US20080309682A1 - System and method of boosting lamp luminance in a laptop computing device - Google Patents

System and method of boosting lamp luminance in a laptop computing device Download PDF

Info

Publication number
US20080309682A1
US20080309682A1 US11/762,106 US76210607A US2008309682A1 US 20080309682 A1 US20080309682 A1 US 20080309682A1 US 76210607 A US76210607 A US 76210607A US 2008309682 A1 US2008309682 A1 US 2008309682A1
Authority
US
United States
Prior art keywords
lamp
luminance
information handling
computing device
handling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/762,106
Other versions
US8330703B2 (en
Inventor
Jaeik Lee
James Alan Yasukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dell Products LP
Original Assignee
Dell Products LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dell Products LP filed Critical Dell Products LP
Priority to US11/762,106 priority Critical patent/US8330703B2/en
Assigned to DELL PRODUCTS, LP reassignment DELL PRODUCTS, LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YASUKAWA, JAMES ALAN, LEE, JAEIK
Publication of US20080309682A1 publication Critical patent/US20080309682A1/en
Priority to US13/674,607 priority patent/US9524680B2/en
Application granted granted Critical
Publication of US8330703B2 publication Critical patent/US8330703B2/en
Assigned to BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS FIRST LIEN COLLATERAL AGENT reassignment BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS FIRST LIEN COLLATERAL AGENT PATENT SECURITY AGREEMENT (NOTES) Assignors: APPASSURE SOFTWARE, INC., ASAP SOFTWARE EXPRESS, INC., BOOMI, INC., COMPELLENT TECHNOLOGIES, INC., CREDANT TECHNOLOGIES, INC., DELL INC., DELL MARKETING L.P., DELL PRODUCTS L.P., DELL SOFTWARE INC., DELL USA L.P., FORCE10 NETWORKS, INC., GALE TECHNOLOGIES, INC., PEROT SYSTEMS CORPORATION, SECUREWORKS, INC., WYSE TECHNOLOGY L.L.C.
Assigned to BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT reassignment BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT PATENT SECURITY AGREEMENT (ABL) Assignors: APPASSURE SOFTWARE, INC., ASAP SOFTWARE EXPRESS, INC., BOOMI, INC., COMPELLENT TECHNOLOGIES, INC., CREDANT TECHNOLOGIES, INC., DELL INC., DELL MARKETING L.P., DELL PRODUCTS L.P., DELL SOFTWARE INC., DELL USA L.P., FORCE10 NETWORKS, INC., GALE TECHNOLOGIES, INC., PEROT SYSTEMS CORPORATION, SECUREWORKS, INC., WYSE TECHNOLOGY L.L.C.
Assigned to BANK OF AMERICA, N.A., AS COLLATERAL AGENT reassignment BANK OF AMERICA, N.A., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT (TERM LOAN) Assignors: APPASSURE SOFTWARE, INC., ASAP SOFTWARE EXPRESS, INC., BOOMI, INC., COMPELLENT TECHNOLOGIES, INC., CREDANT TECHNOLOGIES, INC., DELL INC., DELL MARKETING L.P., DELL PRODUCTS L.P., DELL SOFTWARE INC., DELL USA L.P., FORCE10 NETWORKS, INC., GALE TECHNOLOGIES, INC., PEROT SYSTEMS CORPORATION, SECUREWORKS, INC., WYSE TECHNOLOGY L.L.C.
Assigned to CREDANT TECHNOLOGIES, INC., WYSE TECHNOLOGY L.L.C., FORCE10 NETWORKS, INC., DELL SOFTWARE INC., ASAP SOFTWARE EXPRESS, INC., DELL INC., DELL MARKETING L.P., SECUREWORKS, INC., DELL PRODUCTS L.P., PEROT SYSTEMS CORPORATION, DELL USA L.P., COMPELLANT TECHNOLOGIES, INC., APPASSURE SOFTWARE, INC. reassignment CREDANT TECHNOLOGIES, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT
Assigned to DELL MARKETING L.P., DELL SOFTWARE INC., DELL PRODUCTS L.P., WYSE TECHNOLOGY L.L.C., DELL USA L.P., DELL INC., FORCE10 NETWORKS, INC., SECUREWORKS, INC., PEROT SYSTEMS CORPORATION, ASAP SOFTWARE EXPRESS, INC., APPASSURE SOFTWARE, INC., CREDANT TECHNOLOGIES, INC., COMPELLENT TECHNOLOGIES, INC. reassignment DELL MARKETING L.P. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT
Assigned to PEROT SYSTEMS CORPORATION, DELL SOFTWARE INC., DELL MARKETING L.P., ASAP SOFTWARE EXPRESS, INC., FORCE10 NETWORKS, INC., WYSE TECHNOLOGY L.L.C., DELL INC., DELL USA L.P., CREDANT TECHNOLOGIES, INC., SECUREWORKS, INC., APPASSURE SOFTWARE, INC., COMPELLENT TECHNOLOGIES, INC., DELL PRODUCTS L.P. reassignment PEROT SYSTEMS CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANK OF AMERICA, N.A., AS COLLATERAL AGENT
Assigned to THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT reassignment THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT SECURITY AGREEMENT Assignors: ASAP SOFTWARE EXPRESS, INC., AVENTAIL LLC, CREDANT TECHNOLOGIES, INC., DELL INTERNATIONAL L.L.C., DELL MARKETING L.P., DELL PRODUCTS L.P., DELL SOFTWARE INC., DELL SYSTEMS CORPORATION, DELL USA L.P., EMC CORPORATION, EMC IP Holding Company LLC, FORCE10 NETWORKS, INC., MAGINATICS LLC, MOZY, INC., SCALEIO LLC, SPANNING CLOUD APPS LLC, WYSE TECHNOLOGY L.L.C.
Assigned to CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT reassignment CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: ASAP SOFTWARE EXPRESS, INC., AVENTAIL LLC, CREDANT TECHNOLOGIES, INC., DELL INTERNATIONAL L.L.C., DELL MARKETING L.P., DELL PRODUCTS L.P., DELL SOFTWARE INC., DELL SYSTEMS CORPORATION, DELL USA L.P., EMC CORPORATION, EMC IP Holding Company LLC, FORCE10 NETWORKS, INC., MAGINATICS LLC, MOZY, INC., SCALEIO LLC, SPANNING CLOUD APPS LLC, WYSE TECHNOLOGY L.L.C.
Assigned to THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. reassignment THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. SECURITY AGREEMENT Assignors: CREDANT TECHNOLOGIES, INC., DELL INTERNATIONAL L.L.C., DELL MARKETING L.P., DELL PRODUCTS L.P., DELL USA L.P., EMC CORPORATION, EMC IP Holding Company LLC, FORCE10 NETWORKS, INC., WYSE TECHNOLOGY L.L.C.
Assigned to THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. reassignment THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. SECURITY AGREEMENT Assignors: CREDANT TECHNOLOGIES INC., DELL INTERNATIONAL L.L.C., DELL MARKETING L.P., DELL PRODUCTS L.P., DELL USA L.P., EMC CORPORATION, EMC IP Holding Company LLC, FORCE10 NETWORKS, INC., WYSE TECHNOLOGY L.L.C.
Assigned to DELL INTERNATIONAL, L.L.C., DELL PRODUCTS L.P., ASAP SOFTWARE EXPRESS, INC., CREDANT TECHNOLOGIES, INC., DELL SYSTEMS CORPORATION, DELL SOFTWARE INC., MOZY, INC., DELL USA L.P., EMC IP Holding Company LLC, SCALEIO LLC, DELL MARKETING L.P., WYSE TECHNOLOGY L.L.C., AVENTAIL LLC, FORCE10 NETWORKS, INC., EMC CORPORATION, MAGINATICS LLC reassignment DELL INTERNATIONAL, L.L.C. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH
Assigned to DELL USA L.P., DELL PRODUCTS L.P., EMC CORPORATION (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MAGINATICS LLC), DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO FORCE10 NETWORKS, INC. AND WYSE TECHNOLOGY L.L.C.), DELL INTERNATIONAL L.L.C., SCALEIO LLC, EMC IP HOLDING COMPANY LLC (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MOZY, INC.), DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO ASAP SOFTWARE EXPRESS, INC.), DELL MARKETING L.P. (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO CREDANT TECHNOLOGIES, INC.) reassignment DELL USA L.P. RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001) Assignors: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT
Assigned to DELL USA L.P., DELL MARKETING L.P. (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO CREDANT TECHNOLOGIES, INC.), DELL INTERNATIONAL L.L.C., DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO FORCE10 NETWORKS, INC. AND WYSE TECHNOLOGY L.L.C.), EMC CORPORATION (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MAGINATICS LLC), DELL PRODUCTS L.P., DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO ASAP SOFTWARE EXPRESS, INC.), EMC IP HOLDING COMPANY LLC (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MOZY, INC.), SCALEIO LLC reassignment DELL USA L.P. RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001) Assignors: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/048Preventing or counteracting the effects of ageing using evaluation of the usage time
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the present disclosure relates generally to portable computing devices. More specifically, the present disclosure relates to controlling lamp luminance in a laptop computing device.
  • An information handling system generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information.
  • information handling systems may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated.
  • the variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications.
  • information handling systems may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
  • a typical laptop computing device can include a liquid crystal display (LCD) that is backlit by a cold cathode fluorescent lamp (CCFL).
  • a CCFL can have a limited lifetime of approximately fifteen thousand hours (15,000 hrs). This time is based on the time that it takes the brightness, or luminance, of the CCFL to drop from an initial value to fifty percent (50%) of that initial value.
  • the life of the CCFL can be a major factor in the number of laptop computing devices returned to the manufacturer to be replaced under warranty. In fact, approximately thirty-three percent (33%) of returned laptop computing devices are returned due to a dim CCFL.
  • the brightness, or luminance, of the CCFL is directly proportional to the lamp current, i.e., as the lamp current increases, the brightness increases.
  • the life of the CCFL is indirectly proportional to the lamp current, as the lamp current increases, the life of the CCFL decreases.
  • a laptop computing device is typically manufactured with a maximum brightness that is based on a factory set lamp current that is optimized between the power consumption and the brightness target. This maximum brightness is not adjustable by the user.
  • FIG. 1 is a block diagram of an information handling system
  • FIG. 2 is a front view of a laptop computing device
  • FIG. 3 is a rear view of the laptop computing device illustrated in FIG. 2 ;
  • FIG. 4 is a general diagram illustrating a lamp control system
  • FIG. 5 is a flow chart illustrating a method of controlling a lamp within a laptop computing device.
  • FIG. 6 is a graph indicating lamp luminance plotted versus lamp life for three different lamp currents.
  • An information handling system includes a display, a lamp back lighting the display, and a lamp control system coupled to the lamp.
  • the lamp control system is configured to boost a maximum luminance of the lamp as the lamp ages.
  • a method of increasing a maximum luminance of a lamp within an information handling system can include receiving a user request to increase a maximum luminance and based on the user request and a temperature of the lamp, selectively increasing a lamp current in order to increase a maximum luminance of the lamp.
  • a method of increasing luminance of a lamp within an information handling system comprises monitoring a luminance, L, of the lamp starting at an initial luminance, L I , and increasing L to a first boosted luminance, L B1 , when L is equal to a predetermined first luminance boost trigger, L BT1 .
  • FIG. 1 illustrates a block diagram of an exemplary embodiment of an information handling system, generally designated at 100 .
  • the information handling system 100 can be a computer system such as a server.
  • the information handling system 100 can include a first physical processor 102 coupled to a first host bus 104 and can further include additional processors generally designated as n th physical processor 106 coupled to a second host bus 108 .
  • the first physical processor 102 can be coupled to a chipset 110 via the first host bus 104 .
  • the n th physical processor 106 can be coupled to the chipset 110 via the second host bus 108 .
  • the chipset 110 can support multiple processors and can allow for simultaneous processing of multiple processors and support the exchange of information within information handling system 100 during multiple processing operations.
  • the chipset 110 can be referred to as a memory hub or a memory controller.
  • the chipset 110 can include a dedicated bus to transfer data between first physical processor 102 and the n th physical processor 106 .
  • the chipset 110 including a chipset that can include a memory controller hub and an input/output (I/O) controller hub.
  • the chipset 110 can function to access the first physical processor 102 using first bus 104 and the n th physical processor 106 using the second host bus 108 .
  • the chipset 110 can also provide a memory interface for accessing memory 112 using a memory bus 114 .
  • the buses 104 , 108 , and 114 can be individual buses or part of the same bus.
  • the chipset 110 can also provide bus control and can handle transfers between the buses 104 , 108 , and 114 .
  • the chipset 110 can include an application specific chipset that provides connectivity to various buses, and integrates other system functions.
  • the chipset 110 can be provided using an Intel® Hub Architecture (IHA) chipset that can also include two parts, a Graphics and AGP Memory Controller Hub (GMCH) and an I/O Controller Hub (ICH).
  • IHA Intel® Hub Architecture
  • GMCH Graphics and AGP Memory Controller Hub
  • ICH I/O Controller Hub
  • an Intel 820E, an 815E chipset, an Intel 975X chipset, an Intel G965 chipset, available from the Intel Corporation of Santa Clara, Calif., or any combination thereof can provide at least a portion of the chipset 110 .
  • the chipset 110 can also be packaged as an application specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • the chipset 110 can be coupled to a video graphics interface 122 using a third bus 124 .
  • the video graphics interface 122 can be a Peripheral Component Interconnect (PCI) Express interface operable to provide content to display within a video display unit 126 .
  • PCI Peripheral Component Interconnect
  • Other graphics interfaces may also be used.
  • the video graphics interface 122 can provide a video display output 128 to the video display unit 126 .
  • the video display unit 126 can include one or more types of video displays such as a flat panel display (FPD), cathode ray tube display (CRT) or other type of display device.
  • FPD flat panel display
  • CRT cathode ray tube display
  • the information handling system 100 can also include an I/O interface 130 that can be connected via an I/O bus 120 to the chipset 110 .
  • the I/O interface 130 and I/O bus 120 can include industry standard buses or proprietary buses and respective interfaces or controllers.
  • the I/O bus 120 can also include a PCI bus or a high speed PCI-Express bus.
  • a PCI bus can be operated at approximately 66 MHz and a PCI-Express bus can be operated at more than one (1) speed (e.g. 2.5 GHz and 5 GHz).
  • PCI buses and PCI-Express buses can be provided to comply with industry standards for connecting and communicating between various PCI-enabled hardware devices.
  • I/O bus 120 can also be provided in association with, or independent of, the I/O bus 120 including, but not limited to, industry standard buses or proprietary buses, such as Industry Standard Architecture (ISA), Small Computer Serial Interface (SCSI), Inter-Integrated Circuit (I 2 C), System Packet Interface (SPI), or Universal Serial buses (USBs).
  • ISA Industry Standard Architecture
  • SCSI Small Computer Serial Interface
  • I 2 C Inter-Integrated Circuit
  • SPI System Packet Interface
  • USBs Universal Serial buses
  • the chipset 110 can be a chipset employing a Northbridge/Southbridge chipset configuration (not illustrated).
  • a Northbridge portion of the chipset 110 can communicate with the first physical processor 102 and can control interaction with the memory 112 , the I/O bus 120 that can be operable as a PCI bus, and activities for the video graphics interface 122 .
  • the Northbridge portion can also communicate with the first physical processor 102 using first bus 104 and the second bus 108 coupled to the n th physical processor 106 .
  • the chipset 110 can also include a Southbridge portion (not illustrated) of the chipset 110 and can handle I/O functions of the chipset 110 .
  • the Southbridge portion can manage the basic forms of I/O such as Universal Serial Bus (USB), serial I/O, audio outputs, Integrated Drive Electronics (IDE), and ISA I/O for the information handling system 100 .
  • USB Universal Serial Bus
  • IDE Integrated Drive Electronics
  • ISA I/O for the information handling system 100
  • the information handling system 100 can further include a disk controller 132 coupled to the I/O bus 120 , and connected to an I/O interface 130 and one or more internal disk drives such as a hard disk drive (HDD) 134 and an optical disk drive (ODD) 136 such as a Read/Write Compact Disk (R/W CD), a Read/Write Digital Video Disk (R/W DVD), a Read/Write mini-Digital Video Disk (R/W mini-DVD), or other type of optical disk drive.
  • a disk controller 132 coupled to the I/O bus 120 , and connected to an I/O interface 130 and one or more internal disk drives such as a hard disk drive (HDD) 134 and an optical disk drive (ODD) 136 such as a Read/Write Compact Disk (R/W CD), a Read/Write Digital Video Disk (R/W DVD), a Read/Write mini-Digital Video Disk (R/W mini-DVD), or other type of optical disk drive.
  • HDD hard disk drive
  • the information handling system 100 can include a laptop computing device.
  • FIG. 2 shows an embodiment of a laptop computing device that is designated 200 .
  • the laptop computing device 200 includes a base 202 and a lid 204 that is coupled to the base by a first hinge 206 and a second hinge 208 .
  • a keyboard 210 is incorporated into the base 202 of the laptop computing device 200 .
  • a mouse 212 is incorporated into the base 202 of the laptop computing device 200 .
  • the mouse 212 is a touch pad mouse.
  • a display 214 is incorporated into the lid 204 of the laptop computing device 200 .
  • the display 214 can be a liquid crystal display (LCD), e.g., a thin film transistor (TFT) LCD.
  • the display 214 can be a plasma display or an organic light emitting diode (OLED) display.
  • the display 214 can be backlit by a cold cathode fluorescent lamp (CCFL). The lamp current of the CCFL can be controlled, as described herein, in order to substantially maximize brightness of the CCFL or maximize the life of the CCFL.
  • CCFL cold cathode fluorescent lamp
  • a task bar 216 and a plurality of desktop icons 218 , 220 , 222 can be presented to a user of the laptop computing device 200 via the display 214 .
  • a cursor 224 can be presented to the user via the display 214 .
  • the task bar 216 , the plurality of desktop icons 218 , 220 , 222 , and the cursor 224 are part of a desktop that can be selectively presented to a user.
  • a user can control the curser 224 with the mouse 212 and as such, a user can interact with one or more programs executable by the laptop computing device 200 via the display 214 and the mouse 212 .
  • a lamp control panel can be presented to the user via the display 214 .
  • the user can use the lamp control panel to change a maximum brightness of the CCFL.
  • the maximum brightness of the CCFL is the maximum brightness that can be achieved by the CCFL during operation of the laptop computing device in which the CCFL is installed.
  • the maximum brightness of the CCFL is based on the life of the CCFL and is based on the lamp current supplied to the CCFL. For a particular lamp current, the maximum brightness of the CCFL will deteriorate as the CCFL ages.
  • the user may decide to increase the maximum brightness of the CCFL for a particular application, e.g., a video game, a photography program, a computer aided drafting (CAD) program, or some other program in which the brightness of the CCFL increases the user experience with the program.
  • a particular application e.g., a video game, a photography program, a computer aided drafting (CAD) program, or some other program in which the brightness of the CCFL increases the user experience with the program.
  • CAD computer aided drafting
  • the user may decide to increase the maximum brightness of the CCFL when the laptop computing device is operating on alternating current (AC) and decrease the brightness of the CCFL when the laptop computing device is operating on direct current (DC). This may save power and increase a battery operating time of the laptop computing device. Also, after the laptop computing device is out of warranty, the user may decide to increase the then-current maximum brightness of the CCFL if the user has noticed that the CCFL has begun to dim due to aging of the CCFL. Alternatively, the maximum brightness can automatically be increased when the luminance of the CCFL reaches a predetermined minimum value due to aging of the CCFL.
  • the lamp control panel can also indicate to the user a decrease in lamp life due to an increase in brightness of the CCFL or an increase in lamp life due to a decrease in brightness of the CCFL.
  • FIG. 3 illustrates the back of a laptop computing device, such as the laptop computing device 200 .
  • the laptop computing device 200 can include a plurality of device connections that are coupled to a processor within the laptop computing device 200 .
  • the laptop computing device 200 can include a printer connection 302 , e.g., an IEEE-1284 connection.
  • the laptop computing device 200 can include a first universal serial bus (USB) connection 304 and a second USB connection 306 .
  • USB universal serial bus
  • two USB enabled devices can be coupled to the laptop computing device 200 via the USB connections 304 , 306 .
  • FIG. 3 further illustrates that the laptop computing device 200 can include a modem connection 308 , e.g., an RJ-11 connection.
  • the laptop computing device 200 can include an Ethernet connection 310 , e.g., an RJ-45 connection.
  • the laptop computing device 200 can further include a headphone connection 312 and a microphone connection 314 . Additionally, the laptop computing device 200 can include an S-video connection 316 and an external monitor connection 318 . Also, the laptop computing device 200 can include an AC adapter connection 320 . In an exemplary, non-limiting embodiment, as depicted in FIG. 3 , the various connections 302 , 304 , 306 , 308 , 310 , 312 , 314 , 316 , 318 , 320 can be incorporated into the base 202 of the laptop computing device 200 . Further, in an exemplary, non-limiting embodiment, the laptop computing device 200 can include one or more Personal Computer Memory Card International Association (PCMCIA) connections, a compact disk (CD) drive, a digital video disk (DVD) drive, and a battery.
  • PCMCIA Personal Computer Memory Card International Association
  • FIG. 4 shows a lamp control system, generally designated 400 , that can be installed within the laptop computing device 200 .
  • the lamp control system 400 can be a cold cathode fluorescent lamp (CCFL) control system.
  • the lamp control system 400 can include a lamp 402 , e.g., a CCFL.
  • a current sensor transformer 404 can be coupled to the lamp 402 .
  • a transformer 406 can be coupled to the lamp 402 .
  • a transformer drive 408 can be coupled to the transformer 406 and a (pulse width modulator) PWM controller 410 can be connected to the transformer drive 408 .
  • a boost controller 412 can be coupled to the PWM controller 410 .
  • a SmBus controller 414 can be coupled to the boost controller 412 . Further, a counter 416 , a thermal sensor 418 , and a photo sensor 420 can be coupled to the boost controller 412 . Also, a memory 422 can be coupled to the boost controller 412 . As described below, the lamp control system 400 can be used to control the luminance, or brightness, of the lamp.
  • the boost controller 412 can use the counter 415 , the thermal sensor 418 , and a photo sensor 420 to monitor the lamp and control the luminance of the lamp. For example, if the photo sensor 420 senses that the lamp has dimmed, a message may be sent to a user asking if the user would like to increase the brightness of the lamp. If so, the lamp current can be adjusted to increase the brightness. Further, if the thermal sensor 418 senses that the lamp is approaching a critical temperature, the user can be sent a warning indicating such a condition. Further, the user can be warned that the brightness of the lamp will be decreased to allow the lamp to cool sufficiently.
  • the user can use the lamp control system 400 to increase the lamp current. Also, if the user wishes to increase the lamp life, while decreasing luminance, the user can use the lamp control system 400 to decrease the lamp current. Additionally, as the lamp ages, the lamp current can be increased to increase the luminance of the lamp. This can be automatic or based on input received from the user. For example, as the lamp ages, the user may notice that the luminance of the lamp has decreased. In a particular embodiment, the user can access a diagnostic tool associated with the lamp, e.g., a lamp control panel. From the lamp control panel, the user can increase the lamp current in order to increase the luminance of the lamp.
  • a diagnostic tool associated with the lamp e.g., a lamp control panel. From the lamp control panel, the user can increase the lamp current in order to increase the luminance of the lamp.
  • a method of controlling lamp luminance commences at block 500 , when a user runs a service module or accesses a diagnostic tool.
  • a sensing block 504 can read a counter.
  • the counter can indicate the number of times the lamp has been powered on and off. In a particular embodiment, the more the lamp is powered on, i.e., fired, the greater the decrease in the life of the lamp.
  • the sensing block 504 can check the brightness of the lamp. Also, at block 508 , the sensing block 504 can check the temperature of the lamp. In a particular embodiment, the sensing block can be placed near the lamp area to maximize the accuracy of the sensing block, e.g., the accuracy of a photo sensor within a sensing block or a thermal sensor within the sensing block.
  • the sensing block 504 can also receive user input from a user interface block 510 .
  • the user input can include a specific request by the user to increase the brightness, or
  • the request can be a request to increase the luminance by a percentage from the current value, e.g., one percent (1%), two percent (2%), three percent (3%), four percent (4%), five percent (5%), six percent (6%), seven percent (7%), eight percent (8%), nine percent (9%), ten percent (10%), etc.
  • the user input can also include a specific request by the user to decrease the brightness of the lamp.
  • the request can be a request to decrease the luminance by a percentage from the current value, e.g., one percent (1%), two percent (2%), three percent (3%), four percent (4%), five percent (5%), six percent (6%), seven percent (7%), eight percent (8%), nine percent (9%), ten percent (10%), etc.
  • the user input can also include a request by the user to increase the life of the lamp.
  • the request can be a request to increase the life of the lamp by a percentage value over the predetermined life of the lamp, one percent (1%), two percent (2%), three percent (3%), four percent (4%), five percent (5%), six percent (6%), seven percent (7%), eight percent (8%), nine percent (9%), ten percent (10%), etc.
  • the sensing block 504 can transmit one or more signals to a summation unit 512 .
  • the summation unit 512 can take the outputs from the sensing block and transmit a summed signal to a control block 514 .
  • the control block 514 can determine, at decision step 516 , whether the luminance of the lamp needs adjustment. The decision can be at least partially based on the user input, the counter value, the temperature of the lamp, the luminance of the lamp, or a combination thereof. If the luminance does not need adjustment, the method can move to block 518 and the diagnostic tool can be exited and the method can end.
  • the method can move to block 520 .
  • the control block 514 can access a conversion matrix.
  • the conversion matrix can be a look-up table that can include one or more preset registers that can be used to convert the input from the sensing block in order to adjust the luminance of the lamp. For example, a five percent (5%) increase in lamp luminance may require a one-quarter milliAmp (0.25 mA) increase in lamp current. Proceeding to block 522 , the new setting for the lamp luminance can be written in an inverter memory. Thereafter, the diagnostic tool can be exited at block 518 and the method can end.
  • a first plot line 602 indicates that for a lamp operating at a lamp current of approximately six milliAmps (6 mA), luminance can decrease from an initial luminance, L I , approximately one hundred candela per square meters (100 cd/m 2 ) to a predetermined first boost trigger luminance, L BT1 , that is equal to 0.6*L I , e.g., approximately sixty candela per square meters (60 cd/m 2 ) at approximately twelve thousand hours (12 Kh).
  • a second plot line 604 indicates that by boosting the lamp current one-half milliAmp (0.5 mA) to six and one-half milliAmps (6.5 mA), the luminance can be boosted to a first boosted luminance, L B1 , that is 0.9*L I , e.g., approximately ninety candela per square meters (90 cd/m 2 ). Thereafter, the luminance can steadily decrease to a second boost trigger luminance, L BT2 , that is equal to 0.5*L I , e.g., approximately fifty candela per square meters (50 cd/m 2 ) over the next twelve thousand hours (12 Kh) until approximately twenty four thousand hours (24 Kh).
  • a third plot line 606 indicates that at twenty four thousand hours (24 Kh), the luminance can be boosted, once again, to a second boosted luminance, L B2 , that is equal to 0.8*L I , e.g., approximately eighty candela per square meters 80 cd/m 2 ) by increasing the lamp current one-half milliAmp (0.5 mA) to seven milliAmps (7.0 mA). The luminance can then decrease to approximately sixty-five candela per square meters (65 cd/m 2 ) over the next six thousand hours (6 Kh) until approximately thirty thousand hours (30 Kh). Thereafter, thermal limits may prevent the lamp current from being increased to an even higher value.
  • the lamp control system described herein can monitor the luminance, L, of the lamp. As the L decreases from L I , the system can determine when L is equal L BT1 . At approximately L BT1 , the system can automatically boost L to L B1 . The system can automatically boost L to L B1 by boosting the lamp current, C L , from an initial lamp current, C LI , to a first boosted lamp current, C BL1 . Alternatively, a warning can be sent to the user with an indication that the luminance can be boosted by increasing the lamp current and the user can be queried on whether to increase the lamp current.
  • the lamp control system can continue to monitor L.
  • the system can automatically boost L to L B2 .
  • the system can automatically boost L to L B1 by boosting C L from C LBL1 to a second boosted lamp current, C BL2 .
  • a warning can be sent to the user with an indication that the luminance can be boosted by increasing the lamp current and the user can be queried on whether to increase the lamp current.
  • the system and method described herein can be used to control the luminance of a cold cathode fluorescent lamp (CCFL).
  • CCFL cold cathode fluorescent lamp
  • the lamp current can be increased to increase the luminance of the lamp.
  • the user can use the system to increase the lamp current.
  • the user can use the lamp control system to decrease the lamp current.
  • the CCFL ages and dims
  • the user can access a control panel in order to increase the luminance of the CCFL.
  • the system can automatically boost the lamp current in order to boost the luminance of the CCFL.
  • the system and method can be used in conjunction with a laptop computing device, a computer monitor, a television, or another similar device.

Abstract

An information handling system is disclosed and includes a display, a lamp back lighting the display, and a lamp control system coupled to the lamp. The lamp control system is configured to boost a maximum luminance of the lamp as the lamp ages.

Description

    FIELD OF THE DISCLOSURE
  • The present disclosure relates generally to portable computing devices. More specifically, the present disclosure relates to controlling lamp luminance in a laptop computing device.
  • BACKGROUND
  • As the value and use of information continues to increase, individuals and businesses seek additional ways to process and store information. One option available to users is information handling systems. An information handling system generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information. Because technology and information handling needs and requirements vary between different users or applications, information handling systems may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated. The variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications. In addition, information handling systems may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
  • A typical laptop computing device can include a liquid crystal display (LCD) that is backlit by a cold cathode fluorescent lamp (CCFL). A CCFL can have a limited lifetime of approximately fifteen thousand hours (15,000 hrs). This time is based on the time that it takes the brightness, or luminance, of the CCFL to drop from an initial value to fifty percent (50%) of that initial value. The life of the CCFL can be a major factor in the number of laptop computing devices returned to the manufacturer to be replaced under warranty. In fact, approximately thirty-three percent (33%) of returned laptop computing devices are returned due to a dim CCFL.
  • The brightness, or luminance, of the CCFL is directly proportional to the lamp current, i.e., as the lamp current increases, the brightness increases. However, the life of the CCFL is indirectly proportional to the lamp current, as the lamp current increases, the life of the CCFL decreases. A laptop computing device is typically manufactured with a maximum brightness that is based on a factory set lamp current that is optimized between the power consumption and the brightness target. This maximum brightness is not adjustable by the user.
  • Accordingly, there is a need for an improved laptop computing device with a system and method of controlling maximum lamp luminance.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • It will be appreciated that for simplicity and clarity of illustration, elements illustrated in the Figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements are exaggerated relative to other elements. Embodiments incorporating teachings of the present disclosure are shown and described with respect to the drawings presented herein, in which:
  • FIG. 1 is a block diagram of an information handling system;
  • FIG. 2 is a front view of a laptop computing device;
  • FIG. 3 is a rear view of the laptop computing device illustrated in FIG. 2;
  • FIG. 4 is a general diagram illustrating a lamp control system;
  • FIG. 5 is a flow chart illustrating a method of controlling a lamp within a laptop computing device; and
  • FIG. 6 is a graph indicating lamp luminance plotted versus lamp life for three different lamp currents.
  • The use of the same reference symbols in different drawings indicates similar or identical items.
  • DETAILED DESCRIPTION OF DRAWINGS
  • An information handling system is disclosed and includes a display, a lamp back lighting the display, and a lamp control system coupled to the lamp. The lamp control system is configured to boost a maximum luminance of the lamp as the lamp ages.
  • In another embodiment, a method of increasing a maximum luminance of a lamp within an information handling system is disclosed. The method can include receiving a user request to increase a maximum luminance and based on the user request and a temperature of the lamp, selectively increasing a lamp current in order to increase a maximum luminance of the lamp.
  • In yet another embodiment, a method of increasing luminance of a lamp within an information handling system is disclosed. The method comprises monitoring a luminance, L, of the lamp starting at an initial luminance, LI, and increasing L to a first boosted luminance, LB1, when L is equal to a predetermined first luminance boost trigger, LBT1.
  • As indicated above, the following description in combination with the Figures is provided to assist in understanding the teachings disclosed herein. The following discussion will focus on specific implementations and embodiments of the teachings. This focus is provided to assist in describing the teachings and should not be interpreted as a limitation on the scope or applicability of the teachings. For example, much of the following focuses on dynamically changing file types within a distributed file systems. While the teachings may certainly be utilized in this application, the teachings may also be utilized in other applications and with several different types of architectures such as distributed computing architectures, client/server architectures, or middleware server architectures.
  • FIG. 1 illustrates a block diagram of an exemplary embodiment of an information handling system, generally designated at 100. In one form, the information handling system 100 can be a computer system such as a server. As shown in FIG. 1, the information handling system 100 can include a first physical processor 102 coupled to a first host bus 104 and can further include additional processors generally designated as nth physical processor 106 coupled to a second host bus 108. The first physical processor 102 can be coupled to a chipset 110 via the first host bus 104. Further, the nth physical processor 106 can be coupled to the chipset 110 via the second host bus 108. The chipset 110 can support multiple processors and can allow for simultaneous processing of multiple processors and support the exchange of information within information handling system 100 during multiple processing operations.
  • According to one aspect, the chipset 110 can be referred to as a memory hub or a memory controller. For example, the chipset 110 can include a dedicated bus to transfer data between first physical processor 102 and the nth physical processor 106. For example, the chipset 110 including a chipset that can include a memory controller hub and an input/output (I/O) controller hub. As a memory controller hub, the chipset 110 can function to access the first physical processor 102 using first bus 104 and the nth physical processor 106 using the second host bus 108. The chipset 110 can also provide a memory interface for accessing memory 112 using a memory bus 114. In a particular embodiment, the buses 104, 108, and 114 can be individual buses or part of the same bus. The chipset 110 can also provide bus control and can handle transfers between the buses 104, 108, and 114.
  • According to another aspect, the chipset 110 can include an application specific chipset that provides connectivity to various buses, and integrates other system functions. For example, the chipset 110 can be provided using an Intel® Hub Architecture (IHA) chipset that can also include two parts, a Graphics and AGP Memory Controller Hub (GMCH) and an I/O Controller Hub (ICH). For example, an Intel 820E, an 815E chipset, an Intel 975X chipset, an Intel G965 chipset, available from the Intel Corporation of Santa Clara, Calif., or any combination thereof, can provide at least a portion of the chipset 110. The chipset 110 can also be packaged as an application specific integrated circuit (ASIC).
  • In one form, the chipset 110 can be coupled to a video graphics interface 122 using a third bus 124. In one form, the video graphics interface 122 can be a Peripheral Component Interconnect (PCI) Express interface operable to provide content to display within a video display unit 126. Other graphics interfaces may also be used. The video graphics interface 122 can provide a video display output 128 to the video display unit 126. The video display unit 126 can include one or more types of video displays such as a flat panel display (FPD), cathode ray tube display (CRT) or other type of display device.
  • The information handling system 100 can also include an I/O interface 130 that can be connected via an I/O bus 120 to the chipset 110. The I/O interface 130 and I/O bus 120 can include industry standard buses or proprietary buses and respective interfaces or controllers. For example, the I/O bus 120 can also include a PCI bus or a high speed PCI-Express bus. In one embodiment, a PCI bus can be operated at approximately 66 MHz and a PCI-Express bus can be operated at more than one (1) speed (e.g. 2.5 GHz and 5 GHz). PCI buses and PCI-Express buses can be provided to comply with industry standards for connecting and communicating between various PCI-enabled hardware devices. Other buses can also be provided in association with, or independent of, the I/O bus 120 including, but not limited to, industry standard buses or proprietary buses, such as Industry Standard Architecture (ISA), Small Computer Serial Interface (SCSI), Inter-Integrated Circuit (I2C), System Packet Interface (SPI), or Universal Serial buses (USBs).
  • In an alternate embodiment, the chipset 110 can be a chipset employing a Northbridge/Southbridge chipset configuration (not illustrated). For example, a Northbridge portion of the chipset 110 can communicate with the first physical processor 102 and can control interaction with the memory 112, the I/O bus 120 that can be operable as a PCI bus, and activities for the video graphics interface 122. The Northbridge portion can also communicate with the first physical processor 102 using first bus 104 and the second bus 108 coupled to the nth physical processor 106. The chipset 110 can also include a Southbridge portion (not illustrated) of the chipset 110 and can handle I/O functions of the chipset 110. The Southbridge portion can manage the basic forms of I/O such as Universal Serial Bus (USB), serial I/O, audio outputs, Integrated Drive Electronics (IDE), and ISA I/O for the information handling system 100.
  • The information handling system 100 can further include a disk controller 132 coupled to the I/O bus 120, and connected to an I/O interface 130 and one or more internal disk drives such as a hard disk drive (HDD) 134 and an optical disk drive (ODD) 136 such as a Read/Write Compact Disk (R/W CD), a Read/Write Digital Video Disk (R/W DVD), a Read/Write mini-Digital Video Disk (R/W mini-DVD), or other type of optical disk drive.
  • In a particular embodiment, the information handling system 100 can include a laptop computing device. FIG. 2 shows an embodiment of a laptop computing device that is designated 200. As illustrated in FIG. 2, the laptop computing device 200 includes a base 202 and a lid 204 that is coupled to the base by a first hinge 206 and a second hinge 208. In a particular embodiment, a keyboard 210 is incorporated into the base 202 of the laptop computing device 200. Further, a mouse 212 is incorporated into the base 202 of the laptop computing device 200. In an illustrative embodiment, the mouse 212 is a touch pad mouse.
  • As shown in FIG. 2, a display 214 is incorporated into the lid 204 of the laptop computing device 200. In a particular embodiment, the display 214 can be a liquid crystal display (LCD), e.g., a thin film transistor (TFT) LCD. Alternatively, the display 214 can be a plasma display or an organic light emitting diode (OLED) display. In a particular embodiment, the display 214 can be backlit by a cold cathode fluorescent lamp (CCFL). The lamp current of the CCFL can be controlled, as described herein, in order to substantially maximize brightness of the CCFL or maximize the life of the CCFL.
  • In a particular embodiment, a task bar 216 and a plurality of desktop icons 218, 220, 222 can be presented to a user of the laptop computing device 200 via the display 214. Further, a cursor 224 can be presented to the user via the display 214. In a particular embodiment, the task bar 216, the plurality of desktop icons 218, 220, 222, and the cursor 224 are part of a desktop that can be selectively presented to a user. Further, in a particular embodiment, a user can control the curser 224 with the mouse 212 and as such, a user can interact with one or more programs executable by the laptop computing device 200 via the display 214 and the mouse 212.
  • For example, a lamp control panel can be presented to the user via the display 214. The user can use the lamp control panel to change a maximum brightness of the CCFL. The maximum brightness of the CCFL is the maximum brightness that can be achieved by the CCFL during operation of the laptop computing device in which the CCFL is installed. The maximum brightness of the CCFL is based on the life of the CCFL and is based on the lamp current supplied to the CCFL. For a particular lamp current, the maximum brightness of the CCFL will deteriorate as the CCFL ages. In a particular embodiment, the user may decide to increase the maximum brightness of the CCFL for a particular application, e.g., a video game, a photography program, a computer aided drafting (CAD) program, or some other program in which the brightness of the CCFL increases the user experience with the program.
  • In a particular embodiment, the user may decide to increase the maximum brightness of the CCFL when the laptop computing device is operating on alternating current (AC) and decrease the brightness of the CCFL when the laptop computing device is operating on direct current (DC). This may save power and increase a battery operating time of the laptop computing device. Also, after the laptop computing device is out of warranty, the user may decide to increase the then-current maximum brightness of the CCFL if the user has noticed that the CCFL has begun to dim due to aging of the CCFL. Alternatively, the maximum brightness can automatically be increased when the luminance of the CCFL reaches a predetermined minimum value due to aging of the CCFL. The lamp control panel can also indicate to the user a decrease in lamp life due to an increase in brightness of the CCFL or an increase in lamp life due to a decrease in brightness of the CCFL.
  • Referring to FIG. 3, the back of a laptop computing device, such as the laptop computing device 200, is illustrated. FIG. 3 illustrates the back of the base 202 and the back of the lid 204. As shown, the laptop computing device 200 can include a plurality of device connections that are coupled to a processor within the laptop computing device 200. In an illustrative embodiment, the laptop computing device 200 can include a printer connection 302, e.g., an IEEE-1284 connection. Additionally, the laptop computing device 200 can include a first universal serial bus (USB) connection 304 and a second USB connection 306. In a particular embodiment, two USB enabled devices can be coupled to the laptop computing device 200 via the USB connections 304, 306. FIG. 3 further illustrates that the laptop computing device 200 can include a modem connection 308, e.g., an RJ-11 connection. Also, the laptop computing device 200 can include an Ethernet connection 310, e.g., an RJ-45 connection.
  • As shown in FIG. 3, the laptop computing device 200 can further include a headphone connection 312 and a microphone connection 314. Additionally, the laptop computing device 200 can include an S-video connection 316 and an external monitor connection 318. Also, the laptop computing device 200 can include an AC adapter connection 320. In an exemplary, non-limiting embodiment, as depicted in FIG. 3, the various connections 302, 304, 306, 308, 310, 312, 314, 316, 318, 320 can be incorporated into the base 202 of the laptop computing device 200. Further, in an exemplary, non-limiting embodiment, the laptop computing device 200 can include one or more Personal Computer Memory Card International Association (PCMCIA) connections, a compact disk (CD) drive, a digital video disk (DVD) drive, and a battery.
  • FIG. 4 shows a lamp control system, generally designated 400, that can be installed within the laptop computing device 200. In a particular embodiment, the lamp control system 400 can be a cold cathode fluorescent lamp (CCFL) control system. As shown, the lamp control system 400 can include a lamp 402, e.g., a CCFL. A current sensor transformer 404 can be coupled to the lamp 402. Further, a transformer 406 can be coupled to the lamp 402. A transformer drive 408 can be coupled to the transformer 406 and a (pulse width modulator) PWM controller 410 can be connected to the transformer drive 408. Also, a boost controller 412 can be coupled to the PWM controller 410.
  • As shown in FIG. 4, a SmBus controller 414 can be coupled to the boost controller 412. Further, a counter 416, a thermal sensor 418, and a photo sensor 420 can be coupled to the boost controller 412. Also, a memory 422 can be coupled to the boost controller 412. As described below, the lamp control system 400 can be used to control the luminance, or brightness, of the lamp.
  • For example, the boost controller 412 can use the counter 415, the thermal sensor 418, and a photo sensor 420 to monitor the lamp and control the luminance of the lamp. For example, if the photo sensor 420 senses that the lamp has dimmed, a message may be sent to a user asking if the user would like to increase the brightness of the lamp. If so, the lamp current can be adjusted to increase the brightness. Further, if the thermal sensor 418 senses that the lamp is approaching a critical temperature, the user can be sent a warning indicating such a condition. Further, the user can be warned that the brightness of the lamp will be decreased to allow the lamp to cool sufficiently.
  • If the user wishes to have increased brightness, while decreasing lamp life, the user can use the lamp control system 400 to increase the lamp current. Also, if the user wishes to increase the lamp life, while decreasing luminance, the user can use the lamp control system 400 to decrease the lamp current. Additionally, as the lamp ages, the lamp current can be increased to increase the luminance of the lamp. This can be automatic or based on input received from the user. For example, as the lamp ages, the user may notice that the luminance of the lamp has decreased. In a particular embodiment, the user can access a diagnostic tool associated with the lamp, e.g., a lamp control panel. From the lamp control panel, the user can increase the lamp current in order to increase the luminance of the lamp.
  • Referring to FIG. 5, a method of controlling lamp luminance is shown and commences at block 500, when a user runs a service module or accesses a diagnostic tool. At block 502, a sensing block 504 can read a counter. The counter can indicate the number of times the lamp has been powered on and off. In a particular embodiment, the more the lamp is powered on, i.e., fired, the greater the decrease in the life of the lamp. At block 506, the sensing block 504 can check the brightness of the lamp. Also, at block 508, the sensing block 504 can check the temperature of the lamp. In a particular embodiment, the sensing block can be placed near the lamp area to maximize the accuracy of the sensing block, e.g., the accuracy of a photo sensor within a sensing block or a thermal sensor within the sensing block.
  • The sensing block 504 can also receive user input from a user interface block 510. The user input can include a specific request by the user to increase the brightness, or
  • luminance, of the lamp. The request can be a request to increase the luminance by a percentage from the current value, e.g., one percent (1%), two percent (2%), three percent (3%), four percent (4%), five percent (5%), six percent (6%), seven percent (7%), eight percent (8%), nine percent (9%), ten percent (10%), etc. The user input can also include a specific request by the user to decrease the brightness of the lamp. The request can be a request to decrease the luminance by a percentage from the current value, e.g., one percent (1%), two percent (2%), three percent (3%), four percent (4%), five percent (5%), six percent (6%), seven percent (7%), eight percent (8%), nine percent (9%), ten percent (10%), etc. The user input can also include a request by the user to increase the life of the lamp. The request can be a request to increase the life of the lamp by a percentage value over the predetermined life of the lamp, one percent (1%), two percent (2%), three percent (3%), four percent (4%), five percent (5%), six percent (6%), seven percent (7%), eight percent (8%), nine percent (9%), ten percent (10%), etc.
  • The sensing block 504 can transmit one or more signals to a summation unit 512. The summation unit 512 can take the outputs from the sensing block and transmit a summed signal to a control block 514. Based on the signal from the summation unit 512, the control block 514 can determine, at decision step 516, whether the luminance of the lamp needs adjustment. The decision can be at least partially based on the user input, the counter value, the temperature of the lamp, the luminance of the lamp, or a combination thereof. If the luminance does not need adjustment, the method can move to block 518 and the diagnostic tool can be exited and the method can end.
  • Returning to decision step 516, if the luminance of the lamp needs adjustment, based on the signal received from the sensing block 504, via the summation unit 512, the method can move to block 520. At block 520, the control block 514 can access a conversion matrix. The conversion matrix can be a look-up table that can include one or more preset registers that can be used to convert the input from the sensing block in order to adjust the luminance of the lamp. For example, a five percent (5%) increase in lamp luminance may require a one-quarter milliAmp (0.25 mA) increase in lamp current. Proceeding to block 522, the new setting for the lamp luminance can be written in an inverter memory. Thereafter, the diagnostic tool can be exited at block 518 and the method can end.
  • Referring to FIG. 6 a plot of luminance versus kilohours is shown. A first plot line 602 indicates that for a lamp operating at a lamp current of approximately six milliAmps (6 mA), luminance can decrease from an initial luminance, LI, approximately one hundred candela per square meters (100 cd/m2) to a predetermined first boost trigger luminance, LBT1, that is equal to 0.6*LI, e.g., approximately sixty candela per square meters (60 cd/m2) at approximately twelve thousand hours (12 Kh). A second plot line 604 indicates that by boosting the lamp current one-half milliAmp (0.5 mA) to six and one-half milliAmps (6.5 mA), the luminance can be boosted to a first boosted luminance, LB1, that is 0.9*LI, e.g., approximately ninety candela per square meters (90 cd/m2). Thereafter, the luminance can steadily decrease to a second boost trigger luminance, LBT2, that is equal to 0.5*LI, e.g., approximately fifty candela per square meters (50 cd/m2) over the next twelve thousand hours (12 Kh) until approximately twenty four thousand hours (24 Kh).
  • A third plot line 606 indicates that at twenty four thousand hours (24 Kh), the luminance can be boosted, once again, to a second boosted luminance, LB2, that is equal to 0.8*LI, e.g., approximately eighty candela per square meters 80 cd/m2) by increasing the lamp current one-half milliAmp (0.5 mA) to seven milliAmps (7.0 mA). The luminance can then decrease to approximately sixty-five candela per square meters (65 cd/m2) over the next six thousand hours (6 Kh) until approximately thirty thousand hours (30 Kh). Thereafter, thermal limits may prevent the lamp current from being increased to an even higher value.
  • In a particular embodiment, the lamp control system described herein can monitor the luminance, L, of the lamp. As the L decreases from LI, the system can determine when L is equal LBT1. At approximately LBT1, the system can automatically boost L to LB1. The system can automatically boost L to LB1 by boosting the lamp current, CL, from an initial lamp current, CLI, to a first boosted lamp current, CBL1. Alternatively, a warning can be sent to the user with an indication that the luminance can be boosted by increasing the lamp current and the user can be queried on whether to increase the lamp current.
  • Thereafter, the lamp control system can continue to monitor L. At approximately LBT2, the system can automatically boost L to LB2. The system can automatically boost L to LB1 by boosting CL from CLBL1 to a second boosted lamp current, CBL2. Alternatively, a warning can be sent to the user with an indication that the luminance can be boosted by increasing the lamp current and the user can be queried on whether to increase the lamp current.
  • With the configuration of structure described herein, the system and method described herein can be used to control the luminance of a cold cathode fluorescent lamp (CCFL). As the lamp ages, the lamp current can be increased to increase the luminance of the lamp. Additionally, if the user wishes to have increased brightness, while decreasing lamp life, the user can use the system to increase the lamp current. Also, if the user wishes to increase the lamp life, while decreasing luminance, the user can use the lamp control system to decrease the lamp current. As the CCFL ages and dims, the user can access a control panel in order to increase the luminance of the CCFL. Alternatively, the system can automatically boost the lamp current in order to boost the luminance of the CCFL. The system and method can be used in conjunction with a laptop computing device, a computer monitor, a television, or another similar device.
  • The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments that fall within the true spirit and scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.

Claims (20)

1. An information handling system, comprising:
a display;
a lamp back lighting the display; and
a lamp control system coupled to the lamp, wherein the lamp control system is configured to boost a maximum luminance of the lamp as the lamp ages.
2. The information handling system of claim 1, wherein the information handling system comprises a laptop computer.
3. The information handling system of claim 1, wherein the lamp comprises a cold cathode fluorescent lamp (CCFL).
4. The information handling system of claim 1, wherein the display comprises a liquid crystal display.
5. The information handling system of claim 1, wherein the lamp control system is operable to monitor a luminance, L, of the lamp starting at an initial luminance, LI, and wherein when L is equal to a predetermined first luminance boost trigger, LBT1, L is increased to a first boosted luminance, LB1.
6. The laptop computing device of claim 5, wherein when L is equal to a predetermined second luminance boost trigger, LBT2, L is increased to a second boosted luminance, LB2.
7. A method of increasing a maximum luminance of a lamp within an information handling system, the method comprising:
receiving a user request to increase a maximum luminance; and
based on the user request and a temperature of the lamp, selectively increasing a lamp current in order to increase a maximum luminance of the lamp.
8. The method of claim 7, further comprising:
determining an increase of a lamp life base on the decrease the maximum luminance; and
displaying the increasing in lamp life to the user.
9. The method of claim 7, wherein the maximum luminance of the lamp is increased for a particular application each time the application executes within the laptop computing device.
10. The method of claim 9, wherein the application is a video game, a photography program, or a computer aided drafting program.
11. The method of claim 7, further comprising:
receiving a user request to decrease the maximum luminance; and
decreasing lamp current in order to decrease the maximum luminance of the lamp.
12. The method of claim 11, wherein the maximum luminance of the lamp is decreased when the laptop computing device is switched from alternating current to direct current.
13. The method of claim 11, further comprising:
determining an increase of a lamp life base on the decrease the maximum luminance; and
displaying the increasing in lamp life to the user.
14. The method of claim 7, wherein the information handling system comprises a laptop computing device.
15. A method of increasing luminance of a lamp within an information handling system, the method comprising:
monitoring a luminance, L, of the lamp starting at an initial luminance, LI; and
increasing L to a first boosted luminance, LB1, when L is equal to a predetermined first luminance boost trigger, LBT1.
16. The method of claim 15, wherein LBT1 is equal to 0.6*LI and wherein LB1 is equal to 0.9*LI.
17. The method of claim 15, wherein L is increased from LBT1 to LB1 by increasing a lamp current, CL, from an initial lamp current, CLI, to a first boosted lamp current, CBL1.
18. The method of claim 15, further comprising:
increasing L to a second boosted luminance, LB2, when L is equal to a predetermined second luminance boost trigger LBT2.
19. The method of claim 18, wherein LBT2 is equal to 0.5*LI and wherein LB2 is equal to 0.8*LI.
20. The method of claim 18, wherein L is increased from LBT2 to LB2 by increasing a lamp current, CL, from a first boost lamp current, CBL1, to a second boost lamp current, CBL2.
US11/762,106 2007-06-13 2007-06-13 System and method of boosting lamp luminance in a laptop computing device Active 2029-09-05 US8330703B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/762,106 US8330703B2 (en) 2007-06-13 2007-06-13 System and method of boosting lamp luminance in a laptop computing device
US13/674,607 US9524680B2 (en) 2007-06-13 2012-11-12 System and method of boosting lamp luminance in a laptop computing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/762,106 US8330703B2 (en) 2007-06-13 2007-06-13 System and method of boosting lamp luminance in a laptop computing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/674,607 Continuation US9524680B2 (en) 2007-06-13 2012-11-12 System and method of boosting lamp luminance in a laptop computing device

Publications (2)

Publication Number Publication Date
US20080309682A1 true US20080309682A1 (en) 2008-12-18
US8330703B2 US8330703B2 (en) 2012-12-11

Family

ID=40131856

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/762,106 Active 2029-09-05 US8330703B2 (en) 2007-06-13 2007-06-13 System and method of boosting lamp luminance in a laptop computing device
US13/674,607 Active US9524680B2 (en) 2007-06-13 2012-11-12 System and method of boosting lamp luminance in a laptop computing device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/674,607 Active US9524680B2 (en) 2007-06-13 2012-11-12 System and method of boosting lamp luminance in a laptop computing device

Country Status (1)

Country Link
US (2) US8330703B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140176444A1 (en) * 2012-12-20 2014-06-26 Dell Products L.P. Method and system for auto calibration of display using ambient light sensors
US9524680B2 (en) 2007-06-13 2016-12-20 Dell Products, Lp System and method of boosting lamp luminance in a laptop computing device

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786801A (en) * 1996-09-06 1998-07-28 Sony Corporation Back light control apparatus and method for a flat display system
US5896417A (en) * 1996-10-25 1999-04-20 National Semiconductor Corporation Apparatus utilizing current-to-voltage conversion for transmitting data at different data transfer rates especially in applications such as dual-rate ethernet local-area networks
US6157143A (en) * 1999-03-02 2000-12-05 General Electric Company Fluroescent lamps at full front surface luminance for backlighting flat panel displays
US6294883B1 (en) * 2000-09-07 2001-09-25 Visteon Global Technologies, Inc. Method and apparatus for fast heating cold cathode fluorescent lamps
US20030227435A1 (en) * 2002-06-06 2003-12-11 Chang-Fa Hsieh Method for adjusting and detecting brightness of liquid crystal displays
US6690121B1 (en) * 2002-11-20 2004-02-10 Visteon Global Technologies, Inc. High precision luminance control for PWM-driven lamp
US20040207532A1 (en) * 2003-04-18 2004-10-21 Smithson Bradley D. Temperature compensated warning light
US6825828B2 (en) * 2001-02-23 2004-11-30 General Digital Corporation Backlit LCD monitor
US6874892B1 (en) * 2003-11-13 2005-04-05 Hewlett-Packard Development Company, L.P. Color setting monitoring system for a digital projector
US20050088102A1 (en) * 2003-09-23 2005-04-28 Ferguson Bruce R. Optical and temperature feedbacks to control display brightness
US6894441B2 (en) * 2002-08-09 2005-05-17 Benq Corporation Method and apparatus for detecting remaining lamp lifetime
US20050116780A1 (en) * 2003-03-20 2005-06-02 Takashi Endo Oscillator and electronic apparatus using the same
US6988807B2 (en) * 2003-02-07 2006-01-24 Belliveau Richard S Theatrical fog particle protection system for image projection lighting devices
US20060077214A1 (en) * 2004-10-08 2006-04-13 Tatung Co., Ltd. Method and apparatus for adjusting the brightness of a display device
US7030569B2 (en) * 2003-10-16 2006-04-18 Analog Microelectronics, Inc. Direct drive CCFL circuit with controlled start-up mode
US20060092182A1 (en) * 2004-11-04 2006-05-04 Intel Corporation Display brightness adjustment
US20060109234A1 (en) * 2004-11-25 2006-05-25 Lg Philips Lcd Co., Ltd. Apparatus and method for luminance control of liquid crystal display device
US20070018941A1 (en) * 2003-11-03 2007-01-25 Monolithic Power Systems, Inc. Driver for light source having integrated photosensitive elements for driver control

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130491A (en) 1990-09-21 1992-05-01 Nec Corp El backlight maintenance system for portable terminal
US5958058A (en) * 1997-07-18 1999-09-28 Micron Electronics, Inc. User-selectable power management interface with application threshold warnings
JP3556508B2 (en) * 1999-03-15 2004-08-18 オリンパス株式会社 Lamp life meter and endoscope light source device
TWI271692B (en) * 2003-07-26 2007-01-21 Lg Electronics Inc Apparatus and method for controlling brightness level of display
JP3936323B2 (en) * 2003-10-14 2007-06-27 インターナショナル・ビジネス・マシーンズ・コーポレーション Display control apparatus, display control method, display control program, and recording medium
JP4179233B2 (en) * 2004-06-16 2008-11-12 船井電機株式会社 Data reproducing apparatus and control method thereof
US20070159446A1 (en) 2006-01-10 2007-07-12 Taylor Erin L LCD backlight lifetime indicator
US8330703B2 (en) 2007-06-13 2012-12-11 Dell Products, Lp System and method of boosting lamp luminance in a laptop computing device

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786801A (en) * 1996-09-06 1998-07-28 Sony Corporation Back light control apparatus and method for a flat display system
US5896417A (en) * 1996-10-25 1999-04-20 National Semiconductor Corporation Apparatus utilizing current-to-voltage conversion for transmitting data at different data transfer rates especially in applications such as dual-rate ethernet local-area networks
US6157143A (en) * 1999-03-02 2000-12-05 General Electric Company Fluroescent lamps at full front surface luminance for backlighting flat panel displays
US6294883B1 (en) * 2000-09-07 2001-09-25 Visteon Global Technologies, Inc. Method and apparatus for fast heating cold cathode fluorescent lamps
US6825828B2 (en) * 2001-02-23 2004-11-30 General Digital Corporation Backlit LCD monitor
US20030227435A1 (en) * 2002-06-06 2003-12-11 Chang-Fa Hsieh Method for adjusting and detecting brightness of liquid crystal displays
US6894441B2 (en) * 2002-08-09 2005-05-17 Benq Corporation Method and apparatus for detecting remaining lamp lifetime
US6690121B1 (en) * 2002-11-20 2004-02-10 Visteon Global Technologies, Inc. High precision luminance control for PWM-driven lamp
US6988807B2 (en) * 2003-02-07 2006-01-24 Belliveau Richard S Theatrical fog particle protection system for image projection lighting devices
US20050116780A1 (en) * 2003-03-20 2005-06-02 Takashi Endo Oscillator and electronic apparatus using the same
US20040207532A1 (en) * 2003-04-18 2004-10-21 Smithson Bradley D. Temperature compensated warning light
US20050088102A1 (en) * 2003-09-23 2005-04-28 Ferguson Bruce R. Optical and temperature feedbacks to control display brightness
US7391172B2 (en) * 2003-09-23 2008-06-24 Microsemi Corporation Optical and temperature feedbacks to control display brightness
US7030569B2 (en) * 2003-10-16 2006-04-18 Analog Microelectronics, Inc. Direct drive CCFL circuit with controlled start-up mode
US20070018941A1 (en) * 2003-11-03 2007-01-25 Monolithic Power Systems, Inc. Driver for light source having integrated photosensitive elements for driver control
US6874892B1 (en) * 2003-11-13 2005-04-05 Hewlett-Packard Development Company, L.P. Color setting monitoring system for a digital projector
US20060077214A1 (en) * 2004-10-08 2006-04-13 Tatung Co., Ltd. Method and apparatus for adjusting the brightness of a display device
US20060092182A1 (en) * 2004-11-04 2006-05-04 Intel Corporation Display brightness adjustment
US20060109234A1 (en) * 2004-11-25 2006-05-25 Lg Philips Lcd Co., Ltd. Apparatus and method for luminance control of liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9524680B2 (en) 2007-06-13 2016-12-20 Dell Products, Lp System and method of boosting lamp luminance in a laptop computing device
US20140176444A1 (en) * 2012-12-20 2014-06-26 Dell Products L.P. Method and system for auto calibration of display using ambient light sensors
US10013026B2 (en) * 2012-12-20 2018-07-03 Dell Products L.P. Method and system for auto calibration of display using ambient light sensors

Also Published As

Publication number Publication date
US20130063501A1 (en) 2013-03-14
US9524680B2 (en) 2016-12-20
US8330703B2 (en) 2012-12-11

Similar Documents

Publication Publication Date Title
US7602371B2 (en) System and method for portable information handling system integrated backlight control
US10510305B2 (en) Backlight compensation for a computing device with two or more display devices
US20140049527A1 (en) Dynamic backlight control with color temperature compensation
EP1116089B1 (en) Method for power conservation without performance reduction
US7755215B2 (en) Method and circuit to output adaptive drive voltages within information handling systems
US20030146897A1 (en) Method and apparatus to reduce power consumption of a computer system display screen
US9620054B2 (en) Timing controller, organic light-emitting diode (OLED) display having the same and method for driving the OLED display
KR100799803B1 (en) System and Method for Intelligent Information Handling System Projector Cooling Down
US20080100561A1 (en) System and Method for Managing LED Backlight Performance in a Display
US20100117927A1 (en) Dual-Display Computer
EP2533236A1 (en) Information processing apparatus with multiple drawing processing blocks and information processing method
US10317979B2 (en) Mechanism for facilitating power extension service at computing devices by one or more power saving techniques
US5936608A (en) Computer system including display control system
US20090049316A1 (en) System and method of modifying power use within an information handling system
US20100007667A1 (en) Information processing apparatus, information processing method, and program
US9830888B2 (en) Gaze driven display front of screen performance
US20080192140A1 (en) Selective control of display brightness level for fine to coarse control
US9524680B2 (en) System and method of boosting lamp luminance in a laptop computing device
US9520105B2 (en) Power savings for display panels
US20070179723A1 (en) Analyzing and/or displaying power consumption in redundant servers
US20050021722A1 (en) Remote management unit with power control
US20120054502A1 (en) Method to Support Switchable Graphics with One Voltage Regulator
US20060146042A1 (en) Selective addressing capable display
US11586263B2 (en) Information processing apparatus and control method
US20220317756A1 (en) Graphics processing unit (gpu) selection based on a utilized power source

Legal Events

Date Code Title Description
AS Assignment

Owner name: DELL PRODUCTS, LP, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, JAEIK;YASUKAWA, JAMES ALAN;REEL/FRAME:019421/0155;SIGNING DATES FROM 20070608 TO 20070610

Owner name: DELL PRODUCTS, LP, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, JAEIK;YASUKAWA, JAMES ALAN;SIGNING DATES FROM 20070608 TO 20070610;REEL/FRAME:019421/0155

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, TE

Free format text: PATENT SECURITY AGREEMENT (ABL);ASSIGNORS:DELL INC.;APPASSURE SOFTWARE, INC.;ASAP SOFTWARE EXPRESS, INC.;AND OTHERS;REEL/FRAME:031898/0001

Effective date: 20131029

Owner name: BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS FIRST LIEN COLLATERAL AGENT, TEXAS

Free format text: PATENT SECURITY AGREEMENT (NOTES);ASSIGNORS:APPASSURE SOFTWARE, INC.;ASAP SOFTWARE EXPRESS, INC.;BOOMI, INC.;AND OTHERS;REEL/FRAME:031897/0348

Effective date: 20131029

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH CAROLINA

Free format text: PATENT SECURITY AGREEMENT (TERM LOAN);ASSIGNORS:DELL INC.;APPASSURE SOFTWARE, INC.;ASAP SOFTWARE EXPRESS, INC.;AND OTHERS;REEL/FRAME:031899/0261

Effective date: 20131029

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, TEXAS

Free format text: PATENT SECURITY AGREEMENT (ABL);ASSIGNORS:DELL INC.;APPASSURE SOFTWARE, INC.;ASAP SOFTWARE EXPRESS, INC.;AND OTHERS;REEL/FRAME:031898/0001

Effective date: 20131029

Owner name: BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS FI

Free format text: PATENT SECURITY AGREEMENT (NOTES);ASSIGNORS:APPASSURE SOFTWARE, INC.;ASAP SOFTWARE EXPRESS, INC.;BOOMI, INC.;AND OTHERS;REEL/FRAME:031897/0348

Effective date: 20131029

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH

Free format text: PATENT SECURITY AGREEMENT (TERM LOAN);ASSIGNORS:DELL INC.;APPASSURE SOFTWARE, INC.;ASAP SOFTWARE EXPRESS, INC.;AND OTHERS;REEL/FRAME:031899/0261

Effective date: 20131029

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: COMPELLANT TECHNOLOGIES, INC., MINNESOTA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:040065/0216

Effective date: 20160907

Owner name: DELL INC., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:040065/0216

Effective date: 20160907

Owner name: CREDANT TECHNOLOGIES, INC., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:040065/0216

Effective date: 20160907

Owner name: APPASSURE SOFTWARE, INC., VIRGINIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:040065/0216

Effective date: 20160907

Owner name: DELL SOFTWARE INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:040065/0216

Effective date: 20160907

Owner name: SECUREWORKS, INC., GEORGIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:040065/0216

Effective date: 20160907

Owner name: ASAP SOFTWARE EXPRESS, INC., ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:040065/0216

Effective date: 20160907

Owner name: WYSE TECHNOLOGY L.L.C., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:040065/0216

Effective date: 20160907

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:040065/0216

Effective date: 20160907

Owner name: DELL MARKETING L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:040065/0216

Effective date: 20160907

Owner name: FORCE10 NETWORKS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:040065/0216

Effective date: 20160907

Owner name: PEROT SYSTEMS CORPORATION, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:040065/0216

Effective date: 20160907

Owner name: DELL USA L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:040065/0216

Effective date: 20160907

AS Assignment

Owner name: SECUREWORKS, INC., GEORGIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:040040/0001

Effective date: 20160907

Owner name: PEROT SYSTEMS CORPORATION, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:040040/0001

Effective date: 20160907

Owner name: APPASSURE SOFTWARE, INC., VIRGINIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:040040/0001

Effective date: 20160907

Owner name: DELL MARKETING L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:040040/0001

Effective date: 20160907

Owner name: CREDANT TECHNOLOGIES, INC., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:040040/0001

Effective date: 20160907

Owner name: DELL SOFTWARE INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:040040/0001

Effective date: 20160907

Owner name: COMPELLENT TECHNOLOGIES, INC., MINNESOTA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:040040/0001

Effective date: 20160907

Owner name: ASAP SOFTWARE EXPRESS, INC., ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:040040/0001

Effective date: 20160907

Owner name: WYSE TECHNOLOGY L.L.C., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:040040/0001

Effective date: 20160907

Owner name: DELL INC., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:040040/0001

Effective date: 20160907

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:040040/0001

Effective date: 20160907

Owner name: FORCE10 NETWORKS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:040040/0001

Effective date: 20160907

Owner name: DELL USA L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:040040/0001

Effective date: 20160907

Owner name: WYSE TECHNOLOGY L.L.C., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:040065/0618

Effective date: 20160907

Owner name: FORCE10 NETWORKS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:040065/0618

Effective date: 20160907

Owner name: ASAP SOFTWARE EXPRESS, INC., ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:040065/0618

Effective date: 20160907

Owner name: DELL SOFTWARE INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:040065/0618

Effective date: 20160907

Owner name: DELL USA L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:040065/0618

Effective date: 20160907

Owner name: DELL MARKETING L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:040065/0618

Effective date: 20160907

Owner name: CREDANT TECHNOLOGIES, INC., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:040065/0618

Effective date: 20160907

Owner name: SECUREWORKS, INC., GEORGIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:040065/0618

Effective date: 20160907

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:040065/0618

Effective date: 20160907

Owner name: PEROT SYSTEMS CORPORATION, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:040065/0618

Effective date: 20160907

Owner name: DELL INC., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:040065/0618

Effective date: 20160907

Owner name: APPASSURE SOFTWARE, INC., VIRGINIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:040065/0618

Effective date: 20160907

Owner name: COMPELLENT TECHNOLOGIES, INC., MINNESOTA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:040065/0618

Effective date: 20160907

AS Assignment

Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT, NORTH CAROLINA

Free format text: SECURITY AGREEMENT;ASSIGNORS:ASAP SOFTWARE EXPRESS, INC.;AVENTAIL LLC;CREDANT TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040134/0001

Effective date: 20160907

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT, TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNORS:ASAP SOFTWARE EXPRESS, INC.;AVENTAIL LLC;CREDANT TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040136/0001

Effective date: 20160907

Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLAT

Free format text: SECURITY AGREEMENT;ASSIGNORS:ASAP SOFTWARE EXPRESS, INC.;AVENTAIL LLC;CREDANT TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040134/0001

Effective date: 20160907

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., A

Free format text: SECURITY AGREEMENT;ASSIGNORS:ASAP SOFTWARE EXPRESS, INC.;AVENTAIL LLC;CREDANT TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040136/0001

Effective date: 20160907

AS Assignment

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., T

Free format text: SECURITY AGREEMENT;ASSIGNORS:CREDANT TECHNOLOGIES, INC.;DELL INTERNATIONAL L.L.C.;DELL MARKETING L.P.;AND OTHERS;REEL/FRAME:049452/0223

Effective date: 20190320

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNORS:CREDANT TECHNOLOGIES, INC.;DELL INTERNATIONAL L.L.C.;DELL MARKETING L.P.;AND OTHERS;REEL/FRAME:049452/0223

Effective date: 20190320

AS Assignment

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNORS:CREDANT TECHNOLOGIES INC.;DELL INTERNATIONAL L.L.C.;DELL MARKETING L.P.;AND OTHERS;REEL/FRAME:053546/0001

Effective date: 20200409

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

AS Assignment

Owner name: WYSE TECHNOLOGY L.L.C., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: SCALEIO LLC, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: MOZY, INC., WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: MAGINATICS LLC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: FORCE10 NETWORKS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: EMC IP HOLDING COMPANY LLC, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: EMC CORPORATION, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: DELL SYSTEMS CORPORATION, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: DELL SOFTWARE INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: DELL MARKETING L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: DELL INTERNATIONAL, L.L.C., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: DELL USA L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: CREDANT TECHNOLOGIES, INC., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: AVENTAIL LLC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: ASAP SOFTWARE EXPRESS, INC., ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

AS Assignment

Owner name: SCALEIO LLC, MASSACHUSETTS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: EMC IP HOLDING COMPANY LLC (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MOZY, INC.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: EMC CORPORATION (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MAGINATICS LLC), MASSACHUSETTS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO FORCE10 NETWORKS, INC. AND WYSE TECHNOLOGY L.L.C.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: DELL INTERNATIONAL L.L.C., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: DELL USA L.P., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: DELL MARKETING L.P. (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO CREDANT TECHNOLOGIES, INC.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO ASAP SOFTWARE EXPRESS, INC.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

AS Assignment

Owner name: SCALEIO LLC, MASSACHUSETTS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: EMC IP HOLDING COMPANY LLC (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MOZY, INC.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: EMC CORPORATION (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MAGINATICS LLC), MASSACHUSETTS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO FORCE10 NETWORKS, INC. AND WYSE TECHNOLOGY L.L.C.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: DELL INTERNATIONAL L.L.C., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: DELL USA L.P., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: DELL MARKETING L.P. (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO CREDANT TECHNOLOGIES, INC.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO ASAP SOFTWARE EXPRESS, INC.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329