US20090048440A1 - Nucleotide Sugar Purification Using Membranes - Google Patents

Nucleotide Sugar Purification Using Membranes Download PDF

Info

Publication number
US20090048440A1
US20090048440A1 US12/092,563 US9256306A US2009048440A1 US 20090048440 A1 US20090048440 A1 US 20090048440A1 US 9256306 A US9256306 A US 9256306A US 2009048440 A1 US2009048440 A1 US 2009048440A1
Authority
US
United States
Prior art keywords
substituted
membrane
nucleotide
unsubstituted
desired product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/092,563
Inventor
Michael Felo
Shawn DeFrees
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novo Nordisk AS
Original Assignee
Neose Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neose Technologies Inc filed Critical Neose Technologies Inc
Priority to US12/092,563 priority Critical patent/US20090048440A1/en
Assigned to NEOSE TECHNOLOGIES, INC. reassignment NEOSE TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FELO, MICHAEL, DEFREES, SHAWN
Publication of US20090048440A1 publication Critical patent/US20090048440A1/en
Assigned to NOVO NORDISK A/S reassignment NOVO NORDISK A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NEOSE TECHNOLOGIES, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/305Pyrimidine nucleotides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • sialyl lactose is thought to inhibit or disrupt the degree of occupancy of the Fc carbohydrate binding site on IgG, and thus prevent the formation of immune complexes (see, U.S. Pat. No. 5,164,374).
  • sialyl- ⁇ (2,3)galactosides, sialyl lactose and sialyl lactosamine have been proposed for the treatment of ulcers, and Phase I clinical trials have begun for the use of the former compound in this capacity. See,Parken et al., FEMS Immunology and Medical Microbiology 7:29 (1993) and BioWorld Today, p. 5, Apr. 4, 1995.
  • compounds comprising the sialyl Lewis ligands, sialyl Lewis x and sialyl Lewis a are present in leukocyte and non-leukocyte cell lines that bind to receptors such as the ELAM-1 and GMP 140 receptors.
  • receptors such as the ELAM-1 and GMP 140 receptors.
  • Polley et al., Proc. Natl. Acad. Sci., USA, 88:6224 (1991) and Phillips et al., Science, 250:1130 (1990) see, also, U.S. Ser. No. 08/063,181.
  • glycosyltransferases Because of interest in making desired carbohydrate structures, glycosyltransferases and their role in enzyme-catalyzed synthesis of carbohydrates are presently being extensively studied.
  • the use of glycosyltransferases for enzymatic synthesis of carbohydrate offers advantages over chemical methods due to the virtually complete stereoselectivity and linkage specificity offered by the enzymes (Ito et al., Pure Appl. Chem., 65:753 (1993) U.S. Pat. Nos. 5,352,670, and 5,374,541). Consequently, glycosyltransferases are increasingly used as enzymatic catalysts in synthesis of a number of carbohydrates used for therapeutic and other purposes.
  • Carbohydrate compounds produced by enzymatic synthesis or by other methods are often obtained in the form of complex mixtures that include not only the desired compound but also contaminants such as unreacted sugars, salts, pyruvate, phosphate, PEP, nucleosides, nucleotides, and proteins, among others. The presence of these contaminants is undesirable for many applications for which the carbohydrate compounds are useful.
  • Previously used methods for purifying oligosaccharides, such as chromatography, i.e., ion exchange and size exclusion chromatography have several disadvantages. For example, chromatographic purification methods are not amenable to large-scale purifications, thus precluding their use for commercial production of saccharides. Moreover, chromatographic purification methods are expensive. Therefore, a need exists for purification methods that are faster, more efficient, and less expensive than previously used methods. The present invention fulfills this and other needs.
  • the present invention provides methods of purifying a carbohydrate compound from a feed solution containing a contaminant.
  • the methods involve contacting the feed solution with a nanofiltration or reverse osmosis membrane under conditions such that the membrane retains the desired carbohydrate compound while a majority of the contaminant passes through the membrane.
  • the invention provides methods of purifying a carbohydrate compound from a feed solution comprising a reaction mixture used to synthesize the carbohydrate compound.
  • the synthesis can be enzymatic or chemical, or a combination thereof.
  • the methods involve removing any proteins present in the feed solution by contacting the feed solution with an ultrafiltration membrane so that proteins are retained the membrane while the carbohydrate compound passes through the membrane as a permeate.
  • the permeate from the ultrafiltration step is then contacted with a nanofiltration or reverse osmosis membrane under conditions such that the nanofiltration or reverse osmosis membrane retains the carbohydrate compound while a majority of an undesired contaminant passes through the membrane.
  • Another embodiment of the invention provides methods for purifying nucleotides, nucleosides, and nucleotide sugars by contacting a feed solution containing the nucleotide or related compound with a nanofiltration or reverse osmosis membrane under conditions such that the membrane retains the nucleotide or related compound while a majority of the contaminant passes through the membrane.
  • the present invention also provides methods for removing one or more contaminants from a solution that contains a carbohydrate of interest.
  • the methods involve contacting the solution with a first side of a semipermeable membrane having rejection coefficients so as to retain the carbohydrate while allowing the contaminant to pass through the membrane.
  • the membrane is selected from the group consisting of an ultrafiltration membrane, a nanofiltration membrane, and a reverse osmosis membrane, depending on the size and charge of the carbohydrate of interest relative to those of the contaminants.
  • the membrane separates a feed solution containing a carbohydrate into a retentate portion and a permeate portion.
  • the rejection coefficient of the membrane is greater for the carbohydrate than for the contaminant, the retentate portion will have a lower concentration of the contaminant relative to the contaminant concentration in the feed solution, and generally also a higher ratio of the carbohydrate to the undesired contaminant.
  • a membrane having a rejection coefficient for the carbohydrate that is lesser than that for the contaminant will effect a separation wherein the concentration of the contaminant is lower in the permeate than in the feed solution, and the permeate will have a higher ratio of carbohydrate to contaminant than the feed solution.
  • the fraction containing the carbohydrate can be recycled through the membrane system for further purification.
  • contaminants that can be removed from solutions containing the compound of interest using the methods of the invention include, but are not limited to, unreacted sugars, inorganic ions, pyruvate, phosphate, phosphoenolpyruvate, and proteins.
  • FIG. 1 is a diagram of an exemplary purification of a nucleotide sugar.
  • FIG. 2 is a chromatogram recorded for an exemplary purification of CMP-SA-PEG-30 kDa using Q Sepharose chromatography as described in Example 6.
  • CMP-SA-PEG-30 kDa was collected in two fractions. Fraction 1 contained pure product and Fraction 2 contained residual CMP-SA-Gly reagent and was reprocessed.
  • FIG. 3 is a chromatogram recorded for an exemplary separation of CMP-SA-PEG 30 kDa from CMP-SA-Glycine using Q-Sepharose chromatography, showing a typical baseline separation.
  • FIG. 4 is a diagram outlining an exemplary process for the preparation of an exemplary GSC (CMP-5′-Glycyl-Sialic Acid).
  • FIG. 5 is a diagram outlining an exemplary process for the preparation of an exemplary PSC (CMP-SA-PEG).
  • FIG. 6 is a diagram outlining an exemplary process for the purification of a glycosyltransferase.
  • FIG. 7 is a table of exemplary sialyltransferases.
  • sialic acid refers to any member of a family of nine-carbon carboxylated sugars.
  • the most common member of the sialic acid family is N-acetyl-neuraminic acid (2-keto-5-acetamido-3,5-dideoxy-D-glycero-D-galactononulopyranos-1-onic acid (often abbreviated as Neu5Ac, NeuAc, or NANA).
  • a second member of the family is N-glycolyl-neuraminic acid (Neu5Gc or NeuGc), in which the N-acetyl group of NeuAc is hydroxylated.
  • a third sialic acid family member is 2-keto-3-deoxy-nonulosonic acid (KDN) (Nadano et al. (1986) J. Biol. Chem. 261: 11550-11557; Kanamori et al., J. Biol. Chem. 265: 21811-21819 (1990)). Also included are 9-substituted sialic acids such as a 9-O—C 1 -C 6 acyl-Neu5Ac like 9-O-lactyl-Neu5Ac or 9-O-acetyl-Neu5Ac, 9-deoxy-9-fluoro-Neu5Ac and 9-azido-9-deoxy-Neu5Ac.
  • KDN 2-keto-3-deoxy-nonulosonic acid
  • 9-substituted sialic acids such as a 9-O—C 1 -C 6 acyl-Neu5Ac like 9-O-lactyl-Neu5Ac or 9-O-
  • sialic acid family see, e.g., Varki, Glycobiology 2: 25-40 (1992); Sialic Acids: Chemistry, Metabolism and Function , R. Schauer, Ed. (Springer-Verlag, New York (1992)).
  • the synthesis and use of sialic acid compounds in a sialylation procedure is disclosed in international application WO 92/16640, published Oct. 1, 1992.
  • modified sugar refers to a naturally- or non-naturally-occurring carbohydrate.
  • the modified sugar is preferably selected from a number of enzyme substrates including, but not limited to sugar nucleotides (mono-, di-, and tri-phosphates), activated sugars (e.g., glycosyl halides, glycosyl mesylates) and sugars that are neither activated nor nucleotides.
  • the “modified sugar” is covalently functionalized with a “modifying group.”
  • Useful modifying groups include, but are not limited to, water-soluble polymers, targeting moieties therapeutic moieties, diagnostic moieties, radioactive moieties, cytotoxic moieties, biomolecules and the like.
  • the modifying group is preferably not a naturally occurring, or an unmodified carbohydrate.
  • the locus of functionalization with the modifying group is preferably selected such that it does not prevent the “modified sugar” from being added enzymatically to a peptide.
  • water-soluble refers to moieties that have some detectable degree of solubility in water. Methods to detect and/or quantify water solubility are well known in the art.
  • Exemplary water-soluble polymers include peptides, saccharides, poly(ethers), poly(amines), poly(carboxylic acids) and the like. Peptides can have mixed sequences of be composed of a single amino acid, e.g., poly(lysine).
  • An exemplary polysaccharide is poly(sialic acid).
  • An exemplary poly(ether) is poly(ethylene glycol), e.g., m-PEG.
  • Poly(ethylene imine) is an exemplary polyamine
  • poly(acrylic) acid is a representative poly(carboxylic acid).
  • the polymer backbone of the water-soluble polymer can be poly(ethylene glycol) (i.e. PEG).
  • PEG poly(ethylene glycol)
  • other related polymers are also suitable for use in the practice of this invention and that the use of the term PEG or poly(ethylene glycol) is intended to be inclusive and not exclusive in this respect.
  • PEG includes poly(ethylene glycol) in any of its forms, including alkoxy PEG, difunctional PEG, multiarmed PEG, forked PEG, branched PEG, pendent PEG (i.e. PEG or related polymers having one or more functional groups pendent to the polymer backbone), or PEG with degradable linkages therein.
  • the polymer backbone can be linear or branched.
  • Branched polymer backbones are generally known in the art.
  • a branched polymer has a central branch core moiety and a plurality of linear polymer chains linked to the central branch core.
  • PEG is commonly used in branched forms that can be prepared by addition of ethylene oxide to various polyols, such as glycerol, pentaerythritol and sorbitol.
  • the central branch moiety can also be derived from several amino acids, such as lysine.
  • the branched poly(ethylene glycol) can be represented in general form as R(-PEG-OH) m in which R represents the core moiety, such as glycerol or pentaerythritol, and m represents the number of arms.
  • R represents the core moiety, such as glycerol or pentaerythritol
  • m represents the number of arms.
  • Multi-armed PEG molecules such as those described in U.S. Pat. No. 5,932,462, which is incorporated by reference herein in its entirety, can also be used as the polymer backbone.
  • polymers are also suitable for the invention.
  • suitable polymers include, but are not limited to, other poly(alkylene glycols), such as poly(propylene glycol) (“PPG”), copolymers of ethylene glycol and propylene glycol and the like, poly(oxyethylated polyol), poly(olefinic alcohol), poly(vinylpyrrolidone), poly(hydroxypropylmethacrylamide), poly( ⁇ -hydroxy acid), poly(vinyl alcohol), polyphosphazene, polyoxazoline, poly(N-acryloylmorpholine), such as described in U.S. Pat.
  • PPG poly(propylene glycol)
  • PPG poly(propylene glycol)
  • copolymers of ethylene glycol and propylene glycol and the like poly(oxyethylated polyol), poly(olefinic alcohol),
  • targeting moiety refers to species that will selectively localize in a particular tissue or region of the body. The localization is mediated by specific recognition of molecular determinants, molecular size of the targeting agent or conjugate, ionic interactions, hydrophobic interactions and the like. Other mechanisms of targeting an agent to a particular tissue or region are known to those of skill in the art.
  • exemplary targeting moieties include antibodies, antibody fragments, transferrin, HS-glycoprotein, coagulation factors, serum proteins, ⁇ -glycoprotein, G-CSF, GM-CSF, M-CSF, EPO and the like.
  • therapeutic moiety means any agent useful for therapy including, but not limited to, antibiotics, anti-inflammatory agents, anti-tumor drugs, cytotoxins, and radioactive agents.
  • therapeutic moiety includes prodrugs of bioactive agents, constructs in which more than one therapeutic moiety is bound to a carrier, e.g, multivalent agents.
  • Therapeutic moiety also includes proteins and constructs that include proteins.
  • Exemplary proteins include, but are not limited to, Erythropoietin (EPO), Granulocyte Colony Stimulating Factor (GCSF), Granulocyte Macrophage Colony Stimulating Factor (GMCSF), Interferon (e.g., Interferon- ⁇ , - ⁇ , - ⁇ ), Interleukin (e.g., Interleukin II), serum proteins (e.g., Factors VII, VIa, VIII, IX, and X), Human Chorionic Gonadotropin (HCG), Follicle Stimulating Hormone (FSH) and Lutenizing Hormone (LH) and antibody fusion proteins (e.g. Tumor Necrosis Factor Receptor ((TNFR)/Fc domain fusion protein)).
  • EPO Erythropoietin
  • GCSF Granulocyte Colony Stimulating Factor
  • GMCSF Granulocyte Macrophage Colony Stimulating Factor
  • Interferon
  • anti-tumor drug means any agent useful to combat cancer including, but not limited to, cytotoxins and agents such as antimetabolites, alkylating agents, anthracyclines, antibiotics, antimitotic agents, procarbazine, hydroxyurea, asparaginase, corticosteroids, interferons and radioactive agents.
  • conjugates of peptides with anti-tumor activity e.g. TNF- ⁇ . Conjugates include, but are not limited to those formed between a therapeutic protein and a glycoprotein of the invention. A representative conjugate is that formed between PSGL-1 and TNF- ⁇ .
  • a cytotoxin or cytotoxic agent means any agent that is detrimental to cells. Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracinedione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof.
  • Other toxins include, for example, ricin, CC-1065 and analogues, the duocarmycins. Still other toxins include diptheria toxin, and snake venom (e.g., cobra venom).
  • a radioactive agent includes any radioisotope that is effective in diagnosing or destroying a tumor. Examples include, but are not limited to, indium-111, cobalt-60. Additionally, naturally occurring radioactive elements such as uranium, radium, and thorium, which typically represent mixtures of radioisotopes, are suitable examples of a radioactive agent. The metal ions are typically chelated with an organic chelating moiety.
  • a compound is “substantially purified” from an undesired component in a solution if the concentration of the undesired component after purification is no greater than about 40% of the concentration of the component prior to purification.
  • the post-purification concentration of the undesired component will be less than about 20% by weight, and more preferably less than about 10%, and still more preferably less than about 5% of the pre-purification concentration.
  • pharmaceutically pure refers to a compound that is sufficiently purified from undesired contaminants that the compound is suitable for administration as a pharmaceutical agent.
  • the compound is purified such that the undesired contaminant is present after purification in an amount that is about 5% by weight or less of the pre-purification concentration of the contaminant in the feed solution.
  • the post-purification concentration of the contaminant is about 1% or less of the pre-purification contaminant concentration, and most preferably about 0.5% or less of the pre-purification concentration of contaminant.
  • a “feed solution” refers to any solution that contains a compound to be purified.
  • a reaction mixture used to synthesize an oligosaccharide can be used as a feed solution from which the desired reaction product is purified using the methods of the invention.
  • substituent groups are specified by their conventional chemical formulae, written from left to right, they equally encompass the chemically identical substituents, which would result from writing the structure from right to left, e.g., —CH 2 O— is intended to also recite —OCH 2 —.
  • alkyl by itself or as part of another substituent means, unless otherwise stated, a straight or branched chain, or cyclic hydrocarbon radical, or combination thereof, which may be fully saturated, mono- or polyunsaturated and can include di- and multivalent radicals, having the number of carbon atoms designated (i.e. C 1 -C 10 means one to ten carbons).
  • saturated hydrocarbon radicals include, but are not limited to, groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, cyclohexyl, (cyclohexyl)methyl, cyclopropylmethyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like.
  • An unsaturated alkyl group is one having one or more double bonds or triple bonds.
  • alkyl groups examples include, but are not limited to, vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers.
  • alkyl unless otherwise noted, is also meant to include those derivatives of alkyl defined in more detail below, such as “heteroalkyl.” Alkyl groups that are limited to hydrocarbon groups are termed “homoalkyl”.
  • alkylene by itself or as part of another substituent means a divalent radical derived from an alkane, as exemplified, but not limited, by —CH 2 CH 2 CH 2 CH 2 —, and further includes those groups described below as “heteroalkylene.”
  • an alkyl (or alkylene) group will have from 1 to 24 carbon atoms, with those groups having 10 or fewer carbon atoms being preferred in the present invention.
  • a “lower alkyl” or “lower alkylene” is a shorter chain alkyl or alkylene group, generally having eight or fewer carbon atoms.
  • alkoxy alkylamino and “alkylthio” (or thioalkoxy) are used in their conventional sense, and refer to those alkyl groups attached to the remainder of the molecule via an oxygen atom, an amino group, or a sulfur atom, respectively.
  • heteroalkyl by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain, or cyclic hydrocarbon radical, or combinations thereof, consisting of the stated number of carbon atoms and at least one heteroatom selected from the group consisting of O, N, Si and S, and wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized.
  • the heteroatom(s) O, N and S and Si may be placed at any interior position of the heteroalkyl group or at the position at which the alkyl group is attached to the remainder of the molecule.
  • Examples include, but are not limited to, —CH 2 —CH 2 —O—CH 3 , —CH 2 —CH 2 —NH—CH 3 , —CH 2 —CH 2 —N(CH 3 )—CH 3 , —CH 2 —S—CH 2 —CH 3 , —CH 2 —CH 2 , —S(O)—CH 3 , —CH 2 —CH 2 —S(O) 2 —CH 3 , —CH ⁇ CH—O—CH 3 , —Si(CH 3 ) 3 , —CH 2 —CH ⁇ N—OCH 3 , and —CH ⁇ CH—N(CH 3 )—CH 3 .
  • heteroalkylene by itself or as part of another substituent means a divalent radical derived from heteroalkyl, as exemplified, but not limited by, —CH 2 —CH 2 —S—CH 2 —CH 2 — and —CH 2 —S—CH 2 —CH 2 —NH—CH 2 —.
  • heteroatoms can also occupy either or both of the chain termini (e.g., alkyleneoxy, alkylenedioxy, alkyleneamino, alkylenediamino, and the like). Still further, for alkylene and heteroalkylene linking groups, no orientation of the linking group is implied by the direction in which the formula of the linking group is written. For example, the formula —C(O) 2 R′— represents both —C(O) 2 R′— and —R′C(O) 2 —.
  • cycloalkyl and “heterocycloalkyl”, by themselves or in combination with other terms, represent, unless otherwise stated, cyclic versions of “alkyl” and “heteroalkyl”, respectively. Additionally, for heterocycloalkyl, a heteroatom can occupy the position at which the heterocycle is attached to the remainder of the molecule. Examples of cycloalkyl include, but are not limited to, cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like.
  • heterocycloalkyl examples include, but are not limited to, 1-(1,2,5,6-tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3-morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1-piperazinyl, 2-piperazinyl, and the like.
  • halo or “halogen,” by themselves or as part of another substituent, mean, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom. Additionally, terms such as “haloalkyl,” are meant to include monohaloalkyl and polyhaloalkyl.
  • halo(C 1 -C 4 )alkyl is mean to include, but not be limited to, trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, and the like.
  • aryl means, unless otherwise stated, a polyunsaturated, aromatic, substituent that can be a single ring or multiple rings (preferably from 1 to 3 rings), which are fused together or linked covalently.
  • heteroaryl refers to aryl groups (or rings) that contain from one to four heteroatoms selected from N, O, and S, wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen atom(s) are optionally quaternized.
  • a heteroaryl group can be attached to the remainder of the molecule through a heteroatom.
  • Non-limiting examples of aryl and heteroaryl groups include phenyl, 1-naphthyl, 2-naphthyl, 4-biphenyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2-imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl, 4-oxazolyl, 2-phenyl-4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidyl, 4-pyrimidyl, 5-benzothiazolyl, purinyl, 2-benzimidazolyl, 5-indolyl, 1-isoquinoly
  • aryl when used in combination with other terms (e.g., aryloxy, arylthioxy, arylalkyl) includes both aryl and heteroaryl rings as defined above.
  • arylalkyl is meant to include those radicals in which an aryl group is attached to an alkyl group (e.g., benzyl, phenethyl, pyridylmethyl and the like) including those alkyl groups in which a carbon atom (e.g., a methylene group) has been replaced by, for example, an oxygen atom (e.g., phenoxymethyl, 2-pyridyloxymethyl, 3-(1-naphthyloxy)propyl, and the like).
  • alkyl group e.g., benzyl, phenethyl, pyridylmethyl and the like
  • an oxygen atom e.g., phenoxymethyl, 2-pyridyloxymethyl, 3-(1-naph
  • alkyl e.g., “alkyl,” “heteroalkyl,” “aryl” and “heteroaryl” is meant to include both substituted and unsubstituted forms of the indicated radical.
  • Preferred substituents for each type of radical are provided below.
  • alkyl and heteroalkyl radicals are generically referred to as “alkyl group substituents,” and they can be one or more of a variety of groups selected from, but not limited to: —OR′, ⁇ O, ⁇ NR′, ⁇ N—OR′, —NR′R′′, —SR′, -halogen, —SiR′R′′R′′′, —OC(O)R′, —C(O)R′, —CO 2 R′, —CONR′R′′, —OC(O)NR′R′′, —NR′′C(O)R′, —NR′—C(O)NR′′R′′′, —NR′′C(O) 2 R′, ——OR′, ⁇ O, ⁇ NR′, ⁇ N—OR′, —NR′R′′, —SR′, -halogen, —SiR′R′′R′′′, —OC(O)R′, —C(O)R′, —CO 2 R′
  • R′, R′′, R′′′ and R′′′′ each preferably independently refer to hydrogen, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, e.g., aryl substituted with 1-3 halogens, substituted or unsubstituted alkyl, alkoxy or thioalkoxy groups, or arylalkyl groups.
  • each of the R groups is independently selected as are each R′, R′′, R′′′ and R′′′′ groups when more than one of these groups is present.
  • R′ and R′′ are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6-, or 7-membered ring.
  • —NR′R′′ is meant to include, but not be limited to, 1-pyrrolidinyl and 4-morpholinyl.
  • alkyl is meant to include groups including carbon atoms bound to groups other than hydrogen groups, such as haloalkyl (e.g., —CF 3 and —CH 2 CF 3 ) and acyl (e.g., —C(O)CH 3 , —C(O)CF 3 , —C(O)CH 2 OCH 3 , and the like).
  • haloalkyl e.g., —CF 3 and —CH 2 CF 3
  • acyl e.g., —C(O)CH 3 , —C(O)CF 3 , —C(O)CH 2 OCH 3 , and the like.
  • substituents for the aryl and heteroaryl groups are generically referred to as “aryl group substituents.”
  • the substituents are selected from, for example: halogen, —OR′, ⁇ O, ⁇ NR′, ⁇ N—OR′, —NR′R′′, —SR′, -halogen, —SiR′R′′R′′′, —OC(O)R′, —C(O)R′, —CO 2 R′, —CONR′R′′, —OC(O)NR′R′′, —NR′′C(O)R′, —NR′—C(O)NR′′R′′′, —NR′′C(O) 2 R′, —NR—C(NR′R′′R′′′) ⁇ NR′′′′, —NR—C(NR′R′′) ⁇ NR′′′, —S(O)R′, —S(O) 2 R′, —S(O) 2 NR′R′′
  • each of the R groups is independently selected as are each R′, R′′, R′′′ and R′′′′ groups when more than one of these groups is present.
  • the symbol X represents “R” as described above.
  • Two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -T-C(O)—(CRR′) q —U—, wherein T and U are independently —NR—, —O—, —CRR′— or a single bond, and q is an integer of from 0 to 3.
  • two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -A-(CH 2 ) r —B—, wherein A and B are independently —CRR′—, —O—, —NR—, —S—, —S(O)—, —S(O) 2 —, —S(O) 2 NR′— or a single bond, and r is an integer of from 1 to 4.
  • One of the single bonds of the new ring so formed may optionally be replaced with a double bond.
  • two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula —(CRR′) s —X—(CR′′R′′′) d —, where s and d are independently integers of from 0 to 3, and X is —O—, —NR′—, —S—, —S(O)—, —S(O) 2 —, or —S(O) 2 NR′—.
  • the substituents R, R′, R′′ and R′′′ are preferably independently selected from hydrogen or substituted or unsubstituted (C 1 -C 6 )alkyl.
  • heteroatom is meant to include oxygen (O), nitrogen (N), sulfur (S) and silicon (Si).
  • the present invention provides methods for rapidly and efficiently purifying specific carbohydrate and oligosaccharide structures to a high degree of purity using semipermeable membranes such as reverse osmosis and/or nanofiltration membranes.
  • the methods are particularly useful for separating desired oligosaccharide compounds from reactants and other contaminants that remain in a reaction mixture after synthesis or breakdown of the oligosaccharides.
  • the invention provides methods for separating oligosaccharides from enzymes and/or other components of reaction mixtures used for enzymatic synthesis or enzymatic degradation of oligosaccharides, nucleotide sugars, glycolipids, liposaccharides, nucleotides, nucleosides, and other saccharide-containing compounds.
  • the saccharides e.g., sialyl lactose, SLe x , and many others
  • the purification methods of the invention are more efficient, rapid, and amenable to large-scale purifications than previously known carbohydrate purification methods.
  • the invention provides single-step methods for purifying saccharide-containing compounds.
  • a membrane is selected that is appropriate for separating the desired carbohydrate from the undesired components (contaminants) of the solution from which the carbohydrate is to be purified.
  • the goal in selecting a membrane is to optimize for a particular application the molecular weight cutoff (MWCO), membrane composition, permeability, and rejection characteristics, that is, the membrane's total capacity to retain specific molecules while allowing other species, e.g., salts and other, generally smaller or opposite charged molecules, to pass through.
  • MWCO molecular weight cutoff
  • the percent retention of a component is also called the retention characteristic or the membrane rejection coefficient.
  • a membrane is chosen that has a high rejection ratio for the saccharide of interest relative to the rejection ratio for compounds from which separation is desired. If a membrane has a high rejection ratio for a first compound relative to a second compound, the concentration of the first compound in the permeate solution which passes through the membrane is decreased relative to that of the second compound. Conversely, the concentration of the first compound increases relative to the concentration of the second compound in the retentate. If a membrane does not reject a compound, the concentration of the compound in both the permeate and the reject portions will remain essentially the same as in the feed solution.
  • a membrane it is also possible for a membrane to have a negative rejection rate for a compound if the compound's concentration in the permeate becomes greater than the compound's concentration in the feed solution.
  • a general review of membrane technology is found in “Membranes and Membrane Separation Processes,” in Ullmann's Encyclopedia of Industrial Chemistry (VCH, 1990); see also, Noble and Stem, Membrane Separations Technology: Principles and Applications (Elsevier, 1995).
  • a membrane having a molecular weight cut-off (MWCO, which is often related to membrane pore size) that is expected to retain the desired compounds while allowing an undesired compound present in the feed stream to pass through the membrane.
  • the desired MWCO is generally less than the molecular weight of the compound being purified, and is typically greater than the molecular weight of the undesired contaminant that is to be removed from the solution containing the compound being purified.
  • MWCO molecular weight cut-off
  • UF ultrafiltration
  • NF nanofiltration
  • RO reverse osmosis
  • RO membranes typically have a nominal MWCO of less than about 200 Da and reject most ions
  • NF membranes generally have a nominal MWCO of between about 150 Da and about 5 kDa
  • UF membranes generally have a nominal MWCO of between about 1 kDa and about 300 kDa (these MWCO ranges assume a saccharide-like molecule).
  • a second parameter that is considered in choosing an appropriate membrane for a particular separation is the polymer type of the membrane.
  • Exemplary membranes of use in the invention are made of conventional membrane material whether inorganic, organic, or mixed inorganic and organic. Typical inorganic materials include glasses, ceramics, cermets, metals and the like. Ceramic membranes, which are preferred for the UF zone, may be made, for example, as described in U.S. Pat. No. 4,692,354 to Asaeda et al, U.S. Pat. No. 4,562,021 to Alary et al., and others.
  • the organic materials which are preferred for the NF and RO applications are typically polymers, whether isotropic, or anisotropic with a thin layer or “skin” on either the bore side or the shell side of the fibers.
  • Preferred materials for fibers are polyamides, polybenzamides, polysulfones (including sulfonated polysulfone and sulfonated polyether sulfone, among others), polystyrenes, including styrene-containing copolymers such as acrylo-nitrile-styrene, butadiene-styrene and styrene-vinylbenzylhalide copolymers, polycarbonates, cellulosic polymers including cellulose acetate, polypropylene, poly(vinyl chloride), poly(ethylene terephthalate), polyvinyl alcohol, fluorocarbons, and the like, such as those disclosed in U.S. Pat. Nos. 4,230,463, 4,806,244,
  • a membrane surface charge is selected that has a surface charge that is appropriate for the ionic charge of the carbohydrate and that of the contaminants. While MWCO for a particular membrane is generally invariable, changing the pH of the feed solution can affect separation properties of a membrane by altering the membrane surface charge. For example, a membrane that has a net negative surface charge at neutral pH can be adjusted to have a net neutral charge simply by lowering the pH of the solution. An additional effect of adjusting solution pH is to modulate the ionic charge on the contaminants and on the carbohydrate of interest.
  • a suitable membrane polymer type and pH By choosing a suitable membrane polymer type and pH, one can obtain a system in which both the contaminant and the membrane are neutral, facilitating pass-through of the contaminant.
  • a contaminant is negatively charged at neutral pH, it is often desirable to lower the pH of the feed solution to protonate the contaminant. For example, removal of phosphate is facilitated by lowering the pH of the solution to about 3, which protonates the phosphate anion, allowing passage through a membrane.
  • the pH will generally between about pH 1 and about pH 7.
  • the pH of the feed solution can be adjusted to between about pH 7 and about pH 14.
  • one aspect of the invention involves modulating a separation by adjusting the pH of a solution in contact with the membrane; this can change the ionic charge of a contaminant and can also affect the surface charge of the membrane, thus facilitating purification if the desired carbohydrate.
  • the manufacturer's instructions must be followed as to acceptable pH range for a particular membrane to avoid damage to the membrane.
  • a mixture is first subjected to nanofiltration or reverse osmosis at one pH, after which the retentate containing the saccharide of interest is adjusted to a different pH and subjected to an additional round of membrane purification.
  • filtration of a reaction mixture used to synthesize sialyl lactose through an Osmonics MX07 membrane (a nanofiltration membrane having a MWCO of about 500 Da) at pH 3.0 will retain the sialyl lactose and remove most phosphate, pyruvate, salt and manganese from the solution, while also removing some of the GlcNAc, lactose, and sialic acid.
  • a saccharide is to be purified from a mixture that contains proteins, such as enzymes used to synthesize a desired oligosaccharide or nucleotide sugar, it is often desirable to remove the proteins as a first step of the purification procedure.
  • proteins such as enzymes used to synthesize a desired oligosaccharide or nucleotide sugar
  • this separation is accomplished by choosing a membrane that has an MWCO which is less than the molecular mass of the protein or other macromolecule to be removed from the solution, but is greater than the molecular mass of the oligosaccharide being purified (i.e., the rejection ratio in this case is higher for the protein than for the desired saccharide).
  • UF membranes that are suitable for use in the methods of the invention are available from several commercial manufacturers, including Millipore Corp. (Bedford, Mass.), Osmonics, Inc. (Minnetonka, Minn.), Filmtec (Minneapolis, Minn.), UOP, Desalination Systems, Advanced Membrane Technologies, and Nitto.
  • the invention also provides methods for removing salts and other low molecular weight components from a mixture containing a saccharide of interest by using a nanofiltration (NF) or a reverse osmosis (RO) membrane.
  • Nanofiltration membranes are a class of membranes for which separation is based both on molecular weight and ionic charge. These membranes typically fall between reverse osmosis and ultrafiltration membranes in terms of the size of species that will pass through the membrane.
  • Nanofiltration membranes typically have micropores or openings between chains in a swollen polymer network. Molecular weight cut-offs for non-ionized molecules are typically in the range from 100-20,000 Daltons.
  • a nanofiltration membrane useful in the methods of the invention will typically have a retention characteristic for the saccharide of interest of from about 40% to about 100%, preferably from about 70% to about 100%, more preferably from about 90% to about 100%.
  • the nanofilter membranes used in the invention can be any one of the conventional nanofilter membranes, with polyamide membranes being particularly suitable.
  • Several commercial manufacturers including Millipore Corp. (Bedford, Mass.), Osmonics, Inc. (Minnetonka, Minn.), Filmtec, UOP, Advanced Membrane Technologies, Desalination Systems, and Nitto, among others, distribute nanofiltration membranes that are suitable for use in the methods of the invention.
  • suitable membranes include the Osmonics MX07, YK, GH (G-10), GE (G-5), and HL membranes, among others.
  • RO membranes also allow a variety of aqueous solutes to pass through them while retaining selected molecules.
  • osmosis refers to a process whereby a pure liquid (usually water) passes through a semipermeable membrane into a solution (usually sugar or salt and water) to dilute the solution and achieve osmotic equilibrium between the two liquids.
  • reverse osmosis is a pressure driven membrane process wherein the application of external pressure to the membrane system results in a reverse flux with the water molecules passing from a saline or sugar solution compartment into the pure water compartment of the membrane system.
  • a RO membrane which is semipermeable and non-porous, requires an aqueous feed to be pumped to it at a pressure above the osmotic pressure of the substances dissolved in the water.
  • An RO membrane can effectively remove low molecular weight molecules ( ⁇ 200 Daltons) and also ions from water.
  • the reverse osmosis membrane will have a retention characteristic for the saccharide of interest of from about 40% to about 100%, preferably from about 70% to about 100%, and more preferably from about 90% to about 100%.
  • Suitable RO membranes include, but are not limited to, the Filmtec BW-30, Filmtec SW-30, Filmtec SW-30HR, UOP RO membranes, Desal RO membranes, Osmonics RO membranes, Advanced Membrane Technologies RO membranes, and the Nitto RO membranes, among others.
  • a suitable RO membrane is Millipore Cat. No. CDRN500 60 (Millipore Corp., Bedford Mass.).
  • the membranes used in the invention may be employed in any of the known membrane constructions.
  • the membranes can be flat, plate and frame, tubular, spiral wound, hollow fiber, and the like.
  • the membrane is spiral wound.
  • the membranes can be employed in any suitable configuration, including either a cross-flow or a depth configuration.
  • cross-flow which is preferred for ultrafiltration, nanofiltration and reverse osmosis purifications according to the invention
  • the “feed” or solution from which the carbohydrate of interest is to be purified flows through membrane channels, either parallel or tangential to the membrane surface, and is separated into a retentate (also called recycle or concentrate) stream and a permeate stream.
  • retentate also called recycle or concentrate
  • the feed stream should flow, at a sufficiently high velocity, parallel to the membrane surface to create shear forces and/or turbulence to sweep away accumulating particles rejected by the membrane.
  • Cross-flow filtration thus entails the flow of three streams—feed, permeate and retentate.
  • a “dead end” or “depth” filter has only two streams—feed and filtrate (or permeate).
  • the recycle or retentate stream which retains all the particles and large molecules rejected by the membrane, can be entirely recycled to the membrane module in which the recycle stream is generated, or can be partially removed from the system.
  • the methods of the invention are used to purify saccharides from lower molecular weight components, for example, the desired saccharides are contained in the retentate stream (or feed stream, for a depth filter), while the permeate stream contains the removed contaminants.
  • the purification methods of the invention can be further optimized by adjusting the pressure, flow rate, and temperature at which the filtration is carried out.
  • UF, NF, and RO generally require increasing pressures above ambient to overcome the osmotic pressure of the solution being passed through the membrane.
  • the membrane manufacturers' instructions as to maximum and recommended operating pressures can be followed, with further optimization possible by making incremental adjustments.
  • the recommended pressure for UF will generally be between about 25 and about 100 psi, for NF between about 50 psi and about 1500 psi, and for RO between about 100 and about 1500 psi.
  • Flow rates of both the concentrate (feed solution) and the permeate can also be adjusted to optimize the desired purification.
  • Typical flow rates for the concentrate (P c ) will be between about 1 and about 15 gallons per minute (GPM), and more preferably between about 3 and about 7 GPM.
  • flow rates (Pf) of between about 0.05 GPM and about 10 GPM are typical, with flow rates between about 0.2 and about 1 GPM being preferred.
  • the temperature at which the purification is carried out can also influence the efficiency and speed of the purification. Temperatures of between about 0 and about 100° C. are typical, with temperatures between about 20 and 40° C. being preferred for most applications. Higher temperatures can, for some membranes, result in an increase in membrane pore size, thus providing an additional parameter that one can adjust to optimize a purification.
  • the filtration is performed in a membrane purification machine which provides a means for automating control of flow rate, pressure, temperature, and other parameters that can affect purification.
  • a membrane purification machine which provides a means for automating control of flow rate, pressure, temperature, and other parameters that can affect purification.
  • the Osmonics 213T membrane purification machine is suitable for use in the methods of the invention, as are machines manufactured by other companies listed above.
  • the membranes can be readily cleaned either after use or after the permeability of the membrane diminishes. Cleaning can be effected at a slightly elevated temperature if so desired, by rinsing with water or a caustic solution. If the streams contain small amounts of enzyme, rinsing in the presence of small amounts of surfactant, for instance ULTRASIL, is useful. Also, one can use prefilters (100-200 ⁇ m) to protect the more expensive nanofiltration membranes. Other cleaning agents can, if desired, be used. The choice of cleaning method will depend on the membrane being cleaned, and the membrane manufacturer's instructions should be consulted. The cleaning can be accomplished with a forward flushing or a backward flushing.
  • the purification methods of the invention can be used alone or in combination with other methods for purifying carbohydrates.
  • an ion exchange resin can be used to remove particular ions from a mixture containing a saccharide of interest, either before or after nanofiltration/reverse osmosis, or both before and after filtration. Ion exchange is particularly desirable if it is desired to remove ions such as phosphate and nucleotides that remain after a first round of nanofiltration or reverse osmosis.
  • this can be accomplished, for example, by adding an anion exchange resin such as AG1X-8 (acetate form, BioRad; see, e.g., BioRad catalog for other ion exchange resins) to a retentate that is at about pH 3.0 or lower until the phosphate concentration is reduced as desired.
  • AG1X-8 acetate form, BioRad; see, e.g., BioRad catalog for other ion exchange resins
  • acetic acid is released, so one may wish to follow the ion exchange with an additional purification through the nanofiltration or reverse osmosis system.
  • one can circulate the pH 3.0 or lower solution through an Osmonics MX07 or similar membrane until the conductivity of the permeate is low and stabilized.
  • the pH of the solution can then be raised to 7.4 with NaOH and the solution recirculated through the same membrane to remove remaining sodium acetate and salt. Cations can be removed in a similar manner; for example, to remove Mn 2+ , an acidic ion exchange resin can be used, such as AG50WX8 (He) (BioRad).
  • the purification methods of the invention are particularly useful for purifying oligosaccharides, modified saccharides, nucleotide sugars and modified nucleotide sugars prepared using enzymatic synthesis.
  • Enzymatic synthesis using glycosyltransferases provides a powerful method for preparing oligosaccharides; for some applications it is desirable to purify the oligosaccharide from the enzymes and other reactants in the enzymatic synthesis reaction mixture.
  • Preferred methods for producing many oligosaccharides involve glycosyl transferase cycles, which produce at least one mole of inorganic pyrophosphate for each mole of product formed and are typically carried out in the presence of a divalent metal ion.
  • glycosyltransferase cycles are the sialyltransferase cycles, which use one or more enzymes as well as other reactants. See, e.g., U.S. Pat. No. 5,374,541 WO 9425615 A, PCT/US96/04790, and PCT/US96/04824.
  • a reaction used for synthesis of sialylated oligosaccharides can contain a sialyltransferase ( FIG. 7 ), a CMP-sialic acid synthetase, a sialic acid, an acceptor for the sialyltransferase, CTP, and a soluble divalent metal cation.
  • ⁇ (2,3)sialtransferase (EC 2.4.99.6) transfers sialic acid to the non-reducing terminal Gal of a Gal ⁇ 163Glc disaccharide or glycoside. See, Van den Eijnden et al., J. Biol. Chem., 256:3159 (1981), Weinstein et al., J. Biol. Chem., 257:13845 (1982) and Wen et al, J. Biol. Chem., 267:21011 (1992).
  • Another exemplary ⁇ 2,3-sialyltransferase (EC 2.4.99.4) transfers sialic acid to the non-reducing terminal Gal of the disaccharide or glycoside. See, Rearick et al., J. Biol. Chem., 254:4444 (1979) and Gillespie et al., J. Biol. Chem., 267:21004 (1992). Further exemplary enzymes include Gal- ⁇ -1,4-GlcNAc ⁇ -2,6 sialyltransferase (See, Kurosawa et al. Eur. J. Biochem. 219: 375-381 (1994)).
  • the reaction mixture will also contain an acceptor for the sialyltransferase, preferably having a galactosyl unit.
  • Suitable acceptors include, for example, Gal ⁇ 1 ⁇ 3 GalNAc, lacto-N-tetraose, Gal ⁇ 1 ⁇ 3 GlcNAc, Gal ⁇ 1 ⁇ 3Ara, Gal ⁇ 1 ⁇ 6GlcNAc, Gal ⁇ 1 ⁇ 4Glc (lactose), Gal ⁇ 1 ⁇ 4Glc ⁇ 1-OCH 2 CH 3 , Gal ⁇ 1 ⁇ 4Glc ⁇ 1-OCH 2 CH 2 CH 3 , Gal ⁇ 1 ⁇ 4Glc ⁇ 1-OCH 2 C 6 H 5 , Gal ⁇ 1 ⁇ 4GlcNAc, Gal ⁇ 1-OCH 3 , melibiose, raffinose, stachyose, and lacto-N-neotetraose (LNnT).
  • LNnT lacto-N-neotetraose
  • the sialic acid present in the reaction mixture can include not only sialic acid itself (5-N-acetylneuraminic acid; 5-N-acetylamino-3,5-dideoxy-D-glycero-D-galacto-2-nonulosonic acid; NeuAc, and sometimes also abbreviated AcNeu or NANA), but also 9-substituted sialic acids such as a 9-O—C 1 -C 6 acyl-NeuAc like 9-O-lactyl-NeuAc or 9-O-acetyl-NeuAc, 9-deoxy-9-fluoro-NeuAc and 9-azido-9-deoxy-NeuAc.
  • the synthesis and use of these compounds in a sialylation procedure is described in international application WO 92/16640, published Oct. 1, 1992.
  • the reaction medium can further comprise a CMP-sialic acid recycling system comprising at least 2 moles of phosphate donor per each mole of sialic acid, and catalytic amounts of an adenine nucleotide, a kinase capable of transferring phosphate from the phosphate donor to nucleoside diphosphates, and a nucleoside monophosphate kinase capable of transferring the terminal phosphate from a nucleoside triphosphate to CMP.
  • a CMP-sialic acid recycling system comprising at least 2 moles of phosphate donor per each mole of sialic acid, and catalytic amounts of an adenine nucleotide, a kinase capable of transferring phosphate from the phosphate donor to nucleoside diphosphates, and a nucleoside monophosphate kinase capable of transferring the terminal phosphate from a nucleoside triphosphate to CMP.
  • a suitable CMP-sialic acid regenerating system comprises cytidine monophosphate (CMP), a nucleoside triphosphate (for example adenosine triphosphate (ATP), a phosphate donor (for example, phosphoenolpyruvate or acetyl phosphate), a kinase (for example, pyruvate kinase or acetate kinase) capable of transferring phosphate from the phosphate donor to nucleoside diphosphates and a nucleoside monophosphate kinase (for example, myokinase) capable of transferring the terminal phosphate from a nucleoside triphosphate to CMP.
  • CMP cytidine monophosphate
  • a nucleoside triphosphate for example adenosine triphosphate (ATP)
  • a phosphate donor for example, phosphoenolpyruvate or acetyl phosphate
  • reaction medium will preferably further comprise a phosphatase.
  • Pyruvate is a byproduct of the sialyltransferase cycle and can be made use of in another reaction in which N-acetylmannosamine (ManNAc) and pyruvate are reacted in the presence of NeuAc aldolase (EC 4.1.3.3) to form sialic acid.
  • ManNAc N-acetylmannosamine
  • NeuAc aldolase EC 4.1.3.3
  • advantage can be taken of the isomerization of GlcNAc to ManNAc, and the less expensive GlcNAc can be used as the starting material for sialic acid generation.
  • the sialic acid can be replaced by ManNAc (or GlcNAc) and a catalytic amount of NeuAc aldolase.
  • NeuAc aldolase also catalyzes the reverse reaction (NeuAc to ManNAc and pyruvate)
  • the produced NeuAc is irreversibly incorporated into the reaction cycle via CMP-NeuAc catalyzed by CMP-sialic acid synthetase.
  • the starting material, ManNAc can also be made by the chemical conversion of GlcNAc using methods known in the art (see, e.g., Simon et al., J. Am. Chem. Soc. 110:7159 (1988).
  • the reaction medium will preferably contain, in addition to a galactosyltransferase, donor substrate, acceptor sugar and divalent metal cation, a donor substrate recycling system comprising at least 1 mole of glucose-1-phosphate per each mole of acceptor sugar, a phosphate donor, a kinase capable of transferring phosphate from the phosphate donor to nucleoside diphosphates, and a pyrophosphorylase capable of forming UDP-glucose from UTP and glucose-1-phosphate and catalytic amounts of UDP and a UDP-galactose-4-epimerase.
  • a donor substrate recycling system comprising at least 1 mole of glucose-1-phosphate per each mole of acceptor sugar, a phosphate donor, a kinase capable of transferring phosphate from the phosphate donor to nucleoside diphosphates, and a pyrophosphorylase capable of forming UDP-glucose from UTP and glucose-1-phosphat
  • Exemplary galactosyltransferases include ⁇ (1,3) galactosyltransferase (E.C. No. 2.4.1.151, see, e.g., Dabkowski et al., Transplant Proc. 25: 2921 (1993) and Yamamoto et al., Nature 345:229-233 (1990)) and ⁇ (1,4) galactosyltransferase (E.C. No. 2.4.1.38).
  • Oligosaccharides synthesized by other enzymatic methods can also be purified by the methods of the invention.
  • the methods are useful for purifying oligosaccharides produced in non-cyclic or partially cyclic reactions such as simple incubation of an activated saccharide and an appropriate acceptor molecule with a glycosyltransferase under conditions effective to transfer and covalently bond the saccharide to the acceptor molecule.
  • Glycosyltransferases which include those described in, e.g., U.S. Pat. No. 5,180,674, and International Patent Publication Nos.
  • glycosyltransferases encoded by the los locus of Neisseria can be bound to a cell surface or unbound. Oligosaccharides that can be obtained using these glycosyltransferases include, for example,
  • sialic acid and any sugar having a sialic acid moiety are sialic acid and any sugar having a sialic acid moiety.
  • exemplary species include sialic acid species modified with a linker (e.g., glycyl sialic acid) and with a polymer (e.g., poly(ethylene glycol).
  • linker e.g., glycyl sialic acid
  • polymer e.g., poly(ethylene glycol
  • Other compounds include sialyl galactosides, including the sialyl lactosides, as well as compounds having the formula:
  • R′ is alkyl or acyl from 1-18 carbons, 5,6,7,8-tetrahydro-2-naphthamido; benzamido; 2-naphthamido; 4-aminobenzamido; or 4-nitrobenzamido.
  • R is a hydrogen, a alkyl C 1 -C 6 , a saccharide, an oligosaccharide or an aglycon group having at least one carbon atom.
  • A represents an alkylene group of from 1 to 18 carbon atoms optionally substituted with halogen, thiol, hydroxy, oxygen, sulfur, amino, imino, or alkoxy
  • Z is hydrogen, —OH, —SH, —NH 2 , —NHR 1 , —N(R 1 ) 2 , —CO 2 H, —CO 2 R 1 , —CONH 2 , —CONHR 1 , —CON(R 1 ) 2 , —CONHNH 2 , or —OR 1 wherein each R 1 is independently alkyl of from 1 to 5 carbon atoms.
  • R can be:
  • R can also be 3-(3,4,5-trimethoxyphenyl)propyl.
  • the present invention is also useful for purifying a variety of compounds that comprise selectin-binding carbohydrate moieties.
  • selectin-binding moieties have the general formula:
  • R 0 is (C 1 -C 8 alkyl)carbonyl, (C 1 -C 8 alkoxy)carbonyl, or (C 2 -C 9 alkenyloxy)carbonyl
  • R 1 is an oligosaccharide or a group having the formula:
  • R 3 and R 4 may be the same or different and may be H, C 1 -C 8 alkyl, hydroxy-(C 1 -C 8 alkyl), aryl-(C 1 -C 8 alkyl), or (C 1 -C 8 alkoxy)-(C 1 -C 8 alkyl), substituted or unsubstituted.
  • R 2 may be H, C 1 -C 8 alkyl, hydroxy-(C 1 -C 8 alkyl), aryl-(C 1 -C 8 -alkyl), (C 1 -C 8 alkyl)-aryl, alkylthio, ⁇ 1,2Man, ⁇ 1,6GalNAc, ⁇ 1,3Gal ⁇ 1,4Glc, ⁇ 1,2Man-R 8 , ⁇ 1,6GalNAc-R 8 , and ⁇ 1,3Gal-R 8 .
  • R 8 may be H, C 1 -C 8 alkyl, C 1 -C 8 alkoxy, hydroxy-(C 1 -C 8 alkyl), aryl-(C 1 -C 8 alkyl), (C 1 -C 8 alkyl)-aryl, or alkylthio.
  • m and n are integers and may be either 3 or 4; p may be zero or 1.
  • substituted groups mentioned above may be substituted by hydroxy, hydroxy(C 1 -C 4 alkyl), polyhydroxy(C 1 -C 4 alkyl), alkanoamido, or hydroxyalknoamido substituents.
  • Preferred substituents include hydroxy, polyhydroxy(C 3 alkyl), acetamido and hydroxyacetamido.
  • a substituted radical may have more than one substitution, which may be the same or different.
  • the oligosaccharide is preferably a trisaccharide.
  • Preferred trisaccharides include NeuAc ⁇ 2,3Gal ⁇ 1,4GlcNAc ⁇ 1,3 or NeuGc ⁇ 2,3Gal ⁇ 1,4GlcNAc ⁇ 1,3.
  • R 1 is the group having the formula
  • R 3 and R 4 preferably form a single radical having the formula
  • R 5 is C 3 -C 7 divalent alkyl, substituted or unsubstituted
  • R 6 and R 7 are the same or different and are C 1 -C 6 divalent alkyl, substituted or unsubstituted.
  • q and r are integers which may be the same or different and are either zero or 1. The sum of q and r is always at least 1.
  • a more preferred structure for a single radical formed by R 3 and R 4 is one having the formula
  • R 6 is C 3 -C 4 divalent alkyl, substituted or unsubstituted.
  • R 6 may have the formula —CH 2 —CH 2 —CH 2 —CH 2 —, preferably substituted.
  • the radical can be substituted with hydroxy, polyhydroxy(C 3 alkyl), and substituted or unsubstituted alkanoamido groups, such as acetamido or hydroxyacetamido.
  • the substituted structure will typically form a monosaccharide, preferably a sialic acid such as NeuAc or NeuGc linked ⁇ 2,3 to the Gal residue.
  • both m and n are integers and can be either 3 or 4.
  • Gal is linked ⁇ 1,4 and Fuc is linked ⁇ 1,3 to GlcNAc.
  • This formula includes the SLe x tetrasaccharide.
  • SLe x has the formula NeuAc ⁇ 2,3Gal ⁇ 1,4(Fuc ⁇ 1,3)GlcNAc ⁇ 1-. This structure is selectively recognized by LECCAM-bearing cells.
  • Other compounds that one can purify using the methods include those described in U.S. Pat. No. 5,604,207 having the formula:
  • Z is hydrogen, C 1 -C 6 acyl or
  • R 1 is selected from the group consisting of C(O), SO 2 , HNC(O), OC(O) and SC(O).
  • R 1 is selected from the group consisting of an aryl, a substituted aryl and a phenyl C 1 -C 3 alkylene group, wherein said aryl substitutent is selected from the group consisting of a halo, trifluoromethyl, nitro, C 1 -C 18 alkyl, C 1 -C 18 alkoxy, amino, mono-C 1 -C 18 alkylamino, di-C 1 -C 18 alkylamino, benzylamino, C 1 -C 18 alkylbenzylamino, C 1 -C 18 thioaklyl and C 1 -C 18 alkyl carboxamido groups, or R 1 Y is allyloxycarbonyl or chloroacetyl.
  • monosaccharide including
  • R 5 is selected from the group consisting of hydrogen, benzyl, methoxybenzyl, dimethoxybenzyl and C 1 -C 6 acyl.
  • R 7 is methyl or hydroxymethyl.
  • X is selected from the group consisting of C 1 -C 6 acyloxy, C 2 -C 6 hydroxylacyloxy, hydroxy, halo and azido.
  • a related set of structures included in the general formula are those in which Gal is linked ⁇ 1,3 and Fuc is linked ⁇ 1,4.
  • the tetrasaccharide, NeuAc ⁇ 2,3Gal ⁇ 1,3(Fuc ⁇ 1,4)GlcNAc ⁇ 1- termed here SLe a
  • selectin receptors See, Berg et al., J. Biol. Chem., 266:14869-14872 (1991).
  • Berg et al. showed that cells transformed with E-selectin cDNA selectively bound neoglycoproteins comprising SLe a .
  • compounds that can be purified according to the invention are lacto-N-neotetraose (LNnT), GlcNAc ⁇ 1,3Gal ⁇ 1,4Glc (LNT-2), sialyl( ⁇ 2,3)-lactose, and sialyl( ⁇ 2,6)-lactose.
  • a modified sialic acid has the following structure:
  • R 1 , R 2 , R 3 and R 4 are each independently selected from H, OR 5 , NR 6 R 7 , substituted alkyl, unsubstituted alkyl, substituted heteroalkyl and unsubstituted heteroalkyl.
  • R 5 is H, substituted alkyl, unsubstituted alkyl, substituted heteroalkyl or unsubstituted heteroalkyl.
  • the symbols R 6 and R 7 independently represent H, substituted alkyl, unsubstituted alkyl, substituted heteroalkyl and unsubstituted heteroalkyl.
  • B is a nucleoside. Exemplary nucleosides include AMP, UMP, GMP, CMP, TMP, ADP, UDP, GDP, CDP, TDP, ATP, UTP, GTP, CTP, TTP, cAMP and cGMP.
  • the sialic acid is modified with a linker group.
  • Preferred sites for such modification are R 1 or R 2 .
  • at least one of R 1 and R 2 includes a linker.
  • An exemplary linker is a glycyl linker.
  • the modified sialic acid has the following structure:
  • a modifying group is attached to the sialic acid through the linker.
  • An exemplary species according to this description includes a modifying group attached through the free amine moiety of the linker in the figure above.
  • a presently preferred modifying group is a water-soluble polymer. Poly(ethylene glycol) is a preferred water-soluble polymer.
  • the methods of the invention are useful not only for purifying carbohydrates (and modified carbohydrates and nucleotide sugars) that that are newly synthesized, but also those that are the products of degradation, e.g., enzymatic degradation. See, e.g., Sinnott, M. L., Chem. Rev. 90: 1171-1202 (1990) for examples of enzymes that catalyze degradation of oligosaccharides.
  • the invention also provides methods for purifying nucleotides, nucleotide sugars, and related compounds.
  • a nucleotide sugar such as GDP-fucose, GDP-mannose, CMP-NeuAc, UDP-glucose, UDP-galactose, UDP-N-acetylgalactosamine, and the like, can be purified by the methods described herein.
  • the methods are also useful for purifying nucleotides and nucleotides in various states of phosphorylation (e.g., CMP, CDP, CTP, GMP, GDP, GTP, TMP, TDP, TTP, AMP, ADP, ATP, UMP, UDP, UTP), as well as the deoxy forms of these and other nucleotides, including modified nucleotides.
  • states of phosphorylation e.g., CMP, CDP, CTP, GMP, GDP, GTP, TMP, TDP, TTP, AMP, ADP, ATP, UMP, UDP, UTP
  • the method of the invention can be used to prepare and purify nucleotide sugars to a high degree of purity on a multi-kilogram scale (e.g., at least about 1 kg, preferably at least about 1.5 kg, more preferably at least about 2 kg, and even more preferably, at least about 3 kg of purified sugar nucleotide per synthesis/purification run).
  • a multi-kilogram scale e.g., at least about 1 kg, preferably at least about 1.5 kg, more preferably at least about 2 kg, and even more preferably, at least about 3 kg of purified sugar nucleotide per synthesis/purification run.
  • nucleotide sugars e.g., those bearing a linker arm (e.g., a glycl linker arm), a modifying group (e.g., a water-soluble polymer (e.g., PEG)), or a modifying group attached to the linker arm (e.g., PEG attached to the sugar through a glycyl linker).
  • a linker arm e.g., a glycl linker arm
  • a modifying group e.g., a water-soluble polymer (e.g., PEG)
  • a modifying group attached to the linker arm e.g., PEG attached to the sugar through a glycyl linker
  • the process of the invention routinely provides nucleotide sugars, e.g., CMP-NAN, in recovered yields of purified materials in greater that 40%, e.g., of from about 40% to about 80%.
  • the yield of isolated CMP-NAN is from about 50% to about 70% of the theoretical synthesis yield.
  • the process of the invention provides nucleotide sugars that are at least 80% pure, preferably at least 85% pure, more preferably, at least 90% pure and still more preferably, at least 95% pure.
  • the nucleotide sugar is a CMP-sialic acid, e.g., CMP-NAN (N-acetylneuraminic acid).
  • CMP-NAN N-acetylneuraminic acid
  • a membrane-based methodology is utilized to purify the nucleotide sugar from reaction components.
  • exemplary reaction components include cytidine monophosphate and its active analogues, and cytidine diphosphate, unreacted sialic acid, salts (e.g., PO 4 3 ⁇ , Mn 2+ ).
  • the amount of CMP, CDP and/or CTP of the product is less than about 20%, preferably, less than about 15%, more preferably, less than about 10% and still more preferably less than 5%.
  • the content of unreacted sialic acid, e.g., NAN, in the final product is less than about than about 20%, preferably, less than about 15%, more preferably, less than about 10%, still more preferably, less than about 5% and even more preferably, less than about 2%.
  • the phosphate content of the final product is less than about 5%, preferably, less than about 2%, and more preferably, about 0%.
  • the invention also provides methods for synthesizing and purifying nucleotide sugars.
  • the nucleotide sugar is enzymatically synthesized from a nucleotide and a sugar in the presence of an enzyme. After the nucleotide sugar is synthesized, the nucleotide sugar is purified according to a method of the invention.
  • a nucleotide sugar solution is optionally clarified by filtration.
  • the nucleotide sugar solution passes through a membrane bag filter in which contaminating salts and other undesired contaminants are filtered out of the nucleotide sugar solution.
  • the clarification step can be incorporated at any step of the process.
  • the nucleotide sugar solution is clarified after synthesis of the nucleotide sugar.
  • the nucleotide sugar solution may be clarified one or more times.
  • the nucleotide sugar solution is purified using hollow fiber filtration.
  • Hollow fiber filtration removes proteins introduced by the enzyme preparation of the nucleotide sugar.
  • the hollow fiber membrane retains proteins from the enzyme preparation while allowing for passage of the nucleotide sugar solution through the membrane.
  • the hollow fiber membrane comprises a hollow fiber membrane with a tangential filtration skid.
  • the hollow fiber filtration step can be incorporated at any step of the process.
  • the nucleotide sugar solution goes through hollow fiber filtration after clarification.
  • the nucleotide sugar solution goes through hollow fiber filtration after synthesis of the nucleotide sugar.
  • the nucleotide sugar solution may be filtered one or more times using hollow fiber filtration.
  • the nucleotide sugar solution is purified using nanofiltration.
  • Nanofiltration removes salts and other low molecular weight components from a mixture.
  • Nanofiltration membranes separate molecules based on molecular weight and ionic charge. Molecular weight-cutoffs for non-ionized molecules are typically in the range from 100-20,000 daltons.
  • saccharides of interest will be retained by the nanofiltration membrane and contaminating salts and other undesired components will pass through.
  • the nanofiltration step can be incorporated at any step of the process.
  • the nucleotide sugar solution goes through hollow-fiber filtration first and then nanofiltration.
  • the nucleotide sugar solution goes through nanofiltration first and then hollow fiber filtration.
  • the nucleotide sugar solution may be purified using either hollow-fiber filtration or nanofiltration.
  • the nucleotide sugar solution goes through nanofiltration after clarification.
  • the nucleotide sugar solution goes through nanofiltration after synthesis of the nucleotide sugar.
  • the nucleotide sugar solution may be filtered one or more times using nanofiltration. After nanofiltration, the purified nucleotide sugar solution may generally be stored or may undergo further purification.
  • the nucleotide sugar solution may optionally be decolorized (e.g., by passing the solution over activate carbon).
  • decolorization involves passing the nucleotide sugar solution over a pre-packed column of activated carbon attached to a chromatography system. Decolorization can be incorporated at any step of the process.
  • the nucleotide sugar solution is decolorized after nanofiltration.
  • the nucleotide sugar solution is decolorized after hollow-fiber filtration.
  • the nucleotide sugar solution is decolorized after clarification. The nucleotide sugar solution may be decolorized one or more times.
  • the nucleotide sugar solution is purified using a charged depth media filter.
  • the charged depth media filter removes endotoxins from the nucleotide sugar solution. Endotoxins are toxic, natural compounds such as lipopolysaccharides found inside pathogens on the outer cell wall of bacteria. Purification by a charged depth media filter can be incorporated at any step of the process.
  • the nucleotide sugar solution is filtered after decolorization.
  • nucleotide sugar solution is purified by a charged depth media filter after nanofiltration. In yet another embodiment, the nucleotide sugar solution is purified by a charged depth media filter after hollow-fiber filtration. In another embodiment, the nucleotide sugar solution is purified by a charged depth media filter after clarification. In another embodiment, the nucleotide sugar solution is purified by a charged depth media filter after synthesis of the nucleotide sugar. The nucleotide sugar solution may be filtered one or more times using a charged depth media filter.
  • the nucleotide sugar solution is purified using a sterile filter.
  • the sterile filter removes contaminating salts and other undesired contaminants from the nucleotide sugar solution.
  • the sterile filter is pre-packaged and sterilized with a bag manifold system for final filtration and storage. Purification by a sterile filter can be incorporated at any step of the process.
  • the nucleotide sugar solution is filtered by a sterile filter after purification by a charged depth media filter.
  • the nucleotide sugar solution is purified by a sterile filter after decolorization.
  • the nucleotide sugar solution is purified by a sterile filter after nanofiltration. In another embodiment, the nucleotide sugar solution is purified by a sterile filter after hollow fiber filtration. In another embodiment, the nucleotide sugar solution is purified by a sterile filter after clarification. In another embodiment, the nucleotide sugar solution is purified by a sterile filter after synthesis of the nucleotide sugar. The nucleotide sugar solution may be filtered one or more times using a sterile filter.
  • the nucleotide sugar is first synthesized (1) from a nucleotide and a sugar in the presence of an enzyme.
  • the nucleotide sugar is clarified by filtration (2) and transferred into a mobile tank (3).
  • the clarified nucleotide sugar solution is concentrated using a hollow fiber filtration unit with a tangential flow filtration skid and diafiltered with purified water (4) and (5).
  • the nucleotide sugar solution is transferred to a mobile tank (6) and the pH is adjusted.
  • the purified solution is concentrated again and diafiltered with purified water using a nanofiltration system (7) and (8).
  • the nucleotide sugar solution is then decolorized in which the color is removed from the nucleotide sugar solution (9).
  • the nucleotide sugar solution subsequently undergoes two filtrations.
  • the nucleotide sugar solution is filtered using a charged depth media filter in which endotoxins are removed (10).
  • the charged depth media filter is a CUNO Zeta Plus 60 ZA filter or an equivalent.
  • the nucleotide sugar solution is optionally filtered using a 0.2 ⁇ m sterile filter (11).
  • the sterile filter is a CUNO LifeASSURE 0.2 ⁇ m sterile filter or an equivalent.
  • the purified nucleotide sugar solution is appropriate for storage.
  • nucleotide sugars that can be purified by the method described above include, but are not limited to, CMP-NAN, GDP-fucose, GDP-mannose, CMP-NeuAc, UDP-Glucose, UDP-galactose and UDP-N-acetylgalactosamine, and modified analogues thereof.
  • the nucleotide sugar is CMP-NAN or a modified CMP-NAN.
  • the invention also provides methods for synthesizing and purification of a nucleotide-Glycyl Sialic Acid (“nucleotide-GSC”).
  • the synthesis of the nucleotide-GSC begins with the synthesis of the protected Fmoc-glycyl-mannosamine (“FGM”).
  • FGM Fmoc-glycyl-mannosamine
  • mannosamine and Fmoc-Glycyl-OSU are reacted in an aqueous solution under basic conditions.
  • the aqueous solution may contain a base, e.g., sodium methoxide and an organic cosolvent, e.g., methanol, to facilitate the reaction.
  • the FGM is optionally purified.
  • FGM is purified by chromatography, e.g., silica gel chromatography. FGM may be chromatographed one or more times.
  • FGM converted to the corresponding sialic acid analogue by reaction with pyruvate to form Fmoc-glycyl-sialic acid (“FSC”).
  • FSC Fmoc-glycyl-sialic acid
  • This reaction is efficiently catalyzed by a sialic acid aldolase.
  • Appropriate sialic acid aldolases are commercially available.
  • the reaction mixture includes at least the nucleotide, the aldolase, MnCl 2 and water.
  • the resulting FSC is then coupled to a nucleotide in the presence of an enzyme to form the resulting product, nucleotide-FSC.
  • the nucleotide-FSC is optionally purified.
  • the nucleotide-FSC is purified by chromatography, e.g., reverse phase chromatography.
  • the reverse phase chromatography is C18 reverse phase chromatography.
  • the nucleotide FSC can be filtered (e.g., 0.22 filter) prior to and/or after chromatography.
  • the nucleotide-FSC is preferably deprotected to produce the free amine analogue of the linker-nucleotide sugar construct.
  • deprotection is effected with methanol:water:dimethylamine. Deprotection results in a modified sialic acid, nucleotide-Glycyl-Sialic Acid (“GSC”).
  • GSC nucleotide-Glycyl-Sialic Acid
  • the GSC is optionally purified, filtered and/or lyophilized.
  • FIG. 4 An exemplary process for nucleotide-GSC synthesis and purification is described in FIG. 4 .
  • nucleotide-GSC The synthesis of nucleotide-GSC begins with the synthesis and concentration of FGM (12). FGM is then purified using silica flash column chromatography (13). FGM is reacted with pyruvate to form FSC (14). The resulting FSC is then coupled to a nucleotide in the presence of an enzyme to form the resulting product, nucleotide-FSC (14). The nucleotide-FSC is then purified (15). The nucleotide-FSC is deprotected (16) thus cleaving off the Fmoc group from the nucleotide-FSC. The resultant product is a nucleotide-GSC. The nucleotide-GSC is further purified and concentrated (16). The nucleotide-GSC is then lyophilized (17) and subsequently released for testing (18).
  • An exemplary nucleotide that can be used for the synthesis and purification of a nucleotide-GSC includes, but is not limited to, CMP, CDP, CTP, GMP, GDP, GTP, TMP, TDP, TTP, AMP, ADP, ATP, UMP, UDP, UTP, as well as the deoxy forms of these and other nucleotides.
  • the nucleotide is CMP.
  • the invention provides also methods for synthesizing and purification of a nucleotide-Sialic Acid (“SA”)-PEG.
  • SA nucleotide-Sialic Acid
  • the synthesis of the nucleotide-SA-PEG begins with Fmoc-glycyl-mannosamine (“FGM”). Synthesis and purification of this starting material is discussed above.
  • FGM Fmoc-glycyl-mannosamine
  • GSC and methoxy-paranitrophenyl-carbomate-polyethylene glycol (“mPEG-pNP”) are combined in under conditions suitable to allow formation of a conjugate between the PEG and the free amine of the glycyl linker.
  • the synthesis reaction is performed in a 80% THF: 20% H 2 O solution.
  • nucleotide-SA-PEG is purified. In a preferred embodiment, the nucleotide-SA-PEG is purified by reverse phase chromatography.
  • FIG. 5 An exemplary process of nucleotide-SA-PEG (“PSC”) synthesis and purification is described in FIG. 5 .
  • nucleotide-SA-PEG The synthesis of nucleotide-SA-PEG begins with the synthesis of FGM (19). FGM is rotovapped (20). FGM is then purified using silica column chromatography (21). FGM is detected by a UV light (22) and rotovapped (23). FGM is reacted with pyruvate to form FSC (24). The resulting FSC is then coupled to a nucleotide in the presence of an enzyme to form the resulting product, nucleotide-FSC (24). The nucleotide-FSC is then purified using a 0.2 ⁇ m filter (25) and a C18 reverse phase chromatography (26). The solution is then detected by a UV ray (27).
  • the nucleotide-FSC is deprotected (28) thus cleaving off the Fmoc group from the nucleotide-FSC.
  • the resultant product is a nucleotide-GSC.
  • the nucleotide-GSC is rotovapped (29).
  • the nucleotide-GSC is further purified (30) by a 0.2 ⁇ m filter.
  • the nucleotide-GSC is then lyophilized (31).
  • the nucleotide-GSC is reacted with a mPEG-pNP to form nucleotide-SA-PEG (“PSC”) (32).
  • the PSC is purified by reverse phase chromatography (33).
  • the PSC is detected by UV light (34) and rotovapped (35).
  • the PSC is then lyophilized (36).
  • An exemplary nucleotide that can be used for the synthesis and purification of a nucleotide-SA-PEG includes, but is not limited to, CMP, CDP, CTP, GMP, GDP, GTP, TMP, TDP, TTP, AMP, ADP, ATP, UMP, UDP, UTP, as well as the deoxy forms of these and other nucleotides.
  • the nucleotide is CMP.
  • the invention further provides methods for purifying a glycosyltransferase.
  • a glycosyltransferase solution is harvested, isolating the enzyme from cell culture and other debris to produce a suitable feed material for subsequent purification steps.
  • the harvesting reaction occurs at about pH 6.
  • the harvesting step can be incorporated at any step of the process.
  • the glycosyltransferase is optionally precipitated from the solution.
  • the glycosyltransferase is precipitated by addition of calcium chloride (“CaCl 2 ”) to the solution.
  • the pH of the solution can be adjusted as appropriate.
  • the pH of the precipitation reaction is adjusted to about 7.5.
  • the mixture can be incubated for any suitable time under appropriate conditions.
  • the precipitation step lasts for about 30 minutes at about 4° C.
  • Other exemplary additives include EDTA.
  • the recovery of glycosyltransferase after precipitation is about 80% to about 100%, preferably from about 90% to about 100%, even more preferably about 100%.
  • the glycosyltransferase solution is subjected to membrane filtration.
  • Exemplary membrane filters have a pore size of about 0.1 ⁇ m to about 0.5 ⁇ m, preferably about 0.1 ⁇ m to about 0.3 ⁇ m, and more preferably about 0.20 ⁇ m to about 0.25 ⁇ m.
  • the filtration step can be incorporated at any step of the process.
  • the glycosyltransferase solution is ultrafiltrated.
  • the ultrafiltration membrane has a molecular weight cut-off (MWCO) between about 5 kDa and about 200 kDa.
  • the glycosyltransferase solution is equilibrated with 15 mM sodium phosphate buffer, pH 7.5 and conductivity is 2 ms/cm. In another embodiment, the glycosyltransferase solution is equilibrated with 15 mM sodium phosphate, pH 7.5. In another embodiment, the glycosyltransferase solution is equilibrated with 15 mM sodium phosphate, 0.01M NaCl, pH 7.5. In another embodiment, the glycosyltransferase is equilibrated with 15 mM sodium phosphate, 0.05M NaCl, pH 7.5.
  • the glycosyltransferase solution is equilibrated with 15 mM sodium phosphate, 0.10M NaCl, pH 7.5.
  • the pH range of the sodium phosphate may range from about 5.5 to about 8.5.
  • the pH range of the glycosyltransferase solution may range from about 6.5 to about 7.5.
  • the test excipient includes, but is not limited to, glycerol, mannitol, sorbitol, sucrose and Tween-20.
  • the percent recovery of glycosyltransferase after ultrafiltration is about 45% to about 85%.
  • the percent recovery of glycosyltransferase after ultrafiltration is about 55% to about 75%. In a more preferred embodiment, the percent recovery of glycosyltransferase after ultrafiltration is about 65%.
  • the ultrafiltration step can be incorporated at any step of the process. In a preferred embodiment, the glycosyltransferase solution is ultrafiltrated after the filtration step. In another preferred embodiment, the glycosyltransferase solution is ultrafiltrated after the precipitation step.
  • the glycosyltransferase solution is ultrafiltrated after the harvesting step.
  • the glycosyltransferase solution may be ultrafiltrated one or more times.
  • the glycosyltransferase is purified by chromatography, e.g., ion exchange chromatography.
  • the glycosyltransferase is purified using an anion exchange column.
  • the anion exchange column is a Mustang Q or an equivalent.
  • the recovery of glycosyltransferase after anion exchange chromatography is preferably from about 80% to about 100%.
  • the recovery of glycosyltransferase after chromatography is about 90% to about 100%.
  • the recovery of glycosyltransferase after chromatography is about 100%.
  • the chromatography step can be incorporated at any step of the process.
  • the glycosyltransferase is purified by chromatography after an ultrafiltration step. In a preferred embodiment, the glycosyltransferase is purified by chromatography after the filtration step. In another preferred embodiment, the glycosyltransferase is purified by chromatography after the precipitation step. In another preferred embodiment, the glycosyltransferase is purified by chromatography after the harvesting step.
  • the glycosyltransferase solution purified using a cation exchange column In another exemplary embodiment, the glycosyltransferase solution purified using a cation exchange column.
  • An exemplary cation exchange chromatography protocol utilizes a Unosphere S resin or an equivalent.
  • the cation exchange column is a 30S or an equivalent.
  • the cation exchange column is eluted with at least one buffer.
  • the first buffer comprises a 15 mM sodium phosphate, pH 7.5.
  • the column is further eluted with a second buffer.
  • An exemplary second buffer includes 1M NaCl, 15 mM sodium phosphate, pH 7.5.
  • Elution of the column is optionally performed while developing a eluant gradient.
  • the added elution step has a rate of about 5 ms/cm to about 10 ms/cm.
  • the recovery of glycosyltransferase after cation exchange chromatography is about 35% to about 75%.
  • the recovery of glycosyltransferase after chromatography is about 45% to about 65%.
  • the percent recovery of glycosyltransferase after chromatography is about 55%.
  • the chromatography step can be incorporated at any step of the process.
  • the glycosyltransferase is purified by cation exchange chromatography after the anion exchange chromatography step described in the immediately preceding paragraph. In a preferred embodiment, the glycosyltransferase is purified by anion or cation exchange chromatography after the ultrafiltration step. In another preferred embodiment, the glycosyltransferase is purified by ion exchange chromatography after the filtration step. In yet another preferred embodiment, the glycosyltransferase is purified by chromatography after the precipitation step. In another preferred embodiment, the glycosyltransferase solution is purified by chromatography after the harvesting step. The glycosyltransferase solution may be purified by chromatography one or more times.
  • the glycosyltransferase is purified by hydroxyapatite (HA) chromatography.
  • HA hydroxyapatite
  • Exemplary hydroxyapatite sorbents are selected from ceramic and crystalline hydroxyapatite materials.
  • the particle size of the ceramic hydroxyapatite sorbent is between about 20 ⁇ m and about 180 ⁇ m, preferably about 60 to about 100 ⁇ m, and, more preferably about 80 ⁇ m.
  • the recovery of glycosyltransferase after HA chromatography is about 50% to about 90%, preferably from about 60% to about 90%.
  • the percent recovery of glycosyltransferase after chromatography is about 72%.
  • HA chromatography can be incorporated at any step of the process.
  • the glycosyltransferase is purified by HA chromatography after the cation chromatography step described above in the immediately preceding paragraph.
  • the glycosyltransferase is purified by HA chromatography after the anion exchange chromatography step described above.
  • the glycosyltransferase is purified by HA chromatography after the ultrafiltration step.
  • the glycosyltransferase is purified by HA chromatography after the filtration step.
  • the glycosyltransferase is purified by HA chromatography after the precipitation step.
  • the glycosyltransferase is purified by HA chromatography after the harvesting step.
  • the glycosyltransferase solution may be purified by HA chromatography one or more times.
  • the glycosyltransferase is purified by hydrophobic interaction chromatography (“HIC”).
  • HIC hydrophobic interaction chromatography
  • the hydrophobic moieties of the column matrix are selected from, but are not limited to, alkyl groups, aromatic groups and ethers.
  • the HIC column is packed with a phenyl 650M resin, butyl 650M resin, phenyl HP resin.
  • the glycosyltransferase solution is equilibrated with 0.5M ammonium sulfate, 20 mM sodium phosphate, pH 7.
  • the glycosyltransferase is purified by HIC chromatography after purification by the HA chromatography step described above in the immediately preceding paragraph.
  • the glycosyltransferase is purified by chromatography after the cation exchange chromatography step described above.
  • the glycosyltransferase is purified by chromatography after the anion exchange chromatography step described above.
  • the glycosyltransferase solution is purified by chromatography after the ultrafiltration step.
  • the glycosyltransferase solution is purified by chromatography after the filtration step.
  • the glycosyltransferase solution is purified by chromatography after the precipitation step. In another preferred embodiment, the glycosyltransferase solution is purified by chromatography after the harvesting step. The glycosyltransferase solution may be purified by chromatography one or more times.
  • the glycosyltransferase can be purified by ultrafiltration.
  • the glycosyltransferase solution is equilibrated with 5 mM Bis-Tris, 0.1M NaCl, 5% sorbitol, pH 6.5. It is generally preferred that the recovery of glycosyltransferase after ultrafiltration is about 80% to about 100%. In a preferred embodiment, the percent recovery of glycosyltransferase after chromatography is about 90% to about 100%.
  • Ultrafiltration can be incorporated at any step of the process.
  • the glycosyltransferase is purified by ultrafiltration after the HIC chromatography step in the immediately preceding paragraph described above.
  • the glycosyltransferase is purified by ultrafiltration after purification by the HA chromatography step described in the preceding paragraph above.
  • the glycosyltransferase is purified by ultrafiltration after the cation exchange chromatography step described above.
  • the glycosyltransferase is purified by ultrafiltration after the anion exchange chromatography step described above.
  • the glycosyltransferase is purified by a second ultrafiltration step after the first ultrafiltration step described above.
  • the glycosyltransferase can be purified by ultrafiltration after the filtration step or precipitation steps.
  • the glycosyltransferase is purified by ultrafiltration after the harvesting step. The glycosyltransferase may be purified by ultrafiltration one or more times.
  • the total percent recovery of glycosyltransferase from the purification process is about 5% to about 45%. In a preferred embodiment, the percent recovery of glycosyltransferase from the purification process is about 15% to about 35%.
  • the glycosyltransferase is first harvested (37). In an exemplary embodiment, the harvesting reaction takes place at pH 6. After harvesting, the glycosyltransferase is precipitated using calcium chloride (38). The glycosyltransferase is then filtered (39). After filtration, the glycosyltransferase undergoes ultrafiltration (40). The glycosyltransferase passes through an anion exchange column such as Mustang Q (41) or an equivalent. After passing through the anion exchange column, the glycosyltransferase passes through a cation exchange column, such as UNOsphere S (42) or an equivalent. The glycosyltransferase is then passed through a HA Type I chromatography column (43). The glycosyltransferase then undergoes ultrafiltration (44).
  • an anion exchange column such as Mustang Q (41) or an equivalent.
  • a cation exchange column such as UNOsphere S (42) or an equivalent.
  • the glycosyltransferase is a sialyltransferase.
  • the sialyltranferase includes, but is not limited to, ST6GalNac, ST3Gal3, ⁇ (2,3)-sialyltransferase, ⁇ (2,6)-sialyltransferase and ⁇ (2,8)-sialyltransferase.
  • the sialyltransferase includes, but is not limited to, a sialyltranferase listed in the table in FIG. 7 .
  • the sialyltransferase is ST6GalNac.
  • FGM Fmoc-glycyl-mannosamine
  • the FGM solution was loaded onto the column in a 50:50 CHCl 3 :CH 3 OH solution.
  • the silica column was then washed with 18 column volumes (CV) of 3% CHCl 3 /97% CH 3 OH.
  • FGM was eluted from the column using 14 CV of 15% CHCl 3 /85% CH 3 OH.
  • Fractions containing material were pooled and then rotovapped (20° C.) to dryness and stored at 4° C. The average recovery for this step from the consistency batches was 73.8%.
  • FGM Fmoc-Glycyl-Mannosamine
  • the silica column was a Biotage 75M Silica column.
  • the column volume for a 75M column was 0.5 L.
  • CMP-Sialic Acid-PEG PSC
  • GSC CMP-Glycyl-Sialic Acid
  • the first step in the synthesis of GSC was the reaction of mannosamine with Fmoc-Gly-OSu in methanol under basic conditions.
  • the resulting Fmoc-glycyl-mannosamine was purified on a silica flash chromatography column.
  • the purified Fmoc-glycyl-mannosamine then entered a two step enzymatic reaction.
  • Fmoc-glycyl-mannosamine (FGM) was reacted with pyruvate to convert to Fmoc-glycyl-sialic acid. This reaction was catalyzed by a commercially available sialic acid aldolase.
  • Fmoc-glycyl-sialic acid was then coupled to cytidine-5′-monophosphate through a CMP-NAN synthetase catalyzed reaction with cytidine-5′-triphosphate.
  • the resulting product, CMP-Fmoc-glycyl-sialic acid was purified on a C18 reverse phase column.
  • CMP-SA-10K PEG and CMP-SA-20K PEG were synthesized in a single step reaction of GSC with the appropriately sized mPEG-pNP. This reaction was performed in an 80% THF:20% H 2 O solution. Purification of the final product, CMP-SA-PEG (PSC), was performed by reverse phase chromatography. CMP-SA-10K PEG was purified using a C8 reverse phase chromatography resin, and CMP-SA-10K PEG was purified using a C4 reverse phase chromatography resin. The eluent from the reverse phase column was dried by lyophilization, yielding a white powder of purified CMP-SA-PEG.
  • the process was scaled to produce approximately 10 g of the GSC intermediate. Approximately 5.5 g of CMP-SA-20K was produced from 0.5 g of GSC, while approximately 5.0 g of CMP-SA-10K PEG was produced from 1.0 g of GSC. The final CMP-SA-PEG products were approximately 90% pure with the major impurities being CMP and sialic acid-PEG, the primary breakdown products of CMP-SA-PEG.
  • FSC CMP-Fmoc-glycyl-sialic acid
  • FGM Fmoc-glycyl-mannosamine
  • Fmoc-glycyl-sialic acid was then coupled to cytidine-5′-monophosphate through a CMP-NAN synthetase catalyzed reaction with cytidine-5′-triphosphate.
  • the pH of the reaction was controlled at 7.5 ⁇ 0.5. Temperature was controlled at 30 ⁇ 2° C., and the reaction was continuously agitated. The reaction reached completion in 6-24 hrs. and the extent-of-reaction was determined as a function of the FSC concentration ( ⁇ 14.0 g/L, 95% of theoretical conversion). The resulting product solution can be stored at 4° C. until the purification is executed or for up to 72 h. The average recovery for the step during consistency batches was 91.2%.
  • CMP-Fmoc-glycyl-sialic acid consists of two steps: the clarification of the reaction solution by 0.2 ⁇ m filtration and the reverse phase chromatographic purification of the FSC.
  • the solution was simply pumped through a Millipore Millipak 0.2 ⁇ m filter cartridge. Little backpressure was generated during this filtration. After the filtration was complete, the filter cake and filter were rinsed with 500 mL of purified water.
  • the chromatographic purification was performed using a Biotage pre-packed C18 reverse phase column.
  • the FSC was loaded in an aqueous solution.
  • the FSC binds to the column, and the column was washed with six column volumes of purified water.
  • the FSC was then eluted in 10% methanol in purified water.
  • the purification step was performed using the Biotage chromatography system (Z-1405).
  • CMP-Fmoc-Glycyl-Sialic Acid occurred in a 10% methanol:water solution in a reaction with dimethylamine.
  • Dimethylamine 40 wt % in water
  • the Fmoc group was cleaved off, resulting in key intermediate, CMP-5′-Glycyl-Sialic Acid (GSC).
  • GSC CMP-5′-Glycyl-Sialic Acid
  • the reaction was complete when the peak area ratio of GSC:FSC was greater than 20, as measured by HPLC.
  • the resulting GSC solution was then rotovapped (30° C.) to about 35% of the original volume.
  • the free Fmoc-derivative formed a white precipitate that needed to be removed from the GSC solution.
  • This material was filtered through a Millipore Millipak-200 Filter Unit (0.22 ⁇ m). The filter was then rinsed with RO water.
  • This GSC solution was stored at 4° C. or frozen at ⁇ 20° C. until lyophilization. The average recovery for this step from the consistency batches was 86.1%.
  • Consistency batches were performed for 10K and 20K CMP-Sialic Acid-PEG after development of the synthesis and purification operations. These batches demonstrated that a reproducible process had been developed to produce high-purity CMP-SA-PEG with very low contaminant levels, suitable for the glycopegylation projects.
  • 10K CMP-SA-PEG was produced at greater than 80% purity at overall process yields of approximately 60%, and 20K CMP-SA-PEG was produced at greater than 70% purity at overall process yields of approximately 50%.
  • the products were low in endotoxin, bioburden, and protein, and NMR has shown that the balance of the material was nearly all mPEG-OH, a by-product of the synthesis process.
  • CMP-SA-PEG was produced in a reaction of CMP-Glycyl-Sialic Acid (GSC) with paranitrophenyl-carbomate-polyethylene glycol (pNP-PEG).
  • GSC CMP-Glycyl-Sialic Acid
  • pNP-PEG paranitrophenyl-carbomate-polyethylene glycol
  • a molar ratio of PSC to GSC (product to reactant) of greater than 7:1 is found for 10K PSC and greater than 5:1 for 20K PSC.
  • reaction solution were then rotovapped at ⁇ 30° C. to less than 80% of its original volume to remove the THF.
  • the remaining aqueous solution was then diluted to five times the original reaction volume (diluted to 5 L for 10K PSC and 2.5 L for 20K PSC) using RO water.
  • the diluted solution was then adjusted to pH 9.5 ⁇ 0.1 with 1M NaOH and allowed to stir for at least 1 hr.
  • This elevated pH caused breakdown of residual pNP-PEG to free paranitrophenol, carbon dioxide, and methoxyPEG-OH (mPEG-OH).
  • the solution is adjusted to pH 8.0 ⁇ 0.1 using 1M HCl.
  • This concentrated fraction pool was then freeze dried on a Labconco flask-style freeze-drier. Final testing was performed on the resulting powder from this drying.
  • the syntheses was performed in 2 L and 5 L sealed bottles, temperature controlled in a shaker incubator, SI-0017, B. Braun Certomat BS1.
  • Chromatographic purification was performed on the Biotage Flash Chromatography System, Z-1405. Drying was performed on a lab-scale Labconco freeze dryer.
  • a silver stain SDS-PAGE gel was run to analyze for residual CNS and aldolase. None was detectable in either the 10K or 20K PSC batches.
  • the ratio of the methyl singlet (3.39 ppm) to the unique PSC resonances ( ⁇ 8.00, 2.50, & 1.55 ppm) is ⁇ 1 ⁇ 3, which would indicate relatively low levels of mPEG-OH impurities.
  • the current method discusses PEG coupling with a nucleotide sugar, such as CMP-SA-glycine.
  • the nucleotide sugar-PEG product can be separated from the reaction mixture by first desalting the reaction mixture using dialysis. Membrane filtration (reverse osmosis, nanofiltration, etc.) or size exclusion techniques (i.e. polyacrylamide) resin, Sephadex resin, Sepharose resin) can be used next to further purify the mixture. After purification, the reaction mixture containing the nucleotide sugar-PEG product undergoes further purification involving ion exchange chromatography. For most reaction mixtures, a DEAE or Q-resin can be used to remove the unreacted PEG from the product.
  • the Q-Sepharose resin is currently preferred, although any polymer with a quaternary amine will also work.
  • the Q-Sepharose resin can include ions such as —OH, Cl ⁇ , HCO 3 ⁇ , CO 3 2 ⁇ , PO 4 2 ⁇ , SO 3 ⁇ , Br ⁇ , BO 3 2 ⁇ or the like.
  • the product can be loaded and eluted using known methods in the art such as changes in pH or ion strength (NaCl, KCl, etc.).
  • the product may be eluted by a step-wise process or a gradient process.
  • the nucleotide sugar-PEG product eluted from the column can be collected and desalted again using dialysis, membrane filtration, or size-exclusion techniques. The process would look similar to the figure below but can be varied dependent on processing results and desires.
  • CMP-SA-glycine and the p-nitrophenyl-carbamate-mPEG are mixed together to obtain a reaction mixture comprising the product CMP-SA-glycine-PEG, as well as PEG, p-nitrophenyl-carboxylic acid, salts, CMP-SA-glycine, CMP and sialic acid (SA).
  • the reaction mixture underwent membrane filtration wherein the membrane has MWCO of 200 (units)-300 kDa.
  • CMP-SA-PEG and PEG were retained while p-nitrophenyl-carboxylic acid, salts, CMP-SA-glycine, CMP and SA passed through the membrane.
  • the retained products underwent further purification with a Q-column or DEAE column in which PEG flows through the membrane and CMP-SA-PEG is retained and concentrated.
  • the CMP-SA-PEG may be freeze-dried or spray dried.
  • the CMP-SA-PEG underwent membrane filtration in which salts pass through and while CMP-SA-PEG was retained and concentrated.
  • the membrane has a MWCO of 100 MW-3 kDa. This sample may be freeze dried, spray dried, or frozen.
  • Any membrane size can be used from reverse osmosis (RO) pore sizes (molecular weight cut-offs) to microfiltration MWCOs depending on the separation desired.
  • RO reverse osmosis
  • the pH can be varied between 2 and 12, more specifically between 5-10 and more specifically between 7-9 for CMP-SA-PEG.
  • the membrane filtration step can be used to remove impurities by such techniques as diafiltration and can be used to concentrate the process streams.
  • Cytidine 5′-monophospho N-acetylneuraminic acid (CMP-NAN) is enzymatically synthesized from cytidine 5′-triphosphate (CTP) and N-acetylneuraminic acid (NAN) in the presence of E. coli - expressed CMP-NAN Synthetase (CNS).
  • FIG. 1 illustrates the reaction.
  • the primary by-product of the synthesis reaction was the formation of a manganese phosphate precipitate. Approximate 30% of the final volume of the reaction consisted of this heavy, brown precipitate. In order to remove this precipitate, the solution was filtered. The cake that formed on the filter was washed with water, and the final solution was then filtered to remove any fine particulates that were not held back by the first filtration.
  • the CMP-NAN solution was permeated through a hollow fiber filter.
  • the membrane successfully retains proteins from the enzyme preparation while allowing the passage of CMP-NAN.
  • Residual salts were then removed from the solution by concentration and diafiltration of the CMP-NAN using a nanofiltration membrane.
  • This membrane retains CMP-NAN during concentration and diafiltration while allowing passage of salts that remain in solution, primarily Tris HCl (the buffer from the enzyme preparation) and NaCl (from the synthesis reaction).
  • the concentrated CMP-NAN was subsequently decolorized by passing the solution over a pre-packed column of activated carbon.
  • the color is likely from manganese oxide formed during the addition of sodium hydroxide to control the pH during synthesis.
  • Cytidine 5′-monophospho N-Acetylneuraminic acid (CMP-NAN) was synthesized in a temperature and pH controlled vessel from Cytidine 5′-triphosphate (CTP) and sialic acid (NAN) using CMP-NAN Synthetase (CNS) in the presence of MnCl 2 .
  • the CNS is a recombinant protein cloned from N. meningitidis and was expressed in JM109 E. coli cells. The reaction proceeded for approximately 1.5 hours with sufficient agitation to keep the precipitate from settling.
  • the resultant CMP-NAN solution was chilled to ⁇ 20° C., clarified by filtration, and transferred into a mobile tank.
  • the clarified CMP-NAN solution was concentrated 10 times using a hollow fiber filtration unit and diafiltered with 5 volumes of USP purified water.
  • the CMP-NAN was transferred to a mobile tank and the pH was adjusted. This solution was concentrated 10 times and diafiltered with 6 volumes of USP purified water using a nanofiltration system.
  • Decolorization was achieved by running the CMP-NAN through an activated carbon column and endotoxin was removed using a CUNO Zeta Plus 60ZA filter.
  • the purified CMP-NAN solution was then aseptically filtered (CUNO LifeASSURE 0.2 ⁇ m) and aliquoted into MITOS Sugar Nucleotide Bags and stored at ⁇ 20° C.
  • This example describes the preparation and purification of CMP-SA-PEG 30 kDa (compound 3, below).
  • the mPEG-p-nitrophenyl carbonate-30 kDa (compound 1, below) was reacted with sodium CMP-SA-Glycine (compound 2, below) in a mixture of THF/Water.
  • the crude product was desalted by Tangential Flow Filtration (TFF), purified by Q Sepharose chromatography (IEX), and again desalted by TFF to provide 13.5 g of CMP-SA-PEG-30 kDa product (compound 3, below). Reprocessing of mixed IEX fractions afforded an additional 8.2 grams of 3 (overall yield 72.3%).
  • CMP-SA-Glycine (dimethyl amine salt form, 1.35 g, 2.0 mmole) was dissolved in 20 mL H 2 O, and the pH was adjusted to 10.5 with 0.1 N NaOH ( ⁇ 20 mL). The basic solution was degassed under reduced pressure (vacuum 30 min), frozen and lyophilized to dryness. The resulting sodium CMP-SA-Glycine was redissolved in water (80 mL). The pH was measured and found to be 8.5. The pH was adjusted to 7.8 by addition of 0.2 N NaH 2 PO4 ( ⁇ 1.0 mL) and the resulting solution was diluted with THF (200 mL).
  • the mPEG-p-nitrophenyl carbonate-30 kDa (30.0 g, 1 mmol) was added to the CMP-SA-Glycine solution in small portions over 3 hr at room temperature. The reaction mixture was stirred at room temperature for 43 hrs. The THF was then removed by rotary evaporation at reduced pressure without heating (water bath temperature at or below 30° C.). The aqueous residue (80 mL) was diluted with water to 600 mL, and adjusted to pH 9.5 with 1.0 N NaOH (about 1.0 mL).
  • a Watson-Marlow peristaltic pump (505S) was connected through Tygon tubing (1 ⁇ 4′′ ID) to a Millipore Pellicon-2 Mini Holder equipped with two Millipore 1K Pellicon 2 “MINI” filter (PLAC-V 1K Regenerated Cellulose Membrane; Screen Type: V; 0.1 m2) ( FIG. 1 ).
  • the crude aqueous product solution 500 mL, pH 9.5
  • the product solution was fed onto the Pellicon Mini filter through Tygon tubing (1 ⁇ 4′′ ID) for diafiltration with a pump speed of 90 rpm (Cross flow rate: 430 mL/min; Flux rate: 20 mL/min; Pressure 13 psi).
  • the retentate solution was returned to the bottle containing the bulk chilled product solution (PharMed tubing, 1 ⁇ 4′′ ID) which was maintained at a constant volume (600 mL) by addition of cold DI water (4° C.).
  • the permeate solution was collected in 2 L fractions.
  • the pH and conductivity values of the retentate/product solution were measured and recorded over time as shown in the table below.
  • the pH of the retentate/product solution was maintained above pH 7.5 by the dropwise addition of 1.0 N NaOH, as needed.
  • the retentate/product solution was diafiltered until the conductivity dropped below 0.8 mS, and then the retentate/product solution was allowed to concentrate to a volume of 500 mL.
  • the concentrated retentate was then purified by anion exchange chromatography as described below.
  • the permeate fractions were checked for product break-through by SDS-PAGE as described below:
  • TFF permeate fractions 0.5 mL were concentrated to dryness under a stream of N 2 gas, resuspended in 10 ⁇ L water and mixed with 10 ⁇ L Tris-Gly SDS-PAGE sample buffer and loaded onto 4-20% polyacrylamide Tris-Gly SDS-PAGE gels. See Blue Plus2 protein standard was also loaded as a marker. Gels were run at a constant voltage of 125 V for 1 hr 50 min. After electrophoresis, the gels were washed with water (100 mL) for 10 min, and then incubated with a 5% barium chloride aqueous solution for 10 min.
  • Iodine solution (0.1 N, 4.0 mL) was added to visualize any mPEG present.
  • the staining process was stopped by washing the gels with water.
  • the proteins used as a standard were a mix of myosin (250 kDa), phosphorylase (148 kDa), BSA (98 kDa, glutamic dehydrogenase (64 kDa), alcohol dehydrogenase (50 kDa), carbonic anhydrase (36 kDa), lysozyme (22 kDa), aprotinin (6 kDa), and insulin B-chain (4 kDa).
  • the gels were visualized and scanned with an HP Scanjet 7400C, and the image of the gel was optimized with the HP Precision Scan Program.
  • the Q Sepharose Big Beads (4.0 L) were treated with 1.0 M NaOH (8.0 L), and then with saturated aqueous sodium bicarbonate (8.0 L) to generate the bicarbonate form of the resin.
  • the newly generated resin was packed in a 17 ⁇ 18 cm (ID) column which was connected to an HPLC system equipped with a UV (274 nm) and an ELS detector (Evaporation temp: 120° C.; Nebulizer temp: 90° C.; Gas flow rate: 1.85 SLM).
  • the TFF retentate from above was slowly loaded on the Q column (60 mL/min.).
  • Fraction 1 The first fraction (Fraction 1) of the ion-exchange-purified product was desalted using the TFF procedure described above. Upon reaching a constant conductivity, the retentate/product solution was allowed to concentrate to 400 mL. The final retentate (400 mL) was freeze-dried to yield 13.5 g of white solid.
  • Cytidine-monophospho 5′-N-acetylneuraminic acid (CMP-NAN) is enzymatically synthesized from cytidine 5′-triphosphate (CTP) and N-acetylneuraminic acid (NAN) in the presence of E. coli - expressed CMP-NAN synthetase (CNS).
  • the reactants (CTP and NAN) are incubated (30° C., pH 8.5-9.5) in a reactor (20 or 40 L Synthesis Reactor, jacketed temperature control is ⁇ 10° C. to 30° C., manual or automatic pH control is 8.5-9.5, and agitated) with CNS and manganese chloride (MnCl 2 ).
  • CTP and NAN CNS and manganese chloride
  • MnCl 2 manganese chloride
  • the reaction proceeds to almost 100% conversion of NAN to the CMP-NAN product in under two hours.
  • the solution is chilled to ⁇ 10.0° C. Once chilled the process stream is filtered through a 0.5 ⁇ m membrane bag filter (CUNO Polynet bag filter with CUNO bag filter housing and pressure-fed (nitrogen) filtration).
  • the process stream is next permeated through a 10K hollow fiber membrane with a tangential flow filtration (TFF) skid (Amersham Bioscience (formerly AG Technology) 10K MWCO hollow fiber cartridge, temperature control is ⁇ 10° C., and inlet, outlet and permeate pressure indication is 0-60 psig).
  • TFF tangential flow filtration
  • the 10K membrane successfully retains proteins from the enzyme preparation while allowing for passage of the CMP-NAN. The result is a protein-free CMP-NAN solution.
  • Residual salts are then removed from solution by concentration and diafiltration of the CMP-NAN using a nanofiltration membrane with a nanofiltration TFF skid (Millipore Nanomax-50 Helicon RO4 spiral wound membrane cartridge installed on a Millipore Prolab II skid, temperature control is ⁇ 10° C. and pressure indication is 0-600 psig).
  • This membrane retains CMP-NAN during concentration and diafiltration while allowing passage of salts that remain in solution from the synthesis reaction and hollow fiber filtration.
  • This concentrated CMP-NAN stream is subsequently de-colored by passing the solution over a pre-packed column of activated carbon attached to a Biotage chromatography system (75M activated chromatography column and Biotage skid).
  • the activated carbon efficiently removes the color from the solution in one or two passes of the CMP-NAN stream.
  • the process is completed by two filtrations.
  • the CMP-NAN solution is filtered using a charged media depth filter (CUNO Zeta Plus 60ZA, 1 ft 2 ).
  • the solution is sent through a final 0.2 ⁇ m filter that is pre-packaged and sterilized with a bag manifold system (provided by Mitos Technologies) for final filtration and storage.
  • the product can be stored as a frozen solution or dried as a white powder for refrigerated storage.

Abstract

The invention provides methods of removing contaminants from a mixture of a desired product and contaminants by pH adjustments and molecular weight cut-offs. The contaminants include phosphate groups, magnesium sulfate, sodium pyruvate and tetrasodium pyrophosphate groups. The desired product includes nucleotide sugars, glycolipids, LnNT, sialyl lactose, and salts.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a U.S. national phase application of PCT/US2006/043048 filed Nov. 3, 2006, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application No. 60/829,242, filed Oct. 12, 2006, U.S. Provisional Application No. 60/823,538, filed Aug. 25, 2006, U.S. Provisional Application No. 60/746,754, filed May 8, 2006, U.S. Provisional Application No. 60/796,281, filed Apr. 28, 2006, and U.S. Provisional Application No. 60/733,975, filed Nov. 3, 2005, the disclosures of which are incorporated herein by reference for all purposes.
  • BACKGROUND OF THE INVENTION
  • Increased understanding of the role of carbohydrates as recognition elements on the surface of cells has led to increased interest in the production of carbohydrate molecules of defined structure. For instance, compounds comprising the oligosaccharide moiety, sialyl lactose, have been of interest as neutralizers for enterotoxins from bacteria such as Vibrio cholerae, Escherichia coli, and Salmonella (see, e.g., U.S. Pat. No. 5,330,975). Sialyl lactose has also been investigated for the treatment of arthritis and related autoimmune diseases. In particular, sialyl lactose is thought to inhibit or disrupt the degree of occupancy of the Fc carbohydrate binding site on IgG, and thus prevent the formation of immune complexes (see, U.S. Pat. No. 5,164,374). Recently, sialyl-α(2,3)galactosides, sialyl lactose and sialyl lactosamine have been proposed for the treatment of ulcers, and Phase I clinical trials have begun for the use of the former compound in this capacity. See, Balkonen et al., FEMS Immunology and Medical Microbiology 7:29 (1993) and BioWorld Today, p. 5, Apr. 4, 1995. As another example, compounds comprising the sialyl Lewis ligands, sialyl Lewisx and sialyl Lewisa are present in leukocyte and non-leukocyte cell lines that bind to receptors such as the ELAM-1 and GMP 140 receptors. Polley et al., Proc. Natl. Acad. Sci., USA, 88:6224 (1991) and Phillips et al., Science, 250:1130 (1990), see, also, U.S. Ser. No. 08/063,181.
  • Because of interest in making desired carbohydrate structures, glycosyltransferases and their role in enzyme-catalyzed synthesis of carbohydrates are presently being extensively studied. The use of glycosyltransferases for enzymatic synthesis of carbohydrate offers advantages over chemical methods due to the virtually complete stereoselectivity and linkage specificity offered by the enzymes (Ito et al., Pure Appl. Chem., 65:753 (1993) U.S. Pat. Nos. 5,352,670, and 5,374,541). Consequently, glycosyltransferases are increasingly used as enzymatic catalysts in synthesis of a number of carbohydrates used for therapeutic and other purposes.
  • Carbohydrate compounds produced by enzymatic synthesis or by other methods are often obtained in the form of complex mixtures that include not only the desired compound but also contaminants such as unreacted sugars, salts, pyruvate, phosphate, PEP, nucleosides, nucleotides, and proteins, among others. The presence of these contaminants is undesirable for many applications for which the carbohydrate compounds are useful. Previously used methods for purifying oligosaccharides, such as chromatography, i.e., ion exchange and size exclusion chromatography, have several disadvantages. For example, chromatographic purification methods are not amenable to large-scale purifications, thus precluding their use for commercial production of saccharides. Moreover, chromatographic purification methods are expensive. Therefore, a need exists for purification methods that are faster, more efficient, and less expensive than previously used methods. The present invention fulfills this and other needs.
  • SUMMARY OF THE INVENTION
  • The present invention provides methods of purifying a carbohydrate compound from a feed solution containing a contaminant. The methods involve contacting the feed solution with a nanofiltration or reverse osmosis membrane under conditions such that the membrane retains the desired carbohydrate compound while a majority of the contaminant passes through the membrane. The invention provides methods for purifying carbohydrate compounds such as sialyl lactosides, sialic acid, lacto-N-neotetraose (LNnT) and GlcNAcβ1,3Galβ1,4Glc (LNT-2), NeuAcα(2→3)Galβ(1→4)(Fucα1→3)Glc(R1)β1-OR2, wherein R1 is OH or NAc; R2 is a hydrogen, an alkoxy, a saccharide, an oligosaccharide or an aglycon group having at least one carbon atom; and Galα(1→3)Galβ(1→4)Glc(R1)β-O—R3, wherein R1 is OH or NAc; R3 is —(CH2)n—COX, with X=OH, OR4, —NHNH2, R4 being a hydrogen, a saccharide, an oligosaccharide or an aglycon group having at least one carbon atom, and n=an integer from 2 to 18.
  • Also provided are methods for purifying carbohydrate compounds having a formula NeuAcα(2→3)Galβ(1→4)GlcN(R1)β-OR2, NeuAcα(2→3)Galβ(1→4)GlcN(R1)β(1→3)Galβ-OR2, NeuAcα(2→3)Galβ(1→4) (Fucα1→3)GlcN(R1)β-OR2, or NeuAcα(2→3)Galβ(1→4) (Fucα1→3)GlcN(R1)β(1→3)Galβ-OR2, wherein R1 is alkyl or acyl from 1-18 carbons, 5,6,7,8-tetrahydro-2-naphthamido; benzamido; 2-naphthamido; 4-aminobenzamido; or 4-nitrobenzamido, and R2 is a hydrogen, a saccharide, an oligosaccharide or an aglycon group having at least one carbon atom.
  • In another embodiment, the invention provides methods of purifying a carbohydrate compound from a feed solution comprising a reaction mixture used to synthesize the carbohydrate compound. The synthesis can be enzymatic or chemical, or a combination thereof. The methods involve removing any proteins present in the feed solution by contacting the feed solution with an ultrafiltration membrane so that proteins are retained the membrane while the carbohydrate compound passes through the membrane as a permeate. The permeate from the ultrafiltration step is then contacted with a nanofiltration or reverse osmosis membrane under conditions such that the nanofiltration or reverse osmosis membrane retains the carbohydrate compound while a majority of an undesired contaminant passes through the membrane.
  • Another embodiment of the invention provides methods for purifying nucleotides, nucleosides, and nucleotide sugars by contacting a feed solution containing the nucleotide or related compound with a nanofiltration or reverse osmosis membrane under conditions such that the membrane retains the nucleotide or related compound while a majority of the contaminant passes through the membrane.
  • The present invention also provides methods for removing one or more contaminants from a solution that contains a carbohydrate of interest. The methods involve contacting the solution with a first side of a semipermeable membrane having rejection coefficients so as to retain the carbohydrate while allowing the contaminant to pass through the membrane. The membrane is selected from the group consisting of an ultrafiltration membrane, a nanofiltration membrane, and a reverse osmosis membrane, depending on the size and charge of the carbohydrate of interest relative to those of the contaminants. The membrane separates a feed solution containing a carbohydrate into a retentate portion and a permeate portion. If the rejection coefficient of the membrane is greater for the carbohydrate than for the contaminant, the retentate portion will have a lower concentration of the contaminant relative to the contaminant concentration in the feed solution, and generally also a higher ratio of the carbohydrate to the undesired contaminant. Conversely, a membrane having a rejection coefficient for the carbohydrate that is lesser than that for the contaminant will effect a separation wherein the concentration of the contaminant is lower in the permeate than in the feed solution, and the permeate will have a higher ratio of carbohydrate to contaminant than the feed solution. If desired, the fraction containing the carbohydrate can be recycled through the membrane system for further purification.
  • Examples of contaminants that can be removed from solutions containing the compound of interest using the methods of the invention include, but are not limited to, unreacted sugars, inorganic ions, pyruvate, phosphate, phosphoenolpyruvate, and proteins.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram of an exemplary purification of a nucleotide sugar.
  • FIG. 2 is a chromatogram recorded for an exemplary purification of CMP-SA-PEG-30 kDa using Q Sepharose chromatography as described in Example 6. CMP-SA-PEG-30 kDa was collected in two fractions. Fraction 1 contained pure product and Fraction 2 contained residual CMP-SA-Gly reagent and was reprocessed.
  • FIG. 3 is a chromatogram recorded for an exemplary separation of CMP-SA-PEG 30 kDa from CMP-SA-Glycine using Q-Sepharose chromatography, showing a typical baseline separation.
  • FIG. 4 is a diagram outlining an exemplary process for the preparation of an exemplary GSC (CMP-5′-Glycyl-Sialic Acid).
  • FIG. 5 is a diagram outlining an exemplary process for the preparation of an exemplary PSC (CMP-SA-PEG).
  • FIG. 6 is a diagram outlining an exemplary process for the purification of a glycosyltransferase.
  • FIG. 7 is a table of exemplary sialyltransferases.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS Definitions
  • The term “sialic acid” refers to any member of a family of nine-carbon carboxylated sugars. The most common member of the sialic acid family is N-acetyl-neuraminic acid (2-keto-5-acetamido-3,5-dideoxy-D-glycero-D-galactononulopyranos-1-onic acid (often abbreviated as Neu5Ac, NeuAc, or NANA). A second member of the family is N-glycolyl-neuraminic acid (Neu5Gc or NeuGc), in which the N-acetyl group of NeuAc is hydroxylated. A third sialic acid family member is 2-keto-3-deoxy-nonulosonic acid (KDN) (Nadano et al. (1986) J. Biol. Chem. 261: 11550-11557; Kanamori et al., J. Biol. Chem. 265: 21811-21819 (1990)). Also included are 9-substituted sialic acids such as a 9-O—C1-C6 acyl-Neu5Ac like 9-O-lactyl-Neu5Ac or 9-O-acetyl-Neu5Ac, 9-deoxy-9-fluoro-Neu5Ac and 9-azido-9-deoxy-Neu5Ac. For review of the sialic acid family, see, e.g., Varki, Glycobiology 2: 25-40 (1992); Sialic Acids: Chemistry, Metabolism and Function, R. Schauer, Ed. (Springer-Verlag, New York (1992)). The synthesis and use of sialic acid compounds in a sialylation procedure is disclosed in international application WO 92/16640, published Oct. 1, 1992.
  • As used herein, the term “modified sugar,” refers to a naturally- or non-naturally-occurring carbohydrate. The modified sugar is preferably selected from a number of enzyme substrates including, but not limited to sugar nucleotides (mono-, di-, and tri-phosphates), activated sugars (e.g., glycosyl halides, glycosyl mesylates) and sugars that are neither activated nor nucleotides. The “modified sugar” is covalently functionalized with a “modifying group.” Useful modifying groups include, but are not limited to, water-soluble polymers, targeting moieties therapeutic moieties, diagnostic moieties, radioactive moieties, cytotoxic moieties, biomolecules and the like. The modifying group is preferably not a naturally occurring, or an unmodified carbohydrate. The locus of functionalization with the modifying group is preferably selected such that it does not prevent the “modified sugar” from being added enzymatically to a peptide.
  • The term “water-soluble” refers to moieties that have some detectable degree of solubility in water. Methods to detect and/or quantify water solubility are well known in the art. Exemplary water-soluble polymers include peptides, saccharides, poly(ethers), poly(amines), poly(carboxylic acids) and the like. Peptides can have mixed sequences of be composed of a single amino acid, e.g., poly(lysine). An exemplary polysaccharide is poly(sialic acid). An exemplary poly(ether) is poly(ethylene glycol), e.g., m-PEG. Poly(ethylene imine) is an exemplary polyamine, and poly(acrylic) acid is a representative poly(carboxylic acid).
  • The polymer backbone of the water-soluble polymer can be poly(ethylene glycol) (i.e. PEG). However, it should be understood that other related polymers are also suitable for use in the practice of this invention and that the use of the term PEG or poly(ethylene glycol) is intended to be inclusive and not exclusive in this respect. The term PEG includes poly(ethylene glycol) in any of its forms, including alkoxy PEG, difunctional PEG, multiarmed PEG, forked PEG, branched PEG, pendent PEG (i.e. PEG or related polymers having one or more functional groups pendent to the polymer backbone), or PEG with degradable linkages therein.
  • The polymer backbone can be linear or branched. Branched polymer backbones are generally known in the art. Typically, a branched polymer has a central branch core moiety and a plurality of linear polymer chains linked to the central branch core. PEG is commonly used in branched forms that can be prepared by addition of ethylene oxide to various polyols, such as glycerol, pentaerythritol and sorbitol. The central branch moiety can also be derived from several amino acids, such as lysine. The branched poly(ethylene glycol) can be represented in general form as R(-PEG-OH)m in which R represents the core moiety, such as glycerol or pentaerythritol, and m represents the number of arms. Multi-armed PEG molecules, such as those described in U.S. Pat. No. 5,932,462, which is incorporated by reference herein in its entirety, can also be used as the polymer backbone.
  • Many other polymers are also suitable for the invention. Polymer backbones that are non-peptidic and water-soluble, with from 2 to about 300 termini, are particularly useful in the invention. Examples of suitable polymers include, but are not limited to, other poly(alkylene glycols), such as poly(propylene glycol) (“PPG”), copolymers of ethylene glycol and propylene glycol and the like, poly(oxyethylated polyol), poly(olefinic alcohol), poly(vinylpyrrolidone), poly(hydroxypropylmethacrylamide), poly(α-hydroxy acid), poly(vinyl alcohol), polyphosphazene, polyoxazoline, poly(N-acryloylmorpholine), such as described in U.S. Pat. No. 5,629,384, which is incorporated by reference herein in its entirety, and copolymers, terpolymers, and mixtures thereof. Although the molecular weight of each chain of the polymer backbone can vary, it is typically in the range of from about 100 Da to about 100,000 Da, often from about 6,000 Da to about 80,000 Da.
  • The term “targeting moiety,” as used herein, refers to species that will selectively localize in a particular tissue or region of the body. The localization is mediated by specific recognition of molecular determinants, molecular size of the targeting agent or conjugate, ionic interactions, hydrophobic interactions and the like. Other mechanisms of targeting an agent to a particular tissue or region are known to those of skill in the art. Exemplary targeting moieties include antibodies, antibody fragments, transferrin, HS-glycoprotein, coagulation factors, serum proteins, β-glycoprotein, G-CSF, GM-CSF, M-CSF, EPO and the like.
  • As used herein, “therapeutic moiety” means any agent useful for therapy including, but not limited to, antibiotics, anti-inflammatory agents, anti-tumor drugs, cytotoxins, and radioactive agents. “Therapeutic moiety” includes prodrugs of bioactive agents, constructs in which more than one therapeutic moiety is bound to a carrier, e.g, multivalent agents. Therapeutic moiety also includes proteins and constructs that include proteins. Exemplary proteins include, but are not limited to, Erythropoietin (EPO), Granulocyte Colony Stimulating Factor (GCSF), Granulocyte Macrophage Colony Stimulating Factor (GMCSF), Interferon (e.g., Interferon-α, -β, -γ), Interleukin (e.g., Interleukin II), serum proteins (e.g., Factors VII, VIa, VIII, IX, and X), Human Chorionic Gonadotropin (HCG), Follicle Stimulating Hormone (FSH) and Lutenizing Hormone (LH) and antibody fusion proteins (e.g. Tumor Necrosis Factor Receptor ((TNFR)/Fc domain fusion protein)).
  • As used herein, “anti-tumor drug” means any agent useful to combat cancer including, but not limited to, cytotoxins and agents such as antimetabolites, alkylating agents, anthracyclines, antibiotics, antimitotic agents, procarbazine, hydroxyurea, asparaginase, corticosteroids, interferons and radioactive agents. Also encompassed within the scope of the term “anti-tumor drug,” are conjugates of peptides with anti-tumor activity, e.g. TNF-α. Conjugates include, but are not limited to those formed between a therapeutic protein and a glycoprotein of the invention. A representative conjugate is that formed between PSGL-1 and TNF-α.
  • As used herein, “a cytotoxin or cytotoxic agent” means any agent that is detrimental to cells. Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracinedione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Other toxins include, for example, ricin, CC-1065 and analogues, the duocarmycins. Still other toxins include diptheria toxin, and snake venom (e.g., cobra venom).
  • As used herein, “a radioactive agent” includes any radioisotope that is effective in diagnosing or destroying a tumor. Examples include, but are not limited to, indium-111, cobalt-60. Additionally, naturally occurring radioactive elements such as uranium, radium, and thorium, which typically represent mixtures of radioisotopes, are suitable examples of a radioactive agent. The metal ions are typically chelated with an organic chelating moiety.
  • Many useful chelating groups, crown ethers, cryptands and the like are known in the art and can be incorporated into the compounds of the invention (e.g., EDTA, DTPA, DOTA, NTA, HDTA, etc. and their phosphonate analogs such as DTPP, EDTP, HDTP, NTP, etc). See, for example, Pitt et al., “The Design of Chelating Agents for the Treatment of Iron Overload,” In, INORGANIC CHEMISTRY IN BIOLOGY AND MEDICINE; Martell, Ed.; American Chemical Society, Washington, D.C., 1980, pp. 279-312; Lindoy, THE CHEMISTRY OF MACROCYCLIC LIGAND COMPLEXES; Cambridge University Press, Cambridge, 1989; Dugas, BIOORGANIC CHEMISTRY; Springer-Verlag, New York, 1989, and references contained therein.
  • Additionally, a manifold of routes allowing the attachment of chelating agents, crown ethers and cyclodextrins to other molecules is available to those of skill in the art. See, for example, Meares et al., “Properties of In Vivo Chelate-Tagged Proteins and Polypeptides.” In, MODIFICATION OF PROTEINS: FOOD, NUTRITIONAL, AND PHARMACOLOGICAL ASPECTS;” Feeney, et al., Eds., American Chemical Society, Washington, D.C., 1982, pp. 370-387; Kasina et al., Bioconjugate Chem., 9: 108-117 (1998); Song et al., Bioconjugate Chem., 8: 249-255 (1997).
  • A compound is “substantially purified” from an undesired component in a solution if the concentration of the undesired component after purification is no greater than about 40% of the concentration of the component prior to purification. Preferably, the post-purification concentration of the undesired component will be less than about 20% by weight, and more preferably less than about 10%, and still more preferably less than about 5% of the pre-purification concentration.
  • The term “pharmaceutically pure,” as used herein, refers to a compound that is sufficiently purified from undesired contaminants that the compound is suitable for administration as a pharmaceutical agent. Preferably, the compound is purified such that the undesired contaminant is present after purification in an amount that is about 5% by weight or less of the pre-purification concentration of the contaminant in the feed solution. More preferably, the post-purification concentration of the contaminant is about 1% or less of the pre-purification contaminant concentration, and most preferably about 0.5% or less of the pre-purification concentration of contaminant.
  • A “feed solution” refers to any solution that contains a compound to be purified. For example, a reaction mixture used to synthesize an oligosaccharide can be used as a feed solution from which the desired reaction product is purified using the methods of the invention.
  • Where substituent groups are specified by their conventional chemical formulae, written from left to right, they equally encompass the chemically identical substituents, which would result from writing the structure from right to left, e.g., —CH2O— is intended to also recite —OCH2—.
  • The term “alkyl,” by itself or as part of another substituent means, unless otherwise stated, a straight or branched chain, or cyclic hydrocarbon radical, or combination thereof, which may be fully saturated, mono- or polyunsaturated and can include di- and multivalent radicals, having the number of carbon atoms designated (i.e. C1-C10 means one to ten carbons). Examples of saturated hydrocarbon radicals include, but are not limited to, groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, cyclohexyl, (cyclohexyl)methyl, cyclopropylmethyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like. An unsaturated alkyl group is one having one or more double bonds or triple bonds. Examples of unsaturated alkyl groups include, but are not limited to, vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers. The term “alkyl,” unless otherwise noted, is also meant to include those derivatives of alkyl defined in more detail below, such as “heteroalkyl.” Alkyl groups that are limited to hydrocarbon groups are termed “homoalkyl”.
  • The term “alkylene” by itself or as part of another substituent means a divalent radical derived from an alkane, as exemplified, but not limited, by —CH2CH2CH2CH2—, and further includes those groups described below as “heteroalkylene.” Typically, an alkyl (or alkylene) group will have from 1 to 24 carbon atoms, with those groups having 10 or fewer carbon atoms being preferred in the present invention. A “lower alkyl” or “lower alkylene” is a shorter chain alkyl or alkylene group, generally having eight or fewer carbon atoms.
  • The terms “alkoxy,” “alkylamino” and “alkylthio” (or thioalkoxy) are used in their conventional sense, and refer to those alkyl groups attached to the remainder of the molecule via an oxygen atom, an amino group, or a sulfur atom, respectively.
  • The term “heteroalkyl,” by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain, or cyclic hydrocarbon radical, or combinations thereof, consisting of the stated number of carbon atoms and at least one heteroatom selected from the group consisting of O, N, Si and S, and wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized. The heteroatom(s) O, N and S and Si may be placed at any interior position of the heteroalkyl group or at the position at which the alkyl group is attached to the remainder of the molecule. Examples include, but are not limited to, —CH2—CH2—O—CH3, —CH2—CH2—NH—CH3, —CH2—CH2—N(CH3)—CH3, —CH2—S—CH2—CH3, —CH2—CH2, —S(O)—CH3, —CH2—CH2—S(O)2—CH3, —CH═CH—O—CH3, —Si(CH3)3, —CH2—CH═N—OCH3, and —CH═CH—N(CH3)—CH3. Up to two heteroatoms may be consecutive, such as, for example, —CH2—NH—OCH3 and —CH2—O—Si(CH3)3. Similarly, the term “heteroalkylene” by itself or as part of another substituent means a divalent radical derived from heteroalkyl, as exemplified, but not limited by, —CH2—CH2—S—CH2—CH2— and —CH2—S—CH2—CH2—NH—CH2—. For heteroalkylene groups, heteroatoms can also occupy either or both of the chain termini (e.g., alkyleneoxy, alkylenedioxy, alkyleneamino, alkylenediamino, and the like). Still further, for alkylene and heteroalkylene linking groups, no orientation of the linking group is implied by the direction in which the formula of the linking group is written. For example, the formula —C(O)2R′— represents both —C(O)2R′— and —R′C(O)2—.
  • The terms “cycloalkyl” and “heterocycloalkyl”, by themselves or in combination with other terms, represent, unless otherwise stated, cyclic versions of “alkyl” and “heteroalkyl”, respectively. Additionally, for heterocycloalkyl, a heteroatom can occupy the position at which the heterocycle is attached to the remainder of the molecule. Examples of cycloalkyl include, but are not limited to, cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like. Examples of heterocycloalkyl include, but are not limited to, 1-(1,2,5,6-tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3-morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1-piperazinyl, 2-piperazinyl, and the like.
  • The terms “halo” or “halogen,” by themselves or as part of another substituent, mean, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom. Additionally, terms such as “haloalkyl,” are meant to include monohaloalkyl and polyhaloalkyl. For example, the term “halo(C1-C4)alkyl” is mean to include, but not be limited to, trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, and the like.
  • The term “aryl” means, unless otherwise stated, a polyunsaturated, aromatic, substituent that can be a single ring or multiple rings (preferably from 1 to 3 rings), which are fused together or linked covalently. The term “heteroaryl” refers to aryl groups (or rings) that contain from one to four heteroatoms selected from N, O, and S, wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen atom(s) are optionally quaternized. A heteroaryl group can be attached to the remainder of the molecule through a heteroatom. Non-limiting examples of aryl and heteroaryl groups include phenyl, 1-naphthyl, 2-naphthyl, 4-biphenyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2-imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl, 4-oxazolyl, 2-phenyl-4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidyl, 4-pyrimidyl, 5-benzothiazolyl, purinyl, 2-benzimidazolyl, 5-indolyl, 1-isoquinolyl, 5-isoquinolyl, 2-quinoxalinyl, 5-quinoxalinyl, 3-quinolyl, tetrazolyl, benzo[b]furanyl, benzo[b]thienyl, 2,3-dihydrobenzo[1,4]dioxin-6-yl, benzo[1,3]dioxol-5-yl and 6-quinolyl. Substituents for each of the above noted aryl and heteroaryl ring systems are selected from the group of acceptable substituents described below.
  • For brevity, the term “aryl” when used in combination with other terms (e.g., aryloxy, arylthioxy, arylalkyl) includes both aryl and heteroaryl rings as defined above. Thus, the term “arylalkyl” is meant to include those radicals in which an aryl group is attached to an alkyl group (e.g., benzyl, phenethyl, pyridylmethyl and the like) including those alkyl groups in which a carbon atom (e.g., a methylene group) has been replaced by, for example, an oxygen atom (e.g., phenoxymethyl, 2-pyridyloxymethyl, 3-(1-naphthyloxy)propyl, and the like).
  • Each of the above terms (e.g., “alkyl,” “heteroalkyl,” “aryl” and “heteroaryl”) is meant to include both substituted and unsubstituted forms of the indicated radical. Preferred substituents for each type of radical are provided below.
  • Substituents for the alkyl and heteroalkyl radicals (including those groups often referred to as alkylene, alkenyl, heteroalkylene, heteroalkenyl, alkynyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, and heterocycloalkenyl) are generically referred to as “alkyl group substituents,” and they can be one or more of a variety of groups selected from, but not limited to: —OR′, ═O, ═NR′, ═N—OR′, —NR′R″, —SR′, -halogen, —SiR′R″R′″, —OC(O)R′, —C(O)R′, —CO2R′, —CONR′R″, —OC(O)NR′R″, —NR″C(O)R′, —NR′—C(O)NR″R′″, —NR″C(O)2R′, —NR—C(NR′R″R′″)═NR″″, —NR—C(NR′R″)═NR′″, —S(O)R′, —S(O)2R′, —S(O)2NR′R″, —NRSO2R′, —CN and —NO2 in a number ranging from zero to (2m′+1), where m′ is the total number of carbon atoms in such radical. R′, R″, R′″ and R″″ each preferably independently refer to hydrogen, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, e.g., aryl substituted with 1-3 halogens, substituted or unsubstituted alkyl, alkoxy or thioalkoxy groups, or arylalkyl groups. When a compound of the invention includes more than one R group, for example, each of the R groups is independently selected as are each R′, R″, R′″ and R″″ groups when more than one of these groups is present. When R′ and R″ are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6-, or 7-membered ring. For example, —NR′R″ is meant to include, but not be limited to, 1-pyrrolidinyl and 4-morpholinyl. From the above discussion of substituents, one of skill in the art will understand that the term “alkyl” is meant to include groups including carbon atoms bound to groups other than hydrogen groups, such as haloalkyl (e.g., —CF3 and —CH2CF3) and acyl (e.g., —C(O)CH3, —C(O)CF3, —C(O)CH2OCH3, and the like).
  • Similar to the substituents described for the alkyl radical, substituents for the aryl and heteroaryl groups are generically referred to as “aryl group substituents.” The substituents are selected from, for example: halogen, —OR′, ═O, ═NR′, ═N—OR′, —NR′R″, —SR′, -halogen, —SiR′R″R′″, —OC(O)R′, —C(O)R′, —CO2R′, —CONR′R″, —OC(O)NR′R″, —NR″C(O)R′, —NR′—C(O)NR″R′″, —NR″C(O)2R′, —NR—C(NR′R″R′″)═NR″″, —NR—C(NR′R″)═NR′″, —S(O)R′, —S(O)2R′, —S(O)2NR′R″, —NRSO2R′, —CN and —NO2, —R′, —N3, —CH(Ph)2, fluoro(C1-C4)alkoxy, and fluoro(C1-C4)alkyl, in a number ranging from zero to the total number of open valences on the aromatic ring system; and where R′, R″, R′″ and R″″ are preferably independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl. When a compound of the invention includes more than one R group, for example, each of the R groups is independently selected as are each R′, R″, R′″ and R″″ groups when more than one of these groups is present. In the schemes that follow, the symbol X represents “R” as described above.
  • Two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -T-C(O)—(CRR′)q—U—, wherein T and U are independently —NR—, —O—, —CRR′— or a single bond, and q is an integer of from 0 to 3. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -A-(CH2)r—B—, wherein A and B are independently —CRR′—, —O—, —NR—, —S—, —S(O)—, —S(O)2—, —S(O)2NR′— or a single bond, and r is an integer of from 1 to 4. One of the single bonds of the new ring so formed may optionally be replaced with a double bond. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula —(CRR′)s—X—(CR″R′″)d—, where s and d are independently integers of from 0 to 3, and X is —O—, —NR′—, —S—, —S(O)—, —S(O)2—, or —S(O)2NR′—. The substituents R, R′, R″ and R′″ are preferably independently selected from hydrogen or substituted or unsubstituted (C1-C6)alkyl.
  • As used herein, the term “heteroatom” is meant to include oxygen (O), nitrogen (N), sulfur (S) and silicon (Si).
  • EMBODIMENTS OF THE INVENTION
  • The present invention provides methods for rapidly and efficiently purifying specific carbohydrate and oligosaccharide structures to a high degree of purity using semipermeable membranes such as reverse osmosis and/or nanofiltration membranes. The methods are particularly useful for separating desired oligosaccharide compounds from reactants and other contaminants that remain in a reaction mixture after synthesis or breakdown of the oligosaccharides. For example, the invention provides methods for separating oligosaccharides from enzymes and/or other components of reaction mixtures used for enzymatic synthesis or enzymatic degradation of oligosaccharides, nucleotide sugars, glycolipids, liposaccharides, nucleotides, nucleosides, and other saccharide-containing compounds. Also provided are methods for removing salts, sugars and other components from feed solutions using ultrafiltration, nanofiltration or reverse osmosis. Using these techniques, the saccharides (e.g., sialyl lactose, SLex, and many others) can be produced at up to essentially 100% purity. Moreover, the purification methods of the invention are more efficient, rapid, and amenable to large-scale purifications than previously known carbohydrate purification methods.
  • Often, a desired purification can be effected in a single step; additional purification steps such as crystallization and the like are generally not required. Accordingly, the invention provides single-step methods for purifying saccharide-containing compounds.
  • To purify saccharides according to the methods of the invention, a membrane is selected that is appropriate for separating the desired carbohydrate from the undesired components (contaminants) of the solution from which the carbohydrate is to be purified. The goal in selecting a membrane is to optimize for a particular application the molecular weight cutoff (MWCO), membrane composition, permeability, and rejection characteristics, that is, the membrane's total capacity to retain specific molecules while allowing other species, e.g., salts and other, generally smaller or opposite charged molecules, to pass through. The percent retention of a component i (Ri) is given by the formula Ri=(1−Cip/Cir)×100%, wherein Cip is the concentration of component i in the permeate and Cir is the concentration of component i in the retentate, both expressed in weight percent. The percent retention of a component is also called the retention characteristic or the membrane rejection coefficient.
  • In and exemplary embodiment, a membrane is chosen that has a high rejection ratio for the saccharide of interest relative to the rejection ratio for compounds from which separation is desired. If a membrane has a high rejection ratio for a first compound relative to a second compound, the concentration of the first compound in the permeate solution which passes through the membrane is decreased relative to that of the second compound. Conversely, the concentration of the first compound increases relative to the concentration of the second compound in the retentate. If a membrane does not reject a compound, the concentration of the compound in both the permeate and the reject portions will remain essentially the same as in the feed solution. It is also possible for a membrane to have a negative rejection rate for a compound if the compound's concentration in the permeate becomes greater than the compound's concentration in the feed solution. A general review of membrane technology is found in “Membranes and Membrane Separation Processes,” in Ullmann's Encyclopedia of Industrial Chemistry (VCH, 1990); see also, Noble and Stem, Membrane Separations Technology: Principles and Applications (Elsevier, 1995).
  • As a starting point, one will generally choose a membrane having a molecular weight cut-off (MWCO, which is often related to membrane pore size) that is expected to retain the desired compounds while allowing an undesired compound present in the feed stream to pass through the membrane. The desired MWCO is generally less than the molecular weight of the compound being purified, and is typically greater than the molecular weight of the undesired contaminant that is to be removed from the solution containing the compound being purified. For example, to purify a compound having a molecular weight of 200 Da, one would choose a membrane that has a MWCO of less than about 200 Da. A membrane with a MWCO of 100 Da, for example, would also be a suitable candidate. The membranes that find use in the present invention are classified in part on the basis of their MWCO as ultrafiltration (UF) membranes, nanofiltration (NF) membranes, or reverse osmosis (RO) membranes, depending on the desired separation. For purposes of this invention, UF, NF, and RO membranes are classified as defined in the Pure Water Handbook, Osmonics, Inc. (Minnetonka Minn.). RO membranes typically have a nominal MWCO of less than about 200 Da and reject most ions, NF membranes generally have a nominal MWCO of between about 150 Da and about 5 kDa, and UF membranes generally have a nominal MWCO of between about 1 kDa and about 300 kDa (these MWCO ranges assume a saccharide-like molecule).
  • A second parameter that is considered in choosing an appropriate membrane for a particular separation is the polymer type of the membrane. Exemplary membranes of use in the invention are made of conventional membrane material whether inorganic, organic, or mixed inorganic and organic. Typical inorganic materials include glasses, ceramics, cermets, metals and the like. Ceramic membranes, which are preferred for the UF zone, may be made, for example, as described in U.S. Pat. No. 4,692,354 to Asaeda et al, U.S. Pat. No. 4,562,021 to Alary et al., and others. The organic materials which are preferred for the NF and RO applications, are typically polymers, whether isotropic, or anisotropic with a thin layer or “skin” on either the bore side or the shell side of the fibers. Preferred materials for fibers are polyamides, polybenzamides, polysulfones (including sulfonated polysulfone and sulfonated polyether sulfone, among others), polystyrenes, including styrene-containing copolymers such as acrylo-nitrile-styrene, butadiene-styrene and styrene-vinylbenzylhalide copolymers, polycarbonates, cellulosic polymers including cellulose acetate, polypropylene, poly(vinyl chloride), poly(ethylene terephthalate), polyvinyl alcohol, fluorocarbons, and the like, such as those disclosed in U.S. Pat. Nos. 4,230,463, 4,806,244, and 4,259,183. The NF and RO membranes often consist of a porous support substrate in addition to the polymeric discrimination layer.
  • Of particular importance in selecting a suitable membrane composition is the membrane surface charge. Within the required MWCO range, a membrane is selected that has a surface charge that is appropriate for the ionic charge of the carbohydrate and that of the contaminants. While MWCO for a particular membrane is generally invariable, changing the pH of the feed solution can affect separation properties of a membrane by altering the membrane surface charge. For example, a membrane that has a net negative surface charge at neutral pH can be adjusted to have a net neutral charge simply by lowering the pH of the solution. An additional effect of adjusting solution pH is to modulate the ionic charge on the contaminants and on the carbohydrate of interest. Therefore, by choosing a suitable membrane polymer type and pH, one can obtain a system in which both the contaminant and the membrane are neutral, facilitating pass-through of the contaminant. If, for instance, a contaminant is negatively charged at neutral pH, it is often desirable to lower the pH of the feed solution to protonate the contaminant. For example, removal of phosphate is facilitated by lowering the pH of the solution to about 3, which protonates the phosphate anion, allowing passage through a membrane. For purification of an anionic carbohydrate, the pH will generally between about pH 1 and about pH 7. Conversely, if contaminant has a positive surface charge, the pH of the feed solution can be adjusted to between about pH 7 and about pH 14. For example, increasing the pH of a solution containing a contaminant having an amino group (—NH3 +) will make the amino group neutral, thus facilitating its passage through the membrane. Thus, one aspect of the invention involves modulating a separation by adjusting the pH of a solution in contact with the membrane; this can change the ionic charge of a contaminant and can also affect the surface charge of the membrane, thus facilitating purification if the desired carbohydrate. Of course, the manufacturer's instructions must be followed as to acceptable pH range for a particular membrane to avoid damage to the membrane.
  • For some applications, a mixture is first subjected to nanofiltration or reverse osmosis at one pH, after which the retentate containing the saccharide of interest is adjusted to a different pH and subjected to an additional round of membrane purification. For example, filtration of a reaction mixture used to synthesize sialyl lactose through an Osmonics MX07 membrane (a nanofiltration membrane having a MWCO of about 500 Da) at pH 3.0 will retain the sialyl lactose and remove most phosphate, pyruvate, salt and manganese from the solution, while also removing some of the GlcNAc, lactose, and sialic acid. Further recirculation through the MXO7 membrane after adjusting the pH of the retentate to 7.4 will remove most of the remaining phosphate, all of the pyruvate, all of the lactose, some of the sialic acid, and substantial amounts of the remaining manganese.
  • If a saccharide is to be purified from a mixture that contains proteins, such as enzymes used to synthesize a desired oligosaccharide or nucleotide sugar, it is often desirable to remove the proteins as a first step of the purification procedure. For a saccharide that is smaller than the proteins, this separation is accomplished by choosing a membrane that has an MWCO which is less than the molecular mass of the protein or other macromolecule to be removed from the solution, but is greater than the molecular mass of the oligosaccharide being purified (i.e., the rejection ratio in this case is higher for the protein than for the desired saccharide). Proteins and other macromolecules that have a molecular mass greater than the MWCO will thus be rejected by the membrane, while the saccharide will pass through the membrane. Conversely, if an oligosaccharide or nucleotide sugar is to be purified from proteins that are smaller than the oligosaccharide or nucleotide sugar, a membrane is used that has a MWCO that is larger than the molecular mass of the protein but smaller than that of the oligosaccharide or nucleotide sugar. Generally, separation of proteins from carbohydrates will employ membranes that are commonly referred to as ultrafiltration (UF) membranes. UF membranes that are suitable for use in the methods of the invention are available from several commercial manufacturers, including Millipore Corp. (Bedford, Mass.), Osmonics, Inc. (Minnetonka, Minn.), Filmtec (Minneapolis, Minn.), UOP, Desalination Systems, Advanced Membrane Technologies, and Nitto.
  • The invention also provides methods for removing salts and other low molecular weight components from a mixture containing a saccharide of interest by using a nanofiltration (NF) or a reverse osmosis (RO) membrane. Nanofiltration membranes are a class of membranes for which separation is based both on molecular weight and ionic charge. These membranes typically fall between reverse osmosis and ultrafiltration membranes in terms of the size of species that will pass through the membrane. Nanofiltration membranes typically have micropores or openings between chains in a swollen polymer network. Molecular weight cut-offs for non-ionized molecules are typically in the range from 100-20,000 Daltons. For ions of the same molecular weight, membrane rejections (retentions) will increase progressively for ionic charges of 0, 1, 2, 3 etc. for a particular membrane because of increasing charge density (see, e.g., Eriksson, P., “Nanofiltration Extends the Range of Membrane Filtration,” Environmental Progress, 7: 58-59 (1988)). Nanofiltration is also described in Chemical Engineering Progress, pp. 68-74 (March 1994), Rautenbach et al., Desalination 77: 73 (1990), and U.S. Pat. No. 4,806,244). In a typical application, saccharides of interest will be retained by the nanofiltration membrane and contaminating salts and other undesired components will pass through. A nanofiltration membrane useful in the methods of the invention will typically have a retention characteristic for the saccharide of interest of from about 40% to about 100%, preferably from about 70% to about 100%, more preferably from about 90% to about 100%. The nanofilter membranes used in the invention can be any one of the conventional nanofilter membranes, with polyamide membranes being particularly suitable. Several commercial manufacturers, including Millipore Corp. (Bedford, Mass.), Osmonics, Inc. (Minnetonka, Minn.), Filmtec, UOP, Advanced Membrane Technologies, Desalination Systems, and Nitto, among others, distribute nanofiltration membranes that are suitable for use in the methods of the invention. For example, suitable membranes include the Osmonics MX07, YK, GH (G-10), GE (G-5), and HL membranes, among others.
  • Reverse osmosis (RO) membranes also allow a variety of aqueous solutes to pass through them while retaining selected molecules. Generally, osmosis refers to a process whereby a pure liquid (usually water) passes through a semipermeable membrane into a solution (usually sugar or salt and water) to dilute the solution and achieve osmotic equilibrium between the two liquids. In contrast, reverse osmosis is a pressure driven membrane process wherein the application of external pressure to the membrane system results in a reverse flux with the water molecules passing from a saline or sugar solution compartment into the pure water compartment of the membrane system. A RO membrane, which is semipermeable and non-porous, requires an aqueous feed to be pumped to it at a pressure above the osmotic pressure of the substances dissolved in the water. An RO membrane can effectively remove low molecular weight molecules (<200 Daltons) and also ions from water. Preferably, the reverse osmosis membrane will have a retention characteristic for the saccharide of interest of from about 40% to about 100%, preferably from about 70% to about 100%, and more preferably from about 90% to about 100%. Suitable RO membranes include, but are not limited to, the Filmtec BW-30, Filmtec SW-30, Filmtec SW-30HR, UOP RO membranes, Desal RO membranes, Osmonics RO membranes, Advanced Membrane Technologies RO membranes, and the Nitto RO membranes, among others. One example of a suitable RO membrane is Millipore Cat. No. CDRN500 60 (Millipore Corp., Bedford Mass.).
  • The membranes used in the invention may be employed in any of the known membrane constructions. For example, the membranes can be flat, plate and frame, tubular, spiral wound, hollow fiber, and the like. In a preferred embodiment, the membrane is spiral wound. The membranes can be employed in any suitable configuration, including either a cross-flow or a depth configuration. In “cross-flow” filtration, which is preferred for ultrafiltration, nanofiltration and reverse osmosis purifications according to the invention, the “feed” or solution from which the carbohydrate of interest is to be purified flows through membrane channels, either parallel or tangential to the membrane surface, and is separated into a retentate (also called recycle or concentrate) stream and a permeate stream. To maintain an efficient membrane, the feed stream should flow, at a sufficiently high velocity, parallel to the membrane surface to create shear forces and/or turbulence to sweep away accumulating particles rejected by the membrane. Cross-flow filtration thus entails the flow of three streams—feed, permeate and retentate. In contrast, a “dead end” or “depth” filter has only two streams—feed and filtrate (or permeate). The recycle or retentate stream, which retains all the particles and large molecules rejected by the membrane, can be entirely recycled to the membrane module in which the recycle stream is generated, or can be partially removed from the system. When the methods of the invention are used to purify saccharides from lower molecular weight components, for example, the desired saccharides are contained in the retentate stream (or feed stream, for a depth filter), while the permeate stream contains the removed contaminants.
  • The purification methods of the invention can be further optimized by adjusting the pressure, flow rate, and temperature at which the filtration is carried out. UF, NF, and RO generally require increasing pressures above ambient to overcome the osmotic pressure of the solution being passed through the membrane. The membrane manufacturers' instructions as to maximum and recommended operating pressures can be followed, with further optimization possible by making incremental adjustments. For example, the recommended pressure for UF will generally be between about 25 and about 100 psi, for NF between about 50 psi and about 1500 psi, and for RO between about 100 and about 1500 psi. Flow rates of both the concentrate (feed solution) and the permeate can also be adjusted to optimize the desired purification. Again, the manufacturers' recommendations for a particular membrane serve as a starting point from which to begin the optimization process by making incremental adjustments. Typical flow rates for the concentrate (Pc) will be between about 1 and about 15 gallons per minute (GPM), and more preferably between about 3 and about 7 GPM. For the permeate, flow rates (Pf) of between about 0.05 GPM and about 10 GPM are typical, with flow rates between about 0.2 and about 1 GPM being preferred. The temperature at which the purification is carried out can also influence the efficiency and speed of the purification. Temperatures of between about 0 and about 100° C. are typical, with temperatures between about 20 and 40° C. being preferred for most applications. Higher temperatures can, for some membranes, result in an increase in membrane pore size, thus providing an additional parameter that one can adjust to optimize a purification.
  • In a preferred embodiment, the filtration is performed in a membrane purification machine which provides a means for automating control of flow rate, pressure, temperature, and other parameters that can affect purification. For example, the Osmonics 213T membrane purification machine is suitable for use in the methods of the invention, as are machines manufactured by other companies listed above.
  • The membranes can be readily cleaned either after use or after the permeability of the membrane diminishes. Cleaning can be effected at a slightly elevated temperature if so desired, by rinsing with water or a caustic solution. If the streams contain small amounts of enzyme, rinsing in the presence of small amounts of surfactant, for instance ULTRASIL, is useful. Also, one can use prefilters (100-200 μm) to protect the more expensive nanofiltration membranes. Other cleaning agents can, if desired, be used. The choice of cleaning method will depend on the membrane being cleaned, and the membrane manufacturer's instructions should be consulted. The cleaning can be accomplished with a forward flushing or a backward flushing.
  • The purification methods of the invention can be used alone or in combination with other methods for purifying carbohydrates. For example, an ion exchange resin can be used to remove particular ions from a mixture containing a saccharide of interest, either before or after nanofiltration/reverse osmosis, or both before and after filtration. Ion exchange is particularly desirable if it is desired to remove ions such as phosphate and nucleotides that remain after a first round of nanofiltration or reverse osmosis. In the case of sialyl lactose synthesis as discussed above, this can be accomplished, for example, by adding an anion exchange resin such as AG1X-8 (acetate form, BioRad; see, e.g., BioRad catalog for other ion exchange resins) to a retentate that is at about pH 3.0 or lower until the phosphate concentration is reduced as desired. In this process, acetic acid is released, so one may wish to follow the ion exchange with an additional purification through the nanofiltration or reverse osmosis system. For example, one can circulate the pH 3.0 or lower solution through an Osmonics MX07 or similar membrane until the conductivity of the permeate is low and stabilized. The pH of the solution can then be raised to 7.4 with NaOH and the solution recirculated through the same membrane to remove remaining sodium acetate and salt. Cations can be removed in a similar manner; for example, to remove Mn2+, an acidic ion exchange resin can be used, such as AG50WX8 (He) (BioRad).
  • The purification methods of the invention are particularly useful for purifying oligosaccharides, modified saccharides, nucleotide sugars and modified nucleotide sugars prepared using enzymatic synthesis. Enzymatic synthesis using glycosyltransferases provides a powerful method for preparing oligosaccharides; for some applications it is desirable to purify the oligosaccharide from the enzymes and other reactants in the enzymatic synthesis reaction mixture. Preferred methods for producing many oligosaccharides involve glycosyl transferase cycles, which produce at least one mole of inorganic pyrophosphate for each mole of product formed and are typically carried out in the presence of a divalent metal ion. Examples of glycosyltransferase cycles are the sialyltransferase cycles, which use one or more enzymes as well as other reactants. See, e.g., U.S. Pat. No. 5,374,541 WO 9425615 A, PCT/US96/04790, and PCT/US96/04824. For example, a reaction used for synthesis of sialylated oligosaccharides can contain a sialyltransferase (FIG. 7), a CMP-sialic acid synthetase, a sialic acid, an acceptor for the sialyltransferase, CTP, and a soluble divalent metal cation. An exemplary α(2,3)sialyltransferase referred to as α(2,3)sialtransferase (EC 2.4.99.6) transfers sialic acid to the non-reducing terminal Gal of a Galβ163Glc disaccharide or glycoside. See, Van den Eijnden et al., J. Biol. Chem., 256:3159 (1981), Weinstein et al., J. Biol. Chem., 257:13845 (1982) and Wen et al, J. Biol. Chem., 267:21011 (1992). Another exemplary α2,3-sialyltransferase (EC 2.4.99.4) transfers sialic acid to the non-reducing terminal Gal of the disaccharide or glycoside. See, Rearick et al., J. Biol. Chem., 254:4444 (1979) and Gillespie et al., J. Biol. Chem., 267:21004 (1992). Further exemplary enzymes include Gal-β-1,4-GlcNAc α-2,6 sialyltransferase (See, Kurosawa et al. Eur. J. Biochem. 219: 375-381 (1994)). The reaction mixture will also contain an acceptor for the sialyltransferase, preferably having a galactosyl unit. Suitable acceptors, include, for example, Galβ1→3 GalNAc, lacto-N-tetraose, Galβ1→3 GlcNAc, Galβ1→3Ara, Galβ1→6GlcNAc, Galβ1→4Glc (lactose), Galβ1→4Glcβ1-OCH2CH3, Galβ1→4Glcβ1-OCH2CH2CH3, Galβ1→4Glcβ1-OCH2C6H5, Galβ1→4GlcNAc, Galβ1-OCH3, melibiose, raffinose, stachyose, and lacto-N-neotetraose (LNnT). The sialic acid present in the reaction mixture can include not only sialic acid itself (5-N-acetylneuraminic acid; 5-N-acetylamino-3,5-dideoxy-D-glycero-D-galacto-2-nonulosonic acid; NeuAc, and sometimes also abbreviated AcNeu or NANA), but also 9-substituted sialic acids such as a 9-O—C1-C6 acyl-NeuAc like 9-O-lactyl-NeuAc or 9-O-acetyl-NeuAc, 9-deoxy-9-fluoro-NeuAc and 9-azido-9-deoxy-NeuAc. The synthesis and use of these compounds in a sialylation procedure is described in international application WO 92/16640, published Oct. 1, 1992.
  • In preferred embodiments the reaction medium can further comprise a CMP-sialic acid recycling system comprising at least 2 moles of phosphate donor per each mole of sialic acid, and catalytic amounts of an adenine nucleotide, a kinase capable of transferring phosphate from the phosphate donor to nucleoside diphosphates, and a nucleoside monophosphate kinase capable of transferring the terminal phosphate from a nucleoside triphosphate to CMP. For example, a suitable CMP-sialic acid regenerating system comprises cytidine monophosphate (CMP), a nucleoside triphosphate (for example adenosine triphosphate (ATP), a phosphate donor (for example, phosphoenolpyruvate or acetyl phosphate), a kinase (for example, pyruvate kinase or acetate kinase) capable of transferring phosphate from the phosphate donor to nucleoside diphosphates and a nucleoside monophosphate kinase (for example, myokinase) capable of transferring the terminal phosphate from a nucleoside triphosphate to CMP. The previously discussed α(2,3)sialyltransferase and CMP-sialic acid synthetase can also be formally viewed as part of the CMP-sialic acid regenerating system. For those embodiments in which a CMP-sialic acid recycling system is not used, the reaction medium will preferably further comprise a phosphatase.
  • Pyruvate is a byproduct of the sialyltransferase cycle and can be made use of in another reaction in which N-acetylmannosamine (ManNAc) and pyruvate are reacted in the presence of NeuAc aldolase (EC 4.1.3.3) to form sialic acid. Alternatively, advantage can be taken of the isomerization of GlcNAc to ManNAc, and the less expensive GlcNAc can be used as the starting material for sialic acid generation. Thus, the sialic acid can be replaced by ManNAc (or GlcNAc) and a catalytic amount of NeuAc aldolase. Although NeuAc aldolase also catalyzes the reverse reaction (NeuAc to ManNAc and pyruvate), the produced NeuAc is irreversibly incorporated into the reaction cycle via CMP-NeuAc catalyzed by CMP-sialic acid synthetase. In addition, the starting material, ManNAc, can also be made by the chemical conversion of GlcNAc using methods known in the art (see, e.g., Simon et al., J. Am. Chem. Soc. 110:7159 (1988). The enzymatic synthesis of sialic acid and its 9-substituted derivatives and the use of a resulting sialic acid in a different sialylating reaction scheme is disclosed in International application WO 92/16640, published on Oct. 1, 1992, and incorporated herein by reference.
  • When a galactosyltransferase is used for enzymatic synthesis of an oligosaccharide, the reaction medium will preferably contain, in addition to a galactosyltransferase, donor substrate, acceptor sugar and divalent metal cation, a donor substrate recycling system comprising at least 1 mole of glucose-1-phosphate per each mole of acceptor sugar, a phosphate donor, a kinase capable of transferring phosphate from the phosphate donor to nucleoside diphosphates, and a pyrophosphorylase capable of forming UDP-glucose from UTP and glucose-1-phosphate and catalytic amounts of UDP and a UDP-galactose-4-epimerase. Exemplary galactosyltransferases include α(1,3) galactosyltransferase (E.C. No. 2.4.1.151, see, e.g., Dabkowski et al., Transplant Proc. 25: 2921 (1993) and Yamamoto et al., Nature 345:229-233 (1990)) and β(1,4) galactosyltransferase (E.C. No. 2.4.1.38).
  • Oligosaccharides synthesized by other enzymatic methods can also be purified by the methods of the invention. For example, the methods are useful for purifying oligosaccharides produced in non-cyclic or partially cyclic reactions such as simple incubation of an activated saccharide and an appropriate acceptor molecule with a glycosyltransferase under conditions effective to transfer and covalently bond the saccharide to the acceptor molecule. Glycosyltransferases, which include those described in, e.g., U.S. Pat. No. 5,180,674, and International Patent Publication Nos. WO 93/13198 and WO 95/02683, as well the glycosyltransferases encoded by the los locus of Neisseria (see, U.S. Pat. No. 5,545,553), can be bound to a cell surface or unbound. Oligosaccharides that can be obtained using these glycosyltransferases include, for example,
  • Galα(1→4)Galβ(1→4)Glc, GlcNAcβ(1,3)Galβ(1,4)Glc, Galβ(1→4)GlcNAcβ(1→3)Galβ(1→4)Glc, and
  • GalNAcβ(1→3)Galβ(1→4)GlcNAcβ(1→3) Galβ(1→4)Glc, among many others.
  • Among the compounds that one can purify using the described methods are sialic acid and any sugar having a sialic acid moiety. Exemplary species include sialic acid species modified with a linker (e.g., glycyl sialic acid) and with a polymer (e.g., poly(ethylene glycol). Other compounds include sialyl galactosides, including the sialyl lactosides, as well as compounds having the formula:

  • NeuAcα(2→3)Galβ(1→4)GlcN(R′)β-OR or

  • NeuAcα(2→3)Galβ(3→4)GlcN(R′)β(1→3)Galβ-OR.
  • In these formulae, R′ is alkyl or acyl from 1-18 carbons, 5,6,7,8-tetrahydro-2-naphthamido; benzamido; 2-naphthamido; 4-aminobenzamido; or 4-nitrobenzamido. R is a hydrogen, a alkyl C1-C6, a saccharide, an oligosaccharide or an aglycon group having at least one carbon atom. The term “aglycon group having at least one carbon atom” refers to a group -A-Z, in which A represents an alkylene group of from 1 to 18 carbon atoms optionally substituted with halogen, thiol, hydroxy, oxygen, sulfur, amino, imino, or alkoxy; and Z is hydrogen, —OH, —SH, —NH2, —NHR1, —N(R1)2, —CO2H, —CO2R1, —CONH2, —CONHR1, —CON(R1)2, —CONHNH2, or —OR1 wherein each R1 is independently alkyl of from 1 to 5 carbon atoms. In addition, R can be:

  • (CH2)nCH(CH2)mCH3
  • where n, m, and o are independently selected from the integers 1-18; (CH2)n—R2 (in which n=0-18), wherein R2 is a variously substituted aromatic ring, preferably, a phenyl group, being substituted with one or more alkoxy groups, preferably methoxy or O(CH2)mCH3, (in which m=0-18), or a combination thereof. R can also be 3-(3,4,5-trimethoxyphenyl)propyl.
  • The present invention is also useful for purifying a variety of compounds that comprise selectin-binding carbohydrate moieties. These selectin-binding moieties have the general formula:

  • R1Galβ1,m(Fucα1,n)GlcNR0(R2)p
  • in which R0 is (C1-C8 alkyl)carbonyl, (C1-C8 alkoxy)carbonyl, or (C2-C9 alkenyloxy)carbonyl, R1 is an oligosaccharide or a group having the formula:
  • Figure US20090048440A1-20090219-C00001
  • R3 and R4 may be the same or different and may be H, C1-C8 alkyl, hydroxy-(C1-C8 alkyl), aryl-(C1-C8 alkyl), or (C1-C8 alkoxy)-(C1-C8 alkyl), substituted or unsubstituted. R2 may be H, C1-C8 alkyl, hydroxy-(C1-C8 alkyl), aryl-(C1-C8-alkyl), (C1-C8 alkyl)-aryl, alkylthio, α1,2Man, α1,6GalNAc, β1,3Galβ1,4Glc, α1,2Man-R8, α1,6GalNAc-R8, and β1,3Gal-R8. R8 may be H, C1-C8 alkyl, C1-C8 alkoxy, hydroxy-(C1-C8 alkyl), aryl-(C1-C8 alkyl), (C1-C8 alkyl)-aryl, or alkylthio. In the formula, m and n are integers and may be either 3 or 4; p may be zero or 1.
  • The substituted groups mentioned above may be substituted by hydroxy, hydroxy(C1-C4 alkyl), polyhydroxy(C1-C4 alkyl), alkanoamido, or hydroxyalknoamido substituents. Preferred substituents include hydroxy, polyhydroxy(C3 alkyl), acetamido and hydroxyacetamido. A substituted radical may have more than one substitution, which may be the same or different.
  • For embodiments in which R1 is an oligosaccharide, the oligosaccharide is preferably a trisaccharide. Preferred trisaccharides include NeuAcα2,3Galβ1,4GlcNAcβ1,3 or NeuGcα2,3Galβ1,4GlcNAcβ1,3.
  • For embodiments in which R1 is the group having the formula
  • Figure US20090048440A1-20090219-C00002
  • R3 and R4 preferably form a single radical having the formula

  • —R5— or —(R6)q—O—(R7)r
  • in which R5 is C3-C7 divalent alkyl, substituted or unsubstituted, R6 and R7 are the same or different and are C1-C6 divalent alkyl, substituted or unsubstituted. In the formula, q and r are integers which may be the same or different and are either zero or 1. The sum of q and r is always at least 1.
  • A more preferred structure for a single radical formed by R3 and R4 is one having the formula

  • —(R6)—O—
  • in which R6 is C3-C4 divalent alkyl, substituted or unsubstituted. For instance, R6 may have the formula —CH2—CH2—CH2—CH2—, preferably substituted. The radical can be substituted with hydroxy, polyhydroxy(C3 alkyl), and substituted or unsubstituted alkanoamido groups, such as acetamido or hydroxyacetamido. The substituted structure will typically form a monosaccharide, preferably a sialic acid such as NeuAc or NeuGc linked α2,3 to the Gal residue.
  • In the general formula, above, both m and n are integers and can be either 3 or 4. Thus, in one set of structures Gal is linked β1,4 and Fuc is linked α1,3 to GlcNAc. This formula includes the SLex tetrasaccharide. SLex has the formula NeuAcα2,3Galβ1,4(Fucα1,3)GlcNAcβ1-. This structure is selectively recognized by LECCAM-bearing cells. SLex compounds that can be purified using the methods of the invention include NeuAcα2,3 Galβ1,4(Fucα1,3)GlcNAcβ1-Gal-OEt, NeuAcα2,3Galβ1,4(Fucα1,3)GlcNAcβ1,4Galβ1-OEt, and others that are described in international application WO 91/19502. Other compounds that one can purify using the methods include those described in U.S. Pat. No. 5,604,207 having the formula:
  • Figure US20090048440A1-20090219-C00003
  • wherein Z is hydrogen, C1-C6 acyl or
  • Figure US20090048440A1-20090219-C00004
  • Y is selected from the group consisting of C(O), SO2, HNC(O), OC(O) and SC(O). R1 is selected from the group consisting of an aryl, a substituted aryl and a phenyl C1-C3 alkylene group, wherein said aryl substitutent is selected from the group consisting of a halo, trifluoromethyl, nitro, C1-C18 alkyl, C1-C18 alkoxy, amino, mono-C1-C18 alkylamino, di-C1-C18 alkylamino, benzylamino, C1-C18 alkylbenzylamino, C1-C18 thioaklyl and C1-C18 alkyl carboxamido groups, or R1Y is allyloxycarbonyl or chloroacetyl. R2 is selected from the group consisting of monosaccharide (including β1,3Gal-OR, where R=H, alkyl, aryl or acyl), disaccharide, hydrogen, C1-C18 straight chain, branched chain or cyclic hydrocarbyl, C1-C6 alkyl, 3-(3,4,5-trimethoxyphenyl)propyl, C1-C5 alkylene-carboxylate, trisubstituted silyl C2-C4 alkylene wherein said trisubstituted silyl is a silyl group having three substituents independently selected from the group consisting of C1-C4 alkyl, phenyl, or OR2 together form a C1-C18 straight chain, branched chain or cyclic hydrocarbyl carbamate; R3 is hydrogen or C1-C6 acyl; R4 is hydrogen, C1-C6 alkyl or benzyl. R5 is selected from the group consisting of hydrogen, benzyl, methoxybenzyl, dimethoxybenzyl and C1-C6 acyl. R7 is methyl or hydroxymethyl. X is selected from the group consisting of C1-C6 acyloxy, C2-C6 hydroxylacyloxy, hydroxy, halo and azido.
  • A related set of structures included in the general formula are those in which Gal is linked β1,3 and Fuc is linked α1,4. For instance, the tetrasaccharide, NeuAcα2,3Galβ1,3(Fucα1,4)GlcNAcβ1-, termed here SLea, is recognized by selectin receptors. See, Berg et al., J. Biol. Chem., 266:14869-14872 (1991). In particular, Berg et al. showed that cells transformed with E-selectin cDNA selectively bound neoglycoproteins comprising SLea.
  • The methods of the invention are also useful for purifying oligosaccharide compounds having the general formula Galα1,3Gal-, including Galα1,3Galβ1,4Glc(R)β-O—R1, wherein R1 is —(CH2)n—COX, with X=OH, OR2, —NHNH2, R═OH or NAc, and R2 is a hydrogen, a saccharide, an oligosaccharide or an aglycon group having at least one carbon atom, and n=an integer from 2 to 18, more preferably from 2 to 10. For example, one can purify a compound having the formula Galα1,3Galβ1,4GlcNAcβ-O—(CH2)5—COOH using procedures such as those described in Examples 7-8. Also among the compounds that can be purified according to the invention are lacto-N-neotetraose (LNnT), GlcNAcβ1,3Galβ1,4Glc (LNT-2), sialyl(α2,3)-lactose, and sialyl(α2,6)-lactose.
  • In one embodiment, a modified sialic acid has the following structure:
  • Figure US20090048440A1-20090219-C00005
  • wherein, R1, R2, R3 and R4 are each independently selected from H, OR5, NR6R7, substituted alkyl, unsubstituted alkyl, substituted heteroalkyl and unsubstituted heteroalkyl. R5 is H, substituted alkyl, unsubstituted alkyl, substituted heteroalkyl or unsubstituted heteroalkyl. The symbols R6 and R7 independently represent H, substituted alkyl, unsubstituted alkyl, substituted heteroalkyl and unsubstituted heteroalkyl. B is a nucleoside. Exemplary nucleosides include AMP, UMP, GMP, CMP, TMP, ADP, UDP, GDP, CDP, TDP, ATP, UTP, GTP, CTP, TTP, cAMP and cGMP.
  • In a preferred embodiment, the sialic acid is modified with a linker group. Preferred sites for such modification are R1 or R2. Thus, in a preferred embodiment, at least one of R1 and R2 includes a linker. An exemplary linker is a glycyl linker.
  • In a preferred embodiment, the modified sialic acid has the following structure:
  • Figure US20090048440A1-20090219-C00006
  • In yet another preferred embodiment, a modifying group is attached to the sialic acid through the linker. An exemplary species according to this description includes a modifying group attached through the free amine moiety of the linker in the figure above. A presently preferred modifying group is a water-soluble polymer. Poly(ethylene glycol) is a preferred water-soluble polymer.
  • The methods of the invention are useful not only for purifying carbohydrates (and modified carbohydrates and nucleotide sugars) that that are newly synthesized, but also those that are the products of degradation, e.g., enzymatic degradation. See, e.g., Sinnott, M. L., Chem. Rev. 90: 1171-1202 (1990) for examples of enzymes that catalyze degradation of oligosaccharides.
  • The invention also provides methods for purifying nucleotides, nucleotide sugars, and related compounds. For example, a nucleotide sugar such as GDP-fucose, GDP-mannose, CMP-NeuAc, UDP-glucose, UDP-galactose, UDP-N-acetylgalactosamine, and the like, can be purified by the methods described herein. The methods are also useful for purifying nucleotides and nucleotides in various states of phosphorylation (e.g., CMP, CDP, CTP, GMP, GDP, GTP, TMP, TDP, TTP, AMP, ADP, ATP, UMP, UDP, UTP), as well as the deoxy forms of these and other nucleotides, including modified nucleotides. The method of the invention can be used to prepare and purify nucleotide sugars to a high degree of purity on a multi-kilogram scale (e.g., at least about 1 kg, preferably at least about 1.5 kg, more preferably at least about 2 kg, and even more preferably, at least about 3 kg of purified sugar nucleotide per synthesis/purification run). An exemplary process flow chart is set forth in FIG. 1.
  • In the discussion that follows, focus is placed on the purification of nucleotide sugars. The methods set forth hereinbelow are equally applicable to the purification of sugars, modified sugars and modified nucleotides sugars (e.g., those bearing a linker arm (e.g., a glycl linker arm), a modifying group (e.g., a water-soluble polymer (e.g., PEG)), or a modifying group attached to the linker arm (e.g., PEG attached to the sugar through a glycyl linker).
  • The process of the invention routinely provides nucleotide sugars, e.g., CMP-NAN, in recovered yields of purified materials in greater that 40%, e.g., of from about 40% to about 80%. In a preferred embodiment, the yield of isolated CMP-NAN is from about 50% to about 70% of the theoretical synthesis yield.
  • In general, the process of the invention provides nucleotide sugars that are at least 80% pure, preferably at least 85% pure, more preferably, at least 90% pure and still more preferably, at least 95% pure.
  • In a representative embodiment, the nucleotide sugar is a CMP-sialic acid, e.g., CMP-NAN (N-acetylneuraminic acid). The generic process for purification of nucleotide sugars is exemplified in the context of CMP-sialic acid, however, this focus is for clarity of illustration and should not be construed as limiting the process to practice with CMP-sialic acids.
  • In a preferred embodiment, a membrane-based methodology is utilized to purify the nucleotide sugar from reaction components. In the case of CMP-sialic acid, exemplary reaction components include cytidine monophosphate and its active analogues, and cytidine diphosphate, unreacted sialic acid, salts (e.g., PO4 3−, Mn2+).
  • In a preferred embodiment, the amount of CMP, CDP and/or CTP of the product is less than about 20%, preferably, less than about 15%, more preferably, less than about 10% and still more preferably less than 5%.
  • In another preferred embodiment, the content of unreacted sialic acid, e.g., NAN, in the final product is less than about than about 20%, preferably, less than about 15%, more preferably, less than about 10%, still more preferably, less than about 5% and even more preferably, less than about 2%.
  • In yet another preferred embodiment, the phosphate content of the final product is less than about 5%, preferably, less than about 2%, and more preferably, about 0%.
  • The invention also provides methods for synthesizing and purifying nucleotide sugars. The nucleotide sugar is enzymatically synthesized from a nucleotide and a sugar in the presence of an enzyme. After the nucleotide sugar is synthesized, the nucleotide sugar is purified according to a method of the invention.
  • In one embodiment, following synthesis, a nucleotide sugar solution is optionally clarified by filtration. The nucleotide sugar solution passes through a membrane bag filter in which contaminating salts and other undesired contaminants are filtered out of the nucleotide sugar solution. The clarification step can be incorporated at any step of the process. In a preferred embodiment, the nucleotide sugar solution is clarified after synthesis of the nucleotide sugar. The nucleotide sugar solution may be clarified one or more times.
  • In another embodiment, the nucleotide sugar solution is purified using hollow fiber filtration. Hollow fiber filtration removes proteins introduced by the enzyme preparation of the nucleotide sugar. The hollow fiber membrane retains proteins from the enzyme preparation while allowing for passage of the nucleotide sugar solution through the membrane. In an exemplary embodiment, the hollow fiber membrane comprises a hollow fiber membrane with a tangential filtration skid. The hollow fiber filtration step can be incorporated at any step of the process. In one embodiment, the nucleotide sugar solution goes through hollow fiber filtration after clarification. In another embodiment, the nucleotide sugar solution goes through hollow fiber filtration after synthesis of the nucleotide sugar. The nucleotide sugar solution may be filtered one or more times using hollow fiber filtration.
  • In another embodiment, the nucleotide sugar solution is purified using nanofiltration. Nanofiltration removes salts and other low molecular weight components from a mixture. Nanofiltration membranes separate molecules based on molecular weight and ionic charge. Molecular weight-cutoffs for non-ionized molecules are typically in the range from 100-20,000 daltons. In an exemplary application, saccharides of interest will be retained by the nanofiltration membrane and contaminating salts and other undesired components will pass through. The nanofiltration step can be incorporated at any step of the process. In one embodiment, the nucleotide sugar solution goes through hollow-fiber filtration first and then nanofiltration. In another embodiment, the nucleotide sugar solution goes through nanofiltration first and then hollow fiber filtration. In the alternative, the nucleotide sugar solution may be purified using either hollow-fiber filtration or nanofiltration. In another embodiment, the nucleotide sugar solution goes through nanofiltration after clarification. In yet another embodiment, the nucleotide sugar solution goes through nanofiltration after synthesis of the nucleotide sugar. The nucleotide sugar solution may be filtered one or more times using nanofiltration. After nanofiltration, the purified nucleotide sugar solution may generally be stored or may undergo further purification.
  • In another embodiment, the nucleotide sugar solution may optionally be decolorized (e.g., by passing the solution over activate carbon). In a preferred embodiment, decolorization involves passing the nucleotide sugar solution over a pre-packed column of activated carbon attached to a chromatography system. Decolorization can be incorporated at any step of the process. In one embodiment, the nucleotide sugar solution is decolorized after nanofiltration. In another embodiment, the nucleotide sugar solution is decolorized after hollow-fiber filtration. In yet another embodiment, the nucleotide sugar solution is decolorized after clarification. The nucleotide sugar solution may be decolorized one or more times.
  • In another embodiment, the nucleotide sugar solution is purified using a charged depth media filter. The charged depth media filter removes endotoxins from the nucleotide sugar solution. Endotoxins are toxic, natural compounds such as lipopolysaccharides found inside pathogens on the outer cell wall of bacteria. Purification by a charged depth media filter can be incorporated at any step of the process. In one embodiment, the nucleotide sugar solution is filtered after decolorization.
  • In another embodiment, the nucleotide sugar solution is purified by a charged depth media filter after nanofiltration. In yet another embodiment, the nucleotide sugar solution is purified by a charged depth media filter after hollow-fiber filtration. In another embodiment, the nucleotide sugar solution is purified by a charged depth media filter after clarification. In another embodiment, the nucleotide sugar solution is purified by a charged depth media filter after synthesis of the nucleotide sugar. The nucleotide sugar solution may be filtered one or more times using a charged depth media filter.
  • In another embodiment, the nucleotide sugar solution is purified using a sterile filter. The sterile filter removes contaminating salts and other undesired contaminants from the nucleotide sugar solution. In a more preferred embodiment, the sterile filter is pre-packaged and sterilized with a bag manifold system for final filtration and storage. Purification by a sterile filter can be incorporated at any step of the process. In one embodiment, the nucleotide sugar solution is filtered by a sterile filter after purification by a charged depth media filter. In another embodiment, the nucleotide sugar solution is purified by a sterile filter after decolorization. In yet another embodiment, the nucleotide sugar solution is purified by a sterile filter after nanofiltration. In another embodiment, the nucleotide sugar solution is purified by a sterile filter after hollow fiber filtration. In another embodiment, the nucleotide sugar solution is purified by a sterile filter after clarification. In another embodiment, the nucleotide sugar solution is purified by a sterile filter after synthesis of the nucleotide sugar. The nucleotide sugar solution may be filtered one or more times using a sterile filter.
  • An exemplary process of nucleotide sugar purification is described in FIG. 1. The nucleotide sugar is first synthesized (1) from a nucleotide and a sugar in the presence of an enzyme.
  • After the nucleotide sugar is synthesized, the nucleotide sugar is clarified by filtration (2) and transferred into a mobile tank (3). The clarified nucleotide sugar solution is concentrated using a hollow fiber filtration unit with a tangential flow filtration skid and diafiltered with purified water (4) and (5). The nucleotide sugar solution is transferred to a mobile tank (6) and the pH is adjusted.
  • The purified solution is concentrated again and diafiltered with purified water using a nanofiltration system (7) and (8). The nucleotide sugar solution is then decolorized in which the color is removed from the nucleotide sugar solution (9).
  • The nucleotide sugar solution subsequently undergoes two filtrations. First, the nucleotide sugar solution is filtered using a charged depth media filter in which endotoxins are removed (10). In an exemplary embodiment, the charged depth media filter is a CUNO Zeta Plus 60 ZA filter or an equivalent. After the nucleotide sugar solution is filtered through the charged depth media filter, the nucleotide sugar solution is optionally filtered using a 0.2 μm sterile filter (11). In an exemplary embodiment, the sterile filter is a CUNO LifeASSURE 0.2 μm sterile filter or an equivalent. The purified nucleotide sugar solution is appropriate for storage.
  • Exemplary nucleotide sugars that can be purified by the method described above include, but are not limited to, CMP-NAN, GDP-fucose, GDP-mannose, CMP-NeuAc, UDP-Glucose, UDP-galactose and UDP-N-acetylgalactosamine, and modified analogues thereof. In a preferred embodiment, the nucleotide sugar is CMP-NAN or a modified CMP-NAN.
  • The invention also provides methods for synthesizing and purification of a nucleotide-Glycyl Sialic Acid (“nucleotide-GSC”).
  • In one embodiment, the synthesis of the nucleotide-GSC begins with the synthesis of the protected Fmoc-glycyl-mannosamine (“FGM”). In an exemplary embodiment, mannosamine and Fmoc-Glycyl-OSU are reacted in an aqueous solution under basic conditions. The aqueous solution may contain a base, e.g., sodium methoxide and an organic cosolvent, e.g., methanol, to facilitate the reaction.
  • The FGM is optionally purified. In an exemplary embodiment, FGM is purified by chromatography, e.g., silica gel chromatography. FGM may be chromatographed one or more times.
  • In another embodiment, FGM converted to the corresponding sialic acid analogue by reaction with pyruvate to form Fmoc-glycyl-sialic acid (“FSC”). This reaction is efficiently catalyzed by a sialic acid aldolase. Appropriate sialic acid aldolases are commercially available. In an exemplary embodiment, the reaction mixture includes at least the nucleotide, the aldolase, MnCl2 and water. The resulting FSC is then coupled to a nucleotide in the presence of an enzyme to form the resulting product, nucleotide-FSC.
  • The nucleotide-FSC is optionally purified. In an exemplary embodiment, the nucleotide-FSC is purified by chromatography, e.g., reverse phase chromatography. In an exemplary embodiment, the reverse phase chromatography is C18 reverse phase chromatography. The nucleotide FSC can be filtered (e.g., 0.22 filter) prior to and/or after chromatography.
  • The nucleotide-FSC is preferably deprotected to produce the free amine analogue of the linker-nucleotide sugar construct. In an exemplary embodiment, deprotection is effected with methanol:water:dimethylamine. Deprotection results in a modified sialic acid, nucleotide-Glycyl-Sialic Acid (“GSC”).
  • The GSC is optionally purified, filtered and/or lyophilized.
  • An exemplary process for nucleotide-GSC synthesis and purification is described in FIG. 4.
  • The synthesis of nucleotide-GSC begins with the synthesis and concentration of FGM (12). FGM is then purified using silica flash column chromatography (13). FGM is reacted with pyruvate to form FSC (14). The resulting FSC is then coupled to a nucleotide in the presence of an enzyme to form the resulting product, nucleotide-FSC (14). The nucleotide-FSC is then purified (15). The nucleotide-FSC is deprotected (16) thus cleaving off the Fmoc group from the nucleotide-FSC. The resultant product is a nucleotide-GSC. The nucleotide-GSC is further purified and concentrated (16). The nucleotide-GSC is then lyophilized (17) and subsequently released for testing (18).
  • An exemplary nucleotide that can be used for the synthesis and purification of a nucleotide-GSC includes, but is not limited to, CMP, CDP, CTP, GMP, GDP, GTP, TMP, TDP, TTP, AMP, ADP, ATP, UMP, UDP, UTP, as well as the deoxy forms of these and other nucleotides. In a preferred embodiment, the nucleotide is CMP.
  • The invention provides also methods for synthesizing and purification of a nucleotide-Sialic Acid (“SA”)-PEG. In one embodiment, the synthesis of the nucleotide-SA-PEG begins with Fmoc-glycyl-mannosamine (“FGM”). Synthesis and purification of this starting material is discussed above. GSC and methoxy-paranitrophenyl-carbomate-polyethylene glycol (“mPEG-pNP”) are combined in under conditions suitable to allow formation of a conjugate between the PEG and the free amine of the glycyl linker. In a preferred embodiment, the synthesis reaction is performed in a 80% THF: 20% H2O solution.
  • In another embodiment, the nucleotide-SA-PEG is purified. In a preferred embodiment, the nucleotide-SA-PEG is purified by reverse phase chromatography.
  • An exemplary process of nucleotide-SA-PEG (“PSC”) synthesis and purification is described in FIG. 5.
  • The synthesis of nucleotide-SA-PEG begins with the synthesis of FGM (19). FGM is rotovapped (20). FGM is then purified using silica column chromatography (21). FGM is detected by a UV light (22) and rotovapped (23). FGM is reacted with pyruvate to form FSC (24). The resulting FSC is then coupled to a nucleotide in the presence of an enzyme to form the resulting product, nucleotide-FSC (24). The nucleotide-FSC is then purified using a 0.2 μm filter (25) and a C18 reverse phase chromatography (26). The solution is then detected by a UV ray (27). The nucleotide-FSC is deprotected (28) thus cleaving off the Fmoc group from the nucleotide-FSC. The resultant product is a nucleotide-GSC. The nucleotide-GSC is rotovapped (29). The nucleotide-GSC is further purified (30) by a 0.2 μm filter. The nucleotide-GSC is then lyophilized (31). The nucleotide-GSC is reacted with a mPEG-pNP to form nucleotide-SA-PEG (“PSC”) (32). The PSC is purified by reverse phase chromatography (33). The PSC is detected by UV light (34) and rotovapped (35). The PSC is then lyophilized (36).
  • An exemplary nucleotide that can be used for the synthesis and purification of a nucleotide-SA-PEG includes, but is not limited to, CMP, CDP, CTP, GMP, GDP, GTP, TMP, TDP, TTP, AMP, ADP, ATP, UMP, UDP, UTP, as well as the deoxy forms of these and other nucleotides. In a preferred embodiment, the nucleotide is CMP.
  • The invention further provides methods for purifying a glycosyltransferase. In one embodiment, a glycosyltransferase solution is harvested, isolating the enzyme from cell culture and other debris to produce a suitable feed material for subsequent purification steps. In an exemplary embodiment, the harvesting reaction occurs at about pH 6. The harvesting step can be incorporated at any step of the process.
  • The glycosyltransferase is optionally precipitated from the solution. In an exemplary embodiment, the glycosyltransferase is precipitated by addition of calcium chloride (“CaCl2”) to the solution. The pH of the solution can be adjusted as appropriate. In an exemplary embodiment, the pH of the precipitation reaction is adjusted to about 7.5. The mixture can be incubated for any suitable time under appropriate conditions. In an exemplary embodiment, the precipitation step lasts for about 30 minutes at about 4° C. Other exemplary additives include EDTA.
  • The recovery of glycosyltransferase after precipitation is about 80% to about 100%, preferably from about 90% to about 100%, even more preferably about 100%.
  • In another embodiment, the glycosyltransferase solution is subjected to membrane filtration. Exemplary membrane filters have a pore size of about 0.1 μm to about 0.5 μm, preferably about 0.1 μm to about 0.3 μm, and more preferably about 0.20 μm to about 0.25 μm. The filtration step can be incorporated at any step of the process.
  • In another embodiment, the glycosyltransferase solution is ultrafiltrated. In ultrafiltration, products of high molecular weight are retained on the membrane, while low molecular weight solutes pass through the membrane. In an exemplary embodiment, the ultrafiltration membrane has a molecular weight cut-off (MWCO) between about 5 kDa and about 200 kDa.
  • In an exemplary embodiment, the glycosyltransferase solution is equilibrated with 15 mM sodium phosphate buffer, pH 7.5 and conductivity is 2 ms/cm. In another embodiment, the glycosyltransferase solution is equilibrated with 15 mM sodium phosphate, pH 7.5. In another embodiment, the glycosyltransferase solution is equilibrated with 15 mM sodium phosphate, 0.01M NaCl, pH 7.5. In another embodiment, the glycosyltransferase is equilibrated with 15 mM sodium phosphate, 0.05M NaCl, pH 7.5. In another embodiment, the glycosyltransferase solution is equilibrated with 15 mM sodium phosphate, 0.10M NaCl, pH 7.5. In another embodiment, the pH range of the sodium phosphate may range from about 5.5 to about 8.5. In a preferred embodiment, the pH range of the glycosyltransferase solution may range from about 6.5 to about 7.5. In another embodiment, the test excipient includes, but is not limited to, glycerol, mannitol, sorbitol, sucrose and Tween-20. In one embodiment, the percent recovery of glycosyltransferase after ultrafiltration is about 45% to about 85%. In a preferred embodiment, the percent recovery of glycosyltransferase after ultrafiltration is about 55% to about 75%. In a more preferred embodiment, the percent recovery of glycosyltransferase after ultrafiltration is about 65%. The ultrafiltration step can be incorporated at any step of the process. In a preferred embodiment, the glycosyltransferase solution is ultrafiltrated after the filtration step. In another preferred embodiment, the glycosyltransferase solution is ultrafiltrated after the precipitation step.
  • In another preferred embodiment, the glycosyltransferase solution is ultrafiltrated after the harvesting step. The glycosyltransferase solution may be ultrafiltrated one or more times.
  • In another embodiment, the glycosyltransferase is purified by chromatography, e.g., ion exchange chromatography. In an exemplary embodiment, the glycosyltransferase is purified using an anion exchange column. In a further exemplary embodiment, the anion exchange column is a Mustang Q or an equivalent. The recovery of glycosyltransferase after anion exchange chromatography is preferably from about 80% to about 100%. In a preferred embodiment, the recovery of glycosyltransferase after chromatography is about 90% to about 100%. In a more preferred embodiment, the recovery of glycosyltransferase after chromatography is about 100%. The chromatography step can be incorporated at any step of the process. In a preferred embodiment, the glycosyltransferase is purified by chromatography after an ultrafiltration step. In a preferred embodiment, the glycosyltransferase is purified by chromatography after the filtration step. In another preferred embodiment, the glycosyltransferase is purified by chromatography after the precipitation step. In another preferred embodiment, the glycosyltransferase is purified by chromatography after the harvesting step.
  • In another exemplary embodiment, the glycosyltransferase solution purified using a cation exchange column. An exemplary cation exchange chromatography protocol utilizes a Unosphere S resin or an equivalent. In a preferred embodiment, the cation exchange column is a 30S or an equivalent.
  • The cation exchange column is eluted with at least one buffer. In one embodiment, the first buffer comprises a 15 mM sodium phosphate, pH 7.5. In another embodiment, the column is further eluted with a second buffer. An exemplary second buffer includes 1M NaCl, 15 mM sodium phosphate, pH 7.5.
  • Elution of the column is optionally performed while developing a eluant gradient. In an exemplary embodiment, the added elution step has a rate of about 5 ms/cm to about 10 ms/cm. The recovery of glycosyltransferase after cation exchange chromatography is about 35% to about 75%. In a preferred embodiment, the recovery of glycosyltransferase after chromatography is about 45% to about 65%. In a more preferred embodiment, the percent recovery of glycosyltransferase after chromatography is about 55%. The chromatography step can be incorporated at any step of the process. In a preferred embodiment, the glycosyltransferase is purified by cation exchange chromatography after the anion exchange chromatography step described in the immediately preceding paragraph. In a preferred embodiment, the glycosyltransferase is purified by anion or cation exchange chromatography after the ultrafiltration step. In another preferred embodiment, the glycosyltransferase is purified by ion exchange chromatography after the filtration step. In yet another preferred embodiment, the glycosyltransferase is purified by chromatography after the precipitation step. In another preferred embodiment, the glycosyltransferase solution is purified by chromatography after the harvesting step. The glycosyltransferase solution may be purified by chromatography one or more times.
  • In an exemplary embodiment, the glycosyltransferase is purified by hydroxyapatite (HA) chromatography. Exemplary hydroxyapatite sorbents are selected from ceramic and crystalline hydroxyapatite materials. In an exemplary embodiment the particle size of the ceramic hydroxyapatite sorbent is between about 20 μm and about 180 μm, preferably about 60 to about 100 μm, and, more preferably about 80 μm. In a preferred embodiment, the recovery of glycosyltransferase after HA chromatography is about 50% to about 90%, preferably from about 60% to about 90%. In a more preferred embodiment, the percent recovery of glycosyltransferase after chromatography is about 72%. HA chromatography can be incorporated at any step of the process. In a preferred embodiment, the glycosyltransferase is purified by HA chromatography after the cation chromatography step described above in the immediately preceding paragraph. In a preferred embodiment, the glycosyltransferase is purified by HA chromatography after the anion exchange chromatography step described above. In another preferred embodiment, the glycosyltransferase is purified by HA chromatography after the ultrafiltration step. In still another preferred embodiment, the glycosyltransferase is purified by HA chromatography after the filtration step. In another preferred embodiment, the glycosyltransferase is purified by HA chromatography after the precipitation step. In another preferred embodiment, the glycosyltransferase is purified by HA chromatography after the harvesting step. The glycosyltransferase solution may be purified by HA chromatography one or more times.
  • In another exemplary embodiment, the glycosyltransferase is purified by hydrophobic interaction chromatography (“HIC”). In an exemplary embodiment, the hydrophobic moieties of the column matrix are selected from, but are not limited to, alkyl groups, aromatic groups and ethers. In an exemplary embodiment, the HIC column is packed with a phenyl 650M resin, butyl 650M resin, phenyl HP resin.
  • In an exemplary embodiment, the glycosyltransferase solution is equilibrated with 0.5M ammonium sulfate, 20 mM sodium phosphate, pH 7.
  • HIC chromatography can be incorporated at any step of the process. In a preferred embodiment, the glycosyltransferase is purified by HIC chromatography after purification by the HA chromatography step described above in the immediately preceding paragraph. In a preferred embodiment, the glycosyltransferase is purified by chromatography after the cation exchange chromatography step described above. In another preferred embodiment, the glycosyltransferase is purified by chromatography after the anion exchange chromatography step described above. In a preferred embodiment, the glycosyltransferase solution is purified by chromatography after the ultrafiltration step. In a preferred embodiment, the glycosyltransferase solution is purified by chromatography after the filtration step. In another preferred embodiment, the glycosyltransferase solution is purified by chromatography after the precipitation step. In another preferred embodiment, the glycosyltransferase solution is purified by chromatography after the harvesting step. The glycosyltransferase solution may be purified by chromatography one or more times.
  • The glycosyltransferase can be purified by ultrafiltration. In an exemplary embodiment, the glycosyltransferase solution is equilibrated with 5 mM Bis-Tris, 0.1M NaCl, 5% sorbitol, pH 6.5. It is generally preferred that the recovery of glycosyltransferase after ultrafiltration is about 80% to about 100%. In a preferred embodiment, the percent recovery of glycosyltransferase after chromatography is about 90% to about 100%.
  • Ultrafiltration can be incorporated at any step of the process. In a preferred embodiment, the glycosyltransferase is purified by ultrafiltration after the HIC chromatography step in the immediately preceding paragraph described above. In a preferred embodiment, the glycosyltransferase is purified by ultrafiltration after purification by the HA chromatography step described in the preceding paragraph above. In another preferred embodiment, the glycosyltransferase is purified by ultrafiltration after the cation exchange chromatography step described above. In still a further preferred embodiment, the glycosyltransferase is purified by ultrafiltration after the anion exchange chromatography step described above. In another embodiment, the glycosyltransferase is purified by a second ultrafiltration step after the first ultrafiltration step described above. The glycosyltransferase can be purified by ultrafiltration after the filtration step or precipitation steps. In still another embodiment, the glycosyltransferase is purified by ultrafiltration after the harvesting step. The glycosyltransferase may be purified by ultrafiltration one or more times.
  • In another embodiment, the total percent recovery of glycosyltransferase from the purification process is about 5% to about 45%. In a preferred embodiment, the percent recovery of glycosyltransferase from the purification process is about 15% to about 35%.
  • An exemplary process of a glycosyltransferase purification scheme is described in FIG. 6. The glycosyltransferase is first harvested (37). In an exemplary embodiment, the harvesting reaction takes place at pH 6. After harvesting, the glycosyltransferase is precipitated using calcium chloride (38). The glycosyltransferase is then filtered (39). After filtration, the glycosyltransferase undergoes ultrafiltration (40). The glycosyltransferase passes through an anion exchange column such as Mustang Q (41) or an equivalent. After passing through the anion exchange column, the glycosyltransferase passes through a cation exchange column, such as UNOsphere S (42) or an equivalent. The glycosyltransferase is then passed through a HA Type I chromatography column (43). The glycosyltransferase then undergoes ultrafiltration (44).
  • In one embodiment, the glycosyltransferase is a sialyltransferase. In a more preferred embodiment, the sialyltranferase includes, but is not limited to, ST6GalNac, ST3Gal3, α(2,3)-sialyltransferase, α(2,6)-sialyltransferase and α(2,8)-sialyltransferase. In another embodiment, the sialyltransferase includes, but is not limited to, a sialyltranferase listed in the table in FIG. 7. In a more preferred embodiment, the sialyltransferase is ST6GalNac.
  • The following examples are offered solely for the purposes of illustration, and are intended neither to limit nor to define the invention.
  • EXAMPLES Example 1 Fmoc-Glycyl-Mannosamine Synthesis and Purification
  • The synthesis of Fmoc-glycyl-mannosamine (FGM) occurred in a non-aqueous solution involving two main compounds: D-Mannosamine HCl and Fmoc-Glycyl-OSu. Both materials were dry powders that were introduced into a system comprised of anhydrous methanol and sodium methoxide. The reaction was agitated at 25° C. for 1 hThe reaction was complete when the FGM concentration was greater than 15 mg/mL, determined by HPLC. The FGM synthesis was then rotovapped (20° C.) to about 8% of the initial volume. The chromatographic purification was performed using a Biotage pre-packed silica column. The FGM solution was loaded onto the column in a 50:50 CHCl3:CH3OH solution. The silica column was then washed with 18 column volumes (CV) of 3% CHCl3/97% CH3OH. Following the wash, FGM was eluted from the column using 14 CV of 15% CHCl3/85% CH3OH. Fractions containing material were pooled and then rotovapped (20° C.) to dryness and stored at 4° C. The average recovery for this step from the consistency batches was 73.8%.
  • Raw Materials: The table below lists the materials used during the synthesis and purification of Fmoc-Glycyl-Mannosamine (FGM). The first four reagents in the table were used during the synthesis of FGM. The last two reagents were used during the purification of FGM.
  • D-Mannosamine HCl 9.0 g
    Fmoc-Glycyl-OSu 36.2 g
    Sodium Methoxide, 0.5 M 184 mL
    Anhydrous Methanol 726 mL
    Methanol, ACS 1.4 L
    Chloroform, ACS 16.2 L
  • The silica column was a Biotage 75M Silica column. The column volume for a 75M column was 0.5 L.
  • Example 2 I. Description of CMP-Glycyl-Sialic Acid and CMP-Sialic Acid-PEG Synthesis and Purification
  • The production of CMP-Sialic Acid-PEG (PSC) was performed in two segments. First, a key intermediate, CMP-Glycyl-Sialic Acid (GSC), was synthesized, purified, and dried, and second, this intermediate was PEGylated, purified, and dried. A synthetic pathway for CMP-SA-PEG is shown below.
  • Figure US20090048440A1-20090219-C00007
  • Synthetic Pathway for CMP-SA-PEG
  • The first step in the synthesis of GSC was the reaction of mannosamine with Fmoc-Gly-OSu in methanol under basic conditions. The resulting Fmoc-glycyl-mannosamine was purified on a silica flash chromatography column. The purified Fmoc-glycyl-mannosamine then entered a two step enzymatic reaction. Fmoc-glycyl-mannosamine (FGM) was reacted with pyruvate to convert to Fmoc-glycyl-sialic acid. This reaction was catalyzed by a commercially available sialic acid aldolase. Fmoc-glycyl-sialic acid was then coupled to cytidine-5′-monophosphate through a CMP-NAN synthetase catalyzed reaction with cytidine-5′-triphosphate. The resulting product, CMP-Fmoc-glycyl-sialic acid, was purified on a C18 reverse phase column.
  • Finally, the Fmoc-group was removed from the CMP-Fmoc-glycyl-sialic acid by deprotection with dimethylamine, forming a precipitate. The resulting precipitate was filtered out of solution using a 0.2 μm membrane and discarded. The resulting solution was dried in a freeze dryer, yielding a white powder of CMP-glycyl-sialic acid (GSC).
  • Both CMP-SA-10K PEG and CMP-SA-20K PEG were synthesized in a single step reaction of GSC with the appropriately sized mPEG-pNP. This reaction was performed in an 80% THF:20% H2O solution. Purification of the final product, CMP-SA-PEG (PSC), was performed by reverse phase chromatography. CMP-SA-10K PEG was purified using a C8 reverse phase chromatography resin, and CMP-SA-10K PEG was purified using a C4 reverse phase chromatography resin. The eluent from the reverse phase column was dried by lyophilization, yielding a white powder of purified CMP-SA-PEG.
  • The process was scaled to produce approximately 10 g of the GSC intermediate. Approximately 5.5 g of CMP-SA-20K was produced from 0.5 g of GSC, while approximately 5.0 g of CMP-SA-10K PEG was produced from 1.0 g of GSC. The final CMP-SA-PEG products were approximately 90% pure with the major impurities being CMP and sialic acid-PEG, the primary breakdown products of CMP-SA-PEG.
  • II. CMP-Fmoc-Glycyl-Sialic Acid Synthesis Process Description
  • The synthesis of CMP-Fmoc-glycyl-sialic acid (FSC) was a two-step enzymatic process performed simultaneously in one pot. Reacting with pyruvate, Fmoc-glycyl-mannosamine (FGM) was converted to Fmoc-glycyl-sialic acid, catalyzed by sialic acid-aldolase. Fmoc-glycyl-sialic acid was then coupled to cytidine-5′-monophosphate through a CMP-NAN synthetase catalyzed reaction with cytidine-5′-triphosphate.
  • The pH of the reaction was controlled at 7.5±0.5. Temperature was controlled at 30±2° C., and the reaction was continuously agitated. The reaction reached completion in 6-24 hrs. and the extent-of-reaction was determined as a function of the FSC concentration (≧14.0 g/L, 95% of theoretical conversion). The resulting product solution can be stored at 4° C. until the purification is executed or for up to 72 h. The average recovery for the step during consistency batches was 91.2%.
  • The quantities of materials required for the synthesis of CMP-Fmoc-glycyl-sialic acid varied with the quantity of Fmoc-glycyl-mannosamine generated from the purification step of the process. Exemplary quantities are as follows:
  • Fmoc-glycyl-mannosamine 11 g
    Cytidine-5′-triphosphate 15.8 g
    Manganese Chloride 9.5 g
    Pyruvate 26.4 g
    Sodium Hydroxide, 50% (w/w) 17 mL
    CMP-NAN-Synthetase 50,600 U
    (N. meningitidis)
    N-Acetyneuraminic acid Aldolase 1.19 g
  • III. CMP-Fmoc-Glycyl-Sialic Acid Purification Process Description
  • The purification of CMP-Fmoc-glycyl-sialic acid (FSC) consists of two steps: the clarification of the reaction solution by 0.2 μm filtration and the reverse phase chromatographic purification of the FSC. To clarify the reaction, the solution was simply pumped through a Millipore Millipak 0.2 μm filter cartridge. Little backpressure was generated during this filtration. After the filtration was complete, the filter cake and filter were rinsed with 500 mL of purified water.
  • The chromatographic purification was performed using a Biotage pre-packed C18 reverse phase column. The FSC was loaded in an aqueous solution. The FSC binds to the column, and the column was washed with six column volumes of purified water. The FSC was then eluted in 10% methanol in purified water.
  • The purification step was performed using the Biotage chromatography system (Z-1405).
  • IV. CMP-Fmoc-Glycyl-Sialic Acid (FSC) Deprotection and CMP-5′-Glycyl-Sialic Acid (GSC) Filtration Process Description
  • The deprotection of CMP-Fmoc-Glycyl-Sialic Acid (FSC) occurred in a 10% methanol:water solution in a reaction with dimethylamine. Dimethylamine (40 wt % in water) is a solution that was added to the FSC C18 fraction pool. The Fmoc group was cleaved off, resulting in key intermediate, CMP-5′-Glycyl-Sialic Acid (GSC). The reaction was agitated at 25° C. for 75 minutes.
  • The reaction was complete when the peak area ratio of GSC:FSC was greater than 20, as measured by HPLC. The resulting GSC solution was then rotovapped (30° C.) to about 35% of the original volume. The free Fmoc-derivative formed a white precipitate that needed to be removed from the GSC solution. This material was filtered through a Millipore Millipak-200 Filter Unit (0.22 μm). The filter was then rinsed with RO water. This GSC solution was stored at 4° C. or frozen at −20° C. until lyophilization. The average recovery for this step from the consistency batches was 86.1%.
  • The table below lists the materials used during the deprotection of CMP-Fmoc-Glycyl-Sialic Acid (FSC) and filtration of CMP-5′-Glycyl-Sialic Acid (GSC).
  • Raw Materials for CMP-Glycyl-Sialic Acid
    (GSC) Deprotection and Filtration
    CMP-Fmoc-Glycyl-Sialic Acid Volume determined from P30 batch
    (FSC) C18 Fraction Pool record
    Dimethylamine (40 wt %) Volume calculated from P40 batch
    record
    See Section A, step 1
    RO H2O Volume calculated from P40 batch
    record
    See Section B, step 6
  • V. CMP-SA-Glycine Production
  • Another method of producing and purifying CMP-SA-Glycine is provided below:
  • Figure US20090048440A1-20090219-C00008
  • Example 3 I. Summary of Consistency Batches of 10k and 20k Cmp-SA-PEG After Process Development
  • Consistency batches were performed for 10K and 20K CMP-Sialic Acid-PEG after development of the synthesis and purification operations. These batches demonstrated that a reproducible process had been developed to produce high-purity CMP-SA-PEG with very low contaminant levels, suitable for the glycopegylation projects.
  • 10K CMP-SA-PEG was produced at greater than 80% purity at overall process yields of approximately 60%, and 20K CMP-SA-PEG was produced at greater than 70% purity at overall process yields of approximately 50%. The products were low in endotoxin, bioburden, and protein, and NMR has shown that the balance of the material was nearly all mPEG-OH, a by-product of the synthesis process.
  • Materials and Methods
  • CMP-SA-PEG (PSC) was produced in a reaction of CMP-Glycyl-Sialic Acid (GSC) with paranitrophenyl-carbomate-polyethylene glycol (pNP-PEG). The reaction conditions for the consistency batches of each size CMP-SA-PEG are summarized below.
  • CMP-SA-PEG Synthesis Conditions
    10K PSC 20K PSC
    Raw Materials
    CMP-5′-Glycyl-Sialic Acid 1.0 g 0.5 g
    (GSC) 10K 20K
    10K 20K
    pNP-PEG 24 g 10K pNP-PEG 24 g 20K pNP-PEG
    10K 20K
    10K 20K
    RO H2O 200 mL 100 mL
    Tetrahydrofuran (THF) 800 mL 400 mL
    unstabilized 10K 20K
    10K 20K
    Reaction Conditions
    Length of Reaction 24 ± 1 hrs. 20 ± 1 hrs.
    pH adjustment to 17 ± 1 hrs. 17 ± 1 hrs.
    8.9 ± 0.1
    Additions of PEG 3 additions (90 min. 3 additions (90 min.
    between) each of between) each of
    8 g of pNP-PEG 8 g of pNP-PEG
  • At the end of the reaction, a molar ratio of PSC to GSC (product to reactant) of greater than 7:1 is found for 10K PSC and greater than 5:1 for 20K PSC.
  • The reaction solution were then rotovapped at <30° C. to less than 80% of its original volume to remove the THF. The remaining aqueous solution was then diluted to five times the original reaction volume (diluted to 5 L for 10K PSC and 2.5 L for 20K PSC) using RO water. The diluted solution was then adjusted to pH 9.5±0.1 with 1M NaOH and allowed to stir for at least 1 hr. This elevated pH caused breakdown of residual pNP-PEG to free paranitrophenol, carbon dioxide, and methoxyPEG-OH (mPEG-OH). After at least 1 hr. at the elevated pH, the solution is adjusted to pH 8.0±0.1 using 1M HCl.
  • Both 10K and 20K PSC were then purified on a C4 reverse-phase chromatography column. The table below summarizes the purification conditions.
  • CMP-SA-PEG Purification Conditions
    10K PSC 20K PSC
    Column Biotage C4 75 L (1 L bed Biotage C4 75 L (1 L bed
    volume, 7.5 cm diameter) volume, 7.5 cm diameter)
    Flowrate 100 mL/min (136 cm/hr) 100 mL/min (136 cm/hr)
    Wash 10 column volumes (CVs) 10 CVs 10% MeOH, 1 mL
    Conditions
    10% MeOH, 1 mL 1M 1M NaOH/L water
    NaOH/L water
    Elution
    4 CVs 40% MeOH, 1 mL 4CVs 43% MeOH, 1 mL
    Conditions 1M NaOH/L water 1M NaOH/L water
    Regeneration 3CVs
    100% MeOH 3CVs 100% MeOH
    Conditions 2CVs 50% MeOH, 1 mL 2CVs 50% MeOH, 1 mL
    1M NaOH/L water 1M NaOH/L water
    2CVs 25% MeOH, 1 mL 2CVs 25% MeOH, 1 mL
    1M NaOH/L water 1M NaOH/L water
    3CVs
    100% RO water, 3CVs 100% RO water,
    1 mL 1M NaOH/L water 1 mL 1M NaOH/L water
  • From the column, fractions during the elution that contain UV (27 nm) absorbance of at least 10% of the main peak absorbance were pooled, and the methanol from the pool was removed by rotovap.
  • This concentrated fraction pool was then freeze dried on a Labconco flask-style freeze-drier. Final testing was performed on the resulting powder from this drying.
  • Equipment
  • The syntheses was performed in 2 L and 5 L sealed bottles, temperature controlled in a shaker incubator, SI-0017, B. Braun Certomat BS1.
  • Chromatographic purification was performed on the Biotage Flash Chromatography System, Z-1405. Drying was performed on a lab-scale Labconco freeze dryer.
  • Results
  • Using the methods described above, two batches each of 10K and 20K PSC were synthesized, purified, and dried. The chart below summarizes the yield and recoveries from the synthesis and purification steps of the process. Note that the extent-of-reaction is noted as a ratio of peak areas of PSC to GSC from the HPLC assay. Quantitative yields from the syntheses are not available because the use of THF in the reaction disrupts the quantitative ability of the HPLC method.
  • CMP-SA-PEG Consistency Batch Yields and Recovery
    PSC Synthesis
    10K PSC A 10K PSC B 20K PSC A 20K PSC B
    GSC content 60.66% 67.38% 67.38% 61.15%
    (wet weight)
    EOR 13.8:1 8.0:1 6.3:1 5.4:1
    PSC Purification
    10K PSC A 10K PSC B Average 20K PSC A 20K PSC B Average
    Quantity (g) 6.7 7.9 5.5 7.3
    Yield PSC (g) 5.5 6.6 6.1 4.2 5.5 4.8
    % Recovery 59.8% 64.0% 61.9% 42.4% 60.5% 51.4%

    Results for the four batches are summarized below.
  • PSC Consistency Batch Testing Results
    10K PSC A 10K PSC B 20K PSC A 20K PSC B
    Identification (RP-LC) Match with Match with Match with Match with
    standard standard standard standard
    10K PSC purity (g/100 g 82.62 83.01 76.30 74.56
    of dry wt)
    CMP (g/100 g of dry wt) 0.02 0.02 0.02 0.02
    Moisture content 0.60 0.49 0.52 0.48
    (g/100 g of wet wt)
    Sodium % Na+ (g/100 g 0.45 0.50 0.22 0.14
    of wet wt)
    Aldolase/CNS2 impurity None visible None visible None visible None visible
    Endotoxin (EU/mg of 0.011 0.007 0.0113 0.006
    wet wt)
    Microbial limits testing *** *** *** ***
    Total aerobic counts <10 <10 <10 <10
    (CFU/g of wet wt.)
    Total yeast and mold <10 <10 <10 <10
    (CFU/g of wet wt.)
  • The HPLC traces of the 4 batches showed that the CMP-SA-PEG was >98% by peak area. CMP levels were also very low and much lower than seen in previous lots of PSC.
  • A silver stain SDS-PAGE gel was run to analyze for residual CNS and aldolase. None was detectable in either the 10K or 20K PSC batches.
  • Also, as requested in the materials specifications, 1H-NMR was performed on the batches.
  • The 10K PSC samples from Consistency Batch#2 and Consistency Batch#3, were submitted for 1H NMR analysis. The NMR spectra indicated that the PSC is reasonably clean, agreeing with the HPLC analysis. There are no observable resonances for sialic acid-PEG (expected at 2.22 & 1.83 ppm) or CMP (distinct resonance expected ˜8.11 ppm). A very small amount of PEG-carbamate-DMA (the product of the reaction of dimethylamine with pNP-PEG, 2.93 ppm) is seen in Batch #2, while none is seen in Batch #3. Although non-quantitative, the ratio of the methyl singlet (3.39 ppm) to the unique PSC resonances (˜8.00, 2.50, & 1.55 ppm) is ˜⅓, which would indicate relatively low levels of mPEG-OH impurities.
  • The 20K PSC samples from Consistency Batch#2 and Consistency Batch#3, submitted for 1H NMR analysis showed that the PSC is also reasonably clean. There are no observable resonances for sialic acid-PEG (2.22 & 1.83 ppm), CMP (distinct resonance at ˜8.11 ppm), or PEG-carbamate-DMA (˜2.93 ppm). Although non-quantitative, the ratio of the methyl singlet (3.39 ppm) to the unique PSC resonances (˜8.00, 2.50, & 1.55 ppm) is ˜⅓, which would indicate relatively low levels of mPEG-OH impurities.
  • Example 4 Nucleotide Sugar-PEG Purification General Overview
  • The current method discusses PEG coupling with a nucleotide sugar, such as CMP-SA-glycine. The nucleotide sugar-PEG product can be separated from the reaction mixture by first desalting the reaction mixture using dialysis. Membrane filtration (reverse osmosis, nanofiltration, etc.) or size exclusion techniques (i.e. polyacrylamide) resin, Sephadex resin, Sepharose resin) can be used next to further purify the mixture. After purification, the reaction mixture containing the nucleotide sugar-PEG product undergoes further purification involving ion exchange chromatography. For most reaction mixtures, a DEAE or Q-resin can be used to remove the unreacted PEG from the product. Q-Sepharose resin is currently preferred, although any polymer with a quaternary amine will also work. The Q-Sepharose resin can include ions such as —OH, Cl, HCO3 , CO3 2−, PO4 2−, SO3 , Br, BO3 2− or the like. The product can be loaded and eluted using known methods in the art such as changes in pH or ion strength (NaCl, KCl, etc.). The product may be eluted by a step-wise process or a gradient process. The nucleotide sugar-PEG product eluted from the column can be collected and desalted again using dialysis, membrane filtration, or size-exclusion techniques. The process would look similar to the figure below but can be varied dependent on processing results and desires.
  • Figure US20090048440A1-20090219-C00009
  • Specific Example
  • CMP-SA-glycine and the p-nitrophenyl-carbamate-mPEG are mixed together to obtain a reaction mixture comprising the product CMP-SA-glycine-PEG, as well as PEG, p-nitrophenyl-carboxylic acid, salts, CMP-SA-glycine, CMP and sialic acid (SA). The reaction mixture underwent membrane filtration wherein the membrane has MWCO of 200 (units)-300 kDa. CMP-SA-PEG and PEG were retained while p-nitrophenyl-carboxylic acid, salts, CMP-SA-glycine, CMP and SA passed through the membrane. The retained products underwent further purification with a Q-column or DEAE column in which PEG flows through the membrane and CMP-SA-PEG is retained and concentrated. At this step, the CMP-SA-PEG may be freeze-dried or spray dried. The CMP-SA-PEG underwent membrane filtration in which salts pass through and while CMP-SA-PEG was retained and concentrated. The membrane has a MWCO of 100 MW-3 kDa. This sample may be freeze dried, spray dried, or frozen.
  • Any membrane size can be used from reverse osmosis (RO) pore sizes (molecular weight cut-offs) to microfiltration MWCOs depending on the separation desired. During membrane filtration, the pH can be varied between 2 and 12, more specifically between 5-10 and more specifically between 7-9 for CMP-SA-PEG.
  • The membrane filtration step can be used to remove impurities by such techniques as diafiltration and can be used to concentrate the process streams.
  • Example 5
  • Cytidine 5′-monophospho N-acetylneuraminic acid (CMP-NAN) is enzymatically synthesized from cytidine 5′-triphosphate (CTP) and N-acetylneuraminic acid (NAN) in the presence of E. coli-expressed CMP-NAN Synthetase (CNS). FIG. 1 illustrates the reaction.
  • CMP-NAN Synthesis Reaction
  • Figure US20090048440A1-20090219-C00010
  • CTP and NAN were incubated in a reactor with CNS and MnCl2. Using a small excess of CTP, the reaction proceeded to almost 100% conversion of NAN to CMP-NAN in under two hours.
  • The primary by-product of the synthesis reaction was the formation of a manganese phosphate precipitate. Approximate 30% of the final volume of the reaction consisted of this heavy, brown precipitate. In order to remove this precipitate, the solution was filtered. The cake that formed on the filter was washed with water, and the final solution was then filtered to remove any fine particulates that were not held back by the first filtration.
  • In order to remove proteins introduced from the CNS, the CMP-NAN solution was permeated through a hollow fiber filter. The membrane successfully retains proteins from the enzyme preparation while allowing the passage of CMP-NAN.
  • Residual salts were then removed from the solution by concentration and diafiltration of the CMP-NAN using a nanofiltration membrane. This membrane retains CMP-NAN during concentration and diafiltration while allowing passage of salts that remain in solution, primarily Tris HCl (the buffer from the enzyme preparation) and NaCl (from the synthesis reaction).
  • The concentrated CMP-NAN was subsequently decolorized by passing the solution over a pre-packed column of activated carbon. The color is likely from manganese oxide formed during the addition of sodium hydroxide to control the pH during synthesis.
  • Finally, endotoxin was removed using a charged media depth filter, and then the CMP-NAN solution was filtered through a 0.2 μm filter and aliquotted into sterile containers.
  • An aliquot was spray dried and tested. The CMP-NAN purity was 83.3%. The remainder of the material was stored as a frozen liquid at −20° C. A portion of the frozen bulk was lyophilized. This material was analyzed and released per specification RM0300 with a purity of 82%.
  • Process Summary
  • Cytidine 5′-monophospho N-Acetylneuraminic acid (CMP-NAN) was synthesized in a temperature and pH controlled vessel from Cytidine 5′-triphosphate (CTP) and sialic acid (NAN) using CMP-NAN Synthetase (CNS) in the presence of MnCl2. The CNS is a recombinant protein cloned from N. meningitidis and was expressed in JM109 E. coli cells. The reaction proceeded for approximately 1.5 hours with sufficient agitation to keep the precipitate from settling. The resultant CMP-NAN solution was chilled to <20° C., clarified by filtration, and transferred into a mobile tank.
  • The clarified CMP-NAN solution was concentrated 10 times using a hollow fiber filtration unit and diafiltered with 5 volumes of USP purified water. The CMP-NAN was transferred to a mobile tank and the pH was adjusted. This solution was concentrated 10 times and diafiltered with 6 volumes of USP purified water using a nanofiltration system.
  • Decolorization was achieved by running the CMP-NAN through an activated carbon column and endotoxin was removed using a CUNO Zeta Plus 60ZA filter.
  • The purified CMP-NAN solution was then aseptically filtered (CUNO LifeASSURE 0.2 μm) and aliquoted into MITOS Sugar Nucleotide Bags and stored at −20° C.
  • Consistency Runs
  • Three consistency runs were performed at the 20 L scale before the Engineering Trial took place. The tables below summarize the yields and recoveries and some of the analysis results.
  • Consistency Runs Summary Data
    Synthesis Theoretical Overall Process Purification
    Batch Yield Yield Yield Recovery
    1 1339 g 98.1% 607.8 g 45.4%
    2 1264 g 92.6% 793.6 g 62.7%
    3 1373 g 100.6% 952.0 g 69.3%
  • Analysis Results from Consistency Runs
    Chemical
    Component Batch # 1 Batch #2 Batch #3
    CMP-NAN 75.0%  77.5% 82.5% 
    CMP 5.6% 5.0% 5.0%
    CDP
      0% 0.5%   0%
    NAN 9.4% 8.5% 4.6%
    Moisture 7.5% 7.3% 7.7%
    Mass Balance 97.5%  98.8% 99.8% 
    Other Impurities 0.2% 0.9% 0.4%
    PO4
  • Property Requirement Result
    Appearance White to White powder
    off-white powder
    Identification Compares Compares
    to reference to reference
    spectra spectra
    Moisture Content ≦5% moisture 5%
    Purity ≧80% CMP-NAN 82%
    Percent CMP, CDP <10% CMP, CDP, 5%
    and CTP and CTP
    Manganese by ICP Report Results 120 ppm
    Sodium % by ICP Report Results 7.5%
    Heavy Metals Report Results <20 ppm
    (as Pb)
    Host Cell Protein Report Results Non detected
    Total Aerobic ≦10 cfu/mg <1 cfu/mg
    Count
    Yeast and Mold ≦10 cfu/mg <1 cfu/mg
    Endotoxin ≦0.5 EU/mg .00165 EU/mg
  • Example 6 Synthesis and Purification of CMP-Sialic Acid-PEG 30 kDa
  • This example describes the preparation and purification of CMP-SA-PEG 30 kDa (compound 3, below). The mPEG-p-nitrophenyl carbonate-30 kDa (compound 1, below) was reacted with sodium CMP-SA-Glycine (compound 2, below) in a mixture of THF/Water. The crude product was desalted by Tangential Flow Filtration (TFF), purified by Q Sepharose chromatography (IEX), and again desalted by TFF to provide 13.5 g of CMP-SA-PEG-30 kDa product (compound 3, below). Reprocessing of mixed IEX fractions afforded an additional 8.2 grams of 3 (overall yield 72.3%).
  • Figure US20090048440A1-20090219-C00011
  • I. Materials and Methods
  • Materials
    Name Unit
    Q Sepharose Big Beads
    Double 1K Pellicon-2 “MINI” PBLC 1K Regen.
    filters Cellulose
    Membrane; Screen
    Type: V; 0.1 m2
    CMP-SA-Glycine (2) Powder
    Dimethylamine salt
    30K mPEG-p-nitrophenyl Powder
    carbonate (1) (obtained from
    NOF America)
    NaCl Powder
    NaOH 1.0 N
    Tris-Glycine gel, 4-20% 1.0 mm, 10 wells
    SeeBlue-plus2 Standard 12 proteins
    Tris-Glycine Running Buffer 10× concentrated
    Tris-Glycine Sample Buffer 50 mL solution
    BaCl2 Powder
    Iodine Solution N/10
    Sodium Bicarbonate Powder
  • II. Reaction Conditions.
  • CMP-SA-Glycine (dimethyl amine salt form, 1.35 g, 2.0 mmole) was dissolved in 20 mL H2O, and the pH was adjusted to 10.5 with 0.1 N NaOH (˜20 mL). The basic solution was degassed under reduced pressure (vacuum 30 min), frozen and lyophilized to dryness. The resulting sodium CMP-SA-Glycine was redissolved in water (80 mL). The pH was measured and found to be 8.5. The pH was adjusted to 7.8 by addition of 0.2 N NaH2PO4 (<1.0 mL) and the resulting solution was diluted with THF (200 mL). The mPEG-p-nitrophenyl carbonate-30 kDa (30.0 g, 1 mmol) was added to the CMP-SA-Glycine solution in small portions over 3 hr at room temperature. The reaction mixture was stirred at room temperature for 43 hrs. The THF was then removed by rotary evaporation at reduced pressure without heating (water bath temperature at or below 30° C.). The aqueous residue (80 mL) was diluted with water to 600 mL, and adjusted to pH 9.5 with 1.0 N NaOH (about 1.0 mL). The basic solution was stirred at room temperature for 1 hour to hydrolyze any unreacted mPEG-p-nitrophenyl carbonate-30 kDa, and then purified by Tangential Flow Filtration (TFF), Q-Sepharose chromatography (IEX), and then TFF as described below. The final purified fractions were freeze-dried to afford 21.7 g (72.3%) of a white solid (3).
  • III. Tangential Flow Filtration (TFF) Purification
  • A Watson-Marlow peristaltic pump (505S) was connected through Tygon tubing (¼″ ID) to a Millipore Pellicon-2 Mini Holder equipped with two Millipore 1K Pellicon 2 “MINI” filter (PLAC-V 1K Regenerated Cellulose Membrane; Screen Type: V; 0.1 m2) (FIG. 1). The crude aqueous product solution (500 mL, pH 9.5) from above was transferred to a 1000 mL bottle immersed in an ice bath, equipped with a conductivity meter and a pH meter. The product solution was fed onto the Pellicon Mini filter through Tygon tubing (¼″ ID) for diafiltration with a pump speed of 90 rpm (Cross flow rate: 430 mL/min; Flux rate: 20 mL/min; Pressure 13 psi). The retentate solution was returned to the bottle containing the bulk chilled product solution (PharMed tubing, ¼″ ID) which was maintained at a constant volume (600 mL) by addition of cold DI water (4° C.). The permeate solution was collected in 2 L fractions. The pH and conductivity values of the retentate/product solution were measured and recorded over time as shown in the table below. The pH of the retentate/product solution was maintained above pH 7.5 by the dropwise addition of 1.0 N NaOH, as needed. The retentate/product solution was diafiltered until the conductivity dropped below 0.8 mS, and then the retentate/product solution was allowed to concentrate to a volume of 500 mL. The concentrated retentate was then purified by anion exchange chromatography as described below. The permeate fractions were checked for product break-through by SDS-PAGE as described below:
  • Time Conductivity pH Total
    (min.) (mS) Value Vol (mL)
    0 1.93 9.58 600
    30 1.59 9.50 600
    60 1.10 9.07 600
    90 0.899 8.69 600
    120 0.818 8.47 600
    150 0.743 8.35 600
    180 0.755 8.56 500
  • IV. SDS-PAGE Analysis.
  • Samples of the TFF permeate fractions (0.5 mL) were concentrated to dryness under a stream of N2 gas, resuspended in 10 μL water and mixed with 10 μL Tris-Gly SDS-PAGE sample buffer and loaded onto 4-20% polyacrylamide Tris-Gly SDS-PAGE gels. See Blue Plus2 protein standard was also loaded as a marker. Gels were run at a constant voltage of 125 V for 1 hr 50 min. After electrophoresis, the gels were washed with water (100 mL) for 10 min, and then incubated with a 5% barium chloride aqueous solution for 10 min. Iodine solution (0.1 N, 4.0 mL) was added to visualize any mPEG present. The staining process was stopped by washing the gels with water. The proteins used as a standard were a mix of myosin (250 kDa), phosphorylase (148 kDa), BSA (98 kDa, glutamic dehydrogenase (64 kDa), alcohol dehydrogenase (50 kDa), carbonic anhydrase (36 kDa), lysozyme (22 kDa), aprotinin (6 kDa), and insulin B-chain (4 kDa). The gels were visualized and scanned with an HP Scanjet 7400C, and the image of the gel was optimized with the HP Precision Scan Program.
  • V. Anion Exchange Column Chromatography (IEX) Purification.
  • The Q Sepharose Big Beads (4.0 L) were treated with 1.0 M NaOH (8.0 L), and then with saturated aqueous sodium bicarbonate (8.0 L) to generate the bicarbonate form of the resin. The newly generated resin was packed in a 17×18 cm (ID) column which was connected to an HPLC system equipped with a UV (274 nm) and an ELS detector (Evaporation temp: 120° C.; Nebulizer temp: 90° C.; Gas flow rate: 1.85 SLM). The TFF retentate from above was slowly loaded on the Q column (60 mL/min.). The column was then washed with solvent A (cold DI water, 8.0 L) at a flow rate of 125 mL/min until ELS detection indicated that all non-binding impurities (mPEG-OH) had been washed from the column. The product was then eluted with a gradient of 90% Solvent A/10% Solvent B (1.0 N NaCl) to 20% Solvent A/80% Solvent B over 100 min, and then to 100% B for 5 minutes at a flow rate of 125 ml/min. Product-containing fractions were collected (detected by UV, 274 nM) as shown in FIG. 2. Fraction 1 was desalted by TFF as described below. Fraction 2 was reprocessed (data not shown).
  • VI. Tangential Flow Filtration (TFF) for Desalting.
  • The first fraction (Fraction 1) of the ion-exchange-purified product was desalted using the TFF procedure described above. Upon reaching a constant conductivity, the retentate/product solution was allowed to concentrate to 400 mL. The final retentate (400 mL) was freeze-dried to yield 13.5 g of white solid.
  • Time Conductivity pH Total
    (min.) (mS) Value Vol (mL)
    0 23.9 7.79 600
    30 23.1 7.81 600
    120 10.8 7.91 600
    150 8.46 7.94 600
    180 5.59 8.14 600
    210 2.68 8.30 600
    240 1.14 8.46 600
    270 0.706 8.68 600
    300 0.489 8.81 600
    330 0.403 8.90 500
    360 0.389 8.53 400
  • Example 7 Process Description for the Synthesis and Downstream Processing of CMP-NAN
  • Cytidine-monophospho 5′-N-acetylneuraminic acid (CMP-NAN) is enzymatically synthesized from cytidine 5′-triphosphate (CTP) and N-acetylneuraminic acid (NAN) in the presence of E. coli-expressed CMP-NAN synthetase (CNS).
  • The reactants (CTP and NAN) are incubated (30° C., pH 8.5-9.5) in a reactor (20 or 40 L Synthesis Reactor, jacketed temperature control is <10° C. to 30° C., manual or automatic pH control is 8.5-9.5, and agitated) with CNS and manganese chloride (MnCl2). Using a small excess of CTP, the reaction proceeds to almost 100% conversion of NAN to the CMP-NAN product in under two hours. When the reaction is complete, the solution is chilled to <10.0° C. Once chilled the process stream is filtered through a 0.5 μm membrane bag filter (CUNO Polynet bag filter with CUNO bag filter housing and pressure-fed (nitrogen) filtration).
  • In order to remove proteins introduced by the enzyme preparation, the process stream is next permeated through a 10K hollow fiber membrane with a tangential flow filtration (TFF) skid (Amersham Bioscience (formerly AG Technology) 10K MWCO hollow fiber cartridge, temperature control is <10° C., and inlet, outlet and permeate pressure indication is 0-60 psig). The 10K membrane successfully retains proteins from the enzyme preparation while allowing for passage of the CMP-NAN. The result is a protein-free CMP-NAN solution.
  • Residual salts are then removed from solution by concentration and diafiltration of the CMP-NAN using a nanofiltration membrane with a nanofiltration TFF skid (Millipore Nanomax-50 Helicon RO4 spiral wound membrane cartridge installed on a Millipore Prolab II skid, temperature control is <10° C. and pressure indication is 0-600 psig). This membrane retains CMP-NAN during concentration and diafiltration while allowing passage of salts that remain in solution from the synthesis reaction and hollow fiber filtration.
  • This concentrated CMP-NAN stream is subsequently de-colored by passing the solution over a pre-packed column of activated carbon attached to a Biotage chromatography system (75M activated chromatography column and Biotage skid). The activated carbon efficiently removes the color from the solution in one or two passes of the CMP-NAN stream.
  • The process is completed by two filtrations. First, the CMP-NAN solution is filtered using a charged media depth filter (CUNO Zeta Plus 60ZA, 1 ft2). Second, the solution is sent through a final 0.2 μm filter that is pre-packaged and sterilized with a bag manifold system (provided by Mitos Technologies) for final filtration and storage. The product can be stored as a frozen solution or dried as a white powder for refrigerated storage.
  • All publications, patents and patent applications mentioned in this specification are herein incorporated by reference into the specification to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference.

Claims (30)

1. A method of removing essentially all of a contaminant from a mixture comprising said contaminant and a desired product comprising a moiety with a structure selected from:
Figure US20090048440A1-20090219-C00012
in which
R1 is selected from H, CH2OR7, COOR7 or OR7
wherein
R7 is a member selected from H, substituted or unsubstituted alkyl or substituted or unsubstituted heteroalkyl;
R2 is selected from H, OH, NH and a moiety that includes a nucleotide;
R3, R4, R5, R6 and R6′ are independently selected from H, substituted or unsubstituted alkyl, OR9, and NHC(O)R10;
wherein
R9 and R10 are independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl and sialic acid
the index d is 0 or 1;
with the proviso that at least one of R3, R4, R5, R6, and R6′ includes the linker or linker-modifying group, said method comprising:
contacting said mixture with a first membrane for a length of time sufficient to allow essentially all of said contaminant to separate from said desired product
wherein
said mixture has a pH such that said first membrane and said desired product have a net charge of the same sign and said contaminant has a net charge which is a member selected from neutral and a sign which is opposite of the sign of the net charge for the first membrane; and
said first membrane has a molecular weight cut-off that is greater than the molecular weight of said desired product,
thereby removing essentially all of the contaminant from the mixture.
2. The method according to claim 1, wherein said desired product and said first membrane each have a net negative charge and said contaminant has a nct charge which is a member selected from neutral and a net positive charge.
3. The method according to claim 1, wherein the contaminant is a member selected from phosphate, pyrophosphate, nucleotide monophosphate, nucleotide diphosphate, nucleotide triphosphate, sodium phosphate, manganese chloride, sodium pyruvate, GlcNAc, magnesium sulfate, tetrasodium pyrophosphate, lactose, benzoic acid, LNT-2, LNnT, sialic acid, cytidine, CMP, benzyl alcohol, CyLac, cylexin, cytilene and sodium chloride.
4. The method according to claim 1, wherein said first membrane is contacted with at least about 500 mg of the desired product.
5. The method according to claim 1, wherein the desired product is a member selected from a nucleotide sugar, glycolipid, sialylated ganglioside, LNnT, sialyl lactose and salts thereof.
6. The method according to claim 5, wherein said nucleotide sugar is a member selected from CMP-Nan, GDP-Man, GDP-Fuc, UDP-Glc, UDP-Gal, UDP-GlcNAc, UDP-GalNAc, UDP-GlcA, UDP-IdoA, UDP-Xyl.
7. The method according to claim 5, wherein the desired product includes a sugar moiety comprising a moiety having a structure which is a member selected from:
Figure US20090048440A1-20090219-C00013
wherein
La is a linker selected from a bond, substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl;
X5, R16 and R17 are independently selected from polymeric moieties and non-reactive groups;
X2 and X4 are independently selected linkage fragments joining polymeric moieties R16 and R17 to C;
m and n are integers independently selected from 0 to 5000;
A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 and A11 are members independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, —NA12A13, —OA12 and —SiA12A13
wherein
A12 and A13 are members independently selected from substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl.
8. The method according to claim 5, wherein, prior to said contacting, said method further comprises forming the mixture by contacting a nucleotide with a sugar and a nucleotide sugar synthetase capable of ligating said nucleotide and said sugar.
9. The method according to claim 5, wherein, prior to said contacting, said method further comprises forming the mixture by subjecting a cell system to conditions whereby said cell system produces a nucleotide sugar.
10. The method according to claim 1, wherein the mixture is not further purified prior to said contacting.
11. The method according to claim 1, wherein the desired product is not further purified after said contacting.
12. The method according to claim 1, wherein the desired product is further purified after said contacting.
13. The method according to claim 1, wherein, prior to said contacting, said method further comprises contacting said mixture with a second membrane for a length of time sufficient to allow said desired product to pass through said second membrane and to allow molecules with a molecular weight greater than about 500 kDa to be retained in said second membrane.
14. The method according to claim 1, wherein, prior to said contacting, said method further comprises contacting said mixture with a third membrane for a length of time sufficient to allow said desired product to pass through said third membrane and to allow molecules with a molecular weight greater than about 10 kDa to be retained in said third membrane.
15. A method of purifying a desired product from a mixture comprising a phosphorus-containing contaminant and said desired product, said method comprising:
contacting said mixture with a first membrane for a length of time sufficient to allow essentially all of said phosphorus-containing contaminant to pass through said first membrane
wherein
said mixture has a pH such that said first membrane and said desired product have a net negative charge and said contaminant has a net charge which is a member selected from a neutral and a positive charge; and
said first membrane has a molecular weight cut-off that is greater than the molecular weight of said desired product, thereby purifying the desired product from the mixture.
16. The method according to claim 15, wherein said first membrane is contacted with at least about 500 mg of the desired product.
17. The method according to claim 15, wherein the desired product is a member selected from a nucleotide sugar, glycolipid, sialylated ganglioside, LNnT, sialyl lactose and salts thereof.
18. The method according to claim 17, wherein said desired product is a nucleotide sugar and said nucleotide sugar is a member selected from CMP-Nan, GDP-Man, GDP-Fuc, UDP-Glc, UDP-Gal, UDP-GlcNAc, UDP-GalNAc, UDP-GlcA, UDP-IdoA and UDP-Xyl.
19. The method according to claim 17, wherein said desired product includes a sugar moiety comprising a moiety having a structure which is a member selected from:
Figure US20090048440A1-20090219-C00014
wherein
La is a linker selected from a bond, substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl;
X5, R16 and R17 are independently selected from polymeric moieties and non-reactive groups;
X2 and X4 are independently selected linkage fragments joining polymeric moieties R16 and R17 to C;
m and n are integers independently selected from 0 to 5000;
A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 and A11 are members independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, —NA12A13, —OA12 and —SiA12A13
wherein
A12 and A13 are members independently selected from substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl.
20. The method according to claim 15, wherein said desired product comprises a moiety with a structure selected from:
Figure US20090048440A1-20090219-C00015
in which
R1 is selected from H, CH2OR7, COOR7 or OR7
wherein
R7 is a member selected from H, substituted or unsubstituted alkyl or substituted or unsubstituted heteroalkyl;
R2 is selected from H, OH, NH and a moiety that includes a nucleotide;
R3, R4, R5, R6 and R6′ are independently selected from H, substituted or unsubstituted alkyl, OR9, and NHC(O)R10
wherein
R9 and R10 are independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl and sialic acid
the index d is 0 or 1;
with the proviso that at least one of R3, R4, R5, R6, and R6′ includes the linker or linker-modifying group.
21. A composition of matter comprising a nucleotide sugar, produced by a process comprising:
contacting a mixture with a first membrane for a length of time sufficient to allow essentially all of a contaminant to pass through said first membrane
wherein
said mixture comprises said contaminant and said nucleotide sugar;
said mixture has a pH such that said first membrane and said desired product have a net charge of the same sign and said contaminant has a net charge which is a member selected from a neutral and a positive charge;
said first membrane has a molecular weight cut-off that is greater than the molecular weight of said nucleotide sugar; and
said composition of matter is essentially free of said contaminant.
22. The composition according to claim 21, wherein said nucleotide sugar and said first membrane each have a net negative charge.
23. The composition according to claim 21, wherein the contaminant is a member selected from phosphate, pyrophosphate, nucleotide monophosphate, nucleotide diphosphate, nucleotide triphosphate, sodium phosphate, manganese chloride, sodium pyruvate, GlcNAc, magnesium sulfate, tetrasodium pyrophosphate, lactose, benzoic acid, LNT-2, LNnT, sialic acid, cytidine, CMP, benzyl alcohol, CyLac, cylexin, cytilene and sodium chloride.
24. The composition of matter according to claim 21, wherein said nucleotide sugar is a member selected from CMP-Nan, GDP-Man, GDP-Fuc, UDP-Glc, UDP-Gal, UDP-GlcNAc, UDP-GalNAc, UDP-GlcA, UDP-IdoA and UDP-Xyl.
25. The composition according to claim 21, wherein the desired product includes a sugar moiety comprising a moiety having a structure which is a member selected from:
Figure US20090048440A1-20090219-C00016
wherein
La is a linker selected from a bond, substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl;
X5, R16 and R17 are independently selected from polymeric moieties and non-reactive groups;
X2 and X4 are independently selected linkage fragments joining polymeric moieties R16 and R17 to C;
m and n are integers independently selected from 0 to 5000;
A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 and A11 are members independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, —NA12A13, —OA2 and —SiA12A13
wherein
A12 and A13 are members independently selected from substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl.
26. The composition of matter according to claim 21, wherein said mixture is formed by contacting a nucleotide with a sugar and a nucleotide sugar synthetase capable of ligating said nucleotide to said sugar.
27. The composition of matter according to claim 21, wherein said mixture is formed by subjecting a cell system to conditions whereby said cell system produces a nucleotide sugar.
28. A method of removing essentially all of a contaminant from a mixture comprising said contaminant and a desired product, said method comprising:
contacting said mixture with a first membrane for a length of time sufficient to allow essentially all of said contaminant to pass through said first membrane
wherein
said mixture has a pH such that said first membrane and said desired product have a net charge of the same sign and said contaminant is at its isoelectric point;
said first membrane has a molecular weight cut-off that is greater than the molecular weight of said desired product;
thereby removing essentially all of the contaminant from the mixture.
29. A method of purifying a nucleotide sugar from reactive components used to prepare said nucleotide sugar, said method comprising:
a) contacting a reactive solution comprising said nucleotide sugar with a nanofiltration membrane, thereby removing a nucleotide monophosphate and a sugar from said reactive solution while retaining said nucleotide sugar in said reactive solution,
thereby forming a desalted nucleotide sugar solution.
30. The method of claim 28, further comprising:
b) passing said desalted nucleotide sugar solution over a charged media depth filter.
US12/092,563 2005-11-03 2006-11-03 Nucleotide Sugar Purification Using Membranes Abandoned US20090048440A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/092,563 US20090048440A1 (en) 2005-11-03 2006-11-03 Nucleotide Sugar Purification Using Membranes

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US73397505P 2005-11-03 2005-11-03
US79628106P 2006-04-28 2006-04-28
US74675406P 2006-05-08 2006-05-08
US82353806P 2006-08-25 2006-08-25
US82924206P 2006-10-12 2006-10-12
US12/092,563 US20090048440A1 (en) 2005-11-03 2006-11-03 Nucleotide Sugar Purification Using Membranes
PCT/US2006/043048 WO2007056191A2 (en) 2005-11-03 2006-11-03 Nucleotide sugar purification using membranes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/043048 A-371-Of-International WO2007056191A2 (en) 2005-11-03 2006-11-03 Nucleotide sugar purification using membranes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/215,439 Division US8841439B2 (en) 2005-11-03 2011-08-23 Nucleotide sugar purification using membranes

Publications (1)

Publication Number Publication Date
US20090048440A1 true US20090048440A1 (en) 2009-02-19

Family

ID=38023848

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/092,563 Abandoned US20090048440A1 (en) 2005-11-03 2006-11-03 Nucleotide Sugar Purification Using Membranes
US13/215,439 Expired - Fee Related US8841439B2 (en) 2005-11-03 2011-08-23 Nucleotide sugar purification using membranes

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/215,439 Expired - Fee Related US8841439B2 (en) 2005-11-03 2011-08-23 Nucleotide sugar purification using membranes

Country Status (2)

Country Link
US (2) US20090048440A1 (en)
WO (1) WO2007056191A2 (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040063911A1 (en) * 2001-10-10 2004-04-01 Neose Technologies, Inc. Protein remodeling methods and proteins/peptides produced by the methods
US20060111279A1 (en) * 2003-11-24 2006-05-25 Neose Technologies, Inc. Glycopegylated erythropoietin
US20060287224A1 (en) * 2003-11-24 2006-12-21 Neose Technologies, Inc. Glycopegylated erythropoietin formulations
US20070032405A1 (en) * 2003-03-14 2007-02-08 Neose Technologies, Inc. Branched water-soluble polymers and their conjugates
US20070059275A1 (en) * 2003-07-25 2007-03-15 Defrees Shawn Antibody toxin conjugates
US20070254836A1 (en) * 2003-12-03 2007-11-01 Defrees Shawn Glycopegylated Granulocyte Colony Stimulating Factor
US20080050772A1 (en) * 2001-10-10 2008-02-28 Neose Technologies, Inc. Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF
US20080102083A1 (en) * 2003-05-09 2008-05-01 Neose Technologies, Inc. Compositions and Methods for the Preparation of Human Growth Hormone Glycosylation Mutants
US20080146782A1 (en) * 2006-10-04 2008-06-19 Neose Technologies, Inc. Glycerol linked pegylated sugars and glycopeptides
US20080176790A1 (en) * 2004-10-29 2008-07-24 Defrees Shawn Remodeling and Glycopegylation of Fibroblast Growth Factor (Fgf)
US20080242846A1 (en) * 2004-01-08 2008-10-02 Neose Technologies, Inc. O-linked glycosylation of peptides
US20080255040A1 (en) * 2006-07-21 2008-10-16 Neose Technologies, Inc. Glycosylation of peptides via o-linked glycosylation sequences
US20080300175A1 (en) * 2003-11-24 2008-12-04 Neose Technologies, Inc. Glycopegylated erythropoietin
US20080305992A1 (en) * 2003-11-24 2008-12-11 Neose Technologies, Inc. Glycopegylated erythropoietin
US20090000924A1 (en) * 2007-06-29 2009-01-01 Harley-Davidson Motor Company Group, Inc. Integrated ignition and key switch
US20090028822A1 (en) * 2004-09-10 2009-01-29 Neose Technologies, Inc. Glycopegylated Interferon Alpha
US20090143292A1 (en) * 2007-08-29 2009-06-04 Neose Technologies, Inc. Liquid Formulation of G-CSF Conjugate
US20090203579A1 (en) * 2005-01-10 2009-08-13 Defrees Shawn Glycopegylated Granulocyte Colony Stimulating Factor
US20090227504A1 (en) * 2002-06-21 2009-09-10 Novo Nordisk A/S Pegylated Factor VII Glycoforms
US20090292110A1 (en) * 2004-07-23 2009-11-26 Defrees Shawn Enzymatic modification of glycopeptides
US20100009902A1 (en) * 2005-01-06 2010-01-14 Neose Technologies, Inc. Glycoconjugation Using Saccharyl Fragments
US20100048456A1 (en) * 2003-04-09 2010-02-25 Novo Nordisk A/S Glycopegylation methods and proteins/peptides produced by the methods
US20100075375A1 (en) * 2006-10-03 2010-03-25 Novo Nordisk A/S Methods for the purification of polypeptide conjugates
US20100120666A1 (en) * 2007-04-03 2010-05-13 Biogenerix Ag Methods of treatment using glycopegylated g-csf
US20100174059A1 (en) * 2007-06-12 2010-07-08 Novo Nordisk A/S Process for the production of nucleotide sugars
US20100261872A1 (en) * 2001-10-10 2010-10-14 Neose Technologies, Inc. Factor VIII: remodeling and glycoconjugation of factor VIII
US20100286067A1 (en) * 2008-01-08 2010-11-11 Biogenerix Ag Glycoconjugation of polypeptides using oligosaccharyltransferases
US20110003744A1 (en) * 2005-05-25 2011-01-06 Novo Nordisk A/S Glycopegylated Erythropoietin Formulations
US7956032B2 (en) 2003-12-03 2011-06-07 Novo Nordisk A/S Glycopegylated granulocyte colony stimulating factor
US20110177029A1 (en) * 2007-06-04 2011-07-21 Novo Nordisk A/S O-linked glycosylation using n-acetylglucosaminyl transferases
US8008252B2 (en) 2001-10-10 2011-08-30 Novo Nordisk A/S Factor VII: remodeling and glycoconjugation of Factor VII
US20120121781A1 (en) * 2009-03-17 2012-05-17 Separation Technologies Investments Limited Whey or raw milk demineralisation and fractionation
US20120121788A1 (en) * 2009-03-17 2012-05-17 Separation Technologies Investments Limited Isolation and purification of components of whey
WO2012151300A2 (en) 2011-05-02 2012-11-08 Verasonics, Inc. Enhanced ultrasound image formation using qualified regions of overlapping transmit beams
US8404809B2 (en) 2005-05-25 2013-03-26 Novo Nordisk A/S Glycopegylated factor IX
US8632770B2 (en) 2003-12-03 2014-01-21 Novo Nordisk A/S Glycopegylated factor IX
US20140039237A1 (en) * 2012-08-06 2014-02-06 Ming-Hsin Li Medication dispensing device
US8716240B2 (en) 2001-10-10 2014-05-06 Novo Nordisk A/S Erythropoietin: remodeling and glycoconjugation of erythropoietin
US8791070B2 (en) 2003-04-09 2014-07-29 Novo Nordisk A/S Glycopegylated factor IX
US8791066B2 (en) 2004-07-13 2014-07-29 Novo Nordisk A/S Branched PEG remodeling and glycosylation of glucagon-like peptide-1 [GLP-1]
US8841439B2 (en) 2005-11-03 2014-09-23 Novo Nordisk A/S Nucleotide sugar purification using membranes
US8911967B2 (en) 2005-08-19 2014-12-16 Novo Nordisk A/S One pot desialylation and glycopegylation of therapeutic peptides
US9150848B2 (en) 2008-02-27 2015-10-06 Novo Nordisk A/S Conjugated factor VIII molecules
US9187546B2 (en) 2005-04-08 2015-11-17 Novo Nordisk A/S Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants
KR101938604B1 (en) 2011-02-18 2019-01-15 도레이 카부시키가이샤 Method for producing sugar solution
CN110272461A (en) * 2019-06-29 2019-09-24 赤峰蒙广生物科技有限公司 A method of purifying beta-thymidine from fermentation liquid

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102770450B (en) 2010-02-16 2015-12-02 诺沃—诺迪斯克有限公司 Factor viii fusion protein
EP2536753B1 (en) 2010-02-16 2017-12-20 Novo Nordisk A/S Factor viii molecules with reduced vwf binding
CN102812039B (en) 2010-02-16 2016-01-20 诺沃—诺迪斯克有限公司 Conjugated protein
US20130183280A1 (en) 2010-07-15 2013-07-18 Novo Nordisk A/S Stabilized factor viii variants
SG188497A1 (en) 2010-09-22 2013-05-31 Alios Biopharma Inc Substituted nucleotide analogs
WO2012155074A1 (en) * 2011-05-12 2012-11-15 Virent, Inc. Process for purifying lignocellulosic feedstocks
DE102011101995A1 (en) 2011-05-19 2012-11-22 Sartorius Stedim Biotech Gmbh Process for separating a mixture of a protein and its reaction product with a polyalkylene glycol
EP2794630A4 (en) 2011-12-22 2015-04-01 Alios Biopharma Inc Substituted phosphorothioate nucleotide analogs
US8916538B2 (en) 2012-03-21 2014-12-23 Vertex Pharmaceuticals Incorporated Solid forms of a thiophosphoramidate nucleotide prodrug
WO2013142157A1 (en) 2012-03-22 2013-09-26 Alios Biopharma, Inc. Pharmaceutical combinations comprising a thionucleotide analog
AR101060A1 (en) * 2014-02-12 2016-11-23 Novo Nordisk As FVIII CONJUGATES
AR099340A1 (en) * 2014-02-12 2016-07-13 Novo Nordisk As CONJUGATES OF THE COAGULATION FACTOR IX
EP3426670A4 (en) * 2016-03-07 2019-11-13 Glycom A/S Separation of oligosaccharides from fermentation broth
RU2019105567A (en) 2016-07-28 2020-08-28 Фонтерра Ко-Оперэйтив Груп Лимитед DAIRY PRODUCT AND METHOD
WO2018115309A1 (en) * 2016-12-22 2018-06-28 Novo Nordisk A/S Preparation of sugar-nucleotides
WO2019006321A1 (en) * 2017-06-30 2019-01-03 Circulomics, Inc. Size selection purification using a thermoplastic silica nanomaterial
JP2021522817A (en) * 2018-05-07 2021-09-02 クリスチャン・ハンセン・ハーエムオー・ゲーエムベーハーChr. Hansen HMO GmbH A simple method for purifying lacto-N-neotetraose (LNnT) from carbohydrates obtained by microbial fermentation
WO2019229118A1 (en) 2018-06-01 2019-12-05 Jennewein Biotechnologie Gmbh A simple method for the purification of a sialyllactose
EP4329923A1 (en) * 2021-04-30 2024-03-06 Hydranautics Concentration and diafiltration of oligonucleotides
EP4225766A4 (en) * 2021-12-20 2024-03-27 89Bio Inc Chemical synthesis of cytidine-5'-monophospho-n-glycyl-sialic acid

Citations (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088538A (en) * 1975-05-30 1978-05-09 Battelle Memorial Institute Reversibly precipitable immobilized enzyme complex and a method for its use
US4385260A (en) * 1975-09-09 1983-05-24 Beckman Instruments, Inc. Bargraph display
US4438253A (en) * 1982-11-12 1984-03-20 American Cyanamid Company Poly(glycolic acid)/poly(alkylene glycol) block copolymers and method of manufacturing the same
US4496689A (en) * 1983-12-27 1985-01-29 Miles Laboratories, Inc. Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer
US4565653A (en) * 1984-03-30 1986-01-21 Pfizer Inc. Acyltripeptide immunostimulants
US4806595A (en) * 1985-08-12 1989-02-21 Koken Co., Ltd. Method of preparing antithrombogenic medical materials
US4826945A (en) * 1987-06-09 1989-05-02 Yissum Research Development Company Biodegradable polymeric materials based on polyether glycols, processes for the preparation thereof and surgical articles made therefrom
US4925796A (en) * 1986-03-07 1990-05-15 Massachusetts Institute Of Technology Method for enhancing glycoprotein stability
US5104651A (en) * 1988-12-16 1992-04-14 Amgen Inc. Stabilized hydrophobic protein formulations of g-csf
US5122614A (en) * 1989-04-19 1992-06-16 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
US5182107A (en) * 1989-09-07 1993-01-26 Alkermes, Inc. Transferrin receptor specific antibody-neuropharmaceutical or diagnostic agent conjugates
US5194376A (en) * 1989-02-28 1993-03-16 University Of Ottawa Baculovirus expression system capable of producing foreign gene proteins at high levels
US5202413A (en) * 1993-02-16 1993-04-13 E. I. Du Pont De Nemours And Company Alternating (ABA)N polylactide block copolymers
US5219564A (en) * 1990-07-06 1993-06-15 Enzon, Inc. Poly(alkylene oxide) amino acid copolymers and drug carriers and charged copolymers based thereon
US5281698A (en) * 1991-07-23 1994-01-25 Cetus Oncology Corporation Preparation of an activated polymer ester for protein conjugation
US5324844A (en) * 1989-04-19 1994-06-28 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
US5324663A (en) * 1990-02-14 1994-06-28 The Regents Of The University Of Michigan Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids, or as free molecules, and for the isolation of cloned genetic sequences that determine these structures
US5405753A (en) * 1990-03-26 1995-04-11 Brossmer; Reinhard CMP-activated, fluorescing sialic acids, as well as processes for their preparation
US5410016A (en) * 1990-10-15 1995-04-25 Board Of Regents, The University Of Texas System Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US5492841A (en) * 1994-02-18 1996-02-20 E. I. Du Pont De Nemours And Company Quaternary ammonium immunogenic conjugates and immunoassay reagents
US5605793A (en) * 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
US5614184A (en) * 1992-07-28 1997-03-25 New England Deaconess Hospital Recombinant human erythropoietin mutants and therapeutic methods employing them
US5621039A (en) * 1993-06-08 1997-04-15 Hallahan; Terrence W. Factor IX- polymeric conjugates
US5629384A (en) * 1994-05-17 1997-05-13 Consiglio Nazionale Delle Ricerche Polymers of N-acryloylmorpholine activated at one end and conjugates with bioactive materials and surfaces
US5705367A (en) * 1994-09-26 1998-01-06 The Rockefeller University Glycosyltransferases for biosynthesis of oligosaccharides, and genes encoding them
US5716812A (en) * 1995-12-12 1998-02-10 The University Of British Columbia Methods and compositions for synthesis of oligosaccharides, and the products formed thereby
US5728554A (en) * 1995-04-11 1998-03-17 Cytel Corporation Enzymatic synthesis of glycosidic linkages
US5858751A (en) * 1992-03-09 1999-01-12 The Regents Of The University Of California Compositions and methods for producing sialyltransferases
US5858752A (en) * 1995-06-07 1999-01-12 The General Hospital Corporation Fucosyltransferase genes and uses thereof
US5876980A (en) * 1995-04-11 1999-03-02 Cytel Corporation Enzymatic synthesis of oligosaccharides
US6010999A (en) * 1990-05-04 2000-01-04 American Cyanamid Company Stabilization of fibroblast growth factors by modification of cysteine residues
US6015555A (en) * 1995-05-19 2000-01-18 Alkermes, Inc. Transferrin receptor specific antibody-neuropharmaceutical or diagnostic agent conjugates
US6030815A (en) * 1995-04-11 2000-02-29 Neose Technologies, Inc. Enzymatic synthesis of oligosaccharides
US6037452A (en) * 1992-04-10 2000-03-14 Alpha Therapeutic Corporation Poly(alkylene oxide)-Factor VIII or Factor IX conjugate
US6057292A (en) * 1995-09-21 2000-05-02 Genentech, Inc. Method for inhibiting growth hormone action
US6183738B1 (en) * 1997-05-12 2001-02-06 Phoenix Pharamacologics, Inc. Modified arginine deiminase
US6348558B1 (en) * 1999-12-10 2002-02-19 Shearwater Corporation Hydrolytically degradable polymers and hydrogels made therefrom
US6362254B2 (en) * 1998-03-12 2002-03-26 Shearwater Corporation Poly(ethylene glycol) derivatives with proximal reactive groups
US20020037841A1 (en) * 2000-05-15 2002-03-28 Apollon Papadimitriou Erythropoietin composition
US6376604B2 (en) * 1999-12-22 2002-04-23 Shearwater Corporation Method for the preparation of 1-benzotriazolylcarbonate esters of poly(ethylene glycol)
US20030027257A1 (en) * 1997-08-21 2003-02-06 University Technologies International, Inc. Sequences for improving the efficiency of secretion of non-secreted protein from mammalian and insect cells
US20030040037A1 (en) * 2000-05-12 2003-02-27 Neose Technologies, Inc. In vitro modification of glycosylation patterns of recombinant glycopeptides
US6531121B2 (en) * 2000-12-29 2003-03-11 The Kenneth S. Warren Institute, Inc. Protection and enhancement of erythropoietin-responsive cells, tissues and organs
US6555660B2 (en) * 2000-01-10 2003-04-29 Maxygen Holdings Ltd. G-CSF conjugates
US6555346B1 (en) * 1997-12-18 2003-04-29 Stichting Instituut Voor Dierhouderij En Diergezondheid Protein expression in baculovirus vector expression systems
US6693183B2 (en) * 1996-03-08 2004-02-17 The Regents Of The University Of Michigan MURINE α (1,3) FUCOSYLTRANSFERASE FUC-TVII, DNA ENCODING THE SAME, METHOD FOR PREPARING THE SAME, ANTIBODIES RECOGNIZING THE SAME, IMMUNOASSAYS FOR DETECTING THE SAME, PLASMIDS CONTAINING SUCH DNA, AND CELLS CONTAINING SUCH A PLASMID
US6692931B1 (en) * 1998-11-16 2004-02-17 Werner Reutter Recombinant glycoproteins, method for the production thereof, medicaments containing said glycoproteins and use thereof
US20040063911A1 (en) * 2001-10-10 2004-04-01 Neose Technologies, Inc. Protein remodeling methods and proteins/peptides produced by the methods
US6716626B1 (en) * 1999-11-18 2004-04-06 Chiron Corporation Human FGF-21 nucleic acids
US20040102607A1 (en) * 1998-03-25 2004-05-27 Danishefsky Samuel J. Trimeric antigenic O-linked glycopeptide conjugates, methods of preparation and uses thereof
US20050026266A1 (en) * 2002-11-08 2005-02-03 Glycozym Aps Methods to identify agents modulating functions of polypeptide galnac-transferases, pharmaceutical compositions comprising such agents and the use of such agents for preparing medicaments
US20050031584A1 (en) * 2001-10-10 2005-02-10 Neose Technologies, Inc. Interleukin-2:remodeling and glycoconjugation of interleukin-2
US20050064540A1 (en) * 2002-11-27 2005-03-24 Defrees Shawn Ph.D Glycoprotein remodeling using endoglycanases
US20050100982A1 (en) * 2001-10-10 2005-05-12 Neose Technologies, Inc. Factor IX: remodeling and glycoconjugation of factor IX
US20050106658A1 (en) * 2001-10-10 2005-05-19 Defrees Shawn Remodeling and glycoconjugation of peptides
US20060024286A1 (en) * 2004-08-02 2006-02-02 Paul Glidden Variants of tRNA synthetase fragments and uses thereof
US20060030521A1 (en) * 2001-11-28 2006-02-09 Neose Technologies, Inc. Remodeling and glycoconjugation of peptides
US20060035224A1 (en) * 2002-03-21 2006-02-16 Johansen Jack T Purification methods for oligonucleotides and their analogs
US20060111279A1 (en) * 2003-11-24 2006-05-25 Neose Technologies, Inc. Glycopegylated erythropoietin
US7157277B2 (en) * 2001-11-28 2007-01-02 Neose Technologies, Inc. Factor VIII remodeling and glycoconjugation of Factor VIII
US20070014759A1 (en) * 2003-12-03 2007-01-18 Neose Technologies, Inc. Glycopegylated granulocyte colony stimulating factor
US20070026485A1 (en) * 2003-04-09 2007-02-01 Neose Technologies, Inc. Glycopegylation methods and proteins/peptides produced by the methods
US20070027068A1 (en) * 2001-10-10 2007-02-01 Defrees Shawn Erythropoietin: remodeling and glycoconjugation of erythropoietin
US7173003B2 (en) * 2001-10-10 2007-02-06 Neose Technologies, Inc. Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF
US20070032405A1 (en) * 2003-03-14 2007-02-08 Neose Technologies, Inc. Branched water-soluble polymers and their conjugates
US20070059275A1 (en) * 2003-07-25 2007-03-15 Defrees Shawn Antibody toxin conjugates
US7214660B2 (en) * 2001-10-10 2007-05-08 Neose Technologies, Inc. Erythropoietin: remodeling and glycoconjugation of erythropoietin
US20070105755A1 (en) * 2005-10-26 2007-05-10 Neose Technologies, Inc. One pot desialylation and glycopegylation of therapeutic peptides
US20080015142A1 (en) * 2003-12-03 2008-01-17 Defrees Shawn Glycopegylated Follicle Stimulating Hormone
US7338933B2 (en) * 2004-01-08 2008-03-04 Neose Technologies, Inc. O-linked glycosylation of peptides
US20080102083A1 (en) * 2003-05-09 2008-05-01 Neose Technologies, Inc. Compositions and Methods for the Preparation of Human Growth Hormone Glycosylation Mutants
US7368108B2 (en) * 2001-11-28 2008-05-06 Neose Technologies, Inc. Glycopeptide remodeling using amidases
US20080108557A1 (en) * 2004-09-29 2008-05-08 Novo Nordisk Healthcare A/G Modified Proteins
US20090028822A1 (en) * 2004-09-10 2009-01-29 Neose Technologies, Inc. Glycopegylated Interferon Alpha
US20090053167A1 (en) * 2007-05-14 2009-02-26 Neose Technologies, Inc. C-, S- and N-glycosylation of peptides
US20090054623A1 (en) * 2004-12-17 2009-02-26 Neose Technologies, Inc. Lipo-Conjugation of Peptides
US20090055942A1 (en) * 2005-09-14 2009-02-26 Novo Nordisk Healthcare A/G Human Coagulation Factor VII Polypeptides
US20090093399A1 (en) * 2001-10-10 2009-04-09 Neose Technologies, Inc. Glycopegylation methods and proteins/peptides produced by the methods
US20090124544A1 (en) * 2005-04-08 2009-05-14 Neose Technologies ,Inc. A Delaware Corporation Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants
US20100009902A1 (en) * 2005-01-06 2010-01-14 Neose Technologies, Inc. Glycoconjugation Using Saccharyl Fragments
US20100015684A1 (en) * 2001-10-10 2010-01-21 Neose Technologies, Inc. Factor vii: remodeling and glycoconjugation of factor vii
US20100028939A1 (en) * 2003-08-08 2010-02-04 Novo Nordisk Healthcare A/G Use of Galactose Oxidase for Selective Chemical Conjugation of Protractor Molecules to Proteins of Therapeutic Interest
US20100029555A1 (en) * 2006-08-11 2010-02-04 Bio-Ker S.r.l G-csf site-specific mono-conjugates
US20100035299A1 (en) * 2006-10-03 2010-02-11 Novo Nordisk A/S Methods for the purification of polypeptide conjugates
US20100041872A1 (en) * 2006-10-04 2010-02-18 Defrees Shawn Glycerol linked pegylated sugars and glycopeptides
US20100056428A1 (en) * 2006-09-01 2010-03-04 Novo Nordisk Health Care Ag Modified proteins
US20100081791A1 (en) * 2005-05-25 2010-04-01 Novo Nordisk A/S Glycopegylated factor ix
US7691603B2 (en) * 2003-04-09 2010-04-06 Novo Nordisk A/S Intracellular formation of peptide conjugates
US20100120666A1 (en) * 2007-04-03 2010-05-13 Biogenerix Ag Methods of treatment using glycopegylated g-csf

Family Cites Families (306)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1479268A (en) 1973-07-05 1977-07-13 Beecham Group Ltd Pharmaceutical compositions
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
GB1451798A (en) 1973-08-02 1976-10-06 Ici Ltd Prostanoic acid derivatives
US4414147A (en) 1981-04-17 1983-11-08 Massachusetts Institute Of Technology Methods of decreasing the hydrophobicity of fibroblast and other interferons
JPS57206622A (en) 1981-06-10 1982-12-18 Ajinomoto Co Inc Blood substitute
US4451566A (en) 1981-12-04 1984-05-29 Spencer Donald B Methods and apparatus for enzymatically producing ethanol
DE3308806A1 (en) 1983-03-12 1984-09-13 Basf Ag, 6700 Ludwigshafen FUNGICIDAL AGENTS, SUBSTITUTED GLUCOPYRANOSYLAMINE AND METHOD FOR CONTROLLING FUNGI
JPS59172425A (en) 1983-03-18 1984-09-29 Nippon Chemiphar Co Ltd Novel blood coagulation factor derivative, its preparation and blood coagulation promoting agent containing the same
US4879236A (en) 1984-05-16 1989-11-07 The Texas A&M University System Method for producing a recombinant baculovirus expression vector
US4675414A (en) 1985-03-08 1987-06-23 The United States Of America As Represented By The Secretary Of The Navy Maleimidomethyl-carbonate polyethers
GR860984B (en) 1985-04-17 1986-08-18 Zymogenetics Inc Expression of factor vii and ix activities in mammalian cells
EP0229108B1 (en) 1985-06-26 1990-12-27 Cetus Corporation Solubilization of proteins for pharmaceutical compositions using polymer conjugation
US5206344A (en) 1985-06-26 1993-04-27 Cetus Oncology Corporation Interleukin-2 muteins and polymer conjugation thereof
SE451849B (en) 1985-12-11 1987-11-02 Svenska Sockerfabriks Ab VIEW TO SYNTHETIZE GYCLOSIDIC BINDINGS AND USE OF THIS RECEIVED PRODUCTS
IT1213029B (en) 1986-01-30 1989-12-07 Bracco Ind Chimica Spa PARAMAGNETIC METAL ION CHELATES.
US4767702A (en) 1986-02-06 1988-08-30 Cohenford Menashi A Paper strip assay for neisseria species
US5272066A (en) 1986-03-07 1993-12-21 Massachusetts Institute Of Technology Synthetic method for enhancing glycoprotein stability
JPS63502716A (en) 1986-03-07 1988-10-13 マサチューセッツ・インステチュート・オブ・テクノロジー How to enhance glycoprotein stability
US4902505A (en) 1986-07-30 1990-02-20 Alkermes Chimeric peptides for neuropeptide delivery through the blood-brain barrier
US5153265A (en) 1988-01-20 1992-10-06 Cetus Corporation Conjugation of polymer to colony stimulating factor-1
US4847325A (en) 1988-01-20 1989-07-11 Cetus Corporation Conjugation of polymer to colony stimulating factor-1
GB8810808D0 (en) 1988-05-06 1988-06-08 Wellcome Found Vectors
US5169933A (en) 1988-08-15 1992-12-08 Neorx Corporation Covalently-linked complexes and methods for enhanced cytotoxicity and imaging
US5874261A (en) 1988-09-02 1999-02-23 The Trustees Of The University Of Pennsylvania Method for the purification of glycosyltransferases
US5218092A (en) 1988-09-29 1993-06-08 Kyowa Hakko Kogyo Co., Ltd. Modified granulocyte-colony stimulating factor polypeptide with added carbohydrate chains
US5047335A (en) 1988-12-21 1991-09-10 The Regents Of The University Of Calif. Process for controlling intracellular glycosylation of proteins
US6166183A (en) 1992-11-30 2000-12-26 Kirin-Amgen, Inc. Chemically-modified G-CSF
EP0401384B1 (en) 1988-12-22 1996-03-13 Kirin-Amgen, Inc. Chemically modified granulocyte colony stimulating factor
EP0853121B1 (en) 1988-12-23 2007-03-28 Genentech, Inc. Human DNase
AU634517B2 (en) 1989-01-19 1993-02-25 Pharmacia & Upjohn Company Somatotropin analogs
EP0456642A1 (en) 1989-01-31 1991-11-21 The Upjohn Company Somatotropin analogs
US5059535A (en) 1989-04-12 1991-10-22 Chembiomed, Ltd. Process for the separation and purification of sialyl transferases
EP0470128B2 (en) 1989-04-19 2003-08-13 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
US5166322A (en) 1989-04-21 1992-11-24 Genetics Institute Cysteine added variants of interleukin-3 and chemical modifications thereof
US5342940A (en) 1989-05-27 1994-08-30 Sumitomo Pharmaceuticals Company, Limited Polyethylene glycol derivatives, process for preparing the same
US5672683A (en) 1989-09-07 1997-09-30 Alkermes, Inc. Transferrin neuropharmaceutical agent fusion protein
US5154924A (en) 1989-09-07 1992-10-13 Alkermes, Inc. Transferrin receptor specific antibody-neuropharmaceutical agent conjugates
US5527527A (en) 1989-09-07 1996-06-18 Alkermes, Inc. Transferrin receptor specific antibody-neuropharmaceutical agent conjugates
US5977307A (en) 1989-09-07 1999-11-02 Alkermes, Inc. Transferrin receptor specific ligand-neuropharmaceutical agent fusion proteins
US5032519A (en) 1989-10-24 1991-07-16 The Regents Of The Univ. Of California Method for producing secretable glycosyltransferases and other Golgi processing enzymes
US5312808A (en) 1989-11-22 1994-05-17 Enzon, Inc. Fractionation of polyalkylene oxide-conjugated hemoglobin solutions
IL96477A0 (en) 1989-12-01 1991-08-16 Amgen Inc Megakaryocyte production
SE465222C5 (en) 1989-12-15 1998-02-10 Pharmacia & Upjohn Ab A recombinant human factor VIII derivative and process for its preparation
US5595900A (en) 1990-02-14 1997-01-21 The Regents Of The University Of Michigan Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids, or as free molecules, and for the isolation of cloned genetic sequences that determine these structures
WO1991016449A1 (en) 1990-04-16 1991-10-31 The Trustees Of The University Of Pennsylvania Saccharide compositions, methods and apparatus for their synthesis
US5583042A (en) 1990-04-16 1996-12-10 Neose Pharmaceuticals, Inc. Apparatus for the synthesis of saccharide compositions
GB9107846D0 (en) 1990-04-30 1991-05-29 Ici Plc Polypeptides
US5399345A (en) 1990-05-08 1995-03-21 Boehringer Mannheim, Gmbh Muteins of the granulocyte colony stimulating factor
CU22302A1 (en) 1990-09-07 1995-01-31 Cigb Codifying nucleotidic sequence for a protein of the external membrane of neisseria meningitidis and the use of that protein in preparing vaccines.
EP0538300B1 (en) 1990-07-10 1994-04-13 BOEHRINGER INGELHEIM INTERNATIONAL GmbH O-glycosylated ifn-alpha
DE4028800A1 (en) 1990-09-11 1992-03-12 Behringwerke Ag GENETIC SIALYLATION OF GLYCOPROTEINS
US5529914A (en) 1990-10-15 1996-06-25 The Board Of Regents The Univeristy Of Texas System Gels for encapsulation of biological materials
CA2073511A1 (en) 1990-11-14 1992-05-29 Matthew R. Callstrom Conjugates of poly(vinylsaccharide) with proteins for the stabilization of proteins
US5164374A (en) 1990-12-17 1992-11-17 Monsanto Company Use of oligosaccharides for treatment of arthritis
US5788965A (en) 1991-02-28 1998-08-04 Novo Nordisk A/S Modified factor VII
US5833982A (en) 1991-02-28 1998-11-10 Zymogenetics, Inc. Modified factor VII
CA2103546C (en) 1991-02-28 2002-10-01 Kathleen L. Berkner Modified factor vii
US5861374A (en) 1991-02-28 1999-01-19 Novo Nordisk A/S Modified Factor VII
US5278299A (en) 1991-03-18 1994-01-11 Scripps Clinic And Research Foundation Method and composition for synthesizing sialylated glycosyl compounds
CA2101918A1 (en) 1991-03-18 1992-09-19 Samuel Zalipsky Hydrazine containing conjugates of polypeptides and glycopolypeptides with polymers
JP3476455B2 (en) 1991-03-18 2003-12-10 ザ スクリップス リサーチ インスティテュート Methods for synthesizing NeuAcα2, 6Galβ1, 4GlcNAc and sialyl Lex
US5212075A (en) 1991-04-15 1993-05-18 The Regents Of The University Of California Compositions and methods for introducing effectors to pathogens and cells
US5506107A (en) 1991-05-10 1996-04-09 Genentech, Inc. Selecting ligand agonists and antagonists
GB2256197B (en) 1991-05-31 1995-11-22 Ciba Geigy Ag Yeast as host for expression of heterologous glycosyl transferase enzymes
SE9201544L (en) 1991-05-31 1992-12-01 Ciba Geigy Ag MAKE SUBSTANTIAL GYCOSYL TRANSFER PHASES
US5352670A (en) * 1991-06-10 1994-10-04 Alberta Research Council Methods for the enzymatic synthesis of alpha-sialylated oligosaccharide glycosides
US5374655A (en) 1991-06-10 1994-12-20 Alberta Research Council Methods for the synthesis of monofucosylated oligosaccharides terminating in di-N-acetyllactosaminyl structures
KR950014915B1 (en) 1991-06-19 1995-12-18 주식회사녹십자 Asialoglycoprotein-conjugated compounds
EP0863154A1 (en) 1991-10-12 1998-09-09 The Regents Of The University Of California Use of thiol redox proteins for reducing protein intramolecular disulfide bonds, for improving the quality of cereal products, dough and baked goods
US6319695B1 (en) 1991-10-15 2001-11-20 The Scripps Research Insitute Production of fucosylated carbohydrates by enzymatic fucosylation synthesis of sugar nucleotides; and in situ regeneration of GDP-fucose
CA2122717C (en) 1991-11-08 2003-07-15 David C. Anderson Hemoglobins as drug delivery agents
US5384249A (en) 1991-12-17 1995-01-24 Kyowa Hakko Kogyo Co., Ltd. α2→3 sialyltransferase
IT1260468B (en) 1992-01-29 1996-04-09 METHOD FOR MAINTAINING THE ACTIVITY OF PROTEOLYTIC ENZYMES MODIFIED WITH POLYETHYLENGLYCOL
US5962294A (en) 1992-03-09 1999-10-05 The Regents Of The University Of California Compositions and methods for the identification and synthesis of sialyltransferases
DE69332520T2 (en) 1992-03-09 2003-09-11 Univ California NUCLEIC ACID, EXPRESSION VECTOR AND COMPOSITIONS FOR IDENTIFYING AND PRODUCING RECOMBINANT SIALYL TRANSFERAS
WO1993018787A1 (en) 1992-03-25 1993-09-30 New York University Trans-sialidase and methods of use and making thereof
JPH0686684A (en) 1992-05-26 1994-03-29 Monsanto Co Synthesis of sialo conjugation
WO1994003191A1 (en) 1992-08-07 1994-02-17 Progenics Pharmaceuticals, Inc. NON-PEPTIDYL MOIETY-CONJUGATED CD4-GAMMA2 AND CD4-IgG2 IMMUNOCONJUGATES, AND USES THEREOF
AU5006993A (en) 1992-08-21 1994-03-15 Enzon, Inc. Novel attachment of polyalkylene oxides to bio-effecting substances
JP3979678B2 (en) 1992-08-24 2007-09-19 サントリー株式会社 Novel glycosyltransferase, gene encoding the same, and method for producing the enzyme
WO1994005332A2 (en) 1992-09-01 1994-03-17 Berlex Laboratories, Inc. Glycolation of glycosylated macromolecules
US5308460A (en) 1992-10-30 1994-05-03 Glyko, Incorporated Rapid synthesis and analysis of carbohydrates
US6361977B1 (en) 1992-11-24 2002-03-26 S. Christopher Bauer Methods of using multivariant IL-3 hematopoiesis fusion protein
NZ250375A (en) 1992-12-09 1995-07-26 Ortho Pharma Corp Peg hydrazone and peg oxime linkage forming reagents and protein derivatives
NO934477L (en) 1992-12-09 1994-06-10 Ortho Pharma Corp PEG hydrazone and PEG oxime-binding reagents and protein derivatives thereof
CA2110543A1 (en) 1992-12-09 1994-06-10 David E. Wright Peg hydrazone and peg oxime linkage forming reagents and protein derivatives thereof
WO1994015625A1 (en) 1993-01-15 1994-07-21 Enzon, Inc. Factor viii - polymeric conjugates
US5349001A (en) 1993-01-19 1994-09-20 Enzon, Inc. Cyclic imide thione activated polyalkylene oxides
US5321095A (en) 1993-02-02 1994-06-14 Enzon, Inc. Azlactone activated polyalkylene oxides
US6180134B1 (en) 1993-03-23 2001-01-30 Sequus Pharmaceuticals, Inc. Enhanced ciruclation effector composition and method
DE69434749T2 (en) 1993-03-29 2007-04-26 Kyowa Hakko Kogyo Co., Ltd. Alpha-1,3-fucosyltransferase
US5374541A (en) 1993-05-04 1994-12-20 The Scripps Research Institute Combined use of β-galactosidase and sialyltransferase coupled with in situ regeneration of CMP-sialic acid for one pot synthesis of oligosaccharides
US5409817A (en) 1993-05-04 1995-04-25 Cytel, Inc. Use of trans-sialidase and sialyltransferase for synthesis of sialylα2→3βgalactosides
JPH08510729A (en) 1993-05-14 1996-11-12 サイテル コーポレイション Sialyl Le <ab> x analogues as inhibitors of cell adhesion
EP0698103A1 (en) 1993-05-14 1996-02-28 PHARMACIA &amp; UPJOHN COMPANY CLONED DNA ENCODING A UDP-GALNAc:POLYPEPTIDE,N-ACETYLGALACTOS AMINYLTRANSFERASE
HU219682B (en) 1993-05-21 2001-06-28 Novo Nordisk A/S. Modified factor vii
WO1994028024A1 (en) 1993-06-01 1994-12-08 Enzon, Inc. Carbohydrate-modified polymer conjugates with erythropoietic activity
AU691510B2 (en) 1993-07-15 1998-05-21 Neose Pharmaceuticals Method of synthesizing saccharide compositions
DE4325317C2 (en) 1993-07-29 1998-05-20 Univ Dresden Tech Process for the radioactive labeling of immunoglobulins
CN1057534C (en) 1993-08-17 2000-10-18 柯瑞英-艾格公司 Erythropoietin analogs
JPH0770195A (en) 1993-08-23 1995-03-14 Yutaka Mizushima Sugar-modified interferon
US6485930B1 (en) 1993-09-15 2002-11-26 The Scripps Research Institute Mannosyl transfer with regeneration of GDP-mannose
WO1995008573A1 (en) 1993-09-22 1995-03-30 Ajinomoto Co., Inc. Peptide having antithrombotic activity and process for producing the same
US5874075A (en) 1993-10-06 1999-02-23 Amgen Inc. Stable protein: phospholipid compositions and methods
US5919455A (en) 1993-10-27 1999-07-06 Enzon, Inc. Non-antigenic branched polymer conjugates
US5643575A (en) 1993-10-27 1997-07-01 Enzon, Inc. Non-antigenic branched polymer conjugates
US5446090A (en) 1993-11-12 1995-08-29 Shearwater Polymers, Inc. Isolatable, water soluble, and hydrolytically stable active sulfones of poly(ethylene glycol) and related polymers for modification of surfaces and molecules
US5443953A (en) 1993-12-08 1995-08-22 Immunomedics, Inc. Preparation and use of immunoconjugates
US5369017A (en) 1994-02-04 1994-11-29 The Scripps Research Institute Process for solid phase glycopeptide synthesis
JP3516272B2 (en) 1994-02-10 2004-04-05 株式会社成和化成 Cosmetic base material
US5837458A (en) 1994-02-17 1998-11-17 Maxygen, Inc. Methods and compositions for cellular and metabolic engineering
ZA951877B (en) 1994-03-07 1996-09-09 Dow Chemical Co Bioactive and/or targeted dendrimer conjugates
IL113010A0 (en) 1994-03-31 1995-10-31 Pharmacia Ab Pharmaceutical formulation comprising factor VIII or factor ix with an activity of at least 200 IU/ml and an enhancer for improved subcutaneous intramuscular or intradermal administration
US5432059A (en) 1994-04-01 1995-07-11 Specialty Laboratories, Inc. Assay for glycosylation deficiency disorders
US5646113A (en) 1994-04-07 1997-07-08 Genentech, Inc. Treatment of partial growth hormone insensitivity syndrome
WO1996010089A1 (en) 1994-09-29 1996-04-04 Ajinomoto Co., Inc. Modification of peptide and protein
US5824784A (en) 1994-10-12 1998-10-20 Amgen Inc. N-terminally chemically modified protein compositions and methods
US5834251A (en) 1994-12-30 1998-11-10 Alko Group Ltd. Methods of modifying carbohydrate moieties
US5932462A (en) 1995-01-10 1999-08-03 Shearwater Polymers, Inc. Multiarmed, monofunctional, polymer for coupling to molecules and surfaces
IL116730A0 (en) 1995-01-13 1996-05-14 Amgen Inc Chemically modified interferon
SE9501285L (en) 1995-04-06 1996-10-07 Johanna Ljung Process for producing biologically active proteins
US5922577A (en) 1995-04-11 1999-07-13 Cytel Corporation Enzymatic synthesis of glycosidic linkages
DK0820520T3 (en) 1995-04-11 2002-12-02 Neose Technologies Inc Enhanced enzymatic synthesis of oliogosaccharides
US5695760A (en) 1995-04-24 1997-12-09 Boehringer Inglehiem Pharmaceuticals, Inc. Modified anti-ICAM-1 antibodies and their use in the treatment of inflammation
AU5920096A (en) 1995-05-15 1996-11-29 Constantin A. Bona Carbohydrate-mediated coupling of peptides to immunoglobulins
US5824864A (en) 1995-05-25 1998-10-20 Pioneer Hi-Bred International, Inc. Maize gene and protein for insect control
AU6255096A (en) 1995-06-07 1996-12-30 Mount Sinai School Of Medicine Of The City University Of New York, The Pegylated modified proteins
US6127153A (en) 1995-06-07 2000-10-03 Neose Technologies, Inc. Method of transferring at least two saccharide units with a polyglycosyltransferase, a polyglycosyltransferase and gene encoding a polyglycosyltransferase
US6251864B1 (en) 1995-06-07 2001-06-26 Glaxo Group Limited Peptides and compounds that bind to a receptor
US5672662A (en) 1995-07-07 1997-09-30 Shearwater Polymers, Inc. Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications
AU6597996A (en) 1995-07-27 1997-02-26 Cytec Technology Corp. Synthetic cationic polymers as promoters for ASA sizing
US5770420A (en) 1995-09-08 1998-06-23 The Regents Of The University Of Michigan Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids, or as free molecules, and for the isolation of cloned genetic sequences that determine these structures
SE9503380D0 (en) 1995-09-29 1995-09-29 Pharmacia Ab Protein derivatives
WO1997021822A2 (en) 1995-12-12 1997-06-19 The University Of British Columbia Methods and compositions for synthesis of oligosaccharides using mutant glycosidase enzymes
CA2165041C (en) 1995-12-12 2005-07-05 The University Of British Columbia Methods and compositions for synthesis of oligosaccharides, and the products formed thereby
JP3065925B2 (en) 1996-01-30 2000-07-17 日清製油株式会社 Active oxygen species scavenger and anti-fading agent
AU3908597A (en) 1996-08-02 1998-02-25 Ortho-Mcneil Pharmaceutical, Inc. Polypeptides having a single covalently bound n-terminal water-soluble polymer
WO1998006422A1 (en) 1996-08-13 1998-02-19 Fujisawa Pharmaceutical Co., Ltd. Hematopoietic stem cell proliferating agents
US20020064546A1 (en) 1996-09-13 2002-05-30 J. Milton Harris Degradable poly(ethylene glycol) hydrogels with controlled half-life and precursors therefor
ATE304546T1 (en) * 1996-10-10 2005-09-15 Neose Technologies Inc PURIFICATION OF CARBOHYDRATES USING REVERSE OSMOSIS AND NANOFILTRATION
NZ336539A (en) 1996-10-15 2000-09-29 Liposome Co Inc Peptide-lipid conjugates, liposomes and liposomal drug delivery
CA2271230A1 (en) 1996-11-08 1998-05-14 Cytel Corporation Improved expression vectors
WO1998031826A1 (en) 1997-01-16 1998-07-23 Cytel Corporation Practical in vitro sialylation of recombinant glycoproteins
AU5773798A (en) 1997-01-29 1998-08-18 Polymasc Pharmaceuticals Plc Pegylation process
DE19709787A1 (en) 1997-03-11 1998-09-17 Bayer Ag Oligosaccaride and their derivatives as well as a chemo-enzymatic process for their production
US5945314A (en) 1997-03-31 1999-08-31 Abbott Laboratories Process for synthesizing oligosaccharides
EP0981548A4 (en) 1997-04-30 2005-11-23 Enzon Inc Single-chain antigen-binding proteins capable of glycosylation, production and uses thereof
JPH10307356A (en) 1997-05-08 1998-11-17 Konica Corp Silver halide emulsion and silver halide photographic sensitive material using the same
US6075134A (en) 1997-05-15 2000-06-13 The Regents Of The University Of California Glycoconjugates and methods
US6399337B1 (en) 1997-06-06 2002-06-04 The Governors Of The University Of Alberta α1,3-fucosyltransferase
WO1998058964A1 (en) 1997-06-24 1998-12-30 Genentech, Inc. Methods and compositions for galactosylated glycoproteins
WO1999000150A2 (en) 1997-06-27 1999-01-07 Regents Of The University Of California Drug targeting of a peptide radiopharmaceutical through the primate blood-brain barrier in vivo with a monoclonal antibody to the human insulin receptor
WO1999013063A1 (en) 1997-09-09 1999-03-18 Nycomed Imaging As Factor vii fragments and analogs thereof and their use in the treatment of blood clottng disorders
WO1999022764A1 (en) 1997-10-31 1999-05-14 Genentech, Inc. Methods and compositions comprising glycoprotein glycoforms
AU744303B2 (en) 1997-12-01 2002-02-21 Neose Technologies, Inc. Enzymatic synthesis of gangliosides
WO1999034833A1 (en) 1998-01-07 1999-07-15 Shearwater Polymers, Incorporated Degradable heterobifunctional poly(ethylene glycol) acrylates and gels and conjugates derived therefrom
AU2559799A (en) 1998-01-22 1999-08-09 Genentech Inc. Antibody fragment-polymer conjugates and humanized anti-il-8 monoclonal antibodies and uses of same
DK1071700T3 (en) 1998-04-20 2010-06-07 Glycart Biotechnology Ag Glycosylation modification of antibodies to enhance antibody-dependent cellular cytotoxicity
WO1999055376A1 (en) 1998-04-28 1999-11-04 Applied Research Systems Ars Holding N.V. Peg-lhrh analog conjugates
US20030166525A1 (en) 1998-07-23 2003-09-04 Hoffmann James Arthur FSH Formulation
NZ510689A (en) 1998-10-16 2003-07-25 Biogen Inc Polymer conjugates of interferon beta-1a and uses
US7304150B1 (en) 1998-10-23 2007-12-04 Amgen Inc. Methods and compositions for the prevention and treatment of anemia
DE69936351T2 (en) 1998-10-30 2008-02-21 Novozymes A/S GLYCOSYLATED PROTEINS WITH REDUCED ALLERGENITY
ATE408006T1 (en) 1998-11-13 2008-09-15 Henrick Clausen UDP-GALACTOSE: BETA-I(N)-ACETYL-GLUCOSAMINE BETA1, 3 GALACTOSYL TRANSFERASES, BETA3GAL-T5
AU773845B2 (en) 1998-11-18 2004-06-10 Neose Technologies, Inc. Low cost manufacture of oligosaccharides
US6465220B1 (en) 1998-12-21 2002-10-15 Glycozym Aps Glycosylation using GalNac-T4 transferase
AU2618500A (en) 1999-01-29 2000-08-18 Amgen, Inc. Gcsf conjugates
US6503744B1 (en) 1999-02-01 2003-01-07 National Research Council Of Canada Campylobacter glycosyltransferases for biosynthesis of gangliosides and ganglioside mimics
US6949372B2 (en) 1999-03-02 2005-09-27 The Johns Hopkins University Engineering intracellular sialylation pathways
AU769842B2 (en) 1999-04-22 2004-02-05 Astrazeneca Ab Assay for detecting phospho-N-acetylmuramyl-pentapeptide translocase activity
PE20010288A1 (en) 1999-07-02 2001-03-07 Hoffmann La Roche ERYTHROPOYETIN DERIVATIVES
US6261805B1 (en) 1999-07-15 2001-07-17 Boyce Thompson Institute For Plant Research, Inc. Sialyiation of N-linked glycoproteins in the baculovirus expression vector system
AU6357900A (en) 1999-07-20 2001-02-05 Amgen, Inc. Hyaluronic acid-protein conjugates, pharmaceutical compositions and related methods
US6642038B1 (en) 1999-09-14 2003-11-04 Genzyme Glycobiology Research Institute, Inc. GlcNAc phosphotransferase of the lysosomal targeting pathway
JP5209161B2 (en) 1999-12-02 2013-06-12 ザイモジェネティクス, インコーポレイテッド Method for targeting cells expressing glandular fibroblast growth receptor-3 or -2
WO2001048052A1 (en) 1999-12-24 2001-07-05 Kyowa Hakko Kogyo Co., Ltd. Branched polyalkylene glycols
WO2001049830A2 (en) 1999-12-30 2001-07-12 Maxygen Aps Improved lysosomal enzymes and lysosomal enzyme activators
KR100773323B1 (en) 2000-01-10 2007-11-05 맥시겐 홀딩스 리미티드 G-csf conjugates
US6646110B2 (en) 2000-01-10 2003-11-11 Maxygen Holdings Ltd. G-CSF polypeptides and conjugates
WO2001058493A1 (en) 2000-02-11 2001-08-16 Maxygen Aps Conjugates of follicle stimulating hormones
CA2397347C (en) 2000-02-11 2011-07-12 Maxygen Aps Factor vii or viia-like molecules
WO2001060411A1 (en) 2000-02-18 2001-08-23 Kanagawa Academy Of Science And Technology Pharmaceutical composition, reagent and method for intracerebral delivery of pharmaceutically active ingredient or labeling substance
US20010041683A1 (en) 2000-03-09 2001-11-15 Schmitz Harold H. Cocoa sphingolipids, cocoa extracts containing sphingolipids and methods of making and using same
EP1263771B1 (en) 2000-03-16 2006-06-14 The Regents Of The University Of California Chemoselective ligation by use of a phosphine
US6586398B1 (en) 2000-04-07 2003-07-01 Amgen, Inc. Chemically modified novel erythropoietin stimulating protein compositions and methods
WO2001083725A1 (en) 2000-05-03 2001-11-08 Novo Nordisk A/S Human coagulation factor vii variants
US6905683B2 (en) 2000-05-03 2005-06-14 Novo Nordisk Healthcare A/G Human coagulation factor VII variants
US7338932B2 (en) 2000-05-11 2008-03-04 Glycozym Aps Methods of modulating functions of polypeptide GalNAc-transferases and of screening test substances to find agents herefor, pharmaceutical compositions comprising such agents and the use of such agents for preparing medicaments
ATE367398T1 (en) 2000-05-16 2007-08-15 Bolder Biotechnology Inc METHOD FOR REFOLDING PROTEINS WITH FREE CYSTEINE RESIDUE
ES2252261T3 (en) 2000-06-28 2006-05-16 Glycofi, Inc. METHODS TO PRODUCE MODIFIED GLICOPROTEINS.
EP1299535A2 (en) 2000-06-30 2003-04-09 Maxygen Aps Peptide extended glycosylated polypeptides
US6423826B1 (en) 2000-06-30 2002-07-23 Regents Of The University Of Minnesota High molecular weight derivatives of vitamin K-dependent polypeptides
KR100396983B1 (en) 2000-07-29 2003-09-02 이강춘 Highly reactive branched polymer and proteins or peptides conjugated with the polymer
WO2002013843A2 (en) 2000-08-17 2002-02-21 University Of British Columbia Chemotherapeutic agents conjugated to p97 and their methods of use in treating neurological tumours
AU2001285020A1 (en) 2000-08-17 2002-02-25 Synapse Technologies, Inc. P97-active agent conjugates and their methods of use
EP2311943A3 (en) 2000-10-02 2011-05-04 Novo Nordisk Health Care AG Factor VII glycoforms
US20020142964A1 (en) 2000-11-02 2002-10-03 Nissen Torben Lauesgaard Single-chain polypeptides
AU2002229603B2 (en) 2000-11-27 2007-11-08 Rmf Dictagene S.A. Process for folding chemically synthesized polypeptides
WO2002044196A1 (en) 2000-11-28 2002-06-06 University Of Massachusetts Methods and reagents for introducing a sulfhydryl group into the 5'-terminus of rna
DE60144439D1 (en) 2000-12-20 2011-05-26 Hoffmann La Roche CONJUGATES OF ERYTHROPOIETIN (EPO) WITH POLYETHYLENE GLYCOL (PEG)
BR0116381A (en) 2000-12-20 2004-02-25 Hoffmann La Roche Conjugate, pharmaceutical composition comprising the same and its use, process for the prophylactic and / or therapeutic treatment of disorders, process for the preparation of an erythropoietin conjugate, compounds and glycoproteins
US7892730B2 (en) 2000-12-22 2011-02-22 Sagres Discovery, Inc. Compositions and methods for cancer
PA8536201A1 (en) 2000-12-29 2002-08-29 Kenneth S Warren Inst Inc PROTECTION AND IMPROVEMENT OF CELLS, FABRICS AND ORGANS RESPONDING TO Erythropoietin
SE0004932D0 (en) 2000-12-31 2000-12-31 Apbiotech Ab A method for mixed mode adsorption and mixed mode adsorbents
WO2002074806A2 (en) 2001-02-27 2002-09-26 Maxygen Aps New interferon beta-like molecules
US7235638B2 (en) 2001-03-22 2007-06-26 Novo Nordisk Healthcare A/G Coagulation factor VII derivatives
CN100567487C (en) 2001-03-22 2009-12-09 诺沃挪第克健康护理股份公司 The proconvertin derivative
PL205352B1 (en) 2001-05-03 2010-04-30 Merck Patent Gmbh Recombinant tumor specific antibody and use thereof
WO2002092147A2 (en) 2001-05-11 2002-11-21 Aradigm Corporation Optimization of the molecular properties and formulation of proteins delivered by inhalation
WO2002092619A2 (en) 2001-05-14 2002-11-21 The Gouvernment Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Modified growth hormone
WO2003006501A2 (en) 2001-07-11 2003-01-23 Maxygen Holdings, Ltd. G-csf conjugates
KR100453877B1 (en) 2001-07-26 2004-10-20 메덱스젠 주식회사 METHOD OF MANUFACTURING Ig-FUSION PROTEINS BY CONCATAMERIZATION, TNFR/Fc FUSION PROTEINS MANUFACTURED BY THE METHOD, DNA CODING THE PROTEINS, VECTORS INCLUDING THE DNA, AND CELLS TRANSFORMED BY THE VECTOR
AU2002330975B2 (en) 2001-08-01 2008-05-08 Neose Technologies, Inc. Neutral glycosphingolipids and glycosyl-sphingosines and methods for isolating the same
CA2457794A1 (en) 2001-08-29 2003-03-06 Neose Technologies, Inc. Novel synthetic ganglioside derivatives and compositions thereof
US6930086B2 (en) 2001-09-25 2005-08-16 Hoffmann-La Roche Inc. Diglycosylated erythropoietin
US7052868B2 (en) 2001-09-27 2006-05-30 Novo Nordisk Healthcare A/G Human coagulation factor VII polypeptides
US7439043B2 (en) 2001-10-10 2008-10-21 Neose Technologies, Inc. Galactosyl nucleotide sugars
US7125843B2 (en) 2001-10-19 2006-10-24 Neose Technologies, Inc. Glycoconjugates including more than one peptide
US7265085B2 (en) 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycoconjugation methods and proteins/peptides produced by the methods
US7297511B2 (en) 2001-10-10 2007-11-20 Neose Technologies, Inc. Interferon alpha: remodeling and glycoconjugation of interferon alpha
US7226903B2 (en) 2001-10-10 2007-06-05 Neose Technologies, Inc. Interferon beta: remodeling and glycoconjugation of interferon beta
US6784154B2 (en) 2001-11-01 2004-08-31 University Of Utah Research Foundation Method of use of erythropoietin to treat ischemic acute renal failure
WO2003046150A2 (en) 2001-11-28 2003-06-05 Neose Technologies, Inc. Glycoprotein remodeling using endoglycanases
WO2003093448A2 (en) 2002-05-03 2003-11-13 Neose Technologies, Inc. Recombinant glycosyltransferase fusion proteins
MXPA04012496A (en) 2002-06-21 2005-09-12 Novo Nordisk Healthcare Ag Pegylated factor vii glycoforms.
KR101186140B1 (en) 2002-06-21 2012-09-27 노보 노르디스크 헬스 케어 악티엔게젤샤프트 Pegylated factor vii glycoforms
DE10232916B4 (en) 2002-07-19 2008-08-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for characterizing an information signal
WO2004009793A2 (en) 2002-07-23 2004-01-29 Neose Technologies, Inc. Synthesis of glycoproteins using bacterial gycosyltransferases
WO2004013151A2 (en) 2002-08-01 2004-02-12 National Research Council Of Canada Campylobacter glycans and glycopeptides
NZ574530A (en) 2002-08-02 2010-12-24 Glaxosmithkline Biolog Sa Vaccine compositions comprising L2 and/or L3 immunotype lipooligosaccharides from lgtB-neisseria minigitidis
AU2003270341A1 (en) 2002-09-05 2004-03-29 The General Hospital Corporation Modified asialo-interferons and uses thereof
EP1539210A4 (en) 2002-09-06 2006-06-07 Bayer Pharmaceuticals Corp Modified glp-1 receptor agonists and their pharmacological methods of use
ZA200502320B (en) 2002-09-20 2006-10-25 Pharmacia Corp Process for decreasing aggregate levels of pegylated protein
EP1908782B1 (en) 2002-09-25 2010-01-06 Novo Nordisk Health Care AG Human coagulation factor VII polypeptides
US20040062748A1 (en) 2002-09-30 2004-04-01 Mountain View Pharmaceuticals, Inc. Polymer conjugates with decreased antigenicity, methods of preparation and uses thereof
EP1549677B1 (en) 2002-09-30 2011-04-13 Bayer HealthCare LLC FVII OR FVIIa VARIANTS HAVING INCREASED CLOTTING ACTIVITY
NZ539415A (en) 2002-10-09 2008-12-24 Neose Technologies Inc Remodelling and glycoconjugation of erythropoietin
JP4412461B2 (en) 2002-11-20 2010-02-10 日油株式会社 Modified bio-related substance, production method thereof and intermediate
US7459436B2 (en) 2002-11-22 2008-12-02 Hoffmann-La Roche Inc. Treatment of disturbances of iron distribution
EP1424344A1 (en) 2002-11-29 2004-06-02 Aventis Behring Gesellschaft mit beschränkter Haftung Modified cDNA factor VIII and its derivates
DK1428878T3 (en) 2002-12-13 2008-12-08 Bioceuticals Arzneimittel Ag Process for the production and purification of erythropoietin
CA2511814C (en) 2002-12-26 2015-02-17 Mountain View Pharmaceuticals, Inc. Polymer conjugates of interferon-beta with enhanced biological potency
US7041635B2 (en) 2003-01-28 2006-05-09 In2Gen Co., Ltd. Factor VIII polypeptide
AU2004215912B2 (en) 2003-02-26 2009-03-26 Nektar Therapeutics Polymer-factor VIII moiety conjugates
US20060276618A1 (en) 2003-03-18 2006-12-07 Defrees Shawn Activated forms of water-soluble polymers
EP1605897B1 (en) 2003-03-19 2012-07-25 Eli Lilly And Company Polyethelene glycol link glp-1 compounds
US7718363B2 (en) 2003-04-25 2010-05-18 The Kenneth S. Warren Institute, Inc. Tissue protective cytokine receptor complex and assays for identifying tissue protective compounds
PT1624891E (en) 2003-05-06 2010-01-05 Syntonix Pharmaceuticals Inc Clotting factor-fc chimeric proteins to treat hemophilia
TWI353991B (en) 2003-05-06 2011-12-11 Syntonix Pharmaceuticals Inc Immunoglobulin chimeric monomer-dimer hybrids
WO2004101597A2 (en) 2003-05-13 2004-11-25 Frutarom Ltd. Methods for the reduction of disulfide bonds
US7074755B2 (en) 2003-05-17 2006-07-11 Centocor, Inc. Erythropoietin conjugate compounds with extended half-lives
EP1481985A1 (en) 2003-05-28 2004-12-01 Innogenetics N.V. Modified hepatitis C virus (HCV) NS3 for medical treatment
GB0315457D0 (en) 2003-07-01 2003-08-06 Celltech R&D Ltd Biological products
JP2007501812A (en) 2003-08-08 2007-02-01 ノボ ノルディスク アクティーゼルスカブ Synthesis and application of new structurally well-defined branched polymers as binders for peptides
EP1653991A2 (en) 2003-08-08 2006-05-10 Fresenius Kabi Deutschland GmbH Conjugates of a polymer and a protein linked by an oxime linking group
CN1882355A (en) 2003-09-09 2006-12-20 沃伦药品公司 Long acting erythropoietins that maintain tissue protective activity of endogenous erythropoietin
US7524813B2 (en) 2003-10-10 2009-04-28 Novo Nordisk Health Care Ag Selectively conjugated peptides and methods of making the same
US20080305992A1 (en) 2003-11-24 2008-12-11 Neose Technologies, Inc. Glycopegylated erythropoietin
AU2004293103C1 (en) 2003-11-24 2010-12-02 Ratiopharm Gmbh Glycopegylated erythropoietin
NZ546733A (en) 2003-12-03 2009-07-31 Novo Nordisk As Glycopegylated factor IX
US20060040856A1 (en) 2003-12-03 2006-02-23 Neose Technologies, Inc. Glycopegylated factor IX
EP1694274B1 (en) 2003-12-03 2013-04-24 BioGeneriX AG Glycopegylated granulocyte colony stimulating factor
US20080318850A1 (en) 2003-12-03 2008-12-25 Neose Technologies, Inc. Glycopegylated Factor Ix
US20080058245A1 (en) 2004-01-09 2008-03-06 Johnson Karl F Vectors for Recombinant Protein Expression in E. Coli
US20070105770A1 (en) 2004-01-21 2007-05-10 Novo Nordisk A/S Transglutaminase mediated conjugation of peptides
AU2005208897B2 (en) 2004-01-26 2011-05-19 Ratiopharm Gmbh Branched polymeric sugars and nucleotides thereof
ES2808955T3 (en) 2004-02-12 2021-03-02 Archemix Llc Aptamer-based therapeutic agents useful in the treatment of complement-related disorders
EP1735340A2 (en) 2004-03-17 2006-12-27 Eli Lilly And Company Glycol linked fgf-21 compounds
US20070037966A1 (en) 2004-05-04 2007-02-15 Novo Nordisk A/S Hydrophobic interaction chromatography purification of factor VII polypeptides
RU2006138181A (en) 2004-05-04 2008-06-10 Ново Нордиск Хелс Кеа Аг (Ch) O-RELATED Glycoforms of Polypeptides and a Method for Their Production
JP4251399B2 (en) 2004-05-21 2009-04-08 独立行政法人産業技術総合研究所 Screening method for peptides to which O-linked sugar chains are added
JP2008512085A (en) 2004-06-03 2008-04-24 ネオス テクノロジーズ インコーポレイティッド Cleaved GalNAcT2 polypeptides and nucleic acids
WO2005121332A2 (en) 2004-06-03 2005-12-22 Neose Technologies, Inc. Truncated st6galnaci polypeptides and nucleic acids
KR101100059B1 (en) 2004-06-30 2011-12-29 넥타르 테라퓨틱스 Polymer-factor ix moiety conjugates
US20060029573A1 (en) 2004-06-30 2006-02-09 Chun Shen Pegylated interferon alpha-1b
US20080305990A1 (en) 2004-07-02 2008-12-11 The Kenneth S Warren Institute, Inc. Method of Producing Fully Carbamylated Erythropoietin
WO2006014466A2 (en) 2004-07-02 2006-02-09 The Kenneth S. Warren Institute, Inc. Novel carbamylated epo and method for its production
WO2006010143A2 (en) 2004-07-13 2006-01-26 Neose Technologies, Inc. Branched peg remodeling and glycosylation of glucagon-like peptide-1 [glp-1]
US20090292110A1 (en) 2004-07-23 2009-11-26 Defrees Shawn Enzymatic modification of glycopeptides
SE0401951D0 (en) 2004-07-29 2004-07-29 Amersham Biosciences Ab Chromatography method
EP1778838A2 (en) 2004-08-02 2007-05-02 Novo Nordisk Health Care AG Conjugation of fvii
ATE469216T1 (en) 2004-08-17 2010-06-15 Csl Behring Gmbh MODIFIED VITAMIN K DEPENDENT POLYPEPTIDES
ES2566670T3 (en) 2004-10-29 2016-04-14 Ratiopharm Gmbh Remodeling and glucopegilation of fibroblast growth factor (FGF)
MX2007005466A (en) 2004-11-12 2007-10-19 Bayer Healthcare Llc Site-directed modification of fviii.
MX2007007591A (en) 2004-12-22 2007-07-25 Ambrx Inc Methods for expression and purification of recombinant human growth hormone.
AU2006203792B2 (en) 2005-01-10 2011-11-03 Ratiopharm Gmbh Glycopegylated Granulocyte Colony Stimulating Factor
WO2006078645A2 (en) 2005-01-19 2006-07-27 Neose Technologies, Inc. Heterologous polypeptide expression using low multiplicity of infection of viruses
PA8660701A1 (en) 2005-02-04 2006-09-22 Pfizer Prod Inc SMALL AGONISTS AND THEIR USES
WO2006102652A2 (en) 2005-03-24 2006-09-28 Neose Technologies, Inc. Expression of soluble, active eukaryotic glycosyltransferases in prokaryotic organisms
WO2006105426A2 (en) 2005-03-30 2006-10-05 Neose Technologies, Inc. Manufacturing process for the production of peptides grown in insect cell lines
EP1871801A2 (en) 2005-04-01 2008-01-02 Novo Nordisk Health Care AG Blood coagulation fviii analogues
DK2311972T3 (en) 2005-05-11 2015-04-27 Eth Zuerich Recombinant N-glycosylated proteins from prokaryotic cells
EP1888098A2 (en) 2005-05-25 2008-02-20 Neose Technologies, Inc. Glycopegylated erythropoietin formulations
US20110003744A1 (en) 2005-05-25 2011-01-06 Novo Nordisk A/S Glycopegylated Erythropoietin Formulations
US8633300B2 (en) 2005-06-17 2014-01-21 Novo Nordisk Healthcare Ag Selective reduction and derivatization of engineered proteins comprising at least one non-native cysteine
CN102719508A (en) 2005-08-19 2012-10-10 诺和诺德公司 Glycopegylated factor VII and factor VIIA
US20090048440A1 (en) 2005-11-03 2009-02-19 Neose Technologies, Inc. Nucleotide Sugar Purification Using Membranes
DE202006020194U1 (en) 2006-03-01 2007-12-06 Bioceuticals Arzneimittel Ag G-CSF liquid formulation
US7645860B2 (en) 2006-03-31 2010-01-12 Baxter Healthcare S.A. Factor VIII polymer conjugates
AU2007253264A1 (en) 2006-05-24 2007-11-29 Novo Nordisk Health Care Ag Factor IX analogues having prolonged in vivo half life
US20080274958A1 (en) 2006-07-21 2008-11-06 Neose Technologies, Inc. Glycosylation of peptides via o-linked glycosylation sequences
US20080207487A1 (en) 2006-11-02 2008-08-28 Neose Technologies, Inc. Manufacturing process for the production of polypeptides expressed in insect cell-lines
WO2008151258A2 (en) 2007-06-04 2008-12-11 Neose Technologies, Inc. O-linked glycosylation using n-acetylglucosaminyl transferases
EP2170919B8 (en) 2007-06-12 2016-01-20 ratiopharm GmbH Improved process for the production of nucleotide sugars
US8207112B2 (en) 2007-08-29 2012-06-26 Biogenerix Ag Liquid formulation of G-CSF conjugate
JP5647899B2 (en) 2008-01-08 2015-01-07 ラツィオファルム ゲーエムベーハーratiopharm GmbH Glycoconjugation of polypeptides using oligosaccharyltransferase

Patent Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088538A (en) * 1975-05-30 1978-05-09 Battelle Memorial Institute Reversibly precipitable immobilized enzyme complex and a method for its use
US4385260A (en) * 1975-09-09 1983-05-24 Beckman Instruments, Inc. Bargraph display
US4438253A (en) * 1982-11-12 1984-03-20 American Cyanamid Company Poly(glycolic acid)/poly(alkylene glycol) block copolymers and method of manufacturing the same
US4496689A (en) * 1983-12-27 1985-01-29 Miles Laboratories, Inc. Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer
US4565653A (en) * 1984-03-30 1986-01-21 Pfizer Inc. Acyltripeptide immunostimulants
US4806595A (en) * 1985-08-12 1989-02-21 Koken Co., Ltd. Method of preparing antithrombogenic medical materials
US4925796A (en) * 1986-03-07 1990-05-15 Massachusetts Institute Of Technology Method for enhancing glycoprotein stability
US4826945A (en) * 1987-06-09 1989-05-02 Yissum Research Development Company Biodegradable polymeric materials based on polyether glycols, processes for the preparation thereof and surgical articles made therefrom
US5104651A (en) * 1988-12-16 1992-04-14 Amgen Inc. Stabilized hydrophobic protein formulations of g-csf
US5194376A (en) * 1989-02-28 1993-03-16 University Of Ottawa Baculovirus expression system capable of producing foreign gene proteins at high levels
US5122614A (en) * 1989-04-19 1992-06-16 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
US5324844A (en) * 1989-04-19 1994-06-28 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
US5182107A (en) * 1989-09-07 1993-01-26 Alkermes, Inc. Transferrin receptor specific antibody-neuropharmaceutical or diagnostic agent conjugates
US5324663A (en) * 1990-02-14 1994-06-28 The Regents Of The University Of Michigan Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids, or as free molecules, and for the isolation of cloned genetic sequences that determine these structures
US5405753A (en) * 1990-03-26 1995-04-11 Brossmer; Reinhard CMP-activated, fluorescing sialic acids, as well as processes for their preparation
US6010999A (en) * 1990-05-04 2000-01-04 American Cyanamid Company Stabilization of fibroblast growth factors by modification of cysteine residues
US5219564A (en) * 1990-07-06 1993-06-15 Enzon, Inc. Poly(alkylene oxide) amino acid copolymers and drug carriers and charged copolymers based thereon
US5410016A (en) * 1990-10-15 1995-04-25 Board Of Regents, The University Of Texas System Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US5281698A (en) * 1991-07-23 1994-01-25 Cetus Oncology Corporation Preparation of an activated polymer ester for protein conjugation
US5858751A (en) * 1992-03-09 1999-01-12 The Regents Of The University Of California Compositions and methods for producing sialyltransferases
US6037452A (en) * 1992-04-10 2000-03-14 Alpha Therapeutic Corporation Poly(alkylene oxide)-Factor VIII or Factor IX conjugate
US5614184A (en) * 1992-07-28 1997-03-25 New England Deaconess Hospital Recombinant human erythropoietin mutants and therapeutic methods employing them
US5202413A (en) * 1993-02-16 1993-04-13 E. I. Du Pont De Nemours And Company Alternating (ABA)N polylactide block copolymers
US5621039A (en) * 1993-06-08 1997-04-15 Hallahan; Terrence W. Factor IX- polymeric conjugates
US5605793A (en) * 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
US5492841A (en) * 1994-02-18 1996-02-20 E. I. Du Pont De Nemours And Company Quaternary ammonium immunogenic conjugates and immunoassay reagents
US5629384A (en) * 1994-05-17 1997-05-13 Consiglio Nazionale Delle Ricerche Polymers of N-acryloylmorpholine activated at one end and conjugates with bioactive materials and surfaces
US5705367A (en) * 1994-09-26 1998-01-06 The Rockefeller University Glycosyltransferases for biosynthesis of oligosaccharides, and genes encoding them
US6342382B1 (en) * 1994-09-26 2002-01-29 The Rockefeller University Glycosyltransferases for biosynthesis of oligosaccharides, and genes encoding them
US5728554A (en) * 1995-04-11 1998-03-17 Cytel Corporation Enzymatic synthesis of glycosidic linkages
US5876980A (en) * 1995-04-11 1999-03-02 Cytel Corporation Enzymatic synthesis of oligosaccharides
US6030815A (en) * 1995-04-11 2000-02-29 Neose Technologies, Inc. Enzymatic synthesis of oligosaccharides
US6015555A (en) * 1995-05-19 2000-01-18 Alkermes, Inc. Transferrin receptor specific antibody-neuropharmaceutical or diagnostic agent conjugates
US5858752A (en) * 1995-06-07 1999-01-12 The General Hospital Corporation Fucosyltransferase genes and uses thereof
US6057292A (en) * 1995-09-21 2000-05-02 Genentech, Inc. Method for inhibiting growth hormone action
US5716812A (en) * 1995-12-12 1998-02-10 The University Of British Columbia Methods and compositions for synthesis of oligosaccharides, and the products formed thereby
US6693183B2 (en) * 1996-03-08 2004-02-17 The Regents Of The University Of Michigan MURINE α (1,3) FUCOSYLTRANSFERASE FUC-TVII, DNA ENCODING THE SAME, METHOD FOR PREPARING THE SAME, ANTIBODIES RECOGNIZING THE SAME, IMMUNOASSAYS FOR DETECTING THE SAME, PLASMIDS CONTAINING SUCH DNA, AND CELLS CONTAINING SUCH A PLASMID
US6183738B1 (en) * 1997-05-12 2001-02-06 Phoenix Pharamacologics, Inc. Modified arginine deiminase
US20030027257A1 (en) * 1997-08-21 2003-02-06 University Technologies International, Inc. Sequences for improving the efficiency of secretion of non-secreted protein from mammalian and insect cells
US6555346B1 (en) * 1997-12-18 2003-04-29 Stichting Instituut Voor Dierhouderij En Diergezondheid Protein expression in baculovirus vector expression systems
US6362254B2 (en) * 1998-03-12 2002-03-26 Shearwater Corporation Poly(ethylene glycol) derivatives with proximal reactive groups
US20040102607A1 (en) * 1998-03-25 2004-05-27 Danishefsky Samuel J. Trimeric antigenic O-linked glycopeptide conjugates, methods of preparation and uses thereof
US6692931B1 (en) * 1998-11-16 2004-02-17 Werner Reutter Recombinant glycoproteins, method for the production thereof, medicaments containing said glycoproteins and use thereof
US6716626B1 (en) * 1999-11-18 2004-04-06 Chiron Corporation Human FGF-21 nucleic acids
US6348558B1 (en) * 1999-12-10 2002-02-19 Shearwater Corporation Hydrolytically degradable polymers and hydrogels made therefrom
US6376604B2 (en) * 1999-12-22 2002-04-23 Shearwater Corporation Method for the preparation of 1-benzotriazolylcarbonate esters of poly(ethylene glycol)
US6555660B2 (en) * 2000-01-10 2003-04-29 Maxygen Holdings Ltd. G-CSF conjugates
US20030040037A1 (en) * 2000-05-12 2003-02-27 Neose Technologies, Inc. In vitro modification of glycosylation patterns of recombinant glycopeptides
US7202208B2 (en) * 2000-05-15 2007-04-10 Hoffman-La Roche Inc. Erythropoietin composition
US20020037841A1 (en) * 2000-05-15 2002-03-28 Apollon Papadimitriou Erythropoietin composition
US6531121B2 (en) * 2000-12-29 2003-03-11 The Kenneth S. Warren Institute, Inc. Protection and enhancement of erythropoietin-responsive cells, tissues and organs
US20090137763A1 (en) * 2001-10-10 2009-05-28 Neose Technologies, Inc. Glucosamine nucleotide sugars
US7173003B2 (en) * 2001-10-10 2007-02-06 Neose Technologies, Inc. Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF
US20100015684A1 (en) * 2001-10-10 2010-01-21 Neose Technologies, Inc. Factor vii: remodeling and glycoconjugation of factor vii
US20050100982A1 (en) * 2001-10-10 2005-05-12 Neose Technologies, Inc. Factor IX: remodeling and glycoconjugation of factor IX
US20050106658A1 (en) * 2001-10-10 2005-05-19 Defrees Shawn Remodeling and glycoconjugation of peptides
US7696163B2 (en) * 2001-10-10 2010-04-13 Novo Nordisk A/S Erythropoietin: remodeling and glycoconjugation of erythropoietin
US7214660B2 (en) * 2001-10-10 2007-05-08 Neose Technologies, Inc. Erythropoietin: remodeling and glycoconjugation of erythropoietin
US20040063911A1 (en) * 2001-10-10 2004-04-01 Neose Technologies, Inc. Protein remodeling methods and proteins/peptides produced by the methods
US20090093399A1 (en) * 2001-10-10 2009-04-09 Neose Technologies, Inc. Glycopegylation methods and proteins/peptides produced by the methods
US7179617B2 (en) * 2001-10-10 2007-02-20 Neose Technologies, Inc. Factor IX: remolding and glycoconjugation of Factor IX
US20080050772A1 (en) * 2001-10-10 2008-02-28 Neose Technologies, Inc. Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF
US20050031584A1 (en) * 2001-10-10 2005-02-10 Neose Technologies, Inc. Interleukin-2:remodeling and glycoconjugation of interleukin-2
US20070027068A1 (en) * 2001-10-10 2007-02-01 Defrees Shawn Erythropoietin: remodeling and glycoconjugation of erythropoietin
US7368108B2 (en) * 2001-11-28 2008-05-06 Neose Technologies, Inc. Glycopeptide remodeling using amidases
US7473680B2 (en) * 2001-11-28 2009-01-06 Neose Technologies, Inc. Remodeling and glycoconjugation of peptides
US7157277B2 (en) * 2001-11-28 2007-01-02 Neose Technologies, Inc. Factor VIII remodeling and glycoconjugation of Factor VIII
US20060030521A1 (en) * 2001-11-28 2006-02-09 Neose Technologies, Inc. Remodeling and glycoconjugation of peptides
US20060035224A1 (en) * 2002-03-21 2006-02-16 Johansen Jack T Purification methods for oligonucleotides and their analogs
US20050026266A1 (en) * 2002-11-08 2005-02-03 Glycozym Aps Methods to identify agents modulating functions of polypeptide galnac-transferases, pharmaceutical compositions comprising such agents and the use of such agents for preparing medicaments
US20050064540A1 (en) * 2002-11-27 2005-03-24 Defrees Shawn Ph.D Glycoprotein remodeling using endoglycanases
US20070032405A1 (en) * 2003-03-14 2007-02-08 Neose Technologies, Inc. Branched water-soluble polymers and their conjugates
US7691603B2 (en) * 2003-04-09 2010-04-06 Novo Nordisk A/S Intracellular formation of peptide conjugates
US20070026485A1 (en) * 2003-04-09 2007-02-01 Neose Technologies, Inc. Glycopegylation methods and proteins/peptides produced by the methods
US20100048456A1 (en) * 2003-04-09 2010-02-25 Novo Nordisk A/S Glycopegylation methods and proteins/peptides produced by the methods
US20080102083A1 (en) * 2003-05-09 2008-05-01 Neose Technologies, Inc. Compositions and Methods for the Preparation of Human Growth Hormone Glycosylation Mutants
US20070059275A1 (en) * 2003-07-25 2007-03-15 Defrees Shawn Antibody toxin conjugates
US20100028939A1 (en) * 2003-08-08 2010-02-04 Novo Nordisk Healthcare A/G Use of Galactose Oxidase for Selective Chemical Conjugation of Protractor Molecules to Proteins of Therapeutic Interest
US20060111279A1 (en) * 2003-11-24 2006-05-25 Neose Technologies, Inc. Glycopegylated erythropoietin
US20070014759A1 (en) * 2003-12-03 2007-01-18 Neose Technologies, Inc. Glycopegylated granulocyte colony stimulating factor
US20080015142A1 (en) * 2003-12-03 2008-01-17 Defrees Shawn Glycopegylated Follicle Stimulating Hormone
US7338933B2 (en) * 2004-01-08 2008-03-04 Neose Technologies, Inc. O-linked glycosylation of peptides
US20060024286A1 (en) * 2004-08-02 2006-02-02 Paul Glidden Variants of tRNA synthetase fragments and uses thereof
US20090028822A1 (en) * 2004-09-10 2009-01-29 Neose Technologies, Inc. Glycopegylated Interferon Alpha
US20080108557A1 (en) * 2004-09-29 2008-05-08 Novo Nordisk Healthcare A/G Modified Proteins
US20090054623A1 (en) * 2004-12-17 2009-02-26 Neose Technologies, Inc. Lipo-Conjugation of Peptides
US20100009902A1 (en) * 2005-01-06 2010-01-14 Neose Technologies, Inc. Glycoconjugation Using Saccharyl Fragments
US20090124544A1 (en) * 2005-04-08 2009-05-14 Neose Technologies ,Inc. A Delaware Corporation Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants
US20100081791A1 (en) * 2005-05-25 2010-04-01 Novo Nordisk A/S Glycopegylated factor ix
US20090055942A1 (en) * 2005-09-14 2009-02-26 Novo Nordisk Healthcare A/G Human Coagulation Factor VII Polypeptides
US20070105755A1 (en) * 2005-10-26 2007-05-10 Neose Technologies, Inc. One pot desialylation and glycopegylation of therapeutic peptides
US20100029555A1 (en) * 2006-08-11 2010-02-04 Bio-Ker S.r.l G-csf site-specific mono-conjugates
US20100056428A1 (en) * 2006-09-01 2010-03-04 Novo Nordisk Health Care Ag Modified proteins
US20100035299A1 (en) * 2006-10-03 2010-02-11 Novo Nordisk A/S Methods for the purification of polypeptide conjugates
US20100075375A1 (en) * 2006-10-03 2010-03-25 Novo Nordisk A/S Methods for the purification of polypeptide conjugates
US20100041872A1 (en) * 2006-10-04 2010-02-18 Defrees Shawn Glycerol linked pegylated sugars and glycopeptides
US20100120666A1 (en) * 2007-04-03 2010-05-13 Biogenerix Ag Methods of treatment using glycopegylated g-csf
US20090053167A1 (en) * 2007-05-14 2009-02-26 Neose Technologies, Inc. C-, S- and N-glycosylation of peptides

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8008252B2 (en) 2001-10-10 2011-08-30 Novo Nordisk A/S Factor VII: remodeling and glycoconjugation of Factor VII
US8716240B2 (en) 2001-10-10 2014-05-06 Novo Nordisk A/S Erythropoietin: remodeling and glycoconjugation of erythropoietin
US8716239B2 (en) 2001-10-10 2014-05-06 Novo Nordisk A/S Granulocyte colony stimulating factor: remodeling and glycoconjugation G-CSF
US20100261872A1 (en) * 2001-10-10 2010-10-14 Neose Technologies, Inc. Factor VIII: remodeling and glycoconjugation of factor VIII
US8076292B2 (en) 2001-10-10 2011-12-13 Novo Nordisk A/S Factor VIII: remodeling and glycoconjugation of factor VIII
US20040063911A1 (en) * 2001-10-10 2004-04-01 Neose Technologies, Inc. Protein remodeling methods and proteins/peptides produced by the methods
US20080050772A1 (en) * 2001-10-10 2008-02-28 Neose Technologies, Inc. Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF
US7795210B2 (en) 2001-10-10 2010-09-14 Novo Nordisk A/S Protein remodeling methods and proteins/peptides produced by the methods
US8053410B2 (en) 2002-06-21 2011-11-08 Novo Nordisk Health Care A/G Pegylated factor VII glycoforms
US20090227504A1 (en) * 2002-06-21 2009-09-10 Novo Nordisk A/S Pegylated Factor VII Glycoforms
US20100331489A1 (en) * 2003-03-14 2010-12-30 Biogenerix Ag Branched water-soluble polymers and their conjugates
US7803777B2 (en) 2003-03-14 2010-09-28 Biogenerix Ag Branched water-soluble polymers and their conjugates
US8247381B2 (en) 2003-03-14 2012-08-21 Biogenerix Ag Branched water-soluble polymers and their conjugates
US20070032405A1 (en) * 2003-03-14 2007-02-08 Neose Technologies, Inc. Branched water-soluble polymers and their conjugates
US8853161B2 (en) 2003-04-09 2014-10-07 Novo Nordisk A/S Glycopegylation methods and proteins/peptides produced by the methods
US8791070B2 (en) 2003-04-09 2014-07-29 Novo Nordisk A/S Glycopegylated factor IX
US20100048456A1 (en) * 2003-04-09 2010-02-25 Novo Nordisk A/S Glycopegylation methods and proteins/peptides produced by the methods
US8063015B2 (en) 2003-04-09 2011-11-22 Novo Nordisk A/S Glycopegylation methods and proteins/peptides produced by the methods
US20080102083A1 (en) * 2003-05-09 2008-05-01 Neose Technologies, Inc. Compositions and Methods for the Preparation of Human Growth Hormone Glycosylation Mutants
US7932364B2 (en) 2003-05-09 2011-04-26 Novo Nordisk A/S Compositions and methods for the preparation of human growth hormone glycosylation mutants
US9005625B2 (en) 2003-07-25 2015-04-14 Novo Nordisk A/S Antibody toxin conjugates
US20070059275A1 (en) * 2003-07-25 2007-03-15 Defrees Shawn Antibody toxin conjugates
US8916360B2 (en) 2003-11-24 2014-12-23 Novo Nordisk A/S Glycopegylated erythropoietin
US20060287224A1 (en) * 2003-11-24 2006-12-21 Neose Technologies, Inc. Glycopegylated erythropoietin formulations
US20080305992A1 (en) * 2003-11-24 2008-12-11 Neose Technologies, Inc. Glycopegylated erythropoietin
US20080300175A1 (en) * 2003-11-24 2008-12-04 Neose Technologies, Inc. Glycopegylated erythropoietin
US7842661B2 (en) 2003-11-24 2010-11-30 Novo Nordisk A/S Glycopegylated erythropoietin formulations
US20100210507A9 (en) * 2003-11-24 2010-08-19 Novo Nordisk A/S Glycopegylated erythropoietin
US20060111279A1 (en) * 2003-11-24 2006-05-25 Neose Technologies, Inc. Glycopegylated erythropoietin
US8633157B2 (en) 2003-11-24 2014-01-21 Novo Nordisk A/S Glycopegylated erythropoietin
US7956032B2 (en) 2003-12-03 2011-06-07 Novo Nordisk A/S Glycopegylated granulocyte colony stimulating factor
US20070254836A1 (en) * 2003-12-03 2007-11-01 Defrees Shawn Glycopegylated Granulocyte Colony Stimulating Factor
US8632770B2 (en) 2003-12-03 2014-01-21 Novo Nordisk A/S Glycopegylated factor IX
US20090169509A1 (en) * 2004-01-08 2009-07-02 Defrees Shawn O-linked glycosylation of peptides
US20080242846A1 (en) * 2004-01-08 2008-10-02 Neose Technologies, Inc. O-linked glycosylation of peptides
US8361961B2 (en) 2004-01-08 2013-01-29 Biogenerix Ag O-linked glycosylation of peptides
US8791066B2 (en) 2004-07-13 2014-07-29 Novo Nordisk A/S Branched PEG remodeling and glycosylation of glucagon-like peptide-1 [GLP-1]
US20090292110A1 (en) * 2004-07-23 2009-11-26 Defrees Shawn Enzymatic modification of glycopeptides
US20090028822A1 (en) * 2004-09-10 2009-01-29 Neose Technologies, Inc. Glycopegylated Interferon Alpha
US8268967B2 (en) 2004-09-10 2012-09-18 Novo Nordisk A/S Glycopegylated interferon α
US10874714B2 (en) 2004-10-29 2020-12-29 89Bio Ltd. Method of treating fibroblast growth factor 21 (FGF-21) deficiency
US9200049B2 (en) 2004-10-29 2015-12-01 Novo Nordisk A/S Remodeling and glycopegylation of fibroblast growth factor (FGF)
US20080176790A1 (en) * 2004-10-29 2008-07-24 Defrees Shawn Remodeling and Glycopegylation of Fibroblast Growth Factor (Fgf)
US20100009902A1 (en) * 2005-01-06 2010-01-14 Neose Technologies, Inc. Glycoconjugation Using Saccharyl Fragments
US20090203579A1 (en) * 2005-01-10 2009-08-13 Defrees Shawn Glycopegylated Granulocyte Colony Stimulating Factor
US9029331B2 (en) 2005-01-10 2015-05-12 Novo Nordisk A/S Glycopegylated granulocyte colony stimulating factor
US9187546B2 (en) 2005-04-08 2015-11-17 Novo Nordisk A/S Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants
US20110003744A1 (en) * 2005-05-25 2011-01-06 Novo Nordisk A/S Glycopegylated Erythropoietin Formulations
US8404809B2 (en) 2005-05-25 2013-03-26 Novo Nordisk A/S Glycopegylated factor IX
US8911967B2 (en) 2005-08-19 2014-12-16 Novo Nordisk A/S One pot desialylation and glycopegylation of therapeutic peptides
US8841439B2 (en) 2005-11-03 2014-09-23 Novo Nordisk A/S Nucleotide sugar purification using membranes
US9187532B2 (en) 2006-07-21 2015-11-17 Novo Nordisk A/S Glycosylation of peptides via O-linked glycosylation sequences
US20080255040A1 (en) * 2006-07-21 2008-10-16 Neose Technologies, Inc. Glycosylation of peptides via o-linked glycosylation sequences
US8969532B2 (en) 2006-10-03 2015-03-03 Novo Nordisk A/S Methods for the purification of polypeptide conjugates comprising polyalkylene oxide using hydrophobic interaction chromatography
US20100075375A1 (en) * 2006-10-03 2010-03-25 Novo Nordisk A/S Methods for the purification of polypeptide conjugates
US20100041872A1 (en) * 2006-10-04 2010-02-18 Defrees Shawn Glycerol linked pegylated sugars and glycopeptides
US20080146782A1 (en) * 2006-10-04 2008-06-19 Neose Technologies, Inc. Glycerol linked pegylated sugars and glycopeptides
US9050304B2 (en) 2007-04-03 2015-06-09 Ratiopharm Gmbh Methods of treatment using glycopegylated G-CSF
US20100120666A1 (en) * 2007-04-03 2010-05-13 Biogenerix Ag Methods of treatment using glycopegylated g-csf
US20110177029A1 (en) * 2007-06-04 2011-07-21 Novo Nordisk A/S O-linked glycosylation using n-acetylglucosaminyl transferases
US9493499B2 (en) 2007-06-12 2016-11-15 Novo Nordisk A/S Process for the production of purified cytidinemonophosphate-sialic acid-polyalkylene oxide (CMP-SA-PEG) as modified nucleotide sugars via anion exchange chromatography
US20100174059A1 (en) * 2007-06-12 2010-07-08 Novo Nordisk A/S Process for the production of nucleotide sugars
US20090000924A1 (en) * 2007-06-29 2009-01-01 Harley-Davidson Motor Company Group, Inc. Integrated ignition and key switch
US20090143292A1 (en) * 2007-08-29 2009-06-04 Neose Technologies, Inc. Liquid Formulation of G-CSF Conjugate
US8207112B2 (en) 2007-08-29 2012-06-26 Biogenerix Ag Liquid formulation of G-CSF conjugate
US20100286067A1 (en) * 2008-01-08 2010-11-11 Biogenerix Ag Glycoconjugation of polypeptides using oligosaccharyltransferases
US9150848B2 (en) 2008-02-27 2015-10-06 Novo Nordisk A/S Conjugated factor VIII molecules
US8932659B2 (en) * 2009-03-17 2015-01-13 Separation Technologies Investments Limited Isolation and purification of components of whey
US8840947B2 (en) * 2009-03-17 2014-09-23 Separation Technologies Investments Limited Whey or raw milk demineralisation and fractionation
US20120121788A1 (en) * 2009-03-17 2012-05-17 Separation Technologies Investments Limited Isolation and purification of components of whey
US20120121781A1 (en) * 2009-03-17 2012-05-17 Separation Technologies Investments Limited Whey or raw milk demineralisation and fractionation
KR101938604B1 (en) 2011-02-18 2019-01-15 도레이 카부시키가이샤 Method for producing sugar solution
WO2012151300A2 (en) 2011-05-02 2012-11-08 Verasonics, Inc. Enhanced ultrasound image formation using qualified regions of overlapping transmit beams
US20140039237A1 (en) * 2012-08-06 2014-02-06 Ming-Hsin Li Medication dispensing device
CN110272461A (en) * 2019-06-29 2019-09-24 赤峰蒙广生物科技有限公司 A method of purifying beta-thymidine from fermentation liquid

Also Published As

Publication number Publication date
US8841439B2 (en) 2014-09-23
WO2007056191A2 (en) 2007-05-18
US20120083600A1 (en) 2012-04-05
WO2007056191A3 (en) 2007-10-25

Similar Documents

Publication Publication Date Title
US8841439B2 (en) Nucleotide sugar purification using membranes
US9493499B2 (en) Process for the production of purified cytidinemonophosphate-sialic acid-polyalkylene oxide (CMP-SA-PEG) as modified nucleotide sugars via anion exchange chromatography
EP0931097B1 (en) Carbohydrate purification using reverse osmosis and nanofiltration
EP0820520B1 (en) Improved enzymatic synthesis of oligosaccharides
US6030815A (en) Enzymatic synthesis of oligosaccharides
US20180002363A1 (en) Separation of oligosaccharides from fermentation broth
EP3456836A1 (en) Separation of sialylated oligosaccharides from fermentation broth
WO2021064629A1 (en) Separation of neutral oligosaccharides from fermentation broth
KR20210105385A (en) Separation of oligosaccharides
WO2018115309A1 (en) Preparation of sugar-nucleotides
MXPA99003318A (en) Carbohydrate purification using ultrafiltration, reverse osmosis and nanofiltration
CA2218120C (en) Improved enzymatic synthesis of oligosaccharides
CN116814720A (en) Synthesis method of sulfhydryl modified oligosaccharide

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEOSE TECHNOLOGIES, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FELO, MICHAEL;DEFREES, SHAWN;REEL/FRAME:021086/0269;SIGNING DATES FROM 20080512 TO 20080519

AS Assignment

Owner name: NOVO NORDISK A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEOSE TECHNOLOGIES, INC.;REEL/FRAME:022441/0937

Effective date: 20090127

Owner name: NOVO NORDISK A/S,DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEOSE TECHNOLOGIES, INC.;REEL/FRAME:022441/0937

Effective date: 20090127

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION