US20090029123A1 - Substrates - Google Patents

Substrates Download PDF

Info

Publication number
US20090029123A1
US20090029123A1 US12/222,964 US22296408A US2009029123A1 US 20090029123 A1 US20090029123 A1 US 20090029123A1 US 22296408 A US22296408 A US 22296408A US 2009029123 A1 US2009029123 A1 US 2009029123A1
Authority
US
United States
Prior art keywords
layer
indicia
substrate
magnetic
security
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/222,964
Inventor
Roland Isherwood
James Snelling
Alan Brown
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9935561&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20090029123(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US12/222,964 priority Critical patent/US20090029123A1/en
Publication of US20090029123A1 publication Critical patent/US20090029123A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/373Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/351Translucent or partly translucent parts, e.g. windows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/324Reliefs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/355Security threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/369Magnetised or magnetisable materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/45Associating two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/45Associating two or more layers
    • B42D25/465Associating two or more layers using chemicals or adhesives
    • B42D25/47Associating two or more layers using chemicals or adhesives using adhesives
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/40Agents facilitating proof of genuineness or preventing fraudulent alteration, e.g. for security paper
    • D21H21/42Ribbons or strips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06187Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with magnetically detectable marking
    • G06K19/06196Constructional details
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/40Agents facilitating proof of genuineness or preventing fraudulent alteration, e.g. for security paper
    • D21H21/44Latent security elements, i.e. detectable or becoming apparent only by use of special verification or tampering devices or methods
    • D21H21/48Elements suited for physical verification, e.g. by irradiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24851Intermediate layer is discontinuous or differential
    • Y10T428/24868Translucent outer layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24851Intermediate layer is discontinuous or differential
    • Y10T428/24868Translucent outer layer
    • Y10T428/24876Intermediate layer contains particulate material [e.g., pigment, etc.]

Definitions

  • the invention relates to improvements in substrates, and in particular to new substrates having magnetic and visual security features which provide security against imitation.
  • EP-A-319157 describes a security element made from a transparent plastic film provided with a continuous reflective metal layer, such as aluminium, which has been vacuumed deposited on the film.
  • the metal layer is partially demetallised to provide clear demetallised regions which form indicia.
  • the security element When wholly embedded within a paper substrate the security element is barely visible in reflected light. However, when viewed in transmitted light the indicia can be clearly seen highlighted against the dark background of the metallised area of the thread and adjacent areas of the paper.
  • Such threads can also be used in a security document provided with repeating windows in at least one surface of the paper substrate at which the security thread is exposed.
  • a security document of this type when viewed in transmitted light, will be seen as a dark line with the indicia highlighted. When viewed in reflected light on the windowed side, the bright shiny aluminium portions are readily visible in the windows.
  • This thread has been highly successful within the market place and is supplied under the trade mark Cleartext®.
  • banknote issuing authorities have had an interest in combining both the public recognition properties of Cleartext with the covert properties of a machine readable feature. To this end it is preferable to utilise machine readable features that can be read using detectors already available to the banknote issuing authorities. Examples of such machine readable devices are described in WO-A-92/11142 and EP-A-773872.
  • the security device of WO-A-92/11142 is an attempt to provide this combination.
  • a security device conforming to this specification has been used commercially with some success.
  • a central region of the security device has a metallic appearance with clear regions forming characters; on either side of this central strip in the width direction, there are layers of magnetic material with obscuring coatings to provide the necessary magnetic component.
  • This is, however, a generally unsatisfactory means of achieving the combination of the appearance of Cleartext with the required magnetic properties.
  • the magnetic properties are satisfactory, but the requirement to place the magnetic layers on either side of a central region means that the latter must be relatively narrow with respect to the overall thread width and results in characters which are small, typically 0.7 mm high, and therefore not easily legible.
  • the structures of the devices described in WO-A-92/11142 are very complex and present substantial lateral registration problems in depositing the various layers; a misregistration of even 0.1 mm or so can allow the presence of the dark magnetic oxide to be apparent to the naked eye, thus revealing its presence and seriously detracting from the aesthetic appearance of the security thread.
  • the disclosed magnetic materials may be nickel, cobalt, iron or alloys thereof with a preferred combination of cobalt:nickel in the ratio 85:15%.
  • the disadvantage of this method is that vacuum deposition of cobalt:nickel to the necessary thickness is a relatively slow process and somewhat wasteful of cobalt, an expensive material. Furthermore, subsequent to this vacuum deposition process, further significant processing is required to etch the characters. The resultant product is therefore relatively expensive.
  • the security device includes a carrier substrate, a metallic layer disposed on the carrier substrate, and a magnetic layer disposed on the metallic layer in substantial registration with at least a portion of the metallic layer, thereby providing both metallic security features and magnetic security features.
  • the metallic layer and the magnetic layer also form graphic or visually identifiable indicia on the carrier substrate to provide a visual security feature.
  • the metallic layer is applied to the carrier substrate, the magnetic layer is applied to the metallic layer, and the layers are etched to form the graphic indicia.
  • the magnetic layer can, in one embodiment, include a magnetic chemical resist that is printed on the metallic layer in the form of the graphic indicia. This method again produces a security device with acceptable visual and magnetic characteristics but again has a high cost with regard to processing and production.
  • the present invention therefore seeks to provide a security substrate that may be slit into security threads for partially or wholly embedding into paper or polymer which has acceptable magnetic and visual characteristics as described above and also greatly simplifies the manufacturing process. Such a simplification produces costs savings for both manufacture and materials as levels of spoil are greatly reduced.
  • the invention therefore provides a security substrate comprising a transparent polymer carrier layer bearing indicia formed from a plurality of opaque and non-opaque regions and a clear transparent magnetic layer supported by the carrier layer containing a distribution of particles of a magnetic flake nickel material of a size and distributed in a concentration at which the magnetic layer remains clear and transparent.
  • counterfeiters are not likely to be aware of the existence of the transparent magnetic features and therefore are less likely to try to include one in any counterfeits, thus making it easier to detect counterfeits.
  • FIGS. 1 , 2 , and 3 are cross-sectional side elevations of a substrate according to the present invention.
  • FIG. 4 is cross-sectional side elevation of an alternative substrate to that shown in FIG. 1 ;
  • FIGS. 5 , 6 , and 7 are cross-sectional side elevations of further alternative embodiments of the substrate of FIG. 1 with an adhesive layer applied, for use in tear tapes;
  • FIGS. 8 and 9 are cross-sectional side elevations of other alternative substrates to that shown in FIG. 1 with an adhesive applied to the demetallised surface, for use as a tamper evident tear tape;
  • FIGS. 10 , 11 , and 12 are cross-sectional side elevations of further alternative substrates to that shown in FIG. 1 incorporating a high reflective index or polymer liquid crystal layer;
  • FIGS. 13 , 14 , and 15 are cross-sectional side elevations of further alternative substrates to that of FIG. 1 , with an HRI or polymer liquid crystal layer, no metallisation and including a print feature;
  • FIGS. 16 , 17 , 18 and 19 are cross-sectional side elevations of further alternative substrates to those shown in FIGS. 13 , 14 and 15 , but with the addition of a demetallised layer;
  • FIGS. 20 , 21 , 22 and 23 are cross-sectional side elevations of an alternative substrate to that shown in FIGS. 16 , 17 , 18 and 19 with the high refractive index or polymer liquid crystal layer replaced by a second clear polymer layer;
  • FIGS. 24 , 25 , 26 and 27 are cross-sectional side elevations of an alternative substrate to that shown in FIG. 20 but with the print features located within the demetallised region;
  • FIGS. 28 to 32 are cross-sectional side elevations of further alternative substrates incorporating optically variable devices
  • FIG. 33 is a cross-sectional side elevation of an alternative substrate to that of FIG. 2 , but with two demetallised layers, one on either side of the transparent magnetic media containing layer;
  • FIGS. 34 and 35 are cross-sectional side elevations of further alternative substrates which are coded.
  • transparent magnetic media comprises a polymeric film in which have been suspended magnetic particles of a flake nickel magnetic material.
  • the particles themselves are not colourless, but the degree of concentration is such as to allow the polymeric film to remain clear and transparent.
  • Various other forms of transparent magnetic media are described in the prior art any of which would be suitable for the present application.
  • the wider the thread the lower the concentration of magnetic particles is required for accurate machine detection, due to the fact that the signal recovery is considerably differentiated from the normal cash processing system noise.
  • FIGS. 1 and 4 illustrate two embodiments of a substrate according to the present invention.
  • the substrate comprises a transparent polymer carrier layer ( 1 ) and a clear transparent, magnetic layer ( 2 ) formed from magnetic particles which are suspended in a varnish which is printed or coated onto the carrier layer ( 1 ).
  • the size and distribution of the particles is controlled so that the thickness of the magnetic layer ( 2 ) is irrelevant.
  • the size of the particles may vary for different materials, examples of which are listed below. Although larger particles of these magnetic materials are lighter than smaller particles, the size must also be selected to enable painting or coating of the varnish containing the particles.
  • the invention requires the use of flake nickel magnetic materials, which have little or no magnetic remanence in the absence of an applied magnetic field, and preferably a coercivity of less than 100 oersteds, and more preferably less than 50 oersteds.
  • Suitable magnetic materials included iron, iron carbonyl, nickel, cobalt and alloys of theses, such a a 50:50 alloy of Fe:Co, Permalloy (tm) (Ni:Fe, Pc) or MuMetal (tm) (Ni:fe), Iron:phosphorus.
  • Suitable materials must have a sufficiently high saturation magnetisation.
  • Flake nickel materials can be used with surprising advantages. These materials have a small coercivity and a highly detectable remanence, and still give a transparent film. As is well known, the thinner and more flake like the particles, the greater the anisotropy and therefore the resulting covercivity and remanence. The remanence is high enough to be detectable on inductive machine read heads, which are the older more well known machines, without the need for the newer magnet-resistive heads.
  • Suitable varnishes include 1462 from Luminescence, VHL 31534 from Sun Chemicals or 31833XSN, 20784XSN and 90838XSN, all from Coates Lorilleux.
  • the carrier layer ( 1 ) may be PET, BOPP or another suitable polymer.
  • the magnetic particles may be incorporated in the polymer layer ( 6 ) itself.
  • the use of a coated polymer layer ( 1 ) or a polymer layer ( 6 ) containing the magnetic particles are interchangeable within all the described embodiments.
  • the substrate is provided with indicia formed from a plurality of opaque and non-opaque regions, which may be metallised, demetallised, printed or provided in another manner.
  • the magnetic layer ( 2 ) may be located below the indicia, over the indicia, or in a full or partial layer which may or may not be in register with the indicia.
  • the transparent magnetic layer ( 2 , 6 ) is preferably vacuum metallised and then selectively demetallised in a known manner to provide the indicia, which are formed by metallised regions ( 3 ) and demetallised regions ( 4 ).
  • the resulting substrate can therefore have both public (overt) and machine readable (covert) features.
  • a further polymer layer ( 5 ) (12 ⁇ m polyester for example) may optionally be laminated to the aforementioned substrate to cover the metallised and demetallised regions ( 3 , 4 ) to improve its durability.
  • the additional polymer layer ( 5 ) may or may not contain magnetic particles depending upon requirements.
  • the thus-formed substrate may then be slit in register to form thin strips suitable for inclusion as security threads into banknotes or other security documents, such as credit, debit and other cards.
  • Typical widths for security threads lie in the range 0.5 mm to 50 mm, and more preferably 1 mm to 10 mm.
  • the use of the substrate of the present invention is not merely limited to use as security threads, but may also be used to provide other security media such as secure tear tapes for brand protection, or a secure substrate for the manufacture of holograms, labels, transfers, hang tags, certificates, bonds, cheques, banknotes and other documents of value.
  • the substrate is particularly suitable for manufacturing plastic banknotes. When utilised as a substrate for such applications, it is envisaged that an opaque ink receptive coating be applied over at least part of the substrate.
  • the secure substrate described above can be further enhanced as will be understood by those skilled in the art.
  • Such enhancements include, but are not limited to, the application of luminescent, thermochromic, and photochromic materials and embossed optically-variable devices. Examples of how this might be achieved are described in EP-A-319157, GB-A-2274428, WO-A-00/54985, and WO-A-00/39391.
  • a clear magnetic layer ( 2 , 6 ) means that the effects of such additional features are not obscured or interfered with by any colouring in the magnetic layer ( 2 , 6 ). With reference to the use of visible pigmentation or dyes, this allows the full spectrum of colours to be exhibited. Known systems using hard magnetics are tinted, often orange or brown, which prevents the use of yellow or other lightly coloured effects. This is particularly pronounced when using luminescent materials.
  • Such a thread may use interspersed magnetic and text regions, or it could incorporate a coded format, such as that described in EP-A-407550 or a fixed length or code or use special thickness or coercivity variants to achieve a code.
  • Fixed length coding is a spatially variant of magnetic print with a repeat length equal for, say, all denominations of a particular currency or security document set. The advantage to this type of coding is that the clocking of the code during read is easily established without the need for clocking bits in the code format.
  • a magnetic layer could be coated onto at least a part of the substrate to provide a magnetic code. Said additional magnetic layer could contain a magnetic material of different coercivity to that of the substrate film.
  • the polymer carrier ( 1 ) is provided by a 12 ⁇ m standard polyester film which is coated at a coat weight of 2 gsm with a varnish ( 2 ) containing 0.1-50%, more preferably 1-30%, by weight of magnetic material.
  • a metallic reflection-enhancing layer such as aluminium, is applied, although other metals such as copper could be used.
  • This metallic layer is printed with a resist layer defining indicia and is then exposed to a caustic etch solution which removes the metal not protected by the resist.
  • the caustic solution is washed away to reveal metallised regions ( 3 ) and demetallised regions ( 4 ), defining indicia.
  • An additional layer ( 5 ) of 12 ⁇ m polyester may then be applied using a layer of adhesive to improve durability of the substrate.
  • the thus formed substrate may then be slit in register to form security threads for inclusion into paper or polymer as described in EP-A-59056 and GB-A-0111452.9 respectively.
  • a further layer of adhesive is preferably applied to one or both sides of the substrate to ensure secure location of the thread within a sheet of paper.
  • further barrier layers are preferably provided on either side of the metallic layer to prevent environmental attack.
  • FIGS. 2 and 3 Potential alternative constructions are shown in FIGS. 2 and 3 .
  • a metallised polymer film e.g. 12 ⁇ m metallised Type S from DuPont is demetallised as described above prior to application of the magnetic varnish layer.
  • FIG. 2 shows the varnish layer applied onto the demetallised surface and
  • FIG. 3 shows the varnish layer applied on the opposite side to the demetallised layer.
  • the varnish 2 may first be applied to the protective layer 5 and this construction laminated to the partially demetallised structure 3 , 4 .
  • a layer of a pressure sensitive or hot melt adhesive ( 7 ) is subsequently applied to either of the polymer layers ( 1 , 5 ) of the substrate of Example 1, and strips of the substrate may be used as a tear tape for secure packaging.
  • FIGS. 6 and 7 show alternative constructions with the varnish layer applied onto the demetallised layer on the opposite side of the demetallised layer.
  • a layer of pressure sensitive or hot melt adhesive ( 7 ) may be applied to the partially metallised surface ( 3 , 4 ) as shown in FIG. 8 .
  • This provides the additional benefit that tapes made from the substrate now show some tamper evident properties. When such a tape is removed from the packaging or substrate the metal region ( 3 ) will be irreversibly removed to clearly illustrate tampering.
  • a suitable pressure sensitive adhesive would be Indatex SE 5219 (applied at between 1 gsm-20 gsm, and more preferably at 8 gsm).
  • FIG. 9 shows an alternative construction with the varnish layer applied to the opposite side of the demetallised layer.
  • the magnetic particles have been included as part of the polymer carrier layer ( 6 ), as shown in FIG. 4 .
  • 0.1-50% by weight of magnetic material would be included in the polyester, which is preferably a 12 ⁇ m film, or more preferably 1-30% by weight of magnetic material.
  • the lower range of loading can be used where more sophisticated detection equipment is available.
  • the polymer can then be further processed as described above.
  • a high refractive index (HRI) layer ( 8 ) such as ZnS or a polymer liquid crystal layer can be applied in addition to the partial metal layer ( 3 , 4 ) as shown in FIG. 5 to provide an iridescent effect in the metallic regions ( 3 ).
  • HRI refractive index
  • a dark or black background layer will need to be located behind any liquid crystal layer to cause the colourshift effect.
  • FIGS. 11 and 12 show alternative constructions where the varnish layer is applied onto the partial metal layer or onto the opposite side to the partial metal layer.
  • opaque inks may be printed in selected regions ( 9 ) onto the transparent magnetic media containing layer ( 2 , 6 ) to form the indicia, as shown in FIGS. 13 to 15 , using any of the traditional print processes such as gravure, flexo, intaglio, litho, thermal transfer, dye diffusion and so forth. Additional security can be achieved using iridescent, luminescent (visible or invisible in daylight), optically variable, liquid crystal, thermochromic or photochromic inks in conjunction with, or as an alternative to, the opaque ink. It is preferable that such inks be applied in selected regions of the substrate so as to overlie or highlight the indicia, or even provide additional indicia. Optionally an HRI or polymer liquid crystal layer ( 8 ) may be provided.
  • the inks described above may also be applied in selected regions ( 9 ) in addition to demetallised indicia to further enhance security as shown in FIGS. 16 to 19 with the HRI or polymer liquid crystal layer ( 8 ) applied thereover, or with a second polymer layer ( 5 ) as shown in FIGS. 20 to 23 .
  • the printed regions ( 9 ) are located within the demetallised regions 4 , but not wholly filling them.
  • an optically variable device such as a hologram, Kinegram or Exelgram.
  • an additional embossing lacquer ( 10 ) is applied on to the substrate and embossed to provide an embossed surface ( 11 ).
  • the reflection enhancing layer used to form the partially metallised layer 3 , 4 may be metal, as shown in FIGS. 28 to 31 .
  • FIGS. 28 to 31 show alternative constructions for the optically variable device utilising a metallic reflection-enhancing layer for the partially metallised layer 3 , 4 .
  • FIG. 32 illustrates an alternative construction whereby the coated film ( 1 , 2 ) is metallised and, selectively demetallised.
  • An embossing lacquer ( 10 ) is applied, which is then embossed.
  • An optional protective polymer layer(s) is applied to the embossed surface ( 11 ).
  • the substrate has two partially metallised layers ( 3 , 4 ). This is achieved by partially demetallising the first carrier layer ( 1 ) and, in a separate process, partially demetallising a second additional carrier layer ( 5 ).
  • the magnetic material containing varnish ( 2 ) is applied to the partially metallised surface ( 3 , 4 ) of the first layer ( 1 ) and a laminating adhesive ( 12 ) applied to enable the second layer ( 5 ) with its demetallised surface ( 3 , 4 ) to be adhered to the first layer ( 1 ).
  • an additional magnetic layer ( 10 ) is applied to the transparent magnetic media containing layer ( 2 ).
  • the additional magnetic layer ( 10 ) is preferably discontinuous and also transparent, but incorporates a material of differing coercivity to that of layer ( 2 ).
  • a non-transparent magnetic material may be used in layer 10 .
  • the additional layer ( 10 ) may also comprise several different magnetic materials printed sequentially to define a code, either abutting or overlapping to form a continuous layer.
  • FIG. 35 This is a further example of a coded substrate, as illustrated in FIG. 35 , in which the magnetic material containing varnish ( 2 ) is applied in a discontinuous manner to define a code.
  • the code may be printed with several materials having different coercivities. In this example the need for an additional magnetic layer as described in Example 12 is removed. However, as with the previous examples, where using materials of differing coercivities, these can be printed in sequence either abutting or overlapping to form a continuous layer. In this Example numeral ( 13 ) denotes an uncoated magnetic region. In an alternative embodiment, the code does not need to be in register with the indicia.
  • the demetallised construction consisting of the carrier layer ( 1 ) and partially metallised surface ( 3 , 4 ) can be formed separately from the transparent magnetic construction comprising the protective layer ( 5 ) with the magnetic material containing varnish ( 2 ) and then laminated together using a suitable adhesive.

Abstract

The invention relates to improvements in substrates and in particular to new substrates having magnetic and visual security features, which provide security against imitation. A security substrate comprising a transparent polymer carrier layer bearing indicia formed from a plurality of opaque and non-opaque regions and a clear and transparent magnetic layer supported by the carrier layer containing a distribution of particles of a soft magnetic material of a size and distributed in a concentration at which the magnetic layer remains clear and transparent.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to improvements in substrates, and in particular to new substrates having magnetic and visual security features which provide security against imitation.
  • 2. The Prior Art
  • It is widely known to use in banknotes and other security documents security elements, such as security threads or strips. These threads are partially or wholly embedded in a paper or plastic substrate, and generally provide different viewing conditions depending on whether the security document is viewed in transmitted or reflected light.
  • EP-A-319157, for example, describes a security element made from a transparent plastic film provided with a continuous reflective metal layer, such as aluminium, which has been vacuumed deposited on the film. The metal layer is partially demetallised to provide clear demetallised regions which form indicia. When wholly embedded within a paper substrate the security element is barely visible in reflected light. However, when viewed in transmitted light the indicia can be clearly seen highlighted against the dark background of the metallised area of the thread and adjacent areas of the paper. Such threads can also be used in a security document provided with repeating windows in at least one surface of the paper substrate at which the security thread is exposed. A security document of this type, when viewed in transmitted light, will be seen as a dark line with the indicia highlighted. When viewed in reflected light on the windowed side, the bright shiny aluminium portions are readily visible in the windows. This thread has been highly successful within the market place and is supplied under the trade mark Cleartext®.
  • For a number of years banknote issuing authorities have had an interest in combining both the public recognition properties of Cleartext with the covert properties of a machine readable feature. To this end it is preferable to utilise machine readable features that can be read using detectors already available to the banknote issuing authorities. Examples of such machine readable devices are described in WO-A-92/11142 and EP-A-773872.
  • The security device of WO-A-92/11142 is an attempt to provide this combination. A security device conforming to this specification has been used commercially with some success. A central region of the security device has a metallic appearance with clear regions forming characters; on either side of this central strip in the width direction, there are layers of magnetic material with obscuring coatings to provide the necessary magnetic component. This is, however, a generally unsatisfactory means of achieving the combination of the appearance of Cleartext with the required magnetic properties. The magnetic properties are satisfactory, but the requirement to place the magnetic layers on either side of a central region means that the latter must be relatively narrow with respect to the overall thread width and results in characters which are small, typically 0.7 mm high, and therefore not easily legible. Additionally, the structures of the devices described in WO-A-92/11142 are very complex and present substantial lateral registration problems in depositing the various layers; a misregistration of even 0.1 mm or so can allow the presence of the dark magnetic oxide to be apparent to the naked eye, thus revealing its presence and seriously detracting from the aesthetic appearance of the security thread.
  • A more satisfactory solution, from the processibility, ease of character recognition and aesthetics points of view, would be to manufacture a device of the kind described in EP-A-0319157 from a metal which is itself magnetic such that the size of the characters and ratio of character height:thread width of the Cleartext® product is maintained, whilst providing direct compatibility with existing magnetic thread detectors. One means of achieving this is disclosed in Research Disclosure No. 323 of March 1991. In this Research Disclosure, a magnetic material is deposited onto a flexible substrate by vacuum sputtering or other known techniques; the non-metallised regions are created by selective printing of a resist layer and subsequent chemical etching. The disclosed magnetic materials may be nickel, cobalt, iron or alloys thereof with a preferred combination of cobalt:nickel in the ratio 85:15%. The disadvantage of this method is that vacuum deposition of cobalt:nickel to the necessary thickness is a relatively slow process and somewhat wasteful of cobalt, an expensive material. Furthermore, subsequent to this vacuum deposition process, further significant processing is required to etch the characters. The resultant product is therefore relatively expensive.
  • A further alternative approach is described in EP-A-773872 wherein a magnetic metal is deposited on a film of polymeric substrate as the substrate passes through a solution containing the magnetic metal, and a preparatory operation is carried out on a surface of the substrate prior to immersion of the substrate in the solution. The preparatory operation ensures that magnetic metal is deposited on the substrate in a chosen pattern such that when the security product is produced from the film by cutting the film, the magnetic metal on the security thread has a specific pattern and provides both a visual discernible security feature and a magnetically detectable security feature. This method produces a security thread with satisfactory visual and machine readable characteristics but the manufacture is not straight forward and is costly.
  • One further approach is detailed in WO-A-9928852. Here the security device includes a carrier substrate, a metallic layer disposed on the carrier substrate, and a magnetic layer disposed on the metallic layer in substantial registration with at least a portion of the metallic layer, thereby providing both metallic security features and magnetic security features. The metallic layer and the magnetic layer also form graphic or visually identifiable indicia on the carrier substrate to provide a visual security feature. According to one method, the metallic layer is applied to the carrier substrate, the magnetic layer is applied to the metallic layer, and the layers are etched to form the graphic indicia. The magnetic layer can, in one embodiment, include a magnetic chemical resist that is printed on the metallic layer in the form of the graphic indicia. This method again produces a security device with acceptable visual and magnetic characteristics but again has a high cost with regard to processing and production.
  • The present invention therefore seeks to provide a security substrate that may be slit into security threads for partially or wholly embedding into paper or polymer which has acceptable magnetic and visual characteristics as described above and also greatly simplifies the manufacturing process. Such a simplification produces costs savings for both manufacture and materials as levels of spoil are greatly reduced.
  • SUMMARY OF THE INVENTION
  • The invention therefore provides a security substrate comprising a transparent polymer carrier layer bearing indicia formed from a plurality of opaque and non-opaque regions and a clear transparent magnetic layer supported by the carrier layer containing a distribution of particles of a magnetic flake nickel material of a size and distributed in a concentration at which the magnetic layer remains clear and transparent.
  • The advantage of using a clear magnetic layer means that this type of magnetic feature can be incorporated into existing designs of security elements (threads) without affecting their visual appearance. This avoids the need to retrain the public and other handlers in recognition of the security features of security documents incorporating such elements. It thus allows for a seamless introduction of a magnetic feature, without the need to withdraw existing security documents. Both variations, with and without the magnetic feature, can be used side by side without confusion occurring.
  • Additionally, counterfeiters are not likely to be aware of the existence of the transparent magnetic features and therefore are less likely to try to include one in any counterfeits, thus making it easier to detect counterfeits.
  • A preferred embodiment of the present invention will now be described by way of example only, with reference to the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1, 2, and 3 are cross-sectional side elevations of a substrate according to the present invention;
  • FIG. 4 is cross-sectional side elevation of an alternative substrate to that shown in FIG. 1;
  • FIGS. 5, 6, and 7 are cross-sectional side elevations of further alternative embodiments of the substrate of FIG. 1 with an adhesive layer applied, for use in tear tapes;
  • FIGS. 8 and 9 are cross-sectional side elevations of other alternative substrates to that shown in FIG. 1 with an adhesive applied to the demetallised surface, for use as a tamper evident tear tape;
  • FIGS. 10, 11, and 12 are cross-sectional side elevations of further alternative substrates to that shown in FIG. 1 incorporating a high reflective index or polymer liquid crystal layer;
  • FIGS. 13, 14, and 15 are cross-sectional side elevations of further alternative substrates to that of FIG. 1, with an HRI or polymer liquid crystal layer, no metallisation and including a print feature;
  • FIGS. 16, 17, 18 and 19 are cross-sectional side elevations of further alternative substrates to those shown in FIGS. 13, 14 and 15, but with the addition of a demetallised layer;
  • FIGS. 20, 21, 22 and 23 are cross-sectional side elevations of an alternative substrate to that shown in FIGS. 16, 17, 18 and 19 with the high refractive index or polymer liquid crystal layer replaced by a second clear polymer layer;
  • FIGS. 24, 25, 26 and 27 are cross-sectional side elevations of an alternative substrate to that shown in FIG. 20 but with the print features located within the demetallised region;
  • FIGS. 28 to 32 are cross-sectional side elevations of further alternative substrates incorporating optically variable devices;
  • FIG. 33 is a cross-sectional side elevation of an alternative substrate to that of FIG. 2, but with two demetallised layers, one on either side of the transparent magnetic media containing layer; and
  • FIGS. 34 and 35 are cross-sectional side elevations of further alternative substrates which are coded.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention makes use of transparent magnetic materials that are now available from a number of suppliers. In the most basic form such transparent magnetic media comprises a polymeric film in which have been suspended magnetic particles of a flake nickel magnetic material. The particles themselves are not colourless, but the degree of concentration is such as to allow the polymeric film to remain clear and transparent. Various other forms of transparent magnetic media are described in the prior art any of which would be suitable for the present application. In particular, the wider the thread, the lower the concentration of magnetic particles is required for accurate machine detection, due to the fact that the signal recovery is considerably differentiated from the normal cash processing system noise.
  • FIGS. 1 and 4 illustrate two embodiments of a substrate according to the present invention. In FIG. 1 the substrate comprises a transparent polymer carrier layer (1) and a clear transparent, magnetic layer (2) formed from magnetic particles which are suspended in a varnish which is printed or coated onto the carrier layer (1). The size and distribution of the particles is controlled so that the thickness of the magnetic layer (2) is irrelevant. The size of the particles may vary for different materials, examples of which are listed below. Although larger particles of these magnetic materials are lighter than smaller particles, the size must also be selected to enable painting or coating of the varnish containing the particles.
  • The invention requires the use of flake nickel magnetic materials, which have little or no magnetic remanence in the absence of an applied magnetic field, and preferably a coercivity of less than 100 oersteds, and more preferably less than 50 oersteds.
  • Suitable magnetic materials included iron, iron carbonyl, nickel, cobalt and alloys of theses, such a a 50:50 alloy of Fe:Co, Permalloy (tm) (Ni:Fe, Pc) or MuMetal (tm) (Ni:fe), Iron:phosphorus. Suitable materials must have a sufficiently high saturation magnetisation. Flake nickel materials can be used with surprising advantages. These materials have a small coercivity and a highly detectable remanence, and still give a transparent film. As is well known, the thinner and more flake like the particles, the greater the anisotropy and therefore the resulting covercivity and remanence. The remanence is high enough to be detectable on inductive machine read heads, which are the older more well known machines, without the need for the newer magnet-resistive heads.
  • Suitable varnishes include 1462 from Luminescence, VHL 31534 from Sun Chemicals or 31833XSN, 20784XSN and 90838XSN, all from Coates Lorilleux. The carrier layer (1) may be PET, BOPP or another suitable polymer.
  • Alternatively, as shown in FIG. 4, the magnetic particles may be incorporated in the polymer layer (6) itself. From herein it should be appreciated that the use of a coated polymer layer (1) or a polymer layer (6) containing the magnetic particles are interchangeable within all the described embodiments.
  • The substrate is provided with indicia formed from a plurality of opaque and non-opaque regions, which may be metallised, demetallised, printed or provided in another manner. The magnetic layer (2) may be located below the indicia, over the indicia, or in a full or partial layer which may or may not be in register with the indicia.
  • The transparent magnetic layer (2, 6) is preferably vacuum metallised and then selectively demetallised in a known manner to provide the indicia, which are formed by metallised regions (3) and demetallised regions (4).
  • It should be noted that any magnetic print feature/code used in conjunction with demetallisation does not need to be registered therewith.
  • The resulting substrate can therefore have both public (overt) and machine readable (covert) features.
  • A further polymer layer (5) (12 μm polyester for example) may optionally be laminated to the aforementioned substrate to cover the metallised and demetallised regions (3, 4) to improve its durability. The additional polymer layer (5) may or may not contain magnetic particles depending upon requirements.
  • The thus-formed substrate may then be slit in register to form thin strips suitable for inclusion as security threads into banknotes or other security documents, such as credit, debit and other cards. Typical widths for security threads lie in the range 0.5 mm to 50 mm, and more preferably 1 mm to 10 mm. The use of the substrate of the present invention is not merely limited to use as security threads, but may also be used to provide other security media such as secure tear tapes for brand protection, or a secure substrate for the manufacture of holograms, labels, transfers, hang tags, certificates, bonds, cheques, banknotes and other documents of value. In particular the substrate is particularly suitable for manufacturing plastic banknotes. When utilised as a substrate for such applications, it is envisaged that an opaque ink receptive coating be applied over at least part of the substrate.
  • The secure substrate described above can be further enhanced as will be understood by those skilled in the art. Such enhancements include, but are not limited to, the application of luminescent, thermochromic, and photochromic materials and embossed optically-variable devices. Examples of how this might be achieved are described in EP-A-319157, GB-A-2274428, WO-A-00/54985, and WO-A-00/39391.
  • The use of a clear magnetic layer (2, 6) means that the effects of such additional features are not obscured or interfered with by any colouring in the magnetic layer (2, 6). With reference to the use of visible pigmentation or dyes, this allows the full spectrum of colours to be exhibited. Known systems using hard magnetics are tinted, often orange or brown, which prevents the use of yellow or other lightly coloured effects. This is particularly pronounced when using luminescent materials.
  • It would also be possible to use the invention to provide a coded security thread. Such a thread may use interspersed magnetic and text regions, or it could incorporate a coded format, such as that described in EP-A-407550 or a fixed length or code or use special thickness or coercivity variants to achieve a code. Fixed length coding is a spatially variant of magnetic print with a repeat length equal for, say, all denominations of a particular currency or security document set. The advantage to this type of coding is that the clocking of the code during read is easily established without the need for clocking bits in the code format. Additionally, a magnetic layer could be coated onto at least a part of the substrate to provide a magnetic code. Said additional magnetic layer could contain a magnetic material of different coercivity to that of the substrate film.
  • The invention will now be described in more detail by reference to the following examples.
  • EXAMPLE 1
  • In a first example, as shown in FIG. 1, the polymer carrier (1) is provided by a 12 μm standard polyester film which is coated at a coat weight of 2 gsm with a varnish (2) containing 0.1-50%, more preferably 1-30%, by weight of magnetic material. The lower range of loading can be used where more sophisticated detection equipment is available. Onto this carrier (1) a metallic reflection-enhancing layer, such as aluminium, is applied, although other metals such as copper could be used. This metallic layer is printed with a resist layer defining indicia and is then exposed to a caustic etch solution which removes the metal not protected by the resist. The caustic solution is washed away to reveal metallised regions (3) and demetallised regions (4), defining indicia. Alternatively any of the known methods for demetallisation could be used. An additional layer (5) of 12 μm polyester may then be applied using a layer of adhesive to improve durability of the substrate. The thus formed substrate may then be slit in register to form security threads for inclusion into paper or polymer as described in EP-A-59056 and GB-A-0111452.9 respectively. Where the substrate is used to form security threads a further layer of adhesive is preferably applied to one or both sides of the substrate to ensure secure location of the thread within a sheet of paper. In this, and other examples, further barrier layers are preferably provided on either side of the metallic layer to prevent environmental attack.
  • Potential alternative constructions are shown in FIGS. 2 and 3. In both these examples a metallised polymer film e.g. 12 μm metallised Type S from DuPont is demetallised as described above prior to application of the magnetic varnish layer. FIG. 2 shows the varnish layer applied onto the demetallised surface and FIG. 3 shows the varnish layer applied on the opposite side to the demetallised layer.
  • Alternatively, the varnish 2 may first be applied to the protective layer 5 and this construction laminated to the partially demetallised structure 3, 4.
  • EXAMPLE 2
  • In a second example, as shown in FIG. 5, a layer of a pressure sensitive or hot melt adhesive (7) is subsequently applied to either of the polymer layers (1, 5) of the substrate of Example 1, and strips of the substrate may be used as a tear tape for secure packaging.
  • FIGS. 6 and 7 show alternative constructions with the varnish layer applied onto the demetallised layer on the opposite side of the demetallised layer.
  • EXAMPLE 3
  • As a further alternative a layer of pressure sensitive or hot melt adhesive (7) may be applied to the partially metallised surface (3, 4) as shown in FIG. 8. This provides the additional benefit that tapes made from the substrate now show some tamper evident properties. When such a tape is removed from the packaging or substrate the metal region (3) will be irreversibly removed to clearly illustrate tampering. A suitable pressure sensitive adhesive would be Indatex SE 5219 (applied at between 1 gsm-20 gsm, and more preferably at 8 gsm).
  • FIG. 9 shows an alternative construction with the varnish layer applied to the opposite side of the demetallised layer.
  • EXAMPLE 4
  • In this example the magnetic particles have been included as part of the polymer carrier layer (6), as shown in FIG. 4. In a typical example, 0.1-50% by weight of magnetic material would be included in the polyester, which is preferably a 12 μm film, or more preferably 1-30% by weight of magnetic material. The lower range of loading can be used where more sophisticated detection equipment is available. The polymer can then be further processed as described above.
  • EXAMPLE 5
  • As an alternative a high refractive index (HRI) layer (8) such as ZnS or a polymer liquid crystal layer can be applied in addition to the partial metal layer (3, 4) as shown in FIG. 5 to provide an iridescent effect in the metallic regions (3). However, a dark or black background layer will need to be located behind any liquid crystal layer to cause the colourshift effect.
  • FIGS. 11 and 12 show alternative constructions where the varnish layer is applied onto the partial metal layer or onto the opposite side to the partial metal layer.
  • EXAMPLE 6
  • If no metal layer is present, opaque inks may be printed in selected regions (9) onto the transparent magnetic media containing layer (2, 6) to form the indicia, as shown in FIGS. 13 to 15, using any of the traditional print processes such as gravure, flexo, intaglio, litho, thermal transfer, dye diffusion and so forth. Additional security can be achieved using iridescent, luminescent (visible or invisible in daylight), optically variable, liquid crystal, thermochromic or photochromic inks in conjunction with, or as an alternative to, the opaque ink. It is preferable that such inks be applied in selected regions of the substrate so as to overlie or highlight the indicia, or even provide additional indicia. Optionally an HRI or polymer liquid crystal layer (8) may be provided.
  • EXAMPLE 7
  • The inks described above may also be applied in selected regions (9) in addition to demetallised indicia to further enhance security as shown in FIGS. 16 to 19 with the HRI or polymer liquid crystal layer (8) applied thereover, or with a second polymer layer (5) as shown in FIGS. 20 to 23.
  • EXAMPLE 8
  • In this example, as shown in FIGS. 24 to 27 the printed regions (9) are located within the demetallised regions 4, but not wholly filling them.
  • EXAMPLE 9
  • It is also possible to produce a variant of the invention incorporating an optically variable device such as a hologram, Kinegram or Exelgram. Here an additional embossing lacquer (10) is applied on to the substrate and embossed to provide an embossed surface (11). The reflection enhancing layer used to form the partially metallised layer 3, 4 may be metal, as shown in FIGS. 28 to 31.
  • FIGS. 28 to 31 show alternative constructions for the optically variable device utilising a metallic reflection-enhancing layer for the partially metallised layer 3, 4.
  • EXAMPLE 10
  • FIG. 32 illustrates an alternative construction whereby the coated film (1, 2) is metallised and, selectively demetallised. An embossing lacquer (10) is applied, which is then embossed. An optional protective polymer layer(s) is applied to the embossed surface (11).
  • EXAMPLE 11
  • In this example, as illustrated in FIG. 33, the substrate has two partially metallised layers (3, 4). This is achieved by partially demetallising the first carrier layer (1) and, in a separate process, partially demetallising a second additional carrier layer (5). The magnetic material containing varnish (2) is applied to the partially metallised surface (3, 4) of the first layer (1) and a laminating adhesive (12) applied to enable the second layer (5) with its demetallised surface (3, 4) to be adhered to the first layer (1).
  • EXAMPLE 12
  • This is an example of a coded thread as mentioned previously and as illustrated in FIG. 34. In this example an additional magnetic layer (10) is applied to the transparent magnetic media containing layer (2). The additional magnetic layer (10) is preferably discontinuous and also transparent, but incorporates a material of differing coercivity to that of layer (2). Although it is preferred that the layer (10) is transparent, a non-transparent magnetic material may be used in layer 10. The additional layer (10) may also comprise several different magnetic materials printed sequentially to define a code, either abutting or overlapping to form a continuous layer.
  • EXAMPLE 13
  • This is a further example of a coded substrate, as illustrated in FIG. 35, in which the magnetic material containing varnish (2) is applied in a discontinuous manner to define a code. The code may be printed with several materials having different coercivities. In this example the need for an additional magnetic layer as described in Example 12 is removed. However, as with the previous examples, where using materials of differing coercivities, these can be printed in sequence either abutting or overlapping to form a continuous layer. In this Example numeral (13) denotes an uncoated magnetic region. In an alternative embodiment, the code does not need to be in register with the indicia.
  • In all the aforementioned examples it should be noted that, as mentioned in conjunction with Example 12, the demetallised construction consisting of the carrier layer (1) and partially metallised surface (3, 4) can be formed separately from the transparent magnetic construction comprising the protective layer (5) with the magnetic material containing varnish (2) and then laminated together using a suitable adhesive.

Claims (23)

1. A security substrate comprising a transparent polymer carrier layer supporting indicia, said indicia comprising a plurality of opaque and non opaque regions, and a clear transparent magnetic layer supported by the carrier layer, said magnetic layer comprising a distribution of a flake nickel magnetic material having a low coercivity of less than 100 oersteds and a remanence of a level detectable on an inductive machine read head, and of a size and distributed in a concentration at which the magnetic layer remains clear and transparent.
2. A security substrate as claimed in claim 1 in which the transparent magnetic layer comprises a varnish in which are suspended the magnetic particles.
3. A security substrate as claimed in claim 1 in which the transparent magnetic layer lies between the carrier layer and the indicia.
4. A security substrate as claimed in claim 1 in which the indicia are formed on the carrier layer and the transparent magnetic layer covers the indicia.
5. A security substrate comprising a clear transparent polymer carrier layer supporting indicia, said indicia comprising a plurality of opaque and non opaque regions, which carrier layer contains a distribution of particles of a soft magnetic material having little or no magnetic remanence in the absence of an applied magnetic field, and of a size and distributed in a concentration at which the carrier layer remains clear and transparent.
6. A security substrate as claimed in claim 1 or claim 5 further comprising an additional layer of a transparent polymer laminated to the magnetic layer and/or indicia.
7. A security substrate as claimed in claim 1 or claim 5 further comprising a layer of adhesive applied to at least one side of the substrate.
8. A security substrate as claimed in claim 1 or claim 5 in which a layer of adhesive overlies the indicia.
9. A security substrate as claimed in claim 1 or claim 5 further comprising a layer of high refractive index material, directly or indirectly overlying the indicia.
10. A security substrate as claimed in claim 1 or claim 5 in which the indicia comprise a partially demetallised a metal layer, with metal forming the opaque regions and the demetallised regions forming the non opaque regions.
11. A security substrate as claimed in claim 1 or claim 5 in which the indicia are printed.
12. A security substrate as claimed in claim 1 or claim 5 further including additional printed regions comprising one or more inks having iridescent, luminescent, optically variable, liquid crystal, thermochromic and/or photochromic properties.
13. A security substrate as claimed in claim 1 or claim 5 comprising first indicia provided by demetallised and metallised regions and second indicia which are printed indicia.
14. A security substrate as claimed in claim 13 in which the second indicia overlie at least some of the metallic regions.
15. A security substrate as claimed in claim 13 in which the second indicia lie within the demetallised regions.
16. A security substrate as claimed in claim 1 or claim 5 further comprising an optically variable device.
17. A security substrate as claimed in claim 16 in which the optically variable device is formed by embossing a layer of embossing lacquer.
18. A security substrate as claimed in claim 16 in which the embossing lacquer lies between the magnetic layer and the indicia.
19. (canceled)
20. A security substrate as claimed in claim 17 wherein the embossing layer overlies the indicia.
21. An elongate security element made by the step of slitting the substrate as claimed in claim 1 or claim 5 in register with the indicia.
22. A security document comprising a paper or polymer substrate incorporating a security thread as claimed in claim 21.
23. A security substrate as claimed in claim 1, wherein the coercivity is less than 50 oersteds.
US12/222,964 2002-04-25 2008-08-20 Substrates Abandoned US20090029123A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/222,964 US20090029123A1 (en) 2002-04-25 2008-08-20 Substrates

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GBGB0209564.4A GB0209564D0 (en) 2002-04-25 2002-04-25 Improvements in substrates
GB0209564.4 2002-04-25
PCT/GB2003/001678 WO2003091952A2 (en) 2002-04-25 2003-04-24 Transparent security substrate with magnetic paricles
US10/511,721 US20050238851A1 (en) 2002-04-25 2003-04-24 Substrates
US12/222,964 US20090029123A1 (en) 2002-04-25 2008-08-20 Substrates

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10/511,721 Continuation US20050238851A1 (en) 2002-04-25 2003-04-24 Substrates
PCT/GB2003/001678 Continuation WO2003091952A2 (en) 2002-04-25 2003-04-24 Transparent security substrate with magnetic paricles

Publications (1)

Publication Number Publication Date
US20090029123A1 true US20090029123A1 (en) 2009-01-29

Family

ID=9935561

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/511,721 Abandoned US20050238851A1 (en) 2002-04-25 2003-04-24 Substrates
US10/512,055 Abandoned US20050116464A1 (en) 2002-04-25 2003-04-24 Substrates
US12/222,839 Expired - Fee Related US9483719B2 (en) 2002-04-25 2008-08-18 Security substrate comprising a magnetic layer and opaque and non-opaque regions
US12/222,964 Abandoned US20090029123A1 (en) 2002-04-25 2008-08-20 Substrates

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10/511,721 Abandoned US20050238851A1 (en) 2002-04-25 2003-04-24 Substrates
US10/512,055 Abandoned US20050116464A1 (en) 2002-04-25 2003-04-24 Substrates
US12/222,839 Expired - Fee Related US9483719B2 (en) 2002-04-25 2008-08-18 Security substrate comprising a magnetic layer and opaque and non-opaque regions

Country Status (8)

Country Link
US (4) US20050238851A1 (en)
EP (2) EP1497141B1 (en)
AT (1) ATE526173T1 (en)
AU (2) AU2003229935A1 (en)
ES (1) ES2369886T3 (en)
GB (3) GB0209564D0 (en)
SI (1) SI1497141T1 (en)
WO (2) WO2003091952A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120018513A1 (en) * 2009-04-01 2012-01-26 Fedrigoni S.P.A. Security element comprising magnetic areas of different coercivities, a method for its production and a method for reading information encoded in the element
US20170022342A1 (en) * 2013-11-29 2017-01-26 Samsung Sdi Co., Ltd. Gas barrier film and manufacturing method therefor

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7551750B2 (en) * 2002-01-09 2009-06-23 Jds Uniphase Corporation Holographic digital watermark
ITMI20021575A1 (en) 2002-07-17 2004-01-19 Elmiva S A S Di Walter Mantega SECURITY ELEMENT FOR BANKNOTE DOCUMENTS SECURITY CARDS AND SIMILAR
US7339999B2 (en) * 2004-01-21 2008-03-04 Qualcomm Incorporated Pilot transmission and channel estimation for an OFDM system with excess delay spread
US7739510B2 (en) 2005-05-12 2010-06-15 The Invention Science Fund I, Inc Alert options for electronic-paper verification
US8063878B2 (en) 2005-01-20 2011-11-22 The Invention Science Fund I, Llc Permanent electronic paper
US8640259B2 (en) * 2005-01-20 2014-01-28 The Invention Science Fund I, Llc Notarizable electronic paper
US8281142B2 (en) 2005-01-20 2012-10-02 The Invention Science Fund I, Llc Notarizable electronic paper
US7865734B2 (en) 2005-05-12 2011-01-04 The Invention Science Fund I, Llc Write accessibility for electronic paper
ES2264372B1 (en) 2005-03-10 2007-12-01 Fabrica Nacional De Moneda Y Timbre - Real Casa De La Moneda SAFETY STRIP, SECURITY PAPER THAT INCLUDES SUCH STRIP AND SECURITY DOCUMENT AND TICKET THAT INCORPORATE SUCH PAPER.
EP1714795A1 (en) * 2005-04-20 2006-10-25 Hueck Folien Ges.m.b.H Security element with a spacially separated magnetic code, method and apparatus for its production and its applcation
AT502160B1 (en) * 2005-07-12 2013-07-15 Hueck Folien Gmbh SAFETY FOIL FOR SECURING DOCUMENTS
US7895527B2 (en) 2005-07-15 2011-02-22 Siemens Medical Solutions Usa, Inc. Systems, user interfaces, and methods for processing medical data
GB2430647B (en) * 2005-09-29 2008-09-17 Rue De Int Ltd Security device for security substrates
BRPI0618800A2 (en) * 2005-11-22 2011-09-13 Merck Patent Gmbh process for a thermal transfer of a liquid crystal film using a transfer element
GB2438383B (en) * 2006-05-26 2008-10-08 Rue De Int Ltd Improvements in substrates
EP2041695A4 (en) * 2006-07-18 2010-01-06 Jds Uniphase Corp Holographic magnetic stripe demetalization security
GB0615921D0 (en) 2006-08-10 2006-09-20 Rue De Int Ltd Photonic crystal security device
GB0615919D0 (en) 2006-08-10 2006-09-20 Rue De Int Ltd Photonic crystal security device
FR2907136B1 (en) 2006-10-12 2010-01-15 Arjowiggins SECURITY TAPE, SHEET AND SECURITY DOCUMENT COMPRISING IT AND METHOD OF INCORPORATING IT
JP4959304B2 (en) * 2006-11-22 2012-06-20 日本発條株式会社 Identification medium, identification method, and identification apparatus
DE102007025667A1 (en) * 2007-06-01 2008-12-04 Giesecke & Devrient Gmbh Endless material for security elements
WO2008148201A1 (en) 2007-06-05 2008-12-11 Bank Of Canada Ink or toner compositions, methods of use, and products derived therefrom
GB2452078B (en) 2007-08-23 2009-12-23 Rue De Int Ltd Security devices for security substrates
GB0720550D0 (en) 2007-10-19 2007-11-28 Rue De Int Ltd Photonic crystal security device multiple optical effects
GB2456500B (en) 2007-10-23 2011-12-28 Rue De Int Ltd Improvements in security elements
FR2922905B1 (en) * 2007-10-26 2009-12-18 Arjowiggins Licensing Sas SAFETY STRUCTURE COMPRISING A THERMOCHROMIC ELEMENT AND A PHOTOCHROMIC ELEMENT
GB2457911B (en) 2008-02-27 2010-05-12 Rue De Int Ltd Improved method for producing an optically varible security device
TR201010309T1 (en) * 2008-06-12 2011-06-21 Crane & Co., Inc. Method for increasing the adhesion between a safety element and a layer of fibrous material
DE102009020208A1 (en) 2009-05-07 2010-11-11 Merck Patent Gmbh Method for coding products
GB0911792D0 (en) 2009-07-07 2009-08-19 Rue De Int Ltd Photonic crystal material
GB2472247A (en) * 2009-07-31 2011-02-02 Innovia Films Sarl Security document
GB0919109D0 (en) 2009-10-30 2009-12-16 Rue De Int Ltd Security device
GB2474903B (en) 2009-10-30 2012-02-01 Rue De Int Ltd Improvements in security devices
GB0919112D0 (en) 2009-10-30 2009-12-16 Rue De Int Ltd Security device
GB0919108D0 (en) 2009-10-30 2009-12-16 Rue De Int Ltd Security device
GB2476228B (en) 2009-11-19 2012-02-01 Rue De Int Ltd Improvements in security devices
GB201003397D0 (en) 2010-03-01 2010-04-14 Rue De Int Ltd Moire magnification security device
GB201003398D0 (en) 2010-03-01 2010-04-14 Rue De Int Ltd Optical device
GB2478537B (en) 2010-03-08 2013-07-24 Rue De Int Ltd Improvements in security documents
GB201007695D0 (en) 2010-05-07 2010-06-23 Rue De Int Ltd Security device
US9708773B2 (en) 2011-02-23 2017-07-18 Crane & Co., Inc. Security sheet or document having one or more enhanced watermarks
GB201107657D0 (en) 2011-05-09 2011-06-22 Rue De Int Ltd Security device
GB2493369B (en) 2011-08-02 2013-09-25 Rue De Int Ltd Improvements in security devices
GB201212046D0 (en) 2012-07-06 2012-08-22 Rue De Int Ltd Security devices
GB201313363D0 (en) 2013-07-26 2013-09-11 Rue De Int Ltd Security devices and method of manufacture
GB201313362D0 (en) 2013-07-26 2013-09-11 Rue De Int Ltd Security Devices and Methods of Manufacture
GB201400910D0 (en) 2014-01-20 2014-03-05 Rue De Int Ltd Security elements and methods of their manufacture
GB2523994B (en) 2014-03-06 2017-08-30 De La Rue Int Ltd Method of forming a security document
PT2965920T (en) 2014-07-09 2018-01-16 Sicpa Holding Sa Optically variable magnetic security threads and stripes
DE102014011663A1 (en) 2014-08-04 2016-02-04 Giesecke & Devrient Gmbh Security element and value document
DE102014018890A1 (en) 2014-12-17 2016-06-23 Giesecke & Devrient Gmbh Security element, method for producing the same and equipped with the security element disk
GB2539390B (en) 2015-06-10 2018-07-25 De La Rue Int Ltd Security devices and methods of manufacture thereof
CN108349292B (en) * 2015-11-12 2021-09-10 拉沃希尔有限公司 Anti-counterfeiting device and method
GB201520085D0 (en) 2015-11-13 2015-12-30 Rue De Int Ltd Methods of manufacturing image element arrays for security devices
GB2549724B (en) 2016-04-26 2019-12-11 De La Rue Int Ltd Security devices and methods of manufacturing image patterns for security devices
US10679523B2 (en) 2016-07-26 2020-06-09 Savannah River Nuclear Solutions, Llc Tamper indicating seal
DE102016014230A1 (en) 2016-11-30 2018-05-30 Giesecke & Devrient Gmbh Value document, method of manufacturing the same and value document system
GB2576218B (en) 2018-08-10 2021-09-15 De La Rue Int Ltd Security devices and methods of authentication thereof
GB2578117B (en) 2018-10-16 2021-06-09 De La Rue Int Ltd Security devices and methods for their manufacture
US20230364935A1 (en) 2020-09-11 2023-11-16 De La Rue International Limited Security devices and methods of manufacture thereof
EP3939802A1 (en) * 2020-09-29 2022-01-19 Hueck Folien Gesellschaft m.b.H. Substrate for producing security papers or security papers
DE102020006240A1 (en) * 2020-10-09 2022-04-14 Giesecke+Devrient Currency Technology Gmbh Security element with translucent part
GB202101267D0 (en) 2021-01-29 2021-03-17 De La Rue Int Ltd Security devices and methods of manufacture thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310222A (en) * 1989-10-26 1994-05-10 De La Rue Holographics Limited Optical device
US5354099A (en) * 1990-12-20 1994-10-11 Gao Gesellschaft Fur Automation Und Organisation Mbh Magnetic metallic safeguarding thread with negative writing
US5697649A (en) * 1995-05-11 1997-12-16 Crane & Co., Inc. Articles employing a magnetic security feature
US5766738A (en) * 1979-12-28 1998-06-16 Flex Products, Inc. Paired optically variable article with paired optically variable structures and ink, paint and foil incorporating the same and method
US5988500A (en) * 1996-05-17 1999-11-23 Aveka, Inc. Antiforgery security system
US5997849A (en) * 1993-12-29 1999-12-07 Chromatic Technologies, Inc. Thermochromic ink formulations, nail lacquer and methods of use
US6036232A (en) * 1996-03-22 2000-03-14 Giesecke & Devrient Gmbh Data carrier with an optically variable element
US6082778A (en) * 1994-03-25 2000-07-04 Giesecke & Devrient Gmbh Identity card protected from unauthorized reproduction with a copying machine
US6196383B1 (en) * 1992-08-27 2001-03-06 P. P. Payne Limited Tear tape with holographic image
US6294241B1 (en) * 1993-02-19 2001-09-25 Giesecke & Devrient Gmbh Security document and method of producing it
US6343745B1 (en) * 1996-12-06 2002-02-05 Giesecke & Devrient Gmbh Security device
US6474695B1 (en) * 1988-03-04 2002-11-05 Gao Gessellschaft Fur Automation Und Organisation Gmbh Security element in the form of a thread or be embedded in security and methods of producing it
US6659507B2 (en) * 2000-04-03 2003-12-09 American Bank Note Holographics, Inc. Enhanced security for tamper-apparent labels, seals or tags
US6726813B2 (en) * 1997-10-10 2004-04-27 Giesecke & Devrient Gmbh Security device and method for producing it
US6808806B2 (en) * 2001-05-07 2004-10-26 Flex Products, Inc. Methods for producing imaged coated articles by using magnetic pigments

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN173621B (en) 1987-12-04 1994-06-18 Portals Ltd
GB2227451B (en) 1989-01-20 1992-10-14 Bank Of England The Governor A Coding security threads for bank notes and security papers
ES2125636T3 (en) 1994-08-04 1999-03-01 Portals Ltd SAFETY PRODUCT, FILM AND MANUFACTURING PROCEDURE OF A SAFETY PRODUCT.
FR2771111B1 (en) * 1997-11-20 1999-12-17 Arjo Wiggins Sa SAFETY DOCUMENT COMPRISING MAGNETIC PARTICLES
US6930606B2 (en) * 1997-12-02 2005-08-16 Crane & Co., Inc. Security device having multiple security detection features
UA52804C2 (en) 1997-12-02 2003-01-15 Текнікал Графікс Сек'Юріті Продактс, Ллс Device for protecting documents by using magnetic and metallic protective elements (variants); method for producing the protection device (variants); method for identifying documents
EP1232488A4 (en) 1999-10-07 2004-07-07 Technical Graphics Security Products Llc Security device with foil camouflaged magnetic regions and methods of making same
WO2002101147A1 (en) * 2001-06-08 2002-12-19 Rexor Security thread or transfer film for hot process marking of bank notes, documents or other articles to be made secure

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766738A (en) * 1979-12-28 1998-06-16 Flex Products, Inc. Paired optically variable article with paired optically variable structures and ink, paint and foil incorporating the same and method
US6474695B1 (en) * 1988-03-04 2002-11-05 Gao Gessellschaft Fur Automation Und Organisation Gmbh Security element in the form of a thread or be embedded in security and methods of producing it
US5310222A (en) * 1989-10-26 1994-05-10 De La Rue Holographics Limited Optical device
US5354099A (en) * 1990-12-20 1994-10-11 Gao Gesellschaft Fur Automation Und Organisation Mbh Magnetic metallic safeguarding thread with negative writing
US6196383B1 (en) * 1992-08-27 2001-03-06 P. P. Payne Limited Tear tape with holographic image
US6294241B1 (en) * 1993-02-19 2001-09-25 Giesecke & Devrient Gmbh Security document and method of producing it
US5997849A (en) * 1993-12-29 1999-12-07 Chromatic Technologies, Inc. Thermochromic ink formulations, nail lacquer and methods of use
US6082778A (en) * 1994-03-25 2000-07-04 Giesecke & Devrient Gmbh Identity card protected from unauthorized reproduction with a copying machine
US5697649A (en) * 1995-05-11 1997-12-16 Crane & Co., Inc. Articles employing a magnetic security feature
US6036232A (en) * 1996-03-22 2000-03-14 Giesecke & Devrient Gmbh Data carrier with an optically variable element
US5988500A (en) * 1996-05-17 1999-11-23 Aveka, Inc. Antiforgery security system
US6343745B1 (en) * 1996-12-06 2002-02-05 Giesecke & Devrient Gmbh Security device
US6726813B2 (en) * 1997-10-10 2004-04-27 Giesecke & Devrient Gmbh Security device and method for producing it
US6659507B2 (en) * 2000-04-03 2003-12-09 American Bank Note Holographics, Inc. Enhanced security for tamper-apparent labels, seals or tags
US6808806B2 (en) * 2001-05-07 2004-10-26 Flex Products, Inc. Methods for producing imaged coated articles by using magnetic pigments

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120018513A1 (en) * 2009-04-01 2012-01-26 Fedrigoni S.P.A. Security element comprising magnetic areas of different coercivities, a method for its production and a method for reading information encoded in the element
US8584948B2 (en) * 2009-04-01 2013-11-19 Fedrigoni S.P.A. Security element comprising magnetic areas of different coercivities, a method for its production and a method for reading information encoded in the element
US20170022342A1 (en) * 2013-11-29 2017-01-26 Samsung Sdi Co., Ltd. Gas barrier film and manufacturing method therefor

Also Published As

Publication number Publication date
GB2387812A (en) 2003-10-29
GB0209564D0 (en) 2002-06-05
AU2003229935A8 (en) 2003-11-10
EP1497141B1 (en) 2011-09-28
AU2003229919A8 (en) 2003-11-10
WO2003091952A2 (en) 2003-11-06
US20050116464A1 (en) 2005-06-02
WO2003091953A2 (en) 2003-11-06
AU2003229935A1 (en) 2003-11-10
ATE526173T1 (en) 2011-10-15
GB2387813A (en) 2003-10-29
WO2003091953A3 (en) 2004-02-12
US20080311317A1 (en) 2008-12-18
EP1497141A2 (en) 2005-01-19
US20050238851A1 (en) 2005-10-27
GB2387813B (en) 2004-07-14
ES2369886T3 (en) 2011-12-07
WO2003091952A3 (en) 2004-01-22
US9483719B2 (en) 2016-11-01
GB2387812B (en) 2004-07-14
AU2003229919A1 (en) 2003-11-10
SI1497141T1 (en) 2012-02-29
EP1497142A2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
EP1497141B1 (en) Transparent security substrate with magnetic particles
AU2008315785B2 (en) Improvements in security elements
US6491324B1 (en) Safety document
CZ20024259A3 (en) Safety mark
JP2005512859A (en) Security elements for security papers and certificates
WO2001007268A1 (en) Security device
CN101640004B (en) Holographic dealuminized composite film material and anti-counterfeiting object
US20040150220A1 (en) Security articles
US20020172807A1 (en) Substrates
EP1634221B1 (en) Security device
GB2364018A (en) Synthetic substrates which provide protection against imitation

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION