US20080286141A1 - Method for Preparing Nano-Sized Metal Powder Feedstock and Method for Producing Sintered Body Using the Feedstock - Google Patents

Method for Preparing Nano-Sized Metal Powder Feedstock and Method for Producing Sintered Body Using the Feedstock Download PDF

Info

Publication number
US20080286141A1
US20080286141A1 US11/658,283 US65828305A US2008286141A1 US 20080286141 A1 US20080286141 A1 US 20080286141A1 US 65828305 A US65828305 A US 65828305A US 2008286141 A1 US2008286141 A1 US 2008286141A1
Authority
US
United States
Prior art keywords
metal powder
nano
sized metal
feedstock
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/658,283
Inventor
Jai Sung Lee
Yun Sung Kang
Bum Ha Cha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industry University Cooperation Foundation IUCF HYU
Original Assignee
Industry University Cooperation Foundation IUCF HYU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industry University Cooperation Foundation IUCF HYU filed Critical Industry University Cooperation Foundation IUCF HYU
Assigned to INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY reassignment INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHA, BUM-HA, KANG, YUN-SUNG, LEE, JAI-SUNG
Publication of US20080286141A1 publication Critical patent/US20080286141A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/148Agglomerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

A method for preparing a nano-sized metal powder feedstock comprises the steps of preparing a nano-sized metal powder, mixing the metal powder with a solution of an organic binder in a solvent, and wet-milling the mixture so that aggregates of the metal powder are uniformly formed. Further disclosed is a method for producing a sintered body using the feedstock.

Description

    TECHNICAL FIELD
  • The present invention relates to a method for preparing a nano-sized metal powder feedstock. More particularly, the present invention relates to a method for preparing a feedstock suitable for the production of a sintered body of a nano-sized metal powder that can be completely compacted without deformation, such as twists and cracks, and a method for producing a sintered body using the feedstock.
  • BACKGROUND ART
  • Conventional methods for producing a sintered body using a micrometer-sized metal powder are commonly performed by powder injection molding. A molded body of the metal powder formed after removal of an organic binder has a degree of compaction as low as about 50%, and thus complete compaction and uniform shrinkage of the sintered body cannot be achieved.
  • A process for providing a large driving force for sintering, such as high temperature sintering, is required for complete compaction of a sintered body. The problems encountered with the process are that large particles are grown and thus undesirable modifications to characteristics of the raw materials are involved, deteriorating the physical properties of the sintered body. To solve the above problems, additional processing steps, e.g., addition of a small amount of an alloy element, pressurization during sintering, and remolding, have been employed.
  • To improve the mechanical properties of a sintered body of an Fe—Ni based powder, which is the most widely sintered body as a material for a powder metallurgical product, carburization and post-annealing after sintering are mainly used. However, such additional processing renders the overall procedure complex, entails considerable production costs, and causes poor corrosion resistance due to the presence of carbon added during carburization annealing. In conclusion, the conventional methods for producing a sintered body using a micrometer-sized metal powder have the problems that the molded body has a low density, the production procedure is complicated by the additional processing, and the physical properties of the sintered body are deteriorated.
  • In attempts to basically solve the problems of the conventional methods, methods for producing a sintered body using a nano-sized metal powder having a size of 100□ or less are now being actively undertaken. Since nano-sized metal powders have superior sinterability, they can be uniformly shrunken and completely compacted by low-temperature/atmospheric pressure sintering techniques. In addition, since nano-sized metal powders have highly uniform and fine crystalline structures, product characteristics are improved. Under these circumstances, application of nano-sized metal powders to metal injection molding techniques is actively under study.
  • However, despite such superior availability of nano-sized metal powders, production and sintering compaction techniques have not been established and thus application to the production of near-net sintered bodies is as yet insufficient.
  • Korean Patent No. 0366773 (Title: A method for producing a nano-sized metal powder feedstock for metal injection molding, patentee: Hanyang Educational Institute) suggests a method for producing a feedstock for metal injection molding by which explosive oxidation of the nano-sized metal powder can be controlled and complete compaction of a product can be achieved while maintaining the shape of the product during production. According to this method, the coating of a binder to the nano-sized metal powder inhibits explosive oxidation of the nano-sized metal powder and improves complete compaction of the product.
  • However, the method is limited to the production of a feedstock of the nano-sized metal powder, and fails to sufficiently consider the applicability to a near-net product. Specifically, since the nano-sized powder has a large interfacial energy, non-uniform pore distribution may arise inside the molded body after debinding. In addition, pores remain even after low-temperature/atmospheric pressure sintering, thus deteriorating the mechanical properties of a sintered body. Accordingly, the nano-sized powder should undergo high-temperature sintering at above 1,000° C. However, high-temperature sintering causes deteriorated physical properties of the sintered body, and makes it impossible to utilize the advantages of low-temperature/atmospheric pressure sintering, i.e. complete compaction and growth of particles. In addition, according to the method, five or six thermoplastic binders having different debinding temperatures are used in order to prevent the deformation of the molded body arising from rapid removal of the binder, which occupies 40˜60% of the total volume, during debinding. Accordingly, the method has problems of complicated procedure and increased production costs. Further, since an elevation in debinding temperature should be sufficiently slow, the overall processing time is lengthened.
  • Thus, there is a need in the art for a method for preparing a nano-sized metal powder feedstock practically applicable to the production of a near-net sintered body and suitable for low-temperature/atmospheric pressure sintering, and a method for producing a sintered body using the feedstock.
  • DISCLOSURE OF INVENTION Technical Problem
  • Therefore, the present invention has been made in view of the above problems of the prior art, and it is an object of the present invention to provide a method for preparing a nano-sized metal powder feedstock suitable for the production of a sintered body that can be completely compacted by preventing the occurrence of coarse pores during subsequent debinding through the structural control of the nano-sized metal powder.
  • It is another object of the present invention to provide a method for producing a sintered body that is completely compacted and has a uniform grain size by debinding for a shorter period of time using the feedstock.
  • Technical Solution
  • In accordance with one aspect of the present invention for achieving the above objects, there is provided a method for preparing a nano-sized metal powder feedstock comprising the steps of preparing a nano-sized metal powder, mixing the metal powder with a solution of an organic binder in a solvent, and wet-milling the mixture so that aggregates of the metal powder are uniformly formed.
  • Preferably, the mixing step and the wet-milling step are simultaneously carried out to simplify the procedure of the method.
  • According to the method of the present invention, since pores can be uniformly distributed during the subsequent formation of a molded body, desired debinding can be carried out without deformation of the molded body, despite mixing of only one or two organic binders with the metal powder.
  • It is preferred that the organic binder is a water-soluble binder and the solvent is distilled water or alcohol. The water-soluble organic binder may be stearic acid.
  • For improved coating effects, the viscosity of the binder solution is preferably 2 Pa□s or lower at 100˜200° C., and more preferably 1 Pa□s or lower. For sufficient coating effects, there can be preferably used a binder solution having a viscosity of 0.002 Pa□s.
  • The nano-sized metal powder is an Fe-based alloy powder and contains at least one metal selected from the group consisting of Ni, Cu, Mo and W. A representative nano-sized metal powder is an Fe—Ni powder whose Ni content is 2˜80 wt %.
  • The mixing step may further include the sub-step of adding a surfactant to the mixture. At this step, the surfactant is preferably added in an amount not exceeding 2 wt %.
  • The mixing step and the wet-milling step are preferably carried out in a state where atmospheric air is blocked. Specifically, the steps can be carried out in an inert gas or protective gas atmosphere.
  • In accordance with another aspect of the present invention, there is provided a method for producing a sintered body using a nano-sized metal powder. The method comprises the steps of preparing the nano-sized metal powder feedstock, molding the nano-sized metal powder feedstock into a desired shape, debinding the molded body, and sintering the debound body.
  • In a specific embodiment, the molding step can be carried out by injection molding or extrusion molding. The debinding step is carried out by heating the molded body to about 300° C. to about 500° C. at a rate 3˜10° C./min., thus shortening the debinding time to about 2 hours.
  • The sintering step can be carried out by rapidly heating the debound body to about 500˜1,000° C. at a rate of 300° C./min. or higher. It is preferred that the sintering step is carried out consecutively after the debinding step.
  • The sintered body thus produced has a grain size of 200□ or less and a degree of compaction of 95% or higher.
  • Hereinafter, various features of the present invention and effects thereof will be explained in more detail.
  • The present invention is characterized in that the size of the aggregates of the nano-sized metal powder is uniformly controlled so that the aggregates can be applied to low-temperature/atmospheric pressure sintering. Specifically, in the method for preparing a nano-sized metal powder feedstock according to the present invention, the nano-sized metal powder is mixed with the organic binder in a solution state and is wet-milled, thereby maintaining the size of the aggregates at a uniform level.
  • The use of the binder solution allows the binder to be more effectively coated on the surface of the powder particles so that oxidation of the particles is prevented. Accordingly, even when a small amount of the binder is added during molding, the viscosity of the binder solution is lowered for sufficient coating, thus providing a nano-sized metal powder feedstock that can be stored in air for a prolonged period of time without oxidative contamination.
  • The binder is commonly mixed in an amount of from about 2% to about 50%. In the case where the binder is added in a relatively small amount, e.g., in bi-directional compression molding, sufficient coating effects cannot be attained by the method disclosed in Korean Patent No. 0366773. In contrast, the use of the binder solution and wet-milling process in the present invention ensures uniform distribution of the aggregates and more effective coating of the binder.
  • The solvent used to form the binder solution is not especially limited to distilled water or alcohol. Any solvent can be used so long as it forms a binder solution having a sufficiently low viscosity. Various known solvents can be used depending on the particular kind of the binder. At this time, the binder solution preferably has a viscosity not higher than about 2 Pa□s at from about 100° C. to 200° C.
  • In the method for preparing a feedstock of the present invention, the step of mixing the nano-sized metal powder and the binder solution and the wet-milling step for uniform size control of the aggregates can be simultaneously carried out to simplify the procedure of the method. For example, the binder solution and the nano-sized metal powder are charged into a milling machine and the mixture is milled. Mixing and grinding in the milling machine enables both the coating of the binder solution and size control of the aggregates. These processing steps are preferably carried out in a state where atmospheric air is blocked. More specifically, it is preferred that the processing steps are carried out in clean equipment filled with an inert or protective gas.
  • For better uniform distribution, a small amount of a surfactant can be optionally used as a dispersant. The surfactant is preferably added in an amount not exceeding 2 wt %, based on the weight of the mixture, so as not to deteriorate the characteristics of the sintered body. For sufficient effects of the surfactant, it is preferred to add the surfactant in an amount of 0.5 wt % or higher.
  • In the case where the nano-sized metal feedstock is used to produce a sintered body, aggregates are uniformly distributed in the feedstock and thus occurrence of coarse pores is prevented. Accordingly, deformation arising from separation of the binder can be minimized during the subsequent debinding. Accordingly, unlike in conventional methods (where five or more binders are used depending on temperature gradients), one or two binders can be used in the present invention, thus simplifying the procedure of the method. In addition, the debinding is conducted by heating the molded body to 300˜500° C. at a rate 3˜10° C./min., thus shortening the debinding time to about 2 hours.
  • Furthermore, since the debound body has a uniform particle size without occurrence of coarse pores, low-temperature/atmospheric pressure sintering at a temperature range of 500˜1,000° C. can be applied to the debound body to manufacture a nano-sized metal product having a grain size of 200□ or less and a degree of compaction of 95% or higher.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a scanning electron micrograph (SEM) of a nano-sized Fe—Ni alloy powder that can be used in the present invention.
  • FIG. 2 is a graph showing the results of the particle size analysis of a nano-sized Fe—Ni alloy powder feedstock prepared in Example 1 of the present invention using a laser particle size analyzer.
  • FIGS. 3 and 4 are scanning electron micrographs of the broken side of a debound body of a nano-sized Fe—Ni alloy powder obtained in Example 2 of the present invention at different magnifications (200× and 20,000×, respectively).
  • FIG. 5 shows photographs of a molded body and a sintered body of a nano-sized Fe—Ni alloy powder produced in Example 2 of the present invention.
  • FIG. 6 is an optical micrograph (200×) of a sintered body of a nano-sized Fe—Ni alloy powder produced in Example 2 of the present invention.
  • FIG. 7 is a scanning electron micrograph of an overetched surface of the sintered body shown in FIG. 6.
  • MODE FOR THE INVENTION
  • Preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings. The advantages and effects of the present invention will be better understood by the embodiments.
  • Example 1
  • First, a nano-sized Fe—Ni alloy powder was prepared as a nano-sized metal powder in accordance with the following procedure. Specifically, an Fe oxide and an Ni oxide, each of which had an average particle size of 1 m, were mixed together to have a weight ratio of 92:8, and were then subjected to high-energy ball milling in a steel attritor for 10 hours to finely pulverize the mixture to a size of 10˜20□.
  • Thereafter, the pulverized mixture was dried and reduced under a hydrogen atmosphere at 450° C. for 40 minutes to prepare a nano-sized Fe-8 wt % Ni alloy powder. As shown in FIG. 1, particles having a size of about 70□ gathered to form aggregates having a size of about 5 m to tens of micrometers.
  • Next, a binder solution and a surfactant were added to the nano-sized Fe-8 wt % Ni alloy powder. The binder solution was prepared by mixing 5 g of stearic acid (CH3(CH2)COOH) and 35 ml of ethanol as a solvent. As the surfactant, 0.5 mol of octanol (C8H18O) was used.
  • In this example, the mixing was conducted together with wet-milling using a three-dimensional mixer. Specifically, the milling was conducted using 40 g of steel balls at 60 rpm for 9 hours. The milled mixture was dried until the loading rate of the nano-sized Fe-8 wt % Ni alloy powder reached 50%, to prepare a nano-sized metal powder feedstock.
  • FIG. 2 is a graph showing the results of the particle size analysis of the nano-sized Fe—Ni alloy powder feedstock using a laser particle size analyzer (LPA). As described above, the nano-sized Fe—Ni alloy powder feedstock was prepared by adding 0.5 mol of octanol as a surfactant to the Fe-8 wt % Ni nano-sized metal powder in 35 ml of ethyl alcohol, and wet-milling the mixture using 40 g of steel balls for 9 hours. The laser particle size analysis indicates that the powder particles with a size of tens of micrometers were efficiently pulverized and dispersed by wet-milling to form aggregates with an average size of 700□.
  • Example 2
  • In this example, a cylindrical sintered body was produced using a nano-sized metal powder feedstock.
  • First, the nano-sized metal powder feedstock prepared in Example 1 was injected into a cylindrical mold under 100 MPa at 100° C. to produce a cylindrical molded body. The cylindrical molded body thus produced was compacted to about 52% (see the left hand side of FIG. 5).
  • Thereafter, to protect the injection-molded nano-sized Fe-8 wt % Ni alloy powder against occurrence of cracks by oxidation, the molded body was subjected to debinding by heating to 400° C. at a rate of 5° C./min.
  • FIG. 3 is a scanning electron micrograph (200×) of the broken side of the sample obtained after debinding, and FIG. 4 is a scanning electron micrograph (20,000×) of the broken side of the debound body. As shown in FIGS. 3 and 4, no coarse pores (micrometer-scale pores) adversely affecting the subsequent sintering process were observed, and instead, a fine structure consisting of uniform particles with a size not larger than 100□ was observed. This is because the aggregates wet-milled in Example 1 were uniformly filled into pores between unpulverized aggregates.
  • Based on the uniform distribution of the aggregates, only one binder could be used to prevent the occurrence of coarse pores arising from separation of the binder. Unlike in conventional methods where five or more binders are used, the debinding time could be shortened to 2 hours.
  • Subsequently to the debinding, the debound body was heated to 700° C. at a rate of 300° C./min., and was sintered for from 30 minutes to 4 hours to produce a cylindrical sintered body having a degree of compaction of 95% (see the right hand side of FIG. 5).
  • Compared to the cylindrical molded body having a degree of compaction of 52% shown in FIG. 5, no deformation, such as twists and cracks, was observed in the cylindrical sintered body even after debinding and sintering, and the shape of the cylindrical sintered body was unchanged during molding. As is evident from this example, the sintered body having a degree of compaction of 95% or higher could be produced from the debound body having a degree of compaction of 52% (after debinding) even at a sintering temperature as low as 700° C. Therefore, the sintered body can be useful in the manufacture of a complicated near-net sintered product.
  • FIG. 6 is an optical micrograph (200×) showing the fine structure of the cylindrical Fe-8 wt % Ni sintered body. As shown in FIG. 6, the sintered body has a completely compacted structure (degree of compaction: 95% or higher). FIG. 7 is a scanning electron micrograph (5,000×) showing the grain of the cylindrical Fe-8 wt % Ni sintered body after overetching. As shown in FIG. 7, the sintered body has a fine structure wherein the grains having a size of about 300□ are uniformly distributed.
  • To evaluate the mechanical properties of the Fe-8 wt % Ni sintered body, the micro-hardness values at ten or more sites of the sintered body were measured with a load of 200 g by means of a micro Vickers hardness tester, and averaged. The obtained average value was compared with the standard hardness values of commercially available injection molded sintered bodies. The results are shown in Table 1 below.
  • TABLE 1
    Sintered body Composition Hardness (Hv)
    Example 2 Fe-8 wt % Ni 298
    MIM-2200 Fe-2 wt % Ni 85
    MIM-2700 Fe-7 wt % Ni 130
    MIM-4605 Fe-2 wt % Ni-0.5 wt % C 110
    MIM-Fe2Ni Fe-2 wt % Ni-0.6 wt % C 300
    MIM-Fe8Ni Fe-8 wt % Ni-0.6 wt % C 340
  • The sintered bodies (MIM-2200, MIM-2700 and MIM-4605) according to the standard specification adopted by the Metal Powder Industry Federation (MPIF) have a Vickers hardness of 85˜130. In addition, since the injection molded metal powder sintered bodies according to the Japanese standard specification were subjected to carburization and annealing in order to improve the mechanical properties of the injection molded Fe—Ni powders, they have a high Vickers hardness of 300 (in the case of 2 wt % Ni) and 340 (in the case of 8 wt % Ni). The Fe-8 wt % Ni sintered body produced in the present invention has a Vickers hardness of 298, which is greater than two times that specified in the U.S standard specification. In addition, the Vickers hardness of the Fe-8 wt % Ni sintered body produced in the present invention is comparable to that specified in Japanese standard specification without involving additional carburization and annealing for improving the mechanical properties of the sintered body.
  • Although the present invention has been described herein with reference to the foregoing embodiments and the accompanying drawings, the scope of the invention is defined by the claims that follow. Accordingly, those skilled in the art will appreciate that various substitutions, modifications and changes are possible, without departing from the technical spirit of the present invention as disclosed in the accompanying claims, and such substitutions, modifications and changes are within the scope of the present invention.
  • INDUSTRIAL APPLICABILITY
  • As apparent from the foregoing, according to the method of the present invention, the application of wet-milling in the presence of the binder solution allows the binder to be more effectively coated on the surface of the powder particles and enables uniform control of the size of the aggregates. Since the nano-sized metal powder feedstock prepared by the methods of the present invention can maintain the internal structure of the molded body uniform and fine, completely compacted near-net nanostructured products can be manufactured without deformation, such as twists and cracks, even after sintering using the nano-sized metal powder feedstock. Therefore, according to the method of the present invention, simplification of the production procedure and reduction in production costs can be expected.

Claims (20)

1. A method for preparing a nano-sized metal powder feedstock, comprising the steps of:
preparing a nano-sized metal powder;
mixing the metal powder with a solution of an organic binder in a solvent; and
wet-milling the mixture so that aggregates of the metal powder are uniformly formed.
2. The method according to claim 1, wherein the mixing step and the wet-milling step are simultaneously carried out.
3. The method according to claim 1, wherein the metal powder is mixed with one or two organic binders.
4. The method according to claim 1, wherein the organic binder is a water-soluble binder and the solvent is distilled water or alcohol.
5. The method according to claim 4, wherein the water-soluble organic binder is stearic acid.
6. The method according to claim 1, wherein the binder solution has a viscosity of 2 Pa·s or lower at 100˜200° C.
7. The method according to claim 1, wherein the nano-sized metal powder is an Fe-based alloy powder and contains at least one metal selected from the group consisting of Ni, Cu, Mo and W.
8. The method according to claim 7, wherein the nano-sized metal powder is an Fe—Ni powder whose Ni content is 2˜80 wt %.
9. The method according to claim 1, wherein the mixing step further includes the sub-step of adding a surfactant to the mixture.
10. The method according to claim 9, wherein the surfactant is added in an amount not exceeding 2 wt %.
11. The method according to claim 1, wherein the mixing step and the wet-milling step are carried out in a state where atmospheric air is blocked.
12. The method according to claim 11, wherein the mixing step and the wet-milling step are carried out in an inert gas or protective gas atmosphere.
13. A method for producing a sintered body using a nano-sized metal powder, comprising the steps of:
preparing a nano-sized metal powder feedstock prepared by the method according to claim 1;
molding the nano-sized metal powder feedstock into a desired shape;
debinding the molded body; and
sintering the debound body.
14. The method according to claim 13, where the molding step is carried out by injection molding or extrusion molding.
15. The method according to claim 14, where the debinding step is carried out by heating the molded body to about 300° C. to about 500° C. at a rate 3˜10° C./min.
16. The method according to claim 14, where the sintering step is carried out by sintering the debound body at 500˜1,000° C.
17. The method according to claim 16, where the sintered body has a grain size of 200 nm or less and a degree of compaction of 95% or higher.
18. A method for producing a sintered body using a nano-sized metal powder, comprising the steps of:
preparing a nano-sized metal powder feedstock prepared by the method according to claim 7;
molding the nano-sized metal powder feedstock into a desired shape;
debinding the molded body; and
sintering the debound body.
19. A method for producing a sintered body using a nano-sized metal powder, comprising the steps of:
preparing a nano-sized metal powder feedstock prepared by the method according to claim 8;
molding the nano-sized metal powder feedstock into a desired shape;
debinding the molded body; and
sintering the debound body.
20. A method for producing a sintered body using a nano-sized metal powder, comprising the steps of:
preparing a nano-sized metal powder feedstock prepared by the method according to claim 12;
molding the nano-sized metal powder feedstock into a desired shape;
debinding the molded body; and
sintering the debound body.
US11/658,283 2004-07-23 2005-07-22 Method for Preparing Nano-Sized Metal Powder Feedstock and Method for Producing Sintered Body Using the Feedstock Abandoned US20080286141A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2004-0057701 2004-07-23
KR1020040057701A KR20060008046A (en) 2004-07-23 2004-07-23 Fabrication method of nano-sized metal powder and fabrication method of sintered body by using the same
PCT/KR2005/002378 WO2006009409A1 (en) 2004-07-23 2005-07-22 Method for preparing nano-sized metal powder feedstock and method for producing sintered body using the feedstock

Publications (1)

Publication Number Publication Date
US20080286141A1 true US20080286141A1 (en) 2008-11-20

Family

ID=35785476

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/658,283 Abandoned US20080286141A1 (en) 2004-07-23 2005-07-22 Method for Preparing Nano-Sized Metal Powder Feedstock and Method for Producing Sintered Body Using the Feedstock

Country Status (4)

Country Link
US (1) US20080286141A1 (en)
JP (1) JP2008507623A (en)
KR (1) KR20060008046A (en)
WO (1) WO2006009409A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107857594A (en) * 2017-11-29 2018-03-30 北京科技大学 A kind of aluminium nitride ceramics profiled piece and preparation method thereof
RU2718946C1 (en) * 2019-06-17 2020-04-15 Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) Method of producing granular metal-particle composition (feedstock) and composition obtained using said method
US10875091B2 (en) * 2014-12-05 2020-12-29 Industry-University Cooperation Foundation Metal powder, feedstock, and preparation method therefor
CN115052696A (en) * 2019-03-28 2022-09-13 维罗克辛特赛弗股份有限公司 System and method for nanocrystalline metal powder injection molding

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796150B1 (en) * 2006-08-30 2008-01-21 한국피아이엠(주) Producing method for vehicle in solenoid valve seat housing
CN101462163A (en) * 2009-01-16 2009-06-24 江西稀有稀土金属钨业集团有限公司 Ball mill technique for preparing carbide alloy mixture
CN102312132B (en) * 2011-09-15 2013-01-02 西安理工大学 Method for preparing Ni-W alloy by vacuum sintering
US10800934B2 (en) * 2015-10-09 2020-10-13 Particle3D AdS Process for 3D printing
CN107815592A (en) * 2017-10-26 2018-03-20 北京科技大学 A kind of preparation method of engine fuel nozzle magnetic valve magnetic core
CN109822090A (en) * 2017-11-23 2019-05-31 中国科学院化学研究所 A kind of preparation method of the copper nanoparticle of in-stiu coating organic matter

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4565716A (en) * 1983-07-05 1986-01-21 Aluminum Company Of America Water resistant aluminum particles and coating
US5028363A (en) * 1988-01-05 1991-07-02 Nkk Corporation Method of casting powder materials
US5262122A (en) * 1980-01-14 1993-11-16 Witec Cayman Patents, Ltd. Manufacture of parts from particulate material
US6472459B2 (en) * 1999-06-02 2002-10-29 Sandia Corporation Fabrication of metallic microstructures by micromolding nanoparticles
US20020190441A1 (en) * 2001-02-22 2002-12-19 Billiet Romain Louis Method for making articles from nanoparticulate materials
US6533966B1 (en) * 1998-09-06 2003-03-18 Institut Für Neue Materialien Gem. Gmbh Method for preparing suspensions and powders based in indium tin oxide and the use thereof
US6562290B2 (en) * 2000-08-23 2003-05-13 H.C. Starck Inc. Process for the production of composite components by powder injection molding, and composite powders suitable for this purpose
US6720074B2 (en) * 2000-10-26 2004-04-13 Inframat Corporation Insulator coated magnetic nanoparticulate composites with reduced core loss and method of manufacture thereof
US6814927B2 (en) * 2002-06-11 2004-11-09 Industrial Technology Research Institute Fabrication method of nanostructured tungsten carbide bulk material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131302A (en) * 1990-09-21 1992-05-06 Sumitomo Electric Ind Ltd Manufacture of hard alloy powder
JPH04160101A (en) * 1990-10-24 1992-06-03 Sumitomo Electric Ind Ltd Production of molding material
WO2000056486A1 (en) * 1999-03-19 2000-09-28 Cabot Corporation Making niobium and other metal powders by milling
KR100366773B1 (en) * 2000-03-29 2003-01-09 이재성 Manufacturing method of nano-metal feedstock for metal injection molding
JP4895151B2 (en) * 2004-02-27 2012-03-14 日立金属株式会社 Iron-based nano-sized particles and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262122A (en) * 1980-01-14 1993-11-16 Witec Cayman Patents, Ltd. Manufacture of parts from particulate material
US4565716A (en) * 1983-07-05 1986-01-21 Aluminum Company Of America Water resistant aluminum particles and coating
US5028363A (en) * 1988-01-05 1991-07-02 Nkk Corporation Method of casting powder materials
US6533966B1 (en) * 1998-09-06 2003-03-18 Institut Für Neue Materialien Gem. Gmbh Method for preparing suspensions and powders based in indium tin oxide and the use thereof
US6472459B2 (en) * 1999-06-02 2002-10-29 Sandia Corporation Fabrication of metallic microstructures by micromolding nanoparticles
US6562290B2 (en) * 2000-08-23 2003-05-13 H.C. Starck Inc. Process for the production of composite components by powder injection molding, and composite powders suitable for this purpose
US6720074B2 (en) * 2000-10-26 2004-04-13 Inframat Corporation Insulator coated magnetic nanoparticulate composites with reduced core loss and method of manufacture thereof
US20020190441A1 (en) * 2001-02-22 2002-12-19 Billiet Romain Louis Method for making articles from nanoparticulate materials
US6814927B2 (en) * 2002-06-11 2004-11-09 Industrial Technology Research Institute Fabrication method of nanostructured tungsten carbide bulk material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10875091B2 (en) * 2014-12-05 2020-12-29 Industry-University Cooperation Foundation Metal powder, feedstock, and preparation method therefor
CN107857594A (en) * 2017-11-29 2018-03-30 北京科技大学 A kind of aluminium nitride ceramics profiled piece and preparation method thereof
CN115052696A (en) * 2019-03-28 2022-09-13 维罗克辛特赛弗股份有限公司 System and method for nanocrystalline metal powder injection molding
RU2718946C1 (en) * 2019-06-17 2020-04-15 Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) Method of producing granular metal-particle composition (feedstock) and composition obtained using said method

Also Published As

Publication number Publication date
JP2008507623A (en) 2008-03-13
WO2006009409A1 (en) 2006-01-26
KR20060008046A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
US20080286141A1 (en) Method for Preparing Nano-Sized Metal Powder Feedstock and Method for Producing Sintered Body Using the Feedstock
JP6040163B2 (en) Iron powder for powder injection molding
EP3362210B1 (en) Iron based powders for powder injection molding
JP6549586B2 (en) Method of manufacturing sintered member and sintered member
KR100966753B1 (en) Method of fabricating iron nano powder sintered part
KR101673695B1 (en) Austenitic steel matrix-nano particle composite and preparing method of the same
JP6149718B2 (en) Iron-based sintered alloy, method for producing the same, and high-carbon iron-based powder
KR100660653B1 (en) Fabrication method of nano-sized metal powder and fabrication method of sintered body by using the same
CN100442401C (en) Method for preparing sintered product, sintered product and magnetostriction material
KR101635792B1 (en) The preparing method of aluminum/silicon carbide metal matrix composites and the aluminum/silicon carbide metal matrix composites thereby
Hong et al. Magnetic pulsed compaction of ferromagnetic nano-powders for soft-magnetic core
PL207923B1 (en) Iron-based powder composition
KR101830697B1 (en) A method for producing a component of powder injection molding
JP2013541633A (en) Stainless steel alloy
DE102008014355A1 (en) Composite based on transition metal diborides, process for its preparation and its use
JP3001541B1 (en) Prealloy powder and method for producing sintered Ti alloy using the same
Laptev et al. Hard alloy WC–24% Ni obtained in the solid phase from ultrafine WC, NiO, and C powders. Part 1. Density and structure of specimens
KR101230286B1 (en) Method of controlling carbon content in sintered body made by metal injection molding
AT511919B1 (en) METHOD FOR PRODUCING AN SINTER COMPONENT
JP2019044236A (en) Metal powder, sintered body and method for manufacturing sintered body
JPS61246334A (en) Manufacture of titanium nitride base sintered dense material

Legal Events

Date Code Title Description
AS Assignment

Owner name: INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, JAI-SUNG;KANG, YUN-SUNG;CHA, BUM-HA;REEL/FRAME:018845/0070

Effective date: 20070115

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION