US20090087528A1 - Method of Improving the Biocidal Efficacy of Dry Ice - Google Patents

Method of Improving the Biocidal Efficacy of Dry Ice Download PDF

Info

Publication number
US20090087528A1
US20090087528A1 US12/059,542 US5954208A US2009087528A1 US 20090087528 A1 US20090087528 A1 US 20090087528A1 US 5954208 A US5954208 A US 5954208A US 2009087528 A1 US2009087528 A1 US 2009087528A1
Authority
US
United States
Prior art keywords
dry ice
ozone
product
carbon dioxide
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/059,542
Inventor
John E. Schreiber
James T.C. YUAN
Meenakshi Sundaram
David Burgener
Yves P. BOURHIS
Michael F. Smith
Steven A. Fisher
Edward F. Steiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
American Air Liquide Inc
Air Liquide Industrial US LP
Original Assignee
American Air Liquide Inc
Air Liquide Industrial US LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Air Liquide Inc, Air Liquide Industrial US LP filed Critical American Air Liquide Inc
Priority to US12/059,542 priority Critical patent/US20090087528A1/en
Assigned to AMERICAN AIR LIQUIDE, INC. reassignment AMERICAN AIR LIQUIDE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUNDARAM, MEENAKSHI, FISHER, STEVEN A., BOURHIS, YVES P., STEINER, EDWARD F., YUAN, JAMES T.C.
Assigned to AIR LIQUIDE INDUSTRIAL U.S. L.P. reassignment AIR LIQUIDE INDUSTRIAL U.S. L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BURGENER, DAVID, SCHREIBER, JOHN E., SMITH, MICHAEL F.
Publication of US20090087528A1 publication Critical patent/US20090087528A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3409Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23L3/3445Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere comprising other gases in addition to CO2, N2, O2 or H2O
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/358Inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/37Freezing; Subsequent thawing; Cooling with addition of or treatment with chemicals
    • A23L3/375Freezing; Subsequent thawing; Cooling with addition of or treatment with chemicals with direct contact between the food and the chemical, e.g. liquid nitrogen, at cryogenic temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • C01B32/55Solidifying

Definitions

  • the present invention is directed to a novel dry ice composition useful in the preservation of food and other perishable products.
  • the invention is also directed to novel methods of making the dry ice composition.
  • the composition of this invention and use thereof significantly improves the quality of food products and enhances food safety.
  • Refrigeration is an effective and popular means to slow down the growth of unwanted microbes and enzymatic reactions in foods. Therefore, the shelf life and keeping quality of refrigerated food is extended.
  • Some common ways of chilling food include the use of mechanical refrigeration equipment, ice, and dry ice.
  • Dry ice is solid or frozen carbon dioxide that is frequently used as an expendable refrigerant. Dry ice converts from a solid directly to a gas in the process known as sublimation. Water ice is another traditional expendable refrigerant, but has the disadvantage of converting to water after the ice melts. Dry ice is much denser and colder than traditional ice with a heat removal capability of approximately 254 btu/lb. Dry ice at atmospheric pressure is ⁇ 109.3° F. ( ⁇ 78.5° C.) in comparison to traditional water ice 32° F. (0° C.). Dry ice sublimes by going directly from a solid to a gas without passing through the liquid stage.
  • Dry ice is generally stored in insulated containers prior to use to reduce the rate of sublimation. Losses due to ambient heat typically average 1-2%/day under ideal storage conditions. Based on storage or conditions of use the sublimation rate can be as high as 50%/day. A pound of dry ice after sublimation will convert to 8.5 cubic feet of carbon dioxide gas.
  • Ozone an unstable, colorless gas with a distinct odor has been proven to work more effectively on spoilage microorganisms than a classic disinfectant such as chlorine. Due to its instability, the three oxygen molecules of ozone break apart to form one diatomic oxygen molecule and another free oxygen radical. This free oxygen radical attacks the cell wall and oxidizes it thus increasing the chance of permeability to the inner surfaces of the cell. This reaction of ozone on cell structures is irreversible; therefore the cells either become attenuated or die. Historically, ozone has been widely used for water treatment since the early 1900's. Some well-known applications include disinfection of swimming pools, spas, cooling towers, and sewage plants. Ozone is normally produced by UV radiation with wavelengths below 200 nm or by the corona discharge method that requires high electric energy.
  • Ozone has been used as a disinfectant/oxidant in the food industry for the past several decades. It has been well applied to bulk storage (in a “room” type of storage facility) of produce (e.g. apples) or to disinfect water (e.g. municipal water or waste water treatment). Also, processes have been developed using ozone solutions (by injecting ozone gas through water) to sanitize/disinfect food products. Some examples of using ozone for sanitizing food products can be found in U.S. Pat. No. 3,341,280 for sterilizing particulate food materials; U.S. Pat. No. 4,849,237 which utilizes ozonated water for sanitizing poultry carcasses; U.S. Pat. No.
  • U.S. Pat. No. 5,405,631 directed to sanitizing citrus fruit with ultraviolet radiation and ozone generation
  • U.S. Pat. No. 6,210,730 directed to a method for treating perishable meat products, including the steps of chilling the meat product, exposing the chilled meat product to a chilled gas mixture including ozone, and thereafter removing the chilled gas and exchanging that gas with a mixture containing a high oxygen fraction
  • U.S. Pat. No. 6,458,398 which is directed to reducing the microbial population of food in a container by the application of both a surfactant and ozone-containing wash liquor to the food.
  • ozone While ozone is highly water soluble and thus generally more effective in water, it can be used effectively in the air as well, attacking yeasts and fungi as well as bacteria.
  • ozone has been used as a food preservation agent for a wide variety of perishable food items.
  • food items not mentioned previously and potentially preserved by ozonation include potatoes, eggs, cheeses, bananas, berries, meats, carrots, onions, and peaches.
  • Ozone dissolved in water has also been used in food storage—including the preservation of fish in ozonated ice.
  • Carbon dioxide has natural properties that tend to inhibit the growth of bacteria. These properties are use in controlled atmospheric packaging for preserving food products. Carbon dioxide, however, is not as effective nor as efficient as ozone at destroying bacteria. It would be useful, therefore, to combine the cooling properties of solid dry ice with the pathogen destruction capability of ozone.
  • JP 071002240 describes a process to prepare a solid oxidizing agent containing ozone and chlorine to simultaneously provide the strong oxidizing property of ozone and continuous oxidizing capability of chlorine to achieve an effective means for disinfection, sanitation, sterilization, prevention of food spoilage, deodorization, etc Several methods of preparation are provided:
  • JP 08107925 is similar to the above and is directed to a solid oxidizing agent comprising a mixture of ice of ozonated water and dry ice in a powdered form or other specific shape.
  • the solid oxidizing agent is prepared by mixing powdered ice of ozonated water and powdered dry ice. The powdered mixture can then be custom made to a specific shape and size.
  • the composition can be used for disinfection, sanitation, sterilization, water purification, and odor removal. Prevention of spoilage and odor of fresh foods is disclosed.
  • JP 3-217294 discloses a method of manufacturing ozonated water by absorption of ozone in water containing carbon dioxide or carbonic compounds.
  • the objective of the invention is to increase the concentration of ozone into water in as much as high ozone concentrations in water cannot be achieved by conventional techniques which simply dissolve ozone in the water.
  • carbon dioxide gas is flushed into water to produce CO 2 -saturated water.
  • An ozone gas mixture is then flushed into the CO 2 -saturated water to form ozonated ice.
  • sodium bicarbonate-saturated water was formed and then ozone was flushed into the carbonated water.
  • the invention is stated as enabling the manufacturer of ozonated water and ice at higher ozone concentrations than conventional manufacturing methods.
  • the ozone-containing composition in solid form can be used for sanitation purposes and for preserving fresh foods.
  • SU 1274645 by Rukavishni et al describes a method to prolong the storage life and reduce produce losses of agricultural crops.
  • rose petals are placed for storage at a low positive temperature, in a hermetically sealed polymeric container. Before loading the petals, the container is treated with an air-ozone mixture with an ozone dose factor of 0.1 mg/l min. Dry ice is placed in the container, at a rate of 0.9 g per kg of stored produce. The rose petals are then loaded.
  • JP 09249510 discloses a method of controlling the emission of ozone from silica gel having adsorbed ozone.
  • the silica gel having adsorbed ozone is packed in a bag formed from a gas tight material and having a gas communicating hole.
  • the bag is wrapped with dry ice so that as the dry ice sublimes, the temperature inside the bag increases and allows the desorption of the ozone gas.
  • the ozone gas is released from the bag through the hole.
  • This invention provides an effective means to improve a dry ice chilling process using ozone so that in combination, maximum biocidal efficacy is delivered to ensure food safety and retain the wholesomeness of food products.
  • Ozone is a very strong oxidizer and many food products are very delicate substrates.
  • the method of delivering the ozone to food products and regulating it at the desired level are extremely important to ensure food safety and maintain the wholesomeness of the food products. If the ozone concentration is too high, oxidization and deterioration of the food products that contact the ozone will cause significant economic losses. If the ozone concentration is too low, the ozone alone may not effectively kill unwanted bacteria.
  • Refrigeration using dry ice is one of the most effective processes that retard the growth of unwanted bacteria and extend the shelf life of food products. However, since refrigeration does not kill bacteria, and some bacteria or even pathogens can still grow slowly under refrigeration conditions, refrigeration alone poses certain serious problems to food safety.
  • This invention uses a multiple technologies approach, which has advantages over the use of a single technology. Combination of ozone and dry ice chilling results in much greater safety and quality of treated food products than would be expected using either technology alone.
  • this invention provides an ozonated dry ice product.
  • the combination of ozone and dry ice provides a means to kill bacteria while at the same time provides for the chilling of a food product.
  • Many bacteria have the ability to repair themselves especially if they are given an opportunity to recover.
  • Ozonated dry ice prevents bacteria from recovering and allows food processors to manufacture and transport a safer food product with enhanced food quality.
  • the dry ice composition of this invention effectively delivers ozone onto food products at a desired concentration through dry ice sublimation. Ozone gas is slowly released as the dry ice sublimes and provides a means to disinfect food products through direct food contact and ensure the significant reduction of spoilage and pathogenic microorganisms.
  • any process capable of incorporating ozone into dry ice is useful to form the product of this invention. While not wishing to limit the dry ice composition of this invention to any particular process of forming same, the present invention also discloses several methods of incorporating ozone into dry ice.
  • the exemplified processes typically incorporate the ozone into the dry ice during the dry ice manufacturing processes. Dry ice manufacturing processes are known in the art and can be readily manipulated to form the ozonated dry ice product of this invention.
  • FIG. 1 is a schematic of a process of this invention for incorporating ozone into dry ice and forming pressed blocks of ozonated dry ice.
  • FIG. 2 is a schematic of a process of this invention for incorporating ozone into dry ice and forming extruded pellets of ozonated dry ice.
  • an improved dry ice product manufactured in the form of blocks, pellets, flakes, powders, and other possible forms well known in the art containing carbon dioxide and ozone.
  • the dry ice product is essentially free of water. What is meant by “essentially free” of water is that the dry ice product, if it contains water, will comprise less than 5 wt. % water. Typically, the water content will be less than 1 wt. %. Moisture levels of up to 5,000 ppm may be helpful in maintaining the desired shape of the product.
  • the major constituent of the product is carbon dioxide.
  • the ozone concentration in the product can vary widely and can depend upon the end use of the product and, in particular, the product being treated and the environment surrounding the treated product.
  • ozone Only minute amounts of ozone are necessary for providing an antimicrobial effect. At the same time, OSHA limits the exposure levels of ozone to 0.1 ppm to 0.3 ppm in 8 hour and 15 minute shifts, respectively. Accordingly, the amounts of ozone dispersed into an area must be kept at a minimum and to a level safe for persons handling the treated product.
  • a non-limiting level of ozone in the dry ice product can range from 0.1 ppm and above. More typically, the ozone content of the dry ice product will range from about 1 to 100 ppm. Ozone levels of 1 to 10 ppm by weight are believed to be effective for killing bacteria. Ozone present in the product is made available for various applications during carbon dioxide sublimation with the additional benefits, i.e. chilling, of using dry ice.
  • the product of this invention in which dry ice is combined with ozone provides an expendable form of refrigeration while simultaneously providing a method of biological treatment that does not expose humans coming in contact with the product to excessive levels of ozone.
  • Ozone gas is generally considered to be an unstable molecule that has a short shelf life. It is known that at lower temperatures ozone is more stable and has a reduced tendency to decompose to oxygen prior to providing any biological effect.
  • Dry ice at atmospheric pressure is at a temperature of ⁇ 109.9° F.
  • the liquefaction temperature of ozone is ⁇ 168° F. This means that the ozone contained in the dry ice product is close to the liquefaction point, but still well into the gas phase.
  • the ozone mixed with dry ice as in the product of this invention can be trapped in the structural lattices of the dry ice and/or by physical absorption onto the surface of the dry ice.
  • the ozone in the dry ice is added for biological treatment. The most effective biocidal treatment occurs when the ozone is released in proportion with the dry ice sublimation.
  • the exact form of the dry ice product can vary and, accordingly, a wide variety of forms can be manufactured and used depending upon the product to be treated and the purpose of such treatment such as, for example, storage, transport, commercial sale display, etc.
  • the product to be treated is to be stored in large rooms, for example, blocks of dry ice ranging from 5 to 50 lbs. can be formed.
  • smaller manufactured shapes can be provided.
  • pellets in the range of 1/16 to 1 inch can be formed, or even powders such as snow, flakes, or chips can be formed by methods known in the art.
  • the traditional first step in making “Dry Ice” is to manufacture carbon dioxide liquid. This is done by compressing odor-free CO 2 gas and removing any excess heat.
  • odorous CO 2 gas may liquefied and the liquid CO 2 rendered odor-free through the use of an adsorptive material such as activated carbon.
  • the CO 2 is typically liquefied at pressures ranging from 200-300 pounds per square inch and at a temperature of ⁇ 20° F. to 0° F. respectively. It is stored in a pressure vessel at lower than ambient temperature. The liquid pressure is then reduced below the triple point pressure of 69.9 psig by sending it through an expansion valve.
  • the liquid CO 2 is expanded inside a dry ice manufacturing press to form a mixture of dry ice solid and cold gas.
  • the cold gas is vented or recycled and the remaining dry ice snow is then compacted to form blocks.
  • Dry ice is typically compacted to a density of approximately 90 lb/ft3.
  • odors in CO 2 may be determined by bubbling CO 2 gas through purified water and smelling the headspace over the water or passing the gas through a cloth and then smelling the cloth.
  • odor-free liquid CO 2 and odor-free solid CO 2 may also be subjected to the foregoing tests by first subjecting such liquid or dry ice to a combination of temperature and pressure such that the CO 2 is present as a gas.
  • the presence of odors in solid CO 2 may be determined by capturing a portion of the solid on a cloth, allowing gaseous CO 2 to sublimate, and then smelling the cloth.
  • Methods of producing odor-free CO 2 are well known in the art and their details need not be duplicated herein. Typical of such methods include a step of passing CO 2 gas through an adsorption unit containing activated carbon or a catalytic oxidation unit employing a catalyst such as platinum at a temperature of about 400° C.
  • the present invention facilitates the above by directly contacting compressed ozone with carbon dioxide (which is odor-free).
  • carbon dioxide which is odor-free
  • existing prior art as discussed previously dwells in using indirect methods to combine ozone with dry ice after the dry ice is manufactured.
  • Such products include substantial amounts of water ice and, accordingly, inherit the problems associated with melting.
  • compressed ozone at a pressure of at least 90 psig is combined with odor-free liquid carbon dioxide at a pressure above the triple point of CO 2 (70 psig), allowing the ozone to fully dissolve in the liquid CO 2 .
  • the feed gas for ozone injection can include O 2 , air, a mixture of O 2 and air or mixture of O 2 , air, and an inert gas, e.g. N 2 , CO 2 , Ar, Kr, Xe, Ne.
  • Inert gas if included with the ozone during contact with the CO 2 , may comprise 10-99% total concentration of injected gas in the process.
  • the inert gases may be mixed with ozone or added separately during the process.
  • the temperature of the ozone treatment is maintained at ambient or below.
  • CO 2 pressures ranging from 70 psig to 100 psig can be used during the mixing process.
  • the ozone compression pressure will typically range from about 100 to 150 psig. Higher ozone pressures can also be used when available.
  • the liquid carbon dioxide/ozone mixture is then expanded to generate dry ice, “snow”, containing ozone, oxygen, and dry ice—“ozonated dry ice.” This modified dry ice can then be collected or shaped such as by pressing or extrusion. This scheme can be successfully adapted to existing dry ice plants.
  • Ozone is generated using oxygen or air.
  • An ultraviolet light ozone generator typically consists of multiple ultraviolet light tubes within an aluminum housing. In a multiple tube apparatus, air enters the generator cavity and is subjected to the ultraviolet light and the ultraviolet light causes a disassociation of the oxygen molecules, which exists as O 2 , to 2 oxygen atoms. Some of these oxygen atoms attach themselves to oxygen molecules to form ozone (O 3 ).
  • the resulting ozone and sterile air mixture comprises approximately 0.2 percent of ozone by weight/weight of air.
  • the ozone gas is generated from oxygen or oxygen-enriched air by a corona discharge device that produces concentrations ranging between about 1% to about 15% by weight of ozone.
  • a corona discharge device that produces concentrations ranging between about 1% to about 15% by weight of ozone.
  • concentrations up to a maximum of 13.5% with the remainder being oxygen and a small fraction of other gases. It is possible to use higher ozone concentrations for this application if the generator technology becomes available. Higher concentrations of ozone are preferred.
  • oxygen compared to air due to the possibility of producing higher concentrations of ozone.
  • ozone can be compressed to 150 psig using water ring compressors. It is feasible to safely compress an ozone/oxygen mixture containing 10% by weight of ozone to 70 atm pressures. Several others have tried ozone liquefaction by using higher pressures without much success.
  • FIGS. 1 and 2 depict alternative methods of forming the ozonated dry ice product of this invention.
  • Each figure represents a typical dry ice manufacturing process in which FIG. 1 is a process used to form blocks of dry ice, while FIG. 2 depicts a process used to form dry ice pellets.
  • These processes can be modified to incorporate ozone into the dry ice product.
  • odor-free liquid carbon dioxide is stored in tank 2 , typically at pressures of 200 to 300 psig.
  • the liquid carbon dioxide from storage tank 2 is then passed via line 4 to a low-pressure expansion tank 6 wherein the liquid CO 2 is expanded to a pressure above the triple point of carbon dioxide (69.9 psig).
  • the liquid CO 2 is expanded to pressures of from about 70 to 100 psig in expansion tank 6 .
  • What results is a mixture of gas and a dense, viscous carbon dioxide liquid. It is important that the liquid CO 2 is not formed into solid dry ice at this point in as much as the solid in the piping would disadvantageously reduce transport of the liquid.
  • Ozone from an ozone generator 8 is then injected into the liquid carbon dioxide. Injection of the ozone can be done in the low-pressure expansion tank although, as shown in FIG. 1 , the ozone is mixed with the liquid CO 2 after the liquid CO 2 leaves expansion tank 6 via line 10 .
  • Ozone from the ozone generator 8 is compressed to pressures of from about 100 to 150 psig in compressor 12 and then fed via line 14 to mix with the liquid CO 2 from line 10 .
  • the mixture of ozone and liquid CO 2 is passed via line 16 through an expansion orifice 18 into the dry ice press 20 .
  • the mixture of ozone and liquid CO 2 can be passed to a separate refrigeration unit, wherein the liquid CO 2 is frozen into a solid containing the entrapped ozone.
  • the mixture of liquid CO 2 and ozone is allowed to expand inside the dry ice press 20 .
  • the liquid CO 2 is converted to a solid form and the ozone is trapped in the structural lattices of dry ice and/or by physical absorption during dry ice formation.
  • the major portion of the ozone will remain attached to the cold dry ice particles and only a small portion will exit dry ice press 20 with the flash gases via line 22 .
  • the solid particles can be compressed via platen 24 in press 20 into ozonated dry ice blocks 26 .
  • the ozone in dry ice necessary for biological treatment is slowly released as the carbon dioxide sublimes during use.
  • Higher concentrations and pressures of ozone are preferred to achieve higher concentrations of ozone in the dry ice product.
  • the preferred concentration of ozone can vary depending upon the use of the dry ice and the product treated.
  • FIG. 2 depicts a process used to form dry ice pellets, such process is similar to that shown in FIG. 1 .
  • odor-free liquid carbon dioxide is stored in tank 30 , again, typically at pressures of 200 to 300 psig.
  • the liquid carbon dioxide from storage tank 30 is then passed via line 32 directly to a dry ice pelletizer 34 .
  • Dry ice pelletizers are well known in the art. It is believed any dry ice pelletizer is capable of use with this invention.
  • the liquid CO 2 is expanded to a pressure below 70 psig. What results is a mixture of gas and carbon dioxide solid particles.
  • Ozone from the ozone generator 34 is compressed to pressures of at least about 100 psig in compressor 38 and then fed via line 40 to mix with the CO 2 in the dry ice pelletizer 34 .
  • Ozone injection can be done prior to extrusion of the dry ice particles into pellets or the ozone can be mixed with the CO 2 pellets after extrusion.
  • the liquid CO 2 is allowed to expand inside the dry ice pelletizer 34 and is converted to a solid form. While not wanting to be bound by any theory of operation, if the ozone is added during expansion, the ozone is believed to be trapped in the structural lattices of dry ice. If the CO 2 is solid, either as particles or as extruded pellets during injection of the ozone, the ozone is believed to be contained in the dry ice by physical absorption. It is believed a major portion of the ozone will remain attached to the cold dry ice particles and only a small portion will exit with the flash gases from pelletizer 34 via line 42 . The solid CO 2 particles are extruded into pellets, typically ranging from 1/16 to 1 in. As in the block dry ice, the ozone in dry ice pellets necessary for biological treatment is slowly released as the carbon dioxide sublimes during use.
  • Non-limiting useful adjuvants are as follows:
  • the ozonated dry ice product of this invention improves the biocidal efficacy of dry ice to better ensure safe food production and maintain wholesomeness of the finished products.
  • Ozone is effectively delivered into dry ice and at a desired concentration such that during dry ice sublimation, the ozone can exert the desired biocidal effect for disinfection and/or sanitation purposes.
  • Ozone gas is released as a process to disinfect food products through direct food contact and to ensure significant reductions of spoilage and pathogenic microorganisms. Since ozone is more stable under cold environments, the present process provides the ultimate conditions for ozone to work at maximum reactivity.
  • a vertical tubular reactor was provided made of SS 304 with a capacity of about 13 L.
  • the top of this reactor included a lid containing inlet and exit ports for gaseous and liquid components.
  • a liquid CO 2 supply vessel provided a source of liquid CO 2 .
  • the following operating procedure was utilized to form ozonated dry ice snow.
  • a valve on the CO 2 supply vessel was opened and the reactor purged with gaseous CO 2 from the supply vessel.
  • the reactor was allowed to purge for about 1-2 minutes. This was done in order to allow the vessel to be purged and minimize the chances of forming a short circuit.
  • the reactor was again closed and the pressure adjusted to maintain 690 kPa (100 psig) in the reactor.
  • the valve for directing gaseous CO 2 from the supply vessel was then closed.
  • the CO 2 liquid was then directed from the CO 2 supply vessel.
  • Liquid CO 2 was vented from the supply vessel until solid pieces of carbon dioxide began to appear in the vapor stream.
  • Liquid CO 2 was then directed from the supply vessel to the reactor and the flow adjusted to increase or decrease the flow of the liquid CO 2 into the reactor.
  • the pressure in the reactor was kept at 690-827 kPa (100-120 psig). It is important that the pressure does not go below the lower limit of this range. The pressure can be reduced in the reactor if pressure exceeds 827 kPa (120 psig). It is also useful to determine the liquid level in the reactor via a dip tube. When the reactor was 66% to 75% full of liquid, liquid CO 2 flow to the reactor was stopped and the liquid CO 2 line from the supply vessel was vented to ensure that no liquid was left in the line. The line was brought back to atmospheric pressure.
  • An insulated container was placed underneath the reactor to capture snow. A small amount of snow was allowed to flow from the reactor bottom in order to make sure the opening was clear. The snow produced was discarded.
  • a backpressure regulator and reactor outlet was connected to an ozone destruction unit (glass vessel containing MnO 2 ).
  • a gaseous ozone line was connected to the inlet of the reactor. The pressure of the ozone system was maintained higher than the pressure of the reactor. The ozone gas line was purged and then the inlet ozone line to the reactor was slowly opened to adjust the flow rate of ozone into the reactor such that the flow of gas at the ozone destruction unit outlet was slow and steady.
  • a slight pressure increase in the reactor is normal, however, the pressure in the reactor was maintained such that reactor pressure did not increase by more than about 34 kPa (5 psig). After the desired amount of ozone had been sent to the reactor or when the pressure of the ozone system approached the pressure of the reactor, the ozone inlet was closed.
  • the ozone-containing dry ice “snow” was directed from the bottom of the reactor into an insulated container until enough snow had been produced.
  • the ozone was produced from oxygen using an Ozonia® ozone generator CFS-2 (Ozonia® Ltd., Switzerland). The ozone was collected and then compressed to a maximum pressure of about 1034 kPa (150 psig).
  • a first test run of the laboratory scale system described above produced about 4 to 5 kg of ozonated snow.
  • the amount of liquid carbon dioxide in the reactor was about 9 L.
  • Approximately 2 liters of compressed gas was transferred into the liquid CO 2 .
  • the gas contained about 6.5% (wt/wt) O 3 in O 2 with a gas pressure of about 814 kPa (118 psig).
  • the snow that was produced during this test had an ozone concentration of about 2 ppm.

Abstract

A manufactured dry ice product containing ozone entrapped or absorbed on said dry ice. The dry ice product can be used to chill and preserve food products and provides the added benefit of ozonation of the food product to kill bacteria. Novel processes for ozonating liquid and solid CO2 are provided.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. Non-Provisional application Ser. No. 11/621,857, filed Jan. 10, 2007, which is a continuation of U.S. Non-Provisional application Ser. No. 10/632,232, filed Jul. 31, 2003, now U.S. Pat. No. 7,174,744, which claimed priority to U.S. Provisional application 60/404,635, filed Aug. 20, 2002, and U.S. Provisional application 60/459,398, filed Apr. 1, 2003. Each of the foregoing disclosures are incorporated herein by reference in their entireties.
  • FIELD OF THE INVENTION
  • The present invention is directed to a novel dry ice composition useful in the preservation of food and other perishable products. The invention is also directed to novel methods of making the dry ice composition. The composition of this invention and use thereof significantly improves the quality of food products and enhances food safety.
  • BACKGROUND OF THE INVENTION
  • The protection of food from damage caused by microbes, spores, insects, and other similar sources is a major concern. Each year, economic losses of food and fiber due to damage from such sources is more than $100 billion. Currently, food items are preserved using a variety of methods, including refrigeration, fumigation with toxic chemicals, irradiation, biological control, heat exposure, and controlled atmosphere storage (a fruit industry technique that involves modifying the concentration of gases naturally present in the air).
  • The primary problem regarding food spoilage in public health is microbial growth. If pathogenic microorganisms are present, then growth can potentially lead to food-borne outbreaks and significant economic losses. Food safety concerns have been brought to the consumers' attention since the early part of the 20th century and those concerns have become even stronger today. Recent outbreaks from Salmonella and E. coli have increased the focus on food safety, including from a regulatory perspective. A report issued from National Research Council (NRC) in 1988 indicated that there were approximately 9,000 human deaths a year from 81 million annual cases of food poisoning. A recent study completed by the Centers for Disease Control and Prevention (CDC) estimated that food-borne diseases cause approximately 76 million illnesses, 325,000 hospitalizations and 5,000 deaths annually in the US. Those numbers reveal the dramatic need for effective means of handling food products in order to ensure food safety.
  • As discussed briefly above, food manufacturers use different technologies to eliminate, retard, or prevent microbial growth, such as heating. Even though heat is very efficient in killing bacteria, it also destroys some nutrients, flavors, or textural attributes of food products.
  • Effective sanitation depends on the combination of product and sanitation process type, and not all of the currently available technologies can deliver an effective reduction of microorganisms and at the same time prevent product or environmental degradation. Refrigeration is an effective and popular means to slow down the growth of unwanted microbes and enzymatic reactions in foods. Therefore, the shelf life and keeping quality of refrigerated food is extended. Some common ways of chilling food include the use of mechanical refrigeration equipment, ice, and dry ice.
  • Dry ice is solid or frozen carbon dioxide that is frequently used as an expendable refrigerant. Dry ice converts from a solid directly to a gas in the process known as sublimation. Water ice is another traditional expendable refrigerant, but has the disadvantage of converting to water after the ice melts. Dry ice is much denser and colder than traditional ice with a heat removal capability of approximately 254 btu/lb. Dry ice at atmospheric pressure is −109.3° F. (−78.5° C.) in comparison to traditional water ice 32° F. (0° C.). Dry ice sublimes by going directly from a solid to a gas without passing through the liquid stage. The cold temperature of dry ice and the fact that it leaves no residue like water ice makes it an excellent refrigerant for the transportation of chilled or frozen products. For example, the shipments that must remain frozen during transportation can be packed with dry ice. The contents will be frozen when they reach their destination and there will be no messy liquid left over like traditional water ice.
  • Dry ice is generally stored in insulated containers prior to use to reduce the rate of sublimation. Losses due to ambient heat typically average 1-2%/day under ideal storage conditions. Based on storage or conditions of use the sublimation rate can be as high as 50%/day. A pound of dry ice after sublimation will convert to 8.5 cubic feet of carbon dioxide gas.
  • Unfortunately, while refrigeration can retard microbial growth, such treatment does not kill bacteria. Accordingly, microorganisms can still survive through refrigeration, and worse, some microorganisms can still grow and produce harmful substances during refrigerated storage. Upon fumigation or other chemical treatment, another level of health problems may be created or the quality of the treated food may deteriorate. For example, chlorine has been widely used as a sanitizer of choice since World War I. However, concerns regarding the safety of carcinogenic and toxic by-products of chlorine, such as chloramines and trihalomethanes, have been raised in recent years.
  • Ozone, an unstable, colorless gas with a distinct odor has been proven to work more effectively on spoilage microorganisms than a classic disinfectant such as chlorine. Due to its instability, the three oxygen molecules of ozone break apart to form one diatomic oxygen molecule and another free oxygen radical. This free oxygen radical attacks the cell wall and oxidizes it thus increasing the chance of permeability to the inner surfaces of the cell. This reaction of ozone on cell structures is irreversible; therefore the cells either become attenuated or die. Historically, ozone has been widely used for water treatment since the early 1900's. Some well-known applications include disinfection of swimming pools, spas, cooling towers, and sewage plants. Ozone is normally produced by UV radiation with wavelengths below 200 nm or by the corona discharge method that requires high electric energy.
  • Ozone has been used as a disinfectant/oxidant in the food industry for the past several decades. It has been well applied to bulk storage (in a “room” type of storage facility) of produce (e.g. apples) or to disinfect water (e.g. municipal water or waste water treatment). Also, processes have been developed using ozone solutions (by injecting ozone gas through water) to sanitize/disinfect food products. Some examples of using ozone for sanitizing food products can be found in U.S. Pat. No. 3,341,280 for sterilizing particulate food materials; U.S. Pat. No. 4,849,237 which utilizes ozonated water for sanitizing poultry carcasses; U.S. Pat. No. 5,011,699 which sterilizes food stuffs in a processing room with the aid of a mixture of ozone gas and carbon dioxide gas and/or nitrogen gas; U.S. Pat. No. 5,405,631 directed to sanitizing citrus fruit with ultraviolet radiation and ozone generation; U.S. Pat. No. 6,210,730 directed to a method for treating perishable meat products, including the steps of chilling the meat product, exposing the chilled meat product to a chilled gas mixture including ozone, and thereafter removing the chilled gas and exchanging that gas with a mixture containing a high oxygen fraction; and U.S. Pat. No. 6,458,398 which is directed to reducing the microbial population of food in a container by the application of both a surfactant and ozone-containing wash liquor to the food.
  • While ozone is highly water soluble and thus generally more effective in water, it can be used effectively in the air as well, attacking yeasts and fungi as well as bacteria. In this regard, for nearly a century, ozone has been used as a food preservation agent for a wide variety of perishable food items. Among the food items not mentioned previously and potentially preserved by ozonation include potatoes, eggs, cheeses, bananas, berries, meats, carrots, onions, and peaches. Ozone dissolved in water has also been used in food storage—including the preservation of fish in ozonated ice.
  • Carbon dioxide has natural properties that tend to inhibit the growth of bacteria. These properties are use in controlled atmospheric packaging for preserving food products. Carbon dioxide, however, is not as effective nor as efficient as ozone at destroying bacteria. It would be useful, therefore, to combine the cooling properties of solid dry ice with the pathogen destruction capability of ozone.
  • JP 071002240 describes a process to prepare a solid oxidizing agent containing ozone and chlorine to simultaneously provide the strong oxidizing property of ozone and continuous oxidizing capability of chlorine to achieve an effective means for disinfection, sanitation, sterilization, prevention of food spoilage, deodorization, etc Several methods of preparation are provided:
      • 1. Solid oxidizing agent formed by combining ices of ozonated/chlorinated water and dry ice (CO2) and solidified.
      • 2. Solid oxidizing agent formed by combining ices of ozonated water, ices of chlorinated water, and dry ice (CO2).
      • 3. Regarding the oxidizing agent described under 1. Oxidizing agent characterized by its powdered form.
      • 4. Regarding the oxidizing agent described under 1. Oxidizing agent formed into various specific sizes and shapes.
  • JP 08107925 is similar to the above and is directed to a solid oxidizing agent comprising a mixture of ice of ozonated water and dry ice in a powdered form or other specific shape. The solid oxidizing agent is prepared by mixing powdered ice of ozonated water and powdered dry ice. The powdered mixture can then be custom made to a specific shape and size. The composition can be used for disinfection, sanitation, sterilization, water purification, and odor removal. Prevention of spoilage and odor of fresh foods is disclosed.
  • JP 3-217294 discloses a method of manufacturing ozonated water by absorption of ozone in water containing carbon dioxide or carbonic compounds. The objective of the invention is to increase the concentration of ozone into water in as much as high ozone concentrations in water cannot be achieved by conventional techniques which simply dissolve ozone in the water. Accordingly, in this patent, carbon dioxide gas is flushed into water to produce CO2-saturated water. An ozone gas mixture is then flushed into the CO2-saturated water to form ozonated ice. Similarly, sodium bicarbonate-saturated water was formed and then ozone was flushed into the carbonated water. The invention is stated as enabling the manufacturer of ozonated water and ice at higher ozone concentrations than conventional manufacturing methods. The ozone-containing composition in solid form can be used for sanitation purposes and for preserving fresh foods.
  • SU 1274645 by Rukavishni et al describes a method to prolong the storage life and reduce produce losses of agricultural crops. As an example, rose petals are placed for storage at a low positive temperature, in a hermetically sealed polymeric container. Before loading the petals, the container is treated with an air-ozone mixture with an ozone dose factor of 0.1 mg/l min. Dry ice is placed in the container, at a rate of 0.9 g per kg of stored produce. The rose petals are then loaded.
  • JP 09249510 discloses a method of controlling the emission of ozone from silica gel having adsorbed ozone. The silica gel having adsorbed ozone is packed in a bag formed from a gas tight material and having a gas communicating hole. The bag is wrapped with dry ice so that as the dry ice sublimes, the temperature inside the bag increases and allows the desorption of the ozone gas. The ozone gas is released from the bag through the hole.
  • SUMMARY OF THE INVENTION
  • This invention provides an effective means to improve a dry ice chilling process using ozone so that in combination, maximum biocidal efficacy is delivered to ensure food safety and retain the wholesomeness of food products.
  • Ozone is a very strong oxidizer and many food products are very delicate substrates. When food products are treated with ozone to remove any harmful bacteria, the method of delivering the ozone to food products and regulating it at the desired level are extremely important to ensure food safety and maintain the wholesomeness of the food products. If the ozone concentration is too high, oxidization and deterioration of the food products that contact the ozone will cause significant economic losses. If the ozone concentration is too low, the ozone alone may not effectively kill unwanted bacteria.
  • Refrigeration using dry ice is one of the most effective processes that retard the growth of unwanted bacteria and extend the shelf life of food products. However, since refrigeration does not kill bacteria, and some bacteria or even pathogens can still grow slowly under refrigeration conditions, refrigeration alone poses certain serious problems to food safety.
  • This invention uses a multiple technologies approach, which has advantages over the use of a single technology. Combination of ozone and dry ice chilling results in much greater safety and quality of treated food products than would be expected using either technology alone.
  • In order to improve the quality and enhance the safety of food products, this invention provides an ozonated dry ice product. The combination of ozone and dry ice provides a means to kill bacteria while at the same time provides for the chilling of a food product. Many bacteria have the ability to repair themselves especially if they are given an opportunity to recover. Ozonated dry ice prevents bacteria from recovering and allows food processors to manufacture and transport a safer food product with enhanced food quality.
  • The dry ice composition of this invention effectively delivers ozone onto food products at a desired concentration through dry ice sublimation. Ozone gas is slowly released as the dry ice sublimes and provides a means to disinfect food products through direct food contact and ensure the significant reduction of spoilage and pathogenic microorganisms.
  • Any process capable of incorporating ozone into dry ice is useful to form the product of this invention. While not wishing to limit the dry ice composition of this invention to any particular process of forming same, the present invention also discloses several methods of incorporating ozone into dry ice. The exemplified processes typically incorporate the ozone into the dry ice during the dry ice manufacturing processes. Dry ice manufacturing processes are known in the art and can be readily manipulated to form the ozonated dry ice product of this invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic of a process of this invention for incorporating ozone into dry ice and forming pressed blocks of ozonated dry ice.
  • FIG. 2 is a schematic of a process of this invention for incorporating ozone into dry ice and forming extruded pellets of ozonated dry ice.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In accordance with this invention there is provided an improved dry ice product manufactured in the form of blocks, pellets, flakes, powders, and other possible forms well known in the art containing carbon dioxide and ozone. The dry ice product is essentially free of water. What is meant by “essentially free” of water is that the dry ice product, if it contains water, will comprise less than 5 wt. % water. Typically, the water content will be less than 1 wt. %. Moisture levels of up to 5,000 ppm may be helpful in maintaining the desired shape of the product. The major constituent of the product is carbon dioxide. The ozone concentration in the product can vary widely and can depend upon the end use of the product and, in particular, the product being treated and the environment surrounding the treated product. Only minute amounts of ozone are necessary for providing an antimicrobial effect. At the same time, OSHA limits the exposure levels of ozone to 0.1 ppm to 0.3 ppm in 8 hour and 15 minute shifts, respectively. Accordingly, the amounts of ozone dispersed into an area must be kept at a minimum and to a level safe for persons handling the treated product. A non-limiting level of ozone in the dry ice product can range from 0.1 ppm and above. More typically, the ozone content of the dry ice product will range from about 1 to 100 ppm. Ozone levels of 1 to 10 ppm by weight are believed to be effective for killing bacteria. Ozone present in the product is made available for various applications during carbon dioxide sublimation with the additional benefits, i.e. chilling, of using dry ice.
  • The product of this invention in which dry ice is combined with ozone provides an expendable form of refrigeration while simultaneously providing a method of biological treatment that does not expose humans coming in contact with the product to excessive levels of ozone. Ozone gas is generally considered to be an unstable molecule that has a short shelf life. It is known that at lower temperatures ozone is more stable and has a reduced tendency to decompose to oxygen prior to providing any biological effect. Dry ice at atmospheric pressure is at a temperature of −109.9° F. The liquefaction temperature of ozone is −168° F. This means that the ozone contained in the dry ice product is close to the liquefaction point, but still well into the gas phase. Accordingly, the ozone mixed with dry ice as in the product of this invention can be trapped in the structural lattices of the dry ice and/or by physical absorption onto the surface of the dry ice. The ozone in the dry ice is added for biological treatment. The most effective biocidal treatment occurs when the ozone is released in proportion with the dry ice sublimation.
  • The exact form of the dry ice product can vary and, accordingly, a wide variety of forms can be manufactured and used depending upon the product to be treated and the purpose of such treatment such as, for example, storage, transport, commercial sale display, etc. Thus, if the product to be treated is to be stored in large rooms, for example, blocks of dry ice ranging from 5 to 50 lbs. can be formed. Likewise, if the product to be stored, transported, or displayed for sale requires direct contact of the dry ice product, smaller manufactured shapes can be provided. Thus, for example, pellets in the range of 1/16 to 1 inch can be formed, or even powders such as snow, flakes, or chips can be formed by methods known in the art.
  • While the manufacturing process of the dry ice product can vary widely and it is contemplated that any process which can incorporate ozone into dry ice can be found to yield a useful product, it has been found to be particularly useful to incorporate the ozone into the carbon dioxide during the dry ice manufacturing process.
  • The traditional first step in making “Dry Ice” is to manufacture carbon dioxide liquid. This is done by compressing odor-free CO2 gas and removing any excess heat. Alternatively, odorous CO2 gas may liquefied and the liquid CO2 rendered odor-free through the use of an adsorptive material such as activated carbon. The CO2 is typically liquefied at pressures ranging from 200-300 pounds per square inch and at a temperature of −20° F. to 0° F. respectively. It is stored in a pressure vessel at lower than ambient temperature. The liquid pressure is then reduced below the triple point pressure of 69.9 psig by sending it through an expansion valve. This can be done in a single step or, in many cases, by reducing the liquid pressure to 100 psig at a temperature of −50° F. as a first step to allow easy recovery of the flash gases. The liquid CO2 is expanded inside a dry ice manufacturing press to form a mixture of dry ice solid and cold gas. The cold gas is vented or recycled and the remaining dry ice snow is then compacted to form blocks. Dry ice is typically compacted to a density of approximately 90 lb/ft3.
  • One of ordinary skill in the art will readily understand the presence of odors in CO2 may be determined by bubbling CO2 gas through purified water and smelling the headspace over the water or passing the gas through a cloth and then smelling the cloth. Such a one will recognize that odor-free liquid CO2 and odor-free solid CO2 may also be subjected to the foregoing tests by first subjecting such liquid or dry ice to a combination of temperature and pressure such that the CO2 is present as a gas. Also, such a one will also readily understand that the presence of odors in solid CO2 may be determined by capturing a portion of the solid on a cloth, allowing gaseous CO2 to sublimate, and then smelling the cloth. Methods of producing odor-free CO2 are well known in the art and their details need not be duplicated herein. Typical of such methods include a step of passing CO2 gas through an adsorption unit containing activated carbon or a catalytic oxidation unit employing a catalyst such as platinum at a temperature of about 400° C.
  • The present invention facilitates the above by directly contacting compressed ozone with carbon dioxide (which is odor-free). In comparison, existing prior art as discussed previously dwells in using indirect methods to combine ozone with dry ice after the dry ice is manufactured. Such products include substantial amounts of water ice and, accordingly, inherit the problems associated with melting.
  • In general, to manufacture ozonated dry ice, compressed ozone at a pressure of at least 90 psig is combined with odor-free liquid carbon dioxide at a pressure above the triple point of CO2 (70 psig), allowing the ozone to fully dissolve in the liquid CO2. The feed gas for ozone injection can include O2, air, a mixture of O2 and air or mixture of O2, air, and an inert gas, e.g. N2, CO2, Ar, Kr, Xe, Ne.
  • Inert gas, if included with the ozone during contact with the CO2, may comprise 10-99% total concentration of injected gas in the process. The inert gases may be mixed with ozone or added separately during the process. The temperature of the ozone treatment is maintained at ambient or below. CO2 pressures ranging from 70 psig to 100 psig can be used during the mixing process. The ozone compression pressure will typically range from about 100 to 150 psig. Higher ozone pressures can also be used when available. The liquid carbon dioxide/ozone mixture is then expanded to generate dry ice, “snow”, containing ozone, oxygen, and dry ice—“ozonated dry ice.” This modified dry ice can then be collected or shaped such as by pressing or extrusion. This scheme can be successfully adapted to existing dry ice plants.
  • Methods of producing ozone are well known in the art. Ozone is generated using oxygen or air. There are two primary methods of creating ozone from air: by an ultraviolet light generator light system or by an electrical discharge system. An ultraviolet light ozone generator typically consists of multiple ultraviolet light tubes within an aluminum housing. In a multiple tube apparatus, air enters the generator cavity and is subjected to the ultraviolet light and the ultraviolet light causes a disassociation of the oxygen molecules, which exists as O2, to 2 oxygen atoms. Some of these oxygen atoms attach themselves to oxygen molecules to form ozone (O3). The resulting ozone and sterile air mixture comprises approximately 0.2 percent of ozone by weight/weight of air. In the preferred mode, the ozone gas is generated from oxygen or oxygen-enriched air by a corona discharge device that produces concentrations ranging between about 1% to about 15% by weight of ozone. Based on technologies available today, it is possible to generate ozone concentrations up to a maximum of 13.5% with the remainder being oxygen and a small fraction of other gases. It is possible to use higher ozone concentrations for this application if the generator technology becomes available. Higher concentrations of ozone are preferred. It is preferred to use oxygen compared to air due to the possibility of producing higher concentrations of ozone. It is industrially proven that ozone can be compressed to 150 psig using water ring compressors. It is feasible to safely compress an ozone/oxygen mixture containing 10% by weight of ozone to 70 atm pressures. Several others have tried ozone liquefaction by using higher pressures without much success.
  • FIGS. 1 and 2 depict alternative methods of forming the ozonated dry ice product of this invention. Each figure represents a typical dry ice manufacturing process in which FIG. 1 is a process used to form blocks of dry ice, while FIG. 2 depicts a process used to form dry ice pellets. These processes can be modified to incorporate ozone into the dry ice product. First, with respect to FIG. 1, odor-free liquid carbon dioxide is stored in tank 2, typically at pressures of 200 to 300 psig. The liquid carbon dioxide from storage tank 2 is then passed via line 4 to a low-pressure expansion tank 6 wherein the liquid CO2 is expanded to a pressure above the triple point of carbon dioxide (69.9 psig). Typically, the liquid CO2 is expanded to pressures of from about 70 to 100 psig in expansion tank 6. What results is a mixture of gas and a dense, viscous carbon dioxide liquid. It is important that the liquid CO2 is not formed into solid dry ice at this point in as much as the solid in the piping would disadvantageously reduce transport of the liquid. Ozone from an ozone generator 8 is then injected into the liquid carbon dioxide. Injection of the ozone can be done in the low-pressure expansion tank although, as shown in FIG. 1, the ozone is mixed with the liquid CO2 after the liquid CO2 leaves expansion tank 6 via line 10. Ozone from the ozone generator 8 is compressed to pressures of from about 100 to 150 psig in compressor 12 and then fed via line 14 to mix with the liquid CO2 from line 10. The mixture of ozone and liquid CO2 is passed via line 16 through an expansion orifice 18 into the dry ice press 20. Alternatively, although not shown, the mixture of ozone and liquid CO2 can be passed to a separate refrigeration unit, wherein the liquid CO2 is frozen into a solid containing the entrapped ozone.
  • As further shown in FIG. 1, the mixture of liquid CO2 and ozone is allowed to expand inside the dry ice press 20. During expansion, the liquid CO2 is converted to a solid form and the ozone is trapped in the structural lattices of dry ice and/or by physical absorption during dry ice formation. The major portion of the ozone will remain attached to the cold dry ice particles and only a small portion will exit dry ice press 20 with the flash gases via line 22. Once the dry ice solid is formed, the solid particles can be compressed via platen 24 in press 20 into ozonated dry ice blocks 26.
  • The ozone in dry ice necessary for biological treatment is slowly released as the carbon dioxide sublimes during use. Higher concentrations and pressures of ozone are preferred to achieve higher concentrations of ozone in the dry ice product. The preferred concentration of ozone can vary depending upon the use of the dry ice and the product treated. By the above method it is possible to achieve higher concentrations of ozone compared to the prior art methods which have involved a mixture of ozonated water ice and dry ice. The present method is relatively easy to implement in existing dry ice plants with minimum capital requirement.
  • Referring now to FIG. 2 which depicts a process used to form dry ice pellets, such process is similar to that shown in FIG. 1. With respect to FIG. 2, odor-free liquid carbon dioxide is stored in tank 30, again, typically at pressures of 200 to 300 psig. The liquid carbon dioxide from storage tank 30 is then passed via line 32 directly to a dry ice pelletizer 34. Dry ice pelletizers are well known in the art. It is believed any dry ice pelletizer is capable of use with this invention. In the pelletizer, the liquid CO2 is expanded to a pressure below 70 psig. What results is a mixture of gas and carbon dioxide solid particles. Ozone from the ozone generator 34 is compressed to pressures of at least about 100 psig in compressor 38 and then fed via line 40 to mix with the CO2 in the dry ice pelletizer 34. Ozone injection can be done prior to extrusion of the dry ice particles into pellets or the ozone can be mixed with the CO2 pellets after extrusion.
  • The liquid CO2 is allowed to expand inside the dry ice pelletizer 34 and is converted to a solid form. While not wanting to be bound by any theory of operation, if the ozone is added during expansion, the ozone is believed to be trapped in the structural lattices of dry ice. If the CO2 is solid, either as particles or as extruded pellets during injection of the ozone, the ozone is believed to be contained in the dry ice by physical absorption. It is believed a major portion of the ozone will remain attached to the cold dry ice particles and only a small portion will exit with the flash gases from pelletizer 34 via line 42. The solid CO2 particles are extruded into pellets, typically ranging from 1/16 to 1 in. As in the block dry ice, the ozone in dry ice pellets necessary for biological treatment is slowly released as the carbon dioxide sublimes during use.
  • Small amounts of adjuvants may be added into the dry ice manufacturing process to improve the ozone stability in dry ice. Non-limiting useful adjuvants are as follows:
      • a. Water (not to exceed 5 wt. % of dry ice)
      • b. GRAS (generally recognized as safe) grade acidulants such as citric acid, acetic acid, lactic acid
      • c. GRAS grade surfactants such as polysorbate 60/65/80
      • d. GRAS grade food preservatives such as EDTA (in any forms), BHA, BHT, sodium nitrate (in any forms).
      • e. GRAS gums such as carrageenan (in any forms), xanthan gum, furcelleran (in any forms), arabinogalactan
      • f. Any other GRAS grade food additives such as polyethylene glycol, sucrose fatty acid esters, fatty acids (in any forms)
  • The ozonated dry ice product of this invention improves the biocidal efficacy of dry ice to better ensure safe food production and maintain wholesomeness of the finished products. Ozone is effectively delivered into dry ice and at a desired concentration such that during dry ice sublimation, the ozone can exert the desired biocidal effect for disinfection and/or sanitation purposes. Ozone gas is released as a process to disinfect food products through direct food contact and to ensure significant reductions of spoilage and pathogenic microorganisms. Since ozone is more stable under cold environments, the present process provides the ultimate conditions for ozone to work at maximum reactivity. Since the release of ozone from the dry ice is well regulated, food products receive ozone slowly and constantly during the entire storage thereof, and accordingly, shelf life and quality of the food product are enhanced. Moreover, carbon dioxide chills the food products efficiently, further providing benefits to food products. The carbon dioxide slows down the growth of spoilage and pathogenic microorganisms in food, allowing the food products to last longer and safer. The carbon dioxide also slows down the enzymatic reactions in food, allowing the quality of food to be extended during storage. Carbon dioxide from dry ice sublimation also penetrates into microbial cells, lowers the intracellular pH of microbial cells, and causes those microbial cells to be more sensitive to ozone. Accordingly, a synergistic effect on biocidal efficacy can be achieved by combining dry ice and ozone.
  • EXAMPLE
  • This example illustrates the injection of ozone into liquid CO2. A vertical tubular reactor was provided made of SS 304 with a capacity of about 13 L. The top of this reactor included a lid containing inlet and exit ports for gaseous and liquid components. A liquid CO2 supply vessel provided a source of liquid CO2.
  • The following operating procedure was utilized to form ozonated dry ice snow. A valve on the CO2 supply vessel was opened and the reactor purged with gaseous CO2 from the supply vessel. The reactor was allowed to purge for about 1-2 minutes. This was done in order to allow the vessel to be purged and minimize the chances of forming a short circuit. After about 30 seconds, the reactor was again closed and the pressure adjusted to maintain 690 kPa (100 psig) in the reactor. The valve for directing gaseous CO2 from the supply vessel was then closed.
  • The CO2 liquid was then directed from the CO2 supply vessel. Liquid CO2 was vented from the supply vessel until solid pieces of carbon dioxide began to appear in the vapor stream. Liquid CO2 was then directed from the supply vessel to the reactor and the flow adjusted to increase or decrease the flow of the liquid CO2 into the reactor. The pressure in the reactor was kept at 690-827 kPa (100-120 psig). It is important that the pressure does not go below the lower limit of this range. The pressure can be reduced in the reactor if pressure exceeds 827 kPa (120 psig). It is also useful to determine the liquid level in the reactor via a dip tube. When the reactor was 66% to 75% full of liquid, liquid CO2 flow to the reactor was stopped and the liquid CO2 line from the supply vessel was vented to ensure that no liquid was left in the line. The line was brought back to atmospheric pressure.
  • An insulated container was placed underneath the reactor to capture snow. A small amount of snow was allowed to flow from the reactor bottom in order to make sure the opening was clear. The snow produced was discarded. A backpressure regulator and reactor outlet was connected to an ozone destruction unit (glass vessel containing MnO2). A gaseous ozone line was connected to the inlet of the reactor. The pressure of the ozone system was maintained higher than the pressure of the reactor. The ozone gas line was purged and then the inlet ozone line to the reactor was slowly opened to adjust the flow rate of ozone into the reactor such that the flow of gas at the ozone destruction unit outlet was slow and steady. A slight pressure increase in the reactor is normal, however, the pressure in the reactor was maintained such that reactor pressure did not increase by more than about 34 kPa (5 psig). After the desired amount of ozone had been sent to the reactor or when the pressure of the ozone system approached the pressure of the reactor, the ozone inlet was closed.
  • The ozone-containing dry ice “snow” was directed from the bottom of the reactor into an insulated container until enough snow had been produced.
  • The ozone was produced from oxygen using an Ozonia® ozone generator CFS-2 (Ozonia® Ltd., Switzerland). The ozone was collected and then compressed to a maximum pressure of about 1034 kPa (150 psig).
  • Approximately one liter of CO2/O3 snow was collected and placed into a beaker. KI solution was added. The snow was allowed to completely sublime while the KI solution was constantly washed over the snow. The solution was titrated with 0.1N Na2S2O3. This procedure followed the iodometric method of determining the amount of ozone present in the sample.
  • Results:
  • A first test run of the laboratory scale system described above produced about 4 to 5 kg of ozonated snow. The amount of liquid carbon dioxide in the reactor was about 9 L. Approximately 2 liters of compressed gas was transferred into the liquid CO2. The gas contained about 6.5% (wt/wt) O3 in O2 with a gas pressure of about 814 kPa (118 psig). The snow that was produced during this test had an ozone concentration of about 2 ppm.

Claims (44)

1. A manufactured dry ice product comprising ozone entrapped or physically absorbed on or within odor-free solid carbon dioxide.
2. The dry ice product of claim 1 being essentially free of water.
3. The dry ice product of claim 2 optionally comprising less than 1 wt. % water.
4. The dry ice product of claim 1 optionally containing up to 5,000 ppm water.
5. The dry ice product of claim 1 in the form of shaped dry ice units.
6. The dry ice product of claim 5 wherein said dry ice units are compression molded blocks.
7. The dry ice product of claim 1 in the form of pellets.
8. The dry ice product of claim 1 in the form of powder or flakes.
9. The dry ice product of claim 1 wherein said ozone is present in amounts of at least 0.1 ppm by weight.
10. The dry ice product of claim 9 wherein said ozone is present in amounts of from 1 to 100 ppm.
11. The dry ice product of claim 10 wherein said ozone is present in amounts of 1 to 10 ppm by weight.
12. The dry ice of product claim 11 being essentially free of water.
13. The dry ice product of claim 12 wherein said dry ice product optionally contains water in an amount of less than 1 wt. %.
14. A process for producing an ozonated dry ice product comprising contacting a gaseous ozone stream with odor-free liquid carbon dioxide to form a mixture, subsequently cooling the mixture of carbon dioxide and ozone to form dry ice solid containing ozone entrapped or absorbed on or in said dry ice solid.
15. The process of claim 14 wherein said liquid carbon dioxide is at a pressure of at least 70 psig.
16. The process of claim 15 wherein said gaseous ozone is at a pressure of at least 90 psig.
17. The process of claim 14 wherein said gaseous ozone stream comprises a mixture of ozone and oxygen.
18. The process of claim 17 wherein said gaseous ozone stream optionally contains an inert gas.
19. The process of claim 14 wherein said dry ice solid is in the form of a powder or flake.
20. The process of claim 14 wherein said dry ice solid is compressed into blocks.
21. The process of claim 14 wherein said dry ice solid is extruded into pellets.
22. The process of claim 14 wherein said liquid carbon dioxide is provided from a supply of liquid carbon dioxide at a pressure of from 200 to 300 psig and wherein said supply of liquid carbon dioxide is expanded to a lower pressure of at least 70 psig.
23. The process of claim 14 wherein said mixture of ozone and liquid carbon dioxide is cooled by expansion in a dry ice press, and said solid dry ice is pressed into blocks.
24. The process of claim 22 wherein said mixture of ozone and liquid carbon dioxide is cooled by expansion in a dry ice press, and said solid dry ice is pressed into blocks.
25. The process of claim 22 wherein said gaseous ozone stream is injected into said liquid carbon dioxide as said supply of liquid carbon dioxide is expanded to said lower pressure.
26. The process of claim 22 wherein said gaseous ozone stream is injected into said liquid carbon dioxide subsequent to said supply of liquid carbon dioxide being expanded to said lower pressure.
27. The process of claim 14 wherein said gaseous ozone stream comprises 10 to 15% by weight ozone.
28. A process of producing an ozonated dry ice product comprising contacting a gas stream containing ozone having a pressure of at least 90 psig with odor-free dry ice so as to entrap or absorb said ozone.
29. The process of claim 28 wherein said dry ice is in the form of powder, flakes, or pellets.
30. The process of claim 29 wherein said dry ice is in the form of powder or flakes and subsequent to contact with said gas stream, said powder or flakes are extruded into pellets.
31. A method of chilling a food product comprising placing a food product in the proximity of the manufactured dry ice product of claim 1 such that during sublimation of the dry ice, ozone is released therefrom for contact with said food product, wherein said dry ice sol.
32. The process of claim 31 wherein said placed food product is in storage during transport.
33. The process of claim 31 wherein said placed food product is in stationary storage.
34. The process of claim 31 wherein said dry ice is in the form of blocks.
35. The process of claim 31 wherein said dry ice is in the form of powder, flakes, or pellets and said dry ice is placed in contact with said food product.
36. The process of claim 31 wherein said dry ice is essentially free of water.
37. The process of claim 31 wherein said dry ice optionally contains water up to less than 1 wt. %.
38. The process of claim 31 wherein said dry ice optionally contains water up to 5,000 ppm by weight.
39. The process of claim 31 wherein said dry ice contains at least 0.1 ppm by weight ozone.
40. The process of claim 31 wherein said dry ice contains 1 to 100 ppm by weight ozone.
41. The process of claim 31 wherein said dry ice contains 1 to 10 ppm by weight ozone.
42. The process of claim 41 wherein said dry ice is essentially free of water.
43. The process of claim 41 wherein said dry ice optionally contains water in amounts less than 1 wt. %.
44. The process of claim 41 wherein said dry ice optionally contains water in amounts of up to 5,000 ppm by weight.
US12/059,542 2002-08-20 2008-03-31 Method of Improving the Biocidal Efficacy of Dry Ice Abandoned US20090087528A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/059,542 US20090087528A1 (en) 2002-08-20 2008-03-31 Method of Improving the Biocidal Efficacy of Dry Ice

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US40463502P 2002-08-20 2002-08-20
US45939803P 2003-04-01 2003-04-01
US10/632,232 US7174744B2 (en) 2002-08-20 2003-07-31 Method of improving the biocidal efficacy of dry ice
US11/621,857 US20070107463A1 (en) 2002-08-20 2007-01-10 Method of Improving Biocidal Efficacy of Dry Ice
US12/059,542 US20090087528A1 (en) 2002-08-20 2008-03-31 Method of Improving the Biocidal Efficacy of Dry Ice

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/621,857 Continuation-In-Part US20070107463A1 (en) 2002-08-20 2007-01-10 Method of Improving Biocidal Efficacy of Dry Ice

Publications (1)

Publication Number Publication Date
US20090087528A1 true US20090087528A1 (en) 2009-04-02

Family

ID=31950537

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/632,232 Expired - Fee Related US7174744B2 (en) 2002-08-20 2003-07-31 Method of improving the biocidal efficacy of dry ice
US11/143,865 Abandoned US20050276889A1 (en) 2002-08-20 2005-06-02 Novel method of sanitizing food products and other target items
US11/621,857 Abandoned US20070107463A1 (en) 2002-08-20 2007-01-10 Method of Improving Biocidal Efficacy of Dry Ice
US12/059,542 Abandoned US20090087528A1 (en) 2002-08-20 2008-03-31 Method of Improving the Biocidal Efficacy of Dry Ice

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10/632,232 Expired - Fee Related US7174744B2 (en) 2002-08-20 2003-07-31 Method of improving the biocidal efficacy of dry ice
US11/143,865 Abandoned US20050276889A1 (en) 2002-08-20 2005-06-02 Novel method of sanitizing food products and other target items
US11/621,857 Abandoned US20070107463A1 (en) 2002-08-20 2007-01-10 Method of Improving Biocidal Efficacy of Dry Ice

Country Status (5)

Country Link
US (4) US7174744B2 (en)
EP (1) EP1531693B1 (en)
AU (1) AU2003251089A1 (en)
ES (1) ES2395730T3 (en)
WO (1) WO2004017770A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070107463A1 (en) * 2002-08-20 2007-05-17 Schreiber John E Method of Improving Biocidal Efficacy of Dry Ice
US8282715B1 (en) * 2008-09-26 2012-10-09 Praxair Technology, Inc. Purifying carbon dioxide using activated carbon

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050268646A1 (en) * 2002-08-20 2005-12-08 Yuan James T Novel biological treating agent
US20050276723A1 (en) * 2004-06-15 2005-12-15 Meenakshi Sundaram Aseptic sterilant using ozone in liquid carbon dioxide
US20070178811A1 (en) * 2006-02-01 2007-08-02 Meenakshi Sundaram Dry ice blasting with chemical additives
US20070261436A1 (en) * 2006-02-03 2007-11-15 Meenakshi Sundaram Dry ice products and method of making same
WO2008087544A1 (en) * 2007-01-19 2008-07-24 L' Air Liquide-Societe Anonyme Pour L' Etude Et L'exploitation Des Procedes Georges Claude Dry ice blasting with ozone-containing carrier gas
JP4995173B2 (en) * 2008-10-23 2012-08-08 株式会社Ihi Ozone ice manufacturing method and ozone ice manufacturing apparatus
US10255466B2 (en) 2012-08-01 2019-04-09 The United States Of America As Represented By The Department Of Veterans Affairs Methods for organizing the disinfection of one or more items contaminated with biological agents
CN103318546B (en) * 2013-07-02 2015-09-02 辽宁自然冰科技有限公司 A kind of high-concentration ozone ice hollow package ice chest
US10407173B2 (en) * 2014-03-10 2019-09-10 The Boeing Company Dry ice draw through galley cooling
US11300022B2 (en) * 2015-08-14 2022-04-12 Jayant Jatkar Method and system for processing exhaust gas
US20180299193A1 (en) * 2017-04-12 2018-10-18 Tokitae Llc. Integrated Dry Ice Production and Storage System
US20190301679A1 (en) * 2018-03-27 2019-10-03 TOKITAE LLC, a limited liability company of the State of Delaware Dry ice compressor device
DE102018121531A1 (en) 2018-08-02 2020-02-06 CRYOTEC Anlagenbau GmbH Process for modifying solid carbon dioxide

Citations (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1644338A (en) * 1925-03-31 1927-10-04 Charles L Jones Discharging carbon dioxide
US1869346A (en) * 1929-12-28 1932-07-26 Crystal Carbonic Lab Apparatus for continuous production of carbon dioxide ice
US1937832A (en) * 1930-03-07 1933-12-05 Ralph H Mckee Deodorization of carbon dioxide
US1978508A (en) * 1932-04-22 1934-10-30 Gustave T Reich Process of repurifying carbon dioxide gas
US2108104A (en) * 1936-06-29 1938-02-15 Liquid Carbonic Corp Milk truck
US3084995A (en) * 1960-12-16 1963-04-09 Fmc Corp Process for storage of chlorine dioxide
US3214928A (en) * 1963-03-22 1965-11-02 Oberdorfer Karl Method and apparatus for freezing food products
US3341280A (en) * 1963-06-20 1967-09-12 Norda Essential Oil And Chemic Sterilization apparatus and method
US3842521A (en) * 1973-03-07 1974-10-22 G Faldi Submersible dredging pump and shovel arrangement with suspension and towing means therefor
US3897210A (en) * 1971-05-07 1975-07-29 Bacfree Ind Inc Method and apparatus for sterilizing particulate material
US4044226A (en) * 1975-07-18 1977-08-23 Bausch & Lomb Incorporated Apparatus for disinfection of hydrophilic contact lenses
US4133638A (en) * 1975-11-14 1979-01-09 The Boots Company Limited Method of sterilizing powders in a fluidized bed
US4233323A (en) * 1978-11-08 1980-11-11 Boris Sway Method for tenderizing and/or pasteurizing meat
US4256574A (en) * 1979-09-12 1981-03-17 Sterling Drug Inc. Ozone disinfection system
US4366125A (en) * 1979-11-27 1982-12-28 Dai Nippon Insatsu Kabushiki Kaisha Sterilization apparatus and process utilizing synergistic effect of combining hydrogen peroxide and ultra-violet-ray sterilization
US4460395A (en) * 1983-01-18 1984-07-17 The Pritchard Corporation Method and apparatus for producing food grade carbon dioxide
US4517159A (en) * 1983-07-05 1985-05-14 Karlson Eskil L Sterilizer
US4549477A (en) * 1984-09-10 1985-10-29 Mccabe Jr Barkman C Ozone treatment system for food
US4640323A (en) * 1985-09-27 1987-02-03 Ram Automotive Company Portable system for filling bottles with nitrous oxide
US4654217A (en) * 1985-04-24 1987-03-31 Tadaaki Sakai Process for quick-freezing of meat
US4657758A (en) * 1984-01-27 1987-04-14 Oral Research Laboratories, Inc. Dental rinse
US4689963A (en) * 1986-07-02 1987-09-01 Tadaaki Sakai Method of freezing foods
US4818548A (en) * 1985-07-11 1989-04-04 Wilson Foods Corporation Method of treating fresh meat cuts
US4827727A (en) * 1988-02-08 1989-05-09 Caracciolo Louis D Carcass chiller and sterilizer
US4827965A (en) * 1986-08-22 1989-05-09 Norgren Martonair Limited Nitrogen/carbon dioxide mixing valves
JPH01131865A (en) * 1987-08-19 1989-05-24 Ozo Company Limited Kk Ice composition
US4849237A (en) * 1987-10-30 1989-07-18 Hurst William D Method for sanitizing poultry carcasses in a poultry processing plant utilizing ozonated water
US4867918A (en) * 1987-12-30 1989-09-19 Union Carbide Corporation Gas dispersion process and system
US4898679A (en) * 1989-02-01 1990-02-06 Seymour Siegel Method and apparatus for obtaining ozone saturated water
US4968520A (en) * 1988-03-28 1990-11-06 Swift-Eckrich, Inc. Freezing of food products
US5011699A (en) * 1989-09-07 1991-04-30 Japan Food Industry Association Inc. Process for sterilizing food stuffs
US5013366A (en) * 1988-12-07 1991-05-07 Hughes Aircraft Company Cleaning process using phase shifting of dense phase gases
US5020303A (en) * 1989-08-03 1991-06-04 Cmb Foodcan Plc Machine for filling containers with a food product
JPH03230066A (en) * 1990-02-06 1991-10-14 Showa Netsugaku Kogyo Kk Method for making ice containing ozone
US5059152A (en) * 1991-01-31 1991-10-22 The Boc Group, Inc. Animal carcass injection system
JPH03244984A (en) * 1990-02-21 1991-10-31 Akua Pia:Kk Antiseptic ice
US5087466A (en) * 1987-03-19 1992-02-11 Compagnie Des Eaux Et De L'ozone Process and device for treating animal flesh, particularly fish, for the purpose of removing color and odor
US5168717A (en) * 1991-11-13 1992-12-08 General American Transportation Corporation CO2 cooled railcar
US5184471A (en) * 1991-07-08 1993-02-09 Ocs Industries, Inc. Food products chiller and method of using the same
US5227184A (en) * 1987-10-30 1993-07-13 American Water Purification, Inc. Method for sanitizing food products
US5281428A (en) * 1993-03-31 1994-01-25 Morgan Arthur I Method and apparatus for treating and packaging raw meat
US5344622A (en) * 1993-04-03 1994-09-06 Cyclo3 pss Medical Systems, Inc. Ozone sterilization system vapor humidification component with disposable water source
US5352467A (en) * 1987-09-08 1994-10-04 Pakor, Inc. In situ method for processing a perishable product
US5389337A (en) * 1991-10-18 1995-02-14 Novesol, S.L. Method for producing a preservative for food products
US5405631A (en) * 1994-02-23 1995-04-11 Rosenthal; Richard Apparatus and method for sanitizing fruits
US5426948A (en) * 1994-09-26 1995-06-27 Hyde, Jr.; Charles M. Multiform solid carbon dioxide extruder
US5433967A (en) * 1990-08-06 1995-07-18 Kateman Family Limited Partnership Method for producing and dispensing aerated or blended food products
US5514345A (en) * 1994-03-11 1996-05-07 Ozact, Inc. Method and apparatus for disinfecting an enclosed space
US5533341A (en) * 1995-06-07 1996-07-09 Air Liquide America Corporation Apparatus and method for producing and injecting sterile cryogenic liquids
US5549922A (en) * 1989-04-24 1996-08-27 Juchem Gmbh Method of making flour-containing edible semifinished products
US5597599A (en) * 1987-09-08 1997-01-28 Pakor, Inc. Method for processing a perishable product
US5607518A (en) * 1995-02-22 1997-03-04 Ciba Geigy Corporation Methods of deblocking, extracting and cleaning polymeric articles with supercritical fluids
US5693252A (en) * 1991-06-17 1997-12-02 Rio Linda Chemical Co., Inc. Generation of chlorine dioxide in a non-aqueous medium
US5700505A (en) * 1995-12-28 1997-12-23 Mei Research, Inc. Method of improving head rice yield
US5703009A (en) * 1993-10-04 1997-12-30 Laboratories Goemar S.A. Method and system for the treatment of seeds and bulbs with ozone
US5749232A (en) * 1996-12-18 1998-05-12 Air Liquide America Corporation Apparatus and method for producing and injecting sterile cryogenic liquids
US5756046A (en) * 1993-06-15 1998-05-26 Commonwealth Scientific And Industrial Research Organisation Fumigation of particulate commodities
US5783242A (en) * 1995-01-27 1998-07-21 Mba Consultant, Inc. Method for treating foodstuffs
US5879732A (en) * 1996-09-10 1999-03-09 Boc Group, Inc. Food processing method
US5902595A (en) * 1996-07-29 1999-05-11 Effcon, Inc. Pesticidal composition and method of use
US6056918A (en) * 1997-08-15 2000-05-02 Tetra Laval Holdings & Finance, Sa Method and apparatus for the sterilization of a carton
US6066348A (en) * 1998-09-23 2000-05-23 American Air Liquide Inc. Method of disinfecting a foodstuff using gaseous ozone
US6086833A (en) * 1997-09-08 2000-07-11 Air Liquide America Corporation Process and equipment for sanitizing and packaging food using ozone
US6099396A (en) * 1997-03-14 2000-08-08 Eco-Snow Systems, Inc. Carbon dioxide jet spray pallet cleaning system
US6167711B1 (en) * 1999-04-16 2001-01-02 Restaurant Technology, Inc. Sanitized ice transportation system and method
US6209591B1 (en) * 1999-02-02 2001-04-03 Steuben Foods, Inc. Apparatus and method for providing container filling in an aseptic processing apparatus
US6210730B1 (en) * 1987-09-08 2001-04-03 Jerry L. Mitchell Method for treatment of containerized foods
US6224930B1 (en) * 1995-12-20 2001-05-01 Vaporex Pty Ltd. Method and apparatus for the application of volatile substances conveyed in carrier gas
US6265006B1 (en) * 1997-08-22 2001-07-24 Vaporex Pty Ltd Method and apparatus for applying volatile substances to materials
US6334328B1 (en) * 1999-03-12 2002-01-01 Imi Cornelius Inc. Sanitary ice making and dispensing apparatus
US20020025364A1 (en) * 2000-03-10 2002-02-28 Stephane Audy Food disinfection using ozone
US6436445B1 (en) * 1999-03-26 2002-08-20 Ecolab Inc. Antimicrobial and antiviral compositions containing an oxidizing species
US6458398B1 (en) * 1999-10-18 2002-10-01 Eco Pure Food Safety Systems, Inc. Cold water disinfection of foods
US20030003202A1 (en) * 2001-06-28 2003-01-02 American Air Liquide Inc. And L`Air Liquide Method of preserving and disinfecting a food commodity
US6506428B1 (en) * 2000-06-12 2003-01-14 Lancer Ice Link, Llc Ozone cleaning and sanitation method and apparatus for ice and ice conveyance systems
US6517731B2 (en) * 2000-06-16 2003-02-11 Fantom Technologies Inc. Ozonation process
US20030059505A1 (en) * 2001-09-18 2003-03-27 Yousef Ahmed E. Methods for decontaminating shell eggs
US6666030B2 (en) * 2001-05-30 2003-12-23 Permelec Electrode Ltd. Ice composition containing hydrogen peroxide and method of storing perishable food
US20040093895A1 (en) * 2002-08-20 2004-05-20 Schreiber John E. Method of improving the biocidal efficacy of dry ice
US6777012B2 (en) * 2000-10-20 2004-08-17 Blane E. Olson Seafood preservation process
US20050059505A1 (en) * 2003-08-19 2005-03-17 Montalembert Bernard De Training device fitted with a wheel for a golfer
US6962714B2 (en) * 2002-08-06 2005-11-08 Ecolab, Inc. Critical fluid antimicrobial compositions and their use and generation
US20050260311A1 (en) * 2002-06-03 2005-11-24 Garwood Anthony J Decontamination methods for meat using carbonic acid at high pressures
US20050268646A1 (en) * 2002-08-20 2005-12-08 Yuan James T Novel biological treating agent
US20050276723A1 (en) * 2004-06-15 2005-12-15 Meenakshi Sundaram Aseptic sterilant using ozone in liquid carbon dioxide
US7060301B2 (en) * 2001-07-13 2006-06-13 Ecolab Inc. In situ mono-or diester dicarboxylate compositions
US20060168999A1 (en) * 2002-08-20 2006-08-03 Fisher Steven A Novel method of dosing liquids with pressurized ozone
US20070237671A1 (en) * 2005-08-29 2007-10-11 Yuan James T Novel method of sanitizing target items using a moist sanitizing gas

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144513B2 (en) 1971-09-22 1976-11-29
JPS6075267A (en) 1983-09-28 1985-04-27 Mitsuru Tsuchikura Disinfecting sterilizer useful for dry ice
JP2651454B2 (en) * 1989-05-18 1997-09-10 株式会社アサカ Tracking error detector of multi-beam optical disk drive
JP2581620B2 (en) 1991-04-20 1997-02-12 大明金属工業株式会社 Solid oxidizer containing ozone
JPH07102240A (en) 1991-04-20 1995-04-18 Hirohito Kawahara Solid oxidizing agent containing ozone and chlorine
DE69310463T3 (en) 1992-04-03 2001-06-07 Air Liquide METHOD FOR IMPROVING THE FLAVOR OF STORED BEVERAGES
JP4137200B2 (en) 1997-10-08 2008-08-20 三菱化学フーズ株式会社 Dry ice containing allyl isothiocyanate and method for producing the same
JP2001213701A (en) 2000-01-31 2001-08-07 Ekika Tansan Kk Essential oil containing dry ice
ES2172409B2 (en) 2000-07-07 2003-06-16 Presedo Jesus Manuel Taboada EQUIPMENT FOR OBTAINING OZONIZED WASTE WATER TO BE USED AS A COOLING AND MANAGEMENT MEANS OF FISHING PRODUCTS.

Patent Citations (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1644338A (en) * 1925-03-31 1927-10-04 Charles L Jones Discharging carbon dioxide
US1869346A (en) * 1929-12-28 1932-07-26 Crystal Carbonic Lab Apparatus for continuous production of carbon dioxide ice
US1937832A (en) * 1930-03-07 1933-12-05 Ralph H Mckee Deodorization of carbon dioxide
US1978508A (en) * 1932-04-22 1934-10-30 Gustave T Reich Process of repurifying carbon dioxide gas
US2108104A (en) * 1936-06-29 1938-02-15 Liquid Carbonic Corp Milk truck
US3084995A (en) * 1960-12-16 1963-04-09 Fmc Corp Process for storage of chlorine dioxide
US3214928A (en) * 1963-03-22 1965-11-02 Oberdorfer Karl Method and apparatus for freezing food products
US3341280A (en) * 1963-06-20 1967-09-12 Norda Essential Oil And Chemic Sterilization apparatus and method
US3897210A (en) * 1971-05-07 1975-07-29 Bacfree Ind Inc Method and apparatus for sterilizing particulate material
US3842521A (en) * 1973-03-07 1974-10-22 G Faldi Submersible dredging pump and shovel arrangement with suspension and towing means therefor
US4044226A (en) * 1975-07-18 1977-08-23 Bausch & Lomb Incorporated Apparatus for disinfection of hydrophilic contact lenses
US4133638A (en) * 1975-11-14 1979-01-09 The Boots Company Limited Method of sterilizing powders in a fluidized bed
US4233323A (en) * 1978-11-08 1980-11-11 Boris Sway Method for tenderizing and/or pasteurizing meat
US4256574A (en) * 1979-09-12 1981-03-17 Sterling Drug Inc. Ozone disinfection system
US4366125A (en) * 1979-11-27 1982-12-28 Dai Nippon Insatsu Kabushiki Kaisha Sterilization apparatus and process utilizing synergistic effect of combining hydrogen peroxide and ultra-violet-ray sterilization
US4460395A (en) * 1983-01-18 1984-07-17 The Pritchard Corporation Method and apparatus for producing food grade carbon dioxide
US4517159A (en) * 1983-07-05 1985-05-14 Karlson Eskil L Sterilizer
US4657758A (en) * 1984-01-27 1987-04-14 Oral Research Laboratories, Inc. Dental rinse
US4549477A (en) * 1984-09-10 1985-10-29 Mccabe Jr Barkman C Ozone treatment system for food
US4654217A (en) * 1985-04-24 1987-03-31 Tadaaki Sakai Process for quick-freezing of meat
US4818548A (en) * 1985-07-11 1989-04-04 Wilson Foods Corporation Method of treating fresh meat cuts
US4640323A (en) * 1985-09-27 1987-02-03 Ram Automotive Company Portable system for filling bottles with nitrous oxide
US4689963A (en) * 1986-07-02 1987-09-01 Tadaaki Sakai Method of freezing foods
US4827965A (en) * 1986-08-22 1989-05-09 Norgren Martonair Limited Nitrogen/carbon dioxide mixing valves
US5087466A (en) * 1987-03-19 1992-02-11 Compagnie Des Eaux Et De L'ozone Process and device for treating animal flesh, particularly fish, for the purpose of removing color and odor
JPH01131865A (en) * 1987-08-19 1989-05-24 Ozo Company Limited Kk Ice composition
US5597599A (en) * 1987-09-08 1997-01-28 Pakor, Inc. Method for processing a perishable product
US6210730B1 (en) * 1987-09-08 2001-04-03 Jerry L. Mitchell Method for treatment of containerized foods
US5352467A (en) * 1987-09-08 1994-10-04 Pakor, Inc. In situ method for processing a perishable product
US4849237A (en) * 1987-10-30 1989-07-18 Hurst William D Method for sanitizing poultry carcasses in a poultry processing plant utilizing ozonated water
US5227184A (en) * 1987-10-30 1993-07-13 American Water Purification, Inc. Method for sanitizing food products
US4867918A (en) * 1987-12-30 1989-09-19 Union Carbide Corporation Gas dispersion process and system
US4827727A (en) * 1988-02-08 1989-05-09 Caracciolo Louis D Carcass chiller and sterilizer
US4968520A (en) * 1988-03-28 1990-11-06 Swift-Eckrich, Inc. Freezing of food products
US5013366A (en) * 1988-12-07 1991-05-07 Hughes Aircraft Company Cleaning process using phase shifting of dense phase gases
US4898679A (en) * 1989-02-01 1990-02-06 Seymour Siegel Method and apparatus for obtaining ozone saturated water
US5549922A (en) * 1989-04-24 1996-08-27 Juchem Gmbh Method of making flour-containing edible semifinished products
US5020303A (en) * 1989-08-03 1991-06-04 Cmb Foodcan Plc Machine for filling containers with a food product
US5011699A (en) * 1989-09-07 1991-04-30 Japan Food Industry Association Inc. Process for sterilizing food stuffs
JPH03230066A (en) * 1990-02-06 1991-10-14 Showa Netsugaku Kogyo Kk Method for making ice containing ozone
JPH03244984A (en) * 1990-02-21 1991-10-31 Akua Pia:Kk Antiseptic ice
US5433967A (en) * 1990-08-06 1995-07-18 Kateman Family Limited Partnership Method for producing and dispensing aerated or blended food products
US5059152A (en) * 1991-01-31 1991-10-22 The Boc Group, Inc. Animal carcass injection system
US5693252A (en) * 1991-06-17 1997-12-02 Rio Linda Chemical Co., Inc. Generation of chlorine dioxide in a non-aqueous medium
US5184471A (en) * 1991-07-08 1993-02-09 Ocs Industries, Inc. Food products chiller and method of using the same
US5389337A (en) * 1991-10-18 1995-02-14 Novesol, S.L. Method for producing a preservative for food products
US5168717A (en) * 1991-11-13 1992-12-08 General American Transportation Corporation CO2 cooled railcar
US5281428A (en) * 1993-03-31 1994-01-25 Morgan Arthur I Method and apparatus for treating and packaging raw meat
US5344622A (en) * 1993-04-03 1994-09-06 Cyclo3 pss Medical Systems, Inc. Ozone sterilization system vapor humidification component with disposable water source
US5756046A (en) * 1993-06-15 1998-05-26 Commonwealth Scientific And Industrial Research Organisation Fumigation of particulate commodities
US5703009A (en) * 1993-10-04 1997-12-30 Laboratories Goemar S.A. Method and system for the treatment of seeds and bulbs with ozone
US5405631A (en) * 1994-02-23 1995-04-11 Rosenthal; Richard Apparatus and method for sanitizing fruits
US5514345A (en) * 1994-03-11 1996-05-07 Ozact, Inc. Method and apparatus for disinfecting an enclosed space
US5426948A (en) * 1994-09-26 1995-06-27 Hyde, Jr.; Charles M. Multiform solid carbon dioxide extruder
US5783242A (en) * 1995-01-27 1998-07-21 Mba Consultant, Inc. Method for treating foodstuffs
US5607518A (en) * 1995-02-22 1997-03-04 Ciba Geigy Corporation Methods of deblocking, extracting and cleaning polymeric articles with supercritical fluids
US5533341A (en) * 1995-06-07 1996-07-09 Air Liquide America Corporation Apparatus and method for producing and injecting sterile cryogenic liquids
US6224930B1 (en) * 1995-12-20 2001-05-01 Vaporex Pty Ltd. Method and apparatus for the application of volatile substances conveyed in carrier gas
US5700505A (en) * 1995-12-28 1997-12-23 Mei Research, Inc. Method of improving head rice yield
US5902595A (en) * 1996-07-29 1999-05-11 Effcon, Inc. Pesticidal composition and method of use
US5879732A (en) * 1996-09-10 1999-03-09 Boc Group, Inc. Food processing method
US5749232A (en) * 1996-12-18 1998-05-12 Air Liquide America Corporation Apparatus and method for producing and injecting sterile cryogenic liquids
US6099396A (en) * 1997-03-14 2000-08-08 Eco-Snow Systems, Inc. Carbon dioxide jet spray pallet cleaning system
US6056918A (en) * 1997-08-15 2000-05-02 Tetra Laval Holdings & Finance, Sa Method and apparatus for the sterilization of a carton
US6265006B1 (en) * 1997-08-22 2001-07-24 Vaporex Pty Ltd Method and apparatus for applying volatile substances to materials
US6086833A (en) * 1997-09-08 2000-07-11 Air Liquide America Corporation Process and equipment for sanitizing and packaging food using ozone
US6066348A (en) * 1998-09-23 2000-05-23 American Air Liquide Inc. Method of disinfecting a foodstuff using gaseous ozone
US6209591B1 (en) * 1999-02-02 2001-04-03 Steuben Foods, Inc. Apparatus and method for providing container filling in an aseptic processing apparatus
US6334328B1 (en) * 1999-03-12 2002-01-01 Imi Cornelius Inc. Sanitary ice making and dispensing apparatus
US6436445B1 (en) * 1999-03-26 2002-08-20 Ecolab Inc. Antimicrobial and antiviral compositions containing an oxidizing species
US6167711B1 (en) * 1999-04-16 2001-01-02 Restaurant Technology, Inc. Sanitized ice transportation system and method
US6458398B1 (en) * 1999-10-18 2002-10-01 Eco Pure Food Safety Systems, Inc. Cold water disinfection of foods
US6485769B2 (en) * 2000-03-10 2002-11-26 Air Liquide Canada, Inc. Food disinfection using ozone
US20020025364A1 (en) * 2000-03-10 2002-02-28 Stephane Audy Food disinfection using ozone
US6506428B1 (en) * 2000-06-12 2003-01-14 Lancer Ice Link, Llc Ozone cleaning and sanitation method and apparatus for ice and ice conveyance systems
US6517731B2 (en) * 2000-06-16 2003-02-11 Fantom Technologies Inc. Ozonation process
US6777012B2 (en) * 2000-10-20 2004-08-17 Blane E. Olson Seafood preservation process
US6666030B2 (en) * 2001-05-30 2003-12-23 Permelec Electrode Ltd. Ice composition containing hydrogen peroxide and method of storing perishable food
US20030003202A1 (en) * 2001-06-28 2003-01-02 American Air Liquide Inc. And L`Air Liquide Method of preserving and disinfecting a food commodity
US7060301B2 (en) * 2001-07-13 2006-06-13 Ecolab Inc. In situ mono-or diester dicarboxylate compositions
US20030059505A1 (en) * 2001-09-18 2003-03-27 Yousef Ahmed E. Methods for decontaminating shell eggs
US20050260311A1 (en) * 2002-06-03 2005-11-24 Garwood Anthony J Decontamination methods for meat using carbonic acid at high pressures
US6962714B2 (en) * 2002-08-06 2005-11-08 Ecolab, Inc. Critical fluid antimicrobial compositions and their use and generation
US20050268646A1 (en) * 2002-08-20 2005-12-08 Yuan James T Novel biological treating agent
US20050276889A1 (en) * 2002-08-20 2005-12-15 Yuan James T Novel method of sanitizing food products and other target items
US20040093895A1 (en) * 2002-08-20 2004-05-20 Schreiber John E. Method of improving the biocidal efficacy of dry ice
US20060168999A1 (en) * 2002-08-20 2006-08-03 Fisher Steven A Novel method of dosing liquids with pressurized ozone
US7174744B2 (en) * 2002-08-20 2007-02-13 American Air Liquide, Inc. Method of improving the biocidal efficacy of dry ice
US20070107463A1 (en) * 2002-08-20 2007-05-17 Schreiber John E Method of Improving Biocidal Efficacy of Dry Ice
US20050059505A1 (en) * 2003-08-19 2005-03-17 Montalembert Bernard De Training device fitted with a wheel for a golfer
US20050276723A1 (en) * 2004-06-15 2005-12-15 Meenakshi Sundaram Aseptic sterilant using ozone in liquid carbon dioxide
US20070237671A1 (en) * 2005-08-29 2007-10-11 Yuan James T Novel method of sanitizing target items using a moist sanitizing gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070107463A1 (en) * 2002-08-20 2007-05-17 Schreiber John E Method of Improving Biocidal Efficacy of Dry Ice
US8282715B1 (en) * 2008-09-26 2012-10-09 Praxair Technology, Inc. Purifying carbon dioxide using activated carbon

Also Published As

Publication number Publication date
US20070107463A1 (en) 2007-05-17
US20040093895A1 (en) 2004-05-20
WO2004017770A1 (en) 2004-03-04
EP1531693A1 (en) 2005-05-25
US7174744B2 (en) 2007-02-13
US20050276889A1 (en) 2005-12-15
AU2003251089A1 (en) 2004-03-11
ES2395730T3 (en) 2013-02-14
EP1531693B1 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
US20090087528A1 (en) Method of Improving the Biocidal Efficacy of Dry Ice
US20050268646A1 (en) Novel biological treating agent
Niveditha et al. Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods-a review
Prabha et al. Ozone technology in food processing: A review
Ma et al. Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables
US6120731A (en) Frozen chlorine dioxide-containing composition and methods related thereto
Corbo et al. Fresh-cut fruits preservation: current status and emerging technologies
KR101730818B1 (en) Packing method of fresh-cut fruits using mixture gas and micro-perforation film
US20060019003A1 (en) Novel synergistic rapid-sanitization method
US20070059201A1 (en) Dry ice product containing antimicrobial formulation prepared using carrier chemicals
JP2006275441A (en) Hydrogen gas-containing ice and its making method, and fresh food preserving method
US20070237671A1 (en) Novel method of sanitizing target items using a moist sanitizing gas
US20080226496A1 (en) Systemic Method For Proximity Hygiene and Device With Low-Temperature Sanitizing Chamber in Particular For Food Products
Linton et al. Gas-/vapor-phase sanitation (decontamination) treatments
KR101848788B1 (en) Packing method of fresh-cut fruits preventing browning
AU611880B2 (en) Process for preservation of perishable packaged raw vegetable food products
KR101730815B1 (en) Packing method of fresh-cut fruits preventing browning
KR101848789B1 (en) Packing method of fresh-cut fruits using mixture gas and micro-perforation film
JP7082896B2 (en) How to sterilize food
JP3585172B2 (en) Fruit and vegetable freshness preservation system
CN1505934A (en) Grape preservative of chlorine dioxide
JP2581620B2 (en) Solid oxidizer containing ozone
CN105767173B (en) A kind of fresh-eating walnut antistaling agent and preparation method, fresh storage method
TW200914782A (en) Low-bacteria ice block with ozon
JPH01131865A (en) Ice composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: AIR LIQUIDE INDUSTRIAL U.S. L.P., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHREIBER, JOHN E.;BURGENER, DAVID;SMITH, MICHAEL F.;REEL/FRAME:021405/0686;SIGNING DATES FROM 20080707 TO 20080716

Owner name: AMERICAN AIR LIQUIDE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YUAN, JAMES T.C.;SUNDARAM, MEENAKSHI;BOURHIS, YVES P.;AND OTHERS;REEL/FRAME:021405/0664;SIGNING DATES FROM 20080703 TO 20080818

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION