US20090152695A1 - Semiconductor component and method of manufacture - Google Patents

Semiconductor component and method of manufacture Download PDF

Info

Publication number
US20090152695A1
US20090152695A1 US12/392,391 US39239109A US2009152695A1 US 20090152695 A1 US20090152695 A1 US 20090152695A1 US 39239109 A US39239109 A US 39239109A US 2009152695 A1 US2009152695 A1 US 2009152695A1
Authority
US
United States
Prior art keywords
leadframe
heatsink
semiconductor chip
ring
major surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/392,391
Inventor
Jeanne S. Pavio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HVVi Semiconductors Inc
Original Assignee
HVVi Semiconductors Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HVVi Semiconductors Inc filed Critical HVVi Semiconductors Inc
Priority to US12/392,391 priority Critical patent/US20090152695A1/en
Publication of US20090152695A1 publication Critical patent/US20090152695A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/047Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body the other leads being parallel to the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05666Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/166Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49121Beam lead frame or beam lead device

Definitions

  • the present disclosure relates, in general, to a semiconductor component and, more particularly, to a semiconductor component package.
  • semiconductor component manufacturers are constantly striving to increase the performance of their products, while decreasing their cost of manufacture.
  • a cost intensive area in the manufacture of semiconductor components is packaging the semiconductor chips that contain the semiconductor devices.
  • discrete semiconductor devices and integrated circuits are fabricated in wafers, which are then singulated or diced to produce semiconductor chips.
  • One or more semiconductor chips are placed in a package to protect them from environmental and physical stresses.
  • Packaging semiconductor chips increases the cost and complexity of manufacturing semiconductor components because the packaging designs must not only provide protection, they must also permit transmission of electrical signals to and from the semiconductor chips and removal of heat generated by the semiconductor chip.
  • FIG. 1 is a flow diagram for manufacturing a semiconductor component package in accordance with an embodiment
  • FIG. 2 is a top view of a heatsink in accordance with an embodiment
  • FIG. 3 is a top view of a leadframe over annular or ring-shaped regions of liquid crystal polymer in accordance with an embodiment
  • FIG. 4 is a top view of the leadframe of FIG. 2 coupled with a heatsink prior to singulation;
  • FIG. 5 is a cross-sectional side view of a singulated semiconductor packaging substrate in accordance with an embodiment
  • FIG. 6 is a cross-sectional side view of a semiconductor component including a semiconductor chip coupled to the singulated semiconductor packaging substrate of FIG. 5 in accordance with an embodiment
  • FIG. 7 is a top view of the semiconductor component of FIG. 6 ;
  • FIG. 8 is a cross-sectional side view of the semiconductor component of FIG. 6 having a lid mounted thereon;
  • FIG. 9 is a top view of a semiconductor component in accordance with another embodiment.
  • FIG. 10 is a cross-sectional side view of a semiconductor component in accordance with yet another embodiment.
  • FIG. 11 is a top view of a semiconductor component in accordance with yet another embodiment.
  • Coupled may mean that two or more elements are in direct physical and/or electrical contact.
  • coupled may also mean that two or more elements may not be in direct contact with each other, but yet may still cooperate and/or interact with each other.
  • “coupled” may mean that two or more elements do not contact each other but are indirectly joined together via another element or intermediate elements.
  • “On,” “overlying,” and “over” may be used to indicate that two or more elements are in direct physical contact with each other. However, “over” may also mean that two or more elements are not in direct contact with each other. For example, “over” may mean that one element is above another element but not contact each other and may have another element or elements in between the two elements.
  • the term “and/or” may mean “and”, it may mean “or”, it may mean “exclusive-or”, it may mean “one”, it may mean “some, but not all”, it may mean “neither”, and/or it may mean “both”, although the scope of claimed subject matter is not limited in this respect.
  • the terms “comprise” and “include,” along with their derivatives, may be used and are intended as synonyms for each other.
  • FIG. 1 is a flow diagram 10 for manufacturing a semiconductor component package in accordance with an embodiment.
  • a beginning step (reference number 12 ) a plurality of heatsinks are manufactured using, for example, an injection mold batch process.
  • each heatsink of the plurality of heatsinks has a quadrilateral shape. It should be understood that the shaped of each heatsink is not a limitation of the claimed subject matter. As those skilled in the art are aware, injection molding technology allows for the manufacture of heatsinks having various shapes and dimensions.
  • a leadframe having a plurality of leadframe leads is provided in another beginning step.
  • the leadframe is configured to have a plurality of sets of leadframe leads, where one set is associated with a single or corresponding heatsink.
  • each set is comprised of two leadframe leads that are spaced apart from each other and are for coupling to opposing sides of the quadrilaterally shaped heatsink using a liquid crystal polymer.
  • the liquid crystal polymer is dispensed or extruded on the leadframe to form a plurality of square shaped rings of polymeric material.
  • One of the square shaped rings corresponds to a set of the leadframe leads, wherein one side of the square shaped ring of polymer is on one leadframe lead and an opposite side of the square shaped ring of polymer is on the other leadframe lead of a set two leadframe leads (reference number 16 ).
  • Leadframe leads having liquid crystal polymer disposed thereon are further described with reference to FIG. 3 .
  • the liquid crystal material on the leadframe leads after dispensing the liquid crystal material on the leadframe leads, it is partially cured (reference number 18 ) by exposing it to heat at a temperature ranging from about 260° C. to about 280° C. for a time period ranging from about 20 minutes to about 60 minutes under low pressure.
  • a low pressure is a pressure of less than 1,000 pounds per square inch (psi), or less than 6895 kiloPascals (kPa).
  • the liquid crystal polymer is partially cured at a pressure of about 100 psi (i.e., about 689 kPa).
  • the partial curing step sufficiently solidifies the liquid crystal material so that it maintains its form while making the liquid crystal polymer tacky or sticky.
  • the liquid crystal material is positioned on or mated with the heatsinks (reference number 20 ). Because the partial curing step makes the liquid crystal polymer tacky, it sticks to the heatsink, thereby coupling the leadframe leads to the heatsink. Preferably, mating the liquid crystal material with the heatsinks occurs while the heatsinks are still positioned in the molds in which they were cast.
  • the leadframe leads and heatsinks are pressed together by applying pressure to one or both of them and the liquid crystal material is fully cured (reference number 22 ) by exposing it to heat at a temperature ranging from about 280° C. to about 300° C. for a time period ranging from about 20 minutes to about 60 minutes under low pressure, e.g., about 100 psi (i.e., about 689 kPa).
  • the plurality of heatsinks, leadframe leads, and liquid crystal polymer form a unitary packaging structure comprising a plurality of packaging substrates.
  • the unitary packaging structure is singulated into individual packaging substrates using, for example, sawing or laser cutting (reference number 24 ).
  • FIG. 2 is a top view of a bottom portion 50 of a mold assembly for forming heatsinks.
  • the mold assembly comprises top and bottom portions that are clamped together to form mold cavities into which a heatsink material such as, for example, copper, is injected to form the heatsinks.
  • Bottom portion 50 comprises a plurality of cavities 52 A- 52 D, 54 A- 54 D, 56 A- 56 D, and 58 A- 58 D for forming heatsinks.
  • a runner 60 having feeder lines 62 and 64 is coupled to cavities 52 A- 52 D.
  • Feeder line 62 couples runner 60 to cavities 52 A and 52 B and feeder line 64 couples runner 60 to cavities 52 C and 52 D.
  • a runner 66 having feeder lines 68 and 70 is coupled to cavities 54 A- 54 D.
  • Feeder line 68 couples runner 66 to cavities 54 A and 54 B and feeder line 70 couples runner 66 to cavities 54 C and 54 D.
  • a runner 72 having feeder lines 74 and 76 is coupled to cavities 56 A- 56 D.
  • Feeder line 74 couples runner 72 to cavities 56 A and 56 B and feeder line 76 couples runner 72 to cavities 56 C and 56 D.
  • a runner 78 having feeder lines 80 and 82 is coupled to cavities 58 A- 58 D.
  • Feeder line 80 couples runner 78 to cavities 58 A and 58 B and feeder line 82 couples runner 78 to cavities 58 C and 58 D.
  • heatsinks 88 are formed.
  • Techniques for forming heatsinks using processes such as injection molding are known to those skilled in the art.
  • heatsinks 88 After forming heatsinks 88 , the top portion of the mold assembly is removed and a heatsink 88 having a platform 89 remains in each of cavities 52 A- 52 D, 54 A- 54 D, 56 A- 56 D, and 58 A- 58 D. It should be noted that platform 89 is an optional feature of heatsink 88 and is formed by including a cavity in the top portion (not shown) of the mold assembly.
  • Leadframe 100 has a rail 102 coupled to a rail 104 by a plurality of ribs 106 which are substantially perpendicular to rails 102 and 104 .
  • Each rib 106 has a plurality of leadframe leads 128 and 130 that extend from and are perpendicular to ribs 106 .
  • Leadframe 100 is configured such that a lead 128 and a lead 130 form a pair of leads extending in opposite directions from a common portion of rib 106 .
  • each rib 128 is longer than each rib 130 .
  • leadframe 100 is a copper leadframe.
  • Other suitable materials for leadframe 100 include iron nickel alloys. Techniques for manufacturing leadframes are known to those skilled in the art.
  • a liquid crystal polymer is dispensed in annular or ring-shaped patterns to form a plurality of ring-shaped dielectric structures 132 over portions of a bottom side of leadframe 100 .
  • Ring-shaped dielectric structures 132 are thermally conductive, but electrically non-conductive. More particularly, each ring-shaped dielectric structure is a quadrilateral structure having opposing walls 134 and 136 and opposing walls 138 and 140 .
  • the portion of the liquid crystal polymer forming wall 134 is disposed on a central portion of leadframe lead 128 , i.e., the liquid crystal polymer is spaced apart from an end 129 of leadframe lead 128 .
  • the portion of the liquid crystal polymer forming wall 136 is disposed adjacent an end 131 of leadframe lead 130 .
  • end 131 of leadframe lead 130 is aligned with an edge of wall 136 .
  • the liquid crystal polymer is partially cured by exposing it to heat at a temperature ranging from about 260° C. to about 280° C. for a time period 10 ranging from about 20 minutes to about 60 minutes under low pressure, e.g., 100 psi (i.e., about 689 kPa).
  • the partial curing step sufficiently solidifies the liquid crystal material so that it maintains its form and makes it tacky or sticky.
  • leadframe 100 having the liquid crystal polymer disposed thereon is mated with heatsinks 88 .
  • heatsinks 88 positioned in bottom portion 50 of the mold assembly and leadframe 100 coupled to the plurality of heat sinks 88 .
  • the exposed portions of bottom portion 50 of the mold assembly and runners 60 , 66 , and 72 are cross-hatched, wherein the cross-hatches for bottom portion 50 rise from left to right and the cross-hatches for runners 60 , 66 , and 72 , rise from right to left, i.e., the cross-hatches are in different directions.
  • the liquid crystal polymer is cured by, for example, being heated to a temperature ranging from about 280° C. to about 300° C. for a time period ranging from about 20 minutes to about 60 minutes under low pressure, e.g., 100 psi (i.e., about 689 kPa). Curing the assembly forms a packaging structure or packaging frame 140 , i.e., the combination of leadframe 100 , liquid crystal polymer 132 , and heatsinks 88 .
  • packaging structure 140 is singulated by, for example, sawing or laser trimming, to form individual packaging substrates 142 .
  • What is shown in FIG. 5 is a cross-sectional side view of a singulated packaging substrate 142 .
  • Each singulated packaging substrate 142 comprises leadframe leads 128 and 130 coupled to a heatsink 88 through a ring-shaped liquid crystal polymer structure 132 .
  • heatsink 88 has a platform 89 that extends about 30 mils above major surface 90 and serves as a chip receiving area.
  • FIG. 6 is a cross-sectional side view of a semiconductor component 150 having a semiconductor chip 152 mounted to platform 89 in accordance with an embodiment. What is shown in FIG. 6 is a singulated packaging substrate 142 as described with reference to FIG. 5 having semiconductor chip 152 mounted thereon.
  • Semiconductor chip 152 has opposing surfaces 154 and 156 and is joined with platform 89 of singulated packaging substrate 142 .
  • semiconductor chip 152 is a Radio Frequency (RF) power transistor in which a gate structure 158 is formed on a peripheral portion 160 of semiconductor chip 152 and a source region 162 is formed from a central portion of semiconductor chip 152 .
  • Gate structure 158 comprises a gate dielectric disposed on surface 154 and a gate conductor disposed on the gate dielectric.
  • a contact 168 is formed on source region 162 .
  • Suitable metallization systems for contact 168 include a titanium-nickel-gold alloy or a titanium-nickel silver alloy. Contact 168 is soldered to platform 89 .
  • microstrip line 170 An end 172 of a microstrip line 170 is soldered to gate structure 158 and an opposing end 174 of microstrip line 170 is soldered to leadframe lead 128 .
  • Suitable materials for microstrip line 170 include gold plating on a ceramic substrate, gold plating over metal on a liquid crystal polymer substrate, or the like.
  • gate structure 158 is described as being coupled to leadframe lead 128 by bonding a microstrip line 170 to its bottom surface, this is not a limitation of the claimed subject matter.
  • gate structure 158 can be coupled either to the top or bottom of leadframe lead 128 by an electrically conductive clip or the like.
  • the means for coupling gate structure 158 to leadframe lead 128 matches the impedance at gate structure 158 to reduce reflections of the electrical signal.
  • a central portion of surface 156 serves as a drain 164 of RF power transistor 152 .
  • the central portion of semiconductor chip 152 is thinned from surface 156 into semiconductor chip 152 during wafer processing, thereby forming a lip 166 along the periphery of surface 156 . Thinning the central portion of semiconductor chip 152 improves the transfer of heat away from semiconductor chip 152 , but makes it more fragile. Forming lip 166 from back surface 156 increases the structural integrity of semiconductor chip 152 .
  • a contact 176 is formed on drain region 164 . Suitable metallization systems for contact 176 include an aluminum layer having a nickel-gold alloy disposed thereon or an aluminum layer having a nickel-silver alloy disposed thereon.
  • clip 180 comprises a copper-tungsten alloy.
  • the means for coupling leadframe lead 130 to drain contact 176 is not limited to being a clip.
  • the coupling means includes a solder connection, wirebonding techniques, lead bonding techniques, or the like.
  • FIG. 7 a top view of semiconductor component 150 is illustrated. What is shown in FIG. 7 is leadframe leads 128 and 130 coupled to square-shaped heatsink 88 through ring-shaped dielectric structure 132 .
  • Semiconductor chip 152 is soldered to platform 89 (shown in FIG. 6 ) and gate structure 158 is electrically coupled to leadframe lead 128 by microstrip line 170 .
  • Drain contact 176 is coupled to leadframe lead 130 by clip 180 .
  • FIG. 8 a cross-sectional side view of a semiconductor component 200 comprising a component 150 (shown in FIGS. 6 and 7 ) having a lid 202 in accordance with another embodiment is shown.
  • An adhesive material 204 such as, for example, an epoxy adhesive, is dispensed on the exposed portions of ring-shaped dielectric structure 132 and the portions of leadframes 128 and 130 over ring-shaped dielectric structure 132 .
  • Lid 202 has opposing surfaces 206 and 208 and is bonded to component 150 through adhesive material 204 .
  • lid 202 has a plurality of fins 210 extending from surface 208 .
  • Lid 202 and fins 210 may be formed as a unitary structure using a molding technique.
  • Suitable materials for lid 202 include aluminum nitride, copper, aluminum, metal matrix composite material, silicon carbide, or the like. It should be understood that the structure of fins 210 is not a limitation of claimed subject matter. Fins 210 may be comprised of a plurality of rectangular shaped extensions protruding from surface 208 , a plurality of pin-like structures protruding from surface 208 , a plurality of pyramidal-shaped structures protruding from surface 208 , or the like.
  • FIG. 9 illustrates a top view of a semiconductor component 250 comprising a packaging substrate 252 on which a plurality of semiconductor chips are mounted.
  • the plurality of semiconductor chips communicate with each other, thereby forming a system-in-a-package.
  • Packaging substrate 252 is similar to packaging substrate 142 described with reference to FIGS. 2-5 ; however, it has a plurality of semiconductor chips disposed thereon and a plurality of leads extending from each side rather than a single lead extending from each of two opposing sides of the heatsink.
  • the steps for manufacturing packaging substrate 252 are similar to those for manufacturing packaging substrate 142 , except that a plurality of leads are coupled to each side of the heatsink through the liquid crystal polymer.
  • Packaging substrate 252 includes a heatsink 254 having a quadrilateral shape that may be formed using a mold assembly and process similar to the mold assembly and process described with reference to FIG. 2 .
  • a leadframe having leads on which liquid crystal polymer is dispensed in an annular or ring-shaped pattern is provided.
  • the leadframe on which the liquid crystal polymer is dispensed is similar to leadframe 100 described with reference to FIG. 3 , except that the leadframe has five leadframe leads extending from each side rather than a single leadframe lead extending from each of two opposing sides.
  • Leadframe leads 256 - 260 and 266 - 270 extend from opposing sides of the leadframe and leadframe leads 261 - 265 and 271 - 275 extend from opposing sides of the leadframe.
  • leadframe 100 has two leadframe leads extending from opposing sides at each location having leadframe leads.
  • the number of leadframe leads is not a limitation of the claimed subject matter. In other words, there may be more than five leadframe leads extending from each side or fewer than five leadframe leads extending from each side. What's more, the number of leads extending from each leadframe side do not have to be the same. Thus, for example, a quadrilaterally shaped heatsink may have one side with three leadframe leads, two sides with four leadframe leads, and the fourth side with five leadframe leads.
  • the liquid crystal polymer forms a ring-shaped dielectric structure such as structure 278 over the bottom side of leadframe leads 256 - 275 .
  • leadframe leads 256 - 275 are shown as not extending over the edges of ring-shaped dielectric structure 278 and into its central portion, this is not a limitation of the claimed subject matter. It may be desirable for one or more of the ends of leadframe leads 256 - 275 to extend over the edges of ring-shaped dielectric structure 278 similar to leadframe leads 128 described with reference to FIG. 5 .
  • the liquid crystal polymer of ring-shaped dielectric structure 278 is partially cured at a temperature ranging from about 260° C. to about 280° C.
  • Leadframe leads 256275 and ring-shaped dielectric polymer structure 278 are mounted to heatsink 254 .
  • the liquid crystal polymer of dielectric structure 278 is cured at a temperature ranging from about 280° C. to about 300° C. for a time ranging from about 20 minutes to about 60 minutes under low pressure, e.g., about 100 psi (689 kPa).
  • the plurality of semiconductor chips mounted to heatsink 254 include an RF power transistor 280 , a switching device 282 , and a mixed signal integrated circuit 284 .
  • the backside or non-active side of each chip may be electrically coupled to heatsink 254 or the backsides of semiconductor chips 280 , 282 , and 284 may be coupled to heatsink 254 through an insulating material such as, for example, liquid crystal polymer.
  • Leadframe leads 256 - 275 are coupled to portions of semiconductor chips 280 , 282 , and 284 using, for example, wirebonds or clips.
  • leadframe leads 256 - 275 to couple to a semiconductor chip and to which bond pads (not shown) on the semiconductor chip is a design choice. It should be further understood that the chips may be coupled to each other by, for example, wirebonding. For the sake of clarity, the wirebonds have not been shown in FIG. 9 .
  • a lid such as, for example, lid 202
  • FIG. 10 a cross-sectional side view of a semiconductor component 300 in accordance with another embodiment is shown.
  • Semiconductor component 300 comprises a semiconductor chip 302 coupled to a heatsink 304 and a ball grid array substrate 306 having solder balls bonded to a back surface.
  • Semiconductor chip 302 has an active surface 308 on which bumped bond pads 310 are formed and a surface 312 suitable for mating with heatsink 304 .
  • Heatsink 304 comprises a base 314 having sidewalls 316 .
  • Base 314 has a chip mating surface 317 and a heat dissipation surface 318 .
  • heat dissipation surface 318 has a plurality of pyramidally shaped fins 320 extending therefrom.
  • heatsink 304 is formed by injection molding using techniques described with reference to FIG. 2 for making heatsink 88 ; however, the bottom portion of the mold assembly includes means for forming fins 320 .
  • Ball grid array substrate 306 has a top surface 330 having landing pads 332 and a bottom surface 334 having landing pads 336 .
  • Solder balls 338 are disposed on landing pads 336 .
  • Landing pads 332 are configured to mate with bumped bond pads 310 that are disposed on semiconductor chip 302 . It should be noted that FIG. 10 shows bumped bond pads 310 after bonding with corresponding landing pads 332 .
  • Liquid crystal polymer 322 is dispensed on top surface 330 of ball grid array substrate 306 .
  • Liquid crystal polymer 322 is partially cured at a temperature ranging from about 260° C. to about 280° C. for a time ranging from about 20 minutes to about 60 minutes under low pressure, e.g., about 100 psi (689 kPa).
  • the partially cured liquid crystal polymer 322 is mated with semiconductor chip 302 .
  • the partial curing leaves liquid crystal polymer 322 tacky which promotes adhesion with ball grid array substrate 306 .
  • Semiconductor chip 302 is pressed against ball grid array substrate 306 and the combination of the semiconductor chip 302 , liquid crystal polymer 322 , and ball grid array substrate 306 undergo a heat treatment.
  • the heat treatment bonds bumped bond pads 310 with landing pads 332 and cures liquid crystal polymer 322 , thereby forming semiconductor component 300 .
  • heatsink 304 also serves as a lid to provide protection from physical and environmental stresses.
  • Semiconductor component 350 includes a packaging substrate 352 having a semiconductor chip 353 mounted thereon.
  • Packaging substrate 352 includes a heatsink 354 having opposing sides 356 and 358 and opposing sides 360 and 362 .
  • heatsink 354 is shown as a quadrilaterally shaped structure, this is not a limitation of the claimed subject matter. Heatsink 354 can have other geometric shapes.
  • Packaging substrate 352 includes a plurality of leadframe leads 370 - 387 coupled to heatsink 354 through a thermally conductive liquid crystal polymer 364 .
  • leadframe leads 370 - 387 Prior to singulation, leadframe leads 370 - 387 are part of a leadframe (not shown) in which leadframe leads 370 - 374 and 379 - 383 are on opposing sides of the leadframe and leads 375 - 378 and 384 - 387 are on opposing sides of the leadframe.
  • the number of leads and the number of leads per side of packaging substrate 352 are not a limitation of the claimed subject matter.
  • Liquid crystal polymer 364 is preferably dispensed on leadframe leads 370 - 387 and partially cured by heating to a temperature ranging from about 260° C. to about 280° C. for a time ranging from about 20 minutes to about 60 minutes under low pressure, e.g., about 100 psi (689 kPa).
  • the partial curing leaves liquid crystal polymer 364 tacky or sticky.
  • the partially cured liquid crystal polymer 364 is mated with heatsink 354 . Because liquid crystal polymer 364 is tacky, it adheres to heatsink 354 .
  • Curing liquid crystal polymer 364 forms an assembly containing a plurality of packaging substrates 352 , wherein each packaging substrate includes leadframe leads, liquid crystal polymer 364 , and a heatsink 354 .
  • leadframe leads 370 - 387 are preferably flush with the sides of heatsink 354 , i.e., leadframe leads 370 - 374 are flush with side 356 , leadframe leads 375 - 378 are flush with side 362 , leadframe leads 384 - 387 are flush with side 360 , and leadframe leads 379 - 383 are flush with side 358 .
  • Semiconductor chip 353 is mounted on heatsink 354 .
  • the backside or non-active side of semiconductor chip 353 may be electrically coupled to heatsink 354 or it may be coupled to heatsink 354 through an insulating material such as, for example, liquid crystal polymer.
  • Leadframe leads 370 - 387 are coupled to bond pads 390 disposed on semiconductor chip 353 using, for example, wirebonds. It should be understood that the choice of which leadframe leads 370 - 387 to couple to which bond pads 390 is a design choice. For the sake of clarity, the wirebonds have not been shown in FIG. 11 .
  • a glob top material (not shown) over semiconductor chip 353 and leadframe leads 370 - 387 .
  • the glob top material can protect semiconductor chip 353 against mechanical and environmental stresses.
  • heatsink 354 has fins similar to those described with reference to heatsink 304 shown in FIG. 10 .
  • a lid (not shown) may be formed over semiconductor chip 353 , wherein a portion of the lid contacts a central portion of semiconductor chip 353 .
  • a semiconductor component and a method for manufacturing the semiconductor component have been provided.
  • a cost effective method for packaging a semiconductor chip is implemented using batch processing steps for forming the packaging substrate rather than using individual assembly steps.
  • Manufacture of semiconductor packages in accordance with one or more embodiments provides a high quality assembly that is repeatable.
  • various heatsinking finned structures for removing heat from the semiconductor devices may be implemented.

Abstract

A semiconductor component having a semiconductor chip mounted on a packaging substrate and a method for manufacturing the semiconductor component that uses batch processing steps for fabricating the packaging substrate. A heatsink is formed using an injection molding process. The heatsink has a front surface for mating with a semiconductor chip and a leadframe assembly. The heatsink also has a back surface from which a plurality of fins extend. The leadframe assembly includes a leadframe having leadframe leads extending from opposing sides of the leadframe to a central area of the leadframe. A liquid crystal polymer is disposed in a ring-shaped pattern on the leadframe leads. The liquid-crystal polymer is partially cured. The leadframe assembly is mounted on the front surface of the heatsink and the liquid crystal polymer is further cured to form a packaging assembly, which is then singulated into packaging substrates.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a divisional of U.S. application Ser. No. 11/958,889 filed Dec. 18, 2007, which in turn is a continuation of U.S. application Ser. No. 11/327,552 filed Jan. 6, 2006, now U.S. Pat. No. 7,335,534. Said application Ser. No. 11/958,889 and said application Ser. No. 11/327,552 are hereby incorporated herein by reference in their entireties.
  • TECHNICAL FIELD
  • The present disclosure relates, in general, to a semiconductor component and, more particularly, to a semiconductor component package.
  • BACKGROUND
  • Semiconductor component manufacturers are constantly striving to increase the performance of their products, while decreasing their cost of manufacture. A cost intensive area in the manufacture of semiconductor components is packaging the semiconductor chips that contain the semiconductor devices. As those skilled in the art are aware, discrete semiconductor devices and integrated circuits are fabricated in wafers, which are then singulated or diced to produce semiconductor chips. One or more semiconductor chips are placed in a package to protect them from environmental and physical stresses.
  • Packaging semiconductor chips increases the cost and complexity of manufacturing semiconductor components because the packaging designs must not only provide protection, they must also permit transmission of electrical signals to and from the semiconductor chips and removal of heat generated by the semiconductor chip.
  • DESCRIPTION OF THE DRAWING FIGURES
  • Claimed subject matter is particularly pointed out and distinctly claimed in the concluding portion of the specification. However, such subject matter may be understood by reference to the following detailed description when read with the accompanying drawings in which:
  • FIG. 1 is a flow diagram for manufacturing a semiconductor component package in accordance with an embodiment;
  • FIG. 2 is a top view of a heatsink in accordance with an embodiment;
  • FIG. 3 is a top view of a leadframe over annular or ring-shaped regions of liquid crystal polymer in accordance with an embodiment;
  • FIG. 4 is a top view of the leadframe of FIG. 2 coupled with a heatsink prior to singulation;
  • FIG. 5 is a cross-sectional side view of a singulated semiconductor packaging substrate in accordance with an embodiment;
  • FIG. 6 is a cross-sectional side view of a semiconductor component including a semiconductor chip coupled to the singulated semiconductor packaging substrate of FIG. 5 in accordance with an embodiment;
  • FIG. 7 is a top view of the semiconductor component of FIG. 6;
  • FIG. 8 is a cross-sectional side view of the semiconductor component of FIG. 6 having a lid mounted thereon;
  • FIG. 9 is a top view of a semiconductor component in accordance with another embodiment;
  • FIG. 10 is a cross-sectional side view of a semiconductor component in accordance with yet another embodiment; and
  • FIG. 11 is a top view of a semiconductor component in accordance with yet another embodiment.
  • It will be appreciated that for simplicity and/or clarity of illustration, elements illustrated in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, if considered appropriate, reference numerals have been repeated among the figures to indicate corresponding and/or analogous elements.
  • DETAILED DESCRIPTION
  • In the following detailed description, numerous specific details are set forth to provide a thorough understanding of claimed subject matter. However, it will be understood by those skilled in the art that claimed subject matter may be practiced without these specific details. In other instances, well-known methods, procedures, components and/or circuits have not been described in detail.
  • In the following description and/or claims, the terms coupled and/or connected, along with their derivatives, may be used. In particular embodiments, connected may be used to indicate that two or more elements are in direct physical and/or electrical contact with each other. Coupled may mean that two or more elements are in direct physical and/or electrical contact. However, coupled may also mean that two or more elements may not be in direct contact with each other, but yet may still cooperate and/or interact with each other. For example, “coupled” may mean that two or more elements do not contact each other but are indirectly joined together via another element or intermediate elements. Finally, the terms “on,” “overlying,” and “over” may be used in the following description and claims. “On,” “overlying,” and “over” may be used to indicate that two or more elements are in direct physical contact with each other. However, “over” may also mean that two or more elements are not in direct contact with each other. For example, “over” may mean that one element is above another element but not contact each other and may have another element or elements in between the two elements. Furthermore, the term “and/or” may mean “and”, it may mean “or”, it may mean “exclusive-or”, it may mean “one”, it may mean “some, but not all”, it may mean “neither”, and/or it may mean “both”, although the scope of claimed subject matter is not limited in this respect. In the following description and/or claims, the terms “comprise” and “include,” along with their derivatives, may be used and are intended as synonyms for each other.
  • FIG. 1 is a flow diagram 10 for manufacturing a semiconductor component package in accordance with an embodiment. In a beginning step (reference number 12), a plurality of heatsinks are manufactured using, for example, an injection mold batch process. Typically, each heatsink of the plurality of heatsinks has a quadrilateral shape. It should be understood that the shaped of each heatsink is not a limitation of the claimed subject matter. As those skilled in the art are aware, injection molding technology allows for the manufacture of heatsinks having various shapes and dimensions. In another beginning step (reference number 14), a leadframe having a plurality of leadframe leads is provided. By way of example, the leadframe is configured to have a plurality of sets of leadframe leads, where one set is associated with a single or corresponding heatsink. In one embodiment, each set is comprised of two leadframe leads that are spaced apart from each other and are for coupling to opposing sides of the quadrilaterally shaped heatsink using a liquid crystal polymer. The liquid crystal polymer is dispensed or extruded on the leadframe to form a plurality of square shaped rings of polymeric material. One of the square shaped rings corresponds to a set of the leadframe leads, wherein one side of the square shaped ring of polymer is on one leadframe lead and an opposite side of the square shaped ring of polymer is on the other leadframe lead of a set two leadframe leads (reference number 16). Leadframe leads having liquid crystal polymer disposed thereon are further described with reference to FIG. 3.
  • In accordance with one embodiment, after dispensing the liquid crystal material on the leadframe leads, it is partially cured (reference number 18) by exposing it to heat at a temperature ranging from about 260° C. to about 280° C. for a time period ranging from about 20 minutes to about 60 minutes under low pressure. A low pressure is a pressure of less than 1,000 pounds per square inch (psi), or less than 6895 kiloPascals (kPa). By way of example, the liquid crystal polymer is partially cured at a pressure of about 100 psi (i.e., about 689 kPa). The partial curing step sufficiently solidifies the liquid crystal material so that it maintains its form while making the liquid crystal polymer tacky or sticky.
  • The liquid crystal material is positioned on or mated with the heatsinks (reference number 20). Because the partial curing step makes the liquid crystal polymer tacky, it sticks to the heatsink, thereby coupling the leadframe leads to the heatsink. Preferably, mating the liquid crystal material with the heatsinks occurs while the heatsinks are still positioned in the molds in which they were cast.
  • The leadframe leads and heatsinks are pressed together by applying pressure to one or both of them and the liquid crystal material is fully cured (reference number 22) by exposing it to heat at a temperature ranging from about 280° C. to about 300° C. for a time period ranging from about 20 minutes to about 60 minutes under low pressure, e.g., about 100 psi (i.e., about 689 kPa). After fully curing the liquid crystal polymer, the plurality of heatsinks, leadframe leads, and liquid crystal polymer form a unitary packaging structure comprising a plurality of packaging substrates. The unitary packaging structure is singulated into individual packaging substrates using, for example, sawing or laser cutting (reference number 24).
  • FIG. 2 is a top view of a bottom portion 50 of a mold assembly for forming heatsinks. It should be understood that the mold assembly comprises top and bottom portions that are clamped together to form mold cavities into which a heatsink material such as, for example, copper, is injected to form the heatsinks. Bottom portion 50 comprises a plurality of cavities 52A-52D, 54A-54D, 56A-56D, and 58A-58D for forming heatsinks. A runner 60 having feeder lines 62 and 64 is coupled to cavities 52A-52D. Feeder line 62 couples runner 60 to cavities 52A and 52B and feeder line 64 couples runner 60 to cavities 52C and 52D. A runner 66 having feeder lines 68 and 70 is coupled to cavities 54A-54D. Feeder line 68 couples runner 66 to cavities 54A and 54B and feeder line 70 couples runner 66 to cavities 54C and 54D. A runner 72 having feeder lines 74 and 76 is coupled to cavities 56A-56D. Feeder line 74 couples runner 72 to cavities 56A and 56B and feeder line 76 couples runner 72 to cavities 56C and 56D. A runner 78 having feeder lines 80 and 82 is coupled to cavities 58A-58D. Feeder line 80 couples runner 78 to cavities 58A and 58B and feeder line 82 couples runner 78 to cavities 58C and 58D. After clamping a top portion (not shown) of a mold assembly with bottom portion 50 and injecting the heatsink material into the mold assembly, heatsinks 88 are formed. Techniques for forming heatsinks using processes such as injection molding are known to those skilled in the art.
  • After forming heatsinks 88, the top portion of the mold assembly is removed and a heatsink 88 having a platform 89 remains in each of cavities 52A-52D, 54A-54D, 56A-56D, and 58A-58D. It should be noted that platform 89 is an optional feature of heatsink 88 and is formed by including a cavity in the top portion (not shown) of the mold assembly.
  • Referring now to FIG. 3, a top view of a leadframe 100 over annular or ring-shaped regions 132 of liquid crystal polymer is illustrated. Leadframe 100 has a rail 102 coupled to a rail 104 by a plurality of ribs 106 which are substantially perpendicular to rails 102 and 104. Each rib 106 has a plurality of leadframe leads 128 and 130 that extend from and are perpendicular to ribs 106. Leadframe 100 is configured such that a lead 128 and a lead 130 form a pair of leads extending in opposite directions from a common portion of rib 106. In accordance with one embodiment, each rib 128 is longer than each rib 130. Preferably leadframe 100 is a copper leadframe. Other suitable materials for leadframe 100 include iron nickel alloys. Techniques for manufacturing leadframes are known to those skilled in the art.
  • A liquid crystal polymer is dispensed in annular or ring-shaped patterns to form a plurality of ring-shaped dielectric structures 132 over portions of a bottom side of leadframe 100. Ring-shaped dielectric structures 132 are thermally conductive, but electrically non-conductive. More particularly, each ring-shaped dielectric structure is a quadrilateral structure having opposing walls 134 and 136 and opposing walls 138 and 140. The portion of the liquid crystal polymer forming wall 134 is disposed on a central portion of leadframe lead 128, i.e., the liquid crystal polymer is spaced apart from an end 129 of leadframe lead 128. The portion of the liquid crystal polymer forming wall 136 is disposed adjacent an end 131 of leadframe lead 130. Preferably, end 131 of leadframe lead 130 is aligned with an edge of wall 136. However, the positioning of wall 136 on leadframe leads 128 and 130 are not limitations of the claimed subject matter. The liquid crystal polymer is partially cured by exposing it to heat at a temperature ranging from about 260° C. to about 280° C. for a time period 10 ranging from about 20 minutes to about 60 minutes under low pressure, e.g., 100 psi (i.e., about 689 kPa). As described with reference to FIG. 1, the partial curing step sufficiently solidifies the liquid crystal material so that it maintains its form and makes it tacky or sticky.
  • Referring now to FIG. 4, leadframe 100 having the liquid crystal polymer disposed thereon is mated with heatsinks 88. What is shown in FIG. 4 are heatsinks 88 positioned in bottom portion 50 of the mold assembly and leadframe 100 coupled to the plurality of heat sinks 88. For the sake of clarity, the exposed portions of bottom portion 50 of the mold assembly and runners 60, 66, and 72 are cross-hatched, wherein the cross-hatches for bottom portion 50 rise from left to right and the cross-hatches for runners 60, 66, and 72, rise from right to left, i.e., the cross-hatches are in different directions. Pressure is applied to either the leadframe, the heatsink, or both, and the liquid crystal polymer is cured by, for example, being heated to a temperature ranging from about 280° C. to about 300° C. for a time period ranging from about 20 minutes to about 60 minutes under low pressure, e.g., 100 psi (i.e., about 689 kPa). Curing the assembly forms a packaging structure or packaging frame 140, i.e., the combination of leadframe 100, liquid crystal polymer 132, and heatsinks 88.
  • Referring now to FIG. 5, packaging structure 140 is singulated by, for example, sawing or laser trimming, to form individual packaging substrates 142. What is shown in FIG. 5 is a cross-sectional side view of a singulated packaging substrate 142. Each singulated packaging substrate 142 comprises leadframe leads 128 and 130 coupled to a heatsink 88 through a ring-shaped liquid crystal polymer structure 132. Optionally, heatsink 88 has a platform 89 that extends about 30 mils above major surface 90 and serves as a chip receiving area.
  • FIG. 6 is a cross-sectional side view of a semiconductor component 150 having a semiconductor chip 152 mounted to platform 89 in accordance with an embodiment. What is shown in FIG. 6 is a singulated packaging substrate 142 as described with reference to FIG. 5 having semiconductor chip 152 mounted thereon.
  • Semiconductor chip 152 has opposing surfaces 154 and 156 and is joined with platform 89 of singulated packaging substrate 142. In accordance with one embodiment, semiconductor chip 152 is a Radio Frequency (RF) power transistor in which a gate structure 158 is formed on a peripheral portion 160 of semiconductor chip 152 and a source region 162 is formed from a central portion of semiconductor chip 152. Gate structure 158 comprises a gate dielectric disposed on surface 154 and a gate conductor disposed on the gate dielectric. A contact 168 is formed on source region 162. Suitable metallization systems for contact 168 include a titanium-nickel-gold alloy or a titanium-nickel silver alloy. Contact 168 is soldered to platform 89. An end 172 of a microstrip line 170 is soldered to gate structure 158 and an opposing end 174 of microstrip line 170 is soldered to leadframe lead 128. Suitable materials for microstrip line 170 include gold plating on a ceramic substrate, gold plating over metal on a liquid crystal polymer substrate, or the like. Although gate structure 158 is described as being coupled to leadframe lead 128 by bonding a microstrip line 170 to its bottom surface, this is not a limitation of the claimed subject matter. For example, gate structure 158 can be coupled either to the top or bottom of leadframe lead 128 by an electrically conductive clip or the like. Preferably, the means for coupling gate structure 158 to leadframe lead 128 matches the impedance at gate structure 158 to reduce reflections of the electrical signal.
  • A central portion of surface 156 serves as a drain 164 of RF power transistor 152. Optionally, the central portion of semiconductor chip 152 is thinned from surface 156 into semiconductor chip 152 during wafer processing, thereby forming a lip 166 along the periphery of surface 156. Thinning the central portion of semiconductor chip 152 improves the transfer of heat away from semiconductor chip 152, but makes it more fragile. Forming lip 166 from back surface 156 increases the structural integrity of semiconductor chip 152. A contact 176 is formed on drain region 164. Suitable metallization systems for contact 176 include an aluminum layer having a nickel-gold alloy disposed thereon or an aluminum layer having a nickel-silver alloy disposed thereon.
  • An end 182 of a clip 180 is soldered to drain contact 176 and an end 184 of clip 180 is soldered to leadframe lead 130. By way of example, clip 180 comprises a copper-tungsten alloy. The means for coupling leadframe lead 130 to drain contact 176 is not limited to being a clip. For example, the coupling means includes a solder connection, wirebonding techniques, lead bonding techniques, or the like.
  • Briefly referring to FIG. 7, a top view of semiconductor component 150 is illustrated. What is shown in FIG. 7 is leadframe leads 128 and 130 coupled to square-shaped heatsink 88 through ring-shaped dielectric structure 132. Semiconductor chip 152 is soldered to platform 89 (shown in FIG. 6) and gate structure 158 is electrically coupled to leadframe lead 128 by microstrip line 170. Drain contact 176 is coupled to leadframe lead 130 by clip 180.
  • Referring now to FIG. 8, a cross-sectional side view of a semiconductor component 200 comprising a component 150 (shown in FIGS. 6 and 7) having a lid 202 in accordance with another embodiment is shown. An adhesive material 204 such as, for example, an epoxy adhesive, is dispensed on the exposed portions of ring-shaped dielectric structure 132 and the portions of leadframes 128 and 130 over ring-shaped dielectric structure 132. Lid 202 has opposing surfaces 206 and 208 and is bonded to component 150 through adhesive material 204. Optionally, lid 202 has a plurality of fins 210 extending from surface 208. Lid 202 and fins 210 may be formed as a unitary structure using a molding technique. Suitable materials for lid 202 include aluminum nitride, copper, aluminum, metal matrix composite material, silicon carbide, or the like. It should be understood that the structure of fins 210 is not a limitation of claimed subject matter. Fins 210 may be comprised of a plurality of rectangular shaped extensions protruding from surface 208, a plurality of pin-like structures protruding from surface 208, a plurality of pyramidal-shaped structures protruding from surface 208, or the like.
  • FIG. 9 illustrates a top view of a semiconductor component 250 comprising a packaging substrate 252 on which a plurality of semiconductor chips are mounted. The plurality of semiconductor chips communicate with each other, thereby forming a system-in-a-package. Packaging substrate 252 is similar to packaging substrate 142 described with reference to FIGS. 2-5; however, it has a plurality of semiconductor chips disposed thereon and a plurality of leads extending from each side rather than a single lead extending from each of two opposing sides of the heatsink. Thus, the steps for manufacturing packaging substrate 252 are similar to those for manufacturing packaging substrate 142, except that a plurality of leads are coupled to each side of the heatsink through the liquid crystal polymer. In addition, a platform such as platform 89 may be on a different portion of the heatsink or platform 89 may be absent from the heatsink. Packaging substrate 252 includes a heatsink 254 having a quadrilateral shape that may be formed using a mold assembly and process similar to the mold assembly and process described with reference to FIG. 2.
  • A leadframe having leads on which liquid crystal polymer is dispensed in an annular or ring-shaped pattern is provided. The leadframe on which the liquid crystal polymer is dispensed is similar to leadframe 100 described with reference to FIG. 3, except that the leadframe has five leadframe leads extending from each side rather than a single leadframe lead extending from each of two opposing sides. Leadframe leads 256-260 and 266-270 extend from opposing sides of the leadframe and leadframe leads 261-265 and 271-275 extend from opposing sides of the leadframe. Briefly referring to FIG. 3, leadframe 100 has two leadframe leads extending from opposing sides at each location having leadframe leads. It should be understood that the number of leadframe leads is not a limitation of the claimed subject matter. In other words, there may be more than five leadframe leads extending from each side or fewer than five leadframe leads extending from each side. What's more, the number of leads extending from each leadframe side do not have to be the same. Thus, for example, a quadrilaterally shaped heatsink may have one side with three leadframe leads, two sides with four leadframe leads, and the fourth side with five leadframe leads.
  • Referring again to FIG. 9, the liquid crystal polymer forms a ring-shaped dielectric structure such as structure 278 over the bottom side of leadframe leads 256-275. Although leadframe leads 256-275 are shown as not extending over the edges of ring-shaped dielectric structure 278 and into its central portion, this is not a limitation of the claimed subject matter. It may be desirable for one or more of the ends of leadframe leads 256-275 to extend over the edges of ring-shaped dielectric structure 278 similar to leadframe leads 128 described with reference to FIG. 5. Like packaging substrate 142, the liquid crystal polymer of ring-shaped dielectric structure 278 is partially cured at a temperature ranging from about 260° C. to about 280° C. for a time ranging from about 20 minutes to about 60 minutes. Leadframe leads 256275 and ring-shaped dielectric polymer structure 278 are mounted to heatsink 254. After mounting, the liquid crystal polymer of dielectric structure 278 is cured at a temperature ranging from about 280° C. to about 300° C. for a time ranging from about 20 minutes to about 60 minutes under low pressure, e.g., about 100 psi (689 kPa).
  • In accordance with one embodiment, the plurality of semiconductor chips mounted to heatsink 254 include an RF power transistor 280, a switching device 282, and a mixed signal integrated circuit 284. The backside or non-active side of each chip may be electrically coupled to heatsink 254 or the backsides of semiconductor chips 280, 282, and 284 may be coupled to heatsink 254 through an insulating material such as, for example, liquid crystal polymer. Leadframe leads 256-275 are coupled to portions of semiconductor chips 280, 282, and 284 using, for example, wirebonds or clips. It should be understood that the choice of which leadframe leads 256-275 to couple to a semiconductor chip and to which bond pads (not shown) on the semiconductor chip is a design choice. It should be further understood that the chips may be coupled to each other by, for example, wirebonding. For the sake of clarity, the wirebonds have not been shown in FIG. 9.
  • Optionally, a lid such as, for example, lid 202, can be mounted on packaging substrate 250. Referring now to FIG. 10, a cross-sectional side view of a semiconductor component 300 in accordance with another embodiment is shown. Semiconductor component 300 comprises a semiconductor chip 302 coupled to a heatsink 304 and a ball grid array substrate 306 having solder balls bonded to a back surface. Semiconductor chip 302 has an active surface 308 on which bumped bond pads 310 are formed and a surface 312 suitable for mating with heatsink 304. Heatsink 304 comprises a base 314 having sidewalls 316. Base 314 has a chip mating surface 317 and a heat dissipation surface 318. Preferably, heat dissipation surface 318 has a plurality of pyramidally shaped fins 320 extending therefrom. By way of example, heatsink 304 is formed by injection molding using techniques described with reference to FIG. 2 for making heatsink 88; however, the bottom portion of the mold assembly includes means for forming fins 320.
  • Semiconductor chip 302 is coupled to a ball grid array substrate 306 via a liquid crystal polymer 322. Ball grid array substrate 306 has a top surface 330 having landing pads 332 and a bottom surface 334 having landing pads 336. Solder balls 338 are disposed on landing pads 336. Landing pads 332 are configured to mate with bumped bond pads 310 that are disposed on semiconductor chip 302. It should be noted that FIG. 10 shows bumped bond pads 310 after bonding with corresponding landing pads 332.
  • Liquid crystal polymer 322 is dispensed on top surface 330 of ball grid array substrate 306. Liquid crystal polymer 322 is partially cured at a temperature ranging from about 260° C. to about 280° C. for a time ranging from about 20 minutes to about 60 minutes under low pressure, e.g., about 100 psi (689 kPa). The partially cured liquid crystal polymer 322 is mated with semiconductor chip 302. The partial curing leaves liquid crystal polymer 322 tacky which promotes adhesion with ball grid array substrate 306. Semiconductor chip 302 is pressed against ball grid array substrate 306 and the combination of the semiconductor chip 302, liquid crystal polymer 322, and ball grid array substrate 306 undergo a heat treatment. The heat treatment bonds bumped bond pads 310 with landing pads 332 and cures liquid crystal polymer 322, thereby forming semiconductor component 300. It should be noted that heatsink 304 also serves as a lid to provide protection from physical and environmental stresses.
  • Referring now to FIG. 11, a top view of a semiconductor component 350 in accordance with another embodiment is shown. Semiconductor component 350 includes a packaging substrate 352 having a semiconductor chip 353 mounted thereon. Packaging substrate 352 includes a heatsink 354 having opposing sides 356 and 358 and opposing sides 360 and 362. Although heatsink 354 is shown as a quadrilaterally shaped structure, this is not a limitation of the claimed subject matter. Heatsink 354 can have other geometric shapes.
  • Packaging substrate 352 includes a plurality of leadframe leads 370-387 coupled to heatsink 354 through a thermally conductive liquid crystal polymer 364. Prior to singulation, leadframe leads 370-387 are part of a leadframe (not shown) in which leadframe leads 370-374 and 379-383 are on opposing sides of the leadframe and leads 375-378 and 384-387 are on opposing sides of the leadframe. The number of leads and the number of leads per side of packaging substrate 352 are not a limitation of the claimed subject matter.
  • Liquid crystal polymer 364 is preferably dispensed on leadframe leads 370-387 and partially cured by heating to a temperature ranging from about 260° C. to about 280° C. for a time ranging from about 20 minutes to about 60 minutes under low pressure, e.g., about 100 psi (689 kPa). The partial curing leaves liquid crystal polymer 364 tacky or sticky. The partially cured liquid crystal polymer 364 is mated with heatsink 354. Because liquid crystal polymer 364 is tacky, it adheres to heatsink 354. Pressure is applied to either the leadframe, the heatsink, or both, and the liquid crystal polymer is cured by, for example, being heated to a temperature ranging from about 280° C. to about 300° C. for a time period ranging from about 20 minutes to about 60 minutes under low pressure, e.g., about 100 psi (689 kPa). Curing liquid crystal polymer 364 forms an assembly containing a plurality of packaging substrates 352, wherein each packaging substrate includes leadframe leads, liquid crystal polymer 364, and a heatsink 354.
  • The assembly is singulated to form individual packaging substrates 352. After singulation, leadframe leads 370-387 are preferably flush with the sides of heatsink 354, i.e., leadframe leads 370-374 are flush with side 356, leadframe leads 375-378 are flush with side 362, leadframe leads 384-387 are flush with side 360, and leadframe leads 379-383 are flush with side 358.
  • Semiconductor chip 353 is mounted on heatsink 354. The backside or non-active side of semiconductor chip 353 may be electrically coupled to heatsink 354 or it may be coupled to heatsink 354 through an insulating material such as, for example, liquid crystal polymer. Leadframe leads 370-387 are coupled to bond pads 390 disposed on semiconductor chip 353 using, for example, wirebonds. It should be understood that the choice of which leadframe leads 370-387 to couple to which bond pads 390 is a design choice. For the sake of clarity, the wirebonds have not been shown in FIG. 11.
  • It may be desirable to dispense a glob top material (not shown) over semiconductor chip 353 and leadframe leads 370-387. The glob top material can protect semiconductor chip 353 against mechanical and environmental stresses.
  • Optionally, heatsink 354 has fins similar to those described with reference to heatsink 304 shown in FIG. 10. In accordance with another option, a lid (not shown) may be formed over semiconductor chip 353, wherein a portion of the lid contacts a central portion of semiconductor chip 353.
  • By now it should be appreciated that a semiconductor component and a method for manufacturing the semiconductor component have been provided. In one or more embodiments, a cost effective method for packaging a semiconductor chip is implemented using batch processing steps for forming the packaging substrate rather than using individual assembly steps. Manufacture of semiconductor packages in accordance with one or more embodiments provides a high quality assembly that is repeatable. In addition, in one or more embodiments various heatsinking finned structures for removing heat from the semiconductor devices may be implemented.
  • Although certain example embodiments and methods have been disclosed herein, it will be apparent from the foregoing disclosure to those skilled in the art that variations and modifications of such embodiments and methods may be made without departing from the spirit and scope of the disclosed subject matter.

Claims (24)

1-44. (canceled)
45. An apparatus, comprising:
a heatsink having first and second major surfaces;
a leadframe having at least one leadframe lead; and
a liquid crystal polymer disposed on a portion of the at least one leadframe lead;
wherein the liquid crystal polymer is mated to the heatsink.
45. An apparatus as claimed in claim 45, the heatsink comprising a platform that serves as a die receiving area.
46. An apparatus as claimed in claim 45, wherein the heatsink includes one or more fins extending from the second major surface thereof.
47. An apparatus as claimed in claim 45, wherein the heatsink includes one or more fins extending from the second major surface thereof, at least one or more of the fins having a quadrilateral shape.
48. An apparatus as claimed in claim 45, wherein the heatsink includes three or more fins extending from the second major surface thereof, three or more of the fins have a quadrilateral shape and are substantially parallel to each other.
49. An apparatus as claimed in claim 45, wherein the heatsink includes one or more fins extending from the second major surface thereof, wherein one or more of the fins has a pyramidal shape.
50. An apparatus as claimed in claim 45, wherein the leadframe comprises first and second opposing sides spaced apart from each other by a central area, wherein a first leadframe lead extends from the first side into the central area and a second leadframe lead extends from the second side into the central area.
51. An apparatus as claimed in claim 45, wherein the liquid crystal polymer has a ring-shaped pattern having first and second opposing sides and third and fourth opposing sides, and wherein the first side of the ring-shaped pattern is disposed on the first leadframe lead and the second side of the ring-shaped pattern is disposed on the second leadframe lead.
52. An apparatus as claimed in claim 51, wherein the first side of the ring-shaped pattern is disposed on a central portion of the first leadframe lead and the second side of the ring-shaped pattern is disposed adjacent an end of the ring-shaped pattern.
53. An apparatus as claimed in claim 45, wherein the leadframe has first and second opposing sides spaced apart from each other by a central area, wherein a plurality of leadframe leads extends from the first side into the central area and a plurality of lead extends from the second side into the central area.
54. An apparatus as claimed in claim 45, wherein the liquid crystal polymer is disposed in a ring-shaped pattern having first and second opposing sides and third and fourth opposing sides, and wherein the first side of the ring-shaped pattern is disposed on the plurality of leadframe leads extending from the first side of the leadframe and the second side of the ring-shaped pattern is disposed on the plurality of leadframe leads extending from the second side of the leadframe.
56. An apparatus as claimed in claim 53, wherein the leadframe further has third and fourth opposing sides spaced apart from each other by the central area, wherein a plurality of leadframe leads extends from the third side into the central area and a plurality of leadframe leads extends from the fourth side into the central area, and wherein the step of disposing the liquid crystal polymer includes disposing the third side of the ring-shaped pattern on the plurality of leadframe leads extending from the third side and disposing the fourth side of the ring-shaped pattern on the plurality of leadframe leads extending from the fourth side.
57. An apparatus as claimed in claim 45, further comprising:
a semiconductor chip having first and second major surfaces, wherein a gate structure is formed over the first major surface; and
wherein the first major surface of the semiconductor chip is coupled with the first major surface of the heatsink.
58. An apparatus as claimed in claim 57, wherein a metallization system is disposed on the first major surface of the semiconductor chip; and
wherein the first major surface of the semiconductor chip is coupled with the first major surface of the heatsink via solder.
59. An apparatus as claimed in claim 58, wherein the metallization system comprises one of a tin-nickel-gold metallization system or a tin-nickel-silver metallization system, or combinations thereof.
60. An apparatus as claimed in claim 57, further comprising a metal clip coupled to the second side of the semiconductor chip and to a first leadframe lead of the plurality of leadframe leads.
61. An apparatus as claimed in claim 57, further comprising a lid disposed over the semiconductor chip, wherein a portion of the lid is coupled to the metal clip.
62. An apparatus as claimed in claim 57, further comprising:
a metallization system on the second major surface of the semiconductor chip; and
a metal clip soldered to the metallization system on the second major surface of the semiconductor chip.
63. An apparatus as claimed in claim 62, wherein the metallization system on the second major surface of the semiconductor chip comprises aluminum with a nickel-gold alloy disposed thereon.
64. An apparatus as claimed in claim 57, wherein the gate structure is electrically coupled to a second leadframe lead of the plurality of leadframe leads.
65. An apparatus as claimed in claim 64, wherein the lid is soldered to the semiconductor chip.
66. An apparatus as claimed in claim 57, further comprising at least one other semiconductor chip coupled to the heatsink.
67. An apparatus as claimed in claim 66, further comprising a switching chip and a mixed signal integrated circuit coupled to the heatsink.
US12/392,391 2006-01-06 2009-02-25 Semiconductor component and method of manufacture Abandoned US20090152695A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/392,391 US20090152695A1 (en) 2006-01-06 2009-02-25 Semiconductor component and method of manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/327,552 US7335534B2 (en) 2005-01-10 2006-01-06 Semiconductor component and method of manufacture
US11/958,889 US20080093718A1 (en) 2005-01-10 2007-12-18 Semiconductor component and method of manufacture
US12/392,391 US20090152695A1 (en) 2006-01-06 2009-02-25 Semiconductor component and method of manufacture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/958,889 Division US20080093718A1 (en) 2005-01-10 2007-12-18 Semiconductor component and method of manufacture

Publications (1)

Publication Number Publication Date
US20090152695A1 true US20090152695A1 (en) 2009-06-18

Family

ID=40752111

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/327,552 Active 2026-08-04 US7335534B2 (en) 2005-01-10 2006-01-06 Semiconductor component and method of manufacture
US11/958,889 Abandoned US20080093718A1 (en) 2005-01-10 2007-12-18 Semiconductor component and method of manufacture
US12/392,391 Abandoned US20090152695A1 (en) 2006-01-06 2009-02-25 Semiconductor component and method of manufacture

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/327,552 Active 2026-08-04 US7335534B2 (en) 2005-01-10 2006-01-06 Semiconductor component and method of manufacture
US11/958,889 Abandoned US20080093718A1 (en) 2005-01-10 2007-12-18 Semiconductor component and method of manufacture

Country Status (1)

Country Link
US (3) US7335534B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100165585A1 (en) * 2008-12-26 2010-07-01 Megica Corporation Chip packages with power management integrated circuits and related techniques

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335534B2 (en) * 2005-01-10 2008-02-26 Hvvi, Semiconductors, Inc. Semiconductor component and method of manufacture
US7598603B2 (en) * 2006-03-15 2009-10-06 Infineon Technologies Ag Electronic component having a power switch with an anode thereof mounted on a die attach region of a heat sink
US7605451B2 (en) * 2006-06-27 2009-10-20 Hvvi Semiconductors, Inc RF power transistor having an encapsulated chip package
US20080017998A1 (en) * 2006-07-19 2008-01-24 Pavio Jeanne S Semiconductor component and method of manufacture
US10504317B2 (en) * 2007-04-30 2019-12-10 Cfph, Llc Game with player actuated control structure
US8067834B2 (en) * 2007-08-21 2011-11-29 Hvvi Semiconductors, Inc. Semiconductor component
US7928562B2 (en) * 2008-07-22 2011-04-19 International Business Machines Corporation Segmentation of a die stack for 3D packaging thermal management
US8269248B2 (en) * 2009-03-02 2012-09-18 Thompson Joseph B Light emitting assemblies and portions thereof
EP2887389A1 (en) * 2013-12-17 2015-06-24 Nxp B.V. A precursor to a packaged electronic component
WO2015153903A1 (en) * 2014-04-02 2015-10-08 Kyocera America, Inc. Heat management in electronics packaging
WO2017201260A1 (en) * 2016-05-20 2017-11-23 Materion Corporation Copper flanged air cavity packages for high frequency devices

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008736A (en) * 1989-11-20 1991-04-16 Motorola, Inc. Thermal protection method for a power device
US6307755B1 (en) * 1999-05-27 2001-10-23 Richard K. Williams Surface mount semiconductor package, die-leadframe combination and leadframe therefor and method of mounting leadframes to surfaces of semiconductor die
US20020056872A1 (en) * 2000-11-16 2002-05-16 Baliga Bantval Jayant Packaged power devices for radio frequency (RF) applications
US6455925B1 (en) * 2001-03-27 2002-09-24 Ericsson Inc. Power transistor package with integrated flange for surface mount heat removal
US20030020162A1 (en) * 2001-07-13 2003-01-30 Hitachi, Ltd. Semiconductor device and method of manufacturing the same
US20030062601A1 (en) * 2001-05-15 2003-04-03 James Harnden Surface mount package
US6566749B1 (en) * 2002-01-15 2003-05-20 Fairchild Semiconductor Corporation Semiconductor die package with improved thermal and electrical performance
US6617686B2 (en) * 2002-02-08 2003-09-09 Robert B. Davies Semiconductor device and method of isolating circuit regions
US20030218237A1 (en) * 2002-05-24 2003-11-27 Hall Frank L. Apparatus and method for molding a semiconductor die package with enhanced thermal conductivity
US6674157B2 (en) * 2001-11-02 2004-01-06 Fairchild Semiconductor Corporation Semiconductor package comprising vertical power transistor
US20040043539A1 (en) * 2001-07-31 2004-03-04 Chippac, Inc. Plastic ball grid array with integral heatsink
US6727117B1 (en) * 2002-11-07 2004-04-27 Kyocera America, Inc. Semiconductor substrate having copper/diamond composite material and method of making same
US6759746B1 (en) * 2000-03-17 2004-07-06 Robert Bruce Davies Die attachment and method
US6777786B2 (en) * 2001-03-12 2004-08-17 Fairchild Semiconductor Corporation Semiconductor device including stacked dies mounted on a leadframe
US6784366B1 (en) * 2003-06-10 2004-08-31 Motorola, Inc. Thermal dissipation package for an electrical surface mount component
US20040238934A1 (en) * 2001-08-28 2004-12-02 Tessera, Inc. High-frequency chip packages
US20050017339A1 (en) * 2003-06-19 2005-01-27 Shigeharu Yoshiba Semiconductor device and switching element
US20050121701A1 (en) * 2003-12-04 2005-06-09 Denso Corporation Semiconductor device
US7093358B2 (en) * 2000-03-23 2006-08-22 Micron Technology, Inc. Method for fabricating an interposer
US20060189038A1 (en) * 2005-01-10 2006-08-24 Hvvi Semiconductors, Inc. Semiconductor component and method of manufacture
US20060263944A1 (en) * 2005-05-23 2006-11-23 Texas Instruments Incorporated System and method for die attach using a backside heat spreader
US20070090434A1 (en) * 2004-01-10 2007-04-26 Hvvi Semiconductors, Inc. Power semiconductor device and method therefor
US20070096274A1 (en) * 2005-11-02 2007-05-03 International Rectifier Corporation IMS formed as can for semiconductor housing
US20070108594A1 (en) * 2005-11-17 2007-05-17 Nec Electronics Corporation Semiconductor apparatus
US20070132091A1 (en) * 2005-12-09 2007-06-14 Chung-Lin Wu Thermal enhanced upper and dual heat sink exposed molded leadless package
US20070296077A1 (en) * 2006-06-27 2007-12-27 Hvvi Semiconductors, Inc. Semiconductor component and method of manufacture
US20080017998A1 (en) * 2006-07-19 2008-01-24 Pavio Jeanne S Semiconductor component and method of manufacture
US20090051018A1 (en) * 2007-08-21 2009-02-26 Hvvi Semiconductors, Inc. Semiconductor component and method of manufacture

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049055A (en) 1987-12-31 1991-09-17 Sanken Electric Co., Ltd. Mold assembly
US5175007A (en) 1991-05-28 1992-12-29 Motorola, Inc. Mold assembly with separate encapsulating cavities
JP3383701B2 (en) 1994-03-07 2003-03-04 松下電器産業株式会社 Mold for resin encapsulation
JP2003209411A (en) 2001-10-30 2003-07-25 Matsushita Electric Ind Co Ltd High frequency module and production method for high frequency module

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008736A (en) * 1989-11-20 1991-04-16 Motorola, Inc. Thermal protection method for a power device
US6307755B1 (en) * 1999-05-27 2001-10-23 Richard K. Williams Surface mount semiconductor package, die-leadframe combination and leadframe therefor and method of mounting leadframes to surfaces of semiconductor die
US6759746B1 (en) * 2000-03-17 2004-07-06 Robert Bruce Davies Die attachment and method
US7093358B2 (en) * 2000-03-23 2006-08-22 Micron Technology, Inc. Method for fabricating an interposer
US20020056872A1 (en) * 2000-11-16 2002-05-16 Baliga Bantval Jayant Packaged power devices for radio frequency (RF) applications
US6586833B2 (en) * 2000-11-16 2003-07-01 Silicon Semiconductor Corporation Packaged power devices having vertical power mosfets therein that are flip-chip mounted to slotted gate electrode strip lines
US6649975B2 (en) * 2000-11-16 2003-11-18 Silicon Semiconductor Corporation Vertical power devices having trench-based electrodes therein
US6653691B2 (en) * 2000-11-16 2003-11-25 Silicon Semiconductor Corporation Radio frequency (RF) power devices having faraday shield layers therein
US6777786B2 (en) * 2001-03-12 2004-08-17 Fairchild Semiconductor Corporation Semiconductor device including stacked dies mounted on a leadframe
US6455925B1 (en) * 2001-03-27 2002-09-24 Ericsson Inc. Power transistor package with integrated flange for surface mount heat removal
US20030062601A1 (en) * 2001-05-15 2003-04-03 James Harnden Surface mount package
US20030020162A1 (en) * 2001-07-13 2003-01-30 Hitachi, Ltd. Semiconductor device and method of manufacturing the same
US20040043539A1 (en) * 2001-07-31 2004-03-04 Chippac, Inc. Plastic ball grid array with integral heatsink
US20040238934A1 (en) * 2001-08-28 2004-12-02 Tessera, Inc. High-frequency chip packages
US6674157B2 (en) * 2001-11-02 2004-01-06 Fairchild Semiconductor Corporation Semiconductor package comprising vertical power transistor
US6566749B1 (en) * 2002-01-15 2003-05-20 Fairchild Semiconductor Corporation Semiconductor die package with improved thermal and electrical performance
US6617686B2 (en) * 2002-02-08 2003-09-09 Robert B. Davies Semiconductor device and method of isolating circuit regions
US20030218237A1 (en) * 2002-05-24 2003-11-27 Hall Frank L. Apparatus and method for molding a semiconductor die package with enhanced thermal conductivity
US6727117B1 (en) * 2002-11-07 2004-04-27 Kyocera America, Inc. Semiconductor substrate having copper/diamond composite material and method of making same
US6784366B1 (en) * 2003-06-10 2004-08-31 Motorola, Inc. Thermal dissipation package for an electrical surface mount component
US20050017339A1 (en) * 2003-06-19 2005-01-27 Shigeharu Yoshiba Semiconductor device and switching element
US20050121701A1 (en) * 2003-12-04 2005-06-09 Denso Corporation Semiconductor device
US20070090434A1 (en) * 2004-01-10 2007-04-26 Hvvi Semiconductors, Inc. Power semiconductor device and method therefor
US7335534B2 (en) * 2005-01-10 2008-02-26 Hvvi, Semiconductors, Inc. Semiconductor component and method of manufacture
US20060189038A1 (en) * 2005-01-10 2006-08-24 Hvvi Semiconductors, Inc. Semiconductor component and method of manufacture
US20080093718A1 (en) * 2005-01-10 2008-04-24 Hvvi Semiconductors, Inc. Semiconductor component and method of manufacture
US20060263944A1 (en) * 2005-05-23 2006-11-23 Texas Instruments Incorporated System and method for die attach using a backside heat spreader
US20070096274A1 (en) * 2005-11-02 2007-05-03 International Rectifier Corporation IMS formed as can for semiconductor housing
US20070108594A1 (en) * 2005-11-17 2007-05-17 Nec Electronics Corporation Semiconductor apparatus
US20070132091A1 (en) * 2005-12-09 2007-06-14 Chung-Lin Wu Thermal enhanced upper and dual heat sink exposed molded leadless package
US20070296077A1 (en) * 2006-06-27 2007-12-27 Hvvi Semiconductors, Inc. Semiconductor component and method of manufacture
US7605451B2 (en) * 2006-06-27 2009-10-20 Hvvi Semiconductors, Inc RF power transistor having an encapsulated chip package
US20080017998A1 (en) * 2006-07-19 2008-01-24 Pavio Jeanne S Semiconductor component and method of manufacture
US20090051018A1 (en) * 2007-08-21 2009-02-26 Hvvi Semiconductors, Inc. Semiconductor component and method of manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100165585A1 (en) * 2008-12-26 2010-07-01 Megica Corporation Chip packages with power management integrated circuits and related techniques
US8809951B2 (en) 2008-12-26 2014-08-19 Megit Acquisition Corp. Chip packages having dual DMOS devices with power management integrated circuits

Also Published As

Publication number Publication date
US20060189038A1 (en) 2006-08-24
US20080093718A1 (en) 2008-04-24
US7335534B2 (en) 2008-02-26

Similar Documents

Publication Publication Date Title
US7335534B2 (en) Semiconductor component and method of manufacture
JP3839323B2 (en) Manufacturing method of semiconductor device
US7138706B2 (en) Semiconductor device and method for manufacturing the same
US6566168B2 (en) Semiconductor package having implantable conductive lands and method for manufacturing the same
US7763494B2 (en) Semiconductor device package with multi-chips and method of the same
US6468832B1 (en) Method to encapsulate bumped integrated circuit to create chip scale package
US7372137B2 (en) Semiconductor device and manufacturing method thereof
US7888179B2 (en) Semiconductor device including a semiconductor chip which is mounted spaning a plurality of wiring boards and manufacturing method thereof
US20080251908A1 (en) Semiconductor device package having multi-chips with side-by-side configuration and method of the same
CN106024643B (en) Substrate interposer on a leadframe
US8786111B2 (en) Semiconductor packages and methods of formation thereof
US20080197478A1 (en) Semiconductor device package with die receiving through-hole and connecting through-hole and method of the same
US6677665B2 (en) Dual-die integrated circuit package
US20160247737A1 (en) Novel build-up package for integrated circuit devices, and methods of making same
US20180122728A1 (en) Semiconductor packages and methods for forming same
US11594510B2 (en) Assembly processes for semiconductor device assemblies including spacer with embedded semiconductor die
US20070122943A1 (en) Method of making semiconductor package having exposed heat spreader
WO2004070790A2 (en) Molded high density electronic packaging structure for high performance applications
US10930604B2 (en) Ultra-thin multichip power devices
US6046506A (en) Semiconductor device with package
KR100487135B1 (en) Ball Grid Array Package
JP2003258158A (en) Method for producing semiconductor device
US11637050B2 (en) Package architecture utilizing wafer to wafer bonding
KR100499328B1 (en) Flip Chip Packaging Method using Dam
US20220285267A1 (en) Fan-out wafer level packaging of semiconductor devices

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION