications (such as additions, deletions and/or substitutions).
  • the term “Fc region” is used to define a C-terminal region of an immunoglobulin heavy chain, e.g., as shown in FIG. 1 .
  • the “Fc region” may be a native sequence Fc region or a variant Fc region.
  • the human IgG heavy chain Fc region is usually defined to stretch from an amino acid residue at position Cys226, or from Pro230, to the carboxyl-terminus thereof.
  • the Fc region of an immunoglobulin generally comprises two constant domains, CH2 and CH3, as shown, for example, in FIG. 1 .
  • the “CH2 domain” of a human IgG Fc region usually extends from about amino acid 231 to about amino acid 340.
  • the CH2 domain is unique in that it is not closely paired with another domain. Rather, two N-linked branched carbohydrate chains are interposed between the two CH2 domains of an intact native IgG molecule. It has been speculated that the carbohydrate may provide a substitute for the domain-domain pairing and help stabilize the CH2 domain.
  • the “CH3 domain” comprises the stretch of residues C-terminal to a CH2 domain in an Fc region (i.e. from about amino acid residue 341 to about amino acid residue 447 of an IgG)
  • a “functional Fc region” possesses an “effector function” of a native sequence Fc region.
  • effector functions include C1q binding; complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor; BCR), etc.
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • phagocytosis down regulation of cell surface receptors (e.g. B cell receptor; BCR), etc.
  • Such effector functions generally require the Fc region to be combined with a binding domain (e.g. an antibody variable domain) and can be assessed using various assays as herein disclosed, for example.
  • a “native sequence Fc region” comprises an amino acid sequence identical to the amino acid sequence of an Fc region found in nature.
  • Native sequence human Fc regions are shown in FIG. 23 and include a native sequence human IgG1 Fc region (non-A and A allotypes); native sequence human IgG2 Fc region; native sequence human IgG3 Fc region; and native sequence human IgG4 Fc region as well as naturally occurring variants thereof.
  • Native sequence murine Fc regions are shown in FIG. 22A .
  • a “variant Fc region” comprises an amino acid sequence which differs from that of a native sequence Fc region by virtue of at least one “amino acid modification” as herein defined.
  • the variant Fc region has at least one amino acid substitution compared to a native sequence Fc region or to the Fc region of a parent polypeptide, e.g. from about one to about ten amino acid substitutions, and preferably from about one to about five amino acid substitutions in a native sequence Fc region or in the Fc region of the parent polypeptide.
  • the variant Fc region herein will preferably possess at least about 80% homology with a native sequence Fc region and/or with an Fc region of a parent polypeptide, and most preferably at least about 90% homology therewith, more preferably at least about 95% homology therewith.
  • “Homology” is defined as the percentage of residues in the amino acid sequence variant that are identical after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology. Methods and computer programs for the alignment are well known in the art. One such computer program is “Align 2”, authored by Genentech, Inc., which was filed with user documentation in the United States Copyright Office, Washington, D.C. 20559, on Dec. 10, 1991.
  • Fc region-containing polypeptide refers to a polypeptide, such as an antibody or immunoadhesin (see definitions below), which comprises an Fc region.
  • Fc receptor or “FcR” are used to describe a receptor that binds to the Fc region of an antibody.
  • the preferred FcR is a native sequence human FcR.
  • a preferred FcR is one which binds an IgG antibody (a gamma receptor) and includes receptors of the Fc ⁇ RI, Fc ⁇ RII, and Fc ⁇ RIII subclasses, including allelic variants and alternatively spliced forms of these receptors.
  • Fc ⁇ RII receptors include Fc ⁇ RIIA (an “activating receptor”) and Fc ⁇ RIIB (an “inhibiting receptor”), which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof.
  • Activating receptor Fc ⁇ RIIA contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain.
  • Inhibiting receptor Fc ⁇ RIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic domain.
  • ITAM immunoreceptor tyrosine-based activation motif
  • ITIM immunoreceptor tyrosine-based inhibition motif
  • FcR FcR
  • FcRn neonatal receptor
  • Antibody-dependent cell-mediated cytotoxicity and “ADCC” refer to a cell-mediated reaction in which nonspecific cytotoxic cells that express FcRs (e.g. Natural Killer (NK) cells, neutrophils, and macrophages) recognize bound antibody on a target cell and subsequently cause lysis of the target cell.
  • FcRs e.g. Natural Killer (NK) cells, neutrophils, and macrophages
  • the primary cells for mediating ADCC NK cells, express Fc ⁇ RIII only, whereas monocytes express Fc ⁇ RI, Fc ⁇ RII and Fc ⁇ RIII.
  • FcR expression on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991).
  • Human effector cells are leukocytes which express one or more FcRs and perform effector functions. Preferably, the cells express at least Fc ⁇ RII and perform ADCC effector function. Examples of human leukocytes which mediate ADCC include peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, cytotoxic T cells and neutrophils; with PBMCs and NK cells being preferred.
  • PBMC peripheral blood mononuclear cells
  • NK natural killer cells
  • monocytes cytotoxic T cells and neutrophils
  • the effector cells may be isolated from a native source thereof, e.g. from blood or PBMCs as described herein.
  • a polypeptide variant with “altered” FcR binding affinity or ADCC activity is one which has either enhanced or diminished FcR binding activity and/or ADCC activity compared to a parent polypeptide or to a polypeptide comprising a native sequence Fc region.
  • the polypeptide variant which “displays increased binding” to an FcR binds at least one FcR with better affinity than the parent polypeptide.
  • the polypeptide variant which “displays decreased binding” to an FcR binds at least one FcR with worse affinity than a parent polypeptide.
  • Such variants which display decreased binding to an FcR may possess little or no appreciable binding to an FcR, e.g., 0-20% binding to the FcR compared to a native sequence IgG Fc region, e.g. as determined in the Examples herein.
  • the polypeptide variant which binds an FcR with “better affinity” than a parent polypeptide is one which binds any one or more of the above identified FcRs with substantially better binding affinity than the parent antibody, when the amounts of polypeptide variant and parent polypeptide in the binding assay are essentially the same.
  • the polypeptide variant with improved FcR binding affinity may display from about 1.15 fold to about 100 fold, e.g. from about 1.2 fold to about 50 fold improvement in FcR binding affinity compared to the parent polypeptide, where FcR binding affinity is determined, for example, as disclosed in the Examples herein.
  • the polypeptide variant which “mediates antibody-dependent cell-mediated cytotoxicity (ADCC) in the presence of human effector cells more effectively” than a parent antibody is one which in vitro or in vivo is substantially more effective at mediating ADCC, when the amounts of polypeptide variant and parent antibody used in the assay are essentially the same.
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • Such variants will be identified using the in vitro ADCC assay as herein disclosed, but other assays or methods for determining ADCC activity, e.g. in an animal model etc, are contemplated.
  • the preferred variant is from about 1.5 fold to about 100 fold, e.g. from about two fold to about fifty fold, more effective at mediating ADCC than the parent, e.g. in the in vitro assay disclosed herein.
  • amino acid modification refers to a change in the amino acid sequence of a predetermined amino acid sequence.
  • exemplary modifications include an amino acid substitution, insertion and/or deletion.
  • the preferred amino acid modification herein is a substitution.
  • amino acid modification at a specified position, e.g. of the Fc region, refers to the substitution or deletion of the specified residue, or the insertion of at least one amino acid residue adjacent the specified residue.
  • insertion “adjacent” a specified residue is meant insertion within one to two residues thereof. The insertion may be N-terminal or C-terminal to the specified residue.
  • amino acid substitution refers to the replacement of at least one existing amino acid residue in a predetermined amino acid sequence with another different “replacement” amino acid residue.
  • the replacement residue or residues may be “naturally occurring amino acid residues” (i.e. encoded by the genetic code) and selected from the group consisting of: alanine (Ala); arginine (Arg); asparagine (Asn); aspartic acid (Asp); cysteine (Cys); glutamine (Gln); glutamic acid (Glu); glycine (Gly); histidine (His); isoleucine (Ile): leucine (Leu); lysine (Lys); methionine (Met); phenylalanine (Phe); proline (Pro); serine (Ser); threonine (Thr); tryptophan (Trp); tyrosine (Tyr); and valine (Val).
  • the replacement residue is not cysteine.
  • substitution with one or more non-naturally occurring amino acid residues is also encompassed by the definition of an amino acid substitution herein.
  • a “non-naturally occurring amino acid residue” refers to a residue, other than those naturally occurring amino acid residues listed above, which is able to covalently bind adjacent amino acid residues(s) in a polypeptide chain. Examples of non-naturally occurring amino acid residues include norleucine, ornithine, norvaline, homoserine and other amino acid residue analogues such as those described in Ellman et al. Meth. Enzym. 202:301-336 (1991). To generate such non-naturally occurring amino acid residues, the procedures of Noren et al.
  • amino acid insertion refers to the incorporation of at least one amino acid into a predetermined amino acid sequence. While the insertion will usually consist of the insertion of one or two amino acid residues, the present application contemplates larger “peptide insertions”, e.g. insertion of about three to about five or even up to about ten amino acid residues.
  • the inserted residue(s) may be naturally occurring or non-naturally occurring as disclosed above.
  • amino acid deletion refers to the removal of at least one amino acid residue from a predetermined amino acid sequence.
  • Hinge region is generally defined as stretching from Glu216 to Pro230 of human IgG1 (Burton, Molec. Immunol. 22:161-206 (1985)). Hinge regions of other IgG isotypes may be aligned with the IgG1 sequence by placing the first and last cysteine residues forming inter-heavy chain S—S bonds in the same positions.
  • the “lower hinge region” of an Fc region is normally defined as the stretch of residues immediately C-terminal to the hinge region, i.e. residues 233 to 239 of the Fc region. Prior to the present invention, Fc ⁇ R binding was generally attributed to amino acid residues in the lower hinge region of an IgG Fc region.
  • C1q is a polypeptide that includes a binding site for the Fc region of an immunoglobulin. C1q together with two serine proteases, C1r and C1s, forms the complex C1, the first component of the complement dependent cytotoxicity (CDC) pathway. Human C1q can be purchased commercially from, e.g. Quidel, San Diego, Calif.
  • binding domain refers to the region of a polypeptide that binds to another molecule.
  • the binding domain can comprise a portion of a polypeptide chain thereof (e.g. the ⁇ chain thereof) which is responsible for binding an Fc region.
  • One useful binding domain is the extracellular domain of an FcR ⁇ chain.
  • antibody is used in the broadest sense and specifically covers monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments so long as they exhibit the desired biological activity.
  • Antibody fragments comprise a portion of an intact antibody, generally-including the antigen binding or variable region of the intact antibody or the Fc region of an antibody which retains FcR binding capability.
  • antibody fragments include linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.
  • the antibody fragments preferably retain at least part of the hinge and optionally the CH1 region of an IgG heavy chain. More preferably, the antibody fragments retain the entire constant region of an IgG heavy chain, and include an IgG light chain.
  • the term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations that typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.
  • the modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
  • the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al., Nature 256:495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Pat. No. 4,816,567).
  • the “monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature 352:624-628 (1991) and Marks et al., J. Mol. Biol. 222:581-597 (1991), for example.
  • the monoclonal antibodies herein specifically include “chimeric” antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat. No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA 81:6851-6855 (1984)).
  • chimeric antibodies immunoglobulins in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences
  • “Humanized” forms of non-human (e.g., murine) antibodies are chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin.
  • humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity.
  • donor antibody such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity.
  • Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
  • humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance.
  • the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin sequence.
  • the humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
  • Fc immunoglobulin constant region
  • hypervariable region when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding.
  • the hypervariable region comprises amino acid residues from a “complementarity determining region” or “CDR” (i.e. residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the light chain variable domain and 31-35 (H1), 50-65 (H2) and 95-102 (H3) in the heavy chain variable domain; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)) and/or those residues from a “hypervariable loop” (i.e.
  • “Framework” or “FR” residues are those variable domain residues other than the hypervariable region residues as herein defined.
  • immunoadhesin designates antibody-like molecules which combine the “binding domain” of a heterologous “adhesin” protein (e.g. a receptor, ligand or enzyme) with an immunoglobulin constant domain.
  • adhesin protein e.g. a receptor, ligand or enzyme
  • the immunoadhesins comprise a fusion of the adhesin amino acid sequence with the desired binding specificity which is other than the antigen recognition and binding site (antigen combining site) of an antibody (i.e. is “heterologous”) and an immunoglobulin constant domain sequence.
  • ligand binding domain refers to any native cell-surface receptor or any region or derivative thereof retaining at least a qualitative ligand binding ability of a corresponding native receptor.
  • the receptor is from a cell-surface polypeptide having an extracellular domain that is homologous to a member of the immunoglobulin supergenefamily.
  • Other receptors which are not members of the immunoglobulin supergenefamily but are nonetheless specifically covered by this definition, are receptors for cytokines, and in particular receptors with tyrosine kinase activity (receptor tyrosine kinases), members of the hematopoietin and nerve growth factor receptor superfamilies, and cell adhesion molecules, e.g. (E-, L- and P-) selectins.
  • receptor binding domain is used to designate any native ligand for a receptor, including cell adhesion molecules, or any region or derivative of such native ligand retaining at least a qualitative receptor binding ability of a corresponding native ligand. This definition, among others, specifically includes binding sequences from ligands for the above-mentioned receptors.
  • an “antibody-immunoadhesin chimera” comprises a molecule that combines at least one binding domain of an antibody (as herein defined) with at least one immunoadhesin (as defined in this application).
  • Exemplary antibody-immunoadhesin chimeras are the bispecific CD4-IgG chimeras described in Berg et al., PNAS ( USA ) 88:4723-4727 (1991) and Chamow et al., J. Immunol. 153:4268 (1994).
  • an “isolated” polypeptide is one that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes.
  • the polypeptide will be purified (1) to greater than 95% by weight of polypeptide as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain.
  • Isolated polypeptide includes the polypeptide in situ within recombinant cells since at least one component of the polypeptide's natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step.
  • Treatment refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with the disorder as well as those in which the disorder is to be prevented.
  • a “disorder” is any condition that would benefit from treatment with the polypeptide variant. This includes chronic and acute disorders or diseases including those pathological conditions which predispose the mammal to the disorder in question.
  • the disorder is cancer.
  • cancer and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth.
  • Examples of cancer include but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia.
  • cancers include squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma and various types of head and neck cancer.
  • a “HER2-expressing cancer” is one comprising cells which have HER2 receptor protein (Semba et al., PNAS ( USA ) 82:6497-6501 (1985) and Yamamoto et al. Nature 319:230-234 (1986) (Genebank accession number X03363)) present at their cell surface, such that an anti-HER2 antibody is able to bind to the cancer.
  • label when used herein refers to a detectable compound or composition which is conjugated directly or indirectly to the polypeptide.
  • the label may be itself be detectable (e.g., radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable.
  • an “isolated” nucleic acid molecule is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the polypeptide nucleic acid.
  • An isolated nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated nucleic acid molecules therefore are distinguished from the nucleic acid molecule as it exists in natural cells.
  • an isolated nucleic acid molecule includes a nucleic acid molecule contained in cells that ordinarily express the polypeptide where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.
  • control sequences refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism.
  • the control sequences that are suitable for prokaryotes include a promoter, optionally an operator sequence, and a ribosome binding site.
  • Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.
  • Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence.
  • DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide;
  • a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or
  • a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation.
  • “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
  • the expressions “cell,” “cell line,” and “cell culture” are used interchangeably and all such designations include progeny.
  • the words “transformants” and “transformed cells” include the primary subject cell and cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Mutant progeny that have the same function or biological activity as screened for in the originally transformed cell are included. Where distinct designations are intended, it will be clear from the context.
  • molecular complex when used herein refers to the relatively stable structure which forms when two or more heterologous molecules (e.g. polypeptides) bind (preferably noncovalently) to one another.
  • heterologous molecules e.g. polypeptides
  • the preferred molecular complex herein is an immune complex.
  • Immuno complex refers to the relatively stable structure which forms when at least one target molecule and at least one heterologous Fc region-containing polypeptide bind to one another forming a larger molecular weight complex.
  • immune complexes are antigen-antibody aggregates and target molecule-immunoadhesin aggregates.
  • target molecule refers to a molecule, usually a polypeptide, which is capable of being bound by a heterologous molecule and has one or more binding sites for the heterologous molecule.
  • binding site refers to a region of a molecule to which another molecule can bind.
  • the “first target molecule” herein comprises at least two distinct binding sites (for example, two to five separate binding sites) for an analyte (e.g. an Fc region-containing polypeptide) such that at least two analyte molecules can bind to the first target molecule.
  • the two or more binding sites are identical (e.g. having the same amino acid sequence, where the target molecule is a polypeptide).
  • the first target molecule was IgE and had two separate binding sites in the Fc region thereof to which the Fc region-containing polypeptide (an anti-IgE antibody, E27) could bind.
  • Other first target molecules include dimers of substantially identical monomers (e.g. neurotrophins, IL8 and VEGF) or are polypeptides comprising two or more substantially identical polypeptide chains (e.g. antibodies or immunoadhesins).
  • the “second target molecule” comprises at least two distinct binding sites (for example, two to five separate binding sites) for the first target molecule such that at least two first target molecules can bind to the second target molecule.
  • the two or more binding sites are identical (e.g.
  • the second target molecule was VEGF, which has a pair of distinct binding sites to which the variable domain of the IgE antibody could bind.
  • Other second target molecules are contemplated, e.g. other dimers of substantially identical monomers (e.g. neurotrophins or IL8) or polypeptides comprising two or more substantially identical domains (e.g. antibodies or immunoadhesins).
  • an “analyte” is a substance that is to be analyzed.
  • the preferred analyte is an Fc region-containing polypeptide that is to be analyzed for its ability to bind to an Fc receptor.
  • a “receptor” is a polypeptide capable of binding at least one ligand.
  • the preferred receptor is a cell-surface receptor having an extracellular ligand-binding domain and, optionally, other domains (e.g. transmembrane domain, intracellular domain and/or membrane anchor).
  • the receptor to be evaluated in the assay described herein may be an intact receptor or a fragment or derivative thereof (e.g. a fusion protein comprising the binding domain of the receptor fused to one or more heterologous polypeptides).
  • the receptor to be evaluated for its binding properties may be present in a cell or isolated and optionally coated on an assay plate or some other solid phase.
  • low affinity receptor denotes a receptor that has a weak binding affinity for a ligand of interest, e.g. having a binding constant of about 50 nM or worse affinity.
  • exemplary low affinity receptors include Fc ⁇ RII and Fc ⁇ RIII.
  • the invention herein relates to a method for making a polypeptide variant.
  • the “parent”, “starting” or “nonvariant” polypeptide is prepared using techniques available in the art for generating polypeptides comprising an Fc region.
  • the parent polypeptide is an antibody and exemplary methods for generating antibodies are described in more detail in the following sections.
  • the parent polypeptide may, however, be any other polypeptide comprising an Fc region, e.g. an immunoadhesin. Methods for making immunoadhesins are elaborated in more detail hereinbelow.
  • a variant Fc region may be generated according to the methods herein disclosed and this “variant Fc region” can be fused to a heterologous polypeptide of choice, such as an antibody variable domain or binding domain of a receptor or ligand.
  • the parent polypeptide comprises an Fc region.
  • the Fc region of the parent polypeptide will comprise a native sequence Fc region, and preferably a human native sequence Fc region.
  • the Fc region of the parent polypeptide may have one or more pre-existing amino acid sequence alterations or modifications from a native sequence Fc region.
  • the C1q binding activity of the Fc region may have been previously altered (other types of Fc region modifications are described in more detail below).
  • the parent polypeptide Fc region is “conceptual” and, while it does not physically exist, the antibody engineer may decide upon a desired variant Fc region amino acid sequence and generate a polypeptide comprising that sequence or a DNA encoding the desired variant Fc region amino acid sequence.
  • nucleic acid encoding an Fc region of a parent polypeptide is available and this nucleic acid sequence is altered to generate a variant nucleic acid sequence encoding the Fc region variant.
  • DNA encoding an amino acid sequence variant of the starting polypeptide is prepared by a variety of methods known in the art. These methods include, but are not limited to, preparation by site-directed (or oligonucleotide-mediated) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared DNA encoding the polypeptide
  • Site-directed mutagenesis is a preferred method for preparing substitution variants. This technique is well known in the art (see, e.g., Carter et al Nucleic Acids Res. 13:4431-4443 (1985) and Kunkel et al., Proc. Natl. Acad. Sci. USA 82:488 (1985)). Briefly, in carrying out site-directed mutagenesis of DNA, the starting DNA is altered by first hybridizing an oligonucleotide encoding the desired mutation to a single strand of such starting DNA.
  • a DNA polymerase is used to synthesize an entire second strand, using the hybridized oligonucleotide as a primer, and using the single strand of the starting DNA as a template.
  • the oligonucleotide encoding the desired mutation is incorporated in the resulting double-stranded DNA.
  • PCR mutagenesis is also suitable for making amino acid sequence variants of the starting polypeptide. See Higuchi, in PCR Protocols , pp. 177-183 (Academic Press, 1990); and Vallette et al., Nuc. Acids Res. 17:723-733 (1989). Briefly, when small amounts of template DNA are used as starting material in a PCR, primers that differ slightly in sequence from the corresponding region in a template DNA can be used to generate relatively large quantities of a specific DNA fragment that differs from the template sequence only at the positions where the primers differ from the template.
  • the starting material is the plasmid (or other vector) comprising the starting polypeptide DNA to be mutated.
  • the codon(s) in the starting DNA to be mutated are identified. There must be a unique restriction endonuclease site on each side of the identified mutation site(s). If no such restriction sites exist, they may be generated using the above-described oligonucleotide-mediated mutagenesis method to introduce them at appropriate locations in the starting polypeptide DNA.
  • the plasmid DNA is cut at these sites to linearize it.
  • the desired amino acid sequence encoding a polypeptide variant can be determined, and a nucleic acid sequence encoding such amino acid sequence variant can be generated synthetically.
  • the amino acid sequence of the parent polypeptide is modified in order to generate a variant Fc region with altered Fc receptor binding affinity or activity in vitro and/or in vivo and/or altered antibody-dependent cell-mediated cytotoxicity (ADCC) activity in vitro and/or in vivo.
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • the modification entails one or more amino acid substitutions.
  • the replacement residue does not correspond to a residue present in the same position in any of the native sequence Fc regions in FIG. 22A .
  • Pro331 of a human IgG3 or IgG1 Fc region is replaced with a residue other than Ser (the corresponding aligned residue found in native sequence human IgG4).
  • the residue in the parent polypeptide which is substituted with a replacement residue is not an alanine and/or is not residue Ala339 of an Fc region.
  • an amino acid substitution preferably the residue in the parent polypeptide is replaced with an alanine residue.
  • the present invention contemplates replacement of the residue of the parent polypeptide with any other amino acid residue.
  • the substitution may, for example, be a “conservative substitution”. Such conservative substitutions are shown in Table 1 under the heading of “preferred substitution”. More substantial changes may be achieved by making one or more “exemplary substitutions” which are not the preferred substitution in Table 1.
  • Substantial modifications in the biological properties of the Fc region may be accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.
  • Naturally occurring residues are divided into groups based on common side-chain properties:
  • hydrophobic norleucine, met, ala, val, leu, ile
  • Non-conservative substitutions will entail exchanging a member of one of these classes for a member of another class.
  • Conservative and non-conservative amino acid substitutions are exemplified in Table 8 hereinbelow.
  • Example 4 one can engineer an Fc region variant with altered binding affinity for one or more FcRs.
  • different classes of Fc region variants can be made e.g., as summarized in the following table. Where the variant Fc region has more than one amino acid substitution, generally, but not necessarily, amino acid substitutions in the same class are combined to achieve the desired result.
  • the present invention contemplates other modifications of the parent Fc region amino acid sequence in order to generate an Fc region variant with altered effector function.
  • variant Fc region which (a) mediates antibody-dependent cell-mediated cytotoxicity (ADCC) in the presence of human effector cells more effectively and/or (b) binds an Fc gamma receptor (Fc ⁇ R) with better affinity than the parent polypeptide.
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • Fc ⁇ R Fc gamma receptor
  • Such Fc region variants will generally comprise at least one amino acid modification in the Fc region. Combining amino acid modifications is thought to be particularly desirable.
  • the variant Fc region may include two, three, four, five, etc substitutions therein, e.g. of the specific Fc region positions identified herein.
  • the parent polypeptide Fc region is a human Fc region, e.g. a native sequence human Fc region human IgG1 (A and non-A allotypes), IgG2, IgG3 or IgG4 Fc region. Such sequences are shown in FIG. 23 .
  • the parent polypeptide preferably has pre-existing ADCC activity, e.g., it comprises a human IgG1 or human IgG3 Fc region.
  • the variant with improved ADCC mediates ADCC substantially more effectively than an antibody with a native sequence IgG1 or IgG3 Fc region and the antigen-binding region of the variant.
  • the variant comprises, or consists essentially of, substitutions of two or three of the residues at positions 298, 333 and 334 of the Fc region. Most preferably, residues at positions 298, 333 and 334 are substituted, (e.g. with alanine residues).
  • an Fc region variant with improved binding affinity for Fc ⁇ RIII which is thought to be an important FcR for mediating ADCC.
  • Fc ⁇ RIII an amino acid modification (e.g. a substitution) into the parent Fc region at any one or more of amino acid positions 256, 290, 298, 312, 326, 330, 333, 334, 360, 378 or 430 to generate such a variant.
  • the variant with improved binding affinity for Fc ⁇ RIII may further have reduced binding affinity for Fc ⁇ RII, especially reduced affinity for the inhibiting Fc ⁇ RIIB receptor.
  • the amino acid modification(s) are preferably introduced into the CH2 domain of a Fc region, since the experiments herein indicate that the CH2 domain is important for FcR binding activity. Moreover, unlike the teachings of the above-cited art, the instant application contemplates the introduction of a modification into a part of the Fc region other than in the lower hinge region thereof.
  • Useful amino acid positions for modification in order to generate a variant IgG Fc region with altered Fc gamma receptor (Fc ⁇ R) binding affinity or activity include any one or more of amino acid positions 238, 239, 248, 249, 252, 254, 255, 256, 258, 265, 267, 268, 269, 270, 272, 276, 278, 280, 283, 285, 286, 289, 290, 292, 293, 294, 295, 296, 298, 301, 303, 305, 307, 309, 312, 315, 320, 322, 324, 326, 327, 329, 330, 331, 333, 334, 335, 337, 338, 340, 360, 373, 376, 378, 382, 388, 389, 398, 414, 416, 419, 430, 434, 435, 437, 438 or 439 of the Fc region.
  • Fc ⁇ R Fc gamma receptor
  • the parent Fc region used as the template to generate such variants comprises a human IgG Fc region.
  • the parent Fc region is preferably not human native sequence IgG3, or the variant Fc region comprising a substitution at position 331 preferably displays increased FcR binding, e.g. to Fc ⁇ RII.
  • Variants which display reduced binding to Fc ⁇ RI include those comprising an Fc region amino acid modification at any one or more of amino acid positions 238, 265, 269, 270, 327 or 329.
  • Fc region variants which display reduced binding to Fc ⁇ RIII include those comprising an Fc region amino acid modification at any one or more of amino acid positions 238, 239, 248, 249, 252, 254, 265, 268, 269, 270, 272, 278, 289, 293, 294, 295, 296, 301, 303, 322, 327, 329, 338, 340, 373, 376, 382, 388, 389, 416, 434, 435 or 437.
  • Fc region variants may comprise an amino acid modification at any one or more of amino acid positions 255, 256, 258, 267, 268, 272, 276, 280, 283, 285, 286, 290, 298, 301, 305, 307, 309, 312, 315, 320, 322, 326, 330, 331, 333, 334, 337, 340, 360, 378, 398 or 430 of the Fc region.
  • the variant with improved Fc ⁇ R binding activity may display increased binding to Fc ⁇ RIII, and optionally may further display decreased binding to Fc ⁇ RII; e.g. the variant may comprise an amino acid modification at position 298 and/or 333 of an Fc region.
  • Variants with increased binding to Fc ⁇ RII include those comprising an amino acid modification at any one or more of amino acid positions 255, 256, 258, 267, 268, 272, 276, 280, 283, 285, 286, 290, 301, 305, 307, 309, 312, 315, 320, 322, 326, 330, 331, 337, 340, 378, 398 or 430 of an Fc region.
  • Such variants may further display decreased binding to Fc ⁇ RIII.
  • they may include an Fc region amino acid modification at any one or more of amino acid positions 268, 272, 298, 301, 322 or 340.
  • Fc region variants with altered binding affinity for the neonatal receptor are also contemplated herein.
  • Fc region variants with improved affinity for FcRn are anticipated to have longer serum half-lives, and such molecules will have useful applications in methods of treating mammals where long half-life of the administered polypeptide is desired, e.g., to treat a chronic disease or disorder.
  • Fc region variants with decreased FcRn binding affinity are expected to have shorter half-lives, and such molecules may, for example, be administered to a mammal where a shortened circulation time may be advantageous, e.g.
  • Fc region variants with decreased FcRn binding affinity are anticipated to be less likely to cross the placenta, and thus may be utilized in the treatment of diseases or disorders in pregnant women.
  • Fc region variants with altered binding affinity for FcRn include those comprising an Fc region amino acid modification at any one or more of amino acid positions 238, 252, 253, 254, 255, 256, 265, 272, 286, 288, 303, 305, 307, 309, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 386, 388, 400, 413, 415, 424, 433, 434, 435, 436, 439 or 447.
  • Those which display reduced binding to FcRn will generally comprise an Fc region amino acid modification at any one or more of amino acid positions 252, 253, 254, 255, 288, 309, 386, 388, 400, 415, 433, 435, 436, 439 or 447; and those with increased binding to FcRn will usually comprise an Fc region amino acid modification at any one or more of amino acid positions 238, 256, 265, 272, 286, 303, 305, 307, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 413, 424 or 434.
  • polypeptide variant(s) prepared as described above may be subjected to further modifications, oftentimes depending on the intended use of the polypeptide. Such modifications may involve further alteration of the amino acid sequence (substitution, insertion and/or deletion of amino acid residues), fusion to heterologous polypeptide(s) and/or covalent modifications. Such “further modifications” may be made prior to, simultaneously with, or following, the amino acid modification(s) disclosed above which result in an alteration of Fc receptor binding and/or ADCC activity. In one embodiment, one may combine the Fc region modification herein with Fc region substitutions disclosed in the references cited in the “Related Art” section of this application.
  • the starting polypeptide of particular interest herein is usually one that binds to C1q and displays complement dependent cytotoxicity (CDC).
  • CDC complement dependent cytotoxicity
  • the further amino acid substitutions described herein will generally serve to alter the ability of the starting polypeptide to bind to C1q and/or modify its complement dependent cytotoxicity function, e.g. to reduce and preferably abolish these effector functions.
  • polypeptides comprising substitutions at one or more of the described positions with improved C1q binding and/or complement dependent cytotoxicity (CDC) function are contemplated herein.
  • the starting polypeptide may be unable to bind C1q and/or mediate CDC and may be modified according to the teachings herein such that it acquires these further effector functions.
  • polypeptides with pre-existing C1q binding activity, optionally further having the ability to mediate CDC may be modified such that one or both of these activities are enhanced.
  • the amino acid positions to be modified are generally selected from heavy chain positions 270, 322, 326, 327, 329, 331, 333, and 334, where the numbering of the residues in an IgG heavy chain is that of the EU index as in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991). In one embodiment, only one of the eight above-identified positions is altered in order to generate the polypeptide variant region with altered C1q binding and/or complement dependent cytotoxicity (CDC) function.
  • residue 270, 329 or 322 is altered if this is the case.
  • two or more of the above-identified positions are modified. If substitutions are to be combined, generally substitutions which enhance human C1q binding (e.g. at residue positions 326, 327, 333 and 334) or those which diminish human C1q binding (e.g., at residue positions 270, 322, 329 and 331) are combined. In the latter embodiment, all four positions (i.e., 270, 322, 329 and 331) may be substituted.
  • Proline is conserved at position 329 in human IgG's. This residue is preferably replaced with alanine, however substitution with any other amino acid is contemplated, e.g., serine, threonine, asparagine, glycine or valine.
  • Proline is conserved at position 331 in human IgG1, IgG2 and IgG3, but not IgG4 (which has a serine residue at position 331).
  • Residue 331 is preferably replaced by alanine or another amino acid, e.g. serine (for IgG regions other than IgG4), glycine or valine.
  • Lysine 322 is conserved in human IgGs, and this residue is preferably replaced by an alanine residue, but substitution with any other amino acid residue is contemplated, e.g. serine, threonine, glycine or valine.
  • D270 is conserved in human IgGs, and this residue may be replaced by another amino acid residue, e.g. alanine, serine, threonine, glycine, valine, or lysine.
  • K326 is also conserved in human IgGs. This residue may be substituted with another residue including, but not limited to, valine, glutamic acid, alanine, glycine, aspartic acid, methionine or tryptophan, with tryptophan being preferred.
  • E333 is also conserved in human IgGs.
  • E333 is preferably replaced by an amino acid residue with a smaller side chain volume, such as valine, glycine, alanine or serine, with serine being preferred.
  • K334 is conserved in human IgGs and may be substituted with another residue such as alanine or other residue.
  • residue 327 is an alanine. In order to generate a variant with improved C1q binding, this alanine may be substituted with another residue such as glycine. In IgG2 and IgG4, residue 327 is a glycine and this may be replaced by alanine (or another residue) to diminish C1q binding.
  • one can design an Fc region with altered effector function e.g., by modifying C1q binding and/or FcR binding and thereby changing CDC activity and/or ADCC activity.
  • one may increase only one of these activities, and optionally also reduce the other activity, e.g. to generate an Fc region variant with improved ADCC activity, but reduced CDC activity and vice versa.
  • any cysteine residue not involved in maintaining the proper conformation of the polypeptide variant also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant cross linking.
  • Another type of amino acid substitution serves to alter the glycosylation pattern of the polypeptide. This may be achieved by deleting one or more carbohydrate moieties found in the polypeptide, and/or adding one or more glycosylation sites that are not present in the polypeptide.
  • Glycosylation of polypeptides is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue.
  • the tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain.
  • O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.
  • Addition of glycosylation sites to the polypeptide is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites).
  • the alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original polypeptide (for O-linked glycosylation sites).
  • An exemplary glycosylation variant has an amino acid substitution of residue Asn 297 of the heavy chain.
  • the class, subclass or allotype of the Fc region may be altered by one or more further amino acid substitutions to generate an Fc region with an amino acid sequence more homologous to a different class, subclass or allotype as desired.
  • a murine Fc region may be altered to generate an amino acid sequence more homologous to a human Fc region; a human non-A allotype IgG1 Fc region may be modified to achieve a human A allotype IgG1 Fc region etc.
  • the amino modification(s) herein which alter FcR binding and/or ADCC activity are made in the CH2 domain of the Fc region and the CH3 domain is deleted or replaced with another dimerization domain. Preferably, however, the CH3 domain is retained (aside from amino acid modifications therein which alter effector function as herein disclosed).
  • the polypeptide variant may be subjected to one or more assays to evaluate any change in biological activity compared to the starting polypeptide.
  • the polypeptide variant essentially retains the ability to bind antigen compared to the nonvariant polypeptide, i.e. the binding capability is no worse than about 20 fold, e.g. no worse than about 5 fold of that of the nonvariant polypeptide.
  • the binding capability of the polypeptide variant may be determined using techniques such as fluorescence activated cell sorting (FACS) analysis or radioimmunoprecipitation (RIA), for example.
  • the ability of the polypeptide variant to bind an FcR may be evaluated.
  • the FcR is a high affinity Fc receptor, such as Fc ⁇ RI, FcRn or Fc ⁇ RIIIA-V158
  • binding can be measured by titrating monomeric polypeptide variant and measuring bound polypeptide variant using an antibody which specifically binds to the polypeptide variant in a standard ELISA format (see Example 2 below).
  • Another FcR binding assay for low affinity FcRs is described in Examples 1 and 4.
  • ADCC activity of the polypeptide variant may be assessed in vivo, e.g., in a animal model such as that disclosed in Clynes et al. PNAS ( USA ) 95:652-656 (1998).
  • the ability of the variant to bind C1q and mediate complement dependent cytotoxicity (CDC) may be assessed.
  • a C1q binding ELISA may be performed. Briefly, assay plates may be coated overnight at 4° C. with polypeptide variant or starting polypeptide (control) in coating buffer. The plates may then be washed and blocked. Following washing, an aliquot of human C1q may be added to each well and incubated for 2 hrs at room temperature. Following a further wash, 100 ⁇ l of a sheep anti-complement C1q peroxidase conjugated antibody may be added to each well and incubated for 1 hour at room temperature. The plate may again be washed with wash buffer and 100 ⁇ l of substrate buffer containing OPD (O-phenylenediamine dihydrochloride (Sigma)) may be added to each well. The oxidation reaction, observed by the appearance of a yellow color, may be allowed to proceed for 30 minutes and stopped by the addition of 100 ⁇ l of 4.5 NH 2 SO 4 . The absorbance may then read at (492-405) nm.
  • OPD O-phenylenediamine dihydr
  • An exemplary polypeptide variant is one that displays a “significant reduction in C1q binding” in this assay. This means that about 100 ⁇ g/ml of the polypeptide variant displays about 50 fold or more reduction in C1q binding compared to 100 ⁇ g/ml of a control antibody having a nonmutated IgG1 Fc region. In the most preferred embodiment, the polypeptide variant “does not bind C1q”, i.e. 100 ⁇ g/ml of the polypeptide variant displays about 100 fold or more reduction in C1q binding compared to 100 ⁇ g/ml of the control antibody.
  • Another exemplary variant is one which “has a better binding affinity for human C1q than the parent polypeptide”.
  • a molecule may display, for example, about two-fold or more, and preferably about five-fold or more, improvement in human C1q binding compared to the parent polypeptide (e.g. at the IC 50 values for these two molecules).
  • human C1q binding may be about two-fold to about 500-fold, and preferably from about two-fold or from about five-fold to about 1000-fold improved compared to the parent polypeptide.
  • a complement dependent cytotoxicity (CDC) assay may be performed, e.g. as described in Gazzano-Santoro et al., J. Immunol. Methods 202:163 (1997). Briefly, various concentrations of the polypeptide variant and human complement may be diluted with buffer. Cells which express the antigen to which the polypeptide variant binds may be diluted to a density of ⁇ 1 ⁇ 10 6 cells/ml. Mixtures of polypeptide variant, diluted human complement and cells expressing the antigen may be added to a flat bottom tissue culture 96 well plate and allowed to incubate for 2 hrs at 37° C. and 5% CO 2 to facilitate complement mediated cell lysis.
  • CDC complement dependent cytotoxicity
  • alamar blue (Accumed International) may then be added to each well and incubated overnight at 37° C.
  • the absorbance is measured using a 96-well fluorometer with excitation at 530 nm and emission at 590 nm.
  • the results may be expressed in relative fluorescence units (RFU).
  • the sample concentrations may be computed from a standard curve and the percent activity as compared to nonvariant polypeptide is reported for the polypeptide variant of interest.
  • Yet another exemplary variant “does not activate complement”.
  • 0.6 ⁇ g/ml of the polypeptide variant displays about 0-10% CDC activity in this assay compared to a 0.6 ⁇ g/ml of a control antibody having a nonmutated IgG1 Fc region.
  • the variant does not appear to have any CDC activity in the above CDC assay.
  • the invention also pertains to a polypeptide variant with enhanced CDC compared to a parent polypeptide, e.g., displaying about two-fold to about 100-fold improvement in CDC activity in vitro or in vivo (e.g. at the IC 50 values for each molecule being compared).
  • a receptor binding assay has been developed herein which is particularly useful for determining binding of an analyte of interest to a receptor where the affinity of the analyte for the receptor is relatively weak, e.g. in the micromolar range as is the case for Fc ⁇ RIIA, Fc ⁇ RIIB, Fc ⁇ RIIIA and Fc ⁇ RIIIB.
  • the method involves the formation of a molecular complex that has an improved avidity for the receptor of interest compared to the noncomplexed analyte.
  • the preferred molecular complex is an immune complex comprising: (a) an Fc region-containing polypeptide (such as an antibody or an immunoadhesin); (b) a first target molecule which comprises at least two binding sites for the Fc region-containing polypeptide; and (c) a second target molecule which comprises at least two binding sites for the first target molecule.
  • an Fc region-containing polypeptide such as an antibody or an immunoadhesin
  • a first target molecule which comprises at least two binding sites for the Fc region-containing polypeptide
  • a second target molecule which comprises at least two binding sites for the first target molecule.
  • the Fc region-containing polypeptide is an anti-IgE antibody, such as the E27 antibody ( FIGS. 4A-4B ).
  • E27 when mixed with human IgE at an 1:1 molar ratio, forms a stable hexamer consisting of three E27 molecules and three IgE molecules.
  • the “first target molecule” is a chimeric form of IgE in which the Fab portion of an anti-VEGF antibody is fused to the human IgE Fc portion and the “second target molecule” is the antigen to which the Fab binds (i.e. VEGF).
  • VEGF antigen to which the Fab binds
  • VEGF also binds two molecules of IgE per molecule of VEGF.
  • recombinant human VEGF was added at a 2:1 molar ratio to IgE:E27 hexamers, the hexamers were linked into larger molecular weight complexes via the IgE:VEGF interaction ( FIG. 5 ).
  • the Fc region of the anti-IgE antibody of the resultant immune complex binds to FcR with higher avidity than either uncomplexed anti-IgE or anti-IgE:IgE hexamers.
  • Examples comprising only an Fc region-containing polypeptide:first target molecule combination include an immunoadhesin:ligand combination such as VEGF receptor (KDR)-immunoadhesin:VEGF and a full-length bispecific antibody (bsAb):first target molecule.
  • an Fc region-containing polypeptide:first target molecule:second target molecule combination include a nonblocking antibody:soluble receptor:ligand combination such as anti-Trk antibody:soluble Trk receptor:neurotrophin (Urfer et al. J. Biol. Chem. 273(10):5829-5840 (1998)).
  • the immune complexes described above have further uses including evaluation of Fc region-containing polypeptide function and immune complex clearance in vivo.
  • the immune complex may be administered to a mammal (e.g. in a pre-clinical animal study) and evaluated for its half-life etc.
  • a polypeptide comprising at least the binding domain of the receptor of interest may be coated on solid phase, such as an assay plate.
  • the binding domain of the receptor alone or a receptor-fusion protein may be coated on the plate using standard procedures.
  • receptor-fusion proteins include receptor-glutathione S-transferase (GST) fusion protein, receptor-chitin binding domain fusion protein, receptor-hexaHis tag fusion protein (coated on glutathione, chitin, and nickel coated plates, respectively).
  • GST receptor-glutathione S-transferase
  • a capture molecule may be coated on the assay plate and used to bind the receptor-fusion protein via the non-receptor portion of the fusion protein.
  • Examples include anti-hexaHis F(ab′) 2 coated on the assay plate used to capture receptor-hexaHis tail fusion or anti-GST antibody coated on the assay plate used to capture a receptor-GST fusion.
  • binding to cells expressing at least the binding domain of the receptor may be evaluated.
  • the cells may be naturally occurring hematopoietic cells that express the FcR of interest or may be transformed with nucleic acid encoding the FcR or a binding domain thereof such that the binding domain is expressed at the surface of the cell to be tested.
  • the immune complex described hereinabove is added to the receptor-coated plates and incubated for a sufficient period of time such that the analyte binds to the receptor. Plates may then be washed to remove unbound complexes, and binding of the analyte may be detected according to known methods. For example, binding may be detected using a reagent (e.g. an antibody or fragment thereof) which binds specifically to the analyte, and which is optionally conjugated with a detectable label (detectable labels and methods for conjugating them to polypeptides are described below in the section entitled “Non-Therapeutic Uses for the Polypeptide Variant”).
  • a reagent e.g. an antibody or fragment thereof
  • the reagents can be provided in an assay kit, i.e., a packaged combination of reagents, for combination with the analyte in assaying the ability of the analyte to bind to a receptor of interest.
  • the components of the kit will generally be provided in predetermined ratios.
  • the kit may provide the first target molecule and/or the second target molecule, optionally complexed together.
  • the kit may further include assay plates coated with the receptor or a binding domain thereof (e.g. the extracellular domain of the ⁇ subunit of an FcR).
  • kits such as an antibody that binds specifically to the analyte to be assayed, labeled directly or indirectly with an enzymatic label
  • the detectable label is an enzyme
  • the kit will include substrates and cofactors required by the enzyme (e.g. a substrate precursor which provides the detectable chromophore or fluorophore).
  • other additives may be included such as stabilizers, buffers (e.g. assay and/or wash lysis buffer) and the like.
  • the relative amounts of the various reagents may be varied widely to provide for concentrations in solution of the reagents that substantially optimize the sensitivity of the assay.
  • the reagents may be provided as dry powders, usually lyophilized, including excipients that on dissolution will provide a reagent solution having the appropriate concentration.
  • the kit also suitably includes instructions for carrying out the assay.
  • the Fc region-containing polypeptide which is modified according to the teachings herein is an antibody. Techniques for producing antibodies follow:
  • the polypeptide is an antibody
  • it is directed against an antigen of interest.
  • the antigen is a biologically important polypeptide and administration of the antibody to a mammal suffering from a disease or disorder can result in a therapeutic benefit in that mammal.
  • antibodies directed against nonpolypeptide antigens are also contemplated.
  • the antigen is a polypeptide, it may be a transmembrane molecule (e.g. receptor) or ligand such as a growth factor.
  • exemplary antigens include molecules such as renin; a growth hormone, including human growth hormone and bovine growth hormone; growth hormone releasing factor; parathyroid hormone; thyroid stimulating hormone; lipoproteins; alpha-1-antitrypsin; insulin A-chain; insulin B-chain; proinsulin; follicle stimulating hormone; calcitonin; luteinizing hormone; glucagon; clotting factors such as factor VIIIC, factor IX, tissue factor (TF), and von Willebrands factor; anti-clotting factors such as Protein C; atrial natriuretic factor; lung surfactant; a plasminogen activator, such as urokinase or human urine or tissue-type I plasminogen activator (t-PA); bombesin; thrombin; hemopoietic growth factor; tumor necrosis factor-alpha and
  • CD proteins such as CD3, CD4, CD8, CD19, CD20 and CD34
  • members of the ErbB receptor family such as the EGF receptor, HER 2 , HER 3 or HER 4 receptor
  • cell adhesion molecules such as LFA-1, Mac1, p150.95, VLA-4, ICAM-1, VCAM, ⁇ 4/ ⁇ 7 integrin, and ⁇ v/ ⁇ 3 integrin including either ⁇ or ⁇ subunits thereof (e.g.
  • anti-CD11a, anti-CD18 or anti-CD11b antibodies growth factors such as VEGF; tissue factor (TF); alpha interferon ( ⁇ -IFN); an interleukin, such as IL-8; IgE; blood group antigens; flk2/flt3 receptor; obesity (OB) receptor; mpl receptor; CTLA-4; protein C etc.
  • growth factors such as VEGF; tissue factor (TF); alpha interferon ( ⁇ -IFN); an interleukin, such as IL-8; IgE; blood group antigens; flk2/flt3 receptor; obesity (OB) receptor; mpl receptor; CTLA-4; protein C etc.
  • Soluble antigens or fragments thereof, optionally conjugated to other molecules, can be used as immunogens for generating antibodies.
  • immunogens for transmembrane molecules, such as receptors, fragments of these (e.g. the extracellular domain of a receptor) can be used as the immunogen.
  • transmembrane molecules such as receptors
  • fragments of these e.g. the extracellular domain of a receptor
  • cells expressing the transmembrane molecule can be used as the immunogen.
  • Such cells can be derived from a natural source (e.g. cancer cell lines) or may be cells which have been transformed by recombinant techniques to express the transmembrane molecule.
  • Other antigens and forms thereof useful for preparing antibodies will be apparent to those in the art.
  • Polyclonal antibodies are preferably raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the relevant antigen and an adjuvant. It may be useful to conjugate the relevant antigen to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOCl 2 , or R 1 N ⁇ C ⁇ NR, where R and R 1 are different alkyl groups.
  • a protein that is immunogenic in the species to be immunized e.g., keyhole limpet hemocyanin, serum albumin, bovine thy
  • Animals are immunized against the antigen, immunogenic conjugates, or derivatives by combining, e.g., 100 ⁇ g or 5 ⁇ g of the protein or conjugate (for rabbits or mice, respectively) with 3 volumes of Freund's complete adjuvant and injecting the solution intradermally at multiple sites.
  • the animals are boosted with 1 ⁇ 5 to 1/10 the original amount of peptide or conjugate in Freund's complete adjuvant by subcutaneous injection at multiple sites.
  • Seven to 14 days later the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus.
  • the animal is boosted with the conjugate of the same antigen, but conjugated to a different protein and/or through a different cross-linking reagent.
  • Conjugates also can be made in recombinant cell culture as protein fusions.
  • aggregating agents such as alum are suitably used to enhance the immune response.
  • Monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Pat. No. 4,816,567).
  • a mouse or other appropriate host animal such as a hamster or macaque monkey
  • lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization.
  • lymphocytes may be immunized in vitro. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice , pp. 59-103 (Academic Press, 1986)).
  • the hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells.
  • a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells.
  • the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.
  • Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium.
  • preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, Calif. USA, and SP-2 or X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Md. USA.
  • Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications , pp. 51-63 (Marcel Dekker, Inc., New York, 1987)).
  • Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen.
  • the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA).
  • RIA radioimmunoassay
  • ELISA enzyme-linked immunoabsorbent assay
  • the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium.
  • the hybridoma cells may be grown in vivo as ascites tumors in an animal.
  • the monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
  • DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the monoclonal antibodies).
  • the hybridoma cells serve as a preferred source of such DNA.
  • the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Recombinant production of antibodies will be described in more detail below.
  • antibodies or antibody fragments can be isolated from antibody phage libraries generated using the techniques described in McCafferty et al., Nature, 348:552-554 (1990). Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries.
  • the DNA also may be modified, for example, by substituting the coding sequence for human heavy- and light-chain constant domains in place of the homologous murine sequences (U.S. Pat. No. 4,816,567; Morrison, et al., Proc. Natl Acad. Sci. USA, 81:6851 (1984)), or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide.
  • non-immunoglobulin polypeptides are substituted for the constant domains of an antibody, or they are substituted for the variable domains of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.
  • a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such “humanized” antibodies are chimeric antibodies (U.S. Pat. No.
  • humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
  • variable domains both light and heavy
  • the choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity.
  • the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences.
  • the human sequence which is closest to that of the rodent is then accepted as the human framework (FR) for the humanized antibody (Sims et al., J. Immunol., 151:2296 (1993); Chothia et al., J. Mol. Biol., 196:901 (1987)).
  • Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains.
  • the same framework may be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al., J. Immunol., 151:2623 (1993)).
  • humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences.
  • Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art.
  • Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen.
  • FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved.
  • the CDR residues are directly and most substantially involved in influencing antigen binding.
  • transgenic animals e.g., mice
  • transgenic animals e.g., mice
  • JH antibody heavy-chain joining region
  • Human antibodies can also be derived from phage-display libraries (Hoogenboom et al., J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581-597 (1991); Vaughan et al. Nature Biotech 14:309 (1996)).
  • Multispecific antibodies have binding specificities for at least two different antigens. While such molecules normally will only bind two antigens (i.e. bispecific antibodies, BsAbs), antibodies with additional specificities such as trispecific antibodies are encompassed by this expression when used herein.
  • BsAbs include those with one arm directed against a tumor cell antigen and the other arm directed against a cytotoxic trigger molecule such as anti-Fc ⁇ RI/anti-CD15, anti-p185 HER2 /Fc ⁇ RIII (CD16), anti-CD3/anti-malignant B-cell (1D10), anti-CD3/anti-p185 HER2 , anti-CD3/anti-p97, anti-CD3/anti-renal cell carcinoma, anti-CD3/anti-OVCAR-3, anti-CD3/L-D1 (anti-colon carcinoma), anti-CD3/anti-melanocyte stimulating hormone analog, anti-EG F receptor/anti-CD3, anti-CD3/anti-CAMA1, anti-CD3/anti-CD19, anti-CD3/MoV18, anti-neural cell adhesion molecule (NCAM)/anti-CD3, anti-folate binding protein (FBP)/anti-CD3, anti-pan carcinoma associated antigen (AMOC-31)/anti-CD3; BsAbs with one arm which binds specifically
  • BsAbs for use in therapy of infectious diseases such as anti-CD3/anti-herpes simplex virus (HSV), anti-T-cell receptor:CD3 complex/anti-influenza, anti-Fc ⁇ R/anti-HIV; BsAbs for tumor detection in vitro or in vivo such as anti-CEA/anti-EOTUBE, anti-CEA/anti-DPTA, anti-p185 HER2 /anti-hapten; BsAbs as vaccine adjuvants; and BsAbs as diagnostic tools such as anti-rabbit IgG/anti-ferritin, anti-horse radish peroxidase (HRP)/anti-hormone, anti-somatostatin/anti-substance P, anti-HRP/anti-FITC, anti-CEA/anti- ⁇ -galactosidase.
  • HRP anti-horse radish peroxidase
  • HRP anti-somatostatin/anti-substance P
  • trispecific antibodies examples include anti-CD3/anti-CD4/anti-CD37, anti-CD3/anti-CD5/anti-CD37 and anti-CD3/anti-CD8/anti-CD37.
  • Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab′) 2 bispecific antibodies).
  • bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the coexpression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein et al., Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).
  • antibody variable domains with the desired binding specificities are fused to immunoglobulin constant domain sequences.
  • the fusion preferably is with an immunoglobulin heavy chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light chain binding, present in at least one of the fusions.
  • DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain are inserted into separate expression vectors, and are co-transfected into a suitable host organism.
  • the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).
  • the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture.
  • the preferred interface comprises at least a part of the CH3 domain of an antibody constant domain.
  • one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan).
  • Compensatory “cavities” of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.
  • Bispecific antibodies include cross-linked or “heteroconjugate” antibodies.
  • one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin.
  • Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089).
  • Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques.
  • Antibodies with more than two valencies are contemplated.
  • trispecific antibodies can be prepared. Tutt et al. J. Immunol. 147: 60 (1991).
  • polypeptide of interest herein is preferably an antibody
  • Fc region-containing polypeptides which can be modified according to the methods described herein are contemplated.
  • An example of such a molecule is an immunoadhesin.
  • the simplest and most straightforward immunoadhesin design combines the binding domain(s) of the adhesin (e.g. the extracellular domain (ECD) of a receptor) with the Fc region of an immunoglobulin heavy chain.
  • ECD extracellular domain
  • nucleic acid encoding the binding domain of the adhesin will be fused C-terminally to nucleic acid encoding the N-terminus of an immunoglobulin constant domain sequence, however N-terminal fusions are also possible.
  • the encoded chimeric polypeptide will retain at least functionally active hinge, C H 2 and C H 3 domains of the constant region of an immunoglobulin heavy chain. Fusions are also made to the C-terminus of the Fc portion of a constant domain, or immediately N-terminal to the C H 1 of the heavy chain or the corresponding region of the light chain.
  • the precise site at which the fusion is made is not critical; particular sites are well known and may be selected in order to optimize the biological activity, secretion, or binding characteristics of the immunoadhesin.
  • the adhesin sequence is fused to the N-terminus of the Fc region of immunoglobulin G 1 (IgG 1 ). It is possible to fuse the entire heavy chain constant region to the adhesin sequence. However, more preferably, a sequence beginning in the hinge region just upstream of the papain cleavage site which defines IgG Fc chemically (i.e. residue 216, taking the first residue of heavy chain constant region to be 114), or analogous sites of other immunoglobulins is used in the fusion.
  • the adhesin amino acid sequence is fused to (a) the hinge region and C H 2 and C H 3 or (b) the CH1, hinge, C H 2 and CH3 domains, of an IgG heavy chain.
  • the immunoadhesins are assembled as multimers, and particularly as heterodimers or heterotetramers.
  • these assembled immunoglobulins will have known unit structures.
  • a basic four chain structural unit is the form in which IgG, IgD, and IgE exist.
  • a four chain unit is repeated in the higher molecular weight immunoglobulins; IgM generally exists as a pentamer of four basic units held together by disulfide bonds.
  • IgA globulin, and occasionally IgG globulin may also exist in multimeric form in serum. In the case of multimer, each of the four units may be the same or different.
  • each A represents identical or different adhesin amino acid sequences
  • V L is an immunoglobulin light chain variable domain
  • V H is an immunoglobulin heavy chain variable domain
  • C L is an immunoglobulin light chain constant domain
  • C H is an immunoglobulin heavy chain constant domain
  • n is an integer greater than 1;
  • Y designates the residue of a covalent cross-linking agent.
  • the adhesin sequences can be inserted between immunoglobulin heavy chain and light chain sequences, such that an immunoglobulin comprising a chimeric heavy chain is obtained.
  • the adhesin sequences are fused to the 3′ end of an immunoglobulin heavy chain in each arm of an immunoglobulin, either between the hinge and the C H 2 domain, or between the C H 2 and CH3 domains. Similar constructs have been reported by Hoogenboom, et al., Mol. Immunol. 28:1027-1037 (1991).
  • an immunoglobulin light chain might be present either covalently associated to an adhesin-immunoglobulin heavy chain fusion polypeptide, or directly fused to the adhesin.
  • DNA encoding an immunoglobulin light chain is typically coexpressed with the DNA encoding the adhesin-immunoglobulin heavy chain fusion protein.
  • the hybrid heavy chain and the light chain will be covalently associated to provide an immunoglobulin-like structure comprising two disulfide-linked immunoglobulin heavy chain-light chain pairs.
  • Immunoadhesins are most conveniently constructed by fusing the cDNA sequence encoding the adhesin portion in-frame to an immunoglobulin cDNA sequence.
  • fusion to genomic immunoglobulin fragments can also be used (see, e.g. Aruffo et al., Cell 61:1303-1313 (1990); and Stamenkovic et al., Cell 66:1133-1144 (1991)).
  • the latter type of fusion requires the presence of Ig regulatory sequences for expression.
  • cDNAs encoding IgG heavy-chain constant regions can be isolated based on published sequences from cDNA libraries derived from spleen or peripheral blood lymphocytes, by hybridization or by polymerase chain reaction (PCR) techniques.
  • the cDNAs encoding the “adhesin” and the immunoglobulin parts of the immunoadhesin are inserted in tandem into a plasmid vector that directs efficient expression in the chosen host cells.
  • the invention also provides isolated nucleic acid encoding a polypeptide variant as disclosed herein, vectors and host cells comprising the nucleic acid, and recombinant techniques for the production of the polypeptide variant.
  • the nucleic acid encoding it is isolated and inserted into a replicable vector for further cloning (amplification of the DNA) or for expression.
  • DNA encoding the polypeptide variant is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the polypeptide variant).
  • Many vectors are available.
  • the vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence.
  • polypeptide variant of this invention may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which is preferably a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide.
  • a heterologous polypeptide which is preferably a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide.
  • the heterologous signal sequence selected preferably is one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell.
  • the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, Ipp, or heat-stable enterotoxin II leaders.
  • a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, Ipp, or heat-stable enterotoxin II leaders.
  • yeast secretion the native signal sequence may be substituted by, e.g., the yeast invertase leader, ⁇ factor leader (including Saccharomyces and Kluyveromyces ⁇ -factor leaders), or acid phosphatase leader, the C. albicans glucoamylase leader, or the signal described in WO 90/13646.
  • mammalian signal sequences as well as viral secretory leaders for example, the herpes simplex gD signal, are available.
  • the DNA for such precursor region is ligated in reading frame to DNA encoding the polypeptide variant.
  • Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells.
  • this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences.
  • origins of replication or autonomously replicating sequences are well known for a variety of bacteria, yeast, and viruses.
  • the origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2 ⁇ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells.
  • the origin of replication component is not needed for mammalian expression vectors (the SV40 origin may typically be used only because it contains the early promoter).
  • Selection genes may contain a selection gene, also termed a selectable marker.
  • Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.
  • One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous gene produce a protein conferring drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin, mycophenolic acid and hygromycin.
  • suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the polypeptide variant nucleic acid, such as DH FR, thymidine kinase, metallothionein-I and -II, preferably primate metallothionein genes, adenosine deaminase, ornithine decarboxylase, etc.
  • cells transformed with the DHFR selection gene are first identified by culturing all of the transformants in a culture medium that contains methotrexate (Mtx), a competitive antagonist of DHFR.
  • Mtx methotrexate
  • An appropriate host cell when wild-type DHFR is employed is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity.
  • host cells transformed or co-transformed with DNA sequences encoding polypeptide variant, wild-type DHFR protein, and another selectable marker such as aminoglycoside 3′-phosphotransferase (APH) can be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g., kanamycin, neomycin, or G418. See U.S. Pat. No. 4,965,199.
  • APH aminoglycoside 3′-phosphotransferase
  • a suitable selection gene for use in yeast is the trp1 gene present in the yeast plasmid YRp7 (Stinchcomb et al., Nature, 282:39 (1979)).
  • the trp1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1. Jones, Genetics, 85:12 (1977).
  • the presence of the trp1 lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan.
  • Leu2-deficient yeast strains (ATCC 20,622 or 38,626) are complemented by known plasmids bearing the Leu2 gene.
  • vectors derived from the 1.6 ⁇ m circular plasmid pKD1 can be used for transformation of Kluyveromyces yeasts.
  • an expression system for large-scale production of recombinant calf chymosin was reported for K. lactis . Van den Berg, Bio/Technology, 8:135 (1990).
  • Stable multi-copy expression vectors for secretion of mature recombinant human serum albumin by industrial strains of Kluyveromyces have also been disclosed. Fleer et al., Bio/Technology, 9:968-975 (1991).
  • Expression and cloning vectors usually contain a promoter that is recognized by the host organism and is operably linked to the polypeptide variant nucleic acid.
  • Promoters suitable for use with prokaryotic hosts include the phoA promoter, ⁇ -lactamase and lactose promoter systems, alkaline phosphatase, a tryptophan (trp) promoter system, and hybrid promoters such as the tac promoter.
  • trp tryptophan
  • Other known bacterial promoters are suitable. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding the polypeptide variant.
  • S.D. Shine-Dalgarno
  • Promoter sequences are known for eukaryotes. Virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CNCAAT region where N may be any nucleotide. At the 3′ end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3′ end of the coding sequence. All of these sequences are suitably inserted into eukaryotic expression vectors.
  • suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase or other glycolytic enzymes, such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phospho-fructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.
  • 3-phosphoglycerate kinase or other glycolytic enzymes such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phospho-fructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruv
  • yeast promoters which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization.
  • Suitable vectors and promoters for use in yeast expression are further described in EP 73,657.
  • Yeast enhancers also are advantageously used with yeast promoters.
  • Polypeptide variant transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, from heat-shock promoters, provided such promoters are compatible with the host cell systems.
  • viruses such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (
  • the early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that also contains the SV40 viral origin of replication.
  • the immediate early promoter of the human cytomegalovirus is conveniently obtained as a HindIII E restriction fragment.
  • a system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. Pat. No. 4,419,446. A modification of this system is described in U.S. Pat. No. 4,601,978. See also Reyes et al., Nature 297:598-601 (1982) on expression of human ⁇ -interferon cDNA in mouse cells under the control of a thymidine kinase promoter from herpes simplex virus. Alternatively, the rous sarcoma virus long terminal repeat can be used as the promoter.
  • Enhancer sequences are now known from mammalian genes (globin, elastase, albumin, ⁇ -fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.
  • the enhancer may be spliced into the vector at a position 5′ or 3′ to the polypeptide variant-encoding sequence, but is preferably located at a site 5′ from the promoter.
  • Expression vectors used in eukaryotic host cells will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5′ and, occasionally 3′, untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding the polypeptide variant.
  • One useful transcription termination component is the bovine growth hormone polyadenylation region. See WO94/11026 and the expression vector disclosed therein.
  • Suitable host cells for cloning or expressing the DNA in the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above.
  • Suitable prokaryotes for this purpose include eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as Escherichia , e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella , e.g., Salmonella typhimurium, Serratia , e.g., Serratia marcescans , and Shigella , as well as Bacilli such as B. subtilis and B.
  • Enterobacteriaceae such as Escherichia , e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus
  • Salmonella e.g., Salmonella typhimurium
  • Serratia
  • E. coli cloning host is E. coli 294 (ATCC 31,446), although other strains such as E. coli B, E. coli X1776 (ATCC 31,537), and E. coli W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting.
  • eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for polypeptide variant-encoding vectors.
  • Saccharomyces cerevisiae or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms.
  • a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccharomyces pombe; Kluyveromyces hosts such as, e.g., K. lactis, K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K.
  • waltii ATCC 56,500
  • K. drosophilarum ATCC 36,906
  • K. thermotolerans K. marxianus
  • yarrowia EP 402,226
  • Pichia pastoris EP 183,070
  • Candida Trichoderma reesia
  • Neurospora crassa Schwanniomyces such as Schwanniomyces occidentalis
  • filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium , and Aspergillus hosts such as A. nidulans and A. niger.
  • Suitable host cells for the expression of glycosylated polypeptide variant are derived from multicellular organisms.
  • invertebrate cells include plant and insect cells.
  • Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified.
  • a variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells.
  • Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can also be utilized as hosts.
  • vertebrate cells have been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure.
  • useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/ ⁇ DHFR (CHO, Urlaub et al., Proc. Natl. Acad. Sci. USA 77:4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod.
  • monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TR1 cells (Mather et al, Annals N.Y. Acad. Sci. 383:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).
  • Host cells are transformed with the above-described expression or cloning vectors for polypeptide variant production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
  • the host cells used to produce the polypeptide variant of this invention may be cultured in a variety of media.
  • Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells.
  • any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as GENTAMYCINTM drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art.
  • the culture conditions such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
  • the polypeptide variant can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the polypeptide variant is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, is removed, for example, by centrifugation or ultrafiltration. Carter et al., Bio/Technology 10:163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli . Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min.
  • sodium acetate pH 3.5
  • EDTA EDTA
  • PMSF phenylmethylsulfonylfluoride
  • Cell debris can be removed by centrifugation.
  • supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit.
  • a protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.
  • the polypeptide variant composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique.
  • affinity chromatography is the preferred purification technique.
  • the suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc region that is present in the polypeptide variant.
  • Protein A can be used to purify polypeptide variants that are based on human ⁇ 1, ⁇ 2, or ⁇ 4 heavy chains (Lindmark et al., J. Immunol. Meth. 62:1-13 (1983)). Protein G is recommended for all mouse isotypes and for human ⁇ 3 (Guss et al., EMBO J.
  • the matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the polypeptide variant comprises a C H 3 domain, the Bakerbond ABXTM resin (J. T. Baker, Phillipsburg, N.J.) is useful for purification.
  • the mixture comprising the polypeptide variant of interest and contaminants may be subjected to low pH hydrophobic interaction chromatography using an elution buffer at a pH between about 2.5-4.5, preferably performed at low salt concentrations (e.g., from about 0-0.25M salt).
  • Therapeutic formulations of the polypeptide variant are prepared for storage by mixing the polypeptide variant having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers ( Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions.
  • Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arg
  • the formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other.
  • Such molecules are suitably present in combination in amounts that are effective for the purpose intended.
  • the active ingredients may also be entrapped in microcapsule prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsule and poly-(methylmethacylate) microcapsule, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions.
  • colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules
  • the formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.
  • Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the polypeptide variant, which matrices are in the form of shaped articles, e.g., films, or microcapsule. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No.
  • copolymers of L-glutamic acid and ⁇ ethyl-L-glutamate copolymers of L-glutamic acid and ⁇ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOTTM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-( ⁇ )-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.
  • encapsulated antibodies When encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37° C., resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S—S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.
  • the polypeptide variant of the invention may be used as an affinity purification agent.
  • the polypeptide variant is immobilized on a solid phase such a Sephadex resin or filter paper, using methods well known in the art.
  • the immobilized polypeptide variant is contacted with a sample containing the antigen to be purified, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the sample except the antigen to be purified, which is bound to the immobilized polypeptide variant. Finally, the support is washed with another suitable solvent, such as glycine buffer, pH 5.0, that will release the antigen from the polypeptide variant.
  • the polypeptide variant may also be useful in diagnostic assays, e.g., for detecting expression of an antigen of interest in specific cells, tissues, or serum.
  • polypeptide variant typically will be labeled with a detectable moiety.
  • labels are available which can be generally grouped into the following categories:
  • Radioisotopes such as 35 S, 14 C, 125 I, 3 H, and 131 I.
  • the polypeptide variant can be labeled with the radioisotope using the techniques described in Current Protocols in Immunology , Volumes 1 and 2, Coligen et al., Ed. Wiley-Interscience, New York, N.Y., Pubs. (1991) for example and radioactivity can be measured using scintillation counting.
  • Fluorescent labels such as rare earth chelates (europium chelates) or fluorescein and its derivatives, rhodamine and its derivatives, dansyl, Lissamine, phycoerythrin and Texas Red are available.
  • the fluorescent labels can be conjugated to the polypeptide variant using the techniques disclosed in Current Protocols in Immunology , supra, for example. Fluorescence can be quantified using a fluorimeter.
  • the enzyme generally catalyzes a chemical alteration of the chromogenic substrate that can be measured using various techniques. For example, the enzyme may catalyze a color change in a substrate, which can be measured spectrophotometrically. Alternatively, the enzyme may alter the fluorescence or chemiluminescence of the substrate. Techniques for quantifying a change in fluorescence are described above.
  • the chemiluminescent substrate becomes electronically excited by a chemical reaction and may then emit light which can be measured (using a chemiluminometer, for example) or donates energy to a fluorescent acceptor.
  • enzymatic labels include luciferases (e.g., firefly luciferase and bacterial luciferase; U.S. Pat. No. 4,737,456), luciferin, 2,3-dihydrophthalazinediones, malate dehydrogenase, urease, peroxidase such as horseradish peroxidase (HRPO), alkaline phosphatase, ⁇ -galactosidase, glucoamylase, lysozyme, saccharide oxidases (e.g., glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase), heterocyclic oxidases (such as uricase and xanthine oxidase), lactoperoxidase, microperoxidase, and the like.
  • luciferases e.g., firefly luciferase and bacterial lucifera
  • enzyme-substrate combinations include, for example:
  • HRPO Horseradish peroxidase
  • HPO horseradish peroxidase
  • OPD orthophenylene diamine
  • TMB 3,3′,5,5′-tetramethyl benzidine hydrochloride
  • ⁇ -D-galactosidase ( ⁇ -D-Gal) with a chromogenic substrate (e.g., p-nitrophenyl- ⁇ -D-galactosidase) or fluorogenic substrate 4-methylumbelliferyl- ⁇ -D-galactosidase.
  • a chromogenic substrate e.g., p-nitrophenyl- ⁇ -D-galactosidase
  • fluorogenic substrate 4-methylumbelliferyl- ⁇ -D-galactosidase
  • the label is indirectly conjugated with the polypeptide variant.
  • the polypeptide variant can be conjugated with biotin and any of the three broad categories of labels mentioned above can be conjugated with avidin, or vice versa. Biotin binds selectively to avidin and thus, the label can be conjugated with the polypeptide variant in this indirect manner.
  • the polypeptide variant is conjugated with a small hapten (e.g., digoxin) and one of the different types of labels mentioned above is conjugated with an anti-hapten polypeptide variant (e.g., anti-digoxin antibody).
  • a small hapten e.g., digoxin
  • an anti-hapten polypeptide variant e.g., anti-digoxin antibody
  • the polypeptide variant need not be labeled, and the presence thereof can be detected using a labeled antibody which binds to the polypeptide variant.
  • polypeptide variant of the present invention may be employed in any known assay method, such as competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays. Zola, Monoclonal Antibodies: A Manual of Techniques , pp. 147-158 (CRC Press, Inc. 1987).
  • the polypeptide variant may also be used for in vivo diagnostic assays.
  • the polypeptide variant is labeled with a radionuclide (such as 111 In, 99 Tc, 14 C, 131I, 125 I, 3 H, 32 P or 35 S) so that the antigen or cells expressing it can be localized using immunoscintiography.
  • a radionuclide such as 111 In, 99 Tc, 14 C, 131I, 125 I, 3 H, 32 P or 35 S
  • the polypeptide variant of the present invention may be used to treat a mammal e.g. a patient suffering from, or predisposed to, a disease or disorder who could benefit from administration of the polypeptide variant.
  • the conditions which can be treated with the polypeptide variant are many and include cancer (e.g. where the polypeptide variant binds the HER2 receptor, CD20 or vascular endothelial growth factor (VEGF)); allergic conditions such as asthma (with an anti-IgE antibody); and LFA-1-mediated disorders (e.g. where the polypeptide variant is an anti-LFA-1 or anti-ICAM-1 antibody) etc.
  • cancer e.g. where the polypeptide variant binds the HER2 receptor, CD20 or vascular endothelial growth factor (VEGF)
  • allergic conditions such as asthma (with an anti-IgE antibody)
  • LFA-1-mediated disorders e.g. where the polypeptide variant is an anti-LFA-1 or anti-ICAM-1 antibody
  • the disorder preferably is HER2-expressing cancer, e.g. a benign or malignant tumor characterized by overexpression of the HER2 receptor.
  • cancers include, but are not limited to, breast cancer, squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, bladder cancer, hepatoma, colon cancer, colorectal cancer, endometrial carcinoma, salivary gland carcinoma, kidney cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma and various types of head and neck cancer.
  • a polypeptide with a variant Fc region which has improved, or diminished, ADCC activity. Such molecules will find applications in the treatment of different disorders.
  • the polypeptide variant with improved ADCC activity may be employed in the treatment of diseases or disorders where destruction or elimination of tissue or foreign micro-organisms is desired.
  • the polypeptide may be used to treat cancer; inflammatory disorders; infections (e.g. bacterial, viral, fungal or yeast infections); and other conditions (such as goiter) where removal of tissue is desired, etc.
  • the polypeptide variant may be used to treat diseases or disorders where a Fc region-containing polypeptide with long half-life is desired, but the polypeptide preferably does not have undesirable effector function(s).
  • the Fc region-containing polypeptide may be an anti-tissue factor (TF) antibody; anti-IgE antibody; and anti-integrin antibody (e.g. an anti- ⁇ 4 ⁇ 7 antibody).
  • TF tissue factor
  • anti-IgE antibody anti-integrin antibody
  • the desired mechanism of action of such Fc region-containing polypeptides may be to block ligand-receptor binding pairs.
  • the Fc-region containing polypeptide with diminished ADCC activity may be an agonist antibody.
  • the polypeptide variant is administered by any suitable means, including parenteral, subcutaneous, intraperitoneal, intrapulmonary, and intranasal, and, if desired for local immunosuppressive treatment, intralesional administration.
  • Parenteral infusions include intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous administration.
  • the polypeptide variant is suitably administered by pulse infusion, particularly with declining doses of the polypeptide variant.
  • the dosing is given by injections, most preferably intravenous or subcutaneous injections, depending in part on whether the administration is brief or chronic.
  • polypeptide variant For the prevention or treatment of disease, the appropriate dosage of polypeptide variant will depend on the type of disease to be treated, the severity and course of the disease, whether the polypeptide variant is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the polypeptide variant, and the discretion of the attending physician.
  • the polypeptide variant is suitably administered to the patient at one time or over a series of treatments.
  • polypeptide variant is an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion.
  • a typical daily dosage might range from about 1 ⁇ g/kg to 100 mg/kg or more, depending on the factors mentioned above.
  • the treatment is sustained until a desired suppression of disease symptoms occurs.
  • other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays.
  • the polypeptide variant composition will be formulated, dosed, and administered in a fashion consistent with good medical practice. Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners.
  • the “therapeutically effective amount” of the polypeptide variant to be administered will be governed by such considerations, and is the minimum amount necessary to prevent, ameliorate, or treat a disease or disorder.
  • the polypeptide variant need not be, but is optionally formulated with one or more agents currently used to prevent or treat the disorder in question.
  • the effective amount of such other agents depends on the amount of polypeptide variant present in the formulation, the type of disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as used hereinbefore or about from 1 to 99% of the heretofore employed dosages.
  • This assay determines binding of an IgG Fc region to recombinant Fc ⁇ RIIA, Fc ⁇ RIIB and Fc ⁇ RIIIA ⁇ subunits expressed as His6-glutathione S transferase (GST)-tagged fusion proteins. Since the affinity of the Fc region of IgG1 for the Fc ⁇ RI is in the nanomolar range, the binding of IgG1 Fc variants can be measured by titrating monomeric IgG and measuring bound IgG with a polyclonal anti-IgG in a standard ELISA format (Example 2 below). The affinity of the other members of the Fc ⁇ R family, i.e. Fc ⁇ RIIA, Fc ⁇ RIIB and Fc ⁇ RIIIA for IgG is however in the micromolar range and binding of monomeric IgG1 for these receptors can not be reliably measured in an ELISA format.
  • the following assay utilizes Fc variants of recombinant anti-IgE E27 ( FIGS. 4A and 4B ) which, when mixed with human IgE at a 1:1 molar ratio, forms a stable hexamer consisting of three anti-IgE molecules and three IgE molecules.
  • a recombinant chimeric form of IgE (chimeric IgE) was engineered and consists of a human IgE Fc region and the Fab of an anti-VEGF antibody (Presta et al Cancer Research 57:4593-4599 (1997)) which binds two VEGF molecules per mole of anti-VEGF.
  • VEGF vascular endothelial growth factor
  • hexamers When recombinant human VEGF is added at a 2:1 molar ratio to chimeric IgE:E27 hexamers, the hexamers are linked into larger molecular weight complexes via the chimeric IgE Fab:VEGF interaction.
  • the E27 component of this complex binds to the Fc ⁇ RIIA, Fc ⁇ RIIB and Fc ⁇ RIIIA ⁇ subunits with higher avidity to permit detection in an ELISA format.
  • Receptor Coat Fc ⁇ receptor ⁇ subunits were expressed as GST fusions of His6 tagged extracellular domains (ECDs) in 293 cells resulting in an ECD-6His-GST fusion protein (Graham et al. J. Gen. Virol. 36:59-74 (1977) and Gorman et al. DNA Prot Eng. Tech. 2:3-10 (1990)) and purified by Ni-NTA column chromatography (Qiagen, Australia) and buffer exchanged into phosphate buffered saline (PBS). Concentrations were determined by absorption at 280 nm using extinction coefficients derived by amino acid composition analysis. Receptors were coated onto Nunc F96 maxisorb plates (cat no.
  • E27:chimeric IgE:VEGF: (1:1:2 molar ratio) complexes are added to Fc ⁇ R ⁇ subunit coated plates at E27 concentrations of 5 ⁇ g and 1 ⁇ g total IgG in quadruplicate in assay buffer and incubated for 120 minutes at 25° C. on an orbital shaker.
  • HRP horse radish peroxidase conjugated goat anti-human IgG ( ⁇ ) heavy chain specific
  • Plates are washed 5 ⁇ with wash buffer to remove unbound HRP goat anti-human IgG and bound anti-IgG is detected by adding 100 ⁇ l of substrate solution (0.4 mg/ml o-phenylenedaimine dihydrochloride, Sigma P6912, 6 mM H 2 O 2 in PBS) and incubating for 8 min at 25° C. Enzymatic reaction is stopped by the addition of 100 ⁇ l 4.5N H 2 SO 4 and colorimetric product is measured at 490 nm on a 96 well plate densitometer (Molecular Devices). Binding of E27 variant complexes is expressed as a percent of the wild type E27 containing complex.
  • C2B8 Variants The chimeric light and heavy chains of anti-CD20 antibody C2B8 (Reff et al., Blood 83:435 (1994)) subcloned separately into previously described PRK vectors (Gorman et al., DNA Protein Eng. Tech. 2:3 (1990)) were used. By site directed mutagenesis (Kunkel et al., Proc. Natl. Acad. Sci. USA 82:488 (1985)), alanine scan variants of the Fc region in the heavy chain were constructed. The heavy and light chain plasmids were co-transfected into an adenovirus transformed human embryonic kidney cell line as previously described (Werther et al., J.
  • the media was changed to serum-free 24 hours after transfection and the secreted antibody was harvested after five days.
  • the antibodies were purified using Protein A-SEPHAROSE CL-4BTM (Pharmacia), buffer exchanged and concentrated to 0.5 ml with PBS using a Centricon-30 (Amicon), and stored at 4° C. The concentration of the antibody was determined using total Ig-binding ELISA.
  • C1q Binding ELISA Costar 96 well plates were coated overnight at 4° C. with the indicated concentrations of C2B8 in coating buffer (0.05 M sodium carbonate buffer), pH 9. The plates were then washed 3 ⁇ with PBS/0.05% TWEEN 20TM, pH 7.4 and blocked with 200R1 of ELISA diluent without thimerosal (0.1 M NaPO4/0.1 M NaCl/0.1% gelatin/0.05% TWEEN 20TM/0.05% ProClin300) for 1 hr at room temperature.
  • the plate was washed 3 ⁇ with wash buffer, an aliquot of 100 ⁇ l of 2 ⁇ g/ml C1q (Quidel, San Diego, Calif.) was added to each well and incubated for 2 hrs at room temperature. The plate was then washed 6 ⁇ with wash buffer. 100 ⁇ l of a 1:1000 dilution of sheep anti-complement C1q peroxidase conjugated antibody (Biodesign) was added to each well and incubated for 1 hour at room temperature. The plate was again washed 6 ⁇ with wash buffer and 100 ⁇ l of substrate buffer (PBS/0.012% H 2 O 2 ) containing OPD (O-phenylenediamine dihydrochloride (Sigma)) was added to each well.
  • substrate buffer PBS/0.012% H 2 O 2
  • OPD O-phenylenediamine dihydrochloride
  • the oxidation reaction observed by the appearance of a yellow color, was allowed to proceed for 30 minutes and stopped by the addition of 100 ⁇ l of 4.5 N H 2 SO 4 .
  • the absorbance was then read at (492-405) nm using a microplate reader (SPECTRA MAX 250TM, Molecular Devices Corp.).
  • the appropriate controls were run in parallel (i.e. the ELISA was performed without C1q for each concentration of C2B8 used and also the ELISA was performed without C2B8).
  • C1q binding was measured by plotting the absorbance (492-405) nm versus concentration of C2B8 in ⁇ g/ml using a 4-parameter curve fitting program (KALEIDAGRAPHTM) and comparing EC 50 values.
  • CDC Complement Dependent Cytotoxicity
  • Human complement (Quidel) was diluted 1:3 in RHB buffer and WIL2-S cells (available from the ATCC, Manassas, Va.) which express the CD20 antigen were diluted to a density of 1 ⁇ 10 6 cells/ml with RHB buffer.
  • Mixtures of 150 ⁇ l containing equal volumes of C2B8, diluted human complement and WIL2-S cells were added to a flat bottom tissue culture 96 well plate and allowed to incubate for 2 hrs at 37° C. and 5% CO 2 to facilitate complement mediated cell lysis. 50 ⁇ l of alamar blue (Accumed International) was then added to each well and incubated overnight at 37° C.
  • the absorbance was measured using a 96-well fluorometer with excitation at 530 nm and emission at 590 nm. As described by Gazzano-Santoro et al., the results are expressed in relative fluorescence units (RFU). The sample concentrations were computed from a C2B8 standard curve and the percent activity as compared to wild type C2B8 is reported for each variant.
  • CD20 Binding Potency of the C2B8 Variants The binding of C2B8 and variants to the CD20 antigen were assessed by a method previously described (Reff et al., (1994), supra; reviewed in Gazzano-Santoro et al., (1997), supra). WIL2-S cells were grown for 3-4 days to a cell density of 1 ⁇ 10 6 cells/ml. The cells were washed and spun twice in FACS buffer (PBS/0.1% BSA/0.02% NaN 3 ) and resuspended to a cell density of 5 ⁇ 10 6 cells/ml.
  • FACS buffer PBS/0.1% BSA/0.02% NaN 3
  • Fc ⁇ R Binding ELISAs Fc ⁇ RI ⁇ subunit-GST fusion was coated onto Nunc F96 maxisorb plates (cat no. 439-454) by adding 100 ⁇ l of receptor-GST fusion at 1 ⁇ g/ml in PBS and incubated for 48 hours at 4° C. Prior to assay, plates are washed 3 ⁇ with 250 ⁇ l of wash buffer (PBS pH 7.4 containing 0.5% TWEEN 20TM) and blocked with 250 ⁇ l of assay buffer (50 mM Tris buffered saline, 0.05% TWEEN 20, 0.5% RIA grade bovine albumin (Sigma A7888), and 2 mM EDTA pH 7.4).
  • wash buffer PBS pH 7.4 containing 0.5% TWEEN 20TM
  • assay buffer 50 mM Tris buffered saline, 0.05% TWEEN 20, 0.5% RIA grade bovine albumin (Sigma A7888), and 2 mM EDTA pH 7.4
  • Plates are washed 5 ⁇ with wash buffer to remove unbound HRP goat anti-human IgG and bound anti-IgG is detected by adding 100 ⁇ l of substrate solution (0.4 mg/ml o-phenylenedaimine dihydrochloride, Sigma P6912, 6 mM H 2 O 2 in PBS) and incubating for 8 min at 25° C. Enzymatic reaction is stopped by the addition of 100 ⁇ l 4.5NH 2 SO 4 and colorimetric product is measured at 490 nm on a 96 well plate densitometer (Molecular Devices). Binding of variant is expressed as a percent of the wild type molecule.
  • Fc ⁇ RII and III binding ELISAs were performed as described in Example 1 above.
  • ELISA plates were coated with 2 ⁇ g/ml streptavidin (Zymed, South San Francisco) in 50 mM carbonate buffer, pH 9.6, at 4° C. overnight and blocked with PBS-0.5% BSA, pH 7.2 at room temperature for one hour.
  • Biotinylated FcRn prepared using biotin-X-NHS from Research Organics, Cleveland, Ohio and used at 1-2 ⁇ g/ml
  • PBS-0.5% BSA 0.05% polysorbate 20, pH 7.2
  • the IgG2 variant appears to have a much lower affinity for C1q than the E318A and K320A variants ( FIG. 2 ).
  • the results demonstrate that E318 and K320 do not constitute the core C1q binding sites for human IgG1.
  • the K322A substitution had a significant effect on both complement activity and C1q binding.
  • the K322A variant did not have CDC activity when tested in the above CDC assay and was more than a 100 fold lower than wild type C2B8 in binding to C1q ( FIG. 2 ).
  • K322 is the only residue of the proposed core C1q binding sites that appeared to have a significant effect on complement activation and C1q binding.
  • Variants constructed, K274A, N276A, Y278A, S324A, P329A, P331A, K334A, and T335A were assessed for their ability to bind C1q and also to activate complement. Many of these substitutions had little or no effect on C1q binding or complement activation.
  • the P329A and the P331A variants did not activate complement and had decreased binding to C1q.
  • the mutation P329A results in an antibody that does not activate complement and is more than a 100 fold lower in binding to C1q ( FIG. 3 ) when compared to wild type C2B8 ( FIG. 2 ).
  • Variants that did not bind to C1q and hence did not activate complement were examined for their ability to bind to the Fc receptors: Fc ⁇ RI, Fc ⁇ RIIA, Fc ⁇ RIIB, Fc ⁇ RIIIA and FcRn.
  • This particular study was performed using a humanized anti-IgE antibody, an IgG1 antibody with these mutations (see Example 1 above).
  • a further residue involved in binding human C1q was identified using the methods described in the present example.
  • the residue D270 was replaced with lysine and valine to generate variants D270K and D270V, respectively. These variants both showed decreased binding to human C1q ( FIG. 6 ) and were non-lytic ( FIG. 7 ).
  • the two variants bound the CD20 antigen normally and recruited ADCC.
  • K326, A327, E333 and K334 are potential sites for improving the efficacy of antibodies by way of the CDC pathway.
  • the aim of this study was to improve CDC activity of an antibody by increasing binding to C1q.
  • K326M, K326D, K326E and E333S were constructed with at least a two-fold increase in binding to C1q when compared to wild type.
  • Variant K326W displayed about a five-fold increase in binding to C1q.
  • Variants of the wild type C2B8 antibody were prepared as described above in Example 2.
  • the C1q binding ELISA, CDC assay, and CD20 binding potency assay in this example were performed as described in Example 2 above.
  • K326A, K326D, K326E, K326G, K326V, K326M and K326W were all bound to C1q with a better affinity than the wild type antibody.
  • K326W, K326M, K326D and K326E showed at least a two-fold increase in binding to C1q (Table 5).
  • K326W had the best affinity for C1q.
  • E333 was also substituted with other amino acid residues.
  • E333S, E333G, E333V, E333D, and E333Q all had increased binding to C1q when compared to the wild type ( FIG. 11 ).
  • the order of binding affinity for C1q was as follows: E333S>E333A>E333G>E333V>E333D>E333Q.
  • Substitutions with amino acid residues with small side chain volumes, i.e. serine, alanine and glycine resulted in variants with higher affinity for C1q in comparison to the other variants, E333V, E333D and E333Q, with larger side chain volumes.
  • the variant E333S had the highest affinity for C1q, showing a two-fold increase in binding when compared to the wild type. Without being bound to any one theory, this indicates the effect on C1q binding at 333 may also be due in part to the polarity of the residue.
  • Double variants were also generated. As shown in FIGS. 12 and 13 , double variants K326M-E333S and K326A-E333A were at least three-fold better at binding human C1q than wild type C2B8 ( FIG. 12 ) and at least two-fold better at mediating CDC compared to wild type C2B8 ( FIG. 13 ). Additivity indicates these are independently acting variants.
  • IgG1 Variants Recombinant anti-IgE E27 having the light chain and heavy chain sequences in FIGS. 4A and 4B , respectively, was used as the parent antibody in the following experiments.
  • This antibody binds the antigen IgE and has a non-A allotype IgG1 Fc region.
  • site directed mutagenesis By site directed mutagenesis (Kunkel et al., Proc. Natl. Acad. Sci. USA 82:488 (1985)), variants of the Fc region in the heavy chain of the above parent antibody were constructed.
  • the heavy and light chain plasmids were co-transfected into an adenovirus transformed human embryonic kidney cell line as previously described (Werther et al., J. Immunol.
  • the media was changed to serum-free 24 hours after transfection and the secreted antibody was harvested after five days.
  • the antibodies were purified by Protein G SEPHAROSE® (Pharmacia), buffer exchanged and concentrated to 0.5 ml with PBS using a Centricon-30 (Amicon), and stored at 4° C. Concentration was determined by adsorption at 280 nm using extinction coefficients derived by amino acid composition analysis.
  • Fc ⁇ RIA was expressed as a GST fusion of His6 tagged extracellular domain in 293 cells and purified by Ni-NTA column chromatography.
  • Purified receptors were coated onto Nunc F96 maxisorb plates (cat no. 439545) at approximately 150 ng per well by adding 100 ⁇ L of receptor at 1.5 ⁇ g/mL in PBS and incubated for 24 hours at 4° C. Prior to assay, plates were washed 3 ⁇ with 250 ⁇ L of wash buffer (phosphate buffered saline pH 7.4 containing 0.5% TWEEN 20®) and blocked with 250 ⁇ L of assay buffer (50 mM tris buffered saline, 0.05% TWEEN 20®, 0.5% RIA grade bovine albumin (Sigma A7888), and 2 mM EDTA pH 7.4).
  • wash buffer phosphate buffered saline pH 7.4 containing 0.5% TWEEN 20®
  • assay buffer 50 mM tris buffered saline, 0.05% TWEEN 20®, 0.5% RIA grade bovine albumin (Sigma A7888), and 2 mM EDTA pH 7.4
  • E27 100 ⁇ L of E27 was added to the first four wells of the Fc ⁇ RIA subunit coated plated at a concentration of 10 ⁇ g/mL. 80 ⁇ L of assay buffer was added to the next four well followed by 20 ⁇ L of the 10 ⁇ g/mL E27 IgG to give a final concentration of 2 ⁇ g/mL. Plates were incubated at 25° C. for 2 hours on an orbital shaker.
  • HRP horse radish peroxidase conjugated protein G
  • BIORAD horse radish peroxidase conjugated protein G
  • HRP conjugates were incubated for 1.5 hours at 25° C. on an orbital shaker. Plates were washed ⁇ 5 with wash buffer to remove unbound HRP conjugate. Binding was detected by adding 100 ⁇ L of substrate solution (0.4 mg/mL o-phenylenedaimine dihydrochloride, Sigma P6912, 6 mM H 2 O 2 in PBS) and incubating for 10 minutes at 25° C. Enzymatic reaction was stopped by the addition of 100 ⁇ L of 4.5 N H 2 SO 4 and colorimetric product was measured at 490 nm on a 96 well plate densitometer (Molecular Devices).
  • Binding of E27 variants at IgG concentration of 2 ⁇ g/mL was expressed as a ratio of wild type E27.
  • Fc ⁇ RIA THP-1 Assay 100 ⁇ L of E27 was added to the first three wells of a serocluster plate (Costar) at a concentration of 20 ⁇ g/mL in assay buffer (1 ⁇ PBS, 0.1% BSA, 0.01% NaN 3 ). 92.5 ⁇ L of assay buffer was added to the next three wells followed by 7.5 ⁇ L of the 20 ⁇ g/mL E27 IgG to give a final concentration of 1.5 ⁇ g/mL. To each well, 100 ⁇ L of THP-1 cells were added at a concentration of 5 million cells/mL in FACS assay buffer. The plate is incubated on ice for 30 minutes
  • IgG binding Fc ⁇ RIA was detected by adding 100 ⁇ L FITC conjugated F(ab′) 2 fragment of goat anti-human IgG heavy chain specific. (Jackson Immunoresearch) at 1:200. FITC conjugates were incubated with cells for 30 minutes on ice. Cells were washed ⁇ 3 with assay buffer to remove unbound FITC conjugate. Cells were stained with P.I. (SIGMA) at 2.5 ⁇ g/mL and analyzed by flow cytometry.
  • SIGMA P.I.
  • Binding of E27 variants at IgG concentration of 1.5 ⁇ g/mL was expressed as a ratio of wild type E27.
  • Fc ⁇ RIIA, Fc ⁇ RIIB and Fc ⁇ RIIIA binding ELISAs were performed as described in Example 1 above, with detection of the stable hexamer (consisting of three anti-IgE molecules and three IgE molecules).
  • FcRn Binding ELISA For measuring FcRn binding activity of IgG variants, ELISA plates were coated with 2 ⁇ g/ml streptavidin (Zymed, South San Francisco) in 50 mM carbonate buffer, pH 9.6, at 4° C. overnight and blocked with PBS-0.5% BSA, pH 7.2 at room temperature for one hour. Biotinylated FcRn (prepared using biotin-X-NHS from Research Organics, Cleveland, Ohio and used at 1-2 ⁇ g/ml) in PBS-0.5% BSA, 0.05% polysorbate 20, pH 7.2, was added to the plate and incubated for one hour.
  • IgG standard 1.6-100 ng/ml
  • PBS-0.5% BSA, 0.05% polysorbate 20, pH 6.0 Two fold serial dilutions of IgG standard (1.6-100 ng/ml) or variants in PBS-0.5% BSA, 0.05% polysorbate 20, pH 6.0, were added to the plate and incubated for two hours. Bound IgG was detected using peroxidase labeled goat F(ab′) 2 anti-human IgG F(ab′) 2 in the above pH 6.0 buffer (Jackson ImmunoResearch, West Grove, Pa.) followed by 3,3′,5,5′-tetramethyl benzidine (Kirgaard & Perry Laboratories) as the substrate. Plates were washed between steps with PBS-0.05% TWEEN 20® at either pH 7.2 or 6.0.
  • chromium 51-labeled target cells tumor cell lines were grown in tissue culture plates and harvested using sterile 10 mM EDTA in PBS. SK-BR-3 cells, a 3+ HER2-overexpressing human breast cancer cell line, were used as targets in all assays. The detached cells were washed twice with cell culture medium. Cells (5 ⁇ 10 6 ) were labeled with 200 ⁇ Ci of chromium51 (New England Nuclear/DuPont) at 37° C. for one hour with occasional mixing. Labeled cells were washed three times with cell culture medium, then were resuspended to a concentration of 1 ⁇ 10 5 cells/mL.
  • Cells were used either without opsonization, or were opsonized prior to the assay by incubation with rhuMAb HER2 wildtype (HERCEPTIN®) or seven Fc mutants (G14, G18, G17, G36, G30, G31 and G34) at 100 ng/mL and 1.25 ng/mL in PBMC assay or 20 ng/mL and 1 ng/mL in NK assay.
  • rhuMAb HER2 wildtype HERCEPTIN®
  • Fc mutants G14, G18, G17, G36, G30, G31 and G34
  • Peripheral blood mononuclear cells were prepared by collecting blood on heparin from normal healthy donors and dilution with an equal volume of phosphate buffered saline (PBS). The blood was then layered over LYMPHOCYTE SEPARATION MEDIUM® (LSM: Organon Teknika) and centrifuged according to the manufacturer's instructions. Mononuclear cells were collected from the LSM-plasma interface and were washed three times with PBS. Effector cells were suspended in cell culture medium to a final concentration of 1 ⁇ 10 7 cells/mL.
  • PBS phosphate buffered saline
  • NK cells natural killer cells were isolated from PBMCs by negative selection using an NK cell isolation kit and a magnetic column (Miltenyi Biotech) according to the manufacturer's instructions. Isolated NK cells were collected, washed and resuspended in cell culture medium to a concentration of 2 ⁇ 10 6 cells/mL. The identity of the NK cells was confirmed by flow cytometric analysis.
  • Varying effector:target ratios were prepared by serially diluting the effector (either PBMC or NK) cells two-fold along the rows of a microtiter plate (100 ⁇ L final volume) in cell culture medium.
  • the concentration of effector cells ranged from 1.0 ⁇ 10 7 /mL to 2.0 ⁇ 10 4 /mL for PBMC and from 2.0 ⁇ 10 6 /mL to 3.9 ⁇ 10 3 /mL for NK.
  • 100 ⁇ L of chromium 51-labeled target cells (opsonized or nonoponsonized) at 1 ⁇ 10 5 cells/mL were added to each well of the plate.
  • a variety of antibody variants were generated which had FcR binding activity that differed from the parent antibody.
  • the FcR binding data for the variants generated is shown in Tables 6 and 7 below.
  • Variants with increased binding to FcRn generally had binding values ⁇ 1.30 as determined in this Example and those with reduced binding to FcRn generally had binding values ⁇ 0.70 as determined in this Example.
  • various non-alanine substitution variants were made, and the FcR binding activity of those variants is summarized in the following table.
  • This study includes a complete mapping of human IgG1 for human Fc ⁇ RI, Fc ⁇ RIIA, Fc ⁇ RIIB, Fc ⁇ RIIIA, and FcRn.
  • Fc ⁇ RI and FcRn are high affinity receptors and monomeric IgG could be evaluated in the assays for these two receptors.
  • Fc ⁇ RIIA, Fc ⁇ RIIB and Fc ⁇ RIIIA are low affinity receptors and required use of an immune complex.
  • an ELISA-type assay was used for Fc ⁇ RIIA, Fc ⁇ RIIB, and Fc ⁇ RIIIA, in which pre-formed hexamers, consisting of three anti-IgE E27 and three IgE molecules were bound to the Fc ⁇ R and either anti-human IgG Fc-HRP or protein G-HRP used as detection reagent.
  • these hexamers could be linked into multimers by addition of human VEGF (using anti-VEGF IgE).
  • the hexameric complexes were used since these provided sufficient binding and required less IgG. Complexes formed using other antibody:antigen combinations are also possible reagents, as long as the antigen contains at least two identical binding sites per molecule for the antibody.
  • VEGF contains two binding sites per VEGF dimer for anti-VEGF A.4.6.1 (Kim et al., Growth Factors 7:53 (1992) and Kim et al Nature 362:841 (1993)).
  • VEGF:anti-VEGF multimers also bound to the low affinity Fc ⁇ RIIA and Fc ⁇ RIIIA ( FIGS. 16A and 16B ).
  • alanine variants were found. Some variants exhibited reduced binding to all Fc ⁇ R (G14, FIG. 17 ), while other variants showed reduced binding only to one Fc ⁇ R (G36, FIG. 17 ), improved binding only to one Fc ⁇ R (G15, G54, G55, FIG. 17 ), or simultaneous reduction to one Fc ⁇ R with improvement to another (G16, FIG. 17 ).
  • One application of these variants is to improve the ADCC effector function of an antibody. This can be achieved by modifying Fc region amino acids at one or more residues which would lead to improved binding to Fc ⁇ RIIIA. Improved Fc ⁇ RIIIA binding would lead to improved binding by NK cells, which carry only Fc ⁇ RIIIA and can mediate ADCC.
  • Selected alanine variants which were either reduced in binding to Fc ⁇ RIIIA (variants 17, 18, 34; Table 6), had no effect on Fc ⁇ RIIIA binding (variant 31; Table 6), or had improved binding to Fc ⁇ RIIIA (variants 30, 36; Table 6) were tested in an in vitro ADCC assay using human PBMCs as effector cells.
  • the IgG Fc variants used in this assay were generated by substituting the V H /V L domains of anti-IgE E27 with those from anti-HER2 antibody; HERCEPTIN® (humAb4D5-8 in Table 1 of Carter et al. PNAS ( USA ) 89:4285-4289 (1992)).
  • the pattern of ADCC exhibited by the variants correlated well with the pattern of binding to Fc ⁇ RIIIA ( FIGS. 20 and 21 ).
  • variant 36 S298(317)A also showed improvement in ADCC compared to wildtype HERCEPTIN® at 1.25 ng/ml ( FIG. 21 ).
  • allelic variants of several of the human Fc ⁇ R have been found in the human population. These allelic variant forms have been shown to exhibit differences in binding of human and murine IgG and a number of association studies have correlated clinical outcomes with the presence of specific allelic forms (reviewed in Lehrnbecher et al. Blood 94(12):4220-4232 (1999)). Several studies have investigated two forms of Fc ⁇ RIIA, R131 and H131, and their association with clinical outcomes (Hatta et al. Genes and Immunity 1:53-60 (1999); Yap et al. Lupus 8:305-310 (1999); and Lorenz et al. European J Immunogenetics 22:397-401 (1995)).
  • the pattern of binding of the selected IgG1 variants to the relatively higher affinity Fc ⁇ RIIIA-V158 was the same as for the relatively lower affinity Fc ⁇ RIIIA-F158 (the F158 form was used in assaying all variants).
  • IgG1 variants which showed improved binding to the Fc ⁇ RIIIA-F158 form also showed improved binding to the Fc ⁇ RIIIA-V158 form though the improvement was not as pronounced.
  • Fc ⁇ RIIA-R131 used in assaying all variants
  • Fc ⁇ RIIA-H131 the binding pattern of the selected IgG1 variants did show some distinct differences.
  • S267(280)A, H268(281)A, and S267(280) A/H268(281)A exhibited improved binding to Fc ⁇ RIIA-R131, compared to native IgG1, but not to Fc ⁇ RIIA-H131.
  • S267(280)G showed improved binding to Fc ⁇ RIIA-R131 but reduced binding to Fc ⁇ RIIA-H131 (Table 10).

Abstract

The present invention concerns polypeptides comprising a variant Fc region. More particularly, the present invention concerns Fc region-containing polypeptides that have altered effector function as a consequence of one or more amino acid modifications in the Fc region thereof.

Description

  • This is a continuation application which claims priority under 35 USC §120 to divisional application Ser. No. 10/757,863, filed Jan. 15, 2004, which claims priority under 35 USC §120 to non-provisional application Ser. No. 09/483,588, filed Jan. 14, 2000 (now U.S. Pat. No. 6,737,056), which claims priority under 35 USC § 119 to provisional application No. 60/116,023, filed Jan. 15, 1999, the entire disclosures of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention concerns polypeptides comprising a variant Fc region. More particularly, the present invention concerns Fc region-containing polypeptides that have altered effector function as a consequence of one or more amino acid modifications in the Fc region thereof.
  • 2. Description of Related Art
  • Antibodies are proteins which exhibit binding specificity to a specific antigen. Native antibodies are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies between the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (VH) followed by a number of constant domains. Each light chain has a variable domain at one end (VL) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light and heavy chain variable domains.
  • The term “variable” refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are responsible for the binding specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed through the variable domains of antibodies. It is concentrated in three segments called complementarity determining regions (CDRs) both in the light chain and the heavy chain variable domains. The more highly conserved portions of the variable domains are called the framework regions (FRs). The variable domains of native heavy and light chains each comprise four FRs, largely adopting a β-sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the β-sheet structure. The CDRs in each chain are held together in close proximity by the FRs and, with the CDRs from the other chain, contribute to the formation of the antigen binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)).
  • The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions. Depending on the amino acid sequence of the constant region of their heavy chains, antibodies or immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG and IgM, and several of these may be further divided into subclasses (isotypes), e.g. IgG1, IgG2, IgG3, and IgG4; IgA1 and IgA2. The heavy chain constant regions that correspond to the different classes of immunoglobulins are called α, δ, ε, γ, and μ, respectively. Of the various human immunoglobulin classes, only human IgG1, IgG2, IgG3 and IgM are known to activate complement; and human IgG1 and IgG3 mediate ADCC more effectively than IgG2 and IgG4.
  • A schematic representation of the native IgG1 structure is shown in FIG. 1, where the various portions of the native antibody molecule are indicated. Papain digestion of antibodies produces two identical antigen binding fragments, called Fab fragments, each with a single antigen binding site, and a residual “Fc” fragment, whose name reflects its ability to crystallize readily. The crystal structure of the human IgG Fc region has been determined (Deisenhofer, Biochemistry 20:2361-2370 (1981)). In human IgG molecules, the Fc region is generated by papain cleavage N-terminal to Cys 226. The Fc region is central to the effector functions of antibodies.
  • The effector functions mediated by the antibody Fc region can be divided into two categories: (1) effector functions that operate after the binding of antibody to an antigen (these functions involve the participation of the complement cascade or Fc receptor (FcR)-bearing cells); and (2) effector functions that operate independently of antigen binding (these functions confer persistence in the circulation and the ability to be transferred across cellular barriers by transcytosis). Ward and Ghetie, Therapeutic Immunology 2:77-94 (1995).
  • While binding of an antibody to the requisite antigen has a neutralizing effect that might prevent the binding of a foreign antigen to its endogenous target (e.g. receptor or ligand), binding alone may not remove the foreign antigen. To be efficient in removing and/or destructing foreign antigens, an antibody should be endowed with both high affinity binding to its antigen, and efficient effector functions.
  • Fc Receptor (FcR) Binding
  • The interaction of antibodies and antibody-antigen complexes with cells of the immune system effects a variety of responses, including antibody-dependent cell-mediated cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC) (reviewed in Daëron, Annu. Rev. Immunol. 15:203-234 (1997); Ward and Ghetie, Therapeutic Immunol. 2:77-94 (1995); as well as Ravetch and Kinet, Annu. Rev. Immunol. 9:457-492 (1991)).
  • Several antibody effector functions are mediated by Fc receptors (FcRs), which bind the Fc region of an antibody. FcRs are defined by their specificity for immunoglobulin isotypes; Fc receptors for IgG antibodies are referred to as FcγR, for IgE as FcεR, for IgA as FcαR and so on. Three subclasses of FcγR have been identified: FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16). Because each FcγR subclass is encoded by two or three genes, and alternative RNA spicing leads to multiple transcripts, a broad diversity in FcγR isoforms exists. The three genes encoding the FcγRI subclass (FcγRIA, FcγRIB and FcγRIC) are clustered in region 1q21.1 of the long arm of chromosome 1; the genes encoding FcγRII isoforms (FcγRIIA, FcγRIIB and FcγRIIC) and the two genes encoding FcγRIII (FcγRIIIA and FcγRIIIB) are all clustered in region 1q22. These different FcR subtypes are expressed on different cell types (reviewed in Ravetch and Kinet, Annu. Rev. Immunol. 9:457-492 (1991)). For example, in humans, FcγRIIIB is found only on neutrophils, whereas FcγRIIIA is found on macrophages, monocytes, natural killer (NK) cells, and a subpopulation of T-cells. Notably, FcγRIIIA is the only FcR present on NK cells, one of the cell types implicated in ADCC.
  • FcγRI, FcγRII and FcγRIII are immunoglobulin superfamily (IgSF) receptors; FcγRI has three IgSF domains in its extracellular domain, while FcγRII and FcγRII have only two IgSF domains in their extracellular domains.
  • Another type of Fc receptor is the neonatal Fc receptor (FcRn). FcRn is structurally similar to major histocompatibility complex (MHC) and consists of an α-chain noncovalently bound to β2-microglobulin.
  • The binding site on human and murine antibodies for FcγR have been previously mapped to the so-called “lower hinge region” consisting of residues 233-239 (EU index numbering as in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)). Woof et al. Molec. Immunol. 23:319-330 (1986); Duncan et al. Nature 332:563 (1988); Canfield and Morrison, J. Exp. Med. 173:1483-1491 (1991); Chappel et al., Proc. Natl. Acad. Sci. USA 88:9036-9040 (1991). Of residues 233-239, P238 and S239 have been cited as possibly being involved in binding, but these two residues have never been evaluated by substitution or deletion.
  • Other previously cited areas possibly involved in binding to FcγR are: G316-K338 (human IgG) for human FcγRI (by sequence comparison only; no substitution mutants were evaluated) (Woof et al. Molec. Immunol. 23:319-330 (1986)); K274-R301 (human IgG1) for human FcγRIII (based on peptides) (Sarmay et al. Molec. Immunol. 21:43-51 (1984)); Y407-R416 (human IgG) for human FcγRIII (based on peptides) (Gergely et al. Biochem. Soc. Trans. 12:739-743 (1984)); as well as N297 and E318 (murine IgG2b) for murine FcγRII (Lund et al., Molec. Immunol., 29:53-59 (1992)).
  • Pro331 in IgG3 was changed to Ser, and the affinity of this variant to target cells analyzed. The affinity was found to be six-fold lower than that of unmutated IgG3, indicating the involvement of Pro331 in FcγRI binding. Morrison et al., Immunologist, 2:119-124 (1994); and Canfield and Morrison, J. Exp. Med. 173:1483-91 (1991).
  • C1q Binding
  • C1q and two serine proteases, C1r and C1s, form the complex C1, the first component of the complement dependent cytotoxicity (CDC) pathway. C1q is a hexavalent molecule with a molecular weight of approximately 460,000 and a structure likened to a bouquet of tulips in which six collagenous “stalks” are connected to six globular head regions. Burton and Woof, Advances in Immunol. 51:1-84 (1992). To activate the complement cascade, it is necessary for C1q to bind to at least two molecules of IgG1, IgG2, or IgG3 (the consensus is that IgG4 does not activate complement), but only one molecule of IgM, attached to the antigenic target. Ward and Ghetie, Therapeutic Immunology 2:77-94 (1995) at page 80.
  • Based upon the results of chemical modifications and crystallographic studies, Burton et al. (Nature, 288:338-344 (1980)) proposed that the binding site for the complement subcomponent C1q on IgG involves the last two (C-terminal) β-strands of the CH2 domain. Burton later suggested (Molec. Immunol., 22(3):161-206 (1985)) that the region comprising amino acid residues 318 to 337 might be involved in complement fixation.
  • Duncan and Winter (Nature 332:738-40 (1988)), using site directed mutagenesis, reported that Glu318, Lys320 and Lys322 form the binding site to C1q. The data of Duncan and Winter were generated by testing the binding of a mouse IgG2b isotype to guinea pig C1q. The role of Glu318, Lys320 and Lys322 residues in the binding of C1q was confirmed by the ability of a short synthetic peptide containing these residues to inhibit complement mediated lysis. Similar results are disclosed in U.S. Pat. No. 5,648,260 issued on Jul. 15, 1997, and U.S. Pat. No. 5,624,821 issued on Apr. 29, 1997.
  • The residue Pro331 has been implicated in C1q binding by analysis of the ability of human IgG subclasses to carry out complement mediated cell lysis. Mutation of Ser331 to Pro331 in IgG4 conferred the ability to activate complement. (Tao et al., J. Exp. Med., 178:661-667 (1993); Brekke et al., Eur. J. Immunol., 24:2542-47 (1994)).
  • From the comparison of the data of the Winter group, and the Tao et al and Brekke et al. papers, Ward and Ghetie concluded in their review article that there are at least two different regions involved in the binding of C1q: one on the β-strand of the CH2 domain bearing the Glu318, Lys320 and Lys322 residues, and the other on a turn located in close proximity to the same β-strand, and containing a key amino acid residue at position 331.
  • Other reports suggested that human IgG1 residues Leu235, and Gly237, located in the lower hinge region, play a critical role in complement fixation and activation. Xu et al., Journal of Immunology 150:152A (Abstract) (1993). WO94/29351 published Dec. 22, 1994 reports that amino acid residues necessary for C1q and FcR binding of human IgG1 are located in the N-terminal region of the CH2 domain, i.e. residues 231 to 238.
  • It has further been proposed that the ability of IgG to bind C1q and activate the complement cascade also depends on the presence, absence, or modification of the carbohydrate moiety positioned between the two CH2 domains (which is normally anchored at Asn297). Ward and Ghetie, Therapeutic Immunology 2:77-94 (1995) at page 81.
  • SUMMARY OF THE INVENTION
  • The present invention provides a variant of a parent polypeptide comprising an Fc region, which variant mediates antibody-dependent cell-mediated cytotoxicity (ADCC) in the presence of human effector cells more effectively, or binds an Fc gamma receptor (FcγR) with better affinity, than the parent polypeptide and comprises at least one amino acid modification in the Fc region. The polypeptide variant may, for example, comprise an antibody or an immunoadhesin. The Fc region of the parent polypeptide preferably comprises a human Fc region; e.g., a human IgG1, IgG2, IgG3 or IgG4 Fc region. The polypeptide variant preferably comprises an amino acid modification (e.g. a substitution) at any one or more of amino acid positions 256, 290, 298, 312, 326, 330, 333, 334, 360, 378 or 430 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • In addition, the invention provides a polypeptide comprising a variant Fc region with altered Fc gamma receptor (FcγR) binding affinity, which polypeptide comprises an amino acid modification at any one or more of amino acid positions 238, 239, 248, 249, 252, 254, 255, 256, 258, 265, 267, 268, 269, 270, 272, 276, 278, 280, 283, 285, 286, 289, 290, 292, 293, 294, 295, 296, 298, 301, 303, 305, 307, 309, 312, 315, 320, 322, 324, 326, 327, 329, 330, 331, 333, 334, 335, 337, 338, 340, 360, 373, 376, 378, 382, 388, 389, 398, 414, 416, 419, 430, 434, 435, 437, 438 or 439 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat. The variant Fc region preferably comprises a variant human IgG Fc region, e.g., a variant human IgG1, IgG2, IgG3 or IgG4 Fc region. In this respect, it is noted that, in the work in the above-cited art where the parent polypeptide had a non-human murine Fc region, different residues from those identified herein were thought to impact FcR binding. For example, in the murine IgG2b/murine FcγRII system, IgG E318 was found to be important for binding (Lund et al. Molec. Immunol. 27(1):53-59 (1992)), whereas E318A had no effect in the human IgG/human FcγRII system (Table 6 below).
  • In one embodiment, the polypeptide variant with altered FcγR binding activity displays reduced binding to an FcγR and comprises an amino acid modification at any one or more of amino acid positions 238, 239, 248, 249, 252, 254, 265, 268, 269, 270, 272, 278, 289, 292, 293, 294, 295, 296, 298, 301, 303, 322, 324, 327, 329, 333, 335, 338, 340, 373, 376, 382, 388, 389, 414, 416, 419, 434, 435, 437, 438 or 439 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • For example, the polypeptide variant may display reduced binding to an FcγRI and comprise an amino acid modification at any one or more of amino acid positions 238, 265, 269, 270, 327 or 329 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • The polypeptide variant may display reduced binding to an FcγRII and comprise an amino acid modification at any one or more of amino acid positions 238, 265, 269, 270, 292, 294, 295, 298, 303, 324, 327, 329, 333, 335, 338, 373, 376, 414, 416, 419, 435, 438 or 439 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • The polypeptide variant of interest may display reduced binding to an FcγRIII and comprise an amino acid modification at one or more of amino acid positions 238, 239, 248, 249, 252, 254, 265, 268, 269, 270, 272, 278, 289, 293, 294, 295, 296, 301, 303, 322, 327, 329, 338, 340, 373, 376, 382, 388, 389, 416, 434, 435 or 437 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • In another embodiment, the polypeptide variant with altered FcγR binding affinity displays improved binding to the FcγR and comprises an amino acid modification at any one or more of amino acid positions 255, 256, 258, 267, 268, 272, 276, 280, 283, 285, 286, 290, 298, 301, 305, 307, 309, 312, 315, 320, 322, 326, 330, 331, 333, 334, 337, 340, 360, 378, 398 or 430 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • For example, the polypeptide variant may display increased binding to an FcγRIII and, optionally, may further display decreased binding to an FcγRII. An exemplary such variant comprises amino acid modification(s) at position(s) 298 and/or 333 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • The polypeptide variant may display increased binding to an FcγRII and comprise an amino acid modification at any one or more of amino acid positions 255, 256, 258, 267, 268, 272, 276, 280, 283, 285, 286, 290, 301, 305, 307, 309, 312, 315, 320, 322, 326, 330, 331, 337, 340, 378, 398 or 430 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat. Such polypeptide variants with increased binding to an FcγRII may optionally further display decreased binding to an FcγRIII and may, for example, comprise an amino acid modification at any one or more of amino acid positions 268, 272, 298, 301, 322 or 340 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • The invention further provides a polypeptide comprising a variant Fc region with altered neonatal Fc receptor (FcRn) binding affinity, which polypeptide comprises an amino acid modification at any one or more of amino acid positions 238, 252, 253, 254, 255, 256, 265, 272, 286, 288, 303, 305, 307, 309, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 386, 388, 400, 413, 415, 424, 433, 434, 435, 436, 439 or 447 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat. Such polypeptide variants with reduced binding to an FcRn may comprise an amino acid modification at any one or more of amino acid positions 252, 253, 254, 255, 288, 309, 386, 388, 400, 415, 433, 435, 436, 439 or 447 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat. The above-mentioned polypeptide variants may, alternatively, display increased binding to FcRn and comprise an amino acid modification at any one or more of amino acid positions 238, 256, 265, 272, 286, 303, 305, 307, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 413, 424 or 434 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
  • The invention also provides a composition comprising the polypeptide variant and a physiologically or pharmaceutically acceptable carrier or diluent. This composition for potential therapeutic use is sterile and may be lyophilized.
  • Diagnostic and therapeutic uses for the polypeptide variants disclosed herein are contemplated. In one diagnostic application, the invention provides a method for determining the presence of an antigen of interest comprising exposing a sample suspected of containing the antigen to the polypeptide variant and determining binding of the polypeptide variant to the sample. In one therapeutic application, the invention provides a method of treating a mammal suffering from or predisposed to a disease or disorder, comprising administering to the mammal a therapeutically effective amount of a polypeptide variant as disclosed herein, or of a composition comprising the polypeptide variant and a pharmaceutically acceptable carrier.
  • The invention further provides: isolated nucleic acid encoding the polypeptide variant; a vector comprising the nucleic acid, optionally, operably linked to control sequences recognized by a host cell transformed with the vector; a host cell containing the vector; a method for producing the polypeptide variant comprising culturing this host cell so that the nucleic acid is expressed and, optionally, recovering the polypeptide variant from the host cell culture (e.g. from the host cell culture medium).
  • The invention further provides a method for making a variant Fc region with altered Fc receptor (FcR) binding affinity, or altered antibody-dependent cell-mediated cytotoxicity (ADCC) activity, comprising:
  • (a) introducing one or more amino acid modifications into an Fc region of a parent polypeptide in order to generate a variant Fc region;
    (b) determining binding of the variant Fc region to an FcR, or determining ADCC activity of the variant Fc region.
  • Step (b) of the method may comprise determining binding of the variant Fc region to one or more FcRs in vitro. Moreover, the method may result in the identification of a variant Fc region with, improved FcR binding affinity, or with improved ADCC activity, in step (b) thereof. Where step (b) comprises determining binding of the Fc region to an FcR, the FcR may, for example, be human Fc gamma receptor III (FcγRIII). Where step (b) comprises determining binding of the variant Fc region to at least two different FcRs, the FcRs tested preferably include human Fc gamma receptor II (FcγRII) and human Fc gamma receptor III (FcγRIII).
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic representation of a native IgG. Disulfide bonds are represented by heavy lines between CH1 and CL domains and the two CH2 domains. V is variable domain; C is constant domain; L stands for light chain and H stands for heavy chain.
  • FIG. 2 shows C1q binding of wild type (wt) C2B8 antibody; C2B8 antibody with a human IgG2 constant region (IgG2); and variants K322A, K320A and E318A.
  • FIG. 3 depicts C1q binding of variants P331A, P329A and K322A.
  • FIGS. 4A and 4B depict the amino acid sequences of E27 anti-IgE antibody light chain (FIG. 4A; SEQ ID NO:1) and heavy chain (FIG. 4B; SEQ ID NO:2).
  • FIG. 5 is a schematic diagram of the “immune complex” prepared for use in the FcR assay described in Example 1. The hexamer comprising three anti-IgE antibody molecules (the “Fc region-containing polypeptide”) and three IgE molecules (the “first target molecule”) is shown. IgE has two “binding sites” for the anti-IgE antibody (E27) in the Fc region thereof. Each IgE molecule in the complex is further able to bind two VEGF molecules (“the second target polypeptide”). VEGF has two “binding sites” for IgE.
  • FIG. 6 shows C1q binding results obtained for variants D270K and D270V compared to wild type C2B8.
  • FIG. 7 depicts complement dependent cytotoxicity (CDC) of variants D270K and D270V, compared to wild type C2B8.
  • FIG. 8 shows C1 q binding ELISA results for 293 cell-produced wild type C2B8 antibody (293-Wt-C2B8), CHO-produced wild type C2B8 antibody (CHO-Wt-C2B8) and various variant antibodies.
  • FIG. 9 shows C1 q binding ELISA results obtained for wild type (wt) C2B8 and various variant antibodies as determined in Example 3.
  • FIG. 10 depicts the three-dimensional structure of a human IgG Fc region, highlighting residues: Asp270, Lys326, Pro329, Pro331, Lys322 and Glu333.
  • FIG. 11 shows C1 q binding ELISA results obtained for wild type C2B8 and various variant antibodies as determined in Example 3.
  • FIG. 12 shows C1q binding ELISA results obtained for wild type C2B8 and double variants, K326M-E333S and K326A-E333A.
  • FIG. 13 shows CDC of wild type C2B8 and double variants, K326M-E333S and K326A-E333A.
  • FIG. 14 depicts C1q binding ELISA results obtained for C2B8 with a human IgG4 (IgG4), wild type C2B8 (Wt-C2B8), C2B8 with a human IgG2 constant region (IgG2), and variant antibodies as described in Example 3.
  • FIGS. 15A and 15B show binding patterns for parent antibody (E27) to FcγRIIB and FcγRIIIA. FIG. 15A shows the binding pattern for the humanized anti-IgE E27 IgG1 as a monomer (open circles), hexamer (closed squares), and immune complex consisting of multiple hexamers (closed triangles) to a recombinant GST fusion protein of the human FcγRIIB (CD32) receptor α subunit. The hexameric complex (closed squares) was formed by the mixture of equal molar concentrations of E27 (which binds to the Fc region of human IgE) and a human myeloma IgE. The hexamer is a stable 1.1 kD complex consisting of 3 IgG molecules (150 kD each) and 3 IgE molecules (200 kD each). The immune complex (closed triangles) was formed sequentially by first mixing equal molar concentrations of E27 and recombinant anti-VEGF IgE (human IgE with Fab variable domains that bind human VEGF) to form the hexamer. Hexamers were then linked to form an immune complex by the addition of 2× molar concentration of human VEGF, a 44 kD homodimer which has two binding sites for the anti-VEGF IgE per mole of VEGF. FIG. 15B shows the binding pattern to a recombinant GST fusion protein of the human FcγRIIIA (CD16) receptor α subunit.
  • FIG. 16A shows the binding of immune complexes using different antigen-antibody pairs to recombinant GST fusion protein of the FcγRIIA receptor α subunit. FIG. 16B shows the binding of the same antigen-antibody pairs to the GST fusion protein of the FcγRIIIA receptor α subunit. Closed circles represent binding of human IgE:anti-IgE E27 IgG1; open circles represent binding of human VEGF:humanized anti-VEGF IgG1.
  • FIG. 17 summarizes differences in binding selectivity of some alanine variants between the different FcγRs. Binding of alanine variants at residues in the CH2 domain of anti-IgE E27 IgG1 are shown to FcγRIIA, FcγRIIB, and FcγRIIIA. Type 1 abrogates binding to all three receptors: D278A (265 in EU numbering). Type 2 improves binding to FcγRIIA and FcγRIIB, while binding to FcγRIIIA is unaffected: S280A (267 in EU numbering). Type 3 improves binding to FcγRIIA and FcγRIIB, but reduces binding to FcγRIIIA: H281A (268 in EU numbering). Type 4 reduces binding to FcγRIIA and FcγRIIB, while improving binding to FcγRIIIA: S317A (298 in EU numbering). Type 5 improves binding to FcγRIIIA, but does not affect binding to FcγRIIA and FcγRIIB: E352A, K353A (333 and 334 in EU numbering).
  • FIGS. 18A and 18B compare the FcγRIIIA protein/protein assay and CHO GPI-FcγRIIIA cell based assay, respectively. FIG. 18A illustrates binding of selected alanine variants to FcγRIIIA-GST fusion protein. S317A (298 in EU numbering) and S317A/K353A (298 and 334 in EU numbering) bind better than E27 wildtype, while D278A (265 in EU numbering) almost completely abrogates binding. FIG. 18B illustrates that a similar pattern of binding is found on CHO cells expressing a recombinant GPI-linked form of FcγRIIIA.
  • FIGS. 19A and 19B compare the FcγRIIB protein/protein assay and CHO GPI-FcγRIIB cell based assay, respectively. FIG. 19A illustrates binding of selected alanine variants to FcγRIIB-GST fusion protein. H281A (268 in EU numbering) binds better than E27 wildtype while S317A (298 in EU numbering) shows reduced binding. FIG. 19B illustrates that a similar pattern of binding is found on CHO cells expressing a recombinant membrane bound form of FcγRIIB.
  • FIG. 20 shows single alanine substitutions in the CH2 domain of anti-HER2 IgG1 (HERCEPTIN®) that influence FcγRIIIA binding in both the protein-protein and cell-based assays alter the ability to bind to FcγRIIIA on peripheral blood mononuclear cell (PBMC) effector cells. Recombinant humanized anti-HER2 (HERCEPTIN®), which binds to HER2-expressing SK-BR-3 breast tumor cells, was preincubated with 51 Cr-labeled SK-BR-3 cells for 30 minutes (opsonization) at 100 ng/ml (filled circles) and 1.25 ng/ml (filled squares). Keeping the SK-BR-3 tumor target cell concentration constant, the ratio of effector cells was increased from 0 to 100. The spontaneous cytotoxicity in the absence of antibody (hatched squares) was 20% at an effector:target (E:T) ratio of 100:1. A single alanine mutation that did not affect FcγRIIIA binding, variant G31=R309A (292 in EU numbering), did not effect ADCC (filled triangles). A single alanine mutation that only slightly increased binding to FcγRIIIA, variant G30=K307A (290 in EU numbering), also showed slightly improved ADCC (i.e., a 1.1 fold improvement in ADCC activity, calculated as area under the curve) at 1.25 ng/ml at all E:T ratios (filled diamonds) compared to wildtype antibody at 1.25 ng/ml (filled square). A single alanine mutation that decreased binding to FcγRIIIA, variant G34=Q312A (295 in EU numbering), also showed decreased ADCC activity (filled inverted triangles).
  • FIG. 21 illustrates that a single alanine mutation which had the most improved binding to FcγRIIIA, variant G36=S317A (298 in EU numbering), in the protein-protein and cell-based assays also showed the most improvement in ADCC (filled triangles) among the variants compared to wildtype (closed squares) at 1.25 ng/ml. G36 displayed a 1.7 fold improvement in ADCC activity, calculated as area under the curve. Variants G17=E282A (269 in EU numbering) and G18=D283A (270 in EU numbering) both showed reduced binding to FcγRIIIA as well as reduced efficacy in ADCC. The effector cells were PBMCs.
  • FIG. 22A depicts alignments of native sequence IgG Fc regions. Native sequence human IgG Fc region sequences, humIgG1 (non-A and A allotypes) (SEQ ID NOs:3 and 4, respectively), humIgG2 (SEQ ID NO:5), humIgG3 (SEQ ID NO:6) and humIgG4 (SEQ ID NO:7), are shown. The human IgG1 sequence is the non-A allotype, and differences between this sequence and the A allotype (at positions 356 and 358; EU numbering system) are shown below the human IgG1 sequence. Native sequence murine IgG Fc region sequences, murIgG1 (SEQ ID NO:8), murIgG2A (SEQ ID NO:9), murIgG2B (SEQ ID NO:10) and murIgG3 (SEQ ID NO:11), are also shown. FIG. 22B shows percent identity among the Fc region sequences of FIG. 22A.
  • FIG. 23 depicts alignments of native sequence human IgG Fc region sequences, humIgG1 (non-A and A allotypes; SEQ ID NOs:3 and 4, respectively), humIgG2 (SEQ ID NO:5), humIgG3 (SEQ ID NO:6) and humIgG4 (SEQ ID NO:7) with differences between the sequences marked with asterisks.
  • FIG. 24 shows area under curve (AUC) for selected variants compared to anti-HER2 IgG1 (HERCEPTIN®) in a 4 hour ADCC assay. The effector cells were PBMCs (N=5). Variant G36 (S317A; 298 in Eu numbering) with improved binding to FcγRIIIA showed improved ADCC activity; variant G31 (R309A; 292 in Eu numbering) which did not display altered FcγRIIIA binding, also had unaltered ADCC activity; and G14 (D265A; 278 in Eu numbering) which had reduced FcγRIIIA binding, also had reduced ADCC activity.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS I. Definitions
  • Throughout the present specification and claims, the numbering of the residues in an immunoglobulin heavy chain is that of the EU index as in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991), expressly incorporated herein by reference. The “EU index as in Kabat” refers to the residue numbering of the human IgG1 EU antibody.
  • A “parent polypeptide” is a polypeptide comprising an amino acid sequence which lacks one or more of the Fc region modifications disclosed herein and which differs in effector function compared to a polypeptide variant as herein disclosed. The parent polypeptide may comprise a native sequence Fc region or an Fc region with pre-existing amino acid sequence modifications (such as additions, deletions and/or substitutions).
  • The term “Fc region” is used to define a C-terminal region of an immunoglobulin heavy chain, e.g., as shown in FIG. 1. The “Fc region” may be a native sequence Fc region or a variant Fc region. Although the boundaries of the Fc region of an immunoglobulin heavy chain might vary, the human IgG heavy chain Fc region is usually defined to stretch from an amino acid residue at position Cys226, or from Pro230, to the carboxyl-terminus thereof. The Fc region of an immunoglobulin generally comprises two constant domains, CH2 and CH3, as shown, for example, in FIG. 1.
  • The “CH2 domain” of a human IgG Fc region (also referred to as “Cγ2” domain) usually extends from about amino acid 231 to about amino acid 340. The CH2 domain is unique in that it is not closely paired with another domain. Rather, two N-linked branched carbohydrate chains are interposed between the two CH2 domains of an intact native IgG molecule. It has been speculated that the carbohydrate may provide a substitute for the domain-domain pairing and help stabilize the CH2 domain. Burton, Molec. Immunol. 22:161-206 (1985).
  • The “CH3 domain” comprises the stretch of residues C-terminal to a CH2 domain in an Fc region (i.e. from about amino acid residue 341 to about amino acid residue 447 of an IgG)
  • A “functional Fc region” possesses an “effector function” of a native sequence Fc region. Exemplary “effector functions” include C1q binding; complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor; BCR), etc. Such effector functions generally require the Fc region to be combined with a binding domain (e.g. an antibody variable domain) and can be assessed using various assays as herein disclosed, for example.
  • A “native sequence Fc region” comprises an amino acid sequence identical to the amino acid sequence of an Fc region found in nature. Native sequence human Fc regions are shown in FIG. 23 and include a native sequence human IgG1 Fc region (non-A and A allotypes); native sequence human IgG2 Fc region; native sequence human IgG3 Fc region; and native sequence human IgG4 Fc region as well as naturally occurring variants thereof. Native sequence murine Fc regions are shown in FIG. 22A.
  • A “variant Fc region” comprises an amino acid sequence which differs from that of a native sequence Fc region by virtue of at least one “amino acid modification” as herein defined. Preferably, the variant Fc region has at least one amino acid substitution compared to a native sequence Fc region or to the Fc region of a parent polypeptide, e.g. from about one to about ten amino acid substitutions, and preferably from about one to about five amino acid substitutions in a native sequence Fc region or in the Fc region of the parent polypeptide. The variant Fc region herein will preferably possess at least about 80% homology with a native sequence Fc region and/or with an Fc region of a parent polypeptide, and most preferably at least about 90% homology therewith, more preferably at least about 95% homology therewith.
  • “Homology” is defined as the percentage of residues in the amino acid sequence variant that are identical after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology. Methods and computer programs for the alignment are well known in the art. One such computer program is “Align 2”, authored by Genentech, Inc., which was filed with user documentation in the United States Copyright Office, Washington, D.C. 20559, on Dec. 10, 1991.
  • The term “Fc region-containing polypeptide” refers to a polypeptide, such as an antibody or immunoadhesin (see definitions below), which comprises an Fc region.
  • The terms “Fc receptor” or “FcR” are used to describe a receptor that binds to the Fc region of an antibody. The preferred FcR is a native sequence human FcR. Moreover, a preferred FcR is one which binds an IgG antibody (a gamma receptor) and includes receptors of the FcγRI, FcγRII, and FcγRIII subclasses, including allelic variants and alternatively spliced forms of these receptors. FcγRII receptors include FcγRIIA (an “activating receptor”) and FcγRIIB (an “inhibiting receptor”), which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof. Activating receptor FcγRIIA contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain. Inhibiting receptor FcγRIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic domain. (see review M. in Daëron, Annu. Rev. Immunol. 15:203-234 (1997)). FcRs are reviewed in Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991); Capel et al., Immunomethods 4:25-34 (1994); and de Haas et al., J. Lab. Clin. Med. 126:330-41 (1995). Other FcRs, including those to be identified in the future, are encompassed by the term “FcR” herein. The term also includes the neonatal receptor, FcRn, which is responsible for the transfer of maternal IgGs to the fetus (Guyer et al., J. Immunol. 117:587 (1976) and Kim et al., J. Immunol. 24:249 (1994)).
  • “Antibody-dependent cell-mediated cytotoxicity” and “ADCC” refer to a cell-mediated reaction in which nonspecific cytotoxic cells that express FcRs (e.g. Natural Killer (NK) cells, neutrophils, and macrophages) recognize bound antibody on a target cell and subsequently cause lysis of the target cell. The primary cells for mediating ADCC, NK cells, express FcγRIII only, whereas monocytes express FcγRI, FcγRII and FcγRIII. FcR expression on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991).
  • “Human effector cells” are leukocytes which express one or more FcRs and perform effector functions. Preferably, the cells express at least FcγRII and perform ADCC effector function. Examples of human leukocytes which mediate ADCC include peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, cytotoxic T cells and neutrophils; with PBMCs and NK cells being preferred. The effector cells may be isolated from a native source thereof, e.g. from blood or PBMCs as described herein.
  • A polypeptide variant with “altered” FcR binding affinity or ADCC activity is one which has either enhanced or diminished FcR binding activity and/or ADCC activity compared to a parent polypeptide or to a polypeptide comprising a native sequence Fc region. The polypeptide variant which “displays increased binding” to an FcR binds at least one FcR with better affinity than the parent polypeptide. The polypeptide variant which “displays decreased binding” to an FcR, binds at least one FcR with worse affinity than a parent polypeptide. Such variants which display decreased binding to an FcR may possess little or no appreciable binding to an FcR, e.g., 0-20% binding to the FcR compared to a native sequence IgG Fc region, e.g. as determined in the Examples herein.
  • The polypeptide variant which binds an FcR with “better affinity” than a parent polypeptide, is one which binds any one or more of the above identified FcRs with substantially better binding affinity than the parent antibody, when the amounts of polypeptide variant and parent polypeptide in the binding assay are essentially the same. For example, the polypeptide variant with improved FcR binding affinity may display from about 1.15 fold to about 100 fold, e.g. from about 1.2 fold to about 50 fold improvement in FcR binding affinity compared to the parent polypeptide, where FcR binding affinity is determined, for example, as disclosed in the Examples herein.
  • The polypeptide variant which “mediates antibody-dependent cell-mediated cytotoxicity (ADCC) in the presence of human effector cells more effectively” than a parent antibody is one which in vitro or in vivo is substantially more effective at mediating ADCC, when the amounts of polypeptide variant and parent antibody used in the assay are essentially the same. Generally, such variants will be identified using the in vitro ADCC assay as herein disclosed, but other assays or methods for determining ADCC activity, e.g. in an animal model etc, are contemplated. The preferred variant is from about 1.5 fold to about 100 fold, e.g. from about two fold to about fifty fold, more effective at mediating ADCC than the parent, e.g. in the in vitro assay disclosed herein.
  • An “amino acid modification” refers to a change in the amino acid sequence of a predetermined amino acid sequence. Exemplary modifications include an amino acid substitution, insertion and/or deletion. The preferred amino acid modification herein is a substitution.
  • An “amino acid modification at” a specified position, e.g. of the Fc region, refers to the substitution or deletion of the specified residue, or the insertion of at least one amino acid residue adjacent the specified residue. By insertion “adjacent” a specified residue is meant insertion within one to two residues thereof. The insertion may be N-terminal or C-terminal to the specified residue.
  • An “amino acid substitution” refers to the replacement of at least one existing amino acid residue in a predetermined amino acid sequence with another different “replacement” amino acid residue. The replacement residue or residues may be “naturally occurring amino acid residues” (i.e. encoded by the genetic code) and selected from the group consisting of: alanine (Ala); arginine (Arg); asparagine (Asn); aspartic acid (Asp); cysteine (Cys); glutamine (Gln); glutamic acid (Glu); glycine (Gly); histidine (His); isoleucine (Ile): leucine (Leu); lysine (Lys); methionine (Met); phenylalanine (Phe); proline (Pro); serine (Ser); threonine (Thr); tryptophan (Trp); tyrosine (Tyr); and valine (Val). Preferably, the replacement residue is not cysteine. Substitution with one or more non-naturally occurring amino acid residues is also encompassed by the definition of an amino acid substitution herein. A “non-naturally occurring amino acid residue” refers to a residue, other than those naturally occurring amino acid residues listed above, which is able to covalently bind adjacent amino acid residues(s) in a polypeptide chain. Examples of non-naturally occurring amino acid residues include norleucine, ornithine, norvaline, homoserine and other amino acid residue analogues such as those described in Ellman et al. Meth. Enzym. 202:301-336 (1991). To generate such non-naturally occurring amino acid residues, the procedures of Noren et al. Science 244:182 (1989) and Ellman et al., supra, can be used. Briefly, these procedures involve chemically activating a suppressor tRNA with a non-naturally occurring amino acid residue followed by in vitro transcription and translation of the RNA.
  • An “amino acid insertion” refers to the incorporation of at least one amino acid into a predetermined amino acid sequence. While the insertion will usually consist of the insertion of one or two amino acid residues, the present application contemplates larger “peptide insertions”, e.g. insertion of about three to about five or even up to about ten amino acid residues. The inserted residue(s) may be naturally occurring or non-naturally occurring as disclosed above.
  • An “amino acid deletion” refers to the removal of at least one amino acid residue from a predetermined amino acid sequence.
  • “Hinge region” is generally defined as stretching from Glu216 to Pro230 of human IgG1 (Burton, Molec. Immunol. 22:161-206 (1985)). Hinge regions of other IgG isotypes may be aligned with the IgG1 sequence by placing the first and last cysteine residues forming inter-heavy chain S—S bonds in the same positions.
  • The “lower hinge region” of an Fc region is normally defined as the stretch of residues immediately C-terminal to the hinge region, i.e. residues 233 to 239 of the Fc region. Prior to the present invention, FcγR binding was generally attributed to amino acid residues in the lower hinge region of an IgG Fc region.
  • “C1q” is a polypeptide that includes a binding site for the Fc region of an immunoglobulin. C1q together with two serine proteases, C1r and C1s, forms the complex C1, the first component of the complement dependent cytotoxicity (CDC) pathway. Human C1q can be purchased commercially from, e.g. Quidel, San Diego, Calif.
  • The term “binding domain” refers to the region of a polypeptide that binds to another molecule. In the case of an FcR, the binding domain can comprise a portion of a polypeptide chain thereof (e.g. the α chain thereof) which is responsible for binding an Fc region. One useful binding domain is the extracellular domain of an FcR α chain.
  • The term “antibody” is used in the broadest sense and specifically covers monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments so long as they exhibit the desired biological activity.
  • “Antibody fragments”, as defined for the purpose of the present invention, comprise a portion of an intact antibody, generally-including the antigen binding or variable region of the intact antibody or the Fc region of an antibody which retains FcR binding capability. Examples of antibody fragments include linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragments. The antibody fragments preferably retain at least part of the hinge and optionally the CH1 region of an IgG heavy chain. More preferably, the antibody fragments retain the entire constant region of an IgG heavy chain, and include an IgG light chain.
  • The term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations that typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. The modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al., Nature 256:495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Pat. No. 4,816,567). The “monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature 352:624-628 (1991) and Marks et al., J. Mol. Biol. 222:581-597 (1991), for example.
  • The monoclonal antibodies herein specifically include “chimeric” antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat. No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA 81:6851-6855 (1984)).
  • “Humanized” forms of non-human (e.g., murine) antibodies are chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity. In some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992).
  • The term “hypervariable region” when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding. The hypervariable region comprises amino acid residues from a “complementarity determining region” or “CDR” (i.e. residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the light chain variable domain and 31-35 (H1), 50-65 (H2) and 95-102 (H3) in the heavy chain variable domain; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)) and/or those residues from a “hypervariable loop” (i.e. residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the light chain variable domain and 26-32 (H1), 53-55 (H2) and 96-101 (H3) in the heavy chain variable domain; Chothia and Lesk J. Mol. Biol. 196:901-917 (1987)). “Framework” or “FR” residues are those variable domain residues other than the hypervariable region residues as herein defined.
  • As used herein, the term “immunoadhesin” designates antibody-like molecules which combine the “binding domain” of a heterologous “adhesin” protein (e.g. a receptor, ligand or enzyme) with an immunoglobulin constant domain. Structurally, the immunoadhesins comprise a fusion of the adhesin amino acid sequence with the desired binding specificity which is other than the antigen recognition and binding site (antigen combining site) of an antibody (i.e. is “heterologous”) and an immunoglobulin constant domain sequence.
  • The term “ligand binding domain” as used herein refers to any native cell-surface receptor or any region or derivative thereof retaining at least a qualitative ligand binding ability of a corresponding native receptor. In a specific embodiment, the receptor is from a cell-surface polypeptide having an extracellular domain that is homologous to a member of the immunoglobulin supergenefamily. Other receptors, which are not members of the immunoglobulin supergenefamily but are nonetheless specifically covered by this definition, are receptors for cytokines, and in particular receptors with tyrosine kinase activity (receptor tyrosine kinases), members of the hematopoietin and nerve growth factor receptor superfamilies, and cell adhesion molecules, e.g. (E-, L- and P-) selectins.
  • The term “receptor binding domain” is used to designate any native ligand for a receptor, including cell adhesion molecules, or any region or derivative of such native ligand retaining at least a qualitative receptor binding ability of a corresponding native ligand. This definition, among others, specifically includes binding sequences from ligands for the above-mentioned receptors.
  • An “antibody-immunoadhesin chimera” comprises a molecule that combines at least one binding domain of an antibody (as herein defined) with at least one immunoadhesin (as defined in this application). Exemplary antibody-immunoadhesin chimeras are the bispecific CD4-IgG chimeras described in Berg et al., PNAS (USA) 88:4723-4727 (1991) and Chamow et al., J. Immunol. 153:4268 (1994).
  • An “isolated” polypeptide is one that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the polypeptide will be purified (1) to greater than 95% by weight of polypeptide as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated polypeptide includes the polypeptide in situ within recombinant cells since at least one component of the polypeptide's natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step.
  • “Treatment” refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with the disorder as well as those in which the disorder is to be prevented.
  • A “disorder” is any condition that would benefit from treatment with the polypeptide variant. This includes chronic and acute disorders or diseases including those pathological conditions which predispose the mammal to the disorder in question. In one embodiment, the disorder is cancer.
  • The terms “cancer” and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia. More particular examples of such cancers include squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma and various types of head and neck cancer.
  • A “HER2-expressing cancer” is one comprising cells which have HER2 receptor protein (Semba et al., PNAS (USA) 82:6497-6501 (1985) and Yamamoto et al. Nature 319:230-234 (1986) (Genebank accession number X03363)) present at their cell surface, such that an anti-HER2 antibody is able to bind to the cancer.
  • The word “label” when used herein refers to a detectable compound or composition which is conjugated directly or indirectly to the polypeptide. The label may be itself be detectable (e.g., radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable.
  • An “isolated” nucleic acid molecule is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the polypeptide nucleic acid. An isolated nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated nucleic acid molecules therefore are distinguished from the nucleic acid molecule as it exists in natural cells. However, an isolated nucleic acid molecule includes a nucleic acid molecule contained in cells that ordinarily express the polypeptide where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.
  • The expression “control sequences” refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.
  • Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
  • As used herein, the expressions “cell,” “cell line,” and “cell culture” are used interchangeably and all such designations include progeny. Thus, the words “transformants” and “transformed cells” include the primary subject cell and cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Mutant progeny that have the same function or biological activity as screened for in the originally transformed cell are included. Where distinct designations are intended, it will be clear from the context.
  • The term “molecular complex” when used herein refers to the relatively stable structure which forms when two or more heterologous molecules (e.g. polypeptides) bind (preferably noncovalently) to one another. The preferred molecular complex herein is an immune complex.
  • “Immune complex” refers to the relatively stable structure which forms when at least one target molecule and at least one heterologous Fc region-containing polypeptide bind to one another forming a larger molecular weight complex. Examples of immune complexes are antigen-antibody aggregates and target molecule-immunoadhesin aggregates. The term “immune complex” as used herein, unless indicated otherwise, refers to an ex vivo complex (i.e. other than the form or setting in which it may be found in nature). However, the immune complex may be administered to a mammal, e.g. to evaluate clearance of the immune complex in the mammal.
  • The term “target molecule” refers to a molecule, usually a polypeptide, which is capable of being bound by a heterologous molecule and has one or more binding sites for the heterologous molecule. The term “binding site” refers to a region of a molecule to which another molecule can bind. The “first target molecule” herein comprises at least two distinct binding sites (for example, two to five separate binding sites) for an analyte (e.g. an Fc region-containing polypeptide) such that at least two analyte molecules can bind to the first target molecule. In the preferred embodiment of the invention, the two or more binding sites are identical (e.g. having the same amino acid sequence, where the target molecule is a polypeptide). In Example 1 below, the first target molecule was IgE and had two separate binding sites in the Fc region thereof to which the Fc region-containing polypeptide (an anti-IgE antibody, E27) could bind. Other first target molecules include dimers of substantially identical monomers (e.g. neurotrophins, IL8 and VEGF) or are polypeptides comprising two or more substantially identical polypeptide chains (e.g. antibodies or immunoadhesins). The “second target molecule” comprises at least two distinct binding sites (for example, two to five separate binding sites) for the first target molecule such that at least two first target molecules can bind to the second target molecule. Preferably, the two or more binding sites are identical (e.g. having the same amino acid sequence, where the target molecule is a polypeptide). In Example 2, the second target molecule was VEGF, which has a pair of distinct binding sites to which the variable domain of the IgE antibody could bind. Other second target molecules are contemplated, e.g. other dimers of substantially identical monomers (e.g. neurotrophins or IL8) or polypeptides comprising two or more substantially identical domains (e.g. antibodies or immunoadhesins).
  • An “analyte” is a substance that is to be analyzed. The preferred analyte is an Fc region-containing polypeptide that is to be analyzed for its ability to bind to an Fc receptor.
  • A “receptor” is a polypeptide capable of binding at least one ligand. The preferred receptor is a cell-surface receptor having an extracellular ligand-binding domain and, optionally, other domains (e.g. transmembrane domain, intracellular domain and/or membrane anchor). The receptor to be evaluated in the assay described herein may be an intact receptor or a fragment or derivative thereof (e.g. a fusion protein comprising the binding domain of the receptor fused to one or more heterologous polypeptides). Moreover, the receptor to be evaluated for its binding properties may be present in a cell or isolated and optionally coated on an assay plate or some other solid phase.
  • The phrase “low affinity receptor” denotes a receptor that has a weak binding affinity for a ligand of interest, e.g. having a binding constant of about 50 nM or worse affinity. Exemplary low affinity receptors include FcγRII and FcγRIII.
  • II. Modes for Carrying Out the Invention
  • The invention herein relates to a method for making a polypeptide variant. The “parent”, “starting” or “nonvariant” polypeptide is prepared using techniques available in the art for generating polypeptides comprising an Fc region. In the preferred embodiment of the invention, the parent polypeptide is an antibody and exemplary methods for generating antibodies are described in more detail in the following sections. The parent polypeptide may, however, be any other polypeptide comprising an Fc region, e.g. an immunoadhesin. Methods for making immunoadhesins are elaborated in more detail hereinbelow.
  • In an alternative embodiment, a variant Fc region may be generated according to the methods herein disclosed and this “variant Fc region” can be fused to a heterologous polypeptide of choice, such as an antibody variable domain or binding domain of a receptor or ligand.
  • The parent polypeptide comprises an Fc region. Generally the Fc region of the parent polypeptide will comprise a native sequence Fc region, and preferably a human native sequence Fc region. However, the Fc region of the parent polypeptide may have one or more pre-existing amino acid sequence alterations or modifications from a native sequence Fc region. For example, the C1q binding activity of the Fc region may have been previously altered (other types of Fc region modifications are described in more detail below). In a further embodiment the parent polypeptide Fc region is “conceptual” and, while it does not physically exist, the antibody engineer may decide upon a desired variant Fc region amino acid sequence and generate a polypeptide comprising that sequence or a DNA encoding the desired variant Fc region amino acid sequence.
  • In the preferred embodiment of the invention, however, a nucleic acid encoding an Fc region of a parent polypeptide is available and this nucleic acid sequence is altered to generate a variant nucleic acid sequence encoding the Fc region variant.
  • DNA encoding an amino acid sequence variant of the starting polypeptide is prepared by a variety of methods known in the art. These methods include, but are not limited to, preparation by site-directed (or oligonucleotide-mediated) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared DNA encoding the polypeptide
  • Site-directed mutagenesis is a preferred method for preparing substitution variants. This technique is well known in the art (see, e.g., Carter et al Nucleic Acids Res. 13:4431-4443 (1985) and Kunkel et al., Proc. Natl. Acad. Sci. USA 82:488 (1985)). Briefly, in carrying out site-directed mutagenesis of DNA, the starting DNA is altered by first hybridizing an oligonucleotide encoding the desired mutation to a single strand of such starting DNA. After hybridization, a DNA polymerase is used to synthesize an entire second strand, using the hybridized oligonucleotide as a primer, and using the single strand of the starting DNA as a template. Thus, the oligonucleotide encoding the desired mutation is incorporated in the resulting double-stranded DNA.
  • PCR mutagenesis is also suitable for making amino acid sequence variants of the starting polypeptide. See Higuchi, in PCR Protocols, pp. 177-183 (Academic Press, 1990); and Vallette et al., Nuc. Acids Res. 17:723-733 (1989). Briefly, when small amounts of template DNA are used as starting material in a PCR, primers that differ slightly in sequence from the corresponding region in a template DNA can be used to generate relatively large quantities of a specific DNA fragment that differs from the template sequence only at the positions where the primers differ from the template.
  • Another method for preparing variants, cassette mutagenesis, is based on the technique described by Wells et al., Gene 34:315-323 (1985). The starting material is the plasmid (or other vector) comprising the starting polypeptide DNA to be mutated. The codon(s) in the starting DNA to be mutated are identified. There must be a unique restriction endonuclease site on each side of the identified mutation site(s). If no such restriction sites exist, they may be generated using the above-described oligonucleotide-mediated mutagenesis method to introduce them at appropriate locations in the starting polypeptide DNA. The plasmid DNA is cut at these sites to linearize it. A double-stranded oligonucleotide encoding the sequence of the DNA between the restriction sites but containing the desired mutation(s) is synthesized using standard procedures, wherein the two strands of the oligonucleotide are synthesized separately and then hybridized together using standard techniques. This double-stranded oligonucleotide is referred to as the cassette. This cassette is designed to have 5′ and 3′ ends that are compatible with the ends of the linearized plasmid, such that it can be directly ligated to the plasmid. This plasmid now contains the mutated DNA sequence.
  • Alternatively, or additionally, the desired amino acid sequence encoding a polypeptide variant can be determined, and a nucleic acid sequence encoding such amino acid sequence variant can be generated synthetically.
  • The amino acid sequence of the parent polypeptide is modified in order to generate a variant Fc region with altered Fc receptor binding affinity or activity in vitro and/or in vivo and/or altered antibody-dependent cell-mediated cytotoxicity (ADCC) activity in vitro and/or in vivo.
  • Generally, the modification entails one or more amino acid substitutions. In one embodiment, the replacement residue does not correspond to a residue present in the same position in any of the native sequence Fc regions in FIG. 22A. For example, according to this embodiment of the invention, Pro331 of a human IgG3 or IgG1 Fc region is replaced with a residue other than Ser (the corresponding aligned residue found in native sequence human IgG4). In one embodiment, the residue in the parent polypeptide which is substituted with a replacement residue is not an alanine and/or is not residue Ala339 of an Fc region. In the case of an amino acid substitution, preferably the residue in the parent polypeptide is replaced with an alanine residue. However, the present invention contemplates replacement of the residue of the parent polypeptide with any other amino acid residue. The substitution may, for example, be a “conservative substitution”. Such conservative substitutions are shown in Table 1 under the heading of “preferred substitution”. More substantial changes may be achieved by making one or more “exemplary substitutions” which are not the preferred substitution in Table 1.
  • TABLE 1
    Exemplary Preferred
    Original Residue Substitutions Substitution
    Ala (A) val; leu; ile val
    Arg (R) lys; gln; asn lys
    Asn (N) gln; his; lys; arg gln
    Asp (D) glu glu
    Cys (C) ser ser
    Gln (Q) asn asn
    Glu (E) asp asp
    Gly (G) pro; ala ala
    His (H) asn; gln; lys; arg arg
    Ile (I) leu; val; met; ala; leu
    phe; norleucine
    Leu (L) norleucine; ile; val; ile
    met; ala; phe
    Lys (K) arg; gln; asn arg
    Met (M) leu; phe; ile leu
    Phe (F) leu; val; ile; ala; tyr leu
    Pro (P) ala ala
    Ser (S) thr thr
    Thr (T) ser ser
    Trp (W) tyr; phe tyr
    Tyr (Y) trp; phe; thr; ser phe
    Val (V) ile; leu; met; phe; leu
    ala; norleucine
  • Substantial modifications in the biological properties of the Fc region may be accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties:
  • (1) hydrophobic: norleucine, met, ala, val, leu, ile;
  • (2) neutral hydrophilic: cys, ser, thr;
  • (3) acidic: asp, glu;
  • (4) basic: asn, gin, his, lys, arg;
  • (5) residues that influence chain orientation: gly, pro; and
  • (6) aromatic: trp, tyr, phe.
  • Non-conservative substitutions will entail exchanging a member of one of these classes for a member of another class. Conservative and non-conservative amino acid substitutions are exemplified in Table 8 hereinbelow.
  • As is demonstrated in Example 4 herein, one can engineer an Fc region variant with altered binding affinity for one or more FcRs. As was shown in that Example, different classes of Fc region variants can be made e.g., as summarized in the following table. Where the variant Fc region has more than one amino acid substitution, generally, but not necessarily, amino acid substitutions in the same class are combined to achieve the desired result.
  • TABLE 2
    CLASSES OF Fc REGION VARIANTS
    Position of
    Class FcR binding property Fc region substitution(s)
    1A reduced binding to all FcγR 238, 265, 269, 270, 297*,
    327, 329
    1B reduced binding to both FcγRII and 239, 294, 295, 303, 338, 373,
    FcγRIII 376, 416, 435
    2 improved binding to both FcγRII 256, 290, 312, 326, 330,
    and FcγRIII 339#, 378, 430
    3 improved binding to FcγRII and no 255, 258, 267, 276, 280, 283,
    effect on FcγRIII binding 285, 286, 305, 307, 309, 315,
    320, 331, 337, 398
    4 improved binding to FcγRII and 268, 272, 301, 322, 340
    reduced binding to FcγRIII
    5 reduced binding to FcγRII and no 292, 324, 335, 414, 419,
    effect on FcγRIII binding 438, 439
    6 reduced binding to FcγRII and 298, 333
    improved binding to FcγRIII
    7 no effect on FcγRII binding and 248, 249, 252, 254, 278, 289,
    reduced binding to FcγRIII 293, 296, 338, 382,
    388, 389, 434, 437
    8 no effect on FcγRII binding and 334, 360
    improved binding to FcγRIII
    *deglycosylated version
    #Preferably combined with other Fc modification(s), (e.g. as disclosed herein)
  • Aside from amino acid substitutions, the present invention contemplates other modifications of the parent Fc region amino acid sequence in order to generate an Fc region variant with altered effector function.
  • One may, for example, delete one or more amino acid residues of the Fc region in order to reduce binding to an FcR. Generally, one will delete one or more of the Fc region residues identified herein as effecting FcR binding (see Example 4 below) in order to generate such an Fc region variant. Generally, no more than one to about ten Fc region residues will be deleted according to this embodiment of the invention. The Fc region herein comprising one or more amino acid deletions will preferably retain at least about 80%, and preferably at least about 90%, and most preferably at least about 95%, of the parent Fc region or of a native sequence human Fc region.
  • One may also make amino acid insertion Fc region variants, which variants have altered effector function. For example, one may introduce at least one amino acid residue (e.g. one to two amino acid residues and generally no more than ten residues) adjacent to one or more of the Fc region positions identified herein as impacting FcR binding. By “adjacent” is meant within one to two amino acid residues of a Fc region residue identified herein. Such Fc region variants may display enhanced or diminished FcR binding and/or ADCC activity. In order to generate such insertion variants, one may evaluate a co-crystal structure of a polypeptide comprising a binding region of an FcR (e.g. the extracellular domain of the FcR of interest) and the Fc region into which the amino acid residue(s) are to be inserted (see, for example, Deisenhofer, Biochemistry 20(9):2361-2370 (1981); and Burmeister et al., Nature 372:379-383, (1994)) in order to rationally design an Fc region variant with, e.g., improved FcR binding ability. Such insertion(s) will generally be made in an Fc region loop, but not in the secondary structure (i.e. in a β-strand) of the Fc region.
  • By introducing the appropriate amino acid sequence modifications in a parent Fc region, one can generate a variant Fc region which (a) mediates antibody-dependent cell-mediated cytotoxicity (ADCC) in the presence of human effector cells more effectively and/or (b) binds an Fc gamma receptor (FcγR) with better affinity than the parent polypeptide. Such Fc region variants will generally comprise at least one amino acid modification in the Fc region. Combining amino acid modifications is thought to be particularly desirable. For example, the variant Fc region may include two, three, four, five, etc substitutions therein, e.g. of the specific Fc region positions identified herein.
  • Preferably, the parent polypeptide Fc region is a human Fc region, e.g. a native sequence human Fc region human IgG1 (A and non-A allotypes), IgG2, IgG3 or IgG4 Fc region. Such sequences are shown in FIG. 23.
  • To generate an Fc region with improved ADCC activity, the parent polypeptide preferably has pre-existing ADCC activity, e.g., it comprises a human IgG1 or human IgG3 Fc region. In one embodiment, the variant with improved ADCC mediates ADCC substantially more effectively than an antibody with a native sequence IgG1 or IgG3 Fc region and the antigen-binding region of the variant. Preferably, the variant comprises, or consists essentially of, substitutions of two or three of the residues at positions 298, 333 and 334 of the Fc region. Most preferably, residues at positions 298, 333 and 334 are substituted, (e.g. with alanine residues). Moreover, in order to generate the Fc region variant with improved ADCC activity, one will generally engineer an Fc region variant with improved binding affinity for FcγRIII, which is thought to be an important FcR for mediating ADCC. For example, one may introduce an amino acid modification (e.g. a substitution) into the parent Fc region at any one or more of amino acid positions 256, 290, 298, 312, 326, 330, 333, 334, 360, 378 or 430 to generate such a variant. The variant with improved binding affinity for FcγRIII may further have reduced binding affinity for FcγRII, especially reduced affinity for the inhibiting FcγRIIB receptor.
  • The amino acid modification(s) are preferably introduced into the CH2 domain of a Fc region, since the experiments herein indicate that the CH2 domain is important for FcR binding activity. Moreover, unlike the teachings of the above-cited art, the instant application contemplates the introduction of a modification into a part of the Fc region other than in the lower hinge region thereof.
  • Useful amino acid positions for modification in order to generate a variant IgG Fc region with altered Fc gamma receptor (FcγR) binding affinity or activity include any one or more of amino acid positions 238, 239, 248, 249, 252, 254, 255, 256, 258, 265, 267, 268, 269, 270, 272, 276, 278, 280, 283, 285, 286, 289, 290, 292, 293, 294, 295, 296, 298, 301, 303, 305, 307, 309, 312, 315, 320, 322, 324, 326, 327, 329, 330, 331, 333, 334, 335, 337, 338, 340, 360, 373, 376, 378, 382, 388, 389, 398, 414, 416, 419, 430, 434, 435, 437, 438 or 439 of the Fc region. Preferably, the parent Fc region used as the template to generate such variants comprises a human IgG Fc region. Where residue 331 is substituted, the parent Fc region is preferably not human native sequence IgG3, or the variant Fc region comprising a substitution at position 331 preferably displays increased FcR binding, e.g. to FcγRII.
  • To generate an Fc region variant with reduced binding to the FcγR one may introduce an amino acid modification at any one or more of amino acid positions 238, 239, 248, 249, 252, 254, 265, 268, 269, 270, 272, 278, 289, 292, 293, 294, 295, 296, 298, 301, 303, 322, 324, 327, 329, 333, 335, 338, 340, 373, 376, 382, 388, 389, 414, 416, 419, 434, 435, 437, 438 or 439 of the Fc region.
  • Variants which display reduced binding to FcγRI, include those comprising an Fc region amino acid modification at any one or more of amino acid positions 238, 265, 269, 270, 327 or 329.
  • Variants which display reduced binding to FcγRII include those comprising an Fc region amino acid modification at any one or more of amino acid positions 238, 265, 269, 270, 292, 294, 295, 298, 303, 324, 327, 329, 333, 335, 338, 373, 376, 414, 416, 419, 435, 438 or 439.
  • Fc region variants which display reduced binding to FcγRIII include those comprising an Fc region amino acid modification at any one or more of amino acid positions 238, 239, 248, 249, 252, 254, 265, 268, 269, 270, 272, 278, 289, 293, 294, 295, 296, 301, 303, 322, 327, 329, 338, 340, 373, 376, 382, 388, 389, 416, 434, 435 or 437.
  • Variants with improved binding to one or more FcγRs may also be made. Such Fc region variants may comprise an amino acid modification at any one or more of amino acid positions 255, 256, 258, 267, 268, 272, 276, 280, 283, 285, 286, 290, 298, 301, 305, 307, 309, 312, 315, 320, 322, 326, 330, 331, 333, 334, 337, 340, 360, 378, 398 or 430 of the Fc region.
  • For example, the variant with improved FcγR binding activity may display increased binding to FcγRIII, and optionally may further display decreased binding to FcγRII; e.g. the variant may comprise an amino acid modification at position 298 and/or 333 of an Fc region.
  • Variants with increased binding to FcγRII include those comprising an amino acid modification at any one or more of amino acid positions 255, 256, 258, 267, 268, 272, 276, 280, 283, 285, 286, 290, 301, 305, 307, 309, 312, 315, 320, 322, 326, 330, 331, 337, 340, 378, 398 or 430 of an Fc region. Such variants may further display decreased binding to FcγRIII. For example, they may include an Fc region amino acid modification at any one or more of amino acid positions 268, 272, 298, 301, 322 or 340.
  • While it is preferred to alter binding to a FcγR, Fc region variants with altered binding affinity for the neonatal receptor (FcRn) are also contemplated herein. Fc region variants with improved affinity for FcRn are anticipated to have longer serum half-lives, and such molecules will have useful applications in methods of treating mammals where long half-life of the administered polypeptide is desired, e.g., to treat a chronic disease or disorder. Fc region variants with decreased FcRn binding affinity, on the contrary, are expected to have shorter half-lives, and such molecules may, for example, be administered to a mammal where a shortened circulation time may be advantageous, e.g. for in vivo diagnostic imaging or for polypeptides which have toxic side effects when left circulating in the blood stream for extended periods, etc. Fc region variants with decreased FcRn binding affinity are anticipated to be less likely to cross the placenta, and thus may be utilized in the treatment of diseases or disorders in pregnant women.
  • Fc region variants with altered binding affinity for FcRn include those comprising an Fc region amino acid modification at any one or more of amino acid positions 238, 252, 253, 254, 255, 256, 265, 272, 286, 288, 303, 305, 307, 309, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 386, 388, 400, 413, 415, 424, 433, 434, 435, 436, 439 or 447. Those which display reduced binding to FcRn will generally comprise an Fc region amino acid modification at any one or more of amino acid positions 252, 253, 254, 255, 288, 309, 386, 388, 400, 415, 433, 435, 436, 439 or 447; and those with increased binding to FcRn will usually comprise an Fc region amino acid modification at any one or more of amino acid positions 238, 256, 265, 272, 286, 303, 305, 307, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 413, 424 or 434.
  • The polypeptide variant(s) prepared as described above may be subjected to further modifications, oftentimes depending on the intended use of the polypeptide. Such modifications may involve further alteration of the amino acid sequence (substitution, insertion and/or deletion of amino acid residues), fusion to heterologous polypeptide(s) and/or covalent modifications. Such “further modifications” may be made prior to, simultaneously with, or following, the amino acid modification(s) disclosed above which result in an alteration of Fc receptor binding and/or ADCC activity. In one embodiment, one may combine the Fc region modification herein with Fc region substitutions disclosed in the references cited in the “Related Art” section of this application.
  • Alternatively or additionally, it may be useful to combine the above amino acid modifications with one or more further amino acid modifications that alter C1q binding and/or complement dependent cytoxicity function of the Fc region.
  • The starting polypeptide of particular interest herein is usually one that binds to C1q and displays complement dependent cytotoxicity (CDC). The further amino acid substitutions described herein will generally serve to alter the ability of the starting polypeptide to bind to C1q and/or modify its complement dependent cytotoxicity function, e.g. to reduce and preferably abolish these effector functions. However, polypeptides comprising substitutions at one or more of the described positions with improved C1q binding and/or complement dependent cytotoxicity (CDC) function are contemplated herein. For example, the starting polypeptide may be unable to bind C1q and/or mediate CDC and may be modified according to the teachings herein such that it acquires these further effector functions. Moreover, polypeptides with pre-existing C1q binding activity, optionally further having the ability to mediate CDC may be modified such that one or both of these activities are enhanced.
  • To generate an Fc region with altered C1q binding and/or complement dependent cytotoxicity (CDC) function, the amino acid positions to be modified are generally selected from heavy chain positions 270, 322, 326, 327, 329, 331, 333, and 334, where the numbering of the residues in an IgG heavy chain is that of the EU index as in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991). In one embodiment, only one of the eight above-identified positions is altered in order to generate the polypeptide variant region with altered C1q binding and/or complement dependent cytotoxicity (CDC) function. Preferably only residue 270, 329 or 322 is altered if this is the case. Alternatively, two or more of the above-identified positions are modified. If substitutions are to be combined, generally substitutions which enhance human C1q binding (e.g. at residue positions 326, 327, 333 and 334) or those which diminish human C1q binding (e.g., at residue positions 270, 322, 329 and 331) are combined. In the latter embodiment, all four positions (i.e., 270, 322, 329 and 331) may be substituted. Preferably, further substitutions at two, three or all of positions 326, 327, 333 or 334 are combined, optionally with other Fc region substitutions, to generate a polypeptide with improved human C1q binding and preferably improved CDC activity in vitro or in vivo.
  • Proline is conserved at position 329 in human IgG's. This residue is preferably replaced with alanine, however substitution with any other amino acid is contemplated, e.g., serine, threonine, asparagine, glycine or valine.
  • Proline is conserved at position 331 in human IgG1, IgG2 and IgG3, but not IgG4 (which has a serine residue at position 331). Residue 331 is preferably replaced by alanine or another amino acid, e.g. serine (for IgG regions other than IgG4), glycine or valine.
  • Lysine 322 is conserved in human IgGs, and this residue is preferably replaced by an alanine residue, but substitution with any other amino acid residue is contemplated, e.g. serine, threonine, glycine or valine.
  • D270 is conserved in human IgGs, and this residue may be replaced by another amino acid residue, e.g. alanine, serine, threonine, glycine, valine, or lysine.
  • K326 is also conserved in human IgGs. This residue may be substituted with another residue including, but not limited to, valine, glutamic acid, alanine, glycine, aspartic acid, methionine or tryptophan, with tryptophan being preferred.
  • Likewise, E333 is also conserved in human IgGs. E333 is preferably replaced by an amino acid residue with a smaller side chain volume, such as valine, glycine, alanine or serine, with serine being preferred.
  • K334 is conserved in human IgGs and may be substituted with another residue such as alanine or other residue.
  • In human IgG1 and IgG3, residue 327 is an alanine. In order to generate a variant with improved C1q binding, this alanine may be substituted with another residue such as glycine. In IgG2 and IgG4, residue 327 is a glycine and this may be replaced by alanine (or another residue) to diminish C1q binding.
  • As disclosed above, one can design an Fc region with altered effector function, e.g., by modifying C1q binding and/or FcR binding and thereby changing CDC activity and/or ADCC activity. For example, one can generate a variant Fc region with improved C1q binding and improved FcγRIII binding; e.g. having both improved ADCC activity and improved CDC activity. Alternatively, where one desires that effector function be reduced or ablated, one may engineer a variant Fc region with reduced CDC activity and/or reduced ADCC activity. In other embodiments, one may increase only one of these activities, and optionally also reduce the other activity, e.g. to generate an Fc region variant with improved ADCC activity, but reduced CDC activity and vice versa.
  • With respect to further amino acid sequence alterations, any cysteine residue not involved in maintaining the proper conformation of the polypeptide variant also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant cross linking.
  • Another type of amino acid substitution serves to alter the glycosylation pattern of the polypeptide. This may be achieved by deleting one or more carbohydrate moieties found in the polypeptide, and/or adding one or more glycosylation sites that are not present in the polypeptide. Glycosylation of polypeptides is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used. Addition of glycosylation sites to the polypeptide is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original polypeptide (for O-linked glycosylation sites). An exemplary glycosylation variant has an amino acid substitution of residue Asn 297 of the heavy chain.
  • Moreover, the class, subclass or allotype of the Fc region may be altered by one or more further amino acid substitutions to generate an Fc region with an amino acid sequence more homologous to a different class, subclass or allotype as desired. For example, a murine Fc region may be altered to generate an amino acid sequence more homologous to a human Fc region; a human non-A allotype IgG1 Fc region may be modified to achieve a human A allotype IgG1 Fc region etc. In one embodiment, the amino modification(s) herein which alter FcR binding and/or ADCC activity are made in the CH2 domain of the Fc region and the CH3 domain is deleted or replaced with another dimerization domain. Preferably, however, the CH3 domain is retained (aside from amino acid modifications therein which alter effector function as herein disclosed).
  • The polypeptide variant may be subjected to one or more assays to evaluate any change in biological activity compared to the starting polypeptide.
  • Preferably the polypeptide variant essentially retains the ability to bind antigen compared to the nonvariant polypeptide, i.e. the binding capability is no worse than about 20 fold, e.g. no worse than about 5 fold of that of the nonvariant polypeptide. The binding capability of the polypeptide variant may be determined using techniques such as fluorescence activated cell sorting (FACS) analysis or radioimmunoprecipitation (RIA), for example.
  • The ability of the polypeptide variant to bind an FcR may be evaluated. Where the FcR is a high affinity Fc receptor, such as FcγRI, FcRn or FcγRIIIA-V158, binding can be measured by titrating monomeric polypeptide variant and measuring bound polypeptide variant using an antibody which specifically binds to the polypeptide variant in a standard ELISA format (see Example 2 below). Another FcR binding assay for low affinity FcRs is described in Examples 1 and 4.
  • To assess ADCC activity of the polypeptide variant, an in vitro ADCC assay, such as that described in Example 4 may be performed using varying effector:target ratios. Useful “effector cells” for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the polypeptide variant may be assessed in vivo, e.g., in a animal model such as that disclosed in Clynes et al. PNAS (USA) 95:652-656 (1998).
  • The ability of the variant to bind C1q and mediate complement dependent cytotoxicity (CDC) may be assessed.
  • To determine C1q binding, a C1q binding ELISA may be performed. Briefly, assay plates may be coated overnight at 4° C. with polypeptide variant or starting polypeptide (control) in coating buffer. The plates may then be washed and blocked. Following washing, an aliquot of human C1q may be added to each well and incubated for 2 hrs at room temperature. Following a further wash, 100 μl of a sheep anti-complement C1q peroxidase conjugated antibody may be added to each well and incubated for 1 hour at room temperature. The plate may again be washed with wash buffer and 100 μl of substrate buffer containing OPD (O-phenylenediamine dihydrochloride (Sigma)) may be added to each well. The oxidation reaction, observed by the appearance of a yellow color, may be allowed to proceed for 30 minutes and stopped by the addition of 100 μl of 4.5 NH2SO4. The absorbance may then read at (492-405) nm.
  • An exemplary polypeptide variant is one that displays a “significant reduction in C1q binding” in this assay. This means that about 100 μg/ml of the polypeptide variant displays about 50 fold or more reduction in C1q binding compared to 100 μg/ml of a control antibody having a nonmutated IgG1 Fc region. In the most preferred embodiment, the polypeptide variant “does not bind C1q”, i.e. 100 μg/ml of the polypeptide variant displays about 100 fold or more reduction in C1q binding compared to 100 μg/ml of the control antibody.
  • Another exemplary variant is one which “has a better binding affinity for human C1q than the parent polypeptide”. Such a molecule may display, for example, about two-fold or more, and preferably about five-fold or more, improvement in human C1q binding compared to the parent polypeptide (e.g. at the IC50 values for these two molecules). For example, human C1q binding may be about two-fold to about 500-fold, and preferably from about two-fold or from about five-fold to about 1000-fold improved compared to the parent polypeptide.
  • To assess complement activation, a complement dependent cytotoxicity (CDC) assay may be performed, e.g. as described in Gazzano-Santoro et al., J. Immunol. Methods 202:163 (1997). Briefly, various concentrations of the polypeptide variant and human complement may be diluted with buffer. Cells which express the antigen to which the polypeptide variant binds may be diluted to a density of ˜1×106 cells/ml. Mixtures of polypeptide variant, diluted human complement and cells expressing the antigen may be added to a flat bottom tissue culture 96 well plate and allowed to incubate for 2 hrs at 37° C. and 5% CO2 to facilitate complement mediated cell lysis. 50 μl of alamar blue (Accumed International) may then be added to each well and incubated overnight at 37° C. The absorbance is measured using a 96-well fluorometer with excitation at 530 nm and emission at 590 nm. The results may be expressed in relative fluorescence units (RFU). The sample concentrations may be computed from a standard curve and the percent activity as compared to nonvariant polypeptide is reported for the polypeptide variant of interest.
  • Yet another exemplary variant “does not activate complement”. For example, 0.6 μg/ml of the polypeptide variant displays about 0-10% CDC activity in this assay compared to a 0.6 μg/ml of a control antibody having a nonmutated IgG1 Fc region. Preferably the variant does not appear to have any CDC activity in the above CDC assay.
  • The invention also pertains to a polypeptide variant with enhanced CDC compared to a parent polypeptide, e.g., displaying about two-fold to about 100-fold improvement in CDC activity in vitro or in vivo (e.g. at the IC50 values for each molecule being compared).
  • A. Receptor Binding Assay and Immune Complex
  • A receptor binding assay has been developed herein which is particularly useful for determining binding of an analyte of interest to a receptor where the affinity of the analyte for the receptor is relatively weak, e.g. in the micromolar range as is the case for FcγRIIA, FcγRIIB, FcγRIIIA and FcγRIIIB. The method involves the formation of a molecular complex that has an improved avidity for the receptor of interest compared to the noncomplexed analyte. The preferred molecular complex is an immune complex comprising: (a) an Fc region-containing polypeptide (such as an antibody or an immunoadhesin); (b) a first target molecule which comprises at least two binding sites for the Fc region-containing polypeptide; and (c) a second target molecule which comprises at least two binding sites for the first target molecule.
  • In Example 1 below, the Fc region-containing polypeptide is an anti-IgE antibody, such as the E27 antibody (FIGS. 4A-4B). E27, when mixed with human IgE at an 1:1 molar ratio, forms a stable hexamer consisting of three E27 molecules and three IgE molecules. In Example 1 below, the “first target molecule” is a chimeric form of IgE in which the Fab portion of an anti-VEGF antibody is fused to the human IgE Fc portion and the “second target molecule” is the antigen to which the Fab binds (i.e. VEGF). Each molecule of IgE binds two molecules of VEGF. VEGF also binds two molecules of IgE per molecule of VEGF. When recombinant human VEGF was added at a 2:1 molar ratio to IgE:E27 hexamers, the hexamers were linked into larger molecular weight complexes via the IgE:VEGF interaction (FIG. 5). The Fc region of the anti-IgE antibody of the resultant immune complex binds to FcR with higher avidity than either uncomplexed anti-IgE or anti-IgE:IgE hexamers.
  • Other forms of molecular complexes for use in the receptor assay are contemplated. Examples comprising only an Fc region-containing polypeptide:first target molecule combination include an immunoadhesin:ligand combination such as VEGF receptor (KDR)-immunoadhesin:VEGF and a full-length bispecific antibody (bsAb):first target molecule. A further example of an Fc region-containing polypeptide:first target molecule:second target molecule combination include a nonblocking antibody:soluble receptor:ligand combination such as anti-Trk antibody:soluble Trk receptor:neurotrophin (Urfer et al. J. Biol. Chem. 273(10):5829-5840 (1998)).
  • Aside from use in a receptor binding assay, the immune complexes described above have further uses including evaluation of Fc region-containing polypeptide function and immune complex clearance in vivo. Hence, the immune complex may be administered to a mammal (e.g. in a pre-clinical animal study) and evaluated for its half-life etc.
  • To determine receptor binding, a polypeptide comprising at least the binding domain of the receptor of interest (e.g. the extracellular domain of an α subunit of an FcR) may be coated on solid phase, such as an assay plate. The binding domain of the receptor alone or a receptor-fusion protein may be coated on the plate using standard procedures. Examples of receptor-fusion proteins include receptor-glutathione S-transferase (GST) fusion protein, receptor-chitin binding domain fusion protein, receptor-hexaHis tag fusion protein (coated on glutathione, chitin, and nickel coated plates, respectively). Alternatively, a capture molecule may be coated on the assay plate and used to bind the receptor-fusion protein via the non-receptor portion of the fusion protein. Examples include anti-hexaHis F(ab′)2 coated on the assay plate used to capture receptor-hexaHis tail fusion or anti-GST antibody coated on the assay plate used to capture a receptor-GST fusion. In other embodiments, binding to cells expressing at least the binding domain of the receptor may be evaluated. The cells may be naturally occurring hematopoietic cells that express the FcR of interest or may be transformed with nucleic acid encoding the FcR or a binding domain thereof such that the binding domain is expressed at the surface of the cell to be tested.
  • The immune complex described hereinabove is added to the receptor-coated plates and incubated for a sufficient period of time such that the analyte binds to the receptor. Plates may then be washed to remove unbound complexes, and binding of the analyte may be detected according to known methods. For example, binding may be detected using a reagent (e.g. an antibody or fragment thereof) which binds specifically to the analyte, and which is optionally conjugated with a detectable label (detectable labels and methods for conjugating them to polypeptides are described below in the section entitled “Non-Therapeutic Uses for the Polypeptide Variant”).
  • As a matter of convenience, the reagents can be provided in an assay kit, i.e., a packaged combination of reagents, for combination with the analyte in assaying the ability of the analyte to bind to a receptor of interest. The components of the kit will generally be provided in predetermined ratios. The kit may provide the first target molecule and/or the second target molecule, optionally complexed together. The kit may further include assay plates coated with the receptor or a binding domain thereof (e.g. the extracellular domain of the α subunit of an FcR). Usually, other reagents, such as an antibody that binds specifically to the analyte to be assayed, labeled directly or indirectly with an enzymatic label, will also be provided in the kit. Where the detectable label is an enzyme, the kit will include substrates and cofactors required by the enzyme (e.g. a substrate precursor which provides the detectable chromophore or fluorophore). In addition, other additives may be included such as stabilizers, buffers (e.g. assay and/or wash lysis buffer) and the like. The relative amounts of the various reagents may be varied widely to provide for concentrations in solution of the reagents that substantially optimize the sensitivity of the assay. Particularly, the reagents may be provided as dry powders, usually lyophilized, including excipients that on dissolution will provide a reagent solution having the appropriate concentration. The kit also suitably includes instructions for carrying out the assay.
  • B. Antibody Preparation
  • In the preferred embodiment of the invention, the Fc region-containing polypeptide which is modified according to the teachings herein is an antibody. Techniques for producing antibodies follow:
  • (i) Antigen Selection and Preparation
  • Where the polypeptide is an antibody, it is directed against an antigen of interest. Preferably, the antigen is a biologically important polypeptide and administration of the antibody to a mammal suffering from a disease or disorder can result in a therapeutic benefit in that mammal. However, antibodies directed against nonpolypeptide antigens (such as tumor-associated glycolipid antigens; see U.S. Pat. No. 5,091,178) are also contemplated.
  • Where the antigen is a polypeptide, it may be a transmembrane molecule (e.g. receptor) or ligand such as a growth factor. Exemplary antigens include molecules such as renin; a growth hormone, including human growth hormone and bovine growth hormone; growth hormone releasing factor; parathyroid hormone; thyroid stimulating hormone; lipoproteins; alpha-1-antitrypsin; insulin A-chain; insulin B-chain; proinsulin; follicle stimulating hormone; calcitonin; luteinizing hormone; glucagon; clotting factors such as factor VIIIC, factor IX, tissue factor (TF), and von Willebrands factor; anti-clotting factors such as Protein C; atrial natriuretic factor; lung surfactant; a plasminogen activator, such as urokinase or human urine or tissue-type I plasminogen activator (t-PA); bombesin; thrombin; hemopoietic growth factor; tumor necrosis factor-alpha and -beta; enkephalinase; RANTES (regulated on activation normally T-cell expressed and secreted); human macrophage inflammatory protein (MIP-1-alpha); a serum albumin such as human serum albumin; Muellerian-inhibiting substance; relaxin A-chain; relaxin B-chain; prorelaxin; mouse gonadotropin-associated peptide; a microbial protein, such as beta-lactamase; DNase; IgE; a cytotoxic T-lymphocyte associated antigen (CTLA), such as CTLA-4; inhibin; activin; vascular endothelial growth factor (VEGF); receptors for hormones or growth factors; protein A or D; rheumatoid factors; a neurotrophic factor such as bone-derived neurotrophic factor (BDNF), neurotrophin-3, -4, -5, or -6 (NT-3, NT-4, NT-5, or NT-6), or a nerve growth factor such as NGF-β; platelet-derived growth factor (PDGF); fibroblast growth factor such as aFGF and bFGF; epidermal growth factor (EGF); transforming growth factor (TGF) such as TGF-alpha and TGF-beta, including TGF-β1, TGF-β2, TGF-β3, TGF-β4, or TGF-β5; insulin-like growth factor-I and -II (IGF-I and IGF-II); des(1-3)-IGF-I (brain IGF-1), insulin-like growth factor binding proteins; CD proteins such as CD3, CD4, CD8, CD19 and CD20; erythropoietin; osteoinductive factors; immunotoxins; a bone morphogenetic protein (BMP); an interferon such as interferon-alpha, -beta, and -gamma; colony stimulating factors (CSFs), e.g., M-CSF, GM-CSF, and G-CSF; interleukins (ILs), e.g., IL-1 to IL-10; superoxide dismutase; T-cell receptors; surface membrane proteins; decay accelerating factor; viral antigen such as, for example, a portion of the AIDS envelope; transport proteins; homing receptors; addressins; regulatory proteins; integrins such as CD11a, CD11b, CD11c, CD18, an ICAM, VLA-4 and VCAM; a tumor associated antigen such as HER2, HER3 or HER4 receptor; and fragments of any of the above-listed polypeptides.
  • Preferred molecular targets for antibodies encompassed by the present invention include CD proteins such as CD3, CD4, CD8, CD19, CD20 and CD34; members of the ErbB receptor family such as the EGF receptor, HER2, HER3 or HER4 receptor; cell adhesion molecules such as LFA-1, Mac1, p150.95, VLA-4, ICAM-1, VCAM, α4/β7 integrin, and αv/β3 integrin including either α or β subunits thereof (e.g. anti-CD11a, anti-CD18 or anti-CD11b antibodies); growth factors such as VEGF; tissue factor (TF); alpha interferon (α-IFN); an interleukin, such as IL-8; IgE; blood group antigens; flk2/flt3 receptor; obesity (OB) receptor; mpl receptor; CTLA-4; protein C etc.
  • Soluble antigens or fragments thereof, optionally conjugated to other molecules, can be used as immunogens for generating antibodies. For transmembrane molecules, such as receptors, fragments of these (e.g. the extracellular domain of a receptor) can be used as the immunogen. Alternatively, cells expressing the transmembrane molecule can be used as the immunogen. Such cells can be derived from a natural source (e.g. cancer cell lines) or may be cells which have been transformed by recombinant techniques to express the transmembrane molecule. Other antigens and forms thereof useful for preparing antibodies will be apparent to those in the art.
  • (ii) Polyclonal Antibodies
  • Polyclonal antibodies are preferably raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the relevant antigen and an adjuvant. It may be useful to conjugate the relevant antigen to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOCl2, or R1N═C═NR, where R and R1 are different alkyl groups.
  • Animals are immunized against the antigen, immunogenic conjugates, or derivatives by combining, e.g., 100 μg or 5 μg of the protein or conjugate (for rabbits or mice, respectively) with 3 volumes of Freund's complete adjuvant and injecting the solution intradermally at multiple sites. One month later the animals are boosted with ⅕ to 1/10 the original amount of peptide or conjugate in Freund's complete adjuvant by subcutaneous injection at multiple sites. Seven to 14 days later the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus. Preferably, the animal is boosted with the conjugate of the same antigen, but conjugated to a different protein and/or through a different cross-linking reagent. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are suitably used to enhance the immune response.
  • (iii) Monoclonal Antibodies
  • Monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Pat. No. 4,816,567).
  • In the hybridoma method, a mouse or other appropriate host animal, such as a hamster or macaque monkey, is immunized as hereinabove described to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized in vitro. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103 (Academic Press, 1986)).
  • The hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells. For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.
  • Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. Among these, preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, Calif. USA, and SP-2 or X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Md. USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)).
  • Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA).
  • After hybridoma cells are identified that produce antibodies of the desired specificity, affinity, and/or activity, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal.
  • The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
  • DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the monoclonal antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Recombinant production of antibodies will be described in more detail below.
  • In a further embodiment, antibodies or antibody fragments can be isolated from antibody phage libraries generated using the techniques described in McCafferty et al., Nature, 348:552-554 (1990). Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries. Subsequent publications describe the production of high affinity (nM range) human antibodies by chain shuffling (Marks et al., Bio/Technology, 10:779-783 (1992)), as well as combinatorial infection and in vivo recombination as a strategy for constructing very large phage libraries (Waterhouse et al., Nuc. Acids. Res., 21:2265-2266 (1993)). Thus, these techniques are viable alternatives to traditional monoclonal antibody hybridoma techniques for isolation of monoclonal antibodies.
  • The DNA also may be modified, for example, by substituting the coding sequence for human heavy- and light-chain constant domains in place of the homologous murine sequences (U.S. Pat. No. 4,816,567; Morrison, et al., Proc. Natl Acad. Sci. USA, 81:6851 (1984)), or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide.
  • Typically such non-immunoglobulin polypeptides are substituted for the constant domains of an antibody, or they are substituted for the variable domains of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.
  • (iv) Humanized and Human Antibodies
  • A humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such “humanized” antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567) wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
  • The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity. According to the so-called “best-fit” method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences. The human sequence which is closest to that of the rodent is then accepted as the human framework (FR) for the humanized antibody (Sims et al., J. Immunol., 151:2296 (1993); Chothia et al., J. Mol. Biol., 196:901 (1987)). Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al., J. Immunol., 151:2623 (1993)).
  • It is further important that antibodies be humanized with retention of high affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the CDR residues are directly and most substantially involved in influencing antigen binding.
  • Alternatively, it is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90:2551 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggermann et al., Year in Immuno., 7:33 (1993); and Duchosal et al. Nature 355:258 (1992). Human antibodies can also be derived from phage-display libraries (Hoogenboom et al., J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581-597 (1991); Vaughan et al. Nature Biotech 14:309 (1996)).
  • (v) Multispecific Antibodies
  • Multispecific antibodies have binding specificities for at least two different antigens. While such molecules normally will only bind two antigens (i.e. bispecific antibodies, BsAbs), antibodies with additional specificities such as trispecific antibodies are encompassed by this expression when used herein. Examples of BsAbs include those with one arm directed against a tumor cell antigen and the other arm directed against a cytotoxic trigger molecule such as anti-FcγRI/anti-CD15, anti-p185HER2/FcγRIII (CD16), anti-CD3/anti-malignant B-cell (1D10), anti-CD3/anti-p185HER2, anti-CD3/anti-p97, anti-CD3/anti-renal cell carcinoma, anti-CD3/anti-OVCAR-3, anti-CD3/L-D1 (anti-colon carcinoma), anti-CD3/anti-melanocyte stimulating hormone analog, anti-EG F receptor/anti-CD3, anti-CD3/anti-CAMA1, anti-CD3/anti-CD19, anti-CD3/MoV18, anti-neural cell adhesion molecule (NCAM)/anti-CD3, anti-folate binding protein (FBP)/anti-CD3, anti-pan carcinoma associated antigen (AMOC-31)/anti-CD3; BsAbs with one arm which binds specifically to a tumor antigen and one arm which binds to a toxin such as anti-saporin/anti-Id-1, anti-CD22/anti-saporin, anti-CD7/anti-saporin, anti-CD38/anti-saporin, anti-CEA/anti-ricin A chain, anti-interferon-α (IFN-α)/anti-hybridoma idiotype, anti-CEA/anti-vinca alkaloid; BsAbs for converting enzyme activated prodrugs such as anti-CD30/anti-alkaline phosphatase (which catalyzes conversion of mitomycin phosphate prodrug to mitomycin alcohol); BsAbs which can be used as fibrinolytic agents such as anti-fibrin/anti-tissue plasminogen activator (tPA), anti-fibrin/anti-urokinase-type plasminogen activator (uPA); BsAbs for targeting immune complexes to cell surface receptors such as anti-low density lipoprotein (LDL)/anti-Fc receptor (e.g. FcγRI, FcγRII or FcγRIII); BsAbs for use in therapy of infectious diseases such as anti-CD3/anti-herpes simplex virus (HSV), anti-T-cell receptor:CD3 complex/anti-influenza, anti-FcγR/anti-HIV; BsAbs for tumor detection in vitro or in vivo such as anti-CEA/anti-EOTUBE, anti-CEA/anti-DPTA, anti-p185HER2/anti-hapten; BsAbs as vaccine adjuvants; and BsAbs as diagnostic tools such as anti-rabbit IgG/anti-ferritin, anti-horse radish peroxidase (HRP)/anti-hormone, anti-somatostatin/anti-substance P, anti-HRP/anti-FITC, anti-CEA/anti-β-galactosidase. Examples of trispecific antibodies include anti-CD3/anti-CD4/anti-CD37, anti-CD3/anti-CD5/anti-CD37 and anti-CD3/anti-CD8/anti-CD37. Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab′)2 bispecific antibodies).
  • Methods for making bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the coexpression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein et al., Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).
  • According to a different approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light chain binding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. This provides for great flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yields. It is, however, possible to insert the coding sequences for two or all three polypeptide chains in one expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios are of no particular significance.
  • In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986). According to another approach described in WO96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 domain of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory “cavities” of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.
  • Bispecific antibodies include cross-linked or “heteroconjugate” antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques.
  • Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al. J. Immunol. 147: 60 (1991).
  • While the polypeptide of interest herein is preferably an antibody, other Fc region-containing polypeptides which can be modified according to the methods described herein are contemplated. An example of such a molecule is an immunoadhesin.
  • C. Immunoadhesin Preparation
  • The simplest and most straightforward immunoadhesin design combines the binding domain(s) of the adhesin (e.g. the extracellular domain (ECD) of a receptor) with the Fc region of an immunoglobulin heavy chain. Ordinarily, when preparing the immunoadhesins of the present invention, nucleic acid encoding the binding domain of the adhesin will be fused C-terminally to nucleic acid encoding the N-terminus of an immunoglobulin constant domain sequence, however N-terminal fusions are also possible.
  • Typically, in such fusions the encoded chimeric polypeptide will retain at least functionally active hinge, C H2 and C H3 domains of the constant region of an immunoglobulin heavy chain. Fusions are also made to the C-terminus of the Fc portion of a constant domain, or immediately N-terminal to the C H1 of the heavy chain or the corresponding region of the light chain. The precise site at which the fusion is made is not critical; particular sites are well known and may be selected in order to optimize the biological activity, secretion, or binding characteristics of the immunoadhesin.
  • In a preferred embodiment, the adhesin sequence is fused to the N-terminus of the Fc region of immunoglobulin G1 (IgG1). It is possible to fuse the entire heavy chain constant region to the adhesin sequence. However, more preferably, a sequence beginning in the hinge region just upstream of the papain cleavage site which defines IgG Fc chemically (i.e. residue 216, taking the first residue of heavy chain constant region to be 114), or analogous sites of other immunoglobulins is used in the fusion. In a particularly preferred embodiment, the adhesin amino acid sequence is fused to (a) the hinge region and C H2 and C H3 or (b) the CH1, hinge, C H2 and CH3 domains, of an IgG heavy chain.
  • For bispecific immunoadhesins, the immunoadhesins are assembled as multimers, and particularly as heterodimers or heterotetramers. Generally, these assembled immunoglobulins will have known unit structures. A basic four chain structural unit is the form in which IgG, IgD, and IgE exist. A four chain unit is repeated in the higher molecular weight immunoglobulins; IgM generally exists as a pentamer of four basic units held together by disulfide bonds. IgA globulin, and occasionally IgG globulin, may also exist in multimeric form in serum. In the case of multimer, each of the four units may be the same or different.
  • Various exemplary assembled immunoadhesins within the scope herein are schematically diagrammed below:
  • (a) ACL-ACL;
  • (b) ACH-(ACH, ACL-ACH, ACL-VHCH, or VLCL-ACH);
  • (c) ACL-ACH-(ACL-ACH, ACL-VHCH, VLCL-ACH, or VLCL-VHCH)
  • (d) ACL-VHCH-(ACH, or ACL-VHCH, or VLCL-ACH);
  • (e) VLCL-ACH-(ACL-VHCH, or VLCL-ACH); and
  • (f) (A-Y)n-(VLCL-VHCH)2,
  • wherein each A represents identical or different adhesin amino acid sequences;
  • VL is an immunoglobulin light chain variable domain;
  • VH is an immunoglobulin heavy chain variable domain;
  • CL is an immunoglobulin light chain constant domain;
  • CH is an immunoglobulin heavy chain constant domain;
  • n is an integer greater than 1;
  • Y designates the residue of a covalent cross-linking agent.
  • In the interests of brevity, the foregoing structures only show key features; they do not indicate joining (J) or other domains of the immunoglobulins, nor are disulfide bonds shown. However, where such domains are required for binding activity, they shall be constructed to be present in the ordinary locations which they occupy in the immunoglobulin molecules.
  • Alternatively, the adhesin sequences can be inserted between immunoglobulin heavy chain and light chain sequences, such that an immunoglobulin comprising a chimeric heavy chain is obtained. In this embodiment, the adhesin sequences are fused to the 3′ end of an immunoglobulin heavy chain in each arm of an immunoglobulin, either between the hinge and the C H2 domain, or between the C H2 and CH3 domains. Similar constructs have been reported by Hoogenboom, et al., Mol. Immunol. 28:1027-1037 (1991).
  • Although the presence of an immunoglobulin light chain is not required in the immunoadhesins of the present invention, an immunoglobulin light chain might be present either covalently associated to an adhesin-immunoglobulin heavy chain fusion polypeptide, or directly fused to the adhesin. In the former case, DNA encoding an immunoglobulin light chain is typically coexpressed with the DNA encoding the adhesin-immunoglobulin heavy chain fusion protein. Upon secretion, the hybrid heavy chain and the light chain will be covalently associated to provide an immunoglobulin-like structure comprising two disulfide-linked immunoglobulin heavy chain-light chain pairs. Methods suitable for the preparation of such structures are, for example, disclosed in U.S. Pat. No. 4,816,567, issued 28 Mar. 1989.
  • Immunoadhesins are most conveniently constructed by fusing the cDNA sequence encoding the adhesin portion in-frame to an immunoglobulin cDNA sequence. However, fusion to genomic immunoglobulin fragments can also be used (see, e.g. Aruffo et al., Cell 61:1303-1313 (1990); and Stamenkovic et al., Cell 66:1133-1144 (1991)). The latter type of fusion requires the presence of Ig regulatory sequences for expression. cDNAs encoding IgG heavy-chain constant regions can be isolated based on published sequences from cDNA libraries derived from spleen or peripheral blood lymphocytes, by hybridization or by polymerase chain reaction (PCR) techniques. The cDNAs encoding the “adhesin” and the immunoglobulin parts of the immunoadhesin are inserted in tandem into a plasmid vector that directs efficient expression in the chosen host cells.
  • D. Vectors, Host Cells and Recombinant Methods
  • The invention also provides isolated nucleic acid encoding a polypeptide variant as disclosed herein, vectors and host cells comprising the nucleic acid, and recombinant techniques for the production of the polypeptide variant.
  • For recombinant production of the polypeptide variant, the nucleic acid encoding it is isolated and inserted into a replicable vector for further cloning (amplification of the DNA) or for expression. DNA encoding the polypeptide variant is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the polypeptide variant). Many vectors are available. The vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence.
  • (i) Signal Sequence Component
  • The polypeptide variant of this invention may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which is preferably a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. The heterologous signal sequence selected preferably is one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell. For prokaryotic host cells that do not recognize and process the native polypeptide variant signal sequence, the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, Ipp, or heat-stable enterotoxin II leaders. For yeast secretion the native signal sequence may be substituted by, e.g., the yeast invertase leader, α factor leader (including Saccharomyces and Kluyveromyces α-factor leaders), or acid phosphatase leader, the C. albicans glucoamylase leader, or the signal described in WO 90/13646. In mammalian cell expression, mammalian signal sequences as well as viral secretory leaders, for example, the herpes simplex gD signal, are available.
  • The DNA for such precursor region is ligated in reading frame to DNA encoding the polypeptide variant.
  • (ii) Origin of Replication Component
  • Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Generally, in cloning vectors this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2μ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (the SV40 origin may typically be used only because it contains the early promoter).
  • (iii) Selection Gene Component
  • Expression and cloning vectors may contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.
  • One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous gene produce a protein conferring drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin, mycophenolic acid and hygromycin.
  • Another example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the polypeptide variant nucleic acid, such as DH FR, thymidine kinase, metallothionein-I and -II, preferably primate metallothionein genes, adenosine deaminase, ornithine decarboxylase, etc.
  • For example, cells transformed with the DHFR selection gene are first identified by culturing all of the transformants in a culture medium that contains methotrexate (Mtx), a competitive antagonist of DHFR. An appropriate host cell when wild-type DHFR is employed is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity.
  • Alternatively, host cells (particularly wild-type hosts that contain endogenous DHFR) transformed or co-transformed with DNA sequences encoding polypeptide variant, wild-type DHFR protein, and another selectable marker such as aminoglycoside 3′-phosphotransferase (APH) can be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g., kanamycin, neomycin, or G418. See U.S. Pat. No. 4,965,199.
  • A suitable selection gene for use in yeast is the trp1 gene present in the yeast plasmid YRp7 (Stinchcomb et al., Nature, 282:39 (1979)). The trp1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1. Jones, Genetics, 85:12 (1977). The presence of the trp1 lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan. Similarly, Leu2-deficient yeast strains (ATCC 20,622 or 38,626) are complemented by known plasmids bearing the Leu2 gene.
  • In addition, vectors derived from the 1.6 μm circular plasmid pKD1 can be used for transformation of Kluyveromyces yeasts. Alternatively, an expression system for large-scale production of recombinant calf chymosin was reported for K. lactis. Van den Berg, Bio/Technology, 8:135 (1990). Stable multi-copy expression vectors for secretion of mature recombinant human serum albumin by industrial strains of Kluyveromyces have also been disclosed. Fleer et al., Bio/Technology, 9:968-975 (1991).
  • (iv) Promoter Component
  • Expression and cloning vectors usually contain a promoter that is recognized by the host organism and is operably linked to the polypeptide variant nucleic acid. Promoters suitable for use with prokaryotic hosts include the phoA promoter, β-lactamase and lactose promoter systems, alkaline phosphatase, a tryptophan (trp) promoter system, and hybrid promoters such as the tac promoter. However, other known bacterial promoters are suitable. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding the polypeptide variant.
  • Promoter sequences are known for eukaryotes. Virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CNCAAT region where N may be any nucleotide. At the 3′ end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3′ end of the coding sequence. All of these sequences are suitably inserted into eukaryotic expression vectors.
  • Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase or other glycolytic enzymes, such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phospho-fructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.
  • Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657. Yeast enhancers also are advantageously used with yeast promoters.
  • Polypeptide variant transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, from heat-shock promoters, provided such promoters are compatible with the host cell systems.
  • The early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that also contains the SV40 viral origin of replication. The immediate early promoter of the human cytomegalovirus is conveniently obtained as a HindIII E restriction fragment. A system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. Pat. No. 4,419,446. A modification of this system is described in U.S. Pat. No. 4,601,978. See also Reyes et al., Nature 297:598-601 (1982) on expression of human β-interferon cDNA in mouse cells under the control of a thymidine kinase promoter from herpes simplex virus. Alternatively, the rous sarcoma virus long terminal repeat can be used as the promoter.
  • (v) Enhancer Element Component
  • Transcription of a DNA encoding the polypeptide variant of this invention by higher eukaryotes is often increased by inserting an enhancer sequence into the vector. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv, Nature 297:17-18 (1982) on enhancing elements for activation of eukaryotic promoters. The enhancer may be spliced into the vector at a position 5′ or 3′ to the polypeptide variant-encoding sequence, but is preferably located at a site 5′ from the promoter.
  • (vi) Transcription Termination Component
  • Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5′ and, occasionally 3′, untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding the polypeptide variant. One useful transcription termination component is the bovine growth hormone polyadenylation region. See WO94/11026 and the expression vector disclosed therein.
  • (vii) Selection and Transformation of Host Cells
  • Suitable host cells for cloning or expressing the DNA in the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above. Suitable prokaryotes for this purpose include eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published 12 Apr. 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. One preferred E. coli cloning host is E. coli 294 (ATCC 31,446), although other strains such as E. coli B, E. coli X1776 (ATCC 31,537), and E. coli W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting.
  • In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for polypeptide variant-encoding vectors. Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccharomyces pombe; Kluyveromyces hosts such as, e.g., K. lactis, K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906), K. thermotolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa; Schwanniomyces such as Schwanniomyces occidentalis; and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium, and Aspergillus hosts such as A. nidulans and A. niger.
  • Suitable host cells for the expression of glycosylated polypeptide variant are derived from multicellular organisms. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified. A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells.
  • Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can also be utilized as hosts.
  • However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure. Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/−DHFR (CHO, Urlaub et al., Proc. Natl. Acad. Sci. USA 77:4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod. 23:243-251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TR1 cells (Mather et al, Annals N.Y. Acad. Sci. 383:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).
  • Host cells are transformed with the above-described expression or cloning vectors for polypeptide variant production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
  • (viii) Culturing the Host Cells
  • The host cells used to produce the polypeptide variant of this invention may be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells. In addition, any of the media described in Ham et al., Meth. Enz. 58:44 (1979), Barnes et al., Anal. Biochem. 102:255 (1980), U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; 4,560,655; or 5,122,469; WO 90/03430; WO 87/00195; or U.S. Pat. No. Re. 30,985 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as GENTAMYCIN™ drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
  • (ix) Polypeptide Variant Purification
  • When using recombinant techniques, the polypeptide variant can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the polypeptide variant is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, is removed, for example, by centrifugation or ultrafiltration. Carter et al., Bio/Technology 10:163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min. Cell debris can be removed by centrifugation. Where the polypeptide variant is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.
  • The polypeptide variant composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique. The suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc region that is present in the polypeptide variant. Protein A can be used to purify polypeptide variants that are based on human γ1, γ2, or γ4 heavy chains (Lindmark et al., J. Immunol. Meth. 62:1-13 (1983)). Protein G is recommended for all mouse isotypes and for human γ3 (Guss et al., EMBO J. 5:15671575 (1986)). The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the polypeptide variant comprises a C H3 domain, the Bakerbond ABX™ resin (J. T. Baker, Phillipsburg, N.J.) is useful for purification. Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSE™ chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the polypeptide variant to be recovered.
  • Following any preliminary purification step(s), the mixture comprising the polypeptide variant of interest and contaminants may be subjected to low pH hydrophobic interaction chromatography using an elution buffer at a pH between about 2.5-4.5, preferably performed at low salt concentrations (e.g., from about 0-0.25M salt).
  • E. Pharmaceutical Formulations
  • Therapeutic formulations of the polypeptide variant are prepared for storage by mixing the polypeptide variant having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG).
  • The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.
  • The active ingredients may also be entrapped in microcapsule prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsule and poly-(methylmethacylate) microcapsule, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980).
  • The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.
  • Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the polypeptide variant, which matrices are in the form of shaped articles, e.g., films, or microcapsule. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(−)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37° C., resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S—S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.
  • F. Non-Therapeutic Uses for the Polypeptide Variant
  • The polypeptide variant of the invention may be used as an affinity purification agent. In this process, the polypeptide variant is immobilized on a solid phase such a Sephadex resin or filter paper, using methods well known in the art. The immobilized polypeptide variant is contacted with a sample containing the antigen to be purified, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the sample except the antigen to be purified, which is bound to the immobilized polypeptide variant. Finally, the support is washed with another suitable solvent, such as glycine buffer, pH 5.0, that will release the antigen from the polypeptide variant.
  • The polypeptide variant may also be useful in diagnostic assays, e.g., for detecting expression of an antigen of interest in specific cells, tissues, or serum.
  • For diagnostic applications, the polypeptide variant typically will be labeled with a detectable moiety. Numerous labels are available which can be generally grouped into the following categories:
  • (a) Radioisotopes, such as 35S, 14C, 125I, 3H, and 131I. The polypeptide variant can be labeled with the radioisotope using the techniques described in Current Protocols in Immunology, Volumes 1 and 2, Coligen et al., Ed. Wiley-Interscience, New York, N.Y., Pubs. (1991) for example and radioactivity can be measured using scintillation counting.
  • (b) Fluorescent labels such as rare earth chelates (europium chelates) or fluorescein and its derivatives, rhodamine and its derivatives, dansyl, Lissamine, phycoerythrin and Texas Red are available. The fluorescent labels can be conjugated to the polypeptide variant using the techniques disclosed in Current Protocols in Immunology, supra, for example. Fluorescence can be quantified using a fluorimeter.
  • (c) Various enzyme-substrate labels are available and U.S. Pat. No. 4,275,149 provides a review of some of these. The enzyme generally catalyzes a chemical alteration of the chromogenic substrate that can be measured using various techniques. For example, the enzyme may catalyze a color change in a substrate, which can be measured spectrophotometrically. Alternatively, the enzyme may alter the fluorescence or chemiluminescence of the substrate. Techniques for quantifying a change in fluorescence are described above. The chemiluminescent substrate becomes electronically excited by a chemical reaction and may then emit light which can be measured (using a chemiluminometer, for example) or donates energy to a fluorescent acceptor. Examples of enzymatic labels include luciferases (e.g., firefly luciferase and bacterial luciferase; U.S. Pat. No. 4,737,456), luciferin, 2,3-dihydrophthalazinediones, malate dehydrogenase, urease, peroxidase such as horseradish peroxidase (HRPO), alkaline phosphatase, β-galactosidase, glucoamylase, lysozyme, saccharide oxidases (e.g., glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase), heterocyclic oxidases (such as uricase and xanthine oxidase), lactoperoxidase, microperoxidase, and the like. Techniques for conjugating enzymes to antibodies are described in O'Sullivan et al., Methods for the Preparation of Enzyme-Antibody Conjugates for use in Enzyme Immunoassay, in Methods in Enzym. (ed J. Langone & H. Van Vunakis), Academic press, New York, 73:147-166 (1981).
  • Examples of enzyme-substrate combinations include, for example:
  • (i) Horseradish peroxidase (HRPO) with hydrogen peroxidase as a substrate, wherein the hydrogen peroxidase oxidizes a dye precursor (e.g., orthophenylene diamine (OPD) or 3,3′,5,5′-tetramethyl benzidine hydrochloride (TMB));
  • (ii) alkaline phosphatase (AP) with para-Nitrophenyl phosphate as chromogenic substrate; and
  • (iii) β-D-galactosidase (β-D-Gal) with a chromogenic substrate (e.g., p-nitrophenyl-β-D-galactosidase) or fluorogenic substrate 4-methylumbelliferyl-β-D-galactosidase.
  • Numerous other enzyme-substrate combinations are available to those skilled in the art. For a general review of these, see U.S. Pat. Nos. 4,275,149 and 4,318,980.
  • Sometimes, the label is indirectly conjugated with the polypeptide variant. The skilled artisan will be aware of various techniques for achieving this. For example, the polypeptide variant can be conjugated with biotin and any of the three broad categories of labels mentioned above can be conjugated with avidin, or vice versa. Biotin binds selectively to avidin and thus, the label can be conjugated with the polypeptide variant in this indirect manner. Alternatively, to achieve indirect conjugation of the label with the polypeptide variant, the polypeptide variant is conjugated with a small hapten (e.g., digoxin) and one of the different types of labels mentioned above is conjugated with an anti-hapten polypeptide variant (e.g., anti-digoxin antibody). Thus, indirect conjugation of the label with the polypeptide variant can be achieved.
  • In another embodiment of the invention, the polypeptide variant need not be labeled, and the presence thereof can be detected using a labeled antibody which binds to the polypeptide variant.
  • The polypeptide variant of the present invention may be employed in any known assay method, such as competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays. Zola, Monoclonal Antibodies: A Manual of Techniques, pp. 147-158 (CRC Press, Inc. 1987).
  • The polypeptide variant may also be used for in vivo diagnostic assays. Generally, the polypeptide variant is labeled with a radionuclide (such as 111In, 99Tc, 14C, 131I, 125I, 3H, 32P or 35S) so that the antigen or cells expressing it can be localized using immunoscintiography.
  • G. In Vivo Uses for the Polypeptide Variant
  • It is contemplated that the polypeptide variant of the present invention may be used to treat a mammal e.g. a patient suffering from, or predisposed to, a disease or disorder who could benefit from administration of the polypeptide variant. The conditions which can be treated with the polypeptide variant are many and include cancer (e.g. where the polypeptide variant binds the HER2 receptor, CD20 or vascular endothelial growth factor (VEGF)); allergic conditions such as asthma (with an anti-IgE antibody); and LFA-1-mediated disorders (e.g. where the polypeptide variant is an anti-LFA-1 or anti-ICAM-1 antibody) etc.
  • Where the antibody binds the HER2 receptor, the disorder preferably is HER2-expressing cancer, e.g. a benign or malignant tumor characterized by overexpression of the HER2 receptor. Such cancers include, but are not limited to, breast cancer, squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, bladder cancer, hepatoma, colon cancer, colorectal cancer, endometrial carcinoma, salivary gland carcinoma, kidney cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma and various types of head and neck cancer. According to the teachings herein, one may prepare a polypeptide with a variant Fc region which has improved, or diminished, ADCC activity. Such molecules will find applications in the treatment of different disorders.
  • For example, the polypeptide variant with improved ADCC activity may be employed in the treatment of diseases or disorders where destruction or elimination of tissue or foreign micro-organisms is desired. For example, the polypeptide may be used to treat cancer; inflammatory disorders; infections (e.g. bacterial, viral, fungal or yeast infections); and other conditions (such as goiter) where removal of tissue is desired, etc.
  • Where the polypeptide variant has diminished ADCC activity, such variants may be used to treat diseases or disorders where a Fc region-containing polypeptide with long half-life is desired, but the polypeptide preferably does not have undesirable effector function(s). For example, the Fc region-containing polypeptide may be an anti-tissue factor (TF) antibody; anti-IgE antibody; and anti-integrin antibody (e.g. an anti-α4β7 antibody). The desired mechanism of action of such Fc region-containing polypeptides may be to block ligand-receptor binding pairs. Moreover, the Fc-region containing polypeptide with diminished ADCC activity may be an agonist antibody.
  • The polypeptide variant is administered by any suitable means, including parenteral, subcutaneous, intraperitoneal, intrapulmonary, and intranasal, and, if desired for local immunosuppressive treatment, intralesional administration. Parenteral infusions include intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous administration. In addition, the polypeptide variant is suitably administered by pulse infusion, particularly with declining doses of the polypeptide variant. Preferably the dosing is given by injections, most preferably intravenous or subcutaneous injections, depending in part on whether the administration is brief or chronic.
  • For the prevention or treatment of disease, the appropriate dosage of polypeptide variant will depend on the type of disease to be treated, the severity and course of the disease, whether the polypeptide variant is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the polypeptide variant, and the discretion of the attending physician. The polypeptide variant is suitably administered to the patient at one time or over a series of treatments.
  • Depending on the type and severity of the disease, about 1 μg/kg to 15 mg/kg (e.g., 0.1-20 mg/kg) of polypeptide variant is an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. A typical daily dosage might range from about 1 μg/kg to 100 mg/kg or more, depending on the factors mentioned above. For repeated administrations over several days or longer, depending on the condition, the treatment is sustained until a desired suppression of disease symptoms occurs. However, other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays.
  • The polypeptide variant composition will be formulated, dosed, and administered in a fashion consistent with good medical practice. Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners. The “therapeutically effective amount” of the polypeptide variant to be administered will be governed by such considerations, and is the minimum amount necessary to prevent, ameliorate, or treat a disease or disorder. The polypeptide variant need not be, but is optionally formulated with one or more agents currently used to prevent or treat the disorder in question. The effective amount of such other agents depends on the amount of polypeptide variant present in the formulation, the type of disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as used hereinbefore or about from 1 to 99% of the heretofore employed dosages.
  • The invention will be more fully understood by reference to the following examples. They should not, however, be construed as limiting the scope of this invention. All literature and patent citations mentioned herein are expressly incorporated by reference.
  • Example 1 Low Affinity Receptor Binding Assay
  • This assay determines binding of an IgG Fc region to recombinant FcγRIIA, FcγRIIB and FcγRIIIA α subunits expressed as His6-glutathione S transferase (GST)-tagged fusion proteins. Since the affinity of the Fc region of IgG1 for the FcγRI is in the nanomolar range, the binding of IgG1 Fc variants can be measured by titrating monomeric IgG and measuring bound IgG with a polyclonal anti-IgG in a standard ELISA format (Example 2 below). The affinity of the other members of the FcγR family, i.e. FcγRIIA, FcγRIIB and FcγRIIIA for IgG is however in the micromolar range and binding of monomeric IgG1 for these receptors can not be reliably measured in an ELISA format.
  • The following assay utilizes Fc variants of recombinant anti-IgE E27 (FIGS. 4A and 4B) which, when mixed with human IgE at a 1:1 molar ratio, forms a stable hexamer consisting of three anti-IgE molecules and three IgE molecules. A recombinant chimeric form of IgE (chimeric IgE) was engineered and consists of a human IgE Fc region and the Fab of an anti-VEGF antibody (Presta et al Cancer Research 57:4593-4599 (1997)) which binds two VEGF molecules per mole of anti-VEGF. When recombinant human VEGF is added at a 2:1 molar ratio to chimeric IgE:E27 hexamers, the hexamers are linked into larger molecular weight complexes via the chimeric IgE Fab:VEGF interaction. The E27 component of this complex binds to the FcγRIIA, FcγRIIB and FcγRIIIA α subunits with higher avidity to permit detection in an ELISA format.
  • Materials and Methods
  • Receptor Coat Fcγ receptor α subunits were expressed as GST fusions of His6 tagged extracellular domains (ECDs) in 293 cells resulting in an ECD-6His-GST fusion protein (Graham et al. J. Gen. Virol. 36:59-74 (1977) and Gorman et al. DNA Prot Eng. Tech. 2:3-10 (1990)) and purified by Ni-NTA column chromatography (Qiagen, Australia) and buffer exchanged into phosphate buffered saline (PBS). Concentrations were determined by absorption at 280 nm using extinction coefficients derived by amino acid composition analysis. Receptors were coated onto Nunc F96 maxisorb plates (cat no. 439-454) at 100 ng per well by adding 100 μl of receptor-GST fusion at 1 μg/ml in PBS and incubated for 48 hours at 4° C. Prior to assay, plates are washed 3× with 250 μl of wash buffer (PBS pH 7.4 containing 0.5% TWEEN 20%) and blocked with 250 μl of assay buffer (50 mM Tris buffered saline, 0.05% TWEEN 20%, 0.5% RIA grade bovine albumin (Sigma A7888), and 2 mM EDTA pH 7.4).
  • Immune Complex Formation: Equal molar amounts (1:1) of E27 and recombinant chimeric IgE which binds two moles recombinant human VEGF per mole of chimeric IgE are added to a 12×75 mm polypropylene tube in PBS and mixed by rotation for 30 minutes at 25° C. E27 (anti-IgE)/chimeric IgE (IgE) hexamers are formed during this incubation. Recombinant human VEGF (165 form, MW 44,000) is added at a 2:1 molar ratio to the IgE concentration and mixed by rotation an additional 30 minutes at 25° C. VEGF- chimeric IgE binding links E27:chimeric IgE hexamers into larger molecular weight complexes which bind FcγR α subunit ECD coated plates via the Fc region of the E27 antibody.
  • E27:chimeric IgE:VEGF: (1:1:2 molar ratio) complexes are added to FcγR α subunit coated plates at E27 concentrations of 5 μg and 1 μg total IgG in quadruplicate in assay buffer and incubated for 120 minutes at 25° C. on an orbital shaker.
  • Complex Detection: Plates are washed 5× with wash buffer to remove unbound complexes and IgG binding is detected by adding 100 μl horse radish peroxidase (HRP) conjugated goat anti-human IgG (γ) heavy chain specific (Boehringer Mannheim 1814249) at 1:10,000 in assay buffer and incubated for 90 min at 25° C. on an orbital shaker. Plates are washed 5× with wash buffer to remove unbound HRP goat anti-human IgG and bound anti-IgG is detected by adding 100 μl of substrate solution (0.4 mg/ml o-phenylenedaimine dihydrochloride, Sigma P6912, 6 mM H2O2 in PBS) and incubating for 8 min at 25° C. Enzymatic reaction is stopped by the addition of 100 μl 4.5N H2SO4 and colorimetric product is measured at 490 nm on a 96 well plate densitometer (Molecular Devices). Binding of E27 variant complexes is expressed as a percent of the wild type E27 containing complex.
  • Example 2 Identification of Unique C1q Binding Sites in a Human IgG Antibody
  • In the present study, mutations were identified in the C H2 domain of a human IgG1 antibody, “C2B8” (Reff et al., Blood 83:435 (1994)), that ablated binding of the antibody to C1q but did not alter the conformation of the antibody nor affect binding to each of the FcγRs. By alanine scanning mutagenesis, five variants in human IgG1 were identified, D270K, D270V, K322A P329A, and P331, that were non-lytic and had decreased binding to C1q. The data suggested that the core C1q binding sites in human IgG1 is different from that of murine IgG2b. In addition, K322A, P329A and P331A were found to bind normally to the CD20 antigen, and to four Fc receptors, FcγRI, FcγRII, FcγRIII and FcRn.
  • Materials and Methods
  • Construction of C2B8 Variants: The chimeric light and heavy chains of anti-CD20 antibody C2B8 (Reff et al., Blood 83:435 (1994)) subcloned separately into previously described PRK vectors (Gorman et al., DNA Protein Eng. Tech. 2:3 (1990)) were used. By site directed mutagenesis (Kunkel et al., Proc. Natl. Acad. Sci. USA 82:488 (1985)), alanine scan variants of the Fc region in the heavy chain were constructed. The heavy and light chain plasmids were co-transfected into an adenovirus transformed human embryonic kidney cell line as previously described (Werther et al., J. Immunol. 157:4986 (1996)). The media was changed to serum-free 24 hours after transfection and the secreted antibody was harvested after five days. The antibodies were purified using Protein A-SEPHAROSE CL-4B™ (Pharmacia), buffer exchanged and concentrated to 0.5 ml with PBS using a Centricon-30 (Amicon), and stored at 4° C. The concentration of the antibody was determined using total Ig-binding ELISA.
  • C1q Binding ELISA: Costar 96 well plates were coated overnight at 4° C. with the indicated concentrations of C2B8 in coating buffer (0.05 M sodium carbonate buffer), pH 9. The plates were then washed 3× with PBS/0.05% TWEEN 20™, pH 7.4 and blocked with 200R1 of ELISA diluent without thimerosal (0.1 M NaPO4/0.1 M NaCl/0.1% gelatin/0.05% TWEEN 20™/0.05% ProClin300) for 1 hr at room temperature. The plate was washed 3× with wash buffer, an aliquot of 100 μl of 2 μg/ml C1q (Quidel, San Diego, Calif.) was added to each well and incubated for 2 hrs at room temperature. The plate was then washed 6× with wash buffer. 100 μl of a 1:1000 dilution of sheep anti-complement C1q peroxidase conjugated antibody (Biodesign) was added to each well and incubated for 1 hour at room temperature. The plate was again washed 6× with wash buffer and 100 μl of substrate buffer (PBS/0.012% H2O2) containing OPD (O-phenylenediamine dihydrochloride (Sigma)) was added to each well. The oxidation reaction, observed by the appearance of a yellow color, was allowed to proceed for 30 minutes and stopped by the addition of 100 μl of 4.5 N H2SO4. The absorbance was then read at (492-405) nm using a microplate reader (SPECTRA MAX 250™, Molecular Devices Corp.). The appropriate controls were run in parallel (i.e. the ELISA was performed without C1q for each concentration of C2B8 used and also the ELISA was performed without C2B8). For each variant, C1q binding was measured by plotting the absorbance (492-405) nm versus concentration of C2B8 in μg/ml using a 4-parameter curve fitting program (KALEIDAGRAPH™) and comparing EC50 values.
  • Complement Dependent Cytotoxicity (CDC) Assay: This assay was performed essentially as previously described (Gazzano-Santoro et al., J. Immunol. Methods 202:163 (1997)). Various concentrations of C2B8 (0.08-20 μg/ml) were diluted with RHB buffer (RPMI 1640/20 mM HEPES (pH 7.2)/2 mM Glutamine/0.1% BSA/100 μg/ml Gentamicin). Human complement (Quidel) was diluted 1:3 in RHB buffer and WIL2-S cells (available from the ATCC, Manassas, Va.) which express the CD20 antigen were diluted to a density of 1×106 cells/ml with RHB buffer. Mixtures of 150 μl containing equal volumes of C2B8, diluted human complement and WIL2-S cells were added to a flat bottom tissue culture 96 well plate and allowed to incubate for 2 hrs at 37° C. and 5% CO2 to facilitate complement mediated cell lysis. 50 μl of alamar blue (Accumed International) was then added to each well and incubated overnight at 37° C. The absorbance was measured using a 96-well fluorometer with excitation at 530 nm and emission at 590 nm. As described by Gazzano-Santoro et al., the results are expressed in relative fluorescence units (RFU). The sample concentrations were computed from a C2B8 standard curve and the percent activity as compared to wild type C2B8 is reported for each variant.
  • CD20 Binding Potency of the C2B8 Variants: The binding of C2B8 and variants to the CD20 antigen were assessed by a method previously described (Reff et al., (1994), supra; reviewed in Gazzano-Santoro et al., (1997), supra). WIL2-S cells were grown for 3-4 days to a cell density of 1×106 cells/ml. The cells were washed and spun twice in FACS buffer (PBS/0.1% BSA/0.02% NaN3) and resuspended to a cell density of 5×106 cells/ml. 200 μl of cells (5×106 cells/ml) and 20 μl of diluted C2B8 samples were added to a 5 ml tube and incubated at room temperature for 30 minutes with agitation. The mixture was then washed with 2 ml of cold FACS buffer, spun down and resuspended in 200 μl of cold FACS buffer. To the suspension, 10 μl of goat anti-human IgG-FITC (American Qualex Labs.) was added and the mixture was incubated in the dark at room temperature for 30 minutes with agitation. After incubation, the mixture was washed with 2 ml of FACS buffer, spun down and resuspended in 1 ml of cold fixative buffer (1% formaldehyde in PBS). The samples were analyzed by flow cytometry and the results expressed as relative fluorescence units (RFU) were plotted against antibody concentrations using a 4-parameter curve fitting program (KALEIDAGRAPH™). The EC50 values are reported as a percentage of that of the C2B8 reference material.
  • FcγR Binding ELISAs: FcγRI α subunit-GST fusion was coated onto Nunc F96 maxisorb plates (cat no. 439-454) by adding 100 μl of receptor-GST fusion at 1 μg/ml in PBS and incubated for 48 hours at 4° C. Prior to assay, plates are washed 3× with 250 μl of wash buffer (PBS pH 7.4 containing 0.5% TWEEN 20™) and blocked with 250 μl of assay buffer (50 mM Tris buffered saline, 0.05% TWEEN 20, 0.5% RIA grade bovine albumin (Sigma A7888), and 2 mM EDTA pH 7.4). Samples diluted to 10 μg/ml in 1 ml of assay buffer are added to FcγRI α subunit coated plates and incubated for 120 minutes at 25° C. on an orbital shaker. Plates are washed 5× with wash buffer to remove unbound complexes and IgG binding is detected by adding 100 μl horse radish peroxidase (HRP) conjugated goat anti-human IgG (γ) heavy chain specific (Boehringer Mannheim 1814249) at 1:10,000 in assay buffer and incubated for 90 min at 25° C. on an orbital shaker. Plates are washed 5× with wash buffer to remove unbound HRP goat anti-human IgG and bound anti-IgG is detected by adding 100 μl of substrate solution (0.4 mg/ml o-phenylenedaimine dihydrochloride, Sigma P6912, 6 mM H2O2 in PBS) and incubating for 8 min at 25° C. Enzymatic reaction is stopped by the addition of 100 μl 4.5NH2SO4 and colorimetric product is measured at 490 nm on a 96 well plate densitometer (Molecular Devices). Binding of variant is expressed as a percent of the wild type molecule.
  • FcγRII and III binding ELISAs were performed as described in Example 1 above.
  • For measuring FcRn binding activity of IgG variants, ELISA plates were coated with 2 μg/ml streptavidin (Zymed, South San Francisco) in 50 mM carbonate buffer, pH 9.6, at 4° C. overnight and blocked with PBS-0.5% BSA, pH 7.2 at room temperature for one hour. Biotinylated FcRn (prepared using biotin-X-NHS from Research Organics, Cleveland, Ohio and used at 1-2 μg/ml) in PBS-0.5% BSA, 0.05% polysorbate 20, pH 7.2, was added to the plate and incubated for one hour. Two fold serial dilutions of IgG standard (1.6-100 ng/ml) or variants in PBS-0.5% BSA, 0.05% polysorbate 20, pH 6.0, were added to the plate and incubated for two hours. Bound IgG was detected using peroxidase labeled goat F(ab′)2 anti-human IgG F(ab′)2 in the above pH 6.0 buffer (Jackson ImmunoResearch, West Grove, Pa.) followed by 3,3′,5,5′-tetramethyl benzidine (Kirgaard & Perry Laboratories) as the substrate. Plates were washed between steps with PBS-0.05% polysorbate 20 at either pH 7.2 or 6.0. Absorbance was read at 450 nm on a Vmax plate reader (Molecular Devices, Menlo Park, Calif.). Titration curves were fit with a four-parameter nonlinear regression curve-fitting program (KaleidaGraph, Synergy software, Reading, Pa.). Concentrations of IgG variants corresponding to the mid-point absorbance of the titration curve of the standard were calculated and then divided by the concentration of the standard corresponding to the mid-point absorbance of the standard titration curve.
  • Results and Discussion
  • By alanine scanning mutagenesis, several single point mutations were constructed in the CH2 domain of C2B8 beginning with E318A, K320A and K322A. All the variants constructed bound normally to the CD20 antigen (Table 3).
  • TABLE 3
    wt E318A K320A K322A P329A P331A
    FcRn + + + +
    CD20 + + + + + +
    FcγRI + + + + + +
    FcγRII + + + + + +
    FcγRIII + + + + + +
    *C1q +++ ++ +++
    CDC + + +
    (+) indicates binding and (−) signifies binding abolished
    *With respect to C1q binding, each + sign is equivalent to approximately 33% binding.
  • Where binding of human complement to an antibody with a human Fc was analyzed, the ability of E318A and K320A to activate complement was essentially identical to that of wild type C2B8 (Table 3). When compared to wild type C2B8, there appears to be little difference in the binding of E318A and K320A to C1q. There is only a 10% decrease in the binding of K320A and about a 30% decrease in the binding of E318A to C1q (FIG. 2). The results indicate that the effect of the E318A and the K320A substitution on complement activation and C1q binding is minimal. Also, the human IgG1 of C2B8 was substituted for human IgG2 and used as a negative control in the C1q binding studies. The IgG2 variant appears to have a much lower affinity for C1q than the E318A and K320A variants (FIG. 2). Thus, the results demonstrate that E318 and K320 do not constitute the core C1q binding sites for human IgG1. Conversely, the K322A substitution had a significant effect on both complement activity and C1q binding. The K322A variant did not have CDC activity when tested in the above CDC assay and was more than a 100 fold lower than wild type C2B8 in binding to C1q (FIG. 2). In the human system, K322 is the only residue of the proposed core C1q binding sites that appeared to have a significant effect on complement activation and C1q binding.
  • Since the Duncan and Winter study was performed using mouse IgG2b and the above results reveal that K320 and E318 in human IgG1 are not involved in C1q binding, and without being bound to any one theory, the above data suggest that the C1q binding region in murine IgGs is different from that of the human. To investigate this further and also to identify additional variants that do not bind to C1q and hence do not activate complement, several more point mutations in the vicinity of K322 were constructed as assessed from the three dimensional structure of the C2B8 Fc. Variants constructed, K274A, N276A, Y278A, S324A, P329A, P331A, K334A, and T335A, were assessed for their ability to bind C1q and also to activate complement. Many of these substitutions had little or no effect on C1q binding or complement activation. In the above assays, the P329A and the P331A variants did not activate complement and had decreased binding to C1q. The P331A variant did not activate complement and was 60 fold lower in binding to C1 q (FIG. 3) when compared to wild type C2B8 (FIG. 2). The concentration range of the antibody variants used in FIG. 3 is expanded to 100 μg/ml in order to observe saturation of C1q binding to the P331A variant. The mutation P329A results in an antibody that does not activate complement and is more than a 100 fold lower in binding to C1q (FIG. 3) when compared to wild type C2B8 (FIG. 2).
  • Variants that did not bind to C1q and hence did not activate complement were examined for their ability to bind to the Fc receptors: FcγRI, FcγRIIA, FcγRIIB, FcγRIIIA and FcRn. This particular study was performed using a humanized anti-IgE antibody, an IgG1 antibody with these mutations (see Example 1 above). The results revealed the variants, K322A and P329A, bind to all the Fc receptors to the same extent as the wild type protein (Table 4). However, there was a slight decrease in the binding of P331A to FcγRIIB.
  • In conclusion, two amino acid substitutions in the COOH terminal region of the CH2 domain of human IgG1, K322A and P329A were identified that result in more than 100 fold decrease in C1q binding and do not activate the CDC pathway. These two variants, K322A and P329A, bind to all Fc receptors with the same affinity as the wild type antibody. Based on the results, summarized in Table 4, and without being bound to any one theory, it is proposed that the C1q binding epicenter of human IgG1 is centered around K322, P329 and P331 and is different from the murine IgG2b epicenter which constitutes E318, K320 and K322.
  • TABLE 4
    wt E318A K320A K322A P329A P331A
    CD20
    100 89 102 86 112 103
    a FcγRI 100 93 102 90 104 74
    a FcγRIIA 100 113 94 109 111 86
    a FcγRIIB 100 106 83 101 96 58
    a FcγRIII 100 104 72 90 85 73
    CDC 100 108 108 none none none
    aFor binding to the FcγRs the variants were made in the E27 background (anti-IgE).
    The results are presented as a percentage of the wild type.
  • A further residue involved in binding human C1q was identified using the methods described in the present example. The residue D270 was replaced with lysine and valine to generate variants D270K and D270V, respectively. These variants both showed decreased binding to human C1q (FIG. 6) and were non-lytic (FIG. 7). The two variants bound the CD20 antigen normally and recruited ADCC.
  • Example 3 Variants with Improved C1q Binding
  • The following study shows that substitution of residues at positions K326, A327, E333 and K334 resulted in variants with at least about a 30% increase in binding to C1q when compared to the wild type antibody. This indicated K326, A327, E333 and K334 are potential sites for improving the efficacy of antibodies by way of the CDC pathway. The aim of this study was to improve CDC activity of an antibody by increasing binding to C1q. By site directed mutagenesis at K326 and E333, several variants with increased binding to C1q were constructed. The residues in order of increased binding at K326 are K<V<E<A<G<D<M<W, and the residues in order of increased binding at E333 are E<Q<D<V<G<A<S. Four variants, K326M, K326D, K326E and E333S were constructed with at least a two-fold increase in binding to C1q when compared to wild type. Variant K326W displayed about a five-fold increase in binding to C1q.
  • Variants of the wild type C2B8 antibody were prepared as described above in Example 2. A further control antibody, wild type C2B8 produced in Chinese hamster ovary (CHO) cells essentially as described in U.S. Pat. No. 5,736,137, was included in a C1q binding ELISA to confirm that wt C2B8 produced in the 293 kidney cell line had the same C1q binding activity as the CHO-produced antibody (see “CHO-wt-C2B8” in FIG. 8). The C1q binding ELISA, CDC assay, and CD20 binding potency assay in this example were performed as described in Example 2 above.
  • As shown in FIG. 8, alanine substitution at K326 and E333 in C2B8 resulted in variants with about a 30% increase in binding to C1q.
  • Several other single point variants at K326 and E333 were constructed and assessed for their ability to bind C1q and activate complement. All the variants constructed bound normally to the CD20 antigen.
  • With respect to K326, the other single point variants constructed were K326A, K326D, K326E, K326G, K326V, K326M and K326W. As shown in FIG. 9, these variants all bound to C1q with a better affinity than the wild type antibody. K326W, K326M, K326D and K326E showed at least a two-fold increase in binding to C1q (Table 5). Among the K326 variants, K326W had the best affinity for C1q.
  • TABLE 5
    Variant EC50 value
    Wild type 1.53
    K326V 1.30
    K326A 1.03
    K326E 1.08
    K326G 0.95
    K326D 0.76
    K326M 0.67
    K326W 0.47
    E333S 0.81
    E333A 0.98
    E333G 1.14
    E333V 1.18
    E333D 1.22
    E333Q 1.52
    K334A 1.07
  • Substitutions with hydrophobic as well as charged residues resulted in variants with increased binding to C1q. Even substitution with glycine which is known to impart flexibility to a chain and is well conserved in nature, resulted in a variant with higher affinity for C1q when compared to the wild type. It would appear that any amino acid substitution at this site would result in a variant with higher affinity for C1q. As assessed from the three-dimensional structure, K326 and E333 are in the vicinity of the core C1q binding sites (FIG. 10).
  • In addition to alanine, E333 was also substituted with other amino acid residues. These variants, E333S, E333G, E333V, E333D, and E333Q, all had increased binding to C1q when compared to the wild type (FIG. 11). As shown in Table 5, the order of binding affinity for C1q was as follows: E333S>E333A>E333G>E333V>E333D>E333Q. Substitutions with amino acid residues with small side chain volumes, i.e. serine, alanine and glycine, resulted in variants with higher affinity for C1q in comparison to the other variants, E333V, E333D and E333Q, with larger side chain volumes. The variant E333S had the highest affinity for C1q, showing a two-fold increase in binding when compared to the wild type. Without being bound to any one theory, this indicates the effect on C1q binding at 333 may also be due in part to the polarity of the residue.
  • Double variants were also generated. As shown in FIGS. 12 and 13, double variants K326M-E333S and K326A-E333A were at least three-fold better at binding human C1q than wild type C2B8 (FIG. 12) and at least two-fold better at mediating CDC compared to wild type C2B8 (FIG. 13). Additivity indicates these are independently acting variants.
  • As shown in FIG. 14, a further variant with improved C1q binding (50% increase) was made by changing A327 in a human IgG1 constant region to glycine. Conversely, in a human IgG2 constant region, changing G327 to alanine reduced C1q binding of the IgG2 antibody.
  • Example 4 Identification of FcR Binding Sites in Human IgG Antibodies
  • In the present study, the effect of mutating various Fc region residues of an IgG1 antibody with respect to binding FcγRI, FcγRIIA, FcγRIIB and FcγRIIIIA as well as FcRn was evaluated. Antibody variants with improved as well as diminished FcR binding were identified.
  • Materials and Methods
  • Construction of IgG1 Variants: Recombinant anti-IgE E27 having the light chain and heavy chain sequences in FIGS. 4A and 4B, respectively, was used as the parent antibody in the following experiments. This antibody binds the antigen IgE and has a non-A allotype IgG1 Fc region. By site directed mutagenesis (Kunkel et al., Proc. Natl. Acad. Sci. USA 82:488 (1985)), variants of the Fc region in the heavy chain of the above parent antibody were constructed. The heavy and light chain plasmids were co-transfected into an adenovirus transformed human embryonic kidney cell line as previously described (Werther et al., J. Immunol. 157:4986 (1996)). The media was changed to serum-free 24 hours after transfection and the secreted antibody was harvested after five days. The antibodies were purified by Protein G SEPHAROSE® (Pharmacia), buffer exchanged and concentrated to 0.5 ml with PBS using a Centricon-30 (Amicon), and stored at 4° C. Concentration was determined by adsorption at 280 nm using extinction coefficients derived by amino acid composition analysis.
  • High Affinity FcγRIA Binding ELISA: FcγRIA was expressed as a GST fusion of His6 tagged extracellular domain in 293 cells and purified by Ni-NTA column chromatography.
  • To purify FcγRIA, supernatant from transfected 293 cells was removed after three days. Protease inhibitors were added; 50 μL Aprotinin (Sigma)/50 mL supernatant, and PMSF (1 mM). Supernatants were concentrated to 10 mL in a stirred cell (Amicon), and dialyzed overnight at 4° C. against 1 liter column buffer (50 mM Tris pH 8.0, 20 mM Imidazole, 300 mM NaCl). Additional dialysis was done the following morning against fresh column buffer for 4 hours at 4° C. The solution was loaded on to a 1 mL Ni++ column (NTA super flow resin, Qiagen) previously equilibrated with 10 mL column buffer. Columns were washed with 10 mL column buffer, and protein was eluted with 2.5 mL elution buffer (50 mM Tris pH 8.0, 250 mM Imidazole, 300 mM NaCl). Protein was concentrated to 0.5 mL and buffer exchanged into PBS. Concentrations were determined by adsorption at 280 nm using an extinction coefficient derived by amino acid composition analysis.
  • Purified receptors were coated onto Nunc F96 maxisorb plates (cat no. 439545) at approximately 150 ng per well by adding 100 μL of receptor at 1.5 μg/mL in PBS and incubated for 24 hours at 4° C. Prior to assay, plates were washed 3× with 250 μL of wash buffer (phosphate buffered saline pH 7.4 containing 0.5% TWEEN 20®) and blocked with 250 μL of assay buffer (50 mM tris buffered saline, 0.05% TWEEN 20®, 0.5% RIA grade bovine albumin (Sigma A7888), and 2 mM EDTA pH 7.4).
  • 100 μL of E27 was added to the first four wells of the FcγRIA subunit coated plated at a concentration of 10 μg/mL. 80 μL of assay buffer was added to the next four well followed by 20 μL of the 10 μg/mL E27 IgG to give a final concentration of 2 μg/mL. Plates were incubated at 25° C. for 2 hours on an orbital shaker.
  • For detection, plates were washed 5× with wash buffer to remove unbound antibody. IgG binding to GST-FcγRIA was detected by adding 100 μL horse radish peroxidase (HRP) conjugated protein G (BIORAD) at 1:5000. HRP conjugates were incubated for 1.5 hours at 25° C. on an orbital shaker. Plates were washed ×5 with wash buffer to remove unbound HRP conjugate. Binding was detected by adding 100 μL of substrate solution (0.4 mg/mL o-phenylenedaimine dihydrochloride, Sigma P6912, 6 mM H2O2 in PBS) and incubating for 10 minutes at 25° C. Enzymatic reaction was stopped by the addition of 100 μL of 4.5 N H2SO4 and colorimetric product was measured at 490 nm on a 96 well plate densitometer (Molecular Devices).
  • Binding of E27 variants at IgG concentration of 2 μg/mL was expressed as a ratio of wild type E27.
  • FcγRIA THP-1 Assay: 100 μL of E27 was added to the first three wells of a serocluster plate (Costar) at a concentration of 20 μg/mL in assay buffer (1×PBS, 0.1% BSA, 0.01% NaN3). 92.5 μL of assay buffer was added to the next three wells followed by 7.5 μL of the 20 μg/mL E27 IgG to give a final concentration of 1.5 μg/mL. To each well, 100 μL of THP-1 cells were added at a concentration of 5 million cells/mL in FACS assay buffer. The plate is incubated on ice for 30 minutes
  • For detection, cells were washed 2× with assay buffer to remove unbound antibody. IgG binding FcγRIA was detected by adding 100 μL FITC conjugated F(ab′)2 fragment of goat anti-human IgG heavy chain specific. (Jackson Immunoresearch) at 1:200. FITC conjugates were incubated with cells for 30 minutes on ice. Cells were washed ×3 with assay buffer to remove unbound FITC conjugate. Cells were stained with P.I. (SIGMA) at 2.5 μg/mL and analyzed by flow cytometry.
  • Binding of E27 variants at IgG concentration of 1.5 μg/mL was expressed as a ratio of wild type E27.
  • Data from the plate assay (FcγRIA ELISA) and cell-based assay (FcγRIA THP-1 assay) was averaged to arrive at an FcγRIA-binding activity.
  • Low Affinity FcγR Binding ELISAs: FcγRIIA, FcγRIIB and FcγRIIIA binding ELISAs were performed as described in Example 1 above, with detection of the stable hexamer (consisting of three anti-IgE molecules and three IgE molecules).
  • FcRn Binding ELISA: For measuring FcRn binding activity of IgG variants, ELISA plates were coated with 2 μg/ml streptavidin (Zymed, South San Francisco) in 50 mM carbonate buffer, pH 9.6, at 4° C. overnight and blocked with PBS-0.5% BSA, pH 7.2 at room temperature for one hour. Biotinylated FcRn (prepared using biotin-X-NHS from Research Organics, Cleveland, Ohio and used at 1-2 μg/ml) in PBS-0.5% BSA, 0.05% polysorbate 20, pH 7.2, was added to the plate and incubated for one hour. Two fold serial dilutions of IgG standard (1.6-100 ng/ml) or variants in PBS-0.5% BSA, 0.05% polysorbate 20, pH 6.0, were added to the plate and incubated for two hours. Bound IgG was detected using peroxidase labeled goat F(ab′)2 anti-human IgG F(ab′)2 in the above pH 6.0 buffer (Jackson ImmunoResearch, West Grove, Pa.) followed by 3,3′,5,5′-tetramethyl benzidine (Kirgaard & Perry Laboratories) as the substrate. Plates were washed between steps with PBS-0.05% TWEEN 20® at either pH 7.2 or 6.0. Absorbance was read at 450 nm on a Vmax plate reader (Molecular Devices, Menlo Park, Calif.). Titration curves were fit with a four-parameter nonlinear regression curve-fitting program (KaleidaGraph, Synergy software, Reading, Pa.). Concentrations of IgG variants corresponding to the mid-point absorbance of the titration curve of the standard were calculated and then divided by the concentration of the standard corresponding to the mid-point absorbance of the standard titration curve.
  • In Vitro ADCC Assay: To prepare chromium 51-labeled target cells, tumor cell lines were grown in tissue culture plates and harvested using sterile 10 mM EDTA in PBS. SK-BR-3 cells, a 3+ HER2-overexpressing human breast cancer cell line, were used as targets in all assays. The detached cells were washed twice with cell culture medium. Cells (5×106) were labeled with 200 μCi of chromium51 (New England Nuclear/DuPont) at 37° C. for one hour with occasional mixing. Labeled cells were washed three times with cell culture medium, then were resuspended to a concentration of 1×105 cells/mL. Cells were used either without opsonization, or were opsonized prior to the assay by incubation with rhuMAb HER2 wildtype (HERCEPTIN®) or seven Fc mutants (G14, G18, G17, G36, G30, G31 and G34) at 100 ng/mL and 1.25 ng/mL in PBMC assay or 20 ng/mL and 1 ng/mL in NK assay.
  • Peripheral blood mononuclear cells were prepared by collecting blood on heparin from normal healthy donors and dilution with an equal volume of phosphate buffered saline (PBS). The blood was then layered over LYMPHOCYTE SEPARATION MEDIUM® (LSM: Organon Teknika) and centrifuged according to the manufacturer's instructions. Mononuclear cells were collected from the LSM-plasma interface and were washed three times with PBS. Effector cells were suspended in cell culture medium to a final concentration of 1×107 cells/mL.
  • After purification through LSM, natural killer (NK) cells were isolated from PBMCs by negative selection using an NK cell isolation kit and a magnetic column (Miltenyi Biotech) according to the manufacturer's instructions. Isolated NK cells were collected, washed and resuspended in cell culture medium to a concentration of 2×106 cells/mL. The identity of the NK cells was confirmed by flow cytometric analysis.
  • Varying effector:target ratios were prepared by serially diluting the effector (either PBMC or NK) cells two-fold along the rows of a microtiter plate (100 μL final volume) in cell culture medium. The concentration of effector cells ranged from 1.0×107/mL to 2.0×104/mL for PBMC and from 2.0×106/mL to 3.9×103/mL for NK. After titration of effector cells, 100 μL of chromium 51-labeled target cells (opsonized or nonoponsonized) at 1×105 cells/mL were added to each well of the plate. This resulted in an initial effector:target ratio of 100:1 for PBMC and 20:1 for NK cells. All assays were run in duplicate, and each plate contained controls for both spontaneous lysis (no effector cells) and total lysis (target cells plus 100 μL) 1% sodium dodecyl sulfate, 1 N sodium hydroxide). The plates were incubated at 37° C. for 18 hours, after which the cell culture supernatants were harvested using a supernatant collection system (Skatron Instrument, Inc.) and counted in a Minaxi auto-gamma 5000 series gamma counter (Packard) for one minute. Results were then expressed as percent cytotoxicity using the formula:

  • % Cytotoxicity=(sample cpm−spontaneous lysis)/(total lysis−spontaneous lysis)×100
  • Four-parameter curve-fitting was then used to evaluate the data (KaleidaGraph 3.0.5).
  • Results
  • A variety of antibody variants were generated which had FcR binding activity that differed from the parent antibody. The FcR binding data for the variants generated is shown in Tables 6 and 7 below. An additional variant, T307Q, also displayed improved FcRn binding compared to E27 parent antibody.
  • TABLE 6
    CH2 DOMAIN VARIANTS
    Res#EU FcRn FcγRI FcγRIIA FcγRIIB FcγRIIIA
    IG2 (Kabat) mean sd n mean sd n mean sd mean sd mean sd
    REDUCED BINDING TO ALL FcγR
     1 233-236 0.54 (0.20) 3 0.12 (0.06) 6 0.08 (0.01) 0.12 (0.01) 0.04 (0.02) n = 2
    ELLG > PVA-
     2 P238A(251) 1.49 (0.17) 3 0.60 (0.05) 5 0.38 (0.14) 0.36 (0.15) 0.07 (0.05) n = 4
     14 D265A(278) 1.23 (0.14) 4 0.14 (0.04) 6 0.07 (0.01) 0.13 (0.05) 0.09 (0.06) n = 4
     17 E269A(282) 1.05 0.52 (0.03) 6 0.65 (0.18) 0.75 (0.29) 0.45 (0.13) n = 5
     18 D270A(283) 1.05 0.76 (0.12) 6 0.06 (0.01) 0.11 (0.05) 0.14 (0.04) n = 5
     58 N297A(314) 0.80 (0.18) 8 0.15 (0.06) 7 0.05 (0.00) 0.10 (0.02) 0.03 (0.01) n = 3
     52 A327Q(346) 0.97 0.63 (0.15) 7 0.13 (0.03) 0.14 (0.03) 0.06 (0.01) n = 4
     64 P329A(348) 0.80 0.48 (0.10) 6 0.08 (0.02) 0.12 (0.08) 0.21 (0.03) n = 4
    REDUCED BINDING TO FcγRII & FcγRIII
     3 S239A(252) 1.06 0.81 (0.09) 7 0.73 (0.25) 0.76 (0.36) 0.26 (0.08) n = 3
     33 E294A(311) 0.75 0.90 (0.08) 4 0.87 (0.19) 0.63 (0.17) 0.66 (0.14) n = 5
     34 Q295A(312) 0.79 1.00 (0.11) 4 0.62 (0.20) 0.50 (0.24) 0.25 (0.09) n = 5
     39 V303A(322) 1.26 (0.21) 3 0.91 (0.11) 5 0.86 (0.10) 0.65 (0.17) 0.33 (0.09) n = 8
    IMPROVED BINDING TO FcγRII & FcγRIII
     11 T256A(269) 1.91 (0.43) 6 1.14 (0.14) 4 1.41 (0.27) 2.06 (0.66) 1.32 (0.18) n = 9
     30 K290A(307) 0.79 (0.14) 3 1.01 (0.08) 4 1.29 (0.21) 1.40 (0.18) 1.28 (0.21) n = 7
     44 D312A(331) 1.50 (0.06) 4 1.01 (0.12) 5 1.20 (0.24) 1.19 (0.07) 1.23 (0.14) n = 3
     51 K326A(345) 1.03 1.04 (0.05) 4 1.26 (0.21) 1.49 (0.27) 1.22 (0.28) n = 5
    197 A330(349)K 1.28 1.25 1.28 n = 1
    273 A339(359)T 1.23 1.11 1.23 1.42 n = 1
    EFFECT FcγRII
     10 R255A(268) 0.59 (0.19) 4 1.26 (0.26) 8 1.30 (0.20) 1.59 (0.42) 0.98 (0.18) n = 5
     12 E258A(271) 1.18 1.18 (0.13) 4 1.33 (0.22) 1.65 (0.38) 1.12 (0.12) n = 5
     15 S267A(280) 1.08 1.20 (0.14) 4 1.64 (0.18) 2.06 (0.35) 1.14 (0.25) n = 7
     16 H268A(281) 1.02 (0.22) 3 1.05 (0.11) 4 1.22 (0.14) 1.45 (0.23) 0.52 (0.09) n = 12
     19 E272A(285) 1.34 (0.24) 4 1.04 (0.06) 4 1.24 (0.11) 1.58 (0.19) 0.74 (0.12) n = 4
     21 N276A(289) 1.15 (0.21) 3 1.05 (0.14) 4 1.29 (0.20) 1.34 (0.40) 0.95 (0.04) n = 4
     23 D280A(295) 0.82 0.97 (0.06) 4 1.34 (0.14) 1.60 (0.31) 1.09 (0.20) n = 10
     25 E283A(300) 0.71 0.97 (0.03) 4 1.24 (0.23) 1.20 (0.17) 1.01 (0.14) n = 5
     26 H285A(302) 0.85 0.96 (0.07) 4 1.26 (0.12) 1.23 (0.15) 0.87 (0.04) n = 4
     27 N286A(303) 1.24 (0.04) 2 0.94 (0.20) 13 1.28 (0.23) 1.39 (0.14) 1.03 (0.08) n = 5
     31 R292A(309) 0.81 (0.18) 4 0.93 (0.02) 4 0.27 (0.14) 0.18 (0.07) 0.90 (0.18) n = 9
     36 S298A(317) 0.80 1.10 (0.04) 3 0.40 (0.08) 0.21 (0.11) 1.30 (0.18) n = 12
     38 R301A(320) 0.86 1.06 (0.10) 4 1.12 (0.12) 1.26 (0.14) 0.21 (0.08) n = 6
     38B R301M(320) 0.88 1.06 (0.12) 4 1.29 (0.17) 1.56 (0.12) 0.48 (0.21) n = 4
     40 V305A(324) 1.46 (0.48) 6 1.04 (0.19) 10 1.12 (0.12) 1.23 (0.22) 0.84 (0.15) n = 4
     41 T307A(326) 1.81 (0.32) 6 0.99 (0.14) 4 1.19 (0.37) 1.35 (0.33) 1.12 (0.18) n = 12
     42 L309A(328) 0.63 (0.18) 4 0.93 (0.18) 6 1.13 (0.08) 1.26 (0.12) 1.07 (0.20) n = 3
     45 N315A(334) 0.76 (0.14) 3 1.27 (0.36) 6 1.15 (0.06) 1.30 (0.17) 1.07 (0.21) n = 5
     48 K320A(339) 1.10 0.98 (0.09) 5 1.12 (0.11) 1.22 (0.05) 0.87 (0.17) n = 4
     49 K322A(341) 0.98 0.94 (0.05) 6 1.15 (0.11) 1.27 (0.24) 0.61 (0.14) n = 5
     50 S324A(343) 1.08 0.95 (0.05) 4 0.82 (0.22) 0.70 (0.12) 1.12 (0.17) n = 4
     65 P331A(350) 0.85 1.30 (0.34) 8 1.29 (0.14) 1.47 (0.28) 1.03 (0.19) n = 3
     54 E333A(352) 1.03 (0.01) 2 0.98 (0.15) 5 0.92 (0.12) 0.76 (0.11) 1.27 (0.17) n = 10
     56 T335A(354) 0.98 1.00 (0.05) 4 0.79 (0.22) 0.65 (0.26) 0.92 (0.54) n = 3
     57 S337A(356) 1.03 1.17 (0.23) 3 1.22 (0.30) 1.26 (0.06) 0.94 (0.18) n = 4
    EFFECT FcγRIII
     5 K248A(261) 0.87 0.95 (0.05) 5 1.06 (0.12) 1.01 (0.12) 0.71 (0.05) n = 4
     6 D249A(262) 0.93 1.04 (0.10) 4 1.02 (0.12) 0.94 (0.02) 0.66 (0.07) n = 5
     7 M252A(265) 0.64 (0.13) 4 0.99 (0.10) 5 1.01 (0.18) 1.15 (0.22) 0.65 (0.17) n = 6
     9 S254A(267) <0.10 0.96 (0.08) 4 0.97 (0.24) 1.15 (0.38) 0.73 (0.14) n = 3
     16 H268A(281) 1.02 (0.22) 3 1.05 (0.11) 4 1.22 (0.14) 1.45 (0.23) 0.52 (0.09) n = 12
     19 E272A(285) 1.34 (0.24) 4 1.04 (0.06) 4 1.24 (0.11) 1.58 (0.19) 0.74 (0.12) n = 4
     22 Y278A(291) 0.90 0.96 (0.02) 4 1.11 (0.08) 1.10 (0.16) 0.67 (0.11) n = 4
     29 T289A(306) 0.86 0.93 (0.03) 4 0.96 (0.33) 0.83 (0.22) 0.62 (0.19) n = 7
     32 E293A(310) 0.85 1.11 (0.07) 4 1.08 (0.19) 1.07 (0.20) 0.31 (0.13) n = 6
     35 Y296F(313) 0.79 1.07 (0.12) 4 0.97 (0.26) 0.84 (0.18) 0.52 (0.09) n = 5
     36 S298A(317) 0.80 1.10 (0.04) 3 0.40 (0.08) 0.21 (0.11) 1.30 (0.18) n = 12
     38 R301A(320) 0.86 1.06 (0.10) 4 1.12 (0.12) 1.26 (0.14) 0.21 (0.08) n = 6
     38B R301M(320) 0.88 1.06 (0.12) 4 1.29 (0.17) 1.56 (0.12) 0.48 (0.21) n = 4
     49 K322A(341) 0.98 0.94 (0.05) 6 1.15 (0.11) 1.27 (0.24) 0.61 (0.14) n = 5
     54 E333A(352) 1.03 (0.01) 2 0.98 (0.15) 5 0.92 (0.12) 0.76 (0.11) 1.27 (0.17) n = 10
     55 K334A(353) 1.05 (0.03) 2 1.10 (0.06) 4 1.01 (0.15) 0.90 (0.12) 1.39 (0.19) n = 17
    NO EFFECT ON FcγR
     4 K246A(259) 1.03 0.94 (0.06) 4 1.02 (0.10) 0.92 (0.15) 1.14 (0.38) n = 4
     4B K246M(259) 0.69 0.83 (0.05) 5 0.83 (0.06) 0.76 (0.05) 0.95 (0.09) n = 3
     5B K248M(261) 0.79 0.95 (0.06) 4 0.89 (0.09) 0.83 (0.04) 1.01 (0.23) n = 3
     8 I253A(266) <0.10 0.96 (0.05) 4 1.14 (0.02) 1.18 (0.06) 1.08 (0.14) n = 3
     13 T260A(273) 1.09 0.93 (0.09) 4 0.89 (0.14) 0.87 (0.10) 0.89 (0.08) n = 4
     20 K274A(287) 1.18 1.02 (0.04) 4 0.86 (0.09) 0.96 (0.10) 1.11 (0.08) n = 3
     24 V282A(299) 1.13 (0.07) 2 0.96 (0.02) 4 1.15 (0.13) 1.15 (0.20) 1.00 (0.18) n = 4
     28 K288A(305) 0.38 (0.12) 5 0.88 (0.15) 15 1.15 (0.26) 1.14 (0.20) 1.06 (0.04) n = 4
     37 Y300F(319) 0.74 (0.10) 2 1.07 (0.15) 4 1.11 (0.04) 1.09 (0.09) 1.01 (0.10) n = 3
     43 Q311A(330) 1.62 (0.25) 4 0.93 (0.05) 4 1.11 (0.06) 1.19 (0.13) 0.93 (0.17) n = 3
     46 K317A(336) 1.44 (0.18) 4 0.92 (0.17) 6 1.13 (0.05) 1.18 (0.27) 1.10 (0.23) n = 4
     47 E318A(337) 0.85 0.92 (0.07) 4 1.04 (0.10) 1.17 (0.23) 1.01 (0.05) n = 3
     53 A330Q(349) 0.76 0.96 (0.10) 4 1.01 (0.12) 1.02 (0.02) 0.75 (0.18) n = 3
  • TABLE 7
    CH3 DOMAIN VARIANTS
    Res#EU FcRn FcγRI FcγRIIA FcγRIIB FcγRIIIA
    IG2 (Kabat) mean sd n mean sd n mean sd mean sd mean sd
    B1 K338(358)A 1.14 0.90 (0.05) 3 0.78 (0.09) 0.63 (0.08) 0.15 (0.01) n = 2
    B1A K338(358)M 0.78 0.99 (0.08) 3 0.99 (0.13) 0.93 (0.15) 0.49 (0.04) n = 2
    B2 K340(360)A 1.02 1.04 (0.07) 3 1.05 (0.18) 0.96 (0.20) 0.84 (0.11) n = 2
    B2A K340(360)M 1.20 1.17 (0.11) 3 1.10 (0.12) 1.20 (0.19) 0.75 (0.12) n = 2
    B3 Q342(363)A 1.09 1.13 (0.11) 3 1.01 (0.10) 1.09 (0.23) 0.98 (0.10) n = 2
    B4 R344(365)A 0.77 1.04 (0.08) 3 0.89 (0.14) 0.91 (0.04) 0.97 (0.07) n = 4
    B5 E345(366)A 1.18 1.06 (0.05) 3 1.03 (0.10) 0.98 (0.10) 0.97 (0.13) n = 4
    B6 Q347(368)A 0.95 1.04 (0.06) 3 1.00 (0.03) 0.92 (0.02) 1.04 (0.12) n = 4
    B7 R355(376)A 1.06 1.09 (0.07) 3 0.84 (0.09) 0.87 (0.11) 0.98 (0.09) n = 4
    B8 E356(377)A 1.21 (0.11) 2 1.05 (0.04) 3 0.90 (0.02) 0.99 (0.13) 0.92 (0.03) n = 3
    B9 M358(381)A 0.96 1.06 (0.07) 3 1.11 (0.06) 1.16 (0.25) 0.91 (0.09) n = 3
    B10 T359(382) 1.04 1.04 (0.05) 3 1.13 (0.10) 1.15 (0.04) 1.23 (0.26) n = 3
    B11 K360(383)A 1.30 (0.08) 4 1.02 (0.04) 3 1.12 (0.10) 1.12 (0.08) 1.23 (0.16) n = 6
    B12 N361(384)A 1.16 1.00 (0.03) 3 0.82 (0.07) 0.82 (0.12) 1.08 (0.06) n = 3
    B13 Q362(385)A 1.25 (0.24) 3 1.00 (0.04) 3 1.03 (0.10) 1.02 (0.03) 1.03 (0.16) n = 4
    B14 Y373(396)A 0.86 0.98 (0.07) 3 0.84 (0.11) 0.75 (0.08) 0.67 (0.04) n = 5
    B15 S375(398)A 1.17 (0.19) 5 0.95 (0.02) 3 1.08 (0.06) 1.14 (0.11) 1.04 (0.05) n = 6
    B16 D376(399)A 1.45 (0.36) 4 1.00 (0.05) 3 0.80 (0.16) 0.68 (0.14) 0.55 (0.10) n = 5
    B17 A378(401)Q 1.32 (0.13) 3 1.06 (0.05) 3 1.40 (0.17) 1.45 (0.17) 1.19 (0.17) n = 5
    B18 E380(405)A 2.19 (0.29) 6 1.04 (0.06) 3 1.18 (0.01) 1.07 (0.05) 0.92 (0.12) n = 2
    B19 E382(407)A 1.51 (0.18) 4 1.06 (0.03) 3 0.95 (0.11) 0.84 (0.04) 0.76 (0.17) n = 3
    B20 S383(408)A 0.74 1.03 (0.03) 3 0.92 (0.04) 0.94 (0.05) 0.88 (0.07) n = 3
    B21 N384(410)A 0.88 1.00 (0.01) 3 1.05 (0.19) 1.10 (0.18) 0.96 (0.18) n = 8
    B22 Q386(414)A 0.70 (0.10) 2 1.14 (0.08) 3 1.08 (0.13) 1.19 (0.25) 0.98 (0.14) n = 9
    B23 E388(416)A 0.64 (0.12) 2 1.15 (0.09) 3 0.87 (0.03) 0.94 (0.09) 0.62 (0.04) n = 3
    B24 N389(417)A 0.73 1.00 (0.02) 3 0.98 (0.15) 0.81 (0.04) 0.75 (0.02) n = 3
    B25 N390(418)A 0.87 1.06 (0.04) 3 0.99 (0.10) 0.94 (0.02) 0.87 (0.09) n = 3
    B26A Y391(419)A 1.14 1.00 (0.08) 3 0.97 (0.10) 0.94 (0.02) 0.86 (0.05) n = 3
    B26B Y391(419)F 0.81 (0.10) 2 1.00 (0.01) 3 1.05 (0.12) 1.11 (0.08) 1.01 (0.15) n = 5
    B27 K392(420)A 0.97 1.01 (0.08) 3 0.92 (0.20) 0.94 (0.01) 0.79 (0.22) n = 3
    B28 L398(426)A 0.94 (0.04) 2 1.13 (0.15) 6 1.17 (0.11) 1.20 (0.08) 0.94 (0.04) n = 3
    B29 S400(428)A 0.64 (0.07) 3 1.10 (0.09) 3 0.95 (0.04) 0.99 (0.08) 0.83 (0.07) n = 2
    B30 D401(430)A 1.10 (0.09) 3 1.13 (0.16) 6 1.11 (0.12) 1.19 (0.11) 0.97 (0.10) n = 5
    B31 D413(444)A 1.21 (0.07) 2 1.00 (0.01) 3 0.83 (0.08) 0.84 (0.06) 0.90 (0.16) n = 2
    B32 K414(445)A 1.02 1.00 (0.04) 3 0.64 (0.15) 0.58 (0.18) 0.82 (0.27) n = 3
    B33 S415(446)A 0.44 1.04 (0.03) 3 0.90 (0.11) 0.88 (0.05) 0.86 (0.18) n = 2
    B34 R416(447)A 1.08 0.96 (0.04) 3 0.68 (0.05) 0.80 (0.05) 0.71 (0.08) n = 2
    B35 Q418(449)A 0.77 (0.03) 2 0.98 (0.01) 3 1.00 (0.01) 0.96 (0.02) 0.96 (0.05) n = 2
    B36 Q419(450)A 0.76 (0.01) 2 0.97 (0.02) 3 0.68 (0.09) 0.63 (0.07) 0.86 (0.08) n = 3
    B37 N421(452)A 0.98 0.99 (0.01) 3 0.90 (0.03) 0.81 (0.0) 0.87 (0.12) n = 2
    B38 V422(453)A 1.01 0.98 (0.02) 3 0.89 (0.0) 0.83 (0.05) 0.83 (0.12) n = 2
    B39 S424(455)A 1.41 (0.14) 3 0.98 (0.03) 3 1.04 (0.06) 1.02 (0.02) 0.88 (0.09) n = 2
    B40 E430(461)A 0.93 (0.03) 2 1.05 (0.02) 3 1.24 (0.11) 1.28 (0.10) 1.20 (0.18) n = 5
    B41 H433(464)A 0.41 (0.14) 2 0.98 (0.03) 3 0.92 (0.18) 0.79 (0.18) 1.02 (0.15) n = 3
    B42 N434(465)A 3.46 (0.37) 7 1.00 (0.04) 3 0.97 (0.07) 0.98 (0.13) 0.74 (0.12) n = 5
    B43 H435(466)A <0.10 4 1.25 (0.09) 3 0.77 (0.05) 0.72 (0.05) 0.78 (0.03) n = 3
    B44 Y436(467)A <0.10 2 0.99 (0.02) 2 0.93 (0.05) 0.91 (0.06) 0.91 (0.15) n = 3
    B45 T437(468)A 0.99 (0.07) 1.00 (0.02) 3 1.12 (0.18) 1.00 (0.22) 0.77 (0.19) n = 5
    B46 Q438(469)A 0.79 (0.05) 2 1.02 (0.05) 3 0.80 (0.10) 0.72 (0.16) 1.01 (0.17) n = 5
    B47 K439(470)A 0.70 (0.04) 2 0.98 (0.04) 3 0.78 (0.16) 0.68 (0.22) 0.86 (0.19) n = 4
    B48 S440(471)A 0.99 1.01 (0.02) 3 1.10 (0.15) 1.11 (0.26) 0.93 (0.01) n = 3
    B49 S442(473)A 0.86 1.02 (0.02) 3 0.98 (0.08) 0.91 (0.11) 0.95 (0.10) n = 5
    B50 S444(475)A 0.80 1.01 (0.02) 3 1.07 (0.03) 1.03 (0.03) 0.88 (0.12) n = 2
    B51 K447(478)A 0.62 (0.12) 3 1.02 (0.03) 3 0.95 (0.05) 0.91 (0.05) 0.84 (0.09) n = 2
    Variants with increased binding to a FcγR generally had binding values ≧1.20 as determined in this Example and those with reduced binding to a FcγR generally had binding values ≦0.80 as determined in this Example. Variants with increased binding to FcRn generally had binding values ≧1.30 as determined in this Example and those with reduced binding to FcRn generally had binding values ≦0.70 as determined in this Example.
    Aside from alanine variants, various non-alanine substitution variants were made, and the FcR binding activity of those variants is summarized in the following table.
  • TABLE 8
    NON-ALANINE VARIANTS
    Res#EU FcRn FcγRI FcγRIIA FcγRIIB FcγRIIIA
    IG2 (Kabat) mean sd n mean sd n mean sd mean sd mean sd
    222 D249(262)E 0.97 0.99 0.84 n = 1
    176 T256(269)G 1.10 (0.03) 1.06 (0.07) 0.96 (0.27) n = 2
    254 T256(269)N 1.03 0.89 1.13 n = 1
    157 D265(278)N 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) n = 3
    158 D265(278)E 0.11 (0.04) 0.03 (0.01) 0.02 (0.01) n = 3
    189 S267(280)G R131 1.21 (0.05) 0.97 (0.16) 0.09 (0.02) n = 3
    H131 0.59 (0.09) n = 3
    84 H268(281)N 1.33 1.41 0.56 n = 1
    85 H268(281)S 1.35 1.38 0.81 n = 1
    87 H268(281)Y 1.19 1.29 0.76 n = 1
    168 E269(282)D 0.89 (0.10) 0.73 (0.07) 1.13 (0.21) n = 2
    169 E269(282)Q 0.08 (0.01) 0.16 (0.00) 0.28 (0.03) n = 2
    92 D270(283)N 0.06 (0.01) 0.10 (0.02) 0.04 (0.00) n = 2
    93 D270(283)E 0.55 (0.05) 0.38 (0.05) 1.17 (0.01) n = 2
    223 E272(285)Q 1.93 1.81 0.82 n = 1
    224 E272(285)N 0.43 0.23 0.50 n = 1
    167 K274(287)Q 0.86 0.94 0.62 n = 1
    165 N276(289)K 0.81 0.77 0.61 n = 1
    233 N276(289)Q 1.09 0.79 0.91 n = 1
    79 D280(295)N 1.26 (0.07) 1.38 (0.04) 1.13 (0.13) n = 2
    149 D280(295)S 1.07 (0.06) 1.04 (0.08) 1.09 (0.06) n = 2
    226 E283(300)Q 1.12 1.24 1.19 n = 1
    227 E283(300)S 1.03 1.07 0.85 n = 1
    228 E283(300)N 1.18 1.28 0.94 n = 1
    229 E283(300)D 1.14 1.23 0.95 n = 1
    23 N286(303)Q 1.52 1.13 0.96 n = 1
    237 N286(303)S 1.72 1.38 1.32 n = 1
    238 N286(303)D 1.41 1.23 0.98 n = 1
    73 K290(307)Q 1.17 1.26 1.40 n = 1
    75 K290(307)S 1.27 1.34 1.26 n = 1
    77 K290(307)E 1.14 1.10 1.20 1.30 n = 1
    78 K290(307)R 1.25 1.05 1.15 1.08 n = 1
    177 K290(307)G 1.07 1.21 1.23 n = 1
    80 R292(309)K 0.71 (0.17) 0.75 (0.10) 1.15 (0.18) n = 3
    81 R292(309)H 0.21 (0.09) 0.12 (0.01) 0.92 (0.08) n = 2
    82 R292(309)Q 0.47 (0.12) 0.25 (0.06) 0.45 (0.09) n = 3
    83 R292(309)N 0.54 (0.16) 0.29 (0.07) 0.88 (0.02) n = 3
    144 E293(310)Q 0.85 (0.03) 0.77 (0.13) 0.99 (0.04) n = 2
    145 E293(310)D 0.90 (0.02) 0.88 (0.07) 0.37 (0.07) n = 2
    147 E293(310)K 1.13 (0.04) 1.31 (0.17) 0.72 (0.08) n = 4
    173 E294(311)Q 1.01 0.95 0.84 n = 1
    174 E294(311)D 0.37 0.26 0.14 n = 1
    185 Y296(313)H 0.90 0.81 0.92 n = 1
    186 Y296(313)W 0.96 0.93 1.38 n = 1
    70 S298(317)G 0.87 (0.17) 0.63 (0.33) 0.46 (0.09) n = 4
    71 S298(317)T 0.41 (0.21) 0.40 (0.19) 0.89 (0.20) n = 3
    72 S298(317)N 0.08 (0.01) 0.16 (0.03) 0.06 (0.01) n = 2
    218 S298(317)V 0.11 (0.06) 0.17 (0.01) 0.33 (0.19) n = 3
    219 S298(317)L 1.14 (0.12) 1.42 (0.31) 0.34 (0.04) n = 3
    150 V303(322)L 0.89 (0.05) 0.73 (0.10) 0.76 (0.09) n = 4
    151 V303(322)T 0.64 (0.11) 0.34 (0.05) 0.20 (0.05) n = 4
    217 E318(337)K 1.03 1.08 0.72 n = 1
    172 K320(339)R 0.71 0.66 0.68 n = 1
    202 K320(339)M 1.34 1.40 1.27 n = 1
    204 K320(339)Q 1.23 1.12 1.17 n = 1
    205 K320(339)E 1.29 1.34 1.12 n = 1
    235 K320(339)R 1.24 0.95 0.86 n = 1
    155 K322(341)R 0.87 (0.07) 0.87 (0.21) 0.92 (0.15) n = 3
    156 K322(341)Q 0.87 (0.02) 0.92 (0.23) 0.78 (0.18) n = 3
    206 K322(341)E 1.38 1.34 0.81 n = 1
    207 K322(341)N 0.57 0.36 0.04 n = 1
    213 S324(343)N 1.15 1.09 0.97 n = 1
    214 S324(343)Q 0.82 0.83 0.78 n = 1
    215 S324(343)K 0.66 0.37 0.77 n = 1
    216 S324(343)E 0.82 0.73 0.81 n = 1
    208 K326(345)S 1.44 1.62 1.37 n = 1
    209 K326(345)N 1.04 1.00 1.27 n = 1
    210 K326(345)Q 1.36 1.41 1.15 n = 1
    211 K326(345)D 1.68 2.01 1.36 n = 1
    212 K326(345)E 1.34 (0.27) 1.47 (0.33) 1.26 (0.04) n = 2
    131 A327(346)S 0.23 (0.06) 0.22 (0.05) 0.06 (0.01) n = 4
    159 A327(346)G 0.92 (0.09) 0.83 (0.10) 0.36 (0.05) n = 3
    196 A330(349)D 0.18 0.08 0.07 n = 1
    197 A330(349)K 1.28 1.25 1.28 n = 1
    198 P331(350)S 1.00 0.86 0.86 n = 1
    199 P331(350)N 0.86 0.65 0.23 n = 1
    200 P331(350)E 1.06 0.91 0.42 n = 1
    203 P331(350)K 0.94 0.71 0.33 n = 1
    141 E333(352)Q 0.70 (0.05) 0.64 (0.09) 1.10 (0.03) n = 2
    142 E333(352)N 0.59 (0.04) 0.52 (0.07) 0.56 (0.10) n = 2
    143 E333(352)S 0.94 n = 1
    152 E333(352)K 0.85 (0.14) n = 3
    153 E333(352)R 0.75 (0.04) 0.66 (0.03) 0.84 (0.05) n = 2
    154 E333(352)D 1.26 (0.04) n = 3
    178 E333(352)G 0.87 0.76 1.05 n = 1
    179 K334(353)G 0.76 (0.08) 0.60 (0.13) 0.88 (0.22) n = 5
    135 K334(353)R 1.15 (0.09) 1.33 (0.18) 0.68 (0.07) n = 5
    136 K334(353)Q 1.08 (0.11) 1.10 (0.21) 1.31 (0.26) n = 7
    137 K334(353)N 1.16 (0.11) 1.29 (0.30) 1.15 (0.16) n = 7
    138 K334(353)S 1.01 (0.11) 1.03 ( ).05) 1.19 (0.08) n = 3
    139 K334(353)E 0.74 (0.15) 0.72 (0.12) 1.30 (0.09) n = 4
    140 K334(353)D 0.51 (0.09) 0.40 (0.03) 1.13 (0.09) n = 4
    190 K334(353)M 1.18 1.06 1.01 1.35 n = 1
    191 K334(353)Y 1.15 1.08 1.05 1.31 n = 1
    192 K334(353)W 1.16 0.94 0.91 1.07 n = 1
    193 K334(353)H 1.11 1.09 1.07 1.26 n = 1
    220 K334(353)V 1.13 (0.11) 1.09 (0.15) 1.34 (0.18) n = 3
    221 K334(353)L 1.05 1.09 1.38 n = 1
    171 T335(354)Q 0.86 0.79 0.84 n = 1
    194 T335(354)E 1.24 1.30 1.19 n = 1
    195 T335(354)K 1.19 1.14 1.30 n = 1
    273 A339(359)T 1.23 1.11 1.23 1.42 n = 1

    The following table summarizes the FcR binding activity of various combination variants.
  • TABLE 9
    COMBINATION VARIANTS
    Res#EU FcRn FcγRI FcγRIIA FcγRIIB FcγRIIIA
    IG2 (Kabat) mean sd n mean sd n mean sd mean sd mean sd
    96 S267(280)A 1.41 1.72 0.84 n = 1
    H268(281)A
    134 E333(352)A 0.72 (0.08) 0.63 (0.13) 1.30 (0.12) n = 5
    K334(353)A
    1059 T256(269)A 0.44 (0.03) 0.22 (0.04) 1.41 (0.06) n = 2
    S298(317)A
    1051 T256(269)A 0.47 (0.01) 0.30 (0.03) 1.21 (0.26) n = 2
    D280(295)A
    S298(317)A
    T307(326)A
    106 T256(269)A 0.11 0.08 0.90 n = 1
    D280(295)A
    R292(309)A
    S298(317)A
    T307(326)A
    107 S298(317)A 0.34 (0.05) 0.16 (0.08) 1.53 (0.24) n = 5
    E333(352)A
    109 S298(317)A 0.41 (0.07) 0.19 (0.08) 1.62 (0.34) n = 6
    K334(353)A
    110 S298(317)A 0.35 (0.13) 0.18 (0.08) 1.66 (0.42) n = 11
    E333(352)A
    K334(353)A
    246 S267(280)A 1.62 (0.15) 2.01 (0.45) 1.04 (0.12) n = 2
    E258(271)A
    247 S267(280)A 1.60 (0.18) 1.72 (0.13) 0.88 (0.07) n = 3
    R255(268)A
    248 S267(280)A 1.54 (0.08) 1.96 (0.37) 1.13 (0.07) n = 2
    D280(295)A
    250 S267(280)A 1.51 (0.13) 1.82 (0.32) 0.95 (0.05) n = 3
    E272(285)A
    251 S267(280)A 1.67 (0.11) 1.85 (0.10) 0.92 (0.09) n = 3
    E293(310)A
    264 S267(280)A 1.48 (0.12) 2.03 (0.30) 0.89 (0.04) n = 2
    E258(271)A
    D280(295)A
    R255(268)A
    269 E380(405)A 8.55 (0.94) 3 1.02 (0.07) 1.05 (0.11) 1.02 n = 2
    N434(465)A
    270 E380(405)A 12.6 (1.7) 0.99 (0.06) 0.99 (0.11) 0.96 n = 2
    N434(465)A
    T307(326)A
    271 E380(405)A 1.01 (0.01) 2 0.98 1.04 0.92 n = 1
    L309(328)A
    272 N434(465)A 3.15 (0.42) 2 0.94 (0.11) 0.96 (0.17) 0.88 n = 2
    K288(305)A
  • Discussion
  • This study includes a complete mapping of human IgG1 for human FcγRI, FcγRIIA, FcγRIIB, FcγRIIIA, and FcRn. An alanine-scan of all amino acids in human IgG1 Fc (C H2 and C H3 domains) exposed to solvent, based on the crystal structure of human Fc (Deisenhofer, Biochemistry 20:2361-2370 (1981)), was performed. Each exposed amino acid in C H2 and C H3 was individually changed to alanine and the variant IgG assayed against all five human receptors; all variants were evaluated using humanized anti-IgE E27 IgG1 as the parent polypeptide. FcγRI and FcRn are high affinity receptors and monomeric IgG could be evaluated in the assays for these two receptors. FcγRIIA, FcγRIIB and FcγRIIIA are low affinity receptors and required use of an immune complex. Hence, an ELISA-type assay was used for FcγRIIA, FcγRIIB, and FcγRIIIA, in which pre-formed hexamers, consisting of three anti-IgE E27 and three IgE molecules were bound to the FcγR and either anti-human IgG Fc-HRP or protein G-HRP used as detection reagent. In order to increase binding, these hexamers could be linked into multimers by addition of human VEGF (using anti-VEGF IgE). The hexamers bound to the low affinity FcγR significantly better than the IgG monomers; the multimers bound better than the hexamers (FIGS. 15A and 15B). The hexameric complexes were used since these provided sufficient binding and required less IgG. Complexes formed using other antibody:antigen combinations are also possible reagents, as long as the antigen contains at least two identical binding sites per molecule for the antibody. As an example, VEGF contains two binding sites per VEGF dimer for anti-VEGF A.4.6.1 (Kim et al., Growth Factors 7:53 (1992) and Kim et al Nature 362:841 (1993)). VEGF:anti-VEGF multimers also bound to the low affinity FcγRIIA and FcγRIIIA (FIGS. 16A and 16B).
  • Once the complete alanine-scan was performed, several classes of alanine variants were found. Some variants exhibited reduced binding to all FcγR (G14, FIG. 17), while other variants showed reduced binding only to one FcγR (G36, FIG. 17), improved binding only to one FcγR (G15, G54, G55, FIG. 17), or simultaneous reduction to one FcγR with improvement to another (G16, FIG. 17).
  • Individual alanine variants were also combined in a single variant Fc region; e.g. combining S298(317)A with K334(353)A improved binding to FcγRIIIA more than either S298(317)A or K334(353)A alone (FIGS. 18A and B; and compare variants 36, 55, and 109 in Tables 6 and 9) (residue numbers in parentheses are those of the EU index as in Kabat). Similarly, combining S298(317)A with E333(352)A improved binding to FcγRIIIA more than either S298(317)A or E333(352)A alone (compare variants 36, 54, and 107 in Tables 6 and 9).
  • Selected IgG variants were also tested for their binding to FcγR transfected into mammalian cells. The α-chain extracellular portion of human FcγRIIIA was transfected into CHO cells using a GPI-link, whereas for human FcγRIIB the full-length receptor was transfected into CHO cells. For the variants tested, the pattern of binding to the cells was the same as the pattern of binding in the protein:protein (ELISA) assay (FIGS. 18A-B and 19A-B).
  • One application of these variants is to improve the ADCC effector function of an antibody. This can be achieved by modifying Fc region amino acids at one or more residues which would lead to improved binding to FcγRIIIA. Improved FcγRIIIA binding would lead to improved binding by NK cells, which carry only FcγRIIIA and can mediate ADCC. Selected alanine variants which were either reduced in binding to FcγRIIIA (variants 17, 18, 34; Table 6), had no effect on FcγRIIIA binding (variant 31; Table 6), or had improved binding to FcγRIIIA (variants 30, 36; Table 6) were tested in an in vitro ADCC assay using human PBMCs as effector cells. Since the target cells were HER2-overexpressing SKBR3 cells, the IgG Fc variants used in this assay were generated by substituting the VH/VL domains of anti-IgE E27 with those from anti-HER2 antibody; HERCEPTIN® (humAb4D5-8 in Table 1 of Carter et al. PNAS (USA) 89:4285-4289 (1992)). The pattern of ADCC exhibited by the variants correlated well with the pattern of binding to FcγRIIIA (FIGS. 20 and 21). Notably the variant which showed the best improvement in binding to FcγRIIIA in protein:protein assays, variant 36 S298(317)A, also showed improvement in ADCC compared to wildtype HERCEPTIN® at 1.25 ng/ml (FIG. 21).
  • Example 5 Bind of Fc Variants to Polymorphic Fc Receptors
  • Allelic variants of several of the human FcγR have been found in the human population. These allelic variant forms have been shown to exhibit differences in binding of human and murine IgG and a number of association studies have correlated clinical outcomes with the presence of specific allelic forms (reviewed in Lehrnbecher et al. Blood 94(12):4220-4232 (1999)). Several studies have investigated two forms of FcγRIIA, R131 and H131, and their association with clinical outcomes (Hatta et al. Genes and Immunity 1:53-60 (1999); Yap et al. Lupus 8:305-310 (1999); and Lorenz et al. European J Immunogenetics 22:397-401 (1995)). Two allelic forms of FcγRIIIA, F158 and V158, are only now being investigated (Lehrnbecher et al., supra; and Wu et al. J. Clin. Invest. 100(5):1059-1070 (1997)). In this example, selected IgG variants were tested against both allelic forms of FcγRIIA or FcγRIIIA. Fc receptor binding assays were performed essentially as described in the above examples. However, for FcγRIIIA-V158, both (a) the low affinity receptor binding assay of Example 1 (which analyzes binding of the IgG complex to FcγRIIIA-V158); and (b) the high affinity FcγR binding assay of Example 4 (which analyzes binding of IgG monomer to FcγRIIIA-V158) were carried out. The results of these studies are summarized in Table 10 below.
  • TABLE 10
    Binding of Variants to FcγRIIA and FcγRIIIA Polymorphic Receptors
    IgG Complex IgG Complex IgG Complex IgG Complex IgG Monomer
    Res#EU FcγRIIA-R131 FcγRIIA-H131 FcγRIIIA-F158 FcγRIIIA-V158 FcγRIIIA-V158
    IG2 (Kabat) mean sd n mean sd n mean sd n mean sd n mean sd n
    11 T256(269)A 1.41 (0.27) 9 1.32 (0.18) 9 0.97 (0.03) 2 1.20 1
    254 T256(269)N 1.03 1 1.13 1 0.95 1 0.88 1
    14 D265(278)A 0.07 (0.01) 4 0.09 (0.06) 4 0.01 1
    15 S267(280)A 1.64 (0.18) 7 1.05 (0.03) 2 1.14 (0.25) 7
    189 S267(280)G 1.21 (0.05) 3 0.59 (0.09) 3 0.09 (0.02) 3
    16 H268(281)A 1.22 (0.14) 12 1.09 (0.01) 2 0.52 (0.09) 12
    25 E283(300)A 1.24 (0.23) 5 1.01 (0.14) 5 0.78 1
    226 E283(300)Q 1.12 1 1.19 1 0.89 1
    227 E283(300)S 1.03 1 0.85 1 0.83 1
    228 E283(300)N 1.18 1 0.94 1 0.63 1
    229 E283(300)D 1.14 1 0.95 1 0.67 1
    30 K290(307)A 1.29 (0.21) 7 1.28 (0.21) 7 1.12 (0.05) 2 1.13 1
    73 K290(307)Q 1.17 1 1.40 1 1.02 1 1.30 1
    75 K290(307)S 1.27 1 1.26 1 1.05 1 1.62 1
    77 K290(307)E 1.10 1 1.30 1 0.98 1 1.50 1
    78 K290(307)R 1.05 1 1.08 1 1.07 1 1.24 1
    177 K290(307)G 1.07 1 1.23 1 1.11 1 2.29 1
    31 R292(309)A 0.27 (0.14) 9 0.90 (0.18) 9 0.94 1
    80 R292(309)K 0.71 (0.17) 3 1.15 (0.18) 3 1.64 1
    81 R292(309)H 0.21 (0.09) 2 0.92 (0.08) 2 1.21 1
    82 R292(309)Q 0.47 (0.12) 3 0.45 (0.09) 3 0.56 1
    83 R292(309)N 0.54 (0.16) 3 0.88 (0.02) 3 0.91 1
    144 E293(310)Q 0.85 (0.03) 2 0.99 (0.04) 2 1.00 1 0.97 1
    33 E294(311)A 0.87 (0.19) 5 0.66 (0.14) 5 0.68 1
    173 E294(311)Q 1.01 1 0.84 1 0.79 1
    174 E294(311)D 0.37 1 0.14 1 0.26 1
    36 S298(317)A 0.40 (0.08) 12 1.30 (0.18) 12 1.02 (0.04) 2 1.96 1
    70 S298(317)G 0.87 (0.17) 4 0.46 (0.09) 4 0.88 1 1.88 1
    71 S298(317)T 0.41 (0.21) 3 0.89 (0.20) 3 0.96 1 0.75 1
    72 S298(317)N 0.08 (0.01) 2 0.06 (0.01) 2 0.66 1 0.17 1
    218 S298(317)V 0.11 (0.06) 3 0.33 (0.19) 3 0.88 1 0.39 1
    219 S298(317)L 1.14 (0.12) 3 0.34 (0.04) 3 0.83 1 0.67 1
    40 V305(324)A 1.12 (0.12) 4 1.04 1 0.84 (0.15) 4
    41 T307(326)A 1.19 (0.37) 12 1.37 (0.13) 2 1.12 (0.18) 12
    45 N315(334)A 1.15 (0.06) 5 1.11 (0.06) 2 1.07 (0.21) 5
    46 K317(336)A 1.13 (0.05) 4 1.04 1 1.10 (0.23) 4
    48 K320(339)A 1.12 (0.11) 4 1.16 1 0.87 (0.17) 4
    54 E333(352)A 0.92 (0.12) 10 1.27 (0.17) 10 1.10 (0.10) 2 1.29 1
    141 E333(352)Q 0.70 (0.05) 2 1.10 (0.03) 2 1.05 1 1.00 1
    142 E333(352)N 0.59 (0.04) 2 0.56 (0.10) 2 0.64 1 0.56 1
    143 E333(352)S 0.94 1 0.99 1 1.07 1
    152 E333(352)K 0.85 (0.14) 3 0.88 1 0.81 1
    153 E333(352)R 0.75 (0.04) 2 0.84 (0.05) 2 0.93 1 0.83 1
    154 E333(352)D 1.26 (0.04) 3 1.00 1 1.70 1
    178 E333(352)G 0.87 1 1.05 1 1.23 1
    55 K334(353)A 1.01 (0.15) 17 1.39 (0.19) 17 1.07 (0.09) 3 1.60 (0.01) 2
    135 K334(353)R 1.15 (0.09) 5 0.68 (0.07) 5 0.88 1
    136 K334(353)Q 1.08 (0.11) 7 1.31 (0.26) 7 1.27 (0.01) 2 1.92 1
    137 K334(353)N 1.16 (0.11) 7 1.15 (0.16) 7 1.19 (0.06) 2 1.70 1
    138 K334(353)S 1.01 (0.11) 3 1.19 (0.08) 3 1.25 1 1.82 1
    139 K334(353)E 0.74 (0.15) 4 1.30 (0.09) 4 1.17 1 2.75 1
    140 K334(353)D 0.51 (0.09) 4 1.13 (0.09) 4 1.07 1
    179 K334(353)G 0.76 (0.08) 5 0.88 (0.22) 5 0.94 1 1.28 1
    190 K334(353)M 1.06 1 1.35 1 0.99 1 2.08 1
    191 K334(353)Y 1.08 1 1.31 1 0.98 1 1.72 1
    192 K334(353)W 0.94 1 1.07 1 0.96 1 1.53 1
    193 K334(353)H 1.09 1 1.26 1 0.97 1 2.06 1
    220 K334(353)V 1.13 (0.11) 3 1.34 (0.18) 3 1.00 1 2.89 1
    221 K334(353)L 1.05 1 1.38 1 0.96 1 3.59 1
    65 P331(350)A 1.29 (0.14) 3 1.03 (0.19) 3 0.96 1 0.78 1
    198 P331(350)S 1.00 1 0.86 1 0.54 1
    199 P331(350)N 0.86 1 0.23 1 0.24 1
    200 P331(350)E 1.06 1 0.42 1 0.36 1
    203 P331(350)K 0.94 1 0.33 1 0.26 1
    96 S267(280)A 1.54 (0.12) 3 1.07 (0.06) 2 0.84 1
    H268(281)A
    110 S298(317)A 0.35 (0.13) 11 1.66 (0.42) 11 1.19 (0.18) 3
    E333(352)A
    K334(353)A
    271 E380(405)A 0.98 1 0.92 1 1.10 1
    L309(328)A
  • For FcγRIIIA, the pattern of binding of the selected IgG1 variants to the relatively higher affinity FcγRIIIA-V158 was the same as for the relatively lower affinity FcγRIIIA-F158 (the F158 form was used in assaying all variants). IgG1 variants which showed improved binding to the FcγRIIIA-F158 form also showed improved binding to the FcγRIIIA-V158 form though the improvement was not as pronounced. For FcγRIIA-R131 (used in assaying all variants) and FcγRIIA-H131, the binding pattern of the selected IgG1 variants did show some distinct differences. S267(280)A, H268(281)A, and S267(280) A/H268(281)A exhibited improved binding to FcγRIIA-R131, compared to native IgG1, but not to FcγRIIA-H131. In contrast, S267(280)G showed improved binding to FcγRIIA-R131 but reduced binding to FcγRIIA-H131 (Table 10). Other variants bound similarly to both allelic FcγRIIA forms: V305(324)A, T307(326)A, N315(324)A, K317(336)A, and K320(339)A.

Claims (15)

1. A method for treating a disorder in a mammal comprising administering to the mammal a therapeutically effective amount of a variant of a parent polypeptide comprising an Fc region, which variant mediates antibody-dependent cell-mediated cytotoxicity (ADCC) in the presence of human effector cells more effectively than the parent polypeptide and comprises at least one amino acid modification in the Fc region.
2. The method of claim 1 wherein the variant comprises an antibody.
3. The method of claim 1 wherein the parent polypeptide Fc region comprises a human IgG Fc region.
4. The method of claim 3 wherein the human IgG Fc region comprises a human IgG1, IgG2, IgG3 or IgG4 Fc region.
5. The method of claim 1 wherein the variant mediates ADCC about 1.5 fold to about 100 fold more effectively than the parent polypeptide.
6. The method of claim 1 wherein the variant binds an FcγRIII with better affinity than the parent polypeptide.
7. The method of claim 6 wherein the variant further binds an FcγRII with worse affinity than the parent polypeptide.
8. The method of claim 1 wherein the variant comprises at least one amino acid substitution in the Fc region.
9. The method of claim 1 wherein the variant comprises at least one amino acid modification in a CH2 domain of the Fc region.
10. The method of claim 1 wherein the variant comprises at least one amino acid modification in the Fc region, other than in a lower hinge region thereof.
11. The method of claim 1 wherein the variant comprises an amino acid substitution at any one or more of amino acid positions 256, 290, 298, 312, 326, 330, 333, 334, 360, 378 or 430 of the Fc region, wherein the numbering of the residues in the Fc region is that of the EU index as in Kabat.
12. The method of claim 11 wherein the variant comprises two or more amino acid substitutions at the amino acid positions listed therein.
13. The method of claim 11 wherein the variant comprises three or more amino acid substitutions at the amino acid positions listed therein.
14. The method of claim 1 wherein the mammal is a human.
15. A method for treating lymphoma or leukemia in a mammal comprising administering to the mammal a therapeutically effective amount of a variant of a parent antibody which binds CD20 and comprises an Fc region, which variant mediates antibody-dependent cell-mediated cytotoxicity (ADCC) in the presence of human effector cells more effectively than the parent antibody and comprises at least one amino acid substitution in the Fc region, wherein the Fc region of the variant is not a native sequence Fc region.
US12/171,888 1999-01-15 2008-07-11 Polypeptide variants with altered effector function Abandoned US20080274108A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/171,888 US20080274108A1 (en) 1999-01-15 2008-07-11 Polypeptide variants with altered effector function

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11602399P 1999-01-15 1999-01-15
US09/483,588 US6737056B1 (en) 1999-01-15 2000-01-14 Polypeptide variants with altered effector function
US10/757,863 US7416727B2 (en) 1999-01-15 2004-01-15 Polypeptide variants with altered effector function
US12/171,888 US20080274108A1 (en) 1999-01-15 2008-07-11 Polypeptide variants with altered effector function

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/757,863 Continuation US7416727B2 (en) 1999-01-15 2004-01-15 Polypeptide variants with altered effector function

Publications (1)

Publication Number Publication Date
US20080274108A1 true US20080274108A1 (en) 2008-11-06

Family

ID=32302071

Family Applications (11)

Application Number Title Priority Date Filing Date
US09/483,588 Expired - Lifetime US6737056B1 (en) 1999-01-15 2000-01-14 Polypeptide variants with altered effector function
US10/757,863 Expired - Fee Related US7416727B2 (en) 1999-01-15 2004-01-15 Polypeptide variants with altered effector function
US10/835,642 Expired - Lifetime US7122637B2 (en) 1999-01-15 2004-04-30 Polypeptide variants with altered effector function
US10/982,470 Abandoned US20050118174A1 (en) 1999-01-15 2004-11-05 Polypeptide variants with altered effector function
US11/158,839 Expired - Fee Related US7332581B2 (en) 1999-01-15 2005-06-22 Polypeptide variants with altered effector function
US11/429,786 Expired - Lifetime US7335742B2 (en) 1999-01-15 2006-05-08 Polypeptide variants with altered effector function
US11/947,982 Abandoned US20110293632A1 (en) 1999-01-15 2007-11-30 Polypeptide variants with altered effector function
US12/171,888 Abandoned US20080274108A1 (en) 1999-01-15 2008-07-11 Polypeptide variants with altered effector function
US13/860,462 Abandoned US20140342404A1 (en) 1999-01-15 2013-04-10 Polypeptide variants with altered effector function
US13/946,920 Abandoned US20140147436A1 (en) 1999-01-15 2013-07-19 Polypeptide variants with altered effector function
US14/835,494 Abandoned US20160060330A1 (en) 1999-01-15 2015-08-25 Polypeptide variants with altered effector function

Family Applications Before (7)

Application Number Title Priority Date Filing Date
US09/483,588 Expired - Lifetime US6737056B1 (en) 1999-01-15 2000-01-14 Polypeptide variants with altered effector function
US10/757,863 Expired - Fee Related US7416727B2 (en) 1999-01-15 2004-01-15 Polypeptide variants with altered effector function
US10/835,642 Expired - Lifetime US7122637B2 (en) 1999-01-15 2004-04-30 Polypeptide variants with altered effector function
US10/982,470 Abandoned US20050118174A1 (en) 1999-01-15 2004-11-05 Polypeptide variants with altered effector function
US11/158,839 Expired - Fee Related US7332581B2 (en) 1999-01-15 2005-06-22 Polypeptide variants with altered effector function
US11/429,786 Expired - Lifetime US7335742B2 (en) 1999-01-15 2006-05-08 Polypeptide variants with altered effector function
US11/947,982 Abandoned US20110293632A1 (en) 1999-01-15 2007-11-30 Polypeptide variants with altered effector function

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/860,462 Abandoned US20140342404A1 (en) 1999-01-15 2013-04-10 Polypeptide variants with altered effector function
US13/946,920 Abandoned US20140147436A1 (en) 1999-01-15 2013-07-19 Polypeptide variants with altered effector function
US14/835,494 Abandoned US20160060330A1 (en) 1999-01-15 2015-08-25 Polypeptide variants with altered effector function

Country Status (1)

Country Link
US (11) US6737056B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080127996A1 (en) * 2006-12-04 2008-06-05 Weinhold Dennis G Method and apparatus to remediate an acid and/or liquid spill
US20100098730A1 (en) * 2008-10-14 2010-04-22 Lowman Henry B Immunoglobulin variants and uses thereof
US8674083B2 (en) 1999-01-15 2014-03-18 Genentech, Inc. Polypeptide variants with altered effector function
US8969526B2 (en) 2011-03-29 2015-03-03 Roche Glycart Ag Antibody Fc variants
US9238878B2 (en) 2009-02-17 2016-01-19 Redwood Bioscience, Inc. Aldehyde-tagged protein-based drug carriers and methods of use
US9260527B2 (en) 2013-03-15 2016-02-16 Sdix, Llc Anti-human CXCR4 antibodies and methods of making same
US9540438B2 (en) 2011-01-14 2017-01-10 Redwood Bioscience, Inc. Aldehyde-tagged immunoglobulin polypeptides and methods of use thereof
US9695233B2 (en) 2012-07-13 2017-07-04 Roche Glycart Ag Bispecific anti-VEGF/anti-ANG-2 antibodies and their use in the treatment of ocular vascular diseases
US11208632B2 (en) 2016-04-26 2021-12-28 R.P. Scherer Technologies, Llc Antibody conjugates and methods of making and using the same

Families Citing this family (1734)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528624B1 (en) * 1998-04-02 2003-03-04 Genentech, Inc. Polypeptide variants
US6194551B1 (en) * 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
KR101077001B1 (en) * 1999-01-15 2011-10-26 제넨테크, 인크. Polypeptide Variants with Altered Effector Function
US6737056B1 (en) * 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
AU3672800A (en) * 1999-04-09 2000-11-14 Kyowa Hakko Kogyo Co. Ltd. Method for controlling the activity of immunologically functional molecule
EP1176981B1 (en) * 1999-05-07 2005-11-30 Genentech, Inc. Treatment of autoimmune diseases with antagonists which bind to b cell surface markers
JP4992068B2 (en) * 2000-01-27 2012-08-08 メディミューン,エルエルシー Ultra high affinity neutralizing antibody
CA2401652A1 (en) 2000-03-01 2001-09-07 Medimmune, Inc. High potency recombinant antibodies and method for producing them
EP2264072A1 (en) * 2000-04-13 2010-12-22 The Rockefeller University Enhancement of antibody-mediated cytotoxicity.
EP1296140A4 (en) * 2000-06-27 2005-06-29 Chugai Pharmaceutical Co Ltd Method of evaluating binding activity of ligand to ligand-binding protein
US20060034830A1 (en) * 2000-06-28 2006-02-16 Gerngross Tillman U Immunoglobulins comprising predominantly a GalGlcNAcMan5GLcNAc2 glycoform
US20060024304A1 (en) * 2000-06-28 2006-02-02 Gerngross Tillman U Immunoglobulins comprising predominantly a Man5GlcNAc2 glycoform
US20060034828A1 (en) * 2000-06-28 2006-02-16 Gerngross Tillman U Immunoglobulins comprising predominantly a GlcNAcMAN5GLCNAC2 glycoform
US20060029604A1 (en) * 2000-06-28 2006-02-09 Gerngross Tillman U Immunoglobulins comprising predominantly a GlcNAc2Man3GlcNAc2 glycoform
US20020058029A1 (en) * 2000-09-18 2002-05-16 Nabil Hanna Combination therapy for treatment of autoimmune diseases using B cell depleting/immunoregulatory antibody combination
US6946292B2 (en) * 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
US6855493B2 (en) 2000-11-28 2005-02-15 Medimmune, Inc. Methods of administering/dosing anti-RSV antibodies for prophylaxis and treatment
US7179900B2 (en) * 2000-11-28 2007-02-20 Medimmune, Inc. Methods of administering/dosing anti-RSV antibodies for prophylaxis and treatment
US7408041B2 (en) 2000-12-08 2008-08-05 Alexion Pharmaceuticals, Inc. Polypeptides and antibodies derived from chronic lymphocytic leukemia cells and uses thereof
US20060057651A1 (en) * 2000-12-08 2006-03-16 Bowdish Katherine S Polypeptides and antibodies derived from chronic lymphocytic leukemia cells and uses thereof
AU2002246632B2 (en) * 2000-12-08 2007-04-05 Alexion Pharmaceuticals, Inc. Chronic lymphocytic leukemia cell line and its use for producing an antibody
US9249229B2 (en) * 2000-12-08 2016-02-02 Alexion Pharmaceuticals, Inc. Polypeptides and antibodies derived from chronic lymphocytic leukemia cells and uses thereof
AU2002248184C1 (en) 2000-12-12 2018-01-04 Board Of Regents, The University Of Texas System Molecules with extended half-lives, compositions and uses thereof
US7658921B2 (en) * 2000-12-12 2010-02-09 Medimmune, Llc Molecules with extended half-lives, compositions and uses thereof
US7270960B2 (en) * 2001-08-29 2007-09-18 Pacific Northwest Research Institute Diagnosis of ovarian carcinomas
WO2003035835A2 (en) * 2001-10-25 2003-05-01 Genentech, Inc. Glycoprotein compositions
US20060024292A1 (en) * 2001-12-27 2006-02-02 Gerngross Tillman U Immunoglobulins comprising predominantly a Gal2GlcNAc2Man3GlcNAc2 glycoform
US20060034829A1 (en) * 2001-12-27 2006-02-16 Gerngross Tillman U Immunoglobulins comprising predominantly a MAN3GLCNAC2 glycoform
US20040002587A1 (en) * 2002-02-20 2004-01-01 Watkins Jeffry D. Fc region variants
US20100311954A1 (en) * 2002-03-01 2010-12-09 Xencor, Inc. Optimized Proteins that Target Ep-CAM
US20080260731A1 (en) * 2002-03-01 2008-10-23 Bernett Matthew J Optimized antibodies that target cd19
US20090042291A1 (en) * 2002-03-01 2009-02-12 Xencor, Inc. Optimized Fc variants
US20080254027A1 (en) * 2002-03-01 2008-10-16 Bernett Matthew J Optimized CD5 antibodies and methods of using the same
US7662925B2 (en) * 2002-03-01 2010-02-16 Xencor, Inc. Optimized Fc variants and methods for their generation
US20080199471A1 (en) * 2002-03-01 2008-08-21 Bernett Matthew J Optimized cd40 antibodies and methods of using the same
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
US20070148171A1 (en) * 2002-09-27 2007-06-28 Xencor, Inc. Optimized anti-CD30 antibodies
US7317091B2 (en) * 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
JPWO2003084569A1 (en) 2002-04-09 2005-08-11 協和醗酵工業株式会社 Antibody composition-containing medicine
AU2003232456B2 (en) * 2002-05-30 2009-06-04 Macrogenics, Inc. CD16A binding proteins and use for the treatment of immune disorders
US7132100B2 (en) * 2002-06-14 2006-11-07 Medimmune, Inc. Stabilized liquid anti-RSV antibody formulations
US8968730B2 (en) 2002-08-14 2015-03-03 Macrogenics Inc. FcγRIIB specific antibodies and methods of use thereof
US8530627B2 (en) * 2002-08-14 2013-09-10 Macrogenics, Inc. FcγRIIB specific antibodies and methods of use thereof
US8044180B2 (en) * 2002-08-14 2011-10-25 Macrogenics, Inc. FcγRIIB specific antibodies and methods of use thereof
CA2495251C (en) * 2002-08-14 2018-03-06 Macrogenics, Inc. Fc.gamma.riib-specific antibodies and methods of use thereof
US8946387B2 (en) * 2002-08-14 2015-02-03 Macrogenics, Inc. FcγRIIB specific antibodies and methods of use thereof
US8193318B2 (en) * 2002-08-14 2012-06-05 Macrogenics, Inc. FcγRIIB specific antibodies and methods of use thereof
US8187593B2 (en) * 2002-08-14 2012-05-29 Macrogenics, Inc. FcγRIIB specific antibodies and methods of use thereof
FR2844455B1 (en) * 2002-09-13 2007-12-14 Lab Francais Du Fractionnement TREATMENT OF PATHOLOGIES EXCLUDING IMMUNE RESPONSE BY OPTIMIZED ANTIBODIES
US20060235208A1 (en) * 2002-09-27 2006-10-19 Xencor, Inc. Fc variants with optimized properties
KR20070055625A (en) * 2002-12-16 2007-05-30 제넨테크, 인크. Immunoglobulin variants and uses thereof
US7960512B2 (en) 2003-01-09 2011-06-14 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
US7355008B2 (en) 2003-01-09 2008-04-08 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
GB0300571D0 (en) * 2003-01-10 2003-02-12 Imp College Innovations Ltd Modification of feeding behaviour
WO2004062619A2 (en) * 2003-01-13 2004-07-29 Macrogenics, Inc. SOLUBLE FcϜR FUSION PROTEINS AND METHODS OF USE THEREOF
US20070275460A1 (en) * 2003-03-03 2007-11-29 Xencor.Inc. Fc Variants With Optimized Fc Receptor Binding Properties
US8388955B2 (en) 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
US8084582B2 (en) 2003-03-03 2011-12-27 Xencor, Inc. Optimized anti-CD20 monoclonal antibodies having Fc variants
US20090010920A1 (en) 2003-03-03 2009-01-08 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRIIb
US20050233390A1 (en) * 2003-04-09 2005-10-20 Allen John W Device including a proteinaceous factor, a recombinant proteinaceous factor, and a nucleotide sequence encoding the proteinaceous factor
US9051373B2 (en) 2003-05-02 2015-06-09 Xencor, Inc. Optimized Fc variants
TWI353991B (en) 2003-05-06 2011-12-11 Syntonix Pharmaceuticals Inc Immunoglobulin chimeric monomer-dimer hybrids
US7709610B2 (en) 2003-05-08 2010-05-04 Facet Biotech Corporation Therapeutic use of anti-CS1 antibodies
NZ543960A (en) * 2003-05-09 2008-11-28 Univ Duke CD20-specific antibodies and methods of employing same
AU2004253868B2 (en) * 2003-06-13 2011-06-16 Biogen Ma Inc. Aglycosyl anti-CD154 (CD40 ligand) antibodies and uses thereof
EP1641827A2 (en) * 2003-06-27 2006-04-05 Biogen Idec MA Inc. Use of hydrophobic-interaction-chromatography or hinge-region modifications for the production of homogeneous antibody-solutions
CA2536408A1 (en) * 2003-08-22 2005-03-03 Biogen Idec Ma Inc. Improved antibodies having altered effector function and methods for making the same
US9714282B2 (en) * 2003-09-26 2017-07-25 Xencor, Inc. Optimized Fc variants and methods for their generation
US8101720B2 (en) * 2004-10-21 2012-01-24 Xencor, Inc. Immunoglobulin insertions, deletions and substitutions
GB0324368D0 (en) * 2003-10-17 2003-11-19 Univ Cambridge Tech Polypeptides including modified constant regions
PL1684805T3 (en) 2003-11-04 2010-12-31 Novartis Vaccines & Diagnostics Inc Use of antagonist anti-cd40 monoclonal antibodies for treatment of multiple myeloma
US20070098717A1 (en) 2003-11-04 2007-05-03 Chiron Corporation Methods of therapy for solid tumors expressing the cd40 cell-surface antigen
KR20070028295A (en) 2003-11-04 2007-03-12 노바티스 백신즈 앤드 다이아그노스틱스 인코포레이티드 Use of antagonist anti-cd40 antibodies for treatment of chronic lymphocytic leukemia
SI1682178T1 (en) 2003-11-04 2010-11-30 Novartis Vaccines & Diagnostic Methods of therapy for cancers expressing the cd40 antigen
US20070098718A1 (en) 2003-11-04 2007-05-03 Chiron Methods of therapy for b cell-related cancers
EA025962B1 (en) * 2003-11-05 2017-02-28 Роше Гликарт Аг ANTIBODIES HAVING INCREASED Fc RECEPTOR BINDING AFFINITY AND EFFECTOR FUNCTION
WO2005063815A2 (en) * 2003-11-12 2005-07-14 Biogen Idec Ma Inc. Fcϝ receptor-binding polypeptide variants and methods related thereto
EP1697415A1 (en) * 2003-11-12 2006-09-06 Biogen Idec MA Inc. NEONATAL Fc RECEPTOR (FcRn)-BINDING POLYPEPTIDE VARIANTS, DIMERIC Fc BINDING PROTEINS AND METHODS RELATED THERETO
US8029789B2 (en) 2003-11-13 2011-10-04 Hanmi Holdings Co., Ltd. Method for the mass production of immunoglobulin constant region
WO2005051289A2 (en) * 2003-11-18 2005-06-09 Iconic Therapeutics, Inc. Homogeneous preparations of chimeric proteins
AU2004297616B2 (en) * 2003-12-04 2008-12-18 Xencor, Inc. Methods of generating variant proteins with increased host string content and compositions thereof
WO2005077981A2 (en) * 2003-12-22 2005-08-25 Xencor, Inc. Fc POLYPEPTIDES WITH NOVEL Fc LIGAND BINDING SITES
DK2311873T3 (en) 2004-01-07 2018-11-26 Novartis Vaccines & Diagnostics Inc M-CSF-SPECIFIC MONOCLONAL ANTIBODY AND APPLICATIONS THEREOF
JP4762156B2 (en) * 2004-01-12 2011-08-31 アプライド モレキュラー エボリューション,インコーポレイテッド Fc region variant
EP1737890A2 (en) * 2004-03-24 2007-01-03 Xencor, Inc. Immunoglobulin variants outside the fc region
WO2005115452A2 (en) * 2004-04-16 2005-12-08 Macrogenics, Inc. Fcϝriib-specific antibodies and methods of use thereof
WO2005117972A2 (en) * 2004-05-05 2005-12-15 Genentech, Inc. Preventing autoimmune disease by using an anti-cd20 antibody
AU2005244058B2 (en) 2004-05-10 2011-07-28 Macrogenics, Inc. Humanized FcgammaRIIB specific antibodies and methods of use thereof
KR100545720B1 (en) * 2004-05-31 2006-01-24 메덱스젠 주식회사 Glycosylated Immunoglobulin and Immunoadhesin comprising the same
EP3130349A1 (en) * 2004-06-04 2017-02-15 Genentech, Inc. Method for treating multiple sclerosis
JP2008501706A (en) * 2004-06-04 2008-01-24 ジェネンテック・インコーポレーテッド Treatment method of disease
AR049390A1 (en) * 2004-06-09 2006-07-26 Wyeth Corp ANTIBODIES AGAINST HUMAN INTERLEUQUINE-13 AND USES OF THE SAME
US7501121B2 (en) * 2004-06-17 2009-03-10 Wyeth IL-13 binding agents
US7919086B2 (en) * 2004-07-09 2011-04-05 Chugai Seiyaku Kabushiki Kaisha Anti-glypican 3 antibody
US20150010550A1 (en) * 2004-07-15 2015-01-08 Xencor, Inc. OPTIMIZED Fc VARIANTS
CN103172731A (en) 2004-07-15 2013-06-26 赞科股份有限公司 Optimized Fc variants
CA2573359A1 (en) * 2004-07-22 2006-02-02 Genentech, Inc. Method of treating sjogren's syndrome
KR20070047327A (en) * 2004-07-26 2007-05-04 비오겐 아이덱 엠에이 아이엔씨. Anti-cd154 antibodies
EA012464B1 (en) 2004-08-04 2009-10-30 Эпплайд Молекьюлар Эволюшн, Инк. Antibody against cd20 and use thereof
US7659374B2 (en) * 2004-08-16 2010-02-09 Medimmune, Llc Eph receptor Fc variants with enhanced antibody dependent cell-mediated cytotoxicity activity
AU2005285347A1 (en) * 2004-08-19 2006-03-23 Genentech, Inc. Polypeptide variants with altered effector function
JP4733042B2 (en) * 2004-08-24 2011-07-27 中外製薬株式会社 Adjuvant therapy using anti-glypican 3 antibody
WO2006031994A2 (en) * 2004-09-14 2006-03-23 Xencor, Inc. Monomeric immunoglobulin fc domains
CN101287471B (en) * 2004-10-05 2012-10-03 杨森阿尔茨海默氏症免疫治疗公司 Methods and compositions for improving recombinant protein production
WO2006041680A2 (en) * 2004-10-05 2006-04-20 Genentech, Inc. Method for treating vasculitis
JO3000B1 (en) 2004-10-20 2016-09-05 Genentech Inc Antibody Formulations.
RU2451030C2 (en) * 2004-10-26 2012-05-20 Чугаи Сейяку Кабусики Кайся Anti-glypican 3-antibody having modified sugar chain
WO2006050166A2 (en) * 2004-10-29 2006-05-11 Medimmune, Inc. Methods of preventing and treating rsv infections and related conditions
WO2007001448A2 (en) 2004-11-04 2007-01-04 Massachusetts Institute Of Technology Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals
CA2587766A1 (en) * 2004-11-10 2007-03-01 Macrogenics, Inc. Engineering fc antibody regions to confer effector function
US8367805B2 (en) 2004-11-12 2013-02-05 Xencor, Inc. Fc variants with altered binding to FcRn
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
US8546543B2 (en) 2004-11-12 2013-10-01 Xencor, Inc. Fc variants that extend antibody half-life
EP2325206B1 (en) 2004-11-12 2014-03-19 Xencor, Inc. Fc variants with altered binding to fcrn
US20060222653A1 (en) * 2004-11-12 2006-10-05 Xencor, Inc. Antibodies operably linked to selected chemoattractants
US20070135620A1 (en) * 2004-11-12 2007-06-14 Xencor, Inc. Fc variants with altered binding to FcRn
CA2590935C (en) * 2004-12-15 2014-09-30 Macrogenics, Inc. Fc.gamma.riib-specific antibodies and methods of use thereof
EP1674479A1 (en) * 2004-12-22 2006-06-28 Memorial Sloan-Kettering Cancer Center Modulation of Fc Gamma receptors for optimizing immunotherapy
JP2008526205A (en) * 2004-12-31 2008-07-24 ジェネンテック・インコーポレーテッド Polypeptides that bind to BR3 and uses thereof
WO2006074399A2 (en) * 2005-01-05 2006-07-13 Biogen Idec Ma Inc. Multispecific binding molecules comprising connecting peptides
US20060275282A1 (en) * 2005-01-12 2006-12-07 Xencor, Inc. Antibodies and Fc fusion proteins with altered immunogenicity
DK1871805T3 (en) 2005-02-07 2019-12-02 Roche Glycart Ag ANTI-BINDING MOLECULES BINDING EGFR, VECTORS CODING THEREOF, AND APPLICATIONS THEREOF
DOP2006000029A (en) * 2005-02-07 2006-08-15 Genentech Inc ANTIBODY VARIANTS AND USES THEREOF. (VARIATIONS OF AN ANTIBODY AND USES OF THE SAME)
US7700099B2 (en) * 2005-02-14 2010-04-20 Merck & Co., Inc. Non-immunostimulatory antibody and compositions containing the same
PT1853718E (en) 2005-02-15 2015-11-12 Univ Duke Anti-cd19 antibodies and uses in oncology
CN101218251A (en) * 2005-02-28 2008-07-09 森托科尔公司 Heterodimeric protein binding compositions
EP1871882A1 (en) * 2005-03-25 2008-01-02 GlycArt Biotechnology AG Antigen binding molecules directed to mcsp and having increased fc receptor binding affinity and effector function
US20100104564A1 (en) * 2005-03-29 2010-04-29 Genevieve Hansen Altered Antibody Fc Regions and Uses Thereof
CN101198698B (en) 2005-03-31 2014-03-19 中外制药株式会社 Process for production of polypeptide by regulation of assembly
US11254748B2 (en) 2005-04-15 2022-02-22 Macrogenics, Inc. Covalent diabodies and uses thereof
US9963510B2 (en) * 2005-04-15 2018-05-08 Macrogenics, Inc. Covalent diabodies and uses thereof
AU2006236439B2 (en) * 2005-04-15 2012-05-03 Macrogenics, Inc. Covalent diabodies and uses thereof
US9284375B2 (en) * 2005-04-15 2016-03-15 Macrogenics, Inc. Covalent diabodies and uses thereof
JP5255435B2 (en) * 2005-04-26 2013-08-07 メディミューン,エルエルシー Regulation of antibody effector function by hinge domain manipulation
EP1885755A4 (en) 2005-05-05 2009-07-29 Univ Duke Anti-cd19 antibody therapy for autoimmune disease
CA2605781A1 (en) * 2005-05-09 2007-04-12 Glycart Biotechnology Ag Antigen binding molecules having modified fc regions and altered binding to fc receptors
US8333970B2 (en) 2005-05-18 2012-12-18 Novartis Ag Methods of monitoring the efficacy of anti-CD40 antibodies in treating a subject having an inflammatory or autoimmune disease
WO2006127517A2 (en) * 2005-05-20 2006-11-30 Genentech, Inc. Pretreatment of a biological sample from an autoimmune disease subject
AU2006261920A1 (en) 2005-06-23 2007-01-04 Medimmune, Llc Antibody formulations having optimized aggregation and fragmentation profiles
AU2006265936A1 (en) * 2005-07-01 2007-01-11 Medimmune, Llc An integrated approach for generating multidomain protein therapeutics
AU2006268227A1 (en) 2005-07-08 2007-01-18 Xencor, Inc Optimized anti-Ep-CAM antibodies
KR20080030673A (en) * 2005-07-21 2008-04-04 젠맵 에이/에스 Potency assays for antibody drug substance binding to an fc receptor
AU2006270718B2 (en) * 2005-07-22 2011-07-21 Kyowa Kirin Co., Ltd. Genetically modified antibody composition
US7923538B2 (en) 2005-07-22 2011-04-12 Kyowa Hakko Kirin Co., Ltd Recombinant antibody composition
EP2311876A3 (en) * 2005-07-28 2011-04-27 Novartis AG M-CSF-specific monoclonal antibody and uses thereof
CA2618681C (en) * 2005-08-10 2015-10-27 Macrogenics, Inc. Identification and engineering of antibodies with variant fc regions and methods of using same
JP2009504787A (en) * 2005-08-19 2009-02-05 シーラス コーポレイション Enhanced immune response mediated by antibodies
JP2009504786A (en) * 2005-08-19 2009-02-05 シーラス コーポレイション Listeria-induced immune recruitment and activation, and methods of use thereof
NO345919B1 (en) 2005-08-26 2021-10-18 Roche Glycart Ag Modified antigen-binding molecules with altered cell signaling activity
EP1934605B1 (en) * 2005-09-22 2014-03-26 Prosci Incorporated Glycosylated polypeptides produced in yeast mutants and methods of use thereof
AU2006299429B2 (en) * 2005-10-03 2012-02-23 Xencor, Inc. Fc variants with optimized Fc receptor binding properties
CA2625998C (en) 2005-10-06 2015-12-01 Xencor, Inc. Optimized anti-cd30 antibodies
US20070087005A1 (en) * 2005-10-14 2007-04-19 Lazar Gregory A Anti-glypican-3 antibody
US7790655B2 (en) 2005-10-14 2010-09-07 Medimmune, Llc Cell display of antibody libraries
EP1777524B1 (en) * 2005-10-17 2009-08-12 PLS Design GmbH Chimera of human IgE receptor alpha-chain and avian constant immunoglobulin domains for the determination of serum IgE
JP5583908B2 (en) * 2005-10-21 2014-09-03 ジェンザイム・コーポレーション Antibody-based therapeutics with enhanced ADCC activity
LT2380592T (en) 2005-11-14 2018-05-10 Teva Pharmaceuticals International Gmbh Antagonist antibody directed against calcitonin gene-related peptide
MY149159A (en) 2005-11-15 2013-07-31 Hoffmann La Roche Method for treating joint damage
KR20150098683A (en) * 2005-12-12 2015-08-28 에이씨 이뮨 에스.에이. A beta 1-42 specific monoclonal antibodies with therapeutic properties
WO2007070682A2 (en) * 2005-12-15 2007-06-21 Massachusetts Institute Of Technology System for screening particles
FR2894982A1 (en) * 2005-12-16 2007-06-22 Lab Francais Du Fractionnement Preparation of antibodies selective for activating Fc receptors, useful for treatment of tumors and viral or bacterial infections, by replacing specific histidine residues in the Fc region of a monoclonal antibody
ES2426468T3 (en) 2005-12-30 2013-10-23 Merck Patent Gmbh Anti-CD19 antibodies with reduced immunogenicity
WO2007130697A2 (en) 2006-01-05 2007-11-15 Genentech, Inc. Anti-ephb4 antibodies and methods using same
CN103690947A (en) 2006-01-12 2014-04-02 阿莱克申药物公司 Antibodies to ox-2/cd200 and uses thereof
EP1988922A4 (en) * 2006-02-03 2010-06-02 Medimmune Llc Protein formulations
WO2007103469A2 (en) 2006-03-06 2007-09-13 Aeres Biomedical Ltd. Humanized anti-cd22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease
WO2007106707A2 (en) * 2006-03-10 2007-09-20 Macrogenics, Inc. Identification and engineering of antibodies with variant heavy chains and methods of using same
AR059851A1 (en) 2006-03-16 2008-04-30 Genentech Inc ANTIBODIES OF EGFL7 AND METHODS OF USE
US8278421B2 (en) 2006-03-20 2012-10-02 Xoma Techolology Ltd. Human antibodies specific for gastrin materials and methods
WO2007114325A1 (en) 2006-03-31 2007-10-11 Chugai Seiyaku Kabushiki Kaisha Antibody modification method for purifying bispecific antibody
ES2892925T3 (en) 2006-03-31 2022-02-07 Chugai Pharmaceutical Co Ltd Methods for monitoring the blood pharmacokinetics of antibodies
EP2007435B1 (en) 2006-03-31 2019-12-18 Massachusetts Institute Of Technology System for targeted delivery of therapeutic agents
US20080227958A1 (en) * 2006-04-14 2008-09-18 Trubion Pharmaceuticals Inc. Binding proteins comprising immunoglobulin hinge and fc regions having altered fc effector functions
US20100080794A1 (en) * 2006-04-14 2010-04-01 Takashi Tsuji Mutant polypeptide having effector function
SMP200800064B (en) 2006-04-21 2009-11-06 Novartis Ag Pharmaceutical compositions of anti-cd40 antagonist antibodies
CA2652280C (en) 2006-05-15 2014-01-28 Massachusetts Institute Of Technology Polymers for functional particles
CA2660592C (en) * 2006-05-26 2016-07-12 Macrogenics, Inc. Humanized fc.gamma.riib-specific antibodies and methods of use thereof
KR101328756B1 (en) 2006-05-30 2013-11-18 제넨테크, 인크. Antibodies and immunoconjugates and uses therefor
RU2008152435A (en) * 2006-06-06 2010-07-20 Дженентек, Инк. (Us) COMPOSITIONS AND METHODS OF REGULATING VESSEL DEVELOPMENT
EP2023955A4 (en) * 2006-06-06 2009-10-28 Tolerrx Inc Administration of anti-cd3 antibodies in the treatment of autoimmune diseases
TW200815467A (en) * 2006-06-06 2008-04-01 Genentech Inc Anti-DLL4 antibodies and methods using same
US9381477B2 (en) * 2006-06-23 2016-07-05 Massachusetts Institute Of Technology Microfluidic synthesis of organic nanoparticles
PL2029173T3 (en) * 2006-06-26 2017-04-28 Macrogenics, Inc. Fc riib-specific antibodies and methods of use thereof
CA2656224C (en) 2006-06-26 2018-01-09 Macrogenics, Inc. Combination of fc.gamma.riib antibodies and cd20-specific antibodies and methods of use thereof
WO2008008482A2 (en) * 2006-07-13 2008-01-17 Genentech, Inc. Altered br3-binding polypeptides
US7892544B2 (en) * 2006-07-14 2011-02-22 Ac Immune Sa Humanized anti-beta-amyloid antibody
WO2008011081A2 (en) 2006-07-19 2008-01-24 The Trustees Of The University Of Pennsylvania Wsx-1/p28 as a target for anti-inflammatory responses
BRPI0715332A2 (en) 2006-08-04 2013-10-08 Novartis Ag ANTIBODY, METHODS OF MAKING AN ANTIBODY AS AN EXTRACELLULAR DOMAIN OF AN EPHB3 PROTEIN USEFUL FOR CANCER TREATMENT, SYSTEMICALLY CHANGING ANTIBODIES AND ANTIBODY AS AN EXTRACELLULAR DOMAIN FOR AN EXTRACELLULAR PROCELLAN CANCER SURFACE, TARGET A TUMOR CELL EXPRESSING EPBH3, AND USE HOST CELL, ISOLATED NUCLEIC ACID MOLECLE, EXPRESSION VECTOR, HOST CELL, PHARMACEUTICAL COMPOSITION, PHARMACEUTICAL COMPOSITION.
WO2008019142A2 (en) * 2006-08-04 2008-02-14 Massachusetts Institute Of Technology Oligonucleotide systems for targeted intracellular delivery
AR062223A1 (en) 2006-08-09 2008-10-22 Glycart Biotechnology Ag MOLECULES OF ADHESION TO THE ANTIGEN THAT ADHER TO EGFR, VECTORS THAT CODE THEM, AND THEIR USES OF THESE
JP5825756B2 (en) 2006-08-14 2015-12-02 ゼンコー・インコーポレイテッドXencor、 Inc. Optimized antibody targeting CD19
BRPI0715718A2 (en) 2006-08-18 2014-06-24 Novartis Ag ANTIBODY, METHODS OF TRIARING TO AN ANTIBODY FOR THE EXTRACELLULAR DOMAIN OF A PRLR PROTEIN, SYSTEMATICALLY CHANGING ANTIBODIES AND TRIATING TO AN ANTIBODY FOR AN EXTRACELLULAR DOMAIN, OF A CURREN ALTERNATE EXPRESSA PRLR, TO USE A HOSPITAL CELL, TO IDENTIFY AN INDIVIDUAL OF TREATMENT WITH AN ANTI-PRLR ANTIBODY, AND TO MONITOR CANCER THERAPY IN AN INDIVIDUAL, ISOLATED NUCLEIC ACID COMPLETE MOLECULES And, KIT
DK2066349T3 (en) 2006-09-08 2012-07-09 Medimmune Llc HUMANIZED ANTI-CD19 ANTIBODIES AND USE THEREOF IN TREATMENT OF TUMORS, TRANSPLANTATION AND AUTOIMMUNE DISEASES
EP2845912A1 (en) 2006-09-12 2015-03-11 Genentech, Inc. Methods and compositions for the diagnosis and treatment of lung cancer using KIT gene as genetic marker
EP2083017A4 (en) * 2006-09-14 2011-01-12 Med & Biological Lab Co Ltd Antibody having enhanced adcc activity and method for production thereof
WO2008036688A2 (en) * 2006-09-18 2008-03-27 Xencor, Inc. Optimized antibodies that target hm1.24
US20080112961A1 (en) * 2006-10-09 2008-05-15 Macrogenics, Inc. Identification and Engineering of Antibodies with Variant Fc Regions and Methods of Using Same
TWI414531B (en) * 2006-10-12 2013-11-11 Genentech Inc Antibodies to lymphotoxin-alpha
EP2407548A1 (en) * 2006-10-16 2012-01-18 MedImmune, LLC Molecules with reduced half-lives, compositions and uses thereof
US7846434B2 (en) 2006-10-24 2010-12-07 Trubion Pharmaceuticals, Inc. Materials and methods for improved immunoglycoproteins
BRPI0717601A2 (en) * 2006-10-24 2013-10-22 Trubion Pharmaceuticals Inc IMPROVED IMMUNGLYPROTEINS MATERIALS AND METHODS
PT2845866T (en) 2006-10-27 2017-08-09 Genentech Inc Antibodies and immunoconjugates and uses therefor
US20100303723A1 (en) * 2006-11-20 2010-12-02 Massachusetts Institute Of Technology Drug delivery systems using fc fragments
ATE555128T1 (en) 2006-11-30 2012-05-15 Res Dev Foundation IMPROVED IMMUNOLOBULIN LIBRARIES
EP2099823B2 (en) 2006-12-01 2022-02-09 Seagen Inc. Variant target binding agents and uses thereof
ES2678060T3 (en) 2006-12-01 2018-08-08 E. R. Squibb & Sons, L.L.C. Antibodies, in particular, human antibodies, which bind to CD22 and uses thereof
EP2494988B1 (en) 2006-12-07 2015-09-30 Novartis AG Antagonist antibodies against EPHB3
US8652466B2 (en) * 2006-12-08 2014-02-18 Macrogenics, Inc. Methods for the treatment of disease using immunoglobulins having Fc regions with altered affinities for FcγRactivating and FcγRinhibiting
CL2007003622A1 (en) 2006-12-13 2009-08-07 Medarex Inc Human anti-cd19 monoclonal antibody; composition comprising it; and tumor cell growth inhibition method.
AU2007333098A1 (en) 2006-12-14 2008-06-19 Medarex, Inc. Human antibodies that bind CD70 and uses thereof
WO2008079849A2 (en) * 2006-12-22 2008-07-03 Genentech, Inc. Antibodies to insulin-like growth factor receptor
KR101578940B1 (en) 2007-01-24 2015-12-18 교와 핫꼬 기린 가부시키가이샤 Genetically recombinant antibody composition having enhanced effector activity
WO2008091222A1 (en) * 2007-01-26 2008-07-31 Bioinvent International Ab Dll4 signaling inhibitors and uses thereof
US9217129B2 (en) * 2007-02-09 2015-12-22 Massachusetts Institute Of Technology Oscillating cell culture bioreactor
MX2009008981A (en) 2007-03-02 2009-09-02 Genentech Inc Predicting response to a her inhibitor.
DK3199180T3 (en) 2007-03-08 2022-03-21 Humanigen Inc EPHA3 ANTIBODIES FOR THE TREATMENT OF FIXED TUMORS
NZ580245A (en) 2007-03-22 2012-01-12 Biogen Idec Inc Binding proteins, including antibodies, antibody derivatives and antibody fragments, that specifically bind cd154 and uses thereof
CN104497143B (en) 2007-03-29 2020-08-25 健玛保 Bispecific antibody and method for producing same
WO2008124632A1 (en) * 2007-04-04 2008-10-16 Massachusetts Institute Of Technology Amphiphilic compound assisted nanoparticles for targeted delivery
EP2137215A2 (en) * 2007-04-23 2009-12-30 Wyeth Methods and compositions for treating and monitoring treatment of il-13-associated disorders
FR2915398B1 (en) * 2007-04-25 2012-12-28 Lab Francais Du Fractionnement "SET OF MEANS FOR THE TREATMENT OF MALIGNANT PATHOLOGY, AUTOIMMUNE DISEASE OR INFECTIOUS DISEASE"
EP2155789B1 (en) 2007-05-01 2013-07-24 Research Development Foundation Immunoglobulin fc libraries
KR20100017514A (en) * 2007-05-07 2010-02-16 메디뮨 엘엘씨 Anti-icos antibodies and their use in treatment of oncology, transplantation and autoimmune disease
PL2173381T3 (en) 2007-05-14 2014-03-31 Novimmune Sa Fc receptor-binding polypeptides with modified effector functions
WO2008150494A1 (en) * 2007-05-30 2008-12-11 Xencor, Inc. Methods and compositions for inhibiting cd32b expressing cells
AU2012244353B2 (en) * 2007-05-30 2016-10-20 Xencor, Inc. Methods and compositions for inhibiting CD32b expressing cells
AU2013204325A1 (en) * 2007-05-30 2013-05-09 Xencor, Inc Methods and compositions for inhibiting CD32b expressing cells
EP2167669A2 (en) 2007-05-31 2010-03-31 Genmab A/S Transgenic animals producing monovalent human antibodies and antibodies obtainable from these animals
WO2008145142A1 (en) 2007-05-31 2008-12-04 Genmab A/S Stable igg4 antibodies
EP1997830A1 (en) * 2007-06-01 2008-12-03 AIMM Therapeutics B.V. RSV specific binding molecules and means for producing them
TW201518320A (en) * 2007-06-12 2015-05-16 Ac Immune Sa Antibody specifically binding to beta amyloid and relevant nucleic acid molecule, expression vector, cell, composition, kit, method, and use
US8048420B2 (en) * 2007-06-12 2011-11-01 Ac Immune S.A. Monoclonal antibody
US8613923B2 (en) 2007-06-12 2013-12-24 Ac Immune S.A. Monoclonal antibody
TWI478939B (en) 2007-06-15 2015-04-01 Deutsches Krebsforsch Treatment of tumors using specific anti-l1 antibody
US7580304B2 (en) * 2007-06-15 2009-08-25 United Memories, Inc. Multiple bus charge sharing
WO2009006520A1 (en) * 2007-07-03 2009-01-08 Medimmune, Llc Hinge domain engineering
MX2010000979A (en) * 2007-07-25 2010-03-26 Alexion Pharma Inc Methods and compositions for treating autoimmune disease.
AU2008282218A1 (en) 2007-07-31 2009-02-05 Medimmune, Llc Multispecific epitope binding proteins and uses thereof
MX2010003325A (en) * 2007-09-26 2010-04-09 Genentech Inc Novel antibodies.
MY193526A (en) 2007-09-26 2022-10-18 Chugai Pharmaceutical Co Ltd Modified antibody constant region
CN106519025B (en) 2007-09-26 2021-04-23 中外制药株式会社 Method for changing isoelectric point of antibody by using amino acid substitution of CDR
CA2701793C (en) * 2007-10-05 2017-04-25 Genentech, Inc. Use of anti-amyloid beta antibody in ocular diseases
CN101998863B (en) * 2007-10-05 2015-09-16 基因技术公司 The purposes of anti-amyloid beta antibody in oculopathy
US20100297013A1 (en) * 2007-10-05 2010-11-25 Andrea Pfeifer Humanized antibody
CA2702083C (en) 2007-10-12 2021-11-30 Massachusetts Institute Of Technology Vaccine nanotechnology
US20120047586A9 (en) * 2007-10-24 2012-02-23 Otsuka Chemical Co., Ltd Polypeptide having enhanced effector function
AU2008323701B2 (en) 2007-11-07 2015-03-26 Genentech, Inc Methods and compositions for assessing responsiveness of B-cell lymphoma to treatment with anti-CD40 antibodies
SI3002298T1 (en) 2007-11-21 2019-12-31 Oregon Health & Science University Anti-factor xi monoclonal antibodies and methods of use thereof
AR069501A1 (en) 2007-11-30 2010-01-27 Genentech Inc ANTI-VEGF ANTIBODIES (VASCULAR ENDOTELIAL GROWTH FACTOR)
WO2009079242A2 (en) 2007-12-05 2009-06-25 Massachusetts Institute Of Technology Aglycosylated immunoglobulin mutants
KR101643005B1 (en) 2007-12-05 2016-07-28 추가이 세이야쿠 가부시키가이샤 Anti-NR10 antibody and use thereof
US8795667B2 (en) 2007-12-19 2014-08-05 Macrogenics, Inc. Compositions for the prevention and treatment of smallpox
EP3211010A1 (en) 2007-12-21 2017-08-30 Medimmune Limited Binding members for interleukin-4 receptor alpha (il-4r) - 173
US8092804B2 (en) 2007-12-21 2012-01-10 Medimmune Limited Binding members for interleukin-4 receptor alpha (IL-4Rα)-173
PL2235059T3 (en) 2007-12-26 2015-08-31 Xencor Inc Fc variants with altered binding to fcrn
BRPI0907046A2 (en) 2008-01-18 2015-07-28 Medimmune Llc Engineered cysteine antibody, isolated nucleic acid, vector, host cell, antibody conjugate, pharmaceutical composition, methods of detecting cancer, autoimmune, inflammatory or infectious disorders in an individual and inhibiting proliferation of a target cell
EP3153526B1 (en) 2008-01-31 2020-09-23 INSERM - Institut National de la Santé et de la Recherche Médicale Antibodies against human cd39 and use thereof for inhibiting t regulatory cells activity
AU2009212442C1 (en) 2008-02-05 2014-07-17 Bristol-Myers Squibb Company Alpha 5 - beta 1 antibodies and their uses
ES2689322T3 (en) 2008-03-04 2018-11-13 Teva Pharmaceuticals International Gmbh Methods to treat chronic pain
EP2271770B1 (en) * 2008-03-31 2018-08-22 Genentech, Inc. Compositions and methods for treating and diagnosing asthma
EP3045475B1 (en) 2008-04-02 2017-10-04 MacroGenics, Inc. Bcr-complex-specific antibodies and methods of using same
WO2009123894A2 (en) 2008-04-02 2009-10-08 Macrogenics, Inc. Her2/neu-specific antibodies and methods of using same
NZ588507A (en) 2008-04-11 2012-11-30 Chugai Pharmaceutical Co Ltd Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
AU2008201871A1 (en) * 2008-04-16 2009-11-26 Deutsches Krebsforschungszentrum Stiftung Des Oeffentlichen Rechts Inhibition of angiogenesis and tumor metastasis
US9758594B2 (en) 2008-04-25 2017-09-12 Kyowa Hakko Kirin Co., Ltd. Stable multivalent antibody
EP2282770B1 (en) * 2008-06-04 2018-03-07 MacroGenics, Inc. Antibodies with altered binding to fcrn and methods of using same
KR20110039220A (en) 2008-06-30 2011-04-15 교와 핫꼬 기린 가부시키가이샤 Anti-cd27 antibody
AR077718A1 (en) * 2008-07-15 2011-09-21 Genentech Inc METHODS TO TREAT AUTOIMMUNE DISEASES USING ANTI CD4 ANTIBODIES. PHARMACEUTICAL FORMULATION
TW201438738A (en) 2008-09-16 2014-10-16 Genentech Inc Methods for treating progressive multiple sclerosis
EP2344536A1 (en) 2008-09-19 2011-07-20 MedImmune, LLC Antibodies directed to dll4 and uses thereof
WO2010036443A1 (en) * 2008-09-26 2010-04-01 Eureka Therapeutics, Inc. Cell lines and proteins with variant glycosylation pattern
TWI440469B (en) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
US20100082438A1 (en) * 2008-10-01 2010-04-01 Ronnie Jack Garmon Methods and systems for customer performance scoring
US8343498B2 (en) 2008-10-12 2013-01-01 Massachusetts Institute Of Technology Adjuvant incorporation in immunonanotherapeutics
US8277812B2 (en) 2008-10-12 2012-10-02 Massachusetts Institute Of Technology Immunonanotherapeutics that provide IgG humoral response without T-cell antigen
US8591905B2 (en) 2008-10-12 2013-11-26 The Brigham And Women's Hospital, Inc. Nicotine immunonanotherapeutics
US8343497B2 (en) 2008-10-12 2013-01-01 The Brigham And Women's Hospital, Inc. Targeting of antigen presenting cells with immunonanotherapeutics
US8298533B2 (en) 2008-11-07 2012-10-30 Medimmune Limited Antibodies to IL-1R1
BRPI0921845A2 (en) 2008-11-12 2019-09-17 Medimmune Llc stable sterile aqueous formulation, pharmaceutical unit dosage form, pre-filled syringe, and methods for treating a disease or disorder, treating or preventing rejection, depleting unique expressing t cells in a human patient, and disrupting central germinal architecture in a secondary lymphoid organ of a primate
GB0821100D0 (en) * 2008-11-18 2008-12-24 Hansa Medical Ab Antibodies
WO2010062960A2 (en) 2008-11-26 2010-06-03 Cedars-Sinai Medical Center METHODS OF DETERMINING RESPONSIVENESS TO ANTI-TNFα THERAPY IN INFLAMMATORY BOWEL DISEASE
US8775090B2 (en) 2008-12-12 2014-07-08 Medimmune, Llc Crystals and structure of a human IgG Fc variant with enhanced FcRn binding
TW201029662A (en) 2008-12-19 2010-08-16 Glaxo Group Ltd Novel antigen binding proteins
WO2010075249A2 (en) 2008-12-22 2010-07-01 Genentech, Inc. A method for treating rheumatoid arthritis with b-cell antagonists
WO2010072740A2 (en) 2008-12-23 2010-07-01 Astrazeneca Ab TARGETED BINDING AGENTS DIRECTED TO α5β1 AND USES THEREOF
PT2374883T (en) 2008-12-26 2016-10-20 Kyowa Hakko Kirin Co Ltd Anti-cd4 antibody
WO2010078526A1 (en) 2008-12-31 2010-07-08 Biogen Idec Ma Inc. Anti-lymphotoxin antibodies
ES2825173T3 (en) 2009-01-21 2021-05-14 Amgen Inc Compositions and methods of treatment of inflammatory and autoimmune diseases
WO2010100200A2 (en) * 2009-03-05 2010-09-10 Novartis Ag Lyophilised antibody formulation
NZ594950A (en) 2009-03-06 2013-06-28 Kalobios Pharmaceuticals Inc Treatment of leukemias and chronic myeloproliferative diseases with antibodies to epha3
EP2826789A1 (en) 2009-03-19 2015-01-21 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
WO2010107110A1 (en) 2009-03-19 2010-09-23 中外製薬株式会社 Antibody constant region variant
TW201438739A (en) 2009-03-20 2014-10-16 Genentech Inc Anti-HER antibodies
HUE025726T2 (en) 2009-03-25 2016-04-28 Genentech Inc Anti-fgfr3 antibodies and methods using same
KR101523127B1 (en) 2009-03-25 2015-05-26 제넨테크, 인크. Novel anti-alpha5beta1 antibodies and uses thereof
CA2754646A1 (en) 2009-03-31 2010-10-07 Roche Glycart Ag Treatment of cancer with a humanized anti-egfr igg1 antibody and irinotecan
EP2417156B1 (en) 2009-04-07 2015-02-11 Roche Glycart AG Trivalent, bispecific antibodies
WO2010118243A2 (en) 2009-04-08 2010-10-14 Genentech, Inc. Use of il-27 antagonists to treat lupus
EP2417984B1 (en) 2009-04-10 2016-03-30 Kyowa Hakko Kirin Co., Ltd. Method for treatment of blood tumor using anti-tim-3 antibody
CN102459639A (en) 2009-04-18 2012-05-16 健泰科生物技术公司 Methods for assessing responsiveness of b-cell lymphoma to treatment with anti-cd40 antibodies
PT2426148E (en) 2009-04-27 2015-10-26 Kyowa Hakko Kirin Co Ltd Anti-il-3ra antibody for use in treatment of blood tumor
WO2010129248A1 (en) 2009-05-06 2010-11-11 Centocor Ortho Biotech Inc. Melanocortin receptor binding conjugates
CN102458468B (en) 2009-05-08 2018-05-18 瓦西尼斯公司 Anti- CD100 antibody and its application method
BRPI1011145A2 (en) 2009-05-15 2016-03-15 Chugai Pharmaceutical Co Ltd anti-axl antibody
ES2548030T3 (en) 2009-06-01 2015-10-13 Medimmune, Llc Molecules with prolonged half-lives and uses thereof
JP6039181B2 (en) 2009-06-11 2016-12-07 大学共同利用機関法人情報・システム研究機構 Protein production method
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
US20100316639A1 (en) 2009-06-16 2010-12-16 Genentech, Inc. Biomarkers for igf-1r inhibitor therapy
MX2012000121A (en) * 2009-06-22 2012-03-07 Medimmune Llc ENGINEERED Fc REGIONS FOR SITE-SPECIFIC CONJUGATION.
WO2011008517A2 (en) * 2009-06-30 2011-01-20 Research Development Foundation Immunoglobulin fc polypeptides
CN106148547A (en) 2009-07-13 2016-11-23 霍夫曼-拉罗奇有限公司 Diagnostic method and composition for treatment of cancer
WO2011014457A1 (en) 2009-07-27 2011-02-03 Genentech, Inc. Combination treatments
WO2011016567A1 (en) 2009-08-07 2011-02-10 協和発酵キリン株式会社 Humanized anti-amyloid-β oligomer antibody
WO2011016568A1 (en) 2009-08-07 2011-02-10 協和発酵キリン株式会社 Humanized anti-amyloid-β oligomer antibody
MX2012001716A (en) 2009-08-14 2012-04-02 Genentech Inc Biological markers for monitoring patient response to vegf antagonists.
AU2010284433B2 (en) 2009-08-17 2013-12-05 Health Research, Inc. Combination therapy of cancer with anti-endoglin antibodies and anti-VEGF agents
US8221753B2 (en) 2009-09-30 2012-07-17 Tracon Pharmaceuticals, Inc. Endoglin antibodies
JP2013502458A (en) 2009-08-24 2013-01-24 アムニクス オペレーティング インコーポレイテッド Coagulation factor VII composition and methods of making and using the same
EP3165236B1 (en) 2009-08-28 2022-03-16 Teva Pharmaceuticals International GmbH Methods for treating visceral pain by administering antagonist antibodies directed against calcitonin gene-related peptide
JP5744872B2 (en) 2009-08-31 2015-07-08 ロシュ グリクアート アーゲー Affinity matured humanized anti-CEA monoclonal antibody
US9493578B2 (en) 2009-09-02 2016-11-15 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
EP2473522B1 (en) 2009-09-02 2016-08-17 Genentech, Inc. Mutant smoothened and methods of using the same
EP2473637B1 (en) 2009-09-03 2017-03-29 F. Hoffmann-La Roche AG Methods for treating, diagnosing, and monitoring rheumatoid arthritis
SG179070A1 (en) 2009-09-11 2012-04-27 Genentech Inc Method to identify a patient with an increased likelihood of responding to an anti-cancer agent
CN104945509A (en) 2009-09-16 2015-09-30 弗·哈夫曼-拉罗切有限公司 Coiled coil and/or tether containing protein complexes and uses thereof
WO2011037158A1 (en) 2009-09-24 2011-03-31 中外製薬株式会社 Modified antibody constant regions
CN102597775A (en) 2009-09-25 2012-07-18 佐马技术有限公司 Screening methods
US8926976B2 (en) 2009-09-25 2015-01-06 Xoma Technology Ltd. Modulators
US8568726B2 (en) 2009-10-06 2013-10-29 Medimmune Limited RSV specific binding molecule
ES2672121T3 (en) 2009-10-07 2018-06-12 Macrogenics, Inc. Polypeptides containing Fc region that have an enhanced effector function due to alterations in the degree of fucosylation, and methods for their use
ES2743558T3 (en) 2009-10-14 2020-02-19 Humanigen Inc EphA3 antibodies
MX2012004647A (en) 2009-10-22 2012-06-19 Genentech Inc Anti-hepsin antibodies and methods using same.
WO2011056494A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor-like kinase-1 antagonist and vegfr3 antagonist combinations
WO2011056502A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Bone morphogenetic protein receptor type ii compositions and methods of use
WO2011056497A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor type iib compositions and methods of use
LT3202898T (en) 2009-11-02 2019-01-25 University Of Washington Therapeutic nuclease compositions and methods
US9013699B2 (en) * 2009-11-09 2015-04-21 Cantwell G. Carson Vaccine testing system
AU2010321720B2 (en) * 2009-11-23 2017-03-02 Amgen Inc. Monomeric antibody Fc
MX2012005809A (en) 2009-11-24 2012-09-07 Medimmune Ltd Targeted binding agents against b7-h1.
LT2510012T (en) 2009-12-09 2017-07-25 Bayer Pharma Aktiengesellschaft Anti-c4.4a antibodies and uses thereof
ES2565208T3 (en) 2009-12-11 2016-04-01 F. Hoffmann-La Roche Ag Anti-VEGF-C antibodies and methods of use thereof
EA027502B1 (en) 2009-12-23 2017-08-31 Зиниммуне Гмбх Anti-flt3 antibodies and methods of using the same
HUE027713T2 (en) 2009-12-23 2016-10-28 Hoffmann La Roche Anti-bv8 antibodies and uses thereof
WO2011091078A2 (en) 2010-01-19 2011-07-28 Xencor, Inc. Antibody fc variants with enhanced complement activity
US9074192B2 (en) 2010-01-22 2015-07-07 The Board Of Trustees Of The Leland Stanford Junior University Inhibition of AXL signaling in anti-metastatic therapy
PT2525824T (en) 2010-01-22 2017-07-13 Univ Leland Stanford Junior Inhibition of axl signaling in anti-metastatic therapy
WO2011089211A1 (en) 2010-01-22 2011-07-28 Synimmune Gmbh Anti-cd133 antibodies and methods of using the same
TWI489996B (en) 2010-01-28 2015-07-01 葛蘭素集團有限公司 Cd127 binding proteins
EP2534175A2 (en) 2010-02-09 2012-12-19 Glaxo Group Limited Treatment of a metabolic disorder
US9173961B2 (en) 2010-02-10 2015-11-03 Immunogen, Inc. CD20 antibodies and uses thereof
CA2784211C (en) 2010-02-18 2019-12-24 Genentech, Inc. Neuregulin antagonists and use thereof in treating cancer
EP2848632B1 (en) * 2010-02-23 2019-07-10 Sanofi Human igg1 fc with improved cdc and adcc activity
US9260529B2 (en) 2010-02-24 2016-02-16 The University Of Washington Through Its Center For Commercialization Molecules that bind CD180, compositions and methods of use
UA108227C2 (en) 2010-03-03 2015-04-10 ANTIGENCY PROTEIN
JP5889181B2 (en) 2010-03-04 2016-03-22 中外製薬株式会社 Antibody constant region variants
NZ701539A (en) 2010-03-04 2015-04-24 Macrogenics Inc Antibodies reactive with b7-h3, immunologically active fragments thereof and uses thereof
US8802091B2 (en) 2010-03-04 2014-08-12 Macrogenics, Inc. Antibodies reactive with B7-H3 and uses thereof
KR101899835B1 (en) 2010-03-24 2018-09-19 제넨테크, 인크. Anti-lrp6 antibodies
TW201138821A (en) 2010-03-26 2011-11-16 Roche Glycart Ag Bispecific antibodies
WO2011120134A1 (en) * 2010-03-29 2011-10-06 Zymeworks, Inc. Antibodies with enhanced or suppressed effector function
EA201201435A1 (en) 2010-04-20 2013-04-30 Генмаб А/С HETERODIMERNY ANTIBODY-Fc-CONTAINING PROTEINS AND METHODS FOR THEIR RECEIVING
WO2011133931A1 (en) 2010-04-22 2011-10-27 Genentech, Inc. Use of il-27 antagonists for treating inflammatory bowel disease
WO2011146568A1 (en) 2010-05-19 2011-11-24 Genentech, Inc. Predicting response to a her inhibitor
WO2011147834A1 (en) 2010-05-26 2011-12-01 Roche Glycart Ag Antibodies against cd19 and uses thereof
WO2011147986A1 (en) 2010-05-27 2011-12-01 Genmab A/S Monoclonal antibodies against her2
WO2011153224A2 (en) 2010-06-02 2011-12-08 Genentech, Inc. Diagnostic methods and compositions for treatment of cancer
TW201210612A (en) 2010-06-03 2012-03-16 Glaxo Group Ltd Humanised antigen binding proteins
NZ701208A (en) 2010-06-03 2016-05-27 Genentech Inc Immuno-pet imaging of antibodies and immunoconjugates and uses thereof
CA3220104A1 (en) 2010-06-08 2011-12-15 Genentech, Inc. Cysteine engineered antibodies and conjugates
HUE040213T2 (en) 2010-06-11 2019-02-28 Kyowa Hakko Kirin Co Ltd Anti-tim-3 antibody
MX336001B (en) 2010-06-18 2016-01-07 Genentech Inc Anti-axl antibodies and methods of use.
WO2011161119A1 (en) 2010-06-22 2011-12-29 F. Hoffmann-La Roche Ag Antibodies against insulin-like growth factor i receptor and uses thereof
WO2011161189A1 (en) 2010-06-24 2011-12-29 F. Hoffmann-La Roche Ag Anti-hepsin antibodies and methods of use
PT2591006T (en) 2010-07-09 2019-07-29 Bioverativ Therapeutics Inc Processable single chain molecules and polypeptides made using same
MX2013000083A (en) 2010-07-09 2013-02-26 Genentech Inc Anti-neuropilin antibodies and methods of use.
EP2409712A1 (en) 2010-07-19 2012-01-25 International-Drug-Development-Biotech Anti-CD19 antibody having ADCC and CDC functions and improved glycosylation profile
WO2012010582A1 (en) 2010-07-21 2012-01-26 Roche Glycart Ag Anti-cxcr5 antibodies and methods of use
CN106432495A (en) 2010-07-22 2017-02-22 加利福尼亚大学董事会 Anti-tumor antigen antibodies and methods of use
AU2011282536B2 (en) 2010-07-30 2015-12-24 Ac Immune S.A. Safe and functional humanized anti beta-amyloid antibody
JP5964300B2 (en) 2010-08-02 2016-08-03 マクロジェニクス,インコーポレーテッド Covalently bonded diabody and its use
WO2012018771A1 (en) 2010-08-03 2012-02-09 Genentech, Inc. Chronic lymphocytic leukemia (cll) biomarkers
WO2012017003A1 (en) 2010-08-05 2012-02-09 F. Hoffmann-La Roche Ag Anti-mhc antibody anti-viral cytokine fusion protein
WO2012019061A2 (en) 2010-08-05 2012-02-09 Stem Centrx, Inc. Novel effectors and methods of use
CA2806021C (en) 2010-08-13 2019-05-21 Roche Glycart Ag Anti-fap antibodies and methods of use
KR101653030B1 (en) 2010-08-13 2016-08-31 로슈 글리카트 아게 Anti-tenascin-c a2 antibodies and methods of use
US20130177555A1 (en) 2010-08-13 2013-07-11 Medimmune Limited Monomeric Polypeptides Comprising Variant FC Regions And Methods Of Use
WO2012022734A2 (en) 2010-08-16 2012-02-23 Medimmune Limited Anti-icam-1 antibodies and methods of use
NZ604510A (en) 2010-08-17 2013-10-25 Csl Ltd Dilutable biocidal compositions and methods of use
JP5813114B2 (en) 2010-08-25 2015-11-17 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Antibodies against IL-18R1 and uses thereof
EP2608807A1 (en) 2010-08-27 2013-07-03 Stem Centrx, Inc. Notum protein modulators and methods of use
ES2641916T3 (en) 2010-08-31 2017-11-14 Genentech, Inc. Biomarkers and treatment methods
UY33578A (en) 2010-08-31 2012-03-30 Sanofi Sa PEPTIDE PEPTIDE OR COMPLEX THAT JOINS INTEGRINE TO (ALPHA) AND METHODS AND USES THAT INVOLVE THE SAME
WO2012028683A1 (en) 2010-09-02 2012-03-08 Novartis Ag Antibody gel system for sustained drug delivery
NZ608318A (en) 2010-09-02 2015-03-27 Vaccinex Inc Anti-cxcl13 antibodies and methods of using the same
BR112013005116A2 (en) 2010-09-03 2019-09-24 Stem Centrx Inc modulators and methods of use
TW201302793A (en) 2010-09-03 2013-01-16 Glaxo Group Ltd Novel antigen binding proteins
US9150655B2 (en) 2010-09-03 2015-10-06 Academia Sinica Anti-C-met antibody and methods of use thereof
WO2012045085A1 (en) 2010-10-01 2012-04-05 Oxford Biotherapeutics Ltd. Anti-rori antibodies
JP5974012B2 (en) 2010-10-05 2016-08-23 ジェネンテック, インコーポレイテッド Mutant smoothened and method of using the same
CN108341868B (en) 2010-11-05 2022-06-07 酵活有限公司 Stable heterodimeric antibody design with mutations in the Fc domain
EP2638066A4 (en) * 2010-11-09 2015-06-03 Medimmune Llc Antibody scaffold for homogenous conjugation
CN103228674B (en) 2010-11-10 2019-07-05 霍夫曼-拉罗奇有限公司 Method and composition for neural disease immunotherapy
WO2012075111A1 (en) 2010-11-30 2012-06-07 Novartis Ag Uses of anti-cd40 antibodies in combination therapy for b cell-related cancers
KR20220082104A (en) 2010-11-30 2022-06-16 추가이 세이야쿠 가부시키가이샤 Cytotoxicity-inducing therapeutic agent
SG10201509790YA (en) 2010-11-30 2015-12-30 Chugai Pharmaceutical Co Ltd Antigen-Binding Molecule Capable Of Binding To Plurality Of Antigen Molecules Repeatedly
AR084208A1 (en) 2010-12-08 2013-05-02 Stem Centrx Inc MODULATORS OF THE EFRINE A BINDING (EFNA) AND METHODS FOR USE
AU2011342162B2 (en) 2010-12-15 2017-04-20 Kyowa Kirin Co., Ltd. Method for producing proteins
JP6087148B2 (en) 2010-12-15 2017-03-01 大学共同利用機関法人情報・システム研究機構 Protein production method
RU2578468C2 (en) 2010-12-16 2016-03-27 Дженентек, Инк. Methods for diagnosing and treating related to th2 inhibition
SG191294A1 (en) 2010-12-20 2013-07-31 Genentech Inc Anti-mesothelin antibodies and immunoconjugates
EA201390929A1 (en) 2010-12-22 2013-12-30 Дженентек, Инк. ANTIBODIES TO PCSK9 AND METHODS OF THEIR APPLICATION
JOP20210044A1 (en) 2010-12-30 2017-06-16 Takeda Pharmaceuticals Co Anti-cd38 antibodies
WO2012109133A1 (en) 2011-02-07 2012-08-16 Research Development Foundation Engineered immunoglobulin fc polypeptides
CA2824252A1 (en) 2011-02-10 2012-08-16 Roche Glycart Ag Improved immunotherapy
SA112330278B1 (en) 2011-02-18 2015-10-09 ستيم سينتركس، انك. Novel modulators and methods of use
AR085302A1 (en) * 2011-02-24 2013-09-18 Sanofi Sa METHOD OF PRODUCTION OF STIRATED ANTIBODIES
KR20230005405A (en) * 2011-02-25 2023-01-09 추가이 세이야쿠 가부시키가이샤 FcγRIIb-specific Fc antibody
RU2013140975A (en) 2011-02-28 2015-04-10 Дженентек, Инк. BIOLOGICAL MARKERS AND METHODS FOR PREDICTING SUSCEPTIBILITY TO B-CELL ANTAGONISTS
BR112013019975A2 (en) 2011-02-28 2017-08-01 Hoffmann La Roche "Antigen binding proteins, pharmaceutical composition, use of an antigen binding protein, method for treating a patient and method for preparing an antigen binding protein, nucleic acid, vector and host cell"
CA2824824A1 (en) 2011-02-28 2012-09-07 F. Hoffmann-La Roche Ag Monovalent antigen binding proteins
EP2681244B1 (en) 2011-03-02 2017-11-29 Roche Glycart AG Cea antibodies
ES2668895T3 (en) * 2011-03-16 2018-05-23 Amgen Inc. Fc variants
BR112013024717A2 (en) 2011-04-07 2017-08-08 Genentech Inc isolated antibody, isolated nucleic acid, host cell, immunoconjugate, pharmaceutical formulation, method of treating an individual who has cancer and method of inhibiting cell proliferation in an individual
MX343729B (en) 2011-04-08 2016-11-18 Amgen Inc Method of treating or ameliorating metabolic disorders using growth differentiation factor 15 (gdf-15).
ES2876421T3 (en) 2011-04-13 2021-11-12 Bristol Myers Squibb Co Fc fusion proteins comprising new linkers or arrangements
CN103702682A (en) 2011-04-21 2014-04-02 科罗拉多州立大学董事会法人团体 Compositions and methods for the treatment of neuromyelitis optica
EA201892619A1 (en) 2011-04-29 2019-04-30 Роше Гликарт Аг IMMUNOCONJUGATES CONTAINING INTERLEUKIN-2 MUTANT POLYPETIPS
WO2012146630A1 (en) 2011-04-29 2012-11-01 F. Hoffmann-La Roche Ag N-terminal acylated polypeptides, methods for their production and uses thereof
SI2704737T1 (en) 2011-04-29 2018-06-29 University Of Washington Therapeutic nuclease compositions and methods
CA2833212C (en) 2011-05-12 2020-06-09 Genentech, Inc. Multiple reaction monitoring lc-ms/ms method to detect therapeutic antibodies in animal samples using framework signature peptides
EP3219730A1 (en) 2011-05-16 2017-09-20 F. Hoffmann-La Roche AG Fgfr1 agonists and methods of use
DK3662932T3 (en) 2011-05-20 2021-05-17 H Lundbeck As ANTI-CGRP COMPOSITIONS AND APPLICATION THEREOF
KR102098546B1 (en) 2011-05-20 2020-04-07 앨더바이오 홀딩스 엘엘씨 Use of anti-cgrp antibodies and antibody fragments to prevent or inhibit photophobia or light aversion in subjects in need thereof, especially migraine sufferers
NZ717704A (en) 2011-05-20 2022-08-26 H Lundbeck As Use of anti-cgrp or anti-cgrp-r antibodies or antibody fragments to treat or prevent chronic and acute forms of diarrhea
NZ618016A (en) 2011-05-21 2015-05-29 Macrogenics Inc Deimmunized serum-binding domains and their use for extending serum half-life
MY173899A (en) 2011-05-21 2020-02-26 Macrogenics Inc Cd3-binding molecules capable of binding to human and non-human cd3
WO2012162561A2 (en) 2011-05-24 2012-11-29 Zyngenia, Inc. Multivalent and monovalent multispecific complexes and their uses
EA032790B1 (en) 2011-06-03 2019-07-31 Ксома Текнолоджи Лтд. Antibodies specific for tgf-beta
US9244074B2 (en) 2011-06-07 2016-01-26 University Of Hawaii Biomarker of asbestos exposure and mesothelioma
WO2012170742A2 (en) 2011-06-07 2012-12-13 University Of Hawaii Treatment and prevention of cancer with hmgb1 antagonists
AU2012267484B2 (en) 2011-06-10 2017-03-23 Bioverativ Therapeutics Inc. Pro-coagulant compounds and methods of use thereof
JP5984919B2 (en) 2011-06-15 2016-09-06 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Anti-human EPO receptor antibody and method of use
CN103781800A (en) 2011-06-20 2014-05-07 协和发酵麒麟株式会社 Anti-erbB3 antibody
CN103649125A (en) 2011-06-22 2014-03-19 霍夫曼-拉罗奇有限公司 Removal of target cells by circulating virus-specific cytotoxic t-cells using MHC class I comprising complexes
CN110066340A (en) * 2011-06-28 2019-07-30 英伊布里克斯有限合伙公司 Serine protease inhibitor fused polypeptide and its application method
US10400029B2 (en) 2011-06-28 2019-09-03 Inhibrx, Lp Serpin fusion polypeptides and methods of use thereof
IN2013MN02442A (en) 2011-06-28 2015-06-12 Inhibrx Llc
EP2726098A1 (en) 2011-06-30 2014-05-07 F.Hoffmann-La Roche Ag Anti-c-met antibody formulations
RU2641256C2 (en) 2011-06-30 2018-01-16 Чугаи Сейяку Кабусики Кайся Heterodimerizated polypeptide
UA117901C2 (en) 2011-07-06 2018-10-25 Ґенмаб Б.В. Antibody variants and uses thereof
WO2013012733A1 (en) 2011-07-15 2013-01-24 Biogen Idec Ma Inc. Heterodimeric fc regions, binding molecules comprising same, and methods relating thereto
KR20140057326A (en) 2011-08-17 2014-05-12 제넨테크, 인크. Neuregulin antibodies and uses thereof
CA2844540C (en) 2011-08-23 2018-10-16 Roche Glycart Ag Bispecific antibodies specific for t-cell activating antigens and a tumor antigen and methods of use
WO2013026837A1 (en) 2011-08-23 2013-02-28 Roche Glycart Ag Bispecific t cell activating antigen binding molecules
JP2014534806A (en) 2011-08-23 2014-12-25 ロシュ グリクアート アーゲー Anti-MCSP antibody
PE20141521A1 (en) 2011-08-23 2014-10-25 Roche Glycart Ag T-CELL ACTIVATING ANTIGEN-BINDING BI-SPECIFIC MOLECULES
MY171038A (en) 2011-08-23 2019-09-23 Roche Glycart Ag Bispecific antigen binding molecules
US20130058947A1 (en) 2011-09-02 2013-03-07 Stem Centrx, Inc Novel Modulators and Methods of Use
UY34317A (en) 2011-09-12 2013-02-28 Genzyme Corp T cell antireceptor antibody (alpha) / ß
WO2013039954A1 (en) 2011-09-14 2013-03-21 Sanofi Anti-gitr antibodies
MX2014003094A (en) 2011-09-15 2014-04-25 Genentech Inc Methods of promoting differentiation.
GB201116092D0 (en) 2011-09-16 2011-11-02 Bioceros B V Antibodies and uses thereof
CN103930111A (en) 2011-09-19 2014-07-16 霍夫曼-拉罗奇有限公司 Combination treatments comprising C-MET antagonists and B-RAF antagonists
WO2013048243A1 (en) * 2011-09-29 2013-04-04 Apo-T B.V. Multi-specific binding molecules targeting aberrant cells
WO2013047752A1 (en) * 2011-09-30 2013-04-04 中外製薬株式会社 Antigen-binding molecule for promoting loss of antigens
EP2760889A4 (en) 2011-09-30 2015-04-15 Teva Pharmaceuticals Australia Pty Ltd Antibodies against tl1a and uses thereof
CA2850322C (en) * 2011-09-30 2023-10-10 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule inducing immune response to target antigen
TW201817745A (en) 2011-09-30 2018-05-16 日商中外製藥股份有限公司 Therapeutic antigen-binding molecule with a FcRn-binding domain that promotes antigen clearance
CA2850542A1 (en) 2011-09-30 2013-04-04 Dana-Farber Cancer Institute, Inc. Therapeutic peptides
WO2013047748A1 (en) 2011-09-30 2013-04-04 中外製薬株式会社 Antigen-binding molecule promoting disappearance of antigens having plurality of biological activities
US9663573B2 (en) 2011-10-05 2017-05-30 Genentech, Inc. Methods of treating liver conditions using Notch2 antagonists
CA2851805C (en) 2011-10-11 2021-12-28 Vaccinex, Inc. Use of semaphorin-4d binding molecules for modulation of blood brain barrier permeability
AU2012323316B2 (en) 2011-10-11 2017-08-10 Viela Bio, Inc. CD40L-specific Tn3-derived scaffolds and methods of use thereof
SG11201401477XA (en) 2011-10-14 2014-07-30 Genentech Inc ANTI-HtrA1 ANTIBODIES AND METHODS OF USE
RU2014119426A (en) 2011-10-15 2015-11-20 Дженентек, Инк. WAYS OF APPLICATION OF SCD1 ANTAGONISTS
WO2013059531A1 (en) 2011-10-20 2013-04-25 Genentech, Inc. Anti-gcgr antibodies and uses thereof
EP3674320A3 (en) 2011-10-27 2020-08-12 Genmab A/S Production of heterodimeric proteins
AU2012327878A1 (en) 2011-10-28 2014-05-29 Patrys Limited PAT-LM1 epitopes and methods for using same
IN2014CN03062A (en) 2011-10-28 2015-07-31 Hoffmann La Roche
KR102168733B1 (en) 2011-10-31 2020-10-23 추가이 세이야쿠 가부시키가이샤 Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain
AU2012332593B2 (en) 2011-11-01 2016-11-17 Bionomics, Inc. Anti-GPR49 antibodies
AU2012332590B2 (en) 2011-11-01 2016-10-20 Bionomics, Inc. Anti-GPR49 antibodies
US9221906B2 (en) 2011-11-01 2015-12-29 Bionomics Inc. Methods of inhibiting solid tumor growth by administering GPR49 antibodies
EP2773373B1 (en) 2011-11-01 2018-08-22 Bionomics, Inc. Methods of blocking cancer stem cell growth
US9574010B2 (en) 2011-11-04 2017-02-21 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the Fc domain
JP2014533249A (en) 2011-11-07 2014-12-11 メディミューン,エルエルシー Multispecific binding proteins with multispecificity and uses thereof
AR088693A1 (en) 2011-11-11 2014-06-25 Rinat Neuroscience Corp SPECIFIC ANTIBODIES FOR TROP-2 AND ITS USES
JP2014533700A (en) 2011-11-21 2014-12-15 ジェネンテック, インコーポレイテッド Purification of anti-c-MET antibody
AR088941A1 (en) 2011-11-23 2014-07-16 Bayer Ip Gmbh ANTI-FGFR2 ANTIBODIES AND THEIR USES
KR20140125351A (en) 2011-11-23 2014-10-28 이제니카 바이오테라퓨틱스, 인크. Anti-cd98 antibodies and methods of use thereof
BR112014013081A2 (en) 2011-11-30 2020-10-20 Chugai Seiyaku Kabushiki Kaisha drug-containing cell vehicle for formation of an immune complex
US9416179B2 (en) 2011-12-05 2016-08-16 X-Body, Inc. PDGF receptor beta binding polypeptides
WO2013083497A1 (en) 2011-12-06 2013-06-13 F. Hoffmann-La Roche Ag Antibody formulation
WO2013090776A1 (en) 2011-12-15 2013-06-20 The Board Of Trustees Of The Leland Stanford Junior University Inhibition of axl/gas6 signaling in the treatment of disease
AU2012355415B2 (en) 2011-12-20 2017-07-06 Medimmune, Llc Modified polypeptides for bispecific antibody scaffolds
AR089434A1 (en) 2011-12-23 2014-08-20 Genentech Inc PROCEDURE TO PREPARE FORMULATIONS WITH HIGH CONCENTRATION OF PROTEINS
ES2721882T3 (en) 2011-12-23 2019-08-06 Pfizer Constant regions of genetically engineered antibody for site-specific conjugation and procedures and uses thereof
KR102041412B1 (en) * 2011-12-30 2019-11-11 한미사이언스 주식회사 Derivatives of Immunglobulin Fc fragment
WO2013106489A1 (en) 2012-01-09 2013-07-18 The Scripps Research Institute Humanized antibodies with ultralong cdr3s
US20140050720A1 (en) 2012-01-09 2014-02-20 The Scripps Research Institute Ultralong complementarity determining regions and uses thereof
CN111499761A (en) 2012-01-12 2020-08-07 比奥贝拉蒂治疗公司 Chimeric factor VIII polypeptides and uses thereof
JP2015504895A (en) 2012-01-13 2015-02-16 エーピーオー‐ティー ビー.ヴイ. Abnormal cell-restricted immunoglobulin with a toxic moiety
MX356802B (en) 2012-01-13 2018-06-13 Genentech Inc Biological markers for identifying patients for treatment with vegf antagonists.
WO2013109819A1 (en) 2012-01-18 2013-07-25 Genentech, Inc. Anti-lrp5 antibodies and methods of use
CN104168920A (en) 2012-01-18 2014-11-26 霍夫曼-拉罗奇有限公司 Methods of using FGF19 modulators
AU2013211846A1 (en) 2012-01-26 2014-08-14 Amgen Inc. Growth differentiation factor 15 (GDF-15) polypeptides
EP2812027A1 (en) 2012-02-07 2014-12-17 Innate Pharma Mica binding agents
US20130209473A1 (en) 2012-02-11 2013-08-15 Genentech, Inc. R-spondin translocations and methods using the same
SG10201606783RA (en) 2012-02-15 2016-10-28 Amunix Operating Inc Factor viii compositions and methods of making and using same
WO2013123457A1 (en) 2012-02-15 2013-08-22 Biogen Idec Ma Inc. Recombinant factor viii proteins
CA2860600C (en) 2012-02-15 2022-07-26 F. Hoffmann-La Roche Ag Fc-receptor based affinity chromatography
EP3093294A1 (en) 2012-02-24 2016-11-16 Stemcentrx, Inc. Dll3 modulators and methods of use
US9890213B2 (en) 2012-03-02 2018-02-13 Vaccinex, Inc. Methods for the treatment of B cell-mediated inflammatory diseases
JP2015514710A (en) 2012-03-27 2015-05-21 ジェネンテック, インコーポレイテッド Diagnosis and treatment of HER3 inhibitors
UA117097C2 (en) 2012-03-28 2018-06-25 Санофі Antibodies to bradykinin b1 receptor ligands
AR090549A1 (en) 2012-03-30 2014-11-19 Genentech Inc ANTI-LGR5 AND IMMUNOCATE PLAYERS
SG11201406184XA (en) 2012-03-30 2014-10-30 Genentech Inc Diagnostic methods and compositions for treatment of cancer
CN104520322B (en) 2012-04-05 2019-11-15 Ac免疫有限公司 Humanization TAU antibody
WO2013155346A1 (en) 2012-04-11 2013-10-17 The Regents Of The University Of California Diagnostic tools for response to 6-thiopurine therapy
CN104428317B (en) 2012-04-27 2018-08-28 生物蛋白有限公司 Antibody district of modification and application thereof
WO2013165690A1 (en) * 2012-04-30 2013-11-07 Medimmune, Llc Molecules with reduced effector function and extended half-lives, compositions, and uses thereof
WO2013165940A1 (en) 2012-05-01 2013-11-07 Genentech, Inc. Anti-pmel17 antibodies and immunoconjugates
CN104662042A (en) 2012-05-07 2015-05-27 赛诺菲 Methods for preventing biofilm formation
ES2843054T3 (en) 2012-05-10 2021-07-15 Zymeworks Inc Heteromultimeric constructions of immunoglobulin heavy chains with mutations in the Fc domain
WO2013170191A1 (en) 2012-05-11 2013-11-14 Genentech, Inc. Methods of using antagonists of nad biosynthesis from nicotinamide
AU2013262611B2 (en) 2012-05-18 2018-03-01 Genentech, Inc. High-concentration monoclonal antibody formulations
US20150353639A1 (en) 2012-05-21 2015-12-10 Genentech, Inc. Methods for improving safety of blood-brain barrier transport
US9844582B2 (en) 2012-05-22 2017-12-19 Massachusetts Institute Of Technology Synergistic tumor treatment with extended-PK IL-2 and therapeutic agents
CN104335047B (en) 2012-05-23 2017-08-15 弗·哈夫曼-拉罗切有限公司 The system of selection of therapeutic agent
WO2013175276A1 (en) 2012-05-23 2013-11-28 Argen-X B.V Il-6 binding molecules
CN104427995A (en) 2012-06-08 2015-03-18 比奥根艾迪克Ma公司 Chimeric clotting factors
CN104519897A (en) 2012-06-08 2015-04-15 比奥根艾迪克Ma公司 Procoagulant compounds
US11142563B2 (en) 2012-06-14 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified Fc region
EP2861624A1 (en) 2012-06-15 2015-04-22 F. Hoffmann-La Roche AG Anti-pcsk9 antibodies, formulations, dosing, and methods of use
CN104582736A (en) 2012-06-21 2015-04-29 印第安纳大学研究及科技有限公司 Incretin receptor ligand polypeptide Fc-region fusion polypeptides and conjugates with altered Fc-effector function
US9499634B2 (en) 2012-06-25 2016-11-22 Zymeworks Inc. Process and methods for efficient manufacturing of highly pure asymmetric antibodies in mammalian cells
KR102090849B1 (en) 2012-07-04 2020-03-19 에프. 호프만-라 로슈 아게 Covalently linked antigen-antibody conjugates
DK2869837T3 (en) 2012-07-04 2016-09-26 Hoffmann La Roche Anti-theophylline antibodies and methods of use
JP6247287B2 (en) 2012-07-04 2017-12-13 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Anti-biotin antibodies and methods of use
KR20150030693A (en) 2012-07-05 2015-03-20 제넨테크, 인크. Expression and secretion system
JP6514103B2 (en) 2012-07-06 2019-05-15 ゲンマブ ビー.ブイ. Dimer protein with triple mutation
EP3632462A1 (en) 2012-07-06 2020-04-08 Genmab B.V. Dimeric protein with triple mutations
US10023628B2 (en) 2012-07-06 2018-07-17 Bioverativ Therapeutics Inc. Cell line expressing single chain factor VIII polypeptides and uses thereof
ES2927550T3 (en) 2012-07-06 2022-11-08 Univ School St Marianna Medicine Remedy for patients with HTLV-1 associated myelopathy
AU2013288932A1 (en) 2012-07-09 2014-12-11 Genentech, Inc. Immunoconjugates comprising anti - CD79b antibodies
BR112015000439A2 (en) 2012-07-09 2017-12-19 Genentech Inc immunoconjugate, pharmaceutical formulation and methods of treating an individual and inhibiting proliferation
CN104540524A (en) 2012-07-09 2015-04-22 基因泰克公司 Immunoconjugates comprising anti-CD22 antibodies
KR20150030753A (en) 2012-07-09 2015-03-20 제넨테크, 인크. Immunoconjugates comprising anti-cd79b antibodies
EP3674410A1 (en) 2012-07-11 2020-07-01 Bioverativ Therapeutics Inc. Factor viii complex with xten and von willebrand factor protein, and uses thereof
RU2650868C2 (en) * 2012-07-13 2018-04-17 Займворкс Инк. Bispecific asymmetric heterodimers comprising anti-cd3 constructs
ES2673847T3 (en) 2012-07-25 2018-06-26 Celldex Therapeutics, Inc. Anti KIT antibodies and uses thereof
CN104508132B (en) 2012-08-02 2017-09-15 弗·哈夫曼-拉罗切有限公司 For producing as with the inert immune globulin Fc area Fc solvable FcR methods merged and application thereof
WO2014020069A1 (en) * 2012-08-02 2014-02-06 F. Hoffmann-La Roche Ag Method for producing monomeric and multimeric molecules and uses thereof
MX365382B (en) 2012-08-07 2019-05-31 Roche Glycart Ag Composition comprising two antibodies engineered to have reduced and increased effector function.
BR112015002085A2 (en) 2012-08-08 2017-12-19 Roche Glycart Ag protein, polynucleotide, vector, host cell, method for producing protein, pharmaceutical composition, protein use, method of treatment and invention
MX2015001678A (en) 2012-08-09 2015-08-14 Roche Glycart Ag Asgpr antibodies and uses thereof.
US20140044675A1 (en) 2012-08-10 2014-02-13 Roche Glycart Ag Interleukin-2 fusion proteins and uses thereof
RU2729831C2 (en) 2012-08-24 2020-08-12 Чугаи Сейяку Кабусики Кайся Versions of fcγriib-specific fc-region
WO2014030750A1 (en) 2012-08-24 2014-02-27 中外製薬株式会社 MOUSE FcγRII-SPECIFIC Fc ANTIBODY
UA115789C2 (en) 2012-09-05 2017-12-26 Трейкон Фармасутікалз, Інк. Antibody formulations and uses thereof
EP4223783A3 (en) 2012-09-12 2023-11-15 Genzyme Corporation Fc containing polypeptides with altered glycosylation and reduced effector function
US9790268B2 (en) 2012-09-12 2017-10-17 Genzyme Corporation Fc containing polypeptides with altered glycosylation and reduced effector function
EP2905290B1 (en) 2012-10-05 2019-12-04 Kyowa Kirin Co., Ltd. Heterodimeric protein composition
RU2015117393A (en) 2012-10-08 2016-12-10 Роше Гликарт Аг Deprived fc antibodies containing two Fab fragments, and methods for their use
EP2906598A1 (en) 2012-10-09 2015-08-19 Igenica Biotherapeutics, Inc. Anti-c16orf54 antibodies and methods of use thereof
CA2890207A1 (en) 2012-11-05 2014-05-08 Foundation Medicine, Inc. Novel ntrk1 fusion molecules and uses thereof
AR093378A1 (en) 2012-11-08 2015-06-03 Hoffmann La Roche BINDING PROTEINS OF ANTIGEN HER3 OF UNION TO THE FORK b OF HER3
RU2015115956A (en) 2012-11-09 2017-01-10 Пфайзер Инк. ANTIBODIES SPECIFIC TO THE THROMBOCYTE B GROWTH FACTOR, AND THEIR COMPOSITION AND APPLICATION
EA201892509A1 (en) 2012-11-13 2019-04-30 Дженентек, Инк. ANTIBODIES TO HEMAGGLUTININ AND METHODS OF APPLICATION
DK3447069T3 (en) 2012-11-21 2020-11-16 Janssen Biotech Inc BISPECIFIC EGFR / C-MET ANTIBODIES
US9914785B2 (en) 2012-11-28 2018-03-13 Zymeworks Inc. Engineered immunoglobulin heavy chain-light chain pairs and uses thereof
KR20150090107A (en) 2012-12-06 2015-08-05 도쿠리츠다이가쿠호징 가나자와다이가쿠 Therapeutic method for mesothelioma
KR20150094617A (en) 2012-12-07 2015-08-19 교와 핫꼬 기린 가부시키가이샤 Anti-folr1 antibody
LT2928923T (en) 2012-12-10 2020-02-25 Biogen Ma Inc. Anti-blood dendritic cell antigen 2 antibodies and uses thereof
ES2665323T7 (en) * 2012-12-14 2023-06-15 Univ Leland Stanford Junior Modified AXL peptides and their use in the inhibition of AXL signaling in anti-metastatic therapy
TWI693073B (en) 2012-12-21 2020-05-11 日商中外製藥股份有限公司 Therapeutic agent for GPC3 target is the effective therapeutic agent for GPC3 target administered to patients
RU2015129640A (en) 2012-12-21 2017-01-26 Ф.Хоффманн-Ля Рош Аг MULTI-VALVE MULTI-FUNCTIONAL PROTEINS CONNECTED BY DISULPHIDE, CONTAINING SCHC CLASS 1 MOLECULES
US10766960B2 (en) * 2012-12-27 2020-09-08 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
MX2015008740A (en) 2013-01-10 2015-10-26 Genmab Bv Human igg1 fc region variants and uses thereof.
WO2014113510A1 (en) 2013-01-15 2014-07-24 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
EP3939614A1 (en) 2013-01-18 2022-01-19 Foundation Medicine, Inc. Methods of treating cholangiocarcinoma
WO2014116749A1 (en) 2013-01-23 2014-07-31 Genentech, Inc. Anti-hcv antibodies and methods of using thereof
DK2951208T3 (en) 2013-02-01 2020-01-13 Kira Biotech Pty Ltd ANTI-CD83 ANTIBODIES AND USE THEREOF
EP2953971B1 (en) 2013-02-07 2023-03-01 CSL Limited Il-11r binding proteins and uses thereof
KR102447350B1 (en) 2013-02-08 2022-09-23 노파르티스 아게 Specific sites for modifying antibodies to make immunoconjugates
ES2645634T3 (en) 2013-02-12 2017-12-07 Bristol-Myers Squibb Company High pH protein refolding methods
EP3744728A1 (en) 2013-02-12 2020-12-02 Bristol-Myers Squibb Company Tangential flow filtration based protein refolding methods
DK3255062T3 (en) 2013-02-14 2019-10-07 Innate Pharma ANTI-NKP46 ANTIBODY FOR DIAGNOSTICATION OF NON-CUTANT PERIPHERAL T cell lymphoma (PTCL)
EP3889173B1 (en) 2013-02-15 2023-07-05 Bioverativ Therapeutics Inc. Optimized factor viii gene
EP2958941B1 (en) 2013-02-20 2019-04-10 Innate Pharma A compound that specifically binds to kir3dl2 for use in the treatment of peripheral t cell lymphoma
EP2958592A1 (en) 2013-02-22 2015-12-30 F. Hoffmann-La Roche AG Methods of treating cancer and preventing drug resistance
ME03394B (en) 2013-02-22 2020-01-20 Medimmune Ltd Antidll3-antibody-pbd conjugates and uses thereof
KR20230004901A (en) * 2013-02-26 2023-01-06 로슈 글리카트 아게 Bispecific t cell activating antigen binding molecules
CN104936985A (en) 2013-02-26 2015-09-23 罗切格利卡特公司 Bispecific T cell activating antigen binding molecules
KR20150123811A (en) 2013-02-26 2015-11-04 로슈 글리카트 아게 Anti-mcsp antibodies
MX2015010350A (en) 2013-02-26 2015-10-29 Roche Glycart Ag Bispecific t cell activating antigen binding molecules.
US9487587B2 (en) 2013-03-05 2016-11-08 Macrogenics, Inc. Bispecific molecules that are immunoreactive with immune effector cells of a companion animal that express an activating receptor and cells that express B7-H3 and uses thereof
JP2016510751A (en) 2013-03-06 2016-04-11 ジェネンテック, インコーポレイテッド Methods of treating and preventing anticancer drug resistance
US20160002325A1 (en) 2013-03-08 2016-01-07 Vaccinex, Inc. Anti-cxcl13 antibodies and associated epitope sequences
JP6739330B2 (en) 2013-03-11 2020-08-12 ジェンザイム・コーポレーション Hyperglycosylated binding polypeptide
WO2014160179A1 (en) 2013-03-13 2014-10-02 Regeneron Pharmaceuticals, Inc. Common light chain mouse
EP3501272B1 (en) 2013-03-13 2023-03-01 Regeneron Pharmaceuticals, Inc. Mice expressing a limited immunoglobulin light chain repertoire
WO2014159835A1 (en) 2013-03-14 2014-10-02 Genentech, Inc. Anti-b7-h4 antibodies and immunoconjugates
SG11201507424WA (en) 2013-03-14 2015-10-29 Macrogenics Inc Bispecific molecules that are immunoreactive with immune effector cells that express an activating receptor
US9580486B2 (en) 2013-03-14 2017-02-28 Amgen Inc. Interleukin-2 muteins for the expansion of T-regulatory cells
US9562099B2 (en) 2013-03-14 2017-02-07 Genentech, Inc. Anti-B7-H4 antibodies and immunoconjugates
US20140271634A1 (en) 2013-03-14 2014-09-18 The Regents Of The University Of California Combinations of a mek inhibitor compound with an her3/egfr inhibitor compound and methods of use
JP2016516046A (en) 2013-03-14 2016-06-02 ジェネンテック, インコーポレイテッド Methods for treating cancer and methods for preventing cancer drug resistance
EA201591559A1 (en) 2013-03-15 2016-03-31 Дана-Фарбер Кэнсер Инститьют, Инк. THERAPEUTIC PEPTIDES
EP2970475A1 (en) 2013-03-15 2016-01-20 Biogen MA Inc. Treatment and prevention of acute kidney injury using anti-alpha v beta 5 antibodies
EP2970452A2 (en) 2013-03-15 2016-01-20 AC Immune S.A. Anti-tau antibodies and methods of use
CA2903772A1 (en) 2013-03-15 2014-09-25 Novartis Ag Antibody drug conjugates
AU2014236815B2 (en) 2013-03-15 2019-04-04 Genentech, Inc. Compositions and methods for diagnosis and treatment of hepatic cancers
JP6483082B2 (en) 2013-03-15 2019-03-13 ジェネンテック, インコーポレイテッド Biomarkers and methods for treating conditions associated with PD-1 and PD-L1
CN105451767B (en) 2013-03-15 2019-10-18 泽恩格尼亚股份有限公司 Multivalence and monovalent polyspecific compound and application thereof
BR112015023203A8 (en) 2013-03-15 2018-01-23 Constellation Pharmaceuticals Inc methods for treating cancer, method for increasing the efficiency of cancer treatment, method for delaying and / or preventing cancer development, method for treating an individual with cancer, method for increasing sensitivity for a cancer therapy agent, method for extending a sensitivity period and method for extending the duration of response to cancer therapy.
DK2968503T3 (en) 2013-03-15 2018-12-03 Intrinsic Lifesciences Llc ANTI-HEPCIDIN ANTIBODIES AND APPLICATIONS THEREOF
WO2014144466A1 (en) 2013-03-15 2014-09-18 Biogen Idec Ma Inc. Anti-alpha v beta 6 antibodies and uses thereof
ES2676023T3 (en) 2013-03-15 2018-07-16 F. Hoffmann-La Roche Ag IL-22 polypeptides and IL-22 Fc fusion proteins and methods of use
US20140302037A1 (en) * 2013-03-15 2014-10-09 Amgen Inc. BISPECIFIC-Fc MOLECULES
BR112015021521A2 (en) 2013-03-15 2017-10-10 Genentech Inc anti-crth2 antibodies and methods for their use
US10035860B2 (en) 2013-03-15 2018-07-31 Biogen Ma Inc. Anti-alpha V beta 6 antibodies and uses thereof
SG11201505926VA (en) 2013-03-15 2015-09-29 Biogen Ma Inc Factor ix polypeptide formulations
ES2759061T3 (en) 2013-03-15 2020-05-07 Biomolecular Holdings Llc Hybrid immunoglobulin containing non-peptidyl binding
AU2014238546C1 (en) 2013-03-18 2019-01-17 Biocerox Products B.V. Humanized anti-CD134 (OX40) antibodies and uses thereof
KR102343212B1 (en) 2013-03-27 2021-12-23 세다르스-신나이 메디칼 센터 Mitigation and reversal of fibrosis and inflammation by inhibition of tl1a function and related signaling pathways
SG11201508170TA (en) 2013-04-02 2015-11-27 Chugai Pharmaceutical Co Ltd Fc REGION VARIANT
UA118028C2 (en) 2013-04-03 2018-11-12 Рош Глікарт Аг Bispecific antibodies specific for fap and dr5, antibodies specific for dr5 and methods of use
MX2015014198A (en) * 2013-04-12 2015-12-11 Morphosys Ag Antibodies targeting m-csf.
US20160068613A1 (en) 2013-04-29 2016-03-10 Hoffmann-La Roche Inc. Fc-receptor binding modified asymmetric antibodies and methods of use
PL2992012T3 (en) 2013-04-29 2019-12-31 F. Hoffmann-La Roche Ag Human fcrn-binding modified antibodies and methods of use
CA2908653A1 (en) 2013-04-29 2014-11-06 F. Hoffmann-La Roche Ag Fcrn-binding abolished anti-igf-1r antibodies and their use in the treatment of vascular eye diseases
US10239951B2 (en) 2013-05-08 2019-03-26 Zymeworks Inc. Bispecific HER2 and HER3 antigen binding constructs
IL242088B2 (en) 2013-05-20 2023-12-01 Genentech Inc Anti-transferrin receptor antibodies and methods of use
EP3004174B1 (en) 2013-05-31 2019-04-17 Zymeworks Inc. Heteromultimers with reduced or silenced effector function
KR20160019434A (en) 2013-06-14 2016-02-19 바이엘 파마 악티엔게젤샤프트 Anti-tweakr antibodies and uses thereof
US9828435B2 (en) 2013-06-25 2017-11-28 Vaccinex, Inc. Use of antibodies or antigen-binding fragments thereof that specifically bind semaphorin-4D to increase tumor infiltrating leukocyte frequency
EP3022221B1 (en) 2013-07-18 2021-09-15 Taurus Biosciences, LLC Humanized antibodies with ultralong complementarity determining regions
EP3022224A2 (en) 2013-07-18 2016-05-25 Fabrus, Inc. Antibodies with ultralong complementarity determining regions
EP4105236A1 (en) 2013-07-19 2022-12-21 Cedars-Sinai Medical Center Anti-tl1a (tnfsf15) antibody for treatment of inflammatory bowel disease
CA2918624C (en) 2013-07-31 2024-02-13 Amgen Inc. Growth differentiation factor 15 (gdf-15) constructs
US10195289B2 (en) 2013-07-31 2019-02-05 Rinat Neuroscience Corp. Engineered polypeptide conjugates using transglutaminase
AU2014296174B2 (en) 2013-08-01 2019-05-02 Five Prime Therapeutics, Inc. Afucosylated anti-FGFR2IIIb antibodies
US20150038682A1 (en) * 2013-08-02 2015-02-05 Jn Biosciences Llc Antibodies or fusion proteins multimerized via homomultimerizing peptide
JP6506280B2 (en) 2013-08-02 2019-05-08 ファイザー・インク Anti-CXCR4 antibodies and antibody-drug conjugates
EP3875106A1 (en) 2013-08-08 2021-09-08 Bioverativ Therapeutics Inc. Purification of chimeric fviii molecules
CA2918989C (en) 2013-08-09 2021-11-02 Toray Industries, Inc. Pharmaceutical composition for treatment and/or prevention of cancer
UA116479C2 (en) 2013-08-09 2018-03-26 Макродженікс, Інк. Bi-specific monovalent fc diabodies that are capable of binding cd32b and cd79b and uses thereof
US11384149B2 (en) 2013-08-09 2022-07-12 Macrogenics, Inc. Bi-specific monovalent Fc diabodies that are capable of binding CD32B and CD79b and uses thereof
KR20160035077A (en) 2013-08-13 2016-03-30 사노피 Antibodies to plasminogen activator inhibitor-1(pai-1) and uses thereof
TWI592426B (en) 2013-08-13 2017-07-21 賽諾菲公司 Antibodies to plasminogen activator inhibitor-1 (pai-1) and uses thereof
US10548953B2 (en) 2013-08-14 2020-02-04 Bioverativ Therapeutics Inc. Factor VIII-XTEN fusions and uses thereof
EP2840091A1 (en) 2013-08-23 2015-02-25 MacroGenics, Inc. Bi-specific diabodies that are capable of binding gpA33 and CD3 and uses thereof
EP2839842A1 (en) 2013-08-23 2015-02-25 MacroGenics, Inc. Bi-specific monovalent diabodies that are capable of binding CD123 and CD3 and uses thereof
EP3892294A1 (en) 2013-08-28 2021-10-13 AbbVie Stemcentrx LLC Site-specific antibody conjugation methods and compositions
EP3038634A4 (en) 2013-08-28 2017-10-11 AbbVie Stemcentrx LLC Novel sez6 modulators and methods of use
AU2014318017B2 (en) * 2013-09-05 2020-02-06 Amgen Inc. Fc-containing molecules exhibiting predictable, consistent, and reproducible glycoform profiles
EP3702373B9 (en) 2013-09-13 2022-11-23 BeiGene Switzerland GmbH Anti-pd1 antibodies and their use as therapeutics and diagnostics
BR112016004450A2 (en) 2013-09-17 2017-10-17 Genentech Inc methods for treating a disease, for increasing the effectiveness of a treatment, for postponing and / or preventing the development of recurrence and / or resistance of a disease, for increasing sensitivity to an inhibitor, for extending the sensitivity period for an inhibitor and for extend response time to an inhibitor
CN105555801B (en) * 2013-09-18 2020-05-05 东曹株式会社 Fc-binding protein, method for producing the protein, antibody adsorbent using the protein, and method for purifying and identifying antibody using the adsorbent
ES2900425T3 (en) 2013-09-25 2022-03-16 Bioverativ Therapeutics Inc Column viral inactivation methods
WO2015046467A1 (en) 2013-09-27 2015-04-02 中外製薬株式会社 Method for producing polypeptide heteromultimer
EP3052132B1 (en) 2013-09-30 2020-07-29 Beth Israel Deaconess Medical Center, Inc. Antibody therapies for human immunodeficiency virus (hiv)
WO2015050959A1 (en) 2013-10-01 2015-04-09 Yale University Anti-kit antibodies and methods of use thereof
WO2015051010A1 (en) 2013-10-02 2015-04-09 Medimmune, Llc Neutralizing anti-influenza a antibodies and uses thereof
NZ630881A (en) 2013-10-10 2016-03-31 Vaccinex Inc Use of semaphorin-4d binding molecules for treatment of atherosclerosis
EP3055329B1 (en) 2013-10-11 2018-06-13 F. Hoffmann-La Roche AG Multispecific domain exchanged common variable light chain antibodies
RU2016117978A (en) 2013-10-11 2017-11-17 Дженентек, Инк. NSP4 INHIBITORS AND WAYS OF THEIR APPLICATION
SI3055331T1 (en) 2013-10-11 2021-04-30 Oxford Bio Therapeutics Limited Conjugated antibodies against ly75 for the treatment of cancer
EP3057615B1 (en) 2013-10-18 2021-02-24 F.Hoffmann-La Roche Ag Anti-rspo antibodies and methods of use
WO2015057939A1 (en) 2013-10-18 2015-04-23 Biogen Idec Ma Inc. Anti-s1p4 antibodies and uses thereof
NZ630892A (en) 2013-10-21 2016-03-31 Vaccinex Inc Use of semaphorin-4d binding molecules for treating neurodegenerative disorders
AU2014340129A1 (en) 2013-10-23 2016-05-26 Genentech, Inc. Methods of diagnosing and treating eosinophilic disorders
WO2015066557A1 (en) 2013-10-31 2015-05-07 Resolve Therapeutics, Llc Therapeutic nuclease molecules with altered glycosylation and methods
MA39090B2 (en) 2013-11-06 2021-10-29 Janssen Biotech Inc Anti-ccl17 antibodies
CN105813650A (en) 2013-11-06 2016-07-27 施特姆森特克斯股份有限公司 Novel anti-claudin antibodies and methods of use
CN104623637A (en) 2013-11-07 2015-05-20 健能隆医药技术(上海)有限公司 Application of IL-22 dimer in preparation of intravenous injection drugs
EP3065769A4 (en) 2013-11-08 2017-05-31 Biogen MA Inc. Procoagulant fusion compound
EP3068892A4 (en) 2013-11-13 2017-05-31 Zymeworks Inc. Monovalent antigen binding constructs targeting egfr and/or her2 and uses thereof
KR102366076B1 (en) 2013-11-13 2022-02-21 화이자 인코포레이티드 Tumor necrosis factor-like ligand 1a specific antibodies and compositions and uses thereof
EP3071599A4 (en) * 2013-11-18 2017-07-12 University of Maryland, Baltimore Hyper-glycosylated antibodies with selective fc receptor binding
AU2014351996B2 (en) 2013-11-21 2020-01-02 F. Hoffmann-La Roche Ag Anti-alpha-synuclein antibodies and methods of use
CN105980409B (en) 2013-11-27 2023-07-18 酵活生物制药有限公司 Bispecific antigen binding constructs targeting HER2
BR112016012358A2 (en) 2013-12-06 2017-09-26 Dana Farber Cancer Inst Inc therapeutic peptides
CA2930886A1 (en) 2013-12-09 2015-06-18 Christopher R. Bebbington Anti-siglec-8 antibodies and methods of use thereof
PE20160712A1 (en) 2013-12-13 2016-07-26 Genentech Inc ANTI-CD33 ANTIBODIES AND IMMUNOCONJUGATES
NZ760065A (en) 2013-12-17 2022-12-23 Genentech Inc Methods of treating cancers using pd-1 axis binding antagonists and taxanes
JP2017501167A (en) 2013-12-17 2017-01-12 ジェネンテック, インコーポレイテッド Combination therapy comprising OX40 binding agonist and PD-1 axis binding antagonist
US8980273B1 (en) 2014-07-15 2015-03-17 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
US8986691B1 (en) 2014-07-15 2015-03-24 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
DE202014010499U1 (en) 2013-12-17 2015-10-20 Kymab Limited Targeting of human PCSK9 for cholesterol treatment
LT3192812T (en) 2013-12-17 2020-08-10 Genentech, Inc. Anti-cd3 antibodies and methods of use
KR20160089532A (en) 2013-12-17 2016-07-27 제넨테크, 인크. Methods of treating cancer using pd-1 axis binding antagonists and an anti-cd20 antibody
EP3083680B1 (en) 2013-12-20 2020-01-15 F. Hoffmann-La Roche AG Humanized anti-tau(ps422) antibodies and methods of use
TWI670283B (en) 2013-12-23 2019-09-01 美商建南德克公司 Antibodies and methods of use
EA035324B1 (en) 2013-12-24 2020-05-28 Ардженкс Бвба NEONATAL Fc RECEPTOR (FcRn) ANTAGONISTS AND METHODS OF USE THEREOF
CN112079923A (en) 2013-12-26 2020-12-15 田边三菱制药株式会社 Human anti-IL-33 neutralizing monoclonal antibodies
KR102278429B1 (en) 2014-01-03 2021-07-16 에프. 호프만-라 로슈 아게 Covalently linked polypeptide toxin-antibody conjugates
CA2933384A1 (en) 2014-01-03 2015-07-09 F. Hoffmann-La Roche Ag Bispecific anti-hapten/anti-blood brain barrier receptor antibodies, complexes thereof and their use as blood brain barrier shuttles
RU2694981C2 (en) 2014-01-03 2019-07-18 Ф. Хоффманн-Ля Рош Аг Covalently linked conjugates chelicar-antibody against chelicar and use thereof
CA2932547C (en) 2014-01-06 2023-05-23 F. Hoffmann-La Roche Ag Monovalent blood brain barrier shuttle modules
SG11201605242YA (en) 2014-01-10 2016-07-28 Biogen Ma Inc Factor viii chimeric proteins and uses thereof
RU2727639C2 (en) 2014-01-15 2020-07-22 Ф.Хоффманн-Ля Рош Аг Variants of fc-region with modified ability to bind to fcrn and with preserved ability to bind with protein a
WO2015109212A1 (en) 2014-01-17 2015-07-23 Pfizer Inc. Anti-il-2 antibodies and compositions and uses thereof
LT3097122T (en) 2014-01-24 2020-07-27 Ngm Biopharmaceuticals, Inc. Antibodies binding beta klotho domain 2 and methods of use thereof
JP2017505305A (en) 2014-01-24 2017-02-16 ジェネンテック, インコーポレイテッド Methods using anti-STEAP1 antibodies and immunoconjugates
US20170044232A1 (en) 2014-02-04 2017-02-16 Genentech, Inc. Mutant smoothened and methods of using the same
CR20160333A (en) 2014-02-06 2016-09-05 F Hoffman-La Roche Ag FUSION PROTEINS OF INTERLEUCINE-2 AND USES OF THE SAME
MX2016010237A (en) 2014-02-08 2017-04-27 Genentech Inc Methods of treating alzheimer's disease.
US20150246963A1 (en) 2014-02-08 2015-09-03 Genentech, Inc. Methods of treating alzheimer's disease
TWI631135B (en) 2014-02-12 2018-08-01 建南德克公司 Anti-jagged1 antibodies and methods of use
US10100115B2 (en) 2014-02-14 2018-10-16 Macrogenics, Inc. Methods for the treatment of vascularizing cancers
CN106029693A (en) 2014-02-21 2016-10-12 豪夫迈·罗氏有限公司 Anti-IL-13/IL-17 bispecific antibodies and uses thereof
US9732154B2 (en) * 2014-02-28 2017-08-15 Janssen Biotech, Inc. Anti-CD38 antibodies for treatment of acute lymphoblastic leukemia
US10183996B2 (en) 2014-02-28 2019-01-22 Allakos Inc. Methods and compositions for treating Siglec-8 associated diseases
US9603927B2 (en) * 2014-02-28 2017-03-28 Janssen Biotech, Inc. Combination therapies with anti-CD38 antibodies
SG11201606597QA (en) * 2014-03-05 2016-09-29 Ucb Biopharma Sprl Multimeric fc proteins
NZ711451A (en) 2014-03-07 2016-05-27 Alexion Pharma Inc Anti-c5 antibodies having improved pharmacokinetics
RU2684703C2 (en) 2014-03-14 2019-04-11 Иннейт Фарма Humanised antibodies with increased stability
KR102587838B1 (en) 2014-03-14 2023-10-12 바이오몰레큘러 홀딩스 엘엘씨 Hybrid immunoglobulin containing non-peptidyl linkage
WO2015139020A2 (en) 2014-03-14 2015-09-17 Dana-Farber Cancer Institute, Inc. Vaccine compositions and methods for restoring nkg2d pathway function against cancers
US10435694B2 (en) 2014-03-14 2019-10-08 Genentech, Inc. Methods and compositions for secretion of heterologous polypeptides
SG11201607198WA (en) 2014-03-19 2016-09-29 Genzyme Corp Site-specific glycoengineering of targeting moieties
EP3119431B1 (en) 2014-03-21 2024-01-24 Teva Pharmaceuticals International GmbH Antagonist antibodies directed against calcitonin gene-related peptide and methods using same
CN113150163A (en) 2014-03-21 2021-07-23 X博迪公司 Bispecific antigen binding polypeptides
US20170107294A1 (en) 2014-03-21 2017-04-20 Nordlandssykehuset Hf Anti-cd14 antibodies and uses thereof
US10556945B2 (en) 2014-03-21 2020-02-11 Teva Pharmaceuticals International Gmbh Antagonist antibodies directed against calcitonin gene-related peptide and methods using same
KR20160137599A (en) 2014-03-24 2016-11-30 제넨테크, 인크. Cancer treatment with c-met antagonists and correlation of the latter with hgf expression
AU2015241038A1 (en) 2014-03-31 2016-10-13 Genentech, Inc. Combination therapy comprising anti-angiogenesis agents and OX40 binding agonists
CN106103486B (en) 2014-03-31 2020-04-21 豪夫迈·罗氏有限公司 anti-OX 40 antibodies and methods of use
WO2015153916A1 (en) 2014-04-04 2015-10-08 Bionomics, Inc. Humanized antibodies that bind lgr5
KR102568808B1 (en) 2014-04-07 2023-08-18 추가이 세이야쿠 가부시키가이샤 Immunoactivating antigen-binding molecule
TW201542594A (en) 2014-04-11 2015-11-16 Medimmune Llc Bispecific HER2 antibodies
MA52909A (en) 2014-04-18 2021-04-21 Acceleron Pharma Inc METHODS FOR INCREASING RED BLOOD CELLS AND SICKLE CELL TREATMENT
WO2015164615A1 (en) 2014-04-24 2015-10-29 University Of Oslo Anti-gluten antibodies and uses thereof
WO2015162563A1 (en) 2014-04-25 2015-10-29 Rinat Neuroscience Corp. Antibody-drug conjugates with high drug loading
AU2015252866B2 (en) 2014-05-02 2021-01-28 Momenta Pharmaceuticals, Inc. Compositions and methods related to engineered Fc constructs
US11760807B2 (en) 2014-05-08 2023-09-19 Chugai Seiyaku Kabushiki Kaisha GPC3-targeting drug which is administered to patient responsive to GPC3-targeting drug therapy
EA201692287A1 (en) 2014-05-13 2017-06-30 Чугаи Сеияку Кабушики Каиша ANTIGENSOCATING MOLECULE, T-CELL FORWARDING ON CELLS WITH IMMUNOSUPRESSOR FUNCTION
JP7179400B2 (en) 2014-05-13 2022-11-29 バイオアトラ インコーポレイテッド conditionally active biological proteins
MX2016015162A (en) 2014-05-22 2017-03-03 Genentech Inc Anti-gpc3 antibodies and immunoconjugates.
WO2015179835A2 (en) 2014-05-23 2015-11-26 Genentech, Inc. Mit biomarkers and methods using the same
WO2015184099A1 (en) 2014-05-28 2015-12-03 4-Antibody Ag Anti-gitr antibodies and methods of use thereof
DK3148581T3 (en) 2014-05-30 2020-01-13 Henlix Biotech Co Ltd ANTI-EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) ANTIBODIES
ES2901705T3 (en) 2014-06-06 2022-03-23 Bristol Myers Squibb Co Glucocorticoid-Induced Tumor Necrosis Factor Receptor (GITR) Antibodies and Uses Thereof
CA2949982A1 (en) 2014-06-11 2015-12-17 Genentech, Inc. Anti-lgr5 antibodies and uses thereof
MX2016016531A (en) 2014-06-13 2017-04-25 Acceleron Pharma Inc Methods and compositions for treating ulcers.
US20230190750A1 (en) 2014-06-13 2023-06-22 Genentech, Inc. Methods of treating and preventing cancer drug resistance
TWI713453B (en) 2014-06-23 2020-12-21 美商健生生物科技公司 Interferon alpha and omega antibody antagonists
AR100978A1 (en) 2014-06-26 2016-11-16 Hoffmann La Roche ANTI-Tau HUMANIZED ANTIBODY BRAIN LAUNCHERS (pS422) AND USES OF THE SAME
CN106687476B (en) 2014-06-26 2020-11-13 豪夫迈·罗氏有限公司 anti-BRDU antibodies and methods of use
WO2015197593A1 (en) 2014-06-27 2015-12-30 Innate Pharma MULTISPECIFIC NKp46 BINDING PROTEINS
AU2015279321B2 (en) 2014-06-27 2021-03-04 Innate Pharma, S.A. Multispecific antigen binding proteins
EP3160478A4 (en) 2014-06-30 2018-05-16 Bioverativ Therapeutics Inc. Optimized factor ix gene
WO2016000619A1 (en) 2014-07-03 2016-01-07 Beigene, Ltd. Anti-pd-l1 antibodies and their use as therapeutics and diagnostics
US20160009805A1 (en) 2014-07-11 2016-01-14 Genentech, Inc. Anti-pd-l1 antibodies and diagnostic uses thereof
US9914774B2 (en) 2014-07-11 2018-03-13 Genentech, Inc. Notch pathway inhibition
CN106573052B (en) 2014-07-22 2021-04-06 中美冠科生物技术(太仓)有限公司 anti-PD-1 antibodies
US20160060360A1 (en) 2014-07-24 2016-03-03 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
EP3174894B1 (en) 2014-07-30 2021-06-23 NGM Biopharmaceuticals, Inc. Compositions and methods of use for treating metabolic disorders
MA50584A (en) 2014-08-04 2020-09-16 Hoffmann La Roche BISPECIFIC T-LYMPHOCYTE ACTIVATE ANTIGEN-BINDING MOLECULES
MX2017001597A (en) 2014-08-05 2017-11-17 Cb Therapeutics Inc Anti-pd-l1 antibodies.
WO2016020791A1 (en) 2014-08-05 2016-02-11 Novartis Ag Ckit antibody drug conjugates
CN106659790A (en) 2014-08-12 2017-05-10 诺华股份有限公司 Anti-CDH6 antibody drug conjugates
WO2016023916A1 (en) 2014-08-12 2016-02-18 Kymab Limited Treatment of disease using ligand binding to targets of interest
WO2016025647A1 (en) 2014-08-12 2016-02-18 Massachusetts Institute Of Technology Synergistic tumor treatment with il-2, a therapeutic antibody, and a cancer vaccine
WO2016030488A1 (en) 2014-08-27 2016-03-03 Innate Pharma Treatment of celiac disease
DK3186284T3 (en) 2014-08-28 2022-05-09 Bioatla Inc CONDITIONALLY ACTIVE CHIMERIC ANTIGEN RECEPTORS FOR MODIFIED T-CELLS
RU2680238C2 (en) 2014-08-28 2019-02-18 Пфайзер Инк. Stability-modulating linkers for use with antibody drug conjugates
MX2017002765A (en) 2014-09-03 2017-10-16 Boehringer Ingelheim Int Compound targeting il-23a and tnf-alpha and uses thereof.
TW201617368A (en) 2014-09-05 2016-05-16 史坦森特瑞斯公司 Novel anti-MFI2 antibodies and methods of use
CN107074956B (en) 2014-09-05 2021-11-26 詹森药业有限公司 CD123 binding agents and uses thereof
US20160067205A1 (en) 2014-09-09 2016-03-10 Janssen Biotech, Inc. Combination Therapies with Anti-CD38 Antibodies
WO2016037947A1 (en) 2014-09-10 2016-03-17 F. Hoffmann-La Roche Ag Galactoengineered immunoglobulin 1 antibodies
TW201625689A (en) 2014-09-12 2016-07-16 建南德克公司 Anti-B7-H4 antibodies and immunoconjugates
AR101846A1 (en) 2014-09-12 2017-01-18 Genentech Inc ANTI-CLL-1 ANTIBODIES AND IMMUNOCATE PLAYERS
RS61019B1 (en) 2014-09-12 2020-12-31 Genentech Inc Anti-her2 antibodies and immunoconjugates
AR101844A1 (en) 2014-09-12 2017-01-18 Genentech Inc ANTIBODIES AND GENETICALLY MODIFIED CONJUGATES WITH CYSTEINE
CA2957148A1 (en) 2014-09-17 2016-03-24 Genentech, Inc. Immunoconjugates comprising anti-her2 antibodies and pyrrolobenzodiazepines
US20160081314A1 (en) 2014-09-19 2016-03-24 Regeneron Pharmaceuticals, Inc. Chimeric Antigen Receptors
AU2015321462B2 (en) 2014-09-22 2020-04-30 Intrinsic Lifesciences Llc Humanized anti-hepcidin antibodies and uses thereof
PL3262071T3 (en) 2014-09-23 2020-08-10 F. Hoffmann-La Roche Ag Method of using anti-cd79b immunoconjugates
JP2018500272A (en) 2014-09-26 2018-01-11 バイエル ファーマ アクチエンゲゼルシャフト Stabilized adrenomedullin derivatives and uses thereof
MA40764A (en) 2014-09-26 2017-08-01 Chugai Pharmaceutical Co Ltd THERAPEUTIC AGENT INDUCING CYTOTOXICITY
SG11201702544WA (en) 2014-09-29 2017-04-27 Univ Duke Bispecific molecules comprising an hiv-1 envelope targeting arm
CN108025083B (en) 2014-10-09 2021-09-03 建新公司 Glycoengineered antibody drug conjugates
WO2016131950A1 (en) 2015-02-20 2016-08-25 Innate Pharma Cd73 blockade
WO2016055609A1 (en) 2014-10-10 2016-04-14 Innate Pharma Cd73 blockade
EP3207130B1 (en) 2014-10-14 2019-08-07 Halozyme, Inc. Compositions of adenosine deaminase-2 (ada2), variants thereof and methods of using same
WO2016059602A2 (en) 2014-10-16 2016-04-21 Glaxo Group Limited Methods of treating cancer and related compositions
EP3207057A2 (en) 2014-10-16 2017-08-23 F. Hoffmann-La Roche AG Anti-alpha-synuclein antibodies and methods of use
CA2909669C (en) 2014-10-20 2023-12-12 Ruga Corporation Antiviral activity of gas6 inhibitor
AU2015336931B2 (en) 2014-10-23 2021-04-29 Kira Biotech Pty Limited CD83 binding proteins and uses thereof
SG10202006685XA (en) 2014-10-23 2020-08-28 Innate Pharma Treatment of Cancers Using Anti-NKG2A Agents
US10584175B2 (en) 2014-10-23 2020-03-10 La Trobe University FN14-binding proteins and uses thereof
WO2016070001A1 (en) 2014-10-31 2016-05-06 Jounce Therapeutics, Inc. Methods of treating conditions with antibodies that bind b7-h4
DK3212226T3 (en) 2014-10-31 2020-06-15 Ngm Biopharmaceuticals Inc COMPOSITIONS AND METHODS OF USE FOR TREATING METABOLIC DISORDERS
CN107109484B (en) 2014-11-03 2021-12-14 豪夫迈·罗氏有限公司 Methods and biomarkers for efficacy prediction and assessment of OX40 agonist treatment
RU2017119009A (en) 2014-11-03 2018-12-05 Дженентек, Инк. ANALYSIS FOR DETECTION OF SUBPOPULATIONS OF IMMUNE T-CELLS AND WAYS OF THEIR APPLICATION
WO2016073789A2 (en) 2014-11-05 2016-05-12 Genentech, Inc. Anti-fgfr2/3 antibodies and methods using same
JP6770966B2 (en) 2014-11-05 2020-10-21 ジェネンテック, インコーポレイテッド Method of producing double-stranded protein in bacteria
WO2016073791A1 (en) 2014-11-05 2016-05-12 Genentech, Inc. Methods of producing two chain proteins in bacteria
BR112017008628A2 (en) 2014-11-06 2018-01-30 Genentech Inc combination therapy comprising ox40 binding agonists and tigit inhibitors
EP3842453A1 (en) 2014-11-06 2021-06-30 F. Hoffmann-La Roche AG Fc-region variants with modified fcrn- and protein a-binding properties
EP3611188B1 (en) 2014-11-06 2022-05-04 F. Hoffmann-La Roche AG Fc-region variants with modified fcrn-binding and methods of use
WO2016073157A1 (en) 2014-11-06 2016-05-12 Genentech, Inc. Anti-ang2 antibodies and methods of use thereof
WO2016071701A1 (en) 2014-11-07 2016-05-12 Kymab Limited Treatment of disease using ligand binding to targets of interest
CR20170240A (en) 2014-11-10 2018-04-03 Genentech Inc ANTI-INTERLEUCINA-33 ANTIBODIES AND THEIR USES
EP3217787B1 (en) 2014-11-10 2019-04-17 F.Hoffmann-La Roche Ag Animal model for nephropathy and agents for treating the same
PT3218406T (en) 2014-11-10 2021-06-17 Medimmune Ltd Binding molecules specific for cd73 and uses thereof
US20160129108A1 (en) 2014-11-11 2016-05-12 Medimmune Limited Therapeutic combinations comprising anti-cd73 antibodies and uses thereof
US10155820B2 (en) 2014-11-12 2018-12-18 Tracon Pharmaceuticals, Inc. Anti-endoglin antibodies and uses thereof
US9926375B2 (en) 2014-11-12 2018-03-27 Tracon Pharmaceuticals, Inc. Anti-endoglin antibodies and uses thereof
CN108064237B (en) 2014-11-14 2022-02-11 豪夫迈·罗氏有限公司 Antigen binding molecules comprising TNF family ligand trimers
MX2017006320A (en) 2014-11-17 2017-08-10 Genentech Inc Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists.
WO2016081640A1 (en) 2014-11-19 2016-05-26 Genentech, Inc. Anti-transferrin receptor / anti-bace1 multispecific antibodies and methods of use
EP3221364B1 (en) 2014-11-19 2020-12-16 Genentech, Inc. Antibodies against bace1 and use thereof for neural disease immunotherapy
US10508151B2 (en) 2014-11-19 2019-12-17 Genentech, Inc. Anti-transferrin receptor antibodies and methods of use
MX2017006626A (en) 2014-11-20 2017-08-21 Hoffmann La Roche Common light chains and methods of use.
LT3789402T (en) 2014-11-20 2022-09-26 F. Hoffmann-La Roche Ag Combination therapy of t cell activating bispecific antigen binding molecules and pd-1 axis binding antagonists
SI3221346T1 (en) 2014-11-21 2020-11-30 Bristol-Myers Squibb Company Antibodies comprising modified heavy constant regions
DK3221363T3 (en) 2014-11-21 2020-08-10 Bristol Myers Squibb Co ANTIBODIES TO CD73 AND USES THEREOF
CN107001482B (en) 2014-12-03 2021-06-15 豪夫迈·罗氏有限公司 Multispecific antibodies
MA41119A (en) 2014-12-03 2017-10-10 Acceleron Pharma Inc METHODS OF TREATMENT OF MYELODYSPLASIC SYNDROMES AND SIDEROBLASTIC ANEMIA
AU2015358615B2 (en) 2014-12-04 2021-08-05 Janssen Biotech, Inc. Anti-CD38 antibodies for treatment of acute myeloid leukemia
KR20170086549A (en) 2014-12-05 2017-07-26 제넨테크, 인크. ANTI-CD79b ANTIBODIES AND METHODS OF USE
CA2966365A1 (en) 2014-12-10 2016-06-16 Genentech, Inc. Blood brain barrier receptor antibodies and methods of use
EP3233902B1 (en) * 2014-12-18 2020-09-09 Aravive Biologics, Inc. Antifibrotic activity of gas6 inhibitor
KR20180054923A (en) 2014-12-19 2018-05-24 추가이 세이야쿠 가부시키가이샤 Anti-myostatin antibodies, polypeptides containing variant fc regions, and methods of use
EP3233907B1 (en) 2014-12-19 2021-03-03 Genmab A/S Rodent bispecific heterodimeric proteins
CN113563468A (en) 2014-12-19 2021-10-29 雷根尼桑斯公司 Antibodies that bind to human C6 and uses thereof
SI3233921T1 (en) 2014-12-19 2022-01-31 Chugai Seiyaku Kabushiki Kaisha Anti-c5 antibodies and methods of use
ES2862701T3 (en) 2014-12-22 2021-10-07 Univ Rockefeller Anti-MERTK Agonist Antibodies and Uses Thereof
TN2017000267A1 (en) 2014-12-23 2018-10-19 Bristol Myers Squibb Co Antibodies to tigit
WO2016111947A2 (en) 2015-01-05 2016-07-14 Jounce Therapeutics, Inc. Antibodies that inhibit tim-3:lilrb2 interactions and uses thereof
CA2973978A1 (en) 2015-01-14 2016-07-21 The Brigham And Women's Hospital, Inc. Treatment of cancer with anti-lap monoclonal antibodies
CN113956354A (en) 2015-01-22 2022-01-21 中外制药株式会社 Combinations and methods of use of two or more anti-C5 antibodies
US10330683B2 (en) 2015-02-04 2019-06-25 Genentech, Inc. Mutant smoothened and methods of using the same
AU2016216079A1 (en) 2015-02-05 2017-07-13 Chugai Seiyaku Kabushiki Kaisha Antibodies comprising an ion concentration dependent antigen-binding domain, Fc region variants, IL-8-binding antibodies, and uses therof
WO2016130516A1 (en) * 2015-02-09 2016-08-18 Research Development Foundation Engineered immunoglobulin fc polypeptides displaying improved complement activation
WO2016134335A2 (en) 2015-02-19 2016-08-25 Compugen Ltd. Pvrig polypeptides and methods of treatment
HUE049791T2 (en) 2015-02-19 2020-10-28 Compugen Ltd Anti-pvrig antibodies and methods of use
SG11201705093UA (en) 2015-02-27 2017-07-28 Chugai Pharmaceutical Co Ltd Composition for treating il-6-related diseases
MX2017011534A (en) * 2015-03-09 2018-04-10 Argenx Bvba Methods of reducing serum levels of fc-containing agents using fcrn antagonsits.
KR20170124592A (en) 2015-03-12 2017-11-10 메디뮨 엘엘씨 Method for purifying albumin fusion protein
MX2017011486A (en) 2015-03-16 2018-06-15 Genentech Inc Methods of detecting and quantifying il-13 and uses in diagnosing and treating th2-associated diseases.
WO2016146833A1 (en) 2015-03-19 2016-09-22 F. Hoffmann-La Roche Ag Biomarkers for nad(+)-diphthamide adp ribosyltransferase resistance
TWI719970B (en) 2015-03-23 2021-03-01 美商永斯醫療股份有限公司 Antibodies to icos
CA2980390A1 (en) 2015-03-23 2016-09-29 Bayer Pharma Aktiengesellschaft Anti-ceacam6 antibodies and uses thereof
CN108064236B (en) 2015-03-31 2021-12-10 免疫医疗有限公司 Novel forms of IL33, mutant forms of IL33, antibodies, assays and methods of use thereof
JP6996979B2 (en) 2015-03-31 2022-02-04 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Antigen-binding molecule containing trimer TNF family ligand
US11142587B2 (en) 2015-04-01 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
AR104368A1 (en) 2015-04-03 2017-07-19 Lilly Co Eli ANTI-CD20- / ANTI-BAFF BIESPECTIFIC ANTIBODIES
JP6903587B2 (en) 2015-04-03 2021-07-14 ユーリカ セラピューティックス, インコーポレイテッド Constructs targeting AFP peptide / MHC complexes and their use
CN108136001B (en) 2015-04-03 2022-07-29 佐马技术有限公司 Treatment of cancer using TGF-beta inhibitors and PD-1 inhibitors
MA41919A (en) 2015-04-06 2018-02-13 Acceleron Pharma Inc ALK4 HETEROMULTIMERS: ACTRIIB AND THEIR USES
EP3889171A1 (en) 2015-04-06 2021-10-06 Acceleron Pharma Inc. Tgf-beta superfamily type i and type ii receptor heteromultimers and uses thereof
AU2016246695A1 (en) 2015-04-07 2017-10-26 Genentech, Inc. Antigen binding complex having agonistic activity and methods of use
EA201792250A1 (en) 2015-04-10 2018-05-31 Эмджен Инк. INTERLEUKIN-2 MUTEINS FOR GROWTH OF REGULATORY T-CELLS
TWI787645B (en) 2015-04-13 2022-12-21 美商輝瑞股份有限公司 Cd3-specific antibodies, therapeutic bispecific antibodies and their uses
HUE054616T2 (en) 2015-04-17 2021-09-28 Alpine Immune Sciences Inc Immunomodulatory proteins with tunable affinities
PL3286315T3 (en) 2015-04-24 2021-11-02 F. Hoffmann-La Roche Ag Methods of identifying bacteria comprising binding polypeptides
CR20200517A (en) 2015-04-28 2021-01-12 Mitsubishi Tanabe Pharma Corp RGMa BINDING PROTEIN AND USE THEREOF
CN107709363A (en) 2015-05-01 2018-02-16 基因泰克公司 Shelter anti-cd 3 antibodies and application method
WO2016179194A1 (en) 2015-05-04 2016-11-10 Jounce Therapeutics, Inc. Lilra3 and method of using the same
FR3035879A1 (en) * 2015-05-07 2016-11-11 Lab Francais Du Fractionnement MUTANTS FC WITH MODIFIED FUNCTIONAL ACTIVITY
CN116196414A (en) 2015-05-11 2023-06-02 豪夫迈·罗氏有限公司 Compositions and methods for treating lupus nephritis
JP7048319B2 (en) 2015-05-12 2022-04-05 ジェネンテック, インコーポレイテッド Treatment and diagnosis methods for cancer
WO2016187546A1 (en) 2015-05-20 2016-11-24 Janssen Biotech, Inc. Anti-cd38 antibodies for treatment of light chain amyloidosis and other cd38-positive hematological malignancies
CN107771182A (en) 2015-05-29 2018-03-06 豪夫迈·罗氏有限公司 The anti-Ebola virus glycoproteins antibody of humanization and application method
UY36687A (en) 2015-05-29 2016-11-30 Bristol Myers Squibb Company Una Corporación Del Estado De Delaware ANTIBODIES AGAINST OX40 AND ITS USES
EP3303619B1 (en) 2015-05-29 2020-06-10 H. Hoffnabb-La Roche Ag Pd-l1 promoter methylation in cancer
PL3303632T5 (en) 2015-05-29 2023-07-03 F. Hoffmann-La Roche Ag Therapeutic and diagnostic methods for cancer
CN107810012A (en) 2015-06-02 2018-03-16 豪夫迈·罗氏有限公司 Use the composition and method of the anti-Antybody therapy sacred diseases of IL 34
MA44955A (en) 2015-06-05 2019-03-20 Ac Immune Sa ANTI-TAU BODIES AND THEIR METHODS OF USE
WO2016200836A1 (en) 2015-06-08 2016-12-15 Genentech, Inc. Methods of treating cancer using anti-ox40 antibodies
WO2016200835A1 (en) 2015-06-08 2016-12-15 Genentech, Inc. Methods of treating cancer using anti-ox40 antibodies and pd-1 axis binding antagonists
JP2018524295A (en) 2015-06-15 2018-08-30 ジェネンテック, インコーポレイテッド Antibodies and immune complexes
WO2016205200A1 (en) 2015-06-16 2016-12-22 Genentech, Inc. Anti-cll-1 antibodies and methods of use
AR105026A1 (en) 2015-06-16 2017-08-30 Genentech Inc ANTIBODIES MATURED BY AFFINITY AND HUMANIZED FOR FcRH5 AND METHODS FOR USE
CN107849145B (en) 2015-06-16 2021-10-26 基因泰克公司 anti-CD 3 antibodies and methods of use thereof
MX2017016169A (en) 2015-06-17 2018-08-15 Genentech Inc Anti-her2 antibodies and methods of use.
EP3310385A4 (en) 2015-06-17 2018-12-19 Allakos Inc. Methods and compositions for treating fibrotic diseases
CN116327953A (en) 2015-06-17 2023-06-27 豪夫迈·罗氏有限公司 Methods of treating locally advanced or metastatic breast cancer using PD-1 axis binding antagonists and taxanes
BR112017027724A2 (en) 2015-06-22 2019-01-08 Janssen Biotech Inc Combination therapies for hematological malignancies with anti-cd38 antibodies and survivin inhibitors
AU2016284866B2 (en) 2015-06-23 2022-09-29 Innate Pharma Multispecific antigen binding proteins
JP6971153B2 (en) 2015-06-23 2021-11-24 イナート・ファルマ・ソシエテ・アノニムInnate Pharma Pharma S.A. Multispecific NK Engager Protein
SI3313879T1 (en) 2015-06-24 2022-04-29 F. Hoffmann-La Roche Ag Anti-transferrin receptor antibodies with tailored affinity
US9862763B2 (en) 2015-06-24 2018-01-09 Hoffmann-La Roche Inc. Humanized anti-tau(pS422) antibodies and methods of use
US20170044265A1 (en) 2015-06-24 2017-02-16 Janssen Biotech, Inc. Immune Modulation and Treatment of Solid Tumors with Antibodies that Specifically Bind CD38
CN107921120A (en) 2015-06-24 2018-04-17 詹森生物科技公司 Solid tumor is adjusted and treated with the antibody mediated immunity of specific binding CD38
ES2898065T3 (en) 2015-06-29 2022-03-03 Ventana Med Syst Inc Materials and Procedures for Performing Histochemical Assays for Human Proepiregulin and Amphiregulin
US20170029520A1 (en) 2015-06-29 2017-02-02 Genentech, Inc. Compositions and methods for use in organ transplantation
WO2017002934A1 (en) 2015-07-01 2017-01-05 中外製薬株式会社 Gpc3-targeted therapeutic agent administered to patient in whom gpc3-targetd therapeutic ag
DK3322733T3 (en) 2015-07-13 2021-10-18 Compugen Ltd HIDE1 COMPOSITIONS AND METHODS
PE20180774A1 (en) 2015-07-23 2018-05-07 Boehringer Ingelheim Int COMPOUND TARGETING IL-23A AND B LYMPHOCYTE ACTIVATION FACTOR (BAFF) AND USES OF THESE
CA3025896A1 (en) 2015-07-23 2017-01-26 The Regents Of The University Of California Antibodies to coagulation factor xia and uses thereof
US11466093B2 (en) 2015-07-27 2022-10-11 The General Hospital Corporation Antibody derivatives with conditionally enabled effector function
GB2557123B (en) 2015-07-31 2021-11-03 Univ Minnesota Modified cells and methods of therapy
AU2016301303B2 (en) 2015-08-03 2021-10-07 Bioverativ Therapeutics Inc. Factor IX fusion proteins and methods of making and using same
AU2016301380B2 (en) 2015-08-04 2021-07-01 Acceleron Pharma Inc. Methods for treating myeloproliferative disorders
CN105384825B (en) 2015-08-11 2018-06-01 南京传奇生物科技有限公司 A kind of bispecific chimeric antigen receptor and its application based on single domain antibody
DK3337824T3 (en) 2015-08-17 2020-08-24 Janssen Pharmaceutica Nv ANTI-BCMA ANTIBODIES, BISPECIFIC ANTIGEN-BINDING MOLECULES, WHICH BIND BCMA AND CD3, AND THEIR USE
WO2017040380A2 (en) * 2015-08-28 2017-03-09 Research Development Foundation Engineered antibody fc variants
JP6914919B2 (en) 2015-08-28 2021-08-04 ジェネンテック, インコーポレイテッド Anti-hypusine antibody and its use
MA48579A (en) 2015-09-01 2020-03-18 Agenus Inc ANTI-PD1 ANTIBODIES AND METHODS OF USING THEM
WO2017046746A1 (en) 2015-09-15 2017-03-23 Acerta Pharma B.V. Therapeutic combinations of a btk inhibitor and a gitr binding molecule, a 4-1bb agonist, or an ox40 agonist
CA2998350A1 (en) 2015-09-16 2017-03-23 John Lippincott Anti-cd115 antibodies
US9862760B2 (en) 2015-09-16 2018-01-09 Novartis Ag Polyomavirus neutralizing antibodies
CN108271372B (en) 2015-09-18 2021-07-09 中外制药株式会社 IL-8-binding antibodies and uses thereof
CA2999369C (en) 2015-09-22 2023-11-07 Spring Bioscience Corporation Anti-ox40 antibodies and diagnostic uses thereof
JP6959912B2 (en) 2015-09-23 2021-11-05 ジェネンテック, インコーポレイテッド Optimized variant of anti-VEGF antibody
EP3662930A1 (en) 2015-09-24 2020-06-10 AbVitro LLC Hiv antibody compositions and methods of use
EA201890790A1 (en) 2015-09-29 2018-10-31 Селджин Корпорейшн CONNECTING PD-1 PROTEINS AND METHODS OF THEIR APPLICATION
MA43055A (en) 2015-09-30 2018-08-08 Janssen Biotech Inc AGONIST ANTIBODIES SPECIFICALLY BINDING TO HUMAN CD40 AND METHODS OF USE
AR106188A1 (en) 2015-10-01 2017-12-20 Hoffmann La Roche ANTI-CD19 HUMANIZED HUMAN ANTIBODIES AND METHODS OF USE
WO2017055385A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xgd2 bispecific t cell activating antigen binding molecules
AR106189A1 (en) 2015-10-02 2017-12-20 Hoffmann La Roche BIESPECTIFIC ANTIBODIES AGAINST HUMAN A-b AND THE HUMAN TRANSFERRINE RECEIVER AND METHODS OF USE
US20170096485A1 (en) 2015-10-02 2017-04-06 Hoffmann-La Roche Inc. Bispecific t cell activating antigen binding molecules
WO2017055393A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xtim-3 bispecific t cell activating antigen binding molecules
AU2016329251B2 (en) 2015-10-02 2023-02-02 F. Hoffmann-La Roche Ag Anti-PD1 antibodies and methods of use
MA43345A (en) 2015-10-02 2018-08-08 Hoffmann La Roche PYRROLOBENZODIAZEPINE ANTIBODY-DRUG CONJUGATES AND METHODS OF USE
CR20180162A (en) 2015-10-02 2018-05-25 Hoffmann La Roche BISPECIFIC MOLECULES OF ANTIGEN BINDING TO T-CELL ACTIVATORS
EP3150636A1 (en) 2015-10-02 2017-04-05 F. Hoffmann-La Roche AG Tetravalent multispecific antibodies
CN114057884A (en) 2015-10-02 2022-02-18 豪夫迈·罗氏有限公司 Bispecific anti-human CD 20/human transferrin receptor antibodies and methods of use
EP3356409A2 (en) 2015-10-02 2018-08-08 H. Hoffnabb-La Roche Ag Bispecific t cell activating antigen binding molecules
CA2992853A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Bispecific antibodies specific for pd1 and tim3
WO2017055395A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xrob04 bispecific t cell activating antigen binding molecules
JP6937746B2 (en) 2015-10-02 2021-09-22 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Bispecific anti-CD19 × CD3T cell-activating antigen-binding molecule
WO2017055392A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xcd44v6 bispecific t cell activating antigen binding molecules
CN108602887B (en) 2015-10-02 2022-06-21 豪夫迈·罗氏有限公司 Bispecific antibodies specific for co-stimulatory TNF receptors
WO2017062682A2 (en) 2015-10-06 2017-04-13 Genentech, Inc. Method for treating multiple sclerosis
JP7074665B2 (en) 2015-10-07 2022-05-24 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Field of Invention of Tetravalent Bispecific Antibodies to Co-Stimulated TNF Receptors
WO2017064043A1 (en) 2015-10-12 2017-04-20 Innate Pharma Cd73 blocking agents
MA43354A (en) 2015-10-16 2018-08-22 Genentech Inc CONJUGATE DRUG CONJUGATES WITH CLOUDY DISULPHIDE
MA45326A (en) 2015-10-20 2018-08-29 Genentech Inc CALICHEAMICIN-ANTIBODY-DRUG CONJUGATES AND METHODS OF USE
US10968277B2 (en) 2015-10-22 2021-04-06 Jounce Therapeutics, Inc. Gene signatures for determining ICOS expression
US10604577B2 (en) 2015-10-22 2020-03-31 Allakos Inc. Methods and compositions for treating systemic mastocytosis
CA2946113A1 (en) 2015-10-23 2017-04-23 Pfizer Inc. Anti-il-2 antibodies and compositions and uses thereof
EP4015533A1 (en) 2015-10-29 2022-06-22 F. Hoffmann-La Roche AG Anti-variant fc-region antibodies and methods of use
EP3184547A1 (en) 2015-10-29 2017-06-28 F. Hoffmann-La Roche AG Anti-tpbg antibodies and methods of use
NZ741780A (en) 2015-10-30 2019-11-29 Genentech Inc Anti-htra1 antibodies and methods of use thereof
WO2017075173A2 (en) 2015-10-30 2017-05-04 Genentech, Inc. Anti-factor d antibodies and conjugates
MA43164A (en) 2015-11-02 2018-09-12 Janssen Pharmaceutica Nv ANTI-IL1RAP ANTIBODIES, BISPECIFIC MOLECULES OF BINDING ANTIGEN BINDING IL1RAP AND CD3 AND THEIR USES
WO2017079150A1 (en) 2015-11-03 2017-05-11 Janssen Biotech, Inc. Subcutaneous formulations of anti-cd38 antibodies and their uses
CA3004138A1 (en) 2015-11-03 2017-05-11 Janssen Biotech, Inc. Antibodies specifically binding pd-1 and tim-3 and their uses
US10781261B2 (en) 2015-11-03 2020-09-22 Janssen Biotech, Inc. Subcutaneous formulations of anti-CD38 antibodies and their uses
CN108602884A (en) 2015-11-08 2018-09-28 豪夫迈·罗氏有限公司 The method for screening multi-specificity antibody
EP3378488A4 (en) 2015-11-18 2019-10-30 Chugai Seiyaku Kabushiki Kaisha Method for enhancing humoral immune response
EP3378487B1 (en) 2015-11-18 2022-03-16 Chugai Seiyaku Kabushiki Kaisha Combination therapy using t cell redirection antigen binding molecule against cell having immunosuppressing function
WO2017087678A2 (en) 2015-11-19 2017-05-26 Bristol-Myers Squibb Company Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof
AU2016359695A1 (en) 2015-11-23 2018-06-14 Acceleron Pharma Inc. Methods for treating eye disorders
RU2021107536A (en) 2015-11-23 2021-07-02 Файв Прайм Терапьютикс, Инк. FGFR2 INHIBITORS SEPARATELY OR IN COMBINATION WITH IMMUNOSTIMULATING AGENTS IN THE TREATMENT OF CANCER
CN116063542A (en) 2015-12-02 2023-05-05 阿吉纳斯公司 Antibodies and methods of use thereof
EP3178848A1 (en) 2015-12-09 2017-06-14 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies
JP7325186B2 (en) 2015-12-09 2023-08-14 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Type II anti-CD20 antibody for reducing the formation of anti-drug antibodies
MA44072A (en) 2015-12-17 2018-10-24 Janssen Biotech Inc ANTIBODIES SPECIFICALLY BINDING TO HLA-DR AND THEIR USES
MX2018007144A (en) 2015-12-18 2018-11-29 Chugai Pharmaceutical Co Ltd Anti-c5 antibodies and methods of use.
US11359009B2 (en) 2015-12-25 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies and methods of use
JP7219005B2 (en) 2015-12-28 2023-02-07 中外製薬株式会社 Methods for Streamlining Purification of Fc Region-Containing Polypeptides
CA3006529A1 (en) 2016-01-08 2017-07-13 F. Hoffmann-La Roche Ag Methods of treating cea-positive cancers using pd-1 axis binding antagonists and anti-cea/anti-cd3 bispecific antibodies
CN114019170A (en) 2016-01-20 2022-02-08 基因泰克公司 High dose treatment for alzheimer's disease
EP3405490B1 (en) 2016-01-21 2021-10-20 Pfizer Inc. Mono and bispecific antibodies for epidermal growth factor receptor variant iii and cd3 and their uses
CA3012695A1 (en) 2016-02-01 2017-08-10 Bioverativ Therapeutics Inc. Optimized factor viii genes
EP3411396A1 (en) 2016-02-04 2018-12-12 Curis, Inc. Mutant smoothened and methods of using the same
MX2018010361A (en) 2016-02-29 2019-07-08 Genentech Inc Therapeutic and diagnostic methods for cancer.
CN108699156A (en) 2016-03-01 2018-10-23 豪夫迈·罗氏有限公司 The outstanding trastuzumab in shore difficult to understand and Rituximab variant of ADCP with reduction
CN109476740A (en) 2016-03-04 2019-03-15 百时美施贵宝公司 Utilize the combination therapy of anti-CD73 antibody
JP6976265B2 (en) 2016-03-08 2021-12-08 ヤンセン バイオテツク,インコーポレーテツド GITR antibody, method, and use
US11078274B2 (en) 2016-03-08 2021-08-03 Innate Pharma Siglec neutralizing antibodies
BR112018067951A2 (en) 2016-03-10 2019-02-05 Viela Bio Inc ilt7-binding molecules and methods of using these
KR101834708B1 (en) 2016-03-14 2018-03-06 추가이 세이야쿠 가부시키가이샤 Cytotoxicity-inducing therapeutic agent for treating cancer
US20190071514A1 (en) 2016-03-14 2019-03-07 Innate Pharma Anti-cd39 antibodies
CN116789830A (en) * 2016-03-14 2023-09-22 奥斯陆大学 Engineered immunoglobulins with altered FcRn binding
CN109153719B (en) 2016-03-15 2022-12-30 中外制药株式会社 Methods of treating cancer using PD-1 axis binding antagonists and anti-GPC 3 antibodies
CN108779178A (en) 2016-03-15 2018-11-09 依奈特制药公司 Anti- MICA antibody
CN108884142A (en) 2016-03-16 2018-11-23 梅里麦克制药股份有限公司 Engineering TRAIL use for cancer treatment
EP3430172A4 (en) 2016-03-17 2019-08-21 Cedars-Sinai Medical Center Methods of diagnosing inflammatory bowel disease through rnaset2
CR20180453A (en) 2016-03-22 2018-12-05 Hoffmann La Roche Bispecific MOLECULES OF T-CELLS ACTIVATED BY PROTEASES
WO2017161414A1 (en) 2016-03-22 2017-09-28 Bionomics Limited Administration of an anti-lgr5 monoclonal antibody
LT3433280T (en) 2016-03-22 2023-07-10 F. Hoffmann-La Roche Ag Protease-activated t cell bispecific molecules
JP6943872B2 (en) 2016-03-25 2021-10-06 ジェネンテック, インコーポレイテッド Multiple whole antibody and antibody complex drug quantification assay
MY194603A (en) 2016-04-04 2022-12-06 Bioverativ Usa Inc Anti-Complement Factor Bb Antibodies And Uses Thereof
EP3865511A1 (en) 2016-04-14 2021-08-18 F. Hoffmann-La Roche AG Anti-rspo3 antibodies and methods of use
JP2019515670A (en) 2016-04-15 2019-06-13 ジェネンテック, インコーポレイテッド Methods for monitoring and treating cancer
US11078282B2 (en) 2016-04-15 2021-08-03 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
KR20230051602A (en) 2016-04-15 2023-04-18 알파인 이뮨 사이언시즈, 인코포레이티드 Icos ligand variant immunomodulatory proteins and uses thereof
KR102459684B1 (en) 2016-04-15 2022-10-26 바이오아트라, 인코퍼레이티드 Anti-axl antibodies and their immunoconjugates and uses thereof
CA3019921A1 (en) 2016-04-15 2017-10-19 Genentech, Inc. Methods for monitoring and treating cancer
US11510966B2 (en) 2016-04-15 2022-11-29 Evive Biotechnology (Shanghai) Ltd Use of IL-22 in treating necrotizing enterocolitis
PE20190353A1 (en) 2016-04-15 2019-03-07 Macrogenics Inc NOVELTY B7-H3 JOINT MOLECULES, ANTIBODY-DRUG CONJUGATES OF THE SAME AND METHODS OF USE OF THE SAME
CA3021098A1 (en) 2016-04-21 2017-10-26 Abbvie Stemcentrx Llc Novel anti-bmpr1b antibodies and methods of use
EP3889175A1 (en) 2016-05-02 2021-10-06 F. Hoffmann-La Roche AG The contorsbody - a single chain target binder
CN109476742B (en) 2016-05-09 2023-04-14 百时美施贵宝公司 TL1A antibodies and uses thereof
EP3455254B1 (en) 2016-05-11 2021-07-07 F. Hoffmann-La Roche AG Antigen binding molecules comprising a tnf family ligand trimer and a tenascin binding moiety
EP3243836A1 (en) 2016-05-11 2017-11-15 F. Hoffmann-La Roche AG C-terminally fused tnf family ligand trimer-containing antigen binding molecules
CN109071640B (en) 2016-05-11 2022-10-18 豪夫迈·罗氏有限公司 Modified anti-tenascin antibodies and methods of use
PT3455261T (en) 2016-05-13 2022-11-11 Bioatla Llc Anti-ror2 antibodies, antibody fragments, their immunoconjugates and uses thereof
EP3243832A1 (en) 2016-05-13 2017-11-15 F. Hoffmann-La Roche AG Antigen binding molecules comprising a tnf family ligand trimer and pd1 binding moiety
CN109152843A (en) 2016-05-20 2019-01-04 豪夫迈·罗氏有限公司 PROTAC antibody conjugates and its application method
CA3025306A1 (en) 2016-05-23 2017-11-30 Momenta Pharmaceuticals, Inc. Compositions and methods related to engineered fc constructs
US10875921B2 (en) 2016-05-27 2020-12-29 Abbvie Biotherapeutics Inc. Anti-4-1BB antibodies and their uses
WO2017205741A1 (en) 2016-05-27 2017-11-30 Genentech, Inc. Bioanalytical method for the characterization of site-specific antibody-drug conjugates
TW202244062A (en) 2016-05-27 2022-11-16 美商艾吉納斯公司 Anti-tim-3 antibodies and methods of use thereof
EP3252078A1 (en) 2016-06-02 2017-12-06 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer
WO2018220099A1 (en) 2017-06-02 2018-12-06 F. Hoffmann-La Roche Ag Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer
RU2753585C2 (en) 2016-06-03 2021-08-18 Регенерон Фармасьютикалз, Инк. Non-human animals expressing exogenous terminal deoxynucleotidyl transferase
CN109476648B (en) 2016-06-06 2022-09-13 豪夫迈·罗氏有限公司 Sevelamer antibody-drug conjugates and methods of use
DK3468997T3 (en) 2016-06-08 2023-10-02 Xencor Inc Treatment of IgG4-related diseases with anti-CD9 antibodies cross-linked to CD32B
TW201808987A (en) 2016-06-08 2018-03-16 健生生物科技公司 GM-CSF variants and methods of use
JP7133477B2 (en) 2016-06-24 2022-09-08 ジェネンテック, インコーポレイテッド Anti-polyubiquitin multispecific antibody
US20190233533A1 (en) 2016-06-28 2019-08-01 Umc Utrecht Holding B.V. Treatment Of IgE-Mediated Diseases With Antibodies That Specifically Bind CD38
AU2017290389A1 (en) 2016-07-01 2019-02-14 Resolve Therapeutics, Llc Optimized binuclease fusions and methods
WO2018007314A1 (en) 2016-07-04 2018-01-11 F. Hoffmann-La Roche Ag Novel antibody format
CN109475536B (en) 2016-07-05 2022-05-27 百济神州有限公司 Combination of a PD-l antagonist and a RAF inhibitor for the treatment of cancer
KR20190039937A (en) 2016-07-08 2019-04-16 스태튼 바이오테크놀로지 비.브이. Anti-ApoC3 antibodies and methods of use thereof
MX2019000443A (en) 2016-07-14 2019-06-20 Squibb Bristol Myers Co Antibodies against tim3 and uses thereof.
US11613586B2 (en) 2016-07-15 2023-03-28 Takeda Pharmaceutical Company Limited Methods and materials for assessing response to plasmablast- and plasma cell-depleting therapies
PT3496739T (en) 2016-07-15 2021-06-21 Acceleron Pharma Inc Compositions and methods for treating pulmonary hypertension
WO2018014260A1 (en) 2016-07-20 2018-01-25 Nanjing Legend Biotech Co., Ltd. Multispecific antigen binding proteins and methods of use thereof
TWI781108B (en) 2016-07-20 2022-10-21 比利時商健生藥品公司 Anti- gprc5d antibodies, bispecific antigen binding molecules that bind gprc5d and cd3, and uses thereof
US20190330318A1 (en) 2016-07-25 2019-10-31 Biogen Ma Inc. Anti-hspa5 (grp78) antibodies and uses thereof
EA201990226A1 (en) 2016-07-27 2019-08-30 Акселерон Фарма Инк. METHODS AND COMPOSITIONS FOR THE TREATMENT OF MYELOFIBROSIS
WO2018022945A1 (en) 2016-07-28 2018-02-01 Alpine Immune Sciences, Inc. Cd112 variant immunomodulatory proteins and uses thereof
US11471488B2 (en) 2016-07-28 2022-10-18 Alpine Immune Sciences, Inc. CD155 variant immunomodulatory proteins and uses thereof
CA3032120A1 (en) 2016-07-28 2018-02-01 Alpine Immune Sciences, Inc. Cd155 variant immunomodulatory proteins and uses thereof
WO2018021450A1 (en) 2016-07-29 2018-02-01 中外製薬株式会社 Bispecific antibody exhibiting increased alternative fviii-cofactor-function activity
US20240018268A1 (en) 2016-07-29 2024-01-18 Juno Therapeutics, Inc. Anti-idiotypic antibodies against anti-cd19 antibodies
EP3490600A1 (en) 2016-08-01 2019-06-05 Xoma (Us) Llc Parathyroid hormone receptor 1 (pth1r) antibodies and uses thereof
CA3032820A1 (en) * 2016-08-02 2018-03-22 Visterra, Inc. Engineered polypeptides and uses thereof
EP3494139B1 (en) 2016-08-05 2022-01-12 F. Hoffmann-La Roche AG Multivalent and multiepitopic anitibodies having agonistic activity and methods of use
CN109689090B (en) 2016-08-05 2023-12-26 免疫医疗有限责任公司 anti-O2 antibodies and uses thereof
CA3026050A1 (en) 2016-08-05 2018-02-08 Chugai Seiyaku Kabushiki Kaisha Composition for prophylaxis or treatment of il-8 related diseases
JP7250674B2 (en) 2016-08-08 2023-04-03 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト CANCER TREATMENT AND DIAGNOSTIC METHOD
CN110267977A (en) 2016-08-10 2019-09-20 亚洲大学校产学协力团 Cell factor immunoglobulin Fc merges heterodimer and the pharmaceutical composition comprising it
WO2018031662A1 (en) 2016-08-11 2018-02-15 Genentech, Inc. Pyrrolobenzodiazepine prodrugs and antibody conjugates thereof
MA45941A (en) 2016-08-12 2019-06-19 Janssen Biotech Inc FC-MODIFIED ANTI-TNFR SUPERFAMILY ANTIBODIES WITH IMPROVED AGONIST ACTIVITY AND THEIR USE PROCEDURES
SG11201900746RA (en) 2016-08-12 2019-02-27 Janssen Biotech Inc Engineered antibodies and other fc-domain containing molecules with enhanced agonism and effector functions
CA3033904A1 (en) * 2016-08-15 2018-02-22 National University Corporation Hokkaido University Anti-lag-3 antibody
PT3347379T (en) 2016-08-17 2020-02-18 Compugen Ltd Anti-tigit antibodies, anti-pvrig antibodies and combinations thereof
CN110087680B (en) 2016-08-19 2024-03-19 百济神州有限公司 Treatment of cancer using combination products comprising BTK inhibitors
WO2018044970A1 (en) 2016-08-31 2018-03-08 University Of Rochester Human monoclonal antibodies to human endogenous retrovirus k envelope (herv-k) and uses thereof
EP3510046A4 (en) 2016-09-07 2020-05-06 The Regents of the University of California Antibodies to oxidation-specific epitopes
WO2018053032A1 (en) 2016-09-13 2018-03-22 Humanigen, Inc. Epha3 antibodies for the treatment of pulmonary fibrosis
SG10201607778XA (en) 2016-09-16 2018-04-27 Chugai Pharmaceutical Co Ltd Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use
JP7072576B2 (en) 2016-09-16 2022-05-20 シャンハイ・ヘンリウス・バイオテック・インコーポレイテッド Anti-PD-1 antibody
WO2018053401A1 (en) 2016-09-19 2018-03-22 Celgene Corporation Methods of treating vitiligo using pd-1 binding proteins
CN109952317A (en) 2016-09-19 2019-06-28 细胞基因公司 Use the method for PD-1 binding protein treatment immune disorders
CN116731197A (en) 2016-09-19 2023-09-12 豪夫迈·罗氏有限公司 Complement factor based affinity chromatography
HRP20231015T1 (en) 2016-09-23 2023-12-08 F. Hoffmann-La Roche Ag Uses of il-13 antagonists for treating atopic dermatitis
MX2019003337A (en) 2016-09-23 2019-09-26 Teva Pharmaceuticals Int Gmbh Treating refractory migraine.
AU2017335771A1 (en) 2016-09-28 2019-02-28 Musc Foundation For Research Development Antibodies that bind interleukin-2 and uses thereof
US10882918B2 (en) 2016-09-30 2021-01-05 Hoffmann-La Roche Inc. Bispecific T cell activating antigen binding molecules
WO2018067740A1 (en) 2016-10-05 2018-04-12 Acceleron Pharma, Inc. Compositions and method for treating kidney disease
CN110139674B (en) 2016-10-05 2023-05-16 豪夫迈·罗氏有限公司 Method for preparing antibody drug conjugates
WO2018065552A1 (en) 2016-10-06 2018-04-12 Innate Pharma Anti-cd39 antibodies
EP3523451A1 (en) 2016-10-06 2019-08-14 Genentech, Inc. Therapeutic and diagnostic methods for cancer
WO2018068201A1 (en) 2016-10-11 2018-04-19 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against ctla-4
TW202246349A (en) 2016-10-11 2022-12-01 美商艾吉納斯公司 Anti-lag-3 antibodies and methods of use thereof
CR20190227A (en) 2016-10-14 2019-08-29 Xencor Inc Bispecific heterodimeric fusion proteins containing il-15/il-15ralpha fc-fusion proteins and pd-1 antibody fragments
GB2605883B (en) 2016-10-18 2023-03-15 Univ Minnesota Tumor infiltrating lymphocytes and methods of therapy
WO2018075375A1 (en) 2016-10-19 2018-04-26 Medimmune, Llc Anti-o1 antibodies and uses thereof
US11286295B2 (en) 2016-10-20 2022-03-29 Sanofi Anti-CHIKV monoclonal antibodies directed against the E2 structural protein
EP3529277A1 (en) 2016-10-21 2019-08-28 Innate Pharma Treatment with anti-kir3dl2 agents
KR20190082815A (en) 2016-10-26 2019-07-10 세다르스-신나이 메디칼 센터 Neutralizing anti-TL1A monoclonal antibody
WO2018079997A1 (en) * 2016-10-27 2018-05-03 국민대학교 산학협력단 Aglycosylated antibody fc region for treating cancer
RU2766586C2 (en) 2016-10-28 2022-03-15 Торэй Индастриз, Инк. Pharmaceutical composition for treatment and/or prevention of malignant tumor
WO2018081648A2 (en) 2016-10-29 2018-05-03 Genentech, Inc. Anti-mic antibidies and methods of use
TWI788307B (en) 2016-10-31 2023-01-01 美商艾歐凡斯生物治療公司 Engineered artificial antigen presenting cells for tumor infiltrating lymphocyte expansion
CN110392694B (en) 2016-11-02 2023-08-04 震动疗法股份有限公司 Antibodies against PD-1 and uses thereof
WO2018083080A2 (en) 2016-11-04 2018-05-11 Innate Pharma Nkp46 ligand
WO2018093821A1 (en) 2016-11-15 2018-05-24 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies
TW201829463A (en) 2016-11-18 2018-08-16 瑞士商赫孚孟拉羅股份公司 Anti-hla-g antibodies and use thereof
JOP20190100A1 (en) 2016-11-19 2019-05-01 Potenza Therapeutics Inc Anti-gitr antigen-binding proteins and methods of use thereof
WO2018091724A1 (en) 2016-11-21 2018-05-24 Cureab Gmbh Anti-gp73 antibodies and immunoconjugates
MX2019005772A (en) 2016-11-23 2019-10-02 Bioverativ Therapeutics Inc Mono- and bispecific antibodies binding to coagulation factor ix and coagulation factor x.
WO2018101448A1 (en) 2016-11-30 2018-06-07 Kyowa Hakko Kirin Co., Ltd. Method of treating cancer using anti-ccr4 antibody and anti-pd-1 antibody
CA3044838A1 (en) 2016-12-02 2018-06-07 Bioverativ Therapeutics Inc. Methods of inducing immune tolerance to clotting factors
JP2020500874A (en) 2016-12-02 2020-01-16 バイオベラティブ セラピューティクス インコーポレイテッド Method of treating hemophilic arthropathy using chimeric clotting factor
EP3551660B1 (en) 2016-12-07 2023-09-13 Agenus Inc. Anti-ctla-4 antibodies and methods of use thereof
JP2020511937A (en) 2016-12-07 2020-04-23 ジェネンテック, インコーポレイテッド Anti-TAU antibody and method of use
TW202328181A (en) 2016-12-07 2023-07-16 美商建南德克公司 Anti-tau antibodies and methods of use
CN110300599A (en) 2016-12-07 2019-10-01 艾吉纳斯公司 Antibody and its application method
AU2017371182B2 (en) 2016-12-09 2024-03-28 Gliknik Inc. Methods of treating inflammatory disorders with multivalent Fc compounds
CN110366562A (en) 2016-12-12 2019-10-22 豪夫迈·罗氏有限公司 Use the method for anti-PD-L1 antibody and anti-androgen therapy cancer
EP3554542A1 (en) 2016-12-19 2019-10-23 H. Hoffnabb-La Roche Ag Combination therapy with targeted 4-1bb (cd137) agonists
PL3559034T3 (en) 2016-12-20 2021-04-19 F. Hoffmann-La Roche Ag Combination therapy of anti-cd20/anti-cd3 bispecific antibodies and 4-1bb (cd137) agonists
CA3044686A1 (en) 2016-12-22 2018-06-28 Genentech, Inc. Methods and formulations for reducing reconstitution time of lyophilized polypeptides
WO2018115262A1 (en) 2016-12-23 2018-06-28 Innate Pharma Heterodimeric antigen binding proteins
JOP20190134A1 (en) 2016-12-23 2019-06-02 Potenza Therapeutics Inc Anti-neuropilin antigen-binding proteins and methods of use thereof
CA3047070A1 (en) 2017-01-03 2018-07-12 F.Hoffmann-La Roche Ag Bispecific antigen binding molecules comprising anti-4-1bb clone 20h4.9
TW201825515A (en) 2017-01-04 2018-07-16 美商伊繆諾金公司 Met antibodies and immunoconjugates and uses thereof
US11357841B2 (en) 2017-01-06 2022-06-14 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes with potassium channel agonists and therapeutic uses thereof
EP3565888A1 (en) 2017-01-06 2019-11-13 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes (tils) with tumor necrosis factor receptor superfamily (tnfrsf) agonists and therapeutic combinations of tils and tnfrsf agonists
KR102624254B1 (en) 2017-01-06 2024-01-12 모멘타 파머슈티컬스 인코포레이티드 Compositions and methods for genetically engineered Fc constructs
US11274157B2 (en) 2017-01-12 2022-03-15 Eureka Therapeutics, Inc. Constructs targeting histone H3 peptide/MHC complexes and uses thereof
WO2018139404A1 (en) 2017-01-24 2018-08-02 協和発酵キリン株式会社 Therapeutic or prophylactic agent and treatment or prevention method for radiation sickness
CA3046548A1 (en) 2017-01-24 2018-08-02 Innate Pharma Nkp46 binding agents
CN110461847B (en) 2017-01-25 2022-06-07 百济神州有限公司 Crystalline forms of (S) -7- (1- (but-2-alkynoyl) piperidin-4-yl) -2- (4-phenoxyphenyl) -4,5,6, 7-tetrahydropyrazolo [1,5-a ] pyrimidine-3-carboxamide, preparation and use thereof
WO2018139623A1 (en) 2017-01-30 2018-08-02 Chugai Seiyaku Kabushiki Kaisha Anti-sclerostin antibodies and methods of use
PL3577135T3 (en) 2017-01-31 2023-12-04 Chugai Seiyaku Kabushiki Kaisha A pharmaceutical composition for use in the treatment or prevention of c5-related diseases
EP3577138A1 (en) 2017-02-06 2019-12-11 Innate Pharma Immunomodulatory antibody drug conjugates binding to a human mica polypeptide
KR20190118172A (en) 2017-02-08 2019-10-17 드래곤플라이 쎄라퓨틱스, 인크. Multispecific Binding Proteins for Activation of Natural Killer Cells and Their Therapeutic Uses in Cancer Treatment
AU2018217816A1 (en) 2017-02-10 2019-08-15 Genentech, Inc. Anti-tryptase antibodies, compositions thereof, and uses thereof
US11142570B2 (en) 2017-02-17 2021-10-12 Bristol-Myers Squibb Company Antibodies to alpha-synuclein and uses thereof
JP2020508049A (en) 2017-02-17 2020-03-19 デナリ セラピューティクス インコーポレイテッドDenali Therapeutics Inc. Engineered transferrin receptor binding polypeptide
MX2019010028A (en) 2017-02-28 2019-10-14 Seattle Genetics Inc Cysteine mutated antibodies for conjugation.
ES2953595T3 (en) 2017-03-01 2023-11-14 Hoffmann La Roche Diagnostic and therapeutic procedures for cancer
EP3590535A4 (en) 2017-03-02 2020-12-30 St. Marianna University School of Medicine Preventive or therapeutic agent for htlv-1-associated myelopathy using low-dose anti-ccr4 antibody
BR112019017500A2 (en) 2017-03-03 2020-04-14 Rinat Neuroscience Corp anti-gitr antibodies and methods of using them
GB201703876D0 (en) 2017-03-10 2017-04-26 Berlin-Chemie Ag Pharmaceutical combinations
SG11201907769XA (en) 2017-03-16 2019-09-27 Alpine Immune Sciences Inc Cd80 variant immunomodulatory proteins and uses thereof
CN110809581A (en) 2017-03-16 2020-02-18 高山免疫科学股份有限公司 PD-L2 variant immunomodulatory proteins and uses thereof
AU2018236224B2 (en) 2017-03-16 2024-01-04 Alpine Immune Sciences, Inc. PD-L1 variant immunomodulatory proteins and uses thereof
WO2018167267A1 (en) 2017-03-16 2018-09-20 Innate Pharma Compositions and methods for treating cancer
PL3600419T3 (en) 2017-03-20 2024-02-19 Vaccinex, Inc. Treatment of cancer with a semaphorin-4d antibody in combination with an epigenetic modulating agent
AU2018237359A1 (en) 2017-03-22 2019-10-10 Genentech, Inc. Optimized antibody compositions for treatment of ocular disorders
CN108623686A (en) 2017-03-25 2018-10-09 信达生物制药(苏州)有限公司 Anti- OX40 antibody and application thereof
KR20190133723A (en) 2017-03-27 2019-12-03 에프. 호프만-라 로슈 아게 Improved antigen binding receptors
SG11201908326YA (en) 2017-03-28 2019-10-30 Genentech Inc Methods of treating neurodegenerative diseases
WO2018178076A1 (en) 2017-03-29 2018-10-04 F. Hoffmann-La Roche Ag Bispecific antigen binding molecule for a costimulatory tnf receptor
CN110573528B (en) 2017-03-29 2023-06-09 豪夫迈·罗氏有限公司 Bispecific antigen binding molecules to costimulatory TNF receptors
JOP20190203A1 (en) 2017-03-30 2019-09-03 Potenza Therapeutics Inc Anti-tigit antigen-binding proteins and methods of use thereof
CA3055132A1 (en) 2017-04-03 2018-10-11 F. Hoffmann-La Roche Ag Antibodies binding to steap-1
WO2018185618A1 (en) 2017-04-03 2018-10-11 Novartis Ag Anti-cdh6 antibody drug conjugates and anti-gitr antibody combinations and methods of treatment
DK3606946T3 (en) 2017-04-03 2022-10-24 Hoffmann La Roche Immunoconjugates of an anti-PD-1 antibody with a mutated IL-2 or with IL-15
US20200024351A1 (en) 2017-04-03 2020-01-23 Jounce Therapeutics, Inc. Compositions and Methods for the Treatment of Cancer
JP7148539B2 (en) 2017-04-03 2022-10-05 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト immunoconjugate
JP6997209B2 (en) 2017-04-04 2022-02-04 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト A novel bispecific antigen-binding molecule capable of specifically binding to CD40 and FAP
CA3052532A1 (en) 2017-04-05 2018-10-11 F. Hoffmann-La Roche Ag Bispecific antibodies specifically binding to pd1 and lag3
KR102294136B1 (en) 2017-04-05 2021-08-26 에프. 호프만-라 로슈 아게 anti-LAG3 antibody
BR112019017241A2 (en) 2017-04-13 2020-04-14 Agenus Inc anti-cd137 antibodies and methods of using them
EP3609537A1 (en) 2017-04-13 2020-02-19 H. Hoffnabb-La Roche Ag An interleukin-2 immunoconjugate, a cd40 agonist, and optionally a pd-1 axis binding antagonist for use in methods of treating cancer
AU2018251993A1 (en) 2017-04-14 2019-10-24 Genentech, Inc. Diagnostic and therapeutic methods for cancer
EP3612560A1 (en) 2017-04-21 2020-02-26 Staten Biotechnology B.V. Anti-apoc3 antibodies and methods of use thereof
MX2019012419A (en) 2017-04-21 2019-12-05 Genentech Inc Use of klk5 antagonists for treatment of a disease.
WO2018200586A1 (en) 2017-04-26 2018-11-01 Eureka Therapeutics, Inc. Constructs specifically recognizing glypican 3 and uses thereof
TWI791519B (en) 2017-04-27 2023-02-11 美商提薩羅有限公司 Antibody agents directed against lymphocyte activation gene-3 (lag-3) and uses thereof
DK3618863T3 (en) 2017-05-01 2023-08-21 Agenus Inc ANTI-TIGIT ANTIBODIES AND METHODS OF USING THEREOF
US11851486B2 (en) 2017-05-02 2023-12-26 National Center Of Neurology And Psychiatry Method for predicting and evaluating therapeutic effect in diseases related to IL-6 and neutrophils
MX2019013110A (en) 2017-05-05 2019-12-16 Vaccinex Inc Human anti-semaphorin 4d antibody.
US11203638B2 (en) 2017-05-05 2021-12-21 Allakos Inc. Methods and compositions for treating perennial allergic conjunctivitis and keratoconjunctivitis
BR112019023409A2 (en) 2017-05-10 2020-06-16 Iovance Biotherapeutics, Inc. METHODS FOR TREATING CANCER IN A PATIENT AND A HEMATOLOGICAL MALIGNITY, FOR EXPANDING TUMOR INFILTRANT LYMPHOCYTES, PERIPHERAL BLOOD LYMPHOCYTES AND INFILTRANT SPRAY LYMPHOCYTES, PROCEDURE FOR THE PREPARATION OF A POPULATION IN THE MANUFACTURE OF A POPULATION OF TUMOR INFILTRANT LYMPHOCYTES.
EP3625251A1 (en) 2017-05-15 2020-03-25 University Of Rochester Broadly neutralizing anti-influenza monoclonal antibody and uses thereof
US11091555B2 (en) 2017-05-16 2021-08-17 Five Prime Therapeutics, Inc. Method of treating gastric cancer with anti-FGFR2-IIIb antibodies and modified FOLFOX6 chemotherapy
AU2018272852A1 (en) 2017-05-25 2019-11-28 Bristol-Myers Squibb Company Antibodies comprising modified heavy constant regions
CN110621697B (en) 2017-05-25 2023-06-27 百时美施贵宝公司 Antagonistic CD40 monoclonal antibodies and uses thereof
SG10202111336RA (en) 2017-06-01 2021-11-29 Compugen Ltd Triple combination antibody therapies
KR102356984B1 (en) 2017-06-02 2022-01-28 화이자 인코포레이티드 Antibodies specific for FLT3 and uses thereof
PE20200013A1 (en) 2017-06-20 2020-01-06 Amgen Inc METHOD TO TREAT OR IMPROVE METABOLIC DISORDERS WITH GASTRIC INHIBITOR PEPTIDE RECEPTOR BINDING PROTEINS (GIPR) IN COMBINATION WITH GLP-1 AGONISTS
AU2018290532A1 (en) 2017-06-26 2019-11-21 Beigene, Ltd. Immunotherapy for hepatocellular carcinoma
CN111132733A (en) 2017-06-30 2020-05-08 Xencor股份有限公司 Targeted heterodimeric Fc fusion proteins containing IL-15/IL-15R α and an antigen binding domain
EP3645021A4 (en) 2017-06-30 2021-04-21 Intima Bioscience, Inc. Adeno-associated viral vectors for gene therapy
EA202090020A1 (en) 2017-07-10 2020-04-28 Интернэшнл - Драг - Дивелопмент - Байотек TREATMENT OF B-CELL MALIGNANT NEW FORMATIONS USING AFUCHOSILED PROPAOPTOTIC ANTI-CD19 ANTIBODIES IN COMBINATION WITH ANTI-CD20 ANTIBODIES OR CHEMOTHERAPEUTIC MEDICINES
WO2019011852A1 (en) 2017-07-10 2019-01-17 Innate Pharma Combination therapy using antibody to human siglec-9 and antibody to human nkg2a for treating cancer
AU2018298676A1 (en) 2017-07-10 2019-12-19 Innate Pharma Siglec-9-neutralizing antibodies
JP7197865B2 (en) 2017-07-18 2022-12-28 協和キリン株式会社 Anti-human CCR1 monoclonal antibody
MX2020000604A (en) 2017-07-21 2020-09-10 Genentech Inc Therapeutic and diagnostic methods for cancer.
KR20200067833A (en) 2017-07-26 2020-06-12 포티 세븐, 인코포레이티드 Anti-SIRP-alpha antibodies and related methods
US11365241B2 (en) 2017-07-27 2022-06-21 Alexion Pharmaceuticals, Inc. High concentration anti-C5 antibody formulations
CA3072334A1 (en) 2017-08-09 2019-02-14 Bioverativ Therapeutics Inc. Nucleic acid molecules and uses thereof
WO2019033043A2 (en) 2017-08-11 2019-02-14 Genentech, Inc. Anti-cd8 antibodies and uses thereof
CA3072099A1 (en) * 2017-08-11 2019-02-14 Research Development Foundation Engineered antibody fc variants for enhanced serum half life
US11485781B2 (en) 2017-08-17 2022-11-01 Massachusetts Institute Of Technology Multiple specificity binders of CXC chemokines
CA3073537A1 (en) 2017-08-22 2019-02-28 Sanabio, Llc Soluble interferon receptors and uses thereof
BR112020003533A2 (en) 2017-08-25 2020-11-17 Five Prime Therapeutics, Inc. b7-h4 antibodies and methods of using them
EP3456737B1 (en) * 2017-09-19 2024-02-14 Tillotts Pharma Ag Antibody variants
JP7382922B2 (en) 2017-09-20 2023-11-17 中外製薬株式会社 Dosing regimen for combination therapy using PD-1 system binding antagonists and GPC3 targeting agents
WO2019067499A1 (en) 2017-09-27 2019-04-04 Alexion Pharmaceuticals, Inc. Biomarker signature for predicting tumor response to anti-cd200 therapy
SG11201810270SA (en) 2017-09-29 2019-04-29 Chugai Pharmaceutical Co Ltd Multispecific antigen-binding molecules having blood coagulation factor viii (fviii) cofactor function-substituting activity and pharmaceutical formulations containing such a molecule as an active ing
WO2019075090A1 (en) 2017-10-10 2019-04-18 Tilos Therapeutics, Inc. Anti-lap antibodies and uses thereof
WO2019074983A1 (en) 2017-10-10 2019-04-18 Alpine Immune Sciences, Inc. Ctla-4 variant immunomodulatory proteins and uses thereof
AU2018347521A1 (en) 2017-10-12 2020-05-07 Immunowake Inc. VEGFR-antibody light chain fusion protein
US11472889B2 (en) 2017-10-14 2022-10-18 Cytomx Therapeutics, Inc. Antibodies, activatable antibodies, bispecific antibodies, and bispecific activatable antibodies and methods of use thereof
AU2018351000B2 (en) 2017-10-18 2023-11-30 Alpine Immune Sciences, Inc. Variant ICOS Ligand immunomodulatory proteins and related compositions and methods
TW201932142A (en) 2017-10-20 2019-08-16 瑞士商赫孚孟拉羅股份公司 Method for generating multispecific antibodies from monospecific antibodies
MX2020004100A (en) 2017-10-30 2020-07-24 Hoffmann La Roche Method for in vivo generation of multispecific antibodies from monospecific antibodies.
US10538583B2 (en) 2017-10-31 2020-01-21 Staten Biotechnology B.V. Anti-APOC3 antibodies and compositions thereof
MA50514A (en) 2017-10-31 2020-09-09 Janssen Biotech Inc HIGH-RISK MULTIPLE MYELOMA TREATMENT METHODS
KR20200074975A (en) 2017-10-31 2020-06-25 스태튼 바이오테크놀로지 비.브이. Anti-ApoC3 antibodies and methods of use
BR112020006443A2 (en) 2017-11-01 2020-09-29 F. Hoffmann-La Roche Ag bispecific antibodies, isolated nucleic acid, vector or host cell, method for producing a bispecific antibody and for treating an individual, pharmaceutical composition and use of the antibody
KR20200084006A (en) 2017-11-01 2020-07-09 에프. 호프만-라 로슈 아게 Combination therapy with targeted OX40 agonists
WO2019086499A1 (en) 2017-11-01 2019-05-09 F. Hoffmann-La Roche Ag Novel tnf family ligand trimer-containing antigen binding molecules
MX2020004567A (en) 2017-11-06 2020-08-13 Genentech Inc Diagnostic and therapeutic methods for cancer.
KR20200078527A (en) 2017-11-08 2020-07-01 쿄와 기린 가부시키가이샤 Bispecific antibodies that bind CD40 and EpCAM
WO2019101695A1 (en) 2017-11-21 2019-05-31 Innate Pharma Multispecific antigen binding proteins
JP2021503885A (en) 2017-11-22 2021-02-15 アイオバンス バイオセラピューティクス,インコーポレイテッド Expanded culture of peripheral blood lymphocytes (PBL) from peripheral blood
US11786529B2 (en) 2017-11-29 2023-10-17 Beigene Switzerland Gmbh Treatment of indolent or aggressive B-cell lymphomas using a combination comprising BTK inhibitors
CA3083363A1 (en) 2017-12-01 2019-06-06 Novartis Ag Polyomavirus neutralizing antibodies
US10875915B2 (en) 2017-12-01 2020-12-29 Pfizer Inc. Anti-CXCR5 antibodies and compositions and uses thereof
WO2019110823A1 (en) 2017-12-08 2019-06-13 Argenx Bvba Use of fcrn antagonists for treatment of generalized myasthenia gravis
CA3085765A1 (en) 2017-12-15 2019-06-20 Iovance Biotherapeutics, Inc. Systems and methods for determining the beneficial administration of tumor infiltrating lymphocytes, and methods of use thereof and beneficial administration of tumor infiltrating lymphocytes, and methods of use thereof
US11802154B2 (en) 2017-12-20 2023-10-31 Alexion Pharmaceuticals, Inc. Humanized anti-CD200 antibodies and uses thereof
US20210087267A1 (en) 2017-12-20 2021-03-25 Alexion Pharmaceuticals, Inc. Liquid formulations of anti-cd200 antibodies
WO2019122046A1 (en) 2017-12-21 2019-06-27 F. Hoffmann-La Roche Ag Universal reporter cell assay for specificity test of novel antigen binding moieties
EP3728317A2 (en) 2017-12-21 2020-10-28 F. Hoffmann-La Roche AG Antibodies binding to hla-a2/wt1
EP3502140A1 (en) 2017-12-21 2019-06-26 F. Hoffmann-La Roche AG Combination therapy of tumor targeted icos agonists with t-cell bispecific molecules
WO2019126514A2 (en) 2017-12-22 2019-06-27 Jounce Therapeutics, Inc. Antibodies for lilrb2
WO2019126472A1 (en) 2017-12-22 2019-06-27 Genentech, Inc. Use of pilra binding agents for treatment of a disease
CN115925943A (en) 2017-12-27 2023-04-07 信达生物制药(苏州)有限公司 Anti-PD-L1 antibodies and uses thereof
WO2019129137A1 (en) 2017-12-27 2019-07-04 信达生物制药(苏州)有限公司 Anti-lag-3 antibody and uses thereof
WO2019129136A1 (en) 2017-12-27 2019-07-04 信达生物制药(苏州)有限公司 Anti-pd-l1 antibody and uses thereof
WO2019129221A1 (en) 2017-12-28 2019-07-04 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against tigit
WO2019131988A1 (en) 2017-12-28 2019-07-04 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
CN111542543B (en) 2017-12-28 2023-12-22 南京传奇生物科技有限公司 Antibodies to PD-L1 and variants thereof
CN111479588A (en) 2017-12-29 2020-07-31 豪夫迈·罗氏有限公司 Methods for improving VEGF receptor blocking selectivity of anti-VEGF antibodies
US20230101432A1 (en) 2018-01-03 2023-03-30 Alpine Immune Sciences, Inc. Multi-domain immunomodulatory proteins and methods of use thereof
SG11202006400UA (en) 2018-01-04 2020-08-28 Iconic Therapeutics Inc Anti-tissue factor antibodies, antibody-drug conjugates, and related methods
CA3086879A1 (en) 2018-01-05 2019-07-11 Ac Immune Sa Misfolded tdp-43 binding molecules
KR20200108870A (en) 2018-01-12 2020-09-21 브리스톨-마이어스 스큅 컴퍼니 Antibodies to TIM3 and uses thereof
AU2019208102A1 (en) 2018-01-12 2020-07-02 Takeda Pharmaceutical Company Limited Subcutaneous dosing of anti-CD38 antibodies
WO2019137541A1 (en) 2018-01-15 2019-07-18 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against pd-1
WO2019143636A1 (en) 2018-01-16 2019-07-25 Lakepharma, Inc. Bispecific antibody that binds cd3 and another target
US11402380B2 (en) 2018-01-25 2022-08-02 Emory University Assays for detecting antibodies capable of mediating antibody-dependent cell-mediated cytotoxicity
PT3743088T (en) 2018-01-26 2022-12-05 Hoffmann La Roche Compositions and methods of use
CN111655717A (en) 2018-01-26 2020-09-11 豪夫迈·罗氏有限公司 IL-22Fc fusion proteins and methods of use
EP3746483A1 (en) 2018-02-01 2020-12-09 Pfizer Inc Chimeric antigen receptors targeting cd70
EP3746136A1 (en) 2018-02-01 2020-12-09 Bioverativ Therapeutics Inc. Use of lentiviral vectors expressing factor viii
PE20210708A1 (en) 2018-02-01 2021-04-16 Pfizer ANTIBODIES SPECIFIC TO CD70 AND THEIR USES
CA3089287A1 (en) 2018-02-08 2019-08-15 Genentech, Inc. Bispecific antigen-binding molecules and methods of use
CN112368012A (en) 2018-02-08 2021-02-12 蜻蜓疗法股份有限公司 Antibody variable domains targeting NKG2D receptor
PE20211304A1 (en) 2018-02-09 2021-07-20 Genentech Inc THERAPEUTIC AND DIAGNOSTIC METHODS FOR INFLAMMATORY DISEASES MEDIATED BY MASTOCYTES
SG11202007578SA (en) 2018-02-09 2020-09-29 Hoffmann La Roche Antibodies binding to gprc5d
CA3090795A1 (en) 2018-02-13 2019-08-22 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes (tils) with adenosine a2a receptor antagonists and therapeutic combinations of tils and adenosine a2a receptor antagonists
JP7350756B2 (en) 2018-02-14 2023-09-26 アバ セラピューティクス アーゲー Anti-human PD-L2 antibody
JP2021514354A (en) 2018-02-21 2021-06-10 ジェネンテック, インコーポレイテッド Administration for treatment with IL-22Fc fusion protein
EP3759141A1 (en) 2018-02-26 2021-01-06 F. Hoffmann-La Roche AG Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
MX2020008455A (en) 2018-02-28 2021-10-26 Pfizer Il-15 variants and uses thereof.
MX2020009037A (en) 2018-03-02 2021-01-08 Five Prime Therapeutics Inc B7-h4 antibodies and methods of use thereof.
TW202003561A (en) 2018-03-13 2020-01-16 瑞士商赫孚孟拉羅股份公司 Combination therapy with targeted 4-1BB (CD137) agonists
AU2019236372A1 (en) 2018-03-13 2020-07-30 F. Hoffmann-La Roche Ag Therapeutic combination of 4-1 BB agonists with anti-CD20 antibodies
MX2020009514A (en) 2018-03-14 2020-12-07 Beijing Xuanyi Pharmasciences Co Ltd Anti-claudin 18.2 antibodies.
US20200040103A1 (en) 2018-03-14 2020-02-06 Genentech, Inc. Anti-klk5 antibodies and methods of use
CN116327926A (en) 2018-03-15 2023-06-27 中外制药株式会社 Anti-dengue virus antibodies with cross-reactivity to Zika virus and methods of use
JP2021518133A (en) 2018-03-21 2021-08-02 ファイブ プライム セラピューティクス, インコーポレイテッド Antibodies that bind to VISTA at acidic pH
CA3093407A1 (en) 2018-03-23 2019-09-26 Bristol-Myers Squibb Company Antibodies against mica and/or micb and uses thereof
EP3772926A1 (en) 2018-03-26 2021-02-17 Regeneron Pharmaceuticals, Inc. Humanized rodents for testing therapeutic agents
AU2019244091B2 (en) 2018-03-28 2023-12-07 Bristol-Myers Squibb Company Interleukin-2/Interleukin-2 receptor alpha fusion proteins and methods of use
CN112154156A (en) 2018-03-28 2020-12-29 武田药品工业株式会社 Subcutaneous administration of anti-CD 38 antibodies
KR20200136465A (en) 2018-03-29 2020-12-07 화이자 인코포레이티드 LFA3 variants and compositions and uses thereof
TW202003839A (en) 2018-03-29 2020-01-16 美商建南德克公司 Modulating lactogenic activity in mammalian cells
CA3095719A1 (en) 2018-03-30 2019-10-03 Toray Industries, Inc. Pharmaceutical composition for treatment and/or prevention of cancer
MX2020010204A (en) 2018-04-02 2021-01-29 Bristol Myers Squibb Co Anti-trem-1 antibodies and uses thereof.
TW202011029A (en) 2018-04-04 2020-03-16 美商建南德克公司 Methods for detecting and quantifying FGF21
JOP20200258A1 (en) 2018-04-09 2020-10-11 Amgen Inc Growth differentiation factor 15 fusion proteins
CA3095373A1 (en) * 2018-04-13 2019-10-17 Affimed Gmbh Nk cell engaging antibody fusion constructs
PE20210652A1 (en) 2018-04-13 2021-03-26 Hoffmann La Roche HER2 TARGETING ANTIGEN BINDING MOLECULES INCLUDING 4-1BBL
AR115052A1 (en) 2018-04-18 2020-11-25 Hoffmann La Roche MULTI-SPECIFIC ANTIBODIES AND THE USE OF THEM
AR114789A1 (en) 2018-04-18 2020-10-14 Hoffmann La Roche ANTI-HLA-G ANTIBODIES AND THE USE OF THEM
WO2019204665A1 (en) 2018-04-18 2019-10-24 Xencor, Inc. Pd-1 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and pd-1 antigen binding domains and uses thereof
CA3097741A1 (en) 2018-04-18 2019-10-24 Xencor, Inc. Tim-3 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and tim-3 antigen binding domains
IT201800004853A1 (en) 2018-04-24 2019-10-24 Methods of treating cancer
US20210070871A1 (en) 2018-04-25 2021-03-11 Prometheus Biosciences, Inc. Optimized anti-tl1a antibodies
CA3096703A1 (en) 2018-05-03 2019-11-07 University Of Rochester Anti-influenza neuraminidase monoclonal antibodies and uses thereof
CN110464842B (en) 2018-05-11 2022-10-14 信达生物制药(苏州)有限公司 Formulations comprising anti-PCSK 9 antibodies and uses thereof
US20190375822A1 (en) 2018-05-18 2019-12-12 Bioverativ Therapeutics Inc. Methods of treating hemophilia a
WO2019226658A1 (en) 2018-05-21 2019-11-28 Compass Therapeutics Llc Multispecific antigen-binding compositions and methods of use
US11845788B2 (en) 2018-05-22 2023-12-19 Beth Israel Deaconess Medical Center, Inc. Antibody therapies for human immunodeficiency virus (HIV)
JOP20190116A1 (en) 2018-05-24 2019-11-24 Janssen Biotech Inc Anti-cd33 antibodies, anti-cd33/anti-cd3 bispecific antibodies and uses thereof
EP3801766A1 (en) 2018-05-31 2021-04-14 Novartis AG Hepatitis b antibodies
CN113039202A (en) 2018-06-01 2021-06-25 康姆普根有限公司 anti-PVRIG/anti-TIGIT bispecific antibodies and methods of use
EP3805400A4 (en) 2018-06-04 2022-06-29 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule showing changed half-life in cytoplasm
WO2019236417A1 (en) 2018-06-04 2019-12-12 Biogen Ma Inc. Anti-vla-4 antibodies having reduced effector function
US20210155710A1 (en) 2018-06-05 2021-05-27 Amgen Inc. Modulating antibody dependent cellular phagocytosis
GB201809746D0 (en) 2018-06-14 2018-08-01 Berlin Chemie Ag Pharmaceutical combinations
US20210363219A1 (en) 2018-06-15 2021-11-25 Alpine Immune Sciences, Inc. Pd-1 variant immunomodulatory proteins and uses thereof
SG11202012435UA (en) 2018-06-18 2021-01-28 Innate Pharma Compositions and methods for treating cancer
US20200030443A1 (en) 2018-06-23 2020-01-30 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, a platinum agent, and a topoisomerase ii inhibitor
EP3816291A4 (en) 2018-06-26 2022-03-16 Kyowa Kirin Co., Ltd. Antibody binding to chondroitin sulfate proteoglycan-5
KR20210027295A (en) 2018-06-26 2021-03-10 쿄와 기린 가부시키가이샤 Antibodies that bind to cell adhesion molecule 3
BR112020026512A2 (en) 2018-07-03 2021-04-06 Bristol-Myers Squibb Company FGF-21 FORMULATIONS
TW202035447A (en) 2018-07-04 2020-10-01 瑞士商赫孚孟拉羅股份公司 Novel bispecific agonistic 4-1bb antigen binding molecules
MX2021000009A (en) 2018-07-09 2021-03-09 Five Prime Therapeutics Inc Antibodies binding to ilt4.
WO2020014306A1 (en) 2018-07-10 2020-01-16 Immunogen, Inc. Met antibodies and immunoconjugates and uses thereof
BR112021000303A2 (en) 2018-07-11 2021-04-13 Five Prime Therapeutics, Inc. ANTIBODIES THAT BIND THE SIGHT IN ACID PH
US20220275043A1 (en) 2018-07-17 2022-09-01 Massachusetts Institute Of Technology Soluble multimeric immunoglobulin-scaffold based fusion proteins and uses thereof
KR20210034622A (en) 2018-07-18 2021-03-30 제넨테크, 인크. Lung cancer treatment method using PD-1 axis binding antagonist, anti-metabolite, and platinum agent
TW202019966A (en) 2018-07-19 2020-06-01 美商再生元醫藥公司 BISPECIFIC ANTI-BCMAxANTI-CD3 ANTIBODIES AND USES THEREOF
CA3106114A1 (en) 2018-07-20 2020-01-23 Surface Oncology, Inc. Anti-cd112r compositions and methods
JP6672516B2 (en) 2018-08-01 2020-03-25 中外製薬株式会社 Pharmaceutical composition for treating or preventing C5-related disease and method for treating or preventing C5-related disease
CA3106829A1 (en) 2018-08-03 2020-02-06 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing two antigen-binding domains that are linked to each other
MA50586A (en) 2018-08-09 2020-09-16 Regeneron Pharma METHODS FOR EVALUATING THE BINDING AFFINITY OF AN ANTIBODY VARIANT TO THE NEONATAL FC RECEPTOR
WO2020033863A1 (en) 2018-08-09 2020-02-13 Bioverativ Therapeutics Inc. Nucleic acid molecules and uses thereof for non-viral gene therapy
CA3108369A1 (en) 2018-08-10 2020-02-13 Tomoyuki Igawa Anti-cd137 antigen-binding molecule and utilization thereof
TW202021618A (en) 2018-08-17 2020-06-16 美商23與我有限公司 Anti-il1rap antibodies and methods of use thereof
EP3833693A4 (en) 2018-08-21 2023-06-07 ABL Bio Inc. Anti-pd-l1/anti-lag3 bispecific antibodies and uses thereof
TW202031273A (en) 2018-08-31 2020-09-01 美商艾歐凡斯生物治療公司 Treatment of nsclc patients refractory for anti-pd-1 antibody
GB201814281D0 (en) 2018-09-03 2018-10-17 Femtogenix Ltd Cytotoxic agents
EP3847194A1 (en) 2018-09-07 2021-07-14 Pfizer Inc. Anti-avb8 antibodies and compositions and uses thereof
WO2020053742A2 (en) 2018-09-10 2020-03-19 Novartis Ag Anti-hla-hbv peptide antibodies
AU2019339895A1 (en) 2018-09-11 2021-03-11 Amgen Inc. Methods of modulating antibody-dependent cell-mediated cytotoxicity
CN112955747A (en) 2018-09-19 2021-06-11 豪夫迈·罗氏有限公司 Methods for treatment and diagnosis of bladder cancer
KR20210089146A (en) 2018-09-19 2021-07-15 알파인 이뮨 사이언시즈, 인코포레이티드 Methods and uses of variant CD80 proteins and related constructs
MX2021003213A (en) 2018-09-21 2021-05-12 Genentech Inc Diagnostic methods for triple-negative breast cancer.
EP3858857A1 (en) 2018-09-26 2021-08-04 Jiangsu Hengrui Medicine Co., Ltd. An anti-ox40 antibody, antigen-binding fragment thereof, and the pharmaceutical use
TW202028467A (en) 2018-09-28 2020-08-01 日商協和麒麟股份有限公司 Antibody composition
CN112771071A (en) 2018-09-28 2021-05-07 麻省理工学院 Collagen-localized immunomodulatory molecules and methods thereof
WO2020070035A1 (en) 2018-10-01 2020-04-09 F. Hoffmann-La Roche Ag Bispecific antigen binding molecules with trivalent binding to cd40
JP7221379B2 (en) 2018-10-01 2023-02-13 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Bispecific antigen-binding molecule comprising anti-FAP clone 212
CA3112215A1 (en) 2018-10-05 2020-04-09 Five Prime Therapeutics, Inc. Anti-fgfr2 antibody formulations
JP2022504839A (en) 2018-10-10 2022-01-13 ティロス・セラピューティクス・インコーポレイテッド Anti-LAP antibody mutants and their use
CR20210239A (en) 2018-10-12 2021-12-15 Xencor Inc Pd-1 targeted il-15/il-15ralpha fc fusion proteins and uses in combination therapies thereof
WO2020081493A1 (en) 2018-10-16 2020-04-23 Molecular Templates, Inc. Pd-l1 binding proteins
AU2019361983A1 (en) 2018-10-18 2021-05-20 Genentech, Inc. Diagnostic and therapeutic methods for sarcomatoid kidney cancer
WO2020086758A1 (en) 2018-10-23 2020-04-30 Dragonfly Therapeutics, Inc. Heterodimeric fc-fused proteins
EP3873944A1 (en) 2018-10-31 2021-09-08 Bayer Aktiengesellschaft Reversal agents for neutralizing the therapeutic activity of anti-fxia antibodies
KR20210090645A (en) 2018-11-05 2021-07-20 제넨테크, 인크. Methods for producing two-chain proteins in prokaryotic host cells
AU2019377422A1 (en) 2018-11-05 2021-05-27 Iovance Biotherapeutics, Inc. Treatment of NSCLC patients refractory for anti-PD-1 antibody
WO2020102555A1 (en) 2018-11-16 2020-05-22 Memorial Sloan Kettering Cancer Center Antibodies to mucin-16 and methods of use thereof
AR117091A1 (en) 2018-11-19 2021-07-07 Bristol Myers Squibb Co MONOCLONAL ANTIBODIES ANTAGONISTS AGAINST CD40 AND THEIR USES
US20210115130A1 (en) 2018-11-27 2021-04-22 Innovent Biologics (Suzhou) Co., Ltd. Anti-il-23p19 antibody and use thereof
JP2022513653A (en) 2018-11-28 2022-02-09 ブリストル-マイヤーズ スクイブ カンパニー Antibodies containing modified heavy chain constant regions
WO2020113141A2 (en) 2018-11-30 2020-06-04 Alpine Immune Sciences, Inc. Cd86 variant immunomodulatory proteins and uses thereof
CA3121562A1 (en) 2018-11-30 2020-06-04 Abl Bio Inc. Anti-pd-l1/anti-4-1bb bispecific antibodies and uses thereof
WO2020117952A2 (en) 2018-12-05 2020-06-11 Genentech, Inc. Diagnostic methods and compositions for cancer immunotherapy
BR112021010908A2 (en) 2018-12-06 2021-08-31 Genentech, Inc. METHOD FOR TREATMENT OF DIFFUSED LARGE B-CELL LYMPHOMA, KIT AND IMMUNOCONJUGATE
US20220098310A1 (en) 2018-12-06 2022-03-31 Alexion Pharmaceuticals, Inc. Anti-alk2 antibodies and uses thereof
WO2020114616A1 (en) 2018-12-07 2020-06-11 Tillotts Pharma Ag Topical treatment of immune checkpoint inhibitor induced diarrhoea, colitis or enterocolitis using antibodies and fragments thereof
WO2020123275A1 (en) 2018-12-10 2020-06-18 Genentech, Inc. Photocrosslinking peptides for site specific conjugation to fc-containing proteins
TW202039554A (en) 2018-12-19 2020-11-01 瑞士商諾華公司 Anti-tnf-alpha antibodies
EP3897853A1 (en) 2018-12-20 2021-10-27 Xencor, Inc. Targeted heterodimeric fc fusion proteins containing il-15/il-15ra and nkg2d antigen binding domains
AR117327A1 (en) 2018-12-20 2021-07-28 23Andme Inc ANTI-CD96 ANTIBODIES AND METHODS OF USE OF THEM
EP3898667A2 (en) 2018-12-20 2021-10-27 F. Hoffmann-La Roche AG Modified antibody fcs and methods of use
EP3898984A1 (en) 2018-12-21 2021-10-27 Genentech, Inc. Methods of producing polypeptides using a cell line resistant to apoptosis
EP3898673A1 (en) 2018-12-21 2021-10-27 23Andme, Inc. Anti-il-36 antibodies and methods of use thereof
JP2022513495A (en) 2018-12-21 2022-02-08 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Tumor targeting superagonist CD28 antigen binding molecule
CN111349162A (en) 2018-12-21 2020-06-30 神州细胞工程有限公司 Humanized anti-PD-1 antibodies and uses thereof
CN113621062A (en) 2018-12-21 2021-11-09 豪夫迈·罗氏有限公司 Antibodies that bind to CD3
AR117468A1 (en) 2018-12-21 2021-08-11 Hoffmann La Roche ANTIBODY JOINING VEGF AND IL-1b AND METHODS OF USE
MA54513A (en) 2018-12-21 2022-03-30 Hoffmann La Roche CD28 ANTIGEN BINDING MOLECULES TUMOR TARGETING AGONISTS
US20220025056A1 (en) 2018-12-26 2022-01-27 Innate Pharma Leucocyte immunoglobulin-like receptor neutralizing antibodies
MX2021007768A (en) 2018-12-26 2021-08-24 Xilio Dev Inc Anti-ctla4 antibodies and methods of use thereof.
KR20210108961A (en) 2018-12-28 2021-09-03 쿄와 기린 가부시키가이샤 Bispecific Antibodies that Bind to TfR
JP2022516505A (en) 2018-12-28 2022-02-28 スパークス・セラピューティクス・インコーポレイテッド Claudin 18.2 specific binding molecule, composition and method thereof for the treatment of cancer and other diseases.
WO2020141145A1 (en) 2018-12-30 2020-07-09 F. Hoffmann-La Roche Ag Anti-rabbit cd19 antibodies and methods of use
KR20210113261A (en) 2019-01-04 2021-09-15 리졸브 테라퓨틱스, 엘엘씨 Treatment of Sjogren's Disease Using Nuclease Fusion Proteins
WO2020146527A1 (en) 2019-01-08 2020-07-16 Alder Biopharmaceuticals, Inc. Acute treatment and rapid treatment of headache using anti-cgrp antibodies
CN113710702A (en) 2019-01-14 2021-11-26 健泰科生物技术公司 Methods of treating cancer with PD-1 axis binding antagonists and RNA vaccines
KR20210119454A (en) 2019-01-22 2021-10-05 이나뜨 파르마 에스.에이. Treatment of T-cell lymphoma
MX2021008621A (en) 2019-01-22 2021-08-19 Genentech Inc Immunoglobulin a antibodies and methods of production and use.
AU2020210635A1 (en) 2019-01-22 2021-08-19 Bristol Myers Squibb Company Antibodies against IL-7R alpha subunit and uses thereof
CN113330027A (en) 2019-01-23 2021-08-31 豪夫迈·罗氏有限公司 Method for producing multimeric proteins in eukaryotic host cells
CA3127624A1 (en) 2019-01-23 2020-07-30 Millennium Pharmaceuticals, Inc. Anti-cd38 antibodies
WO2020153467A1 (en) 2019-01-24 2020-07-30 中外製薬株式会社 Novel cancer antigens and antibodies of said antigens
JP2020117502A (en) 2019-01-28 2020-08-06 ファイザー・インク Method of treating signs and symptoms of osteoarthritis
GB201901197D0 (en) 2019-01-29 2019-03-20 Femtogenix Ltd G-A Crosslinking cytotoxic agents
WO2020170103A1 (en) 2019-02-18 2020-08-27 Pfizer Inc. Method of treatment of chronic low back pain
CN113874081A (en) 2019-02-26 2021-12-31 茵思博纳公司 High-affinity anti-MERKT antibodies and uses thereof
CN113710706A (en) 2019-02-27 2021-11-26 豪夫迈·罗氏有限公司 Administration for anti-TIGIT antibody and anti-CD 20 antibody or anti-CD 38 antibody treatment
MX2021010288A (en) 2019-03-01 2021-09-23 Iovance Biotherapeutics Inc Expansion of tumor infiltrating lymphocytes from liquid tumors and therapeutic uses thereof.
CA3126728A1 (en) 2019-03-08 2020-09-17 Genentech, Inc. Methods for detecting and quantifying membrane-associated proteins on extracellular vesicles
MX2021010857A (en) 2019-03-11 2021-12-15 Janssen Biotech Inc Anti-v(beta17)/anti-cd123 bispecific antibodies.
EP3938396A1 (en) 2019-03-11 2022-01-19 Jounce Therapeutics, Inc. Anti-icos antibodies for the treatment of cancer
CR20210467A (en) 2019-03-14 2021-10-07 Genentech Inc Treatment of cancer with her2xcd3 bispecific antibodies in combination with anti-her2 mab
AU2020253455A1 (en) 2019-04-03 2021-11-04 Genzyme Corporation Anti-alpha beta TCR binding polypeptides with reduced fragmentation
CN113993896A (en) 2019-04-08 2022-01-28 比奥根Ma公司 Anti-integrin antibodies and uses thereof
GB2589049C (en) 2019-04-11 2024-02-21 argenx BV Anti-IgE antibodies
CN113677403A (en) 2019-04-12 2021-11-19 豪夫迈·罗氏有限公司 Bispecific antigen binding molecules comprising lipocalin muteins
WO2020214867A1 (en) 2019-04-17 2020-10-22 Alpine Immune Sciences, Inc. Methods and uses of variant icos ligand (icosl) fusion proteins
CN114206444A (en) 2019-04-18 2022-03-18 Ac免疫有限公司 Novel molecules for therapy and diagnosis
WO2020214995A1 (en) 2019-04-19 2020-10-22 Genentech, Inc. Anti-mertk antibodies and their methods of use
MX2021012769A (en) 2019-04-23 2021-11-18 Innate Pharma Cd73 blocking antibodies.
KR20220004744A (en) 2019-05-03 2022-01-11 제넨테크, 인크. Methods of Treating Cancer Using Anti-PD-L1 Antibodies
WO2020227457A1 (en) 2019-05-08 2020-11-12 Janssen Biotech, Inc. Materials and methods for modulating t cell mediated immunity
CA3138045C (en) 2019-05-14 2024-02-20 Genentech, Inc. Methods of using anti-cd79b immunoconjugates to treat follicular lymphoma
JPWO2020230901A1 (en) 2019-05-15 2020-11-19
TW202108626A (en) 2019-05-15 2021-03-01 日商協和麒麟股份有限公司 Bispecific antibody binding to cd40 and FAP
KR20220012270A (en) 2019-05-23 2022-02-03 에이씨 이뮨 에스.에이. Anti-TDP-43 binding molecules and uses thereof
KR20220019018A (en) 2019-06-07 2022-02-15 아르제넥스 비브이비에이 Pharmaceutical formulations of FcRn inhibitors suitable for subcutaneous administration
WO2020250033A1 (en) 2019-06-10 2020-12-17 Takeda Pharmaceutical Company Limited Combination therapies using cd-38 antibodies
KR102486064B1 (en) 2019-06-10 2023-01-06 추가이 세이야쿠 가부시키가이샤 Anti-T-Cell Antigen Binding Molecules for Use in Combination with Cytokine Inhibitors
US11066469B2 (en) 2019-06-12 2021-07-20 Novartis Ag Natriuretic peptide receptor 1 antibodies and methods of use
US20220387608A1 (en) 2019-06-18 2022-12-08 Bayer Aktiengesellschaft Adrenomedullin-analogues for long-term stabilization and their use
MX2021015888A (en) 2019-06-26 2022-03-22 Hoffmann La Roche Fusion of an antibody binding cea and 4-1bbl.
JP2022538974A (en) 2019-06-26 2022-09-07 マサチューセッツ インスチテュート オブ テクノロジー Immunomodulatory fusion protein-metal hydroxide complexes and methods thereof
JP7354306B2 (en) 2019-06-27 2023-10-02 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Novel ICOS antibodies and tumor-targeting antigen-binding molecules containing them
CN114051500A (en) 2019-07-02 2022-02-15 豪夫迈·罗氏有限公司 Immunoconjugates comprising interleukin-2 mutants and anti-CD 8 antibodies
BR112021023173A2 (en) 2019-07-10 2022-01-04 Chugai Pharmaceutical Co Ltd Claudin-6 binding molecules and uses thereof
AR119382A1 (en) 2019-07-12 2021-12-15 Hoffmann La Roche PRE-TARGETING ANTIBODIES AND METHODS OF USE
CN114144435A (en) 2019-07-15 2022-03-04 百时美施贵宝公司 Antibodies against human TREM-1 and uses thereof
EP3999543A1 (en) 2019-07-15 2022-05-25 Bristol-Myers Squibb Company Anti-trem-1 antibodies and uses thereof
AR119393A1 (en) 2019-07-15 2021-12-15 Hoffmann La Roche ANTIBODIES THAT BIND NKG2D
AU2020316498B2 (en) 2019-07-19 2024-02-29 Sinocelltech Ltd. Humanized anti-VEGF monoclonal antibody
AU2020316495A1 (en) 2019-07-19 2022-02-03 Sinocelltech Ltd Humanized anti-VEGF Fab antibody fragment and use thereof
CN112300279A (en) 2019-07-26 2021-02-02 上海复宏汉霖生物技术股份有限公司 Methods and compositions directed to anti-CD 73 antibodies and variants
AU2020322569A1 (en) 2019-07-26 2022-02-17 Sinocelltech Ltd Humanized anti-IL17A antibody and use thereof
US20220280643A1 (en) 2019-07-29 2022-09-08 Mark White Anti-pvrig antibodies formulations and uses thereof
EP4004045A1 (en) 2019-07-31 2022-06-01 F. Hoffmann-La Roche AG Antibodies binding to gprc5d
AU2020319677A1 (en) 2019-07-31 2022-01-06 F. Hoffmann-La Roche Ag Dosage and administration regimen for the treatment or prevention of C5-related diseases by the use of the anti-C5 antibody Crovalimab
CN114174342A (en) 2019-07-31 2022-03-11 豪夫迈·罗氏有限公司 Antibodies that bind to GPRC5D
EP4003409A1 (en) 2019-07-31 2022-06-01 F. Hoffmann-La Roche AG Dosage and administration regimen for the treatment or prevention of c5-related diseases by the use of the anti-c5 antibody crovalimab
EP4007774A1 (en) 2019-08-01 2022-06-08 Vaccinex, Inc. Combined inhibition of semaphorin-4d and tgfb and compositions therefor
AU2020325770B2 (en) 2019-08-06 2022-08-25 Aprinoia Therapeutics Limited Antibodies that bind to pathological tau species and uses thereof
US20220288208A1 (en) 2019-08-07 2022-09-15 Rakuten Medical, Inc. Cetuximab-ir700 conjugate compositions
JP2022545368A (en) 2019-08-12 2022-10-27 アプティーボ リサーチ アンド デベロップメント エルエルシー 4-1BB and 0X40 Binding Proteins and Related Compositions and Methods, Antibodies to 4-1BB, Antibodies to 0X40
EP4021486A1 (en) 2019-08-30 2022-07-06 Agenus Inc. Anti-cd96 antibodies and methods of use thereof
KR20220062304A (en) 2019-09-12 2022-05-16 제넨테크, 인크. Compositions and methods for treating lupus nephritis
CR20220156A (en) 2019-09-18 2022-05-23 Genentech Inc Anti-klk7 antibodies, anti-klk5 antibodies, multispecific anti-klk5/klk7 antibodies, and methods of use
AU2020350205A1 (en) 2019-09-18 2022-05-12 Lamkap Bio Alpha AG Bispecific antibodies against CEACAM5 and CD3
JOP20220068A1 (en) 2019-09-18 2023-01-30 Novartis Ag Nkg2d fusion proteins and uses thereof
US20230192860A1 (en) 2019-09-19 2023-06-22 Bristol-Myers Squibb Company Antibodies Binding to Vista at Acidic pH
US20220348687A1 (en) 2019-09-20 2022-11-03 Genentech, Inc. Dosing for anti-tryptase antibodies
EP3798235A1 (en) 2019-09-24 2021-03-31 Industrial Technology Research Institute Anti-tigit antibodies and methods of use
CN114555116A (en) 2019-09-27 2022-05-27 豪夫迈·罗氏有限公司 Administration for anti-TIGIT and anti-PD-L1 antagonist antibody therapy
CN114746119A (en) 2019-09-27 2022-07-12 詹森生物科技公司 anti-CEACAM antibodies and uses thereof
WO2021067389A1 (en) 2019-09-30 2021-04-08 Bioverativ Therapeutics Inc. Lentiviral vector formulations
MX2022003935A (en) 2019-10-04 2022-04-25 Tae Life Sciences Llc Antibody compositions comprising fc mutations and site-specific conjugation properties.
WO2021072244A1 (en) 2019-10-11 2021-04-15 Beth Israel Deaconess Medical Center, Inc. Anti-tn antibodies and uses thereof
TW202128757A (en) 2019-10-11 2021-08-01 美商建南德克公司 Pd-1 targeted il-15/il-15ralpha fc fusion proteins with improved properties
PE20221039A1 (en) 2019-10-18 2022-06-17 Genentech Inc METHODS FOR USING ANTI-CD79b IMMUNOCONJUGATES TO TREAT DIFFUSE LARGE B-CELL LYMPHOMA
CN114901311A (en) 2019-10-24 2022-08-12 普罗米修斯生物科学公司 Humanized antibodies to TNF-like ligand 1A (TL1A) and uses thereof
WO2021080682A1 (en) 2019-10-24 2021-04-29 Massachusetts Institute Of Technology Monoclonal antibodies that bind human cd161 and uses thereof
BR112022008558A2 (en) 2019-11-04 2022-08-09 Compugen Ltd METHOD OF TREATMENT FOR CANCER, COMBINATION TREATMENT OF NIVOLUMAB AND ANTI-PVRIG ANTIBODIES, AND, USE
CN114787188A (en) 2019-11-05 2022-07-22 震动疗法股份有限公司 Methods of treating cancer with anti-PD-1 antibodies
CN115066613A (en) 2019-11-06 2022-09-16 基因泰克公司 Diagnostic and therapeutic methods for treating hematologic cancers
AU2020394842A1 (en) 2019-12-04 2022-06-30 Ac Immune Sa Novel molecules for therapy and diagnosis
WO2021113831A1 (en) 2019-12-05 2021-06-10 Compugen Ltd. Anti-pvrig and anti-tigit antibodies for enhanced nk-cell based tumor killing
EP4069742A1 (en) 2019-12-06 2022-10-12 Juno Therapeutics, Inc. Anti-idiotypic antibodies to gprc5d-targeted binding domains and related compositions and methods
MX2022006709A (en) 2019-12-06 2022-09-12 Juno Therapeutics Inc Anti-idiotypic antibodies to bcma-targeted binding domains and related compositions and methods.
EP4072584A1 (en) 2019-12-13 2022-10-19 Genentech, Inc. Anti-ly6g6d antibodies and methods of use
BR112022011854A2 (en) 2019-12-18 2022-09-06 Hoffmann La Roche ANTIBODIES, ISOLATED POLYNUCLEOTIDE, HOST CELL, METHODS FOR PRODUCING AN ANTIBODY AND FOR TREATMENT OF DISEASE, PHARMACEUTICAL COMPOSITION, USES OF THE ANTIBODY AND INVENTION
US20230192793A1 (en) 2019-12-20 2023-06-22 Hoffmann-La Roche Inc. Il-37 fusion proteins and uses thereof
AR120898A1 (en) 2019-12-26 2022-03-30 Univ Osaka AGENT TO TREAT OR PREVENT ACUTE NEUROMYELITIS OPTICA
CN113045655A (en) 2019-12-27 2021-06-29 高诚生物医药(香港)有限公司 anti-OX 40 antibodies and uses thereof
BR112022011723A2 (en) 2019-12-27 2022-09-06 Chugai Pharmaceutical Co Ltd ANTI-CTLA-4 ANTIBODY AND USE THEREOF
EP4087607A1 (en) 2020-01-06 2022-11-16 Vaccinex, Inc. Anti-ccr8 antibodies and uses thereof
JP2023509195A (en) 2020-01-08 2023-03-07 アルジェニクス ビーブイ How to treat pemphigus
WO2021142086A1 (en) 2020-01-08 2021-07-15 Synthis Therapeutics, Inc. Alk5 inhibitor conjugates and uses thereof
IL292780A (en) 2020-01-09 2022-07-01 Hoffmann La Roche New 4-1bbl trimer-containing antigen binding molecules
CN110818795B (en) 2020-01-10 2020-04-24 上海复宏汉霖生物技术股份有限公司 anti-TIGIT antibodies and methods of use
KR20220113794A (en) 2020-01-15 2022-08-16 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 Prevention or treatment of dementia
WO2021145432A1 (en) 2020-01-15 2021-07-22 国立大学法人大阪大学 Agent for prevention or treatment of diabetic autonomic neuropathy
WO2021148983A1 (en) 2020-01-24 2021-07-29 Pfizer Inc. Anti-e-selectin antibodies, compositions and methods of use
WO2021194481A1 (en) 2020-03-24 2021-09-30 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
WO2022050954A1 (en) 2020-09-04 2022-03-10 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
CA3164559A1 (en) 2020-01-31 2021-08-05 Lars Mueller Methods of inducing neoepitope-specific t cells with a pd-1 axis binding antagonist and an rna vaccine
CN115362167A (en) 2020-02-06 2022-11-18 百时美施贵宝公司 IL-10 and uses thereof
TW202144395A (en) 2020-02-12 2021-12-01 日商中外製藥股份有限公司 Anti-CD137 antigen-binding molecule for use in cancer treatment
TW202140561A (en) 2020-02-14 2021-11-01 日商協和麒麟股份有限公司 Bispecific antibody that binds to CD3
JP2023512837A (en) 2020-02-14 2023-03-29 ジャウンス セラピューティックス, インク. Antibodies and fusion proteins that bind to CCR8 and uses thereof
KR20220146530A (en) 2020-02-27 2022-11-01 노파르티스 아게 Methods of Making Chimeric Antigen Receptor-Expressing Cells
MX2022010538A (en) 2020-02-28 2022-09-21 Genzyme Corp Modified binding polypeptides for optimized drug conjugation.
KR20220145859A (en) 2020-02-28 2022-10-31 상하이 헨리우스 바이오테크, 인크. Anti-CD137 constructs, multispecific antibodies and uses thereof
KR20220148209A (en) 2020-02-28 2022-11-04 상하이 헨리우스 바이오테크, 인크. Anti-CD137 constructs and uses thereof
EP4114445A1 (en) 2020-03-06 2023-01-11 Ona Therapeutics S.L. Anti-cd36 antibodies and their use to treat cancer
JPWO2021182572A1 (en) 2020-03-12 2021-09-16
CA3175137A1 (en) 2020-03-12 2021-09-16 Toray Industries, Inc. Medicament for treatment and/or prevention of cancer
US20230159635A1 (en) 2020-03-12 2023-05-25 Toray Industries, Inc. Medicament for treatment and/or prevention of cancer
JPWO2021182571A1 (en) 2020-03-12 2021-09-16
BR112022018163A2 (en) 2020-03-12 2022-10-25 Toray Industries DRUG FOR TREATMENT AND/OR PREVENTION OF CANCER, AGENTS THAT INCREASE THE DRUG EFFECTIVENESS OF A PHARMACEUTICAL COMPOSITION AND METHOD FOR TREATMENT AND/OR PREVENTION OF CANCER
CA3174680A1 (en) 2020-03-13 2021-09-16 Genentech, Inc. Anti-interleukin-33 antibodies and uses thereof
CN115003333A (en) 2020-03-13 2022-09-02 江苏恒瑞医药股份有限公司 PVRIG binding protein and medical application thereof
AU2021236660A1 (en) 2020-03-19 2022-08-18 Genentech, Inc. Isoform-selective anti-TGF-beta antibodies and methods of use
CR20220489A (en) 2020-03-24 2022-10-31 Genentech Inc Tie2-binding agents and methods of use
TW202202620A (en) 2020-03-26 2022-01-16 美商建南德克公司 Modified mammalian cells
CN115397850A (en) 2020-03-30 2022-11-25 豪夫迈·罗氏有限公司 Antibodies that bind to VEGF and PDGF-B and methods of use thereof
US20230107644A1 (en) 2020-04-01 2023-04-06 University Of Rochester Monoclonal antibodies against the hemagglutinin (ha) and neuraminidase (na) of influenza h3n2 viruses
TW202204401A (en) 2020-04-01 2022-02-01 日商協和麒麟股份有限公司 Antibody composition
AR121706A1 (en) 2020-04-01 2022-06-29 Hoffmann La Roche OX40 AND FAP-TARGETED BSPECIFIC ANTIGEN-BINDING MOLECULES
WO2021202959A1 (en) 2020-04-03 2021-10-07 Genentech, Inc. Therapeutic and diagnostic methods for cancer
WO2021207449A1 (en) 2020-04-09 2021-10-14 Merck Sharp & Dohme Corp. Affinity matured anti-lap antibodies and uses thereof
EP4132576A1 (en) 2020-04-09 2023-02-15 Suzhou Abogen Biosciences Co., Ltd. Nucleic acid vaccines for coronavirus
WO2021207662A1 (en) 2020-04-10 2021-10-14 Genentech, Inc. Use of il-22fc for the treatment or prevention of pneumonia, acute respiratory distress syndrome, or cytokine release syndrome
AU2021256936A1 (en) 2020-04-15 2022-07-21 F. Hoffmann-La Roche Ag Immunoconjugates
EP4139358A1 (en) 2020-04-20 2023-03-01 Jounce Therapeutics, Inc. Compositions and methods for vaccination and the treatment of infectious diseases
EP4139350A1 (en) 2020-04-20 2023-03-01 Genzyme Corporation Humanized anti-complement factor bb antibodies and uses thereof
WO2021217051A1 (en) 2020-04-24 2021-10-28 Genentech, Inc. Methods of using anti-cd79b immunoconjugates
CA3176671A1 (en) 2020-04-28 2021-11-04 Liangzhi Xie Tgfbr2 extracellular domain truncated molecule, fusion protein of tgfbr2 extracellular domain truncated molecule and anti-egfr antibody, and anti-tumor use of fusion protein
US11634477B2 (en) 2020-04-28 2023-04-25 The Rockefeller University Neutralizing anti-SARS-CoV-2 antibodies and methods of use thereof
JP2023523450A (en) 2020-04-28 2023-06-05 ジェネンテック, インコーポレイテッド Methods and compositions for non-small cell lung cancer immunotherapy
TW202200212A (en) 2020-05-03 2022-01-01 中國大陸商聯寧(蘇州)生物製藥有限公司 Antibody-drug conjugates comprising an anti-trop-2 antibody
CN115812077A (en) 2020-05-08 2023-03-17 高山免疫科学股份有限公司 APRIL and BAFF inhibitory immunomodulatory proteins and methods of use thereof
CN111995681B (en) 2020-05-09 2022-03-08 华博生物医药技术(上海)有限公司 anti-TIGIT antibody, preparation method and application thereof
US20230192867A1 (en) 2020-05-15 2023-06-22 Bristol-Myers Squibb Company Antibodies to garp
MX2022014422A (en) 2020-05-17 2022-12-07 Astrazeneca Uk Ltd Sars-cov-2 antibodies and methods of selecting and using the same.
GB2595299B (en) 2020-05-21 2022-08-03 Mabsolve Ltd Modified immunoglobulin FC regions
TW202216765A (en) * 2020-05-26 2022-05-01 德商百靈佳殷格翰國際股份有限公司 Anti-pd-1 antibodies
US20230220057A1 (en) 2020-05-27 2023-07-13 Staidson (Beijing) Biopharmaceuticals Co., Ltd. Antibodies specifically recognizing nerve growth factor and uses thereof
IL298668A (en) 2020-05-29 2023-01-01 23Andme Inc Anti-cd200r1 antibodies and methods of use thereof
CN116529260A (en) 2020-06-02 2023-08-01 当康生物技术有限责任公司 anti-CD 93 constructs and uses thereof
IL298735A (en) 2020-06-02 2023-02-01 Dynamicure Biotechnology Llc Anti-cd93 constructs and uses thereof
MX2022015206A (en) 2020-06-08 2023-01-05 Hoffmann La Roche Anti-hbv antibodies and methods of use.
EP4165415A1 (en) 2020-06-12 2023-04-19 Genentech, Inc. Methods and compositions for cancer immunotherapy
AU2021293038A1 (en) 2020-06-16 2023-02-02 F. Hoffmann-La Roche Ag Methods and compositions for treating triple-negative breast cancer
BR112022025801A2 (en) 2020-06-18 2023-10-03 Hoffmann La Roche METHODS FOR TREATING A PATIENT AND FOR TREATING A PATIENT WITH ADVANCED ESCC, KIT, ANTIBODY, USE OF AN ANTIBODY, AND USE OF A BINDING ANTAGONIST
WO2021255155A1 (en) 2020-06-19 2021-12-23 F. Hoffmann-La Roche Ag Antibodies binding to cd3 and cd19
CA3177239A1 (en) 2020-06-19 2021-12-23 F. Hoffmann-La Roche Ag Protease-activated t cell bispecific antibodies
IL299127A (en) 2020-06-19 2023-02-01 Chugai Pharmaceutical Co Ltd Anti-t cell antigen-binding molecule for use in combination with angiogenesis inhibitor
EP4168446A1 (en) 2020-06-19 2023-04-26 F. Hoffmann-La Roche AG Antibodies binding to cd3 and folr1
CR20220628A (en) 2020-06-19 2023-01-24 Hoffmann La Roche Antibodies binding to cd3
MX2022015203A (en) 2020-06-19 2023-01-05 Hoffmann La Roche Immune activating fc domain binding molecules.
WO2021255146A1 (en) 2020-06-19 2021-12-23 F. Hoffmann-La Roche Ag Antibodies binding to cd3 and cea
CN115734972A (en) 2020-06-22 2023-03-03 信达生物制药(苏州)有限公司 anti-CD 73 antibodies and uses thereof
US20230235040A1 (en) 2020-06-22 2023-07-27 Almirall, S.A. Anti-il-36 antibodies and methods of use thereof
WO2021259227A1 (en) 2020-06-23 2021-12-30 江苏康缘药业股份有限公司 Anti-cd38 antibody and use thereof
WO2021259890A1 (en) 2020-06-23 2021-12-30 F. Hoffmann-La Roche Ag Agonistic cd28 antigen binding molecules targeting her2
CA3184747A1 (en) 2020-06-24 2021-12-30 Genentech, Inc. Apoptosis resistant cell lines
CN115916830A (en) 2020-06-25 2023-04-04 豪夫迈·罗氏有限公司 anti-CD 3/anti-CD 28 bispecific antigen binding molecules
BR112022026426A2 (en) 2020-06-25 2023-04-18 Vaccinex Inc USE OF SEMAPHORIN-BINDING MOLECULES FOR THE TREATMENT OF RETT SYNDROME
US20230355722A1 (en) 2020-06-29 2023-11-09 Resolve Therapeutics, Llc Treatment of sjogren’s syndrome with nuclease fusion proteins
CN115867583A (en) 2020-07-10 2023-03-28 豪夫迈·罗氏有限公司 Antibodies that bind to cancer cells and target radionuclides to said cells
TW202216780A (en) 2020-07-17 2022-05-01 美商建南德克公司 Anti-notch2 antibodies and methods of use
CA3189590A1 (en) 2020-07-17 2022-01-20 Pfizer Inc. Therapeutic antibodies and their uses
US20230295274A1 (en) 2020-07-27 2023-09-21 Single Cell Technology, Inc. Anti-sars coronavirus-2 spike protein antibodies
GB2597532A (en) 2020-07-28 2022-02-02 Femtogenix Ltd Cytotoxic compounds
CA3190328A1 (en) 2020-07-29 2022-02-03 Dynamicure Biotechnology Llc Anti-cd93 constructs and uses thereof
EP4189121A1 (en) 2020-08-03 2023-06-07 Genentech, Inc. Diagnostic and therapeutic methods for lymphoma
WO2022029051A1 (en) 2020-08-03 2022-02-10 F. Hoffmann-La Roche Ag Improved antigen binding receptors
KR20230095918A (en) 2020-08-05 2023-06-29 주노 쎄러퓨티크스 인코퍼레이티드 Anti-idiotype antibodies to the ROR1-target binding domain and related compositions and methods
CN116724236A (en) 2020-08-06 2023-09-08 美国比奥维拉迪维股份有限公司 Inflammatory cytokines and fatigue in subjects with complement-mediated diseases
CA3190280A1 (en) 2020-08-10 2022-02-17 Astrazeneca Uk Limited Sars-cov-2 antibodies for treatment and prevention of covid-19
WO2022033978A2 (en) 2020-08-13 2022-02-17 Innate Pharma Cancer treatment methods using anti-cd73 antibodies
CN116615452A (en) 2020-08-14 2023-08-18 Ac免疫有限公司 Humanized anti-TDP-43 binding molecules and uses thereof
IL300484A (en) * 2020-08-19 2023-04-01 Astellas Pharma Inc Human non-naturally occurring modified fc region of igg specifically binding to non-naturally occurring modified fc receptor
TW202227124A (en) 2020-08-21 2022-07-16 瑞士商諾華公司 Compositions and methods for in vivo generation of car expressing cells
EP4204448A2 (en) 2020-08-27 2023-07-05 cureab GmbH Anti-golph2 antibodies for macrophage and dendritic cell differentiation
JP2023540705A (en) 2020-08-28 2023-09-26 サナ バイオテクノロジー,インコーポレイテッド Modified antiviral binding agents
CA3192344A1 (en) 2020-08-28 2022-03-03 Genentech, Inc. Crispr/cas9 multiplex knockout of host cell proteins
JPWO2022044248A1 (en) 2020-08-28 2022-03-03
AU2021335509A1 (en) 2020-09-04 2023-03-09 F. Hoffmann-La Roche Ag Antibody that binds to VEGF-A and ANG2 and methods of use
JP2023541627A (en) 2020-09-14 2023-10-03 イシュノス サイエンシズ ソシエテ アノニム Antibodies that bind to IL1RAP and uses thereof
US20230365680A1 (en) 2020-09-30 2023-11-16 Compugen Ltd. Combination therapy with anti-pvrig antibodies formulations, anti-tigit antibodies, and anti-pd-1 antibodies
AU2021358031A1 (en) 2020-10-05 2023-05-04 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2022076606A1 (en) 2020-10-06 2022-04-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
JP2023546359A (en) 2020-10-06 2023-11-02 アイオバンス バイオセラピューティクス,インコーポレイテッド Treatment of NSCLC patients with tumor-infiltrating lymphocyte therapy
EP4228693A1 (en) 2020-10-13 2023-08-23 Janssen Biotech, Inc. Bioengineered t cell mediated immunity, materials and other methods for modulating cluster of differentiation iv &/or viii
EP4229082A1 (en) 2020-10-16 2023-08-23 AC Immune SA Antibodies binding to alpha-synuclein for therapy and diagnosis
AR123855A1 (en) 2020-10-20 2023-01-18 Genentech Inc PEG-CONJUGATED ANTI-MERTK ANTIBODIES AND METHODS OF USE
US20230400467A1 (en) 2020-10-26 2023-12-14 Compugen Ltd. Pvrl2 and/or pvrig as biomarkers for treatment
WO2022093981A1 (en) 2020-10-28 2022-05-05 Genentech, Inc. Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists
EP4237449A1 (en) 2020-10-28 2023-09-06 F. Hoffmann-La Roche AG Improved antigen binding receptors
JP2023548064A (en) 2020-11-04 2023-11-15 ジェネンテック, インコーポレイテッド Administration for treatment with anti-CD20/anti-CD3 bispecific antibody and anti-CD79B antibody drug conjugate
TW202227481A (en) 2020-11-04 2022-07-16 美國洛克菲勒大學 Neutralizing anti-sars-cov-2 antibodies
KR20230100732A (en) 2020-11-04 2023-07-05 제넨테크, 인크. Subcutaneous Administration of Anti-CD20/Anti-CD3 Bispecific Antibodies
JP7402381B2 (en) 2020-11-04 2023-12-20 ジェネンテック, インコーポレイテッド Administration for treatment with anti-CD20/anti-CD3 bispecific antibodies
EP4240765A2 (en) 2020-11-06 2023-09-13 Novartis AG Antibody fc variants
EP4244254A1 (en) 2020-11-16 2023-09-20 F. Hoffmann-La Roche AG Combination therapy with fap-targeted cd40 agonists
CN114539418A (en) 2020-11-26 2022-05-27 上海华奥泰生物药业股份有限公司 Bispecific antibodies and uses thereof
KR20230117379A (en) 2020-12-01 2023-08-08 압테보 리서치 앤드 디벨롭먼트 엘엘씨 Heterodimeric PSMA and CD3-binding bispecific antibody
EP4255928A1 (en) 2020-12-02 2023-10-11 GlaxoSmithKline Intellectual Property Development Limited Il-7 binding proteins and their use in medical therapy
US20230416357A1 (en) 2020-12-07 2023-12-28 UCB Biopharma SRL Antibodies against interleukin-22
US20240067758A1 (en) 2020-12-07 2024-02-29 UCB Biopharma SRL Multi-specific antibodies and antibody combinations
CA3201818A1 (en) 2020-12-11 2022-06-16 Maria Fardis Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with braf inhibitors and/or mek inhibitors
US20240052042A1 (en) 2020-12-14 2024-02-15 Novartis Ag Reversal binding agents for anti-natriuretic peptide receptor i (npri) antibodies and uses thereof
WO2022129120A1 (en) 2020-12-17 2022-06-23 F. Hoffmann-La Roche Ag Anti-hla-g antibodies and use thereof
EP4262827A1 (en) 2020-12-17 2023-10-25 Iovance Biotherapeutics, Inc. Treatment of cancers with tumor infiltrating lymphocytes
CA3202483A1 (en) 2020-12-17 2022-06-23 Maria Fardis Treatment with tumor infiltrating lymphocyte therapies in combination with ctla-4 and pd-1 inhibitors
JP2023554456A (en) 2020-12-18 2023-12-27 チューハイ トリノマブ ファーマシューティカル カンパニー リミテッド Molecule that specifically binds to respiratory syncytial virus
CN117098548A (en) 2020-12-23 2023-11-21 信达生物制药(苏州)有限公司 anti-B7-H3 antibodies and uses thereof
WO2022140797A1 (en) 2020-12-23 2022-06-30 Immunowake Inc. Immunocytokines and uses thereof
WO2022147196A2 (en) 2020-12-31 2022-07-07 Iovance Biotherapeutics, Inc. Devices and processes for automated production of tumor infiltrating lymphocytes
KR20230117406A (en) 2021-01-06 2023-08-08 에프. 호프만-라 로슈 아게 Combination therapy using PD1-LAG3 bispecific antibody and CD20 T cell bispecific antibody
WO2022148853A1 (en) 2021-01-11 2022-07-14 F. Hoffmann-La Roche Ag Immunoconjugates
CA3206466A1 (en) 2021-01-12 2022-07-21 Christian Klein Split antibodies which bind to cancer cells and target radionuclides to said cells
EP4277668A1 (en) 2021-01-13 2023-11-22 F. Hoffmann-La Roche AG Combination therapy
EP4277926A1 (en) 2021-01-15 2023-11-22 The Rockefeller University Neutralizing anti-sars-cov-2 antibodies
WO2022165266A1 (en) 2021-01-28 2022-08-04 Compugen Ltd. Anti-pvrig antibodies formulations and uses thereof
US20240059789A1 (en) 2021-01-28 2024-02-22 Janssen Biotech, Inc. Psma binding proteins and uses thereof
US20240076373A1 (en) 2021-01-28 2024-03-07 Compugen Ltd. Combination therapy with anti-pvrig antibodies formulations and anti-pd-1 antibodies
EP4284919A1 (en) 2021-01-29 2023-12-06 Iovance Biotherapeutics, Inc. Methods of making modified tumor infiltrating lymphocytes and their use in adoptive cell therapy
EP4288458A1 (en) 2021-02-03 2023-12-13 Genentech, Inc. Multispecific binding protein degrader platform and methods of use
CA3209479A1 (en) 2021-02-03 2022-08-11 Mozart Therapeutics, Inc. Binding agents and methods of using the same
BR112023016121A2 (en) 2021-02-16 2023-11-28 Janssen Pharmaceutica Nv TRIESPECIFIC ANTIBODY TARGETING BCMA, GPRC5D AND CD3
AR124914A1 (en) 2021-02-18 2023-05-17 Mitsubishi Tanabe Pharma Corp NEW ANTI-PAD4 ANTIBODY
AU2022230384A1 (en) 2021-03-01 2023-09-07 Xilio Development, Inc. Combination of masked ctla4 and pd1/pdl1 antibodies for treating cancer
US20220306743A1 (en) 2021-03-01 2022-09-29 Xilio Development, Inc. Combination of ctla4 and pd1/pdl1 antibodies for treating cancer
JP2024509169A (en) 2021-03-03 2024-02-29 ソレント・セラピューティクス・インコーポレイテッド Antibody-drug conjugates including anti-BCMA antibodies
AR126323A1 (en) 2021-03-05 2023-10-04 Iovance Biotherapeutics Inc COMPOSITIONS FOR THE STORAGE OF TUMORS AND CELL CULTURES
TW202302646A (en) 2021-03-05 2023-01-16 美商當康生物科技有限公司 Anti-vista constructs and uses thereof
WO2022192898A2 (en) 2021-03-10 2022-09-15 Immunowake Inc. Immunomodulatory molecules and uses thereof
JP2024512377A (en) 2021-03-12 2024-03-19 ジェネンテック, インコーポレイテッド Anti-KLK7 antibodies, anti-KLK5 antibodies, multispecific anti-KLK5/KLK7 antibodies, and methods of use
AU2022238526A1 (en) 2021-03-15 2023-09-07 F. Hoffmann-La Roche Ag Compositions and methods of treating lupus nephritis
KR20240008298A (en) * 2021-03-17 2024-01-18 리셉토스 엘엘씨 How to Treat Atopic Dermatitis Using Anti-IL-13 Antibodies
WO2022198231A1 (en) 2021-03-18 2022-09-22 Seagen Inc. Selective drug release from internalized conjugates of biologically active compounds
WO2022197877A1 (en) 2021-03-19 2022-09-22 Genentech, Inc. Methods and compositions for time delayed bio-orthogonal release of cytotoxic agents
TW202304480A (en) 2021-03-19 2023-02-01 美商艾歐凡斯生物治療公司 Methods for tumor infiltrating lymphocyte (til) expansion related to cd39/cd69 selection and gene knockout in tils
WO2022195504A1 (en) 2021-03-19 2022-09-22 Pfizer Inc. Method of treating osteoarthritis pain with an anti ngf antibody
AU2022244229A1 (en) 2021-03-22 2023-09-14 Juno Therapeutics, Inc. Method to assess potency of viral vector particles
CN117321417A (en) 2021-03-22 2023-12-29 朱诺治疗学股份有限公司 Method for determining the efficacy of therapeutic cell compositions
TW202305118A (en) 2021-03-23 2023-02-01 美商艾歐凡斯生物治療公司 Cish gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
CA3214594A1 (en) 2021-03-24 2022-09-29 Janssen Biotech, Inc. Trispecific antibody targeting cd79b, cd20, and cd3
CN117616041A (en) 2021-03-25 2024-02-27 当康生物技术有限责任公司 anti-IGFBP 7 constructs and uses thereof
KR20240032711A (en) 2021-03-25 2024-03-12 이오반스 바이오테라퓨틱스, 인크. Methods and compositions for use in T-cell co-culture efficacy assays and cell therapeutics
EP4313312A1 (en) 2021-03-26 2024-02-07 Innate Pharma Multispecific proteins comprising an nkp46-binding site, a cancer antgienge binding site fused to a cytokine for nk cell engaging
TW202304508A (en) 2021-03-31 2023-02-01 美商百歐維拉提夫美國公司 Reducing surgery-associated hemolysis in cold agglutinin disease patients
TW202304994A (en) 2021-04-02 2023-02-01 美商泰尼歐生物公司 Agonistic anti-il-2r antibodies and methods of use
WO2022212876A1 (en) 2021-04-02 2022-10-06 The Regents Of The University Of California Antibodies against cleaved cdcp1 and uses thereof
WO2022217022A1 (en) 2021-04-10 2022-10-13 Profoundbio Us Co. Folr1 binding agents, conjugates thereof and methods of using the same
AU2022263418A1 (en) 2021-04-19 2023-10-26 Iovance Biotherapeutics, Inc. Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies
IL307501A (en) 2021-04-19 2023-12-01 Hoffmann La Roche Modified mammalian cells
EP4326271A1 (en) 2021-04-23 2024-02-28 F. Hoffmann-La Roche AG Prevention or mitigation of nk cell engaging agent-related adverse effects
TW202308699A (en) 2021-04-23 2023-03-01 美商普方生物製藥美國公司 Cd70 binding agents, conjugates thereof and methods of using the same
TW202243689A (en) 2021-04-30 2022-11-16 瑞士商赫孚孟拉羅股份公司 Dosing for combination treatment with anti-cd20/anti-cd3 bispecific antibody and anti-cd79b antibody drug conjugate
TW202244059A (en) 2021-04-30 2022-11-16 瑞士商赫孚孟拉羅股份公司 Dosing for treatment with anti-cd20/anti-cd3 bispecific antibody
CA3218933A1 (en) 2021-05-03 2022-11-10 UCB Biopharma SRL Antibodies
EP4334343A2 (en) 2021-05-06 2024-03-13 The Rockefeller University Neutralizing anti-sars- cov-2 antibodies and methods of use thereof
EP4333869A1 (en) 2021-05-07 2024-03-13 Alpine Immune Sciences, Inc. Methods of dosing and treatment with a taci-fc fusion immunomodulatory protein
TW202310876A (en) 2021-05-12 2023-03-16 美商建南德克公司 Methods of using anti-cd79b immunoconjugates to treat diffuse large b-cell lymphoma
US20220389097A1 (en) 2021-05-14 2022-12-08 Genentech Inc. Agonists of TREM2
WO2022245859A1 (en) 2021-05-17 2022-11-24 Curia Ip Holdings, Llc Sars-cov-2 spike protein antibodies
US20230115257A1 (en) 2021-05-17 2023-04-13 Curia Ip Holdings, Llc Sars-cov-2 spike protein antibodies
CA3219148A1 (en) 2021-05-17 2022-11-24 Frederick G. Vogt Pd-1 gene-edited tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2022243261A1 (en) 2021-05-19 2022-11-24 F. Hoffmann-La Roche Ag Agonistic cd40 antigen binding molecules targeting cea
WO2022246259A1 (en) 2021-05-21 2022-11-24 Genentech, Inc. Modified cells for the production of a recombinant product of interest
CA3220227A1 (en) 2021-05-28 2022-12-01 Matthew Bruce Combination therapies for treating cancer
AR126009A1 (en) 2021-06-02 2023-08-30 Hoffmann La Roche CD28 ANTIGEN-BINDING AGONIST MOLECULES THAT TARGET EPCAM
WO2022255440A1 (en) 2021-06-04 2022-12-08 Chugai Seiyaku Kabushiki Kaisha Anti-ddr2 antibodies and uses thereof
WO2022258678A1 (en) 2021-06-09 2022-12-15 Innate Pharma Multispecific proteins binding to nkp30, a cytokine receptor, a tumour antigen and cd16a
CA3218793A1 (en) 2021-06-09 2022-12-15 Laurent Gauthier Multispecific proteins binding to nkp46, a cytokine receptor, a tumour antigen and cd16a
CA3227227A1 (en) 2021-06-09 2022-12-15 Laurent Gauthier Multispecific antibodies binding to cd20, nkp46, cd16 and conjugated to il-2
WO2022258691A1 (en) 2021-06-09 2022-12-15 Innate Pharma Multispecific proteins binding to nkg2d, a cytokine receptor, a tumour antigen and cd16a
CA3218481A1 (en) 2021-06-14 2022-12-22 argenx BV Anti-il-9 antibodies and methods of use thereof
WO2022266660A1 (en) 2021-06-17 2022-12-22 Amberstone Biosciences, Inc. Anti-cd3 constructs and uses thereof
CN117545508A (en) 2021-06-23 2024-02-09 东丽株式会社 Medicine for treating and/or preventing cancer
CA3225422A1 (en) 2021-06-23 2022-12-29 Toray Industries, Inc. Medicament for treatment and/or prevention of cancer
AR126236A1 (en) 2021-06-25 2023-10-04 Chugai Pharmaceutical Co Ltd USE OF THE ANTI-CTLA-4 ANTIBODY
KR20240024213A (en) 2021-06-25 2024-02-23 추가이 세이야쿠 가부시키가이샤 Anti-CTLA-4 antibody
WO2023275621A1 (en) 2021-07-01 2023-01-05 Compugen Ltd. Anti-tigit and anti-pvrig in monotherapy and combination treatments
AU2022302170A1 (en) 2021-07-02 2023-12-21 F. Hoffmann-La Roche Ag Methods and compositions for treating cancer
TW202320857A (en) 2021-07-06 2023-06-01 美商普方生物製藥美國公司 Linkers, drug linkers and conjugates thereof and methods of using the same
WO2023283611A1 (en) 2021-07-08 2023-01-12 Staidson Biopharma Inc. Antibodies specifically recognizing tnfr2 and uses thereof
TW202306985A (en) 2021-07-12 2023-02-16 美商建南德克公司 Structures for reducing antibody-lipase binding
AU2022310847A1 (en) 2021-07-14 2024-01-25 Genentech, Inc. Anti-c-c motif chemokine receptor 8 (ccr8) antibodies and methods of use
WO2023284714A1 (en) 2021-07-14 2023-01-19 舒泰神(北京)生物制药股份有限公司 Antibody that specifically recognizes cd40 and application thereof
AU2022315528A1 (en) 2021-07-22 2023-10-19 F. Hoffmann-La Roche Ag Heterodimeric fc domain antibodies
WO2023004386A1 (en) 2021-07-22 2023-01-26 Genentech, Inc. Brain targeting compositions and methods of use thereof
CA3226111A1 (en) 2021-07-22 2023-01-26 Iovance Biotherapeutics, Inc. Method for cryopreservation of solid tumor fragments
CA3227703A1 (en) 2021-07-27 2023-02-02 Toray Industries, Inc. Medicament for treatment and/or prevention of cancer
AU2022320304A1 (en) 2021-07-27 2024-02-29 Toray Industries, Inc. Medicament for treatment and/or prevention of cancer
CA3227698A1 (en) 2021-07-27 2023-02-02 Toray Industries, Inc. Medicament for treatment and/or prevention of cancer
WO2023007374A1 (en) 2021-07-27 2023-02-02 Pfizer Inc. Method of treatment of cancer pain with tanezumab
CA3226942A1 (en) 2021-07-28 2023-02-02 Iovance Biotherapeutics, Inc. Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with kras inhibitors
CA3224180A1 (en) 2021-07-28 2023-02-02 F. Hoffmann-La Roche Ag Methods and compositions for treating cancer
AU2022320051A1 (en) 2021-07-30 2024-01-25 ONA Therapeutics S.L. Anti-cd36 antibodies and their use to treat cancer
AU2022324406A1 (en) 2021-08-02 2024-03-14 Innovent Biologics (Suzhou) Co., Ltd. Anti-cd79b×cd3 bispecific antibody and use thereof
WO2023012147A1 (en) 2021-08-03 2023-02-09 F. Hoffmann-La Roche Ag Bispecific antibodies and methods of use
TW202337499A (en) 2021-08-07 2023-10-01 美商建南德克公司 Methods of using anti-cd79b immunoconjugates to treat diffuse large b-cell lymphoma
WO2023019239A1 (en) 2021-08-13 2023-02-16 Genentech, Inc. Dosing for anti-tryptase antibodies
GB202111905D0 (en) 2021-08-19 2021-10-06 UCB Biopharma SRL Antibodies
WO2023021055A1 (en) 2021-08-19 2023-02-23 F. Hoffmann-La Roche Ag Multivalent anti-variant fc-region antibodies and methods of use
AU2022330406A1 (en) 2021-08-20 2024-03-07 Novartis Ag Methods of making chimeric antigen receptor–expressing cells
WO2023028501A1 (en) 2021-08-23 2023-03-02 Immunitas Therapeutics, Inc. Anti-cd161 antibodies and uses thereof
TW202317637A (en) 2021-08-26 2023-05-01 日商協和麒麟股份有限公司 Bispecific antibody that binds to CD116 and CD131
WO2023028591A1 (en) 2021-08-27 2023-03-02 Genentech, Inc. Methods of treating tau pathologies
TW202325727A (en) 2021-08-30 2023-07-01 美商建南德克公司 Anti-polyubiquitin multispecific antibodies
WO2023033129A1 (en) 2021-09-03 2023-03-09 東レ株式会社 Pharmaceutical composition for treating and/or preventing cancer
TW202328439A (en) 2021-09-09 2023-07-16 美商艾歐凡斯生物治療公司 Processes for generating til products using pd-1 talen knockdown
WO2023049862A1 (en) 2021-09-24 2023-03-30 Iovance Biotherapeutics, Inc. Expansion processes and agents for tumor infiltrating lymphocytes
CA3231551A1 (en) 2021-09-27 2023-03-30 Maurice Zauderer Predictive outcome profiling for use of an anti-semaphorin-4d binding molecule to treat neurodegenerative disorders
AU2022358522A1 (en) 2021-09-30 2024-03-28 Seagen Inc. B7-h4 antibody-drug conjugates for the treatment of cancer
WO2023056069A1 (en) 2021-09-30 2023-04-06 Angiex, Inc. Degrader-antibody conjugates and methods of using same
TW202321308A (en) 2021-09-30 2023-06-01 美商建南德克公司 Methods for treatment of hematologic cancers using anti-tigit antibodies, anti-cd38 antibodies, and pd-1 axis binding antagonists
WO2023057893A1 (en) 2021-10-05 2023-04-13 Glaxosmithkline Intellectual Property Development Limited Combination therapies for treating cancer
CN116064598B (en) 2021-10-08 2024-03-12 苏州艾博生物科技有限公司 Nucleic acid vaccine for coronavirus
WO2023062048A1 (en) 2021-10-14 2023-04-20 F. Hoffmann-La Roche Ag Alternative pd1-il7v immunoconjugates for the treatment of cancer
TW202323281A (en) 2021-10-14 2023-06-16 美商泰尼歐生物公司 Mesothelin binding proteins and uses thereof
WO2023062050A1 (en) 2021-10-14 2023-04-20 F. Hoffmann-La Roche Ag New interleukin-7 immunoconjugates
WO2023064958A1 (en) 2021-10-15 2023-04-20 Compugen Ltd. Combination therapy with anti-pvrig antibodies formulations, anti-tigit antibodies, and anti-pd-1 antibodies
WO2023076876A1 (en) 2021-10-26 2023-05-04 Mozart Therapeutics, Inc. Modulation of immune responses to viral vectors
AR127482A1 (en) 2021-10-27 2024-01-31 Iovance Biotherapeutics Inc SYSTEMS AND METHODS TO COORDINATE THE MANUFACTURE OF CELLS FOR PATIENT-SPECIFIC IMMUNOTHERAPY
WO2023073599A1 (en) 2021-10-28 2023-05-04 Novartis Ag Engineered fc variants
WO2023077155A1 (en) 2021-11-01 2023-05-04 Janssen Biotech, Inc. Compositions and methods for the modulation of beta chain-mediated immunity
TW202342095A (en) 2021-11-05 2023-11-01 英商阿斯特捷利康英國股份有限公司 Composition for treatment and prevention of covid-19
WO2023081818A1 (en) 2021-11-05 2023-05-11 American Diagnostics & Therapy, Llc (Adxrx) Monoclonal antibodies against carcinoembryonic antigens, and their uses
WO2023086803A1 (en) 2021-11-10 2023-05-19 Iovance Biotherapeutics, Inc. Methods of expansion treatment utilizing cd8 tumor infiltrating lymphocytes
WO2023086807A1 (en) 2021-11-10 2023-05-19 Genentech, Inc. Anti-interleukin-33 antibodies and uses thereof
TW202337494A (en) 2021-11-16 2023-10-01 美商建南德克公司 Methods and compositions for treating systemic lupus erythematosus (sle) with mosunetuzumab
WO2023088959A1 (en) 2021-11-16 2023-05-25 Ac Immune Sa Novel molecules for therapy and diagnosis
WO2023091968A1 (en) 2021-11-17 2023-05-25 Disc Medicine, Inc. Methods for treating anemia of kidney disease
WO2023094413A1 (en) 2021-11-25 2023-06-01 F. Hoffmann-La Roche Ag Improved antigen binding receptors
US20240018240A1 (en) 2021-12-10 2024-01-18 Hoffmann-La Roche Inc. Antibodies binding to cd3 and plap
WO2023114829A1 (en) 2021-12-15 2023-06-22 Genentech, Inc. Stabilized il-18 polypeptides and uses thereof
WO2023117834A1 (en) 2021-12-20 2023-06-29 F. Hoffmann-La Roche Ag Agonistic ltbr antibodies and bispecific antibodies comprising them
TW202337904A (en) 2022-01-07 2023-10-01 美商壯生和壯生企業創新公司 Materials and methods of il-1β binding proteins
WO2023139107A1 (en) 2022-01-18 2023-07-27 argenx BV Galectin-10 antibodies
WO2023141445A1 (en) 2022-01-19 2023-07-27 Genentech, Inc. Anti-notch2 antibodies and conjugates and methods of use
WO2023147399A1 (en) 2022-01-27 2023-08-03 The Rockefeller University Broadly neutralizing anti-sars-cov-2 antibodies targeting the n-terminal domain of the spike protein and methods of use thereof
WO2023147488A1 (en) 2022-01-28 2023-08-03 Iovance Biotherapeutics, Inc. Cytokine associated tumor infiltrating lymphocytes compositions and methods
WO2023147486A1 (en) 2022-01-28 2023-08-03 Iovance Biotherapeutics, Inc. Tumor infiltrating lymphocytes engineered to express payloads
TW202342519A (en) 2022-02-16 2023-11-01 瑞士商Ac 免疫有限公司 Humanized anti-tdp-43 binding molecules and uses thereof
WO2023172883A1 (en) 2022-03-07 2023-09-14 Alpine Immune Sciences, Inc. Immunomodulatory proteins of variant cd80 polypeptides, cell therapies thereof and related methods and uses
WO2023173026A1 (en) 2022-03-10 2023-09-14 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
WO2023178192A1 (en) 2022-03-15 2023-09-21 Compugen Ltd. Il-18bp antagonist antibodies and their use in monotherapy and combination therapy in the treatment of cancer
WO2023178357A1 (en) 2022-03-18 2023-09-21 Evolveimmune Therapeutics, Inc. Bispecific antibody fusion molecules and methods of use thereof
EP4245374A2 (en) 2022-03-18 2023-09-20 Compugen Ltd. Pvrl2 and/or pvrig as biomarkers for treatment
WO2023180353A1 (en) 2022-03-23 2023-09-28 F. Hoffmann-La Roche Ag Combination treatment of an anti-cd20/anti-cd3 bispecific antibody and chemotherapy
WO2023186760A1 (en) 2022-03-28 2023-10-05 F. Hoffmann-La Roche Ag Improved folr1 protease-activatable t cell bispecific antibodies
WO2023186756A1 (en) 2022-03-28 2023-10-05 F. Hoffmann-La Roche Ag Interferon gamma variants and antigen binding molecules comprising these
WO2023187657A1 (en) 2022-03-30 2023-10-05 Novartis Ag Methods of treating disorders using anti-natriuretic peptide receptor 1 (npr1) antibodies
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023196877A1 (en) 2022-04-06 2023-10-12 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2023194565A1 (en) 2022-04-08 2023-10-12 Ac Immune Sa Anti-tdp-43 binding molecules
WO2023198727A1 (en) 2022-04-13 2023-10-19 F. Hoffmann-La Roche Ag Pharmaceutical compositions of anti-cd20/anti-cd3 bispecific antibodies and methods of use
US20230406930A1 (en) 2022-04-13 2023-12-21 Genentech, Inc. Pharmaceutical compositions of therapeutic proteins and methods of use
WO2023201369A1 (en) 2022-04-15 2023-10-19 Iovance Biotherapeutics, Inc. Til expansion processes using specific cytokine combinations and/or akti treatment
US20230357381A1 (en) 2022-04-26 2023-11-09 Novartis Ag Multispecific antibodies targeting il-13 and il-18
WO2023209177A1 (en) 2022-04-29 2023-11-02 Astrazeneca Uk Limited Sars-cov-2 antibodies and methods of using the same
WO2023215737A1 (en) 2022-05-03 2023-11-09 Genentech, Inc. Anti-ly6e antibodies, immunoconjugates, and uses thereof
WO2023220608A1 (en) 2022-05-10 2023-11-16 Iovance Biotherapeutics, Inc. Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with an il-15r agonist
WO2023217933A1 (en) 2022-05-11 2023-11-16 F. Hoffmann-La Roche Ag Antibody that binds to vegf-a and il6 and methods of use
WO2023219613A1 (en) 2022-05-11 2023-11-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023218320A1 (en) 2022-05-11 2023-11-16 Pfizer Inc. Anti-lymphotoxin beta receptor antibodies and methods of use thereof
EP4279092A1 (en) 2022-05-17 2023-11-22 Bayer AG Radiopharmaceutical complexes targeting prostate-specific membrane antigen
WO2023222557A1 (en) 2022-05-17 2023-11-23 Bayer Aktiengesellschaft Radiopharmaceutical complexes targeting prostate-specific membrane antigen and its combinations
WO2023227660A1 (en) 2022-05-25 2023-11-30 Innate Pharma Nectin-4 binding agents
WO2023228082A1 (en) 2022-05-26 2023-11-30 Pfizer Inc. Anti-tnfr2 antibodies and methods of use thereof
WO2023227641A1 (en) 2022-05-27 2023-11-30 Glaxosmithkline Intellectual Property Development Limited Use of tnf-alpha binding proteins and il-7 binding proteins in medical treatment
WO2023235699A1 (en) 2022-05-31 2023-12-07 Jounce Therapeutics, Inc. Antibodies to lilrb4 and uses thereof
US20240083991A1 (en) 2022-05-31 2024-03-14 Pfizer Inc. Anti-bmp9 antibodies and methods of use thereof
WO2023240058A2 (en) 2022-06-07 2023-12-14 Genentech, Inc. Prognostic and therapeutic methods for cancer
WO2023239803A1 (en) 2022-06-08 2023-12-14 Angiex, Inc. Anti-tm4sf1 antibody-drug conjugates comprising cleavable linkers and methods of using same
WO2023242362A1 (en) 2022-06-15 2023-12-21 argenx BV Fcrn/antigen-binding molecules and methods of use
WO2023245048A1 (en) 2022-06-15 2023-12-21 Bioverativ Usa Inc. Anti-complement c1s antibody formulation
WO2023242769A1 (en) 2022-06-17 2023-12-21 Pfizer Inc. Il-12 variants, anti-pd1 antibodies, fusion proteins, and uses thereof
US20240025978A1 (en) 2022-06-24 2024-01-25 Bioverativ Usa Inc. Methods for treating complement-mediated diseases
WO2024011114A1 (en) 2022-07-06 2024-01-11 Iovance Biotherapeutics, Inc. Devices and processes for automated production of tumor infiltrating lymphocytes
WO2024015897A1 (en) 2022-07-13 2024-01-18 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020407A1 (en) 2022-07-19 2024-01-25 Staidson Biopharma Inc. Antibodies specifically recognizing b- and t-lymphocyte attenuator (btla) and uses thereof
WO2024020432A1 (en) 2022-07-19 2024-01-25 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020564A1 (en) 2022-07-22 2024-01-25 Genentech, Inc. Anti-steap1 antigen-binding molecules and uses thereof
WO2024020579A1 (en) 2022-07-22 2024-01-25 Bristol-Myers Squibb Company Antibodies binding to human pad4 and uses thereof
WO2024026358A1 (en) 2022-07-27 2024-02-01 Teneobio, Inc. Mesothelin binding proteins and uses thereof
WO2024026496A1 (en) 2022-07-28 2024-02-01 Compugen Ltd. Combination therapy with anti-pvrig antibodies formulations and anti-pd-1 antibodies
WO2024030758A1 (en) 2022-08-01 2024-02-08 Iovance Biotherapeutics, Inc. Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies
WO2024030956A2 (en) 2022-08-03 2024-02-08 Mozart Therapeutics, Inc. Cd39-specific binding agents and methods of using the same
US20240052047A1 (en) 2022-08-03 2024-02-15 Pfizer Inc. Anti- il27r antibodies and methods of use thereof
WO2024028732A1 (en) 2022-08-05 2024-02-08 Janssen Biotech, Inc. Cd98 binding constructs for treating brain tumors
WO2024028731A1 (en) 2022-08-05 2024-02-08 Janssen Biotech, Inc. Transferrin receptor binding proteins for treating brain tumors
WO2024037633A2 (en) 2022-08-19 2024-02-22 Evive Biotechnology (Shanghai) Ltd Formulations comprising g-csf and uses thereof
WO2024044547A1 (en) * 2022-08-22 2024-02-29 Abdera Therapeutics Inc. Kidney targeting antibodies
WO2024049949A1 (en) 2022-09-01 2024-03-07 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
WO2024054929A1 (en) 2022-09-07 2024-03-14 Dynamicure Biotechnology Llc Anti-vista constructs and uses thereof
WO2024056809A1 (en) 2022-09-15 2024-03-21 Novartis Ag Treatment of autoimmune disorders using chimeric antigen receptor therapy

Citations (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490473A (en) * 1983-03-28 1984-12-25 Panab Labeled antibodies and methods
US4752601A (en) * 1983-08-12 1988-06-21 Immunetech Pharmaceuticals Method of blocking immune complex binding to immunoglobulin FC receptors
US5047335A (en) * 1988-12-21 1991-09-10 The Regents Of The University Of Calif. Process for controlling intracellular glycosylation of proteins
US5204244A (en) * 1987-10-27 1993-04-20 Oncogen Production of chimeric antibodies by homologous recombination
US5278299A (en) * 1991-03-18 1994-01-11 Scripps Clinic And Research Foundation Method and composition for synthesizing sialylated glycosyl compounds
US5348876A (en) * 1989-07-18 1994-09-20 Dynal As IgG3 antibodies with shortened hinge region and a complement activation test
US5419904A (en) * 1990-11-05 1995-05-30 The Regents Of The University Of California Human B-lymphoblastoid cell line secreting anti-ganglioside antibody
US5510261A (en) * 1991-11-21 1996-04-23 The Board Of Trustees Of The Leland Stanford Juniot University Method of controlling the degradation of glycoprotein oligosaccharides produced by cultured Chinese hamster ovary cells
US5576184A (en) * 1988-09-06 1996-11-19 Xoma Corporation Production of chimeric mouse-human antibodies with specificity to human tumor antigens
US5624821A (en) * 1987-03-18 1997-04-29 Scotgen Biopharmaceuticals Incorporated Antibodies with altered effector functions
US5698449A (en) * 1990-10-16 1997-12-16 Northwestern University Synthetic peptide and its uses
US5731168A (en) * 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5730977A (en) * 1995-08-21 1998-03-24 Mitsui Toatsu Chemicals, Inc. Anti-VEGF human monoclonal antibody
US5736137A (en) * 1992-11-13 1998-04-07 Idec Pharmaceuticals Corporation Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma
US5834597A (en) * 1996-05-20 1998-11-10 Protein Design Labs, Inc. Mutated nonactivating IgG2 domains and anti CD3 antibodies incorporating the same
US5985599A (en) * 1986-05-29 1999-11-16 The Austin Research Institute FC receptor for immunoglobulin
US6030613A (en) * 1995-01-17 2000-02-29 The Brigham And Women's Hospital, Inc. Receptor specific transepithelial transport of therapeutics
US6086875A (en) * 1995-01-17 2000-07-11 The Brigham And Women's Hospital, Inc. Receptor specific transepithelial transport of immunogens
US6136310A (en) * 1991-07-25 2000-10-24 Idec Pharmaceuticals Corporation Recombinant anti-CD4 antibodies for human therapy
US6165745A (en) * 1992-04-24 2000-12-26 Board Of Regents, The University Of Texas System Recombinant production of immunoglobulin-like domains in prokaryotic cells
US6172213B1 (en) * 1997-07-02 2001-01-09 Genentech, Inc. Anti-IgE antibodies and method of improving polypeptides
US6194551B1 (en) * 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
US6242195B1 (en) * 1998-04-02 2001-06-05 Genentech, Inc. Methods for determining binding of an analyte to a receptor
US6277375B1 (en) * 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
US20010036459A1 (en) * 2000-04-13 2001-11-01 Ravetch Jeffrey V. Enhancement of antibody-mediated immune responses
US6323321B1 (en) * 1997-03-05 2001-11-27 Eberhard-Karls-Universitat Tubingen Universitatsklinikum Antibody 97A6
US6485726B1 (en) * 1995-01-17 2002-11-26 The Brigham And Women's Hospital, Inc. Receptor specific transepithelial transport of therapeutics
US6491916B1 (en) * 1994-06-01 2002-12-10 Tolerance Therapeutics, Inc. Methods and materials for modulation of the immunosuppresive activity and toxicity of monoclonal antibodies
US20020197256A1 (en) * 2001-04-02 2002-12-26 Genentech, Inc. Combination therapy
US6528624B1 (en) * 1998-04-02 2003-03-04 Genentech, Inc. Polypeptide variants
US20030115614A1 (en) * 2000-10-06 2003-06-19 Yutaka Kanda Antibody composition-producing cell
US20030190311A1 (en) * 2000-12-12 2003-10-09 Dall'acqua William Molecules with extended half-lives, compositions and uses thereof
US20040002587A1 (en) * 2002-02-20 2004-01-01 Watkins Jeffry D. Fc region variants
US6676927B1 (en) * 1999-01-20 2004-01-13 The Rockefeller University Animal model and methods for its use in the selection of cytotoxic antibodies
US6706265B1 (en) * 1992-03-24 2004-03-16 Btg International Limited Humanized anti-CD3 specific antibodies
US6737056B1 (en) * 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
US20040118174A1 (en) * 2002-06-18 2004-06-24 Nicolas Brantschem Easy-to-maneuver key-ring
US6815540B1 (en) * 1996-07-16 2004-11-09 University Of Zurich Immunoglobulin superfamily domains and fragments with increased solubility
US20050079605A1 (en) * 1998-04-20 2005-04-14 Glycart Biotechnology Ag Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
US20050272916A1 (en) * 1999-04-09 2005-12-08 Kyowa Hakko Kogyo Co., Ltd. Method of modulating the activity of functional immune molecules
US20060067930A1 (en) * 2004-08-19 2006-03-30 Genentech, Inc. Polypeptide variants with altered effector function
US20060173170A1 (en) * 2004-11-12 2006-08-03 Xencor, Inc. Fc variants with altered binding to FcRn
US20060194291A1 (en) * 1999-01-15 2006-08-31 Genentech, Inc. Polypeptide variants with altered effector function
US20060246004A1 (en) * 2005-02-07 2006-11-02 Genentech, Inc. Antibody variants and uses thereof
US20060275282A1 (en) * 2005-01-12 2006-12-07 Xencor, Inc. Antibodies and Fc fusion proteins with altered immunogenicity
US20070009523A1 (en) * 1999-01-15 2007-01-11 Genentech, Inc. Polypeptide variants with altered effector function
US20070020260A1 (en) * 2001-10-25 2007-01-25 Genentech, Inc. Glycoprotein compositions
US7276585B2 (en) * 2004-03-24 2007-10-02 Xencor, Inc. Immunoglobulin variants outside the Fc region
US7317091B2 (en) * 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
US7598055B2 (en) * 2000-06-28 2009-10-06 Glycofi, Inc. N-acetylglucosaminyltransferase III expression in lower eukaryotes

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US98193A (en) * 1869-12-21 Improvement in corn-planters
US2587A (en) * 1842-04-29 Cooking-stove
US158389A (en) * 1875-01-05 Improvement in gas-regulators
WO1994029351A2 (en) 1993-06-16 1994-12-22 Celltech Limited Antibodies
US6750334B1 (en) 1996-02-02 2004-06-15 Repligen Corporation CTLA4-immunoglobulin fusion proteins having modified effector functions and uses therefor
AU728657B2 (en) 1996-03-18 2001-01-18 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
WO1998023289A1 (en) 1996-11-27 1998-06-04 The General Hospital Corporation MODULATION OF IgG BINDING TO FcRn
WO1998047531A2 (en) * 1997-04-21 1998-10-29 Arch Development Corporation Fc receptor non-binding anti-cd3 monoclonal antibodies deliver a partial tcr signal and induce clonal anergy
DE19721700C1 (en) 1997-05-23 1998-11-19 Deutsches Krebsforsch Mutant OKT3 antibody
AU759779B2 (en) * 1997-10-31 2003-05-01 Genentech Inc. Methods and compositions comprising glycoprotein glycoforms
EP1060194A1 (en) 1998-02-25 2000-12-20 Lexigen Pharmaceuticals Corp. Enhancing the circulating half-life of antibody-based fusion proteins
CA2323757C (en) 1998-04-02 2011-08-02 Genentech, Inc. Antibody variants and fragments thereof
GB9809951D0 (en) 1998-05-08 1998-07-08 Univ Cambridge Tech Binding molecules
JP2002522063A (en) 1998-08-17 2002-07-23 アブジェニックス インコーポレイテッド Generation of modified molecules with increased serum half-life
AU4314801A (en) 2000-02-11 2001-08-20 Lexigen Pharm Corp Enhancing the circulating half-life of antibody-based fusion proteins
US20040110226A1 (en) * 2002-03-01 2004-06-10 Xencor Antibody optimization
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
WO2004004662A2 (en) 2002-07-09 2004-01-15 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
DK2345671T3 (en) 2002-09-27 2016-02-15 Xencor Inc Optimized Fc variants and methods for their formation
US7217797B2 (en) 2002-10-15 2007-05-15 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
SI1562972T1 (en) 2002-10-15 2010-12-31 Facet Biotech Corp Alteration of fcrn binding affinities or serum half-lives of antibodies by mutagenesis
US7608260B2 (en) * 2003-01-06 2009-10-27 Medimmune, Llc Stabilized immunoglobulins
US7355008B2 (en) 2003-01-09 2008-04-08 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
EP1673395A1 (en) 2003-10-15 2006-06-28 PDL BioPharma, Inc. Alteration of fc-fusion protein serum half-lives by mutagenesis of positions 250, 314 and/or 428 of the heavy chain constant region of ig
TWI388568B (en) * 2006-02-10 2013-03-11 Genentech Inc Anti-fgf19 antibodies and methods using same

Patent Citations (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490473A (en) * 1983-03-28 1984-12-25 Panab Labeled antibodies and methods
US4752601A (en) * 1983-08-12 1988-06-21 Immunetech Pharmaceuticals Method of blocking immune complex binding to immunoglobulin FC receptors
US5985599A (en) * 1986-05-29 1999-11-16 The Austin Research Institute FC receptor for immunoglobulin
US5624821A (en) * 1987-03-18 1997-04-29 Scotgen Biopharmaceuticals Incorporated Antibodies with altered effector functions
US5648260A (en) * 1987-03-18 1997-07-15 Scotgen Biopharmaceuticals Incorporated DNA encoding antibodies with altered effector functions
US5204244A (en) * 1987-10-27 1993-04-20 Oncogen Production of chimeric antibodies by homologous recombination
US5576184A (en) * 1988-09-06 1996-11-19 Xoma Corporation Production of chimeric mouse-human antibodies with specificity to human tumor antigens
US5047335A (en) * 1988-12-21 1991-09-10 The Regents Of The University Of Calif. Process for controlling intracellular glycosylation of proteins
US5348876A (en) * 1989-07-18 1994-09-20 Dynal As IgG3 antibodies with shortened hinge region and a complement activation test
US5698449A (en) * 1990-10-16 1997-12-16 Northwestern University Synthetic peptide and its uses
US5419904A (en) * 1990-11-05 1995-05-30 The Regents Of The University Of California Human B-lymphoblastoid cell line secreting anti-ganglioside antibody
US5278299A (en) * 1991-03-18 1994-01-11 Scripps Clinic And Research Foundation Method and composition for synthesizing sialylated glycosyl compounds
US6136310A (en) * 1991-07-25 2000-10-24 Idec Pharmaceuticals Corporation Recombinant anti-CD4 antibodies for human therapy
US5510261A (en) * 1991-11-21 1996-04-23 The Board Of Trustees Of The Leland Stanford Juniot University Method of controlling the degradation of glycoprotein oligosaccharides produced by cultured Chinese hamster ovary cells
US6706265B1 (en) * 1992-03-24 2004-03-16 Btg International Limited Humanized anti-CD3 specific antibodies
US6165745A (en) * 1992-04-24 2000-12-26 Board Of Regents, The University Of Texas System Recombinant production of immunoglobulin-like domains in prokaryotic cells
US5736137A (en) * 1992-11-13 1998-04-07 Idec Pharmaceuticals Corporation Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma
US6491916B1 (en) * 1994-06-01 2002-12-10 Tolerance Therapeutics, Inc. Methods and materials for modulation of the immunosuppresive activity and toxicity of monoclonal antibodies
US6485726B1 (en) * 1995-01-17 2002-11-26 The Brigham And Women's Hospital, Inc. Receptor specific transepithelial transport of therapeutics
US6030613A (en) * 1995-01-17 2000-02-29 The Brigham And Women's Hospital, Inc. Receptor specific transepithelial transport of therapeutics
US6086875A (en) * 1995-01-17 2000-07-11 The Brigham And Women's Hospital, Inc. Receptor specific transepithelial transport of immunogens
US5731168A (en) * 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5730977A (en) * 1995-08-21 1998-03-24 Mitsui Toatsu Chemicals, Inc. Anti-VEGF human monoclonal antibody
US5834597A (en) * 1996-05-20 1998-11-10 Protein Design Labs, Inc. Mutated nonactivating IgG2 domains and anti CD3 antibodies incorporating the same
US6815540B1 (en) * 1996-07-16 2004-11-09 University Of Zurich Immunoglobulin superfamily domains and fragments with increased solubility
US6821505B2 (en) * 1997-03-03 2004-11-23 Board Of Regents, The University Of Texas System Immunoglobin-like domains with increased half lives
US6277375B1 (en) * 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
US20020098193A1 (en) * 1997-03-03 2002-07-25 Board Of Regents, The University Of Texas System Immunoglobin-like domains with increased half lives
US6323321B1 (en) * 1997-03-05 2001-11-27 Eberhard-Karls-Universitat Tubingen Universitatsklinikum Antibody 97A6
US6172213B1 (en) * 1997-07-02 2001-01-09 Genentech, Inc. Anti-IgE antibodies and method of improving polypeptides
US6194551B1 (en) * 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
US6528624B1 (en) * 1998-04-02 2003-03-04 Genentech, Inc. Polypeptide variants
US6538124B1 (en) * 1998-04-02 2003-03-25 Genentech, Inc. Polypeptide variants
US7364731B2 (en) * 1998-04-02 2008-04-29 Genentech, Inc. Polypeptide variants
US20030158389A1 (en) * 1998-04-02 2003-08-21 Genentech, Inc. Polypeptide variants
US20030166868A1 (en) * 1998-04-02 2003-09-04 Genentech, Inc. Polypeptide variants
US7297775B2 (en) * 1998-04-02 2007-11-20 Genentech, Inc. Polypeptide variants
US20060194954A1 (en) * 1998-04-02 2006-08-31 Genentech, Inc. Polypeptide variants
US20080138338A1 (en) * 1998-04-02 2008-06-12 Genentech, Inc. Polypeptide variants
US7741072B2 (en) * 1998-04-02 2010-06-22 Genentech, Inc. Polypeptide variants
US6242195B1 (en) * 1998-04-02 2001-06-05 Genentech, Inc. Methods for determining binding of an analyte to a receptor
US20050079605A1 (en) * 1998-04-20 2005-04-14 Glycart Biotechnology Ag Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
US6737056B1 (en) * 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
US7416727B2 (en) * 1999-01-15 2008-08-26 Genentech, Inc. Polypeptide variants with altered effector function
US20110293632A1 (en) * 1999-01-15 2011-12-01 Genentech, Inc. Polypeptide variants with altered effector function
US7790858B2 (en) * 1999-01-15 2010-09-07 Genentech, Inc. Polypeptide variants with altered effector function
US7785791B2 (en) * 1999-01-15 2010-08-31 Genentech, Inc. Polypeptide variants with altered effector function
US20050233382A1 (en) * 1999-01-15 2005-10-20 Genentech, Inc. Polypeptide variants with altered effector function
US20100166749A1 (en) * 1999-01-15 2010-07-01 Genentech, Inc. Polypeptide variants with altered effector function
US20040191244A1 (en) * 1999-01-15 2004-09-30 Genentech, Inc. Polypeptide variants with altered effector function
US7371826B2 (en) * 1999-01-15 2008-05-13 Genentech, Inc. Polypeptide variants with altered effector function
US7335742B2 (en) * 1999-01-15 2008-02-26 Genentech, Inc. Polypeptide variants with altered effector function
US7332581B2 (en) * 1999-01-15 2008-02-19 Genentech, Inc. Polypeptide variants with altered effector function
US20060194291A1 (en) * 1999-01-15 2006-08-31 Genentech, Inc. Polypeptide variants with altered effector function
US7183387B1 (en) * 1999-01-15 2007-02-27 Genentech, Inc. Polypeptide variants with altered effector function
US20060194290A1 (en) * 1999-01-15 2006-08-31 Genentech, Inc. Polypeptide variants with altered effector function
US20060194957A1 (en) * 1999-01-15 2006-08-31 Genentech, Inc. Polypeptide variants with altered effector function
US7122637B2 (en) * 1999-01-15 2006-10-17 Genentech, Inc. Polypeptide variants with altered effector function
US20070009523A1 (en) * 1999-01-15 2007-01-11 Genentech, Inc. Polypeptide variants with altered effector function
US6676927B1 (en) * 1999-01-20 2004-01-13 The Rockefeller University Animal model and methods for its use in the selection of cytotoxic antibodies
US20050272916A1 (en) * 1999-04-09 2005-12-08 Kyowa Hakko Kogyo Co., Ltd. Method of modulating the activity of functional immune molecules
US7214775B2 (en) * 1999-04-09 2007-05-08 Kyowa Hakko Kogyo Co., Ltd. Method of modulating the activity of functional immune molecules
US20050276805A1 (en) * 1999-04-09 2005-12-15 Kyowa Hakko Kogyo Co., Ltd. Method of modulating the activity of functional immune molecules
US20010036459A1 (en) * 2000-04-13 2001-11-01 Ravetch Jeffrey V. Enhancement of antibody-mediated immune responses
US20090060911A1 (en) * 2000-04-13 2009-03-05 The Rockefeller University Enhancement of antibody-mediated immune responses
US7598055B2 (en) * 2000-06-28 2009-10-06 Glycofi, Inc. N-acetylglucosaminyltransferase III expression in lower eukaryotes
US20030115614A1 (en) * 2000-10-06 2003-06-19 Yutaka Kanda Antibody composition-producing cell
US6946292B2 (en) * 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
US20030190311A1 (en) * 2000-12-12 2003-10-09 Dall'acqua William Molecules with extended half-lives, compositions and uses thereof
US7083784B2 (en) * 2000-12-12 2006-08-01 Medimmune, Inc. Molecules with extended half-lives, compositions and uses thereof
US20020197256A1 (en) * 2001-04-02 2002-12-26 Genentech, Inc. Combination therapy
US20070020260A1 (en) * 2001-10-25 2007-01-25 Genentech, Inc. Glycoprotein compositions
US20080095762A1 (en) * 2001-10-25 2008-04-24 Genentech, Inc. Glycoprotein compositions
US20100255013A1 (en) * 2001-10-25 2010-10-07 Presta Leonard G Glycoprotein compositions
US20110086050A1 (en) * 2001-10-25 2011-04-14 Presta Leonard G Glycoprotein compositions
US20040002587A1 (en) * 2002-02-20 2004-01-01 Watkins Jeffry D. Fc region variants
US7317091B2 (en) * 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
US20040118174A1 (en) * 2002-06-18 2004-06-24 Nicolas Brantschem Easy-to-maneuver key-ring
US7276585B2 (en) * 2004-03-24 2007-10-02 Xencor, Inc. Immunoglobulin variants outside the Fc region
US20060067930A1 (en) * 2004-08-19 2006-03-30 Genentech, Inc. Polypeptide variants with altered effector function
US20060173170A1 (en) * 2004-11-12 2006-08-03 Xencor, Inc. Fc variants with altered binding to FcRn
US20060275282A1 (en) * 2005-01-12 2006-12-07 Xencor, Inc. Antibodies and Fc fusion proteins with altered immunogenicity
US20060246004A1 (en) * 2005-02-07 2006-11-02 Genentech, Inc. Antibody variants and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Shanafelt et al. Leukemia & Lymphoma, December 2010; 51(12):2222-2229. *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8674083B2 (en) 1999-01-15 2014-03-18 Genentech, Inc. Polypeptide variants with altered effector function
US20080127996A1 (en) * 2006-12-04 2008-06-05 Weinhold Dennis G Method and apparatus to remediate an acid and/or liquid spill
US20100098730A1 (en) * 2008-10-14 2010-04-22 Lowman Henry B Immunoglobulin variants and uses thereof
US9879249B2 (en) 2009-02-17 2018-01-30 Redwood Bioscience, Inc. Aldehyde-tagged protein-based drug carriers and methods of use
US9238878B2 (en) 2009-02-17 2016-01-19 Redwood Bioscience, Inc. Aldehyde-tagged protein-based drug carriers and methods of use
US10183998B2 (en) 2011-01-14 2019-01-22 Redwood Bioscience, Inc. Aldehyde-tagged immunoglobulin polypeptides and methods of use thereof
US9540438B2 (en) 2011-01-14 2017-01-10 Redwood Bioscience, Inc. Aldehyde-tagged immunoglobulin polypeptides and methods of use thereof
US8969526B2 (en) 2011-03-29 2015-03-03 Roche Glycart Ag Antibody Fc variants
US9695233B2 (en) 2012-07-13 2017-07-04 Roche Glycart Ag Bispecific anti-VEGF/anti-ANG-2 antibodies and their use in the treatment of ocular vascular diseases
US10683345B2 (en) 2012-07-13 2020-06-16 Roche Glycart Ag Bispecific anti-VEGF/anti-ANG-2 antibodies and their use in the treatment of ocular vascular diseases
US9260527B2 (en) 2013-03-15 2016-02-16 Sdix, Llc Anti-human CXCR4 antibodies and methods of making same
US11208632B2 (en) 2016-04-26 2021-12-28 R.P. Scherer Technologies, Llc Antibody conjugates and methods of making and using the same
US11788066B2 (en) 2016-04-26 2023-10-17 R.P. Scherer Technologies, Llc Antibody conjugates and methods of making and using the same

Also Published As

Publication number Publication date
US6737056B1 (en) 2004-05-18
US7122637B2 (en) 2006-10-17
US20140342404A1 (en) 2014-11-20
US20040191244A1 (en) 2004-09-30
US7332581B2 (en) 2008-02-19
US20060194957A1 (en) 2006-08-31
US20050118174A1 (en) 2005-06-02
US20040228856A1 (en) 2004-11-18
US20110293632A1 (en) 2011-12-01
US20160060330A1 (en) 2016-03-03
US20140147436A1 (en) 2014-05-29
US7416727B2 (en) 2008-08-26
US20050233382A1 (en) 2005-10-20
US7335742B2 (en) 2008-02-26

Similar Documents

Publication Publication Date Title
US7790858B2 (en) Polypeptide variants with altered effector function
US7335742B2 (en) Polypeptide variants with altered effector function
US8674083B2 (en) Polypeptide variants with altered effector function
AU2004233493B2 (en) Polypeptide variants with altered effector function

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION