US20090205260A1 - Coated abrasives - Google Patents

Coated abrasives Download PDF

Info

Publication number
US20090205260A1
US20090205260A1 US12/432,805 US43280509A US2009205260A1 US 20090205260 A1 US20090205260 A1 US 20090205260A1 US 43280509 A US43280509 A US 43280509A US 2009205260 A1 US2009205260 A1 US 2009205260A1
Authority
US
United States
Prior art keywords
diamond
component according
tool component
metal
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/432,805
Inventor
David Patrick Egan
Johannes Alexander Engels
Michael Lester Fish
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/432,805 priority Critical patent/US20090205260A1/en
Publication of US20090205260A1 publication Critical patent/US20090205260A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • B24D11/001Manufacture of flexible abrasive materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • B24D11/08Equipment for after-treatment of the coated backings, e.g. for flexing the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0018Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for by electrolytic deposition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4584Coating or impregnating of particulate or fibrous ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • C09K3/1445Composite particles, e.g. coated particles the coating consisting exclusively of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/205Cubic boron nitride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]

Definitions

  • This invention relates to coated abrasives, a process for their production, and to coated abrasives for use in abrasive-containing tools.
  • Abrasive particles such as diamond and cubic boron nitride are commonly used In cutting, grinding, drilling, sawing and polishing applications. In such applications, abrasive particles are mixed with metal powder mixes, then sintered at high temperatures to form bonded cutting elements.
  • Typical bond matrices contain iron, cobalt, copper, nickel and/or alloys thereof.
  • Titanium carbide is an example of a material that has been proposed as a coating for abrasive particles, because of its good adhesion to diamond.
  • Chromium carbide is a similar coating material that can be used.
  • a problem with the use of titanium carbide coatings where the bond matrix contains bronze or Cu is that these materials tend to react with the titanium carbide, such that it may be reacted away.
  • the diamond particles are then susceptible to graphitisation of the diamond particle surfaces, where the bond matrix consists of metals that are typically used as solvent/catalysts for diamond synthesis. Examples of such metals are Fe, Co and Ni. In the molten state, these metals are capable of dissolving diamond, which precipitates on cooling to form graphite. This process of graphitisation of the diamond surface not only weakens the particles but may also result in poorer retention of the particles in the bond.
  • oxygen may be present as surface oxides, dissolved oxygen in the metal powders that form the bond matrix, or in gaseous form in the atmosphere or as a consequence of application of the titanium carbide coating itself. At the sintering temperatures this oxygen is liable to attack the surface of the diamond particles, which weakens the particles.
  • a coated super-hard abrasive comprising a core of super-hard abrasive material, an inner layer of a metal carbide, nitride, boride or carbonitride chemically bonded to an outer surface of the super-hard abrasive material and an outer layer of a metal carbonitride, in particular titanium carbonitride.
  • the outer layer is preferably applied by physical vapour deposition.
  • the ultra-hard abrasive material is typically diamond or cBN based, and may include diamond or cBN grit, PCD substrates, thermally stable PCD (TSPCD) substrates, PcBN substrates, CVD diamond film, single crystal diamond substrates.
  • TPCD thermally stable PCD
  • the inner layer is formed from an element capable of forming (singly or in combination) carbides, nitrides or borides to the surface(s) of the abrasive material when applied as an inner layer using a hot coating process.
  • these elements come from groups IVa, Va, VIa, IIIb and IVb of the periodic table.
  • Ti in the form of titanium carbide or titanium nitrides and borides have been shown to be useful coating materials for diamond and cBN substrates, respectively. They are particularly useful because of their ability to bind chemically to the substrate and to protect the substrate. However, as has been mentioned previously, they are not suitable in some applications, particularly where they are sintered in aggressive sintering conditions in the presence of bronze or copper, and where the bond matrix contains ferrous metals, for example, or in the presence of oxygen.
  • titanium carbide coating in the case of diamond particles, would be reacted away by a constituent of the metallic material, for example bronze and copper brazing of the material to another metallic or ceramic material, or sintering or infiltrating a powder to form an infiltrated powder material.
  • diamond impregnated tools such as segments for saw blades, drills, beads for diamond wires especially where high amounts of bronze or copper limit the usefulness of titanium carbide coatings
  • brazed diamond layer tools such as brazed diamond wire beads
  • diamond containing metal matrix composites brazing of diamond materials such as affixing TSPCD, PCD and diamond drillstones to a drill body, affixing CVD, monocrystal, TSPCD and PCD to a saw blade, tool post, drill body and the like.
  • coated diamond impregnated tools yield improved performance such as longer tool life and higher productivity.
  • Coated diamond particles of the invention for brazing applications allow the use of simple brazes that work in air as opposed to active brazes containing Ti which require the exclusion of oxygen.
  • the coated abrasive particles are preferably formed using a hot coating process for applying the inner layer and a PVD process for applying the outer layer.
  • the diamond grit particles are those used conventionally in the manufacturing of metal bonded tools. They are generally uniformly sized, typically 0.1, to 10 mm. Examples of such diamond grit particles include Micron grit 0.1 to 60 micron, wheel grit 40 micron to 200 micron, saw grit 180 micron to 2 millimeter, mono crystal 1 millimeter to 10 millimeter, CVD inserts of a few square millimeter to discs up to 200 millimeter diameter, PCD inserts of a few square millimeter to discs 104 millimeter diameter, cBN grit in micron range 0.1 to 60 micron, in wheel grit range 40 micron to 200 micron, PCBN inserts of a few mm to discs up to 104 mm diameter.
  • the diamond particles are first coated in a hot coating process to provide an inner layer, which may be a metal layer or a metal carbide, nitride or carbonitride layer.
  • an inner layer which may be a metal layer or a metal carbide, nitride or carbonitride layer.
  • such inner coating would typically be a metal nitride or boride or boronitride layer.
  • the metal-based coat is applied to the diamond substrate under suitable hot conditions for such bonding to take place.
  • Typical hot coating technologies that can be used include processes involving deposition from a metal halide gas phase, CVD processes, or thermodiffuslon vacuum coating or metal vapour deposition processes, for example. Deposition from a metal halide gas phase and CVD processes are.
  • the particles to be coated are exposed to a metal-halide containing the metal to be coated (e.g. Ti) in an appropriate gaseous environment (e.g. non-oxidising environments containing one or more of the following: inert gas, hydrogen, hydrocarbon, reduced pressure).
  • a metal-halide containing the metal to be coated e.g. Ti
  • an appropriate gaseous environment e.g. non-oxidising environments containing one or more of the following: inert gas, hydrogen, hydrocarbon, reduced pressure.
  • the metal halide may be generated from a metal as part of the process.
  • the mixture is subjected to a heat cycle during which the metal-halide transports the Ti to the surfaces of the particles where it is released and is chemically bonded to the particles.
  • the outer metal carbonitride layer is deposited using a CVD process or a cold coating technique such as PVD, which is preferred.
  • This is a low temperature process in that insufficient heat is generated to cause significant carbide chemical bonding to the substrate. Hence, if used alone, it would result in poor adhesion to the diamond particles.
  • An example of a PVD process for applying the outer coating is reactive sputter coating in which a reactive gas such as a hydrocarbon gas and/or nitrogen is admitted during the coating. The gas reacts with the metal vapour formed by the sputtering process resulting in the deposition of carbonitrides.
  • the ratio of Ti:(C,N) and C:N can be optimized to further enhance the properties of the outer layer.
  • the outer layer(s) is/are typically comprised (whether singly or in combination) of carbides, nitrides, borides, oxides and silicides of metals from groups IVa, Va, VIa, such as titanium and chromium, from groups IIIb and IVb, such as aluminium, and elements such as boron and silicon, but is/are preferably comprised of titanium carbide, titanium carbonitride, titanium nitride, titanium boride or titanium boronitride.
  • Diamond grit from Element Six, 40/45 US mesh size was coated in a CVD process to produce TiC coated diamond according to general methods commonly known in the art. The CVD TiC coated diamond was then used as the substrate for the second coating step.
  • this coating appeared a dark red/coppery colour. This colouring appeared evenly distributed over each particle and each particle appeared identical. The coating looked uniform and without any uncoated areas. Observation on the SEM again showed an even coating with a slightly rough morphology. Fractured particles were also observed on the SEM. A two-layer structure was clearly evident, the TiCN layer having a thickness of about 0.2 microns. This particular coating resulted In an assay of 1.03%. The TiC coating in this size used for this batch typically has an assay of 0.45%. The rest of the 1.03% is therefore attributable to the TiCN layer on top of the TiC. When analysed using XRD, TiC and TiCN were found. XRF analysis showed 100% Ti.

Abstract

This Invention relates to coated abrasives, a process for their production, and to coated abrasives for use in abrasive-containing tools.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates to coated abrasives, a process for their production, and to coated abrasives for use in abrasive-containing tools.
  • Abrasive particles such as diamond and cubic boron nitride are commonly used In cutting, grinding, drilling, sawing and polishing applications. In such applications, abrasive particles are mixed with metal powder mixes, then sintered at high temperatures to form bonded cutting elements. Typical bond matrices contain iron, cobalt, copper, nickel and/or alloys thereof.
  • Common problems in applications are retention of particles In the bond matrix, and resistance against oxidative attack during the sintering process and the subsequent application.
  • These problems are commonly addressed by coating the abrasive particles with metals or alloys which bond chemically to the particle, and alloy to the bond matrix. Typically, chemical vapour deposition (CVD) or physical vapour deposition (PVD sputter coating) techniques are used. Titanium carbide is an example of a material that has been proposed as a coating for abrasive particles, because of its good adhesion to diamond. Chromium carbide is a similar coating material that can be used.
  • A problem with the use of titanium carbide coatings where the bond matrix contains bronze or Cu is that these materials tend to react with the titanium carbide, such that it may be reacted away. The diamond particles are then susceptible to graphitisation of the diamond particle surfaces, where the bond matrix consists of metals that are typically used as solvent/catalysts for diamond synthesis. Examples of such metals are Fe, Co and Ni. In the molten state, these metals are capable of dissolving diamond, which precipitates on cooling to form graphite. This process of graphitisation of the diamond surface not only weakens the particles but may also result in poorer retention of the particles in the bond.
  • During manufacture of cutting tools, for example during sintering of saw segments containing diamond particles, oxygen may be present as surface oxides, dissolved oxygen in the metal powders that form the bond matrix, or in gaseous form in the atmosphere or as a consequence of application of the titanium carbide coating itself. At the sintering temperatures this oxygen is liable to attack the surface of the diamond particles, which weakens the particles.
  • SUMMARY OF THE INVENTION
  • A coated super-hard abrasive comprising a core of super-hard abrasive material, an inner layer of a metal carbide, nitride, boride or carbonitride chemically bonded to an outer surface of the super-hard abrasive material and an outer layer of a metal carbonitride, in particular titanium carbonitride.
  • The outer layer is preferably applied by physical vapour deposition.
  • The ultra-hard abrasive material is typically diamond or cBN based, and may include diamond or cBN grit, PCD substrates, thermally stable PCD (TSPCD) substrates, PcBN substrates, CVD diamond film, single crystal diamond substrates.
  • The inner layer is formed from an element capable of forming (singly or in combination) carbides, nitrides or borides to the surface(s) of the abrasive material when applied as an inner layer using a hot coating process. Typically these elements come from groups IVa, Va, VIa, IIIb and IVb of the periodic table. The inner layer is preferably a titanium or chromium carbide coating in the case of a diamond abrasive core, or a titanium or chromium nitride, boride or boronitride coating in the case of a cBN abrasive core, although other metals such as vanadium, molybdenum, tantalum, indium, zirconium, niobium, tungsten, aluminium, boron or silicon, for example, could also be used.
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • Whilst the invention extends to various forms of coated abrasive material, it will in the most part be described with reference to the coating of diamond grit for convenience.
  • Ti in the form of titanium carbide or titanium nitrides and borides have been shown to be useful coating materials for diamond and cBN substrates, respectively. They are particularly useful because of their ability to bind chemically to the substrate and to protect the substrate. However, as has been mentioned previously, they are not suitable in some applications, particularly where they are sintered in aggressive sintering conditions in the presence of bronze or copper, and where the bond matrix contains ferrous metals, for example, or in the presence of oxygen.
  • It has been found that the advantages of titanium coatings can be extended to other applications utilising diamond grits where an outer coating of a metal carbonitride, in particular titanium carbonitride, is applied over the titanium coating layer. This is particularly the case where diamond grit is used in a metal bond matrix containing ferrous metals to form an abrasive tool component upon sintering. It forms a barrier to the diffusion of Co, Fe and Ni from a metal bond matrix thereof, allowing it to be used in low Cu in Fe, Co and Cu hot pressing processes and in pure iron bonds even where sintering conditions require long sintering times and high temperatures. It is also useful where the titanium carbide coating, in the case of diamond particles, would be reacted away by a constituent of the metallic material, for example bronze and copper brazing of the material to another metallic or ceramic material, or sintering or infiltrating a powder to form an infiltrated powder material.
  • It is especially useful in the making of diamond impregnated tools such as segments for saw blades, drills, beads for diamond wires especially where high amounts of bronze or copper limit the usefulness of titanium carbide coatings, the making of brazed diamond layer tools such as brazed diamond wire beads, the making of diamond containing metal matrix composites, brazing of diamond materials such as affixing TSPCD, PCD and diamond drillstones to a drill body, affixing CVD, monocrystal, TSPCD and PCD to a saw blade, tool post, drill body and the like.
  • Additionally, the coated diamond impregnated tools yield improved performance such as longer tool life and higher productivity. Coated diamond particles of the invention for brazing applications allow the use of simple brazes that work in air as opposed to active brazes containing Ti which require the exclusion of oxygen.
  • The coated abrasive particles are preferably formed using a hot coating process for applying the inner layer and a PVD process for applying the outer layer.
  • The diamond grit particles are those used conventionally in the manufacturing of metal bonded tools. They are generally uniformly sized, typically 0.1, to 10 mm. Examples of such diamond grit particles include Micron grit 0.1 to 60 micron, wheel grit 40 micron to 200 micron, saw grit 180 micron to 2 millimeter, mono crystal 1 millimeter to 10 millimeter, CVD inserts of a few square millimeter to discs up to 200 millimeter diameter, PCD inserts of a few square millimeter to discs 104 millimeter diameter, cBN grit in micron range 0.1 to 60 micron, in wheel grit range 40 micron to 200 micron, PCBN inserts of a few mm to discs up to 104 mm diameter.
  • The diamond particles are first coated in a hot coating process to provide an inner layer, which may be a metal layer or a metal carbide, nitride or carbonitride layer. In the case of cBN, such inner coating would typically be a metal nitride or boride or boronitride layer. In this hot coating process, the metal-based coat is applied to the diamond substrate under suitable hot conditions for such bonding to take place. Typical hot coating technologies that can be used include processes involving deposition from a metal halide gas phase, CVD processes, or thermodiffuslon vacuum coating or metal vapour deposition processes, for example. Deposition from a metal halide gas phase and CVD processes are.
  • In processes involving deposition from a metal halide gas phase, the particles to be coated are exposed to a metal-halide containing the metal to be coated (e.g. Ti) in an appropriate gaseous environment (e.g. non-oxidising environments containing one or more of the following: inert gas, hydrogen, hydrocarbon, reduced pressure). The metal halide may be generated from a metal as part of the process.
  • The mixture is subjected to a heat cycle during which the metal-halide transports the Ti to the surfaces of the particles where it is released and is chemically bonded to the particles.
  • The outer metal carbonitride layer is deposited using a CVD process or a cold coating technique such as PVD, which is preferred. This is a low temperature process in that insufficient heat is generated to cause significant carbide chemical bonding to the substrate. Hence, if used alone, it would result in poor adhesion to the diamond particles. An example of a PVD process for applying the outer coating is reactive sputter coating in which a reactive gas such as a hydrocarbon gas and/or nitrogen is admitted during the coating. The gas reacts with the metal vapour formed by the sputtering process resulting in the deposition of carbonitrides. In this method, the ratio of Ti:(C,N) and C:N can be optimized to further enhance the properties of the outer layer.
  • The outer layer(s) is/are typically comprised (whether singly or in combination) of carbides, nitrides, borides, oxides and silicides of metals from groups IVa, Va, VIa, such as titanium and chromium, from groups IIIb and IVb, such as aluminium, and elements such as boron and silicon, but is/are preferably comprised of titanium carbide, titanium carbonitride, titanium nitride, titanium boride or titanium boronitride.
  • This invention will now be described, by way of example only, with reference to the following non-limiting example.
  • Example
  • Diamond grit from Element Six, 40/45 US mesh size, was coated in a CVD process to produce TiC coated diamond according to general methods commonly known in the art. The CVD TiC coated diamond was then used as the substrate for the second coating step.
  • 1,000 carats of this TiC coated diamond, 40/50 US mesh size, was placed in a magnetron sputter coater with a rotating barrel, with a large pure titanium metal plate as the target. The coating chamber was evacuated, argon was admitted and the power turned on to form plasma. Sputtering power was increased to 10 A (400V) on target while rotating the barrel to ensure an even coating on all the diamond particles at 20 sccm argon pressure. C4H10 gas was admitted at 5 sccm along with nitrogen gas to achieve an Optical Emission Measurement of 70%. Sputtering of titanium reacted with carbon and nitrogen was continued for 2 hours. Afterwards, the coated diamond was allowed to cool before removing from the chamber.
  • An analysis of this coated diamond was undertaken, consisting of X-ray diffraction, X-ray fluorescence, Chemical assay of the coating, Optical and Scanning Electron Microscopy image analysis and particle fracture followed by cross-sectional analysis on the SEM.
  • Visually, this coating appeared a dark red/coppery colour. This colouring appeared evenly distributed over each particle and each particle appeared identical. The coating looked uniform and without any uncoated areas. Observation on the SEM again showed an even coating with a slightly rough morphology. Fractured particles were also observed on the SEM. A two-layer structure was clearly evident, the TiCN layer having a thickness of about 0.2 microns. This particular coating resulted In an assay of 1.03%. The TiC coating in this size used for this batch typically has an assay of 0.45%. The rest of the 1.03% is therefore attributable to the TiCN layer on top of the TiC. When analysed using XRD, TiC and TiCN were found. XRF analysis showed 100% Ti.

Claims (10)

1-8. (canceled)
9. A tool component, comprising a metal bond matrix containing ferrous materials and a coated diamond abrasive that comprises a core of diamond abrasive material, an inner layer of a metal carbide, nitride, or boride chemically bonded to an outer surface of the diamond abrasive material and an outer layer of a metal carbonitride deposited on the inner layer.
10. The tool component according to claim 9, wherein the outer layer is formed of titanium carbonitride.
11. The tool component according to claim 9, wherein the outer layer is deposited by physical vapour deposition.
12. The tool component according to claim 9, wherein the inner layer is formed from an element capable of forming, singly or in combination, carbides, nitrides or borides to the surface(s) of the diamond abrasive material using a hot coating process.
13. The tool component according to claim 12, wherein the element is selected from the group comprising groups IVa, Va, VIa, IIIb and IVb of the periodic table.
14. The tool component according to claim 9, wherein the inner layer is a titanium or chromium carbide coating.
15. The tool component according to claim 9, wherein the matrix comprises a metal selected from the group consisting of cobalt, iron, and nickel.
16. The tool component according to claim 8, which is a component for an impregnated tool.
17. The tool component according to claim 16, wherein the impregnated tool is a saw blade, a drill and a bead for a diamond wire.
US12/432,805 2004-01-15 2009-04-30 Coated abrasives Abandoned US20090205260A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/432,805 US20090205260A1 (en) 2004-01-15 2009-04-30 Coated abrasives

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
IE20040026 2004-01-15
IES2004/0026 2004-01-15
PCT/IB2005/000057 WO2005078042A1 (en) 2004-01-15 2005-01-13 Coated abrasives
US58639307A 2007-01-09 2007-01-09
US12/432,805 US20090205260A1 (en) 2004-01-15 2009-04-30 Coated abrasives

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/IB2005/000057 Continuation WO2005078042A1 (en) 2004-01-15 2005-01-13 Coated abrasives
US58639307A Continuation 2004-01-15 2007-01-09

Publications (1)

Publication Number Publication Date
US20090205260A1 true US20090205260A1 (en) 2009-08-20

Family

ID=34856841

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/586,393 Abandoned US20070160839A1 (en) 2004-01-15 2005-01-13 Coated abrasives
US12/432,805 Abandoned US20090205260A1 (en) 2004-01-15 2009-04-30 Coated abrasives

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/586,393 Abandoned US20070160839A1 (en) 2004-01-15 2005-01-13 Coated abrasives

Country Status (15)

Country Link
US (2) US20070160839A1 (en)
EP (1) EP1709136B1 (en)
JP (1) JP4861831B2 (en)
KR (1) KR101114680B1 (en)
CN (1) CN100564475C (en)
AT (1) ATE390468T1 (en)
AU (1) AU2005213530A1 (en)
CA (1) CA2553566C (en)
DE (1) DE602005005634T2 (en)
ES (1) ES2304684T3 (en)
IL (1) IL176850A0 (en)
RU (1) RU2372371C2 (en)
UA (1) UA83414C2 (en)
WO (1) WO2005078042A1 (en)
ZA (1) ZA200606016B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080178477A1 (en) * 2006-12-19 2008-07-31 Acme United Corporation Cutting Instrument
KR20100015759A (en) * 2007-03-22 2010-02-12 엘리먼트 씩스 (프로덕션) (피티와이) 리미티드 Abrasive compacts
CN102061466B (en) * 2009-11-12 2014-07-30 三菱综合材料株式会社 Surface coated cutting tool
TW201412633A (en) * 2012-06-30 2014-04-01 Diamond Innovations Inc Unique cubic boron nitride crystals and method of manufacturing them
GB201215469D0 (en) * 2012-08-30 2012-10-17 Element Six Ltd Diamond constructions, tools comprising same and method for making same
JP5784679B2 (en) * 2013-08-12 2015-09-24 エレメント シックス アブラシヴェス エス.エー. Polycrystalline abrasive molding
JP6880652B2 (en) * 2016-10-26 2021-06-02 富士フイルムビジネスイノベーション株式会社 Transfer device and image forming device
JP6922184B2 (en) * 2016-10-26 2021-08-18 富士フイルムビジネスイノベーション株式会社 Cleaning blade and image forming device
JP6968346B2 (en) * 2017-08-01 2021-11-17 福井県 Diamond grains for tools and their manufacturing methods
CN109202754B (en) * 2018-10-31 2021-01-22 长沙理工大学 Electroplating CBN grinding wheel with abrasive particle pre-deposited TiN and preparation method thereof
CN114634796A (en) * 2022-02-18 2022-06-17 厦门雷昂科技有限公司 Preparation method of modified diamond abrasive particles

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370905A (en) * 1976-12-07 1978-06-23 Sumitomo Electric Ind Ltd Triply coated superhard alloy parts and their preparation
US4959929A (en) * 1986-12-23 1990-10-02 Burnand Richard P Tool insert
US4988421A (en) * 1989-01-12 1991-01-29 Ford Motor Company Method of toughening diamond coated tools
US4992082A (en) * 1989-01-12 1991-02-12 Ford Motor Company Method of toughening diamond coated tools
US5062865A (en) * 1987-12-04 1991-11-05 Norton Company Chemically bonded superabrasive grit
US5085671A (en) * 1990-05-02 1992-02-04 Minnesota Mining And Manufacturing Company Method of coating alumina particles with refractory material, abrasive particles made by the method and abrasive products containing the same
US5096465A (en) * 1989-12-13 1992-03-17 Norton Company Diamond metal composite cutter and method for making same
US5211726A (en) * 1991-03-14 1993-05-18 General Electric Company Products and process for making multigrain abrasive compacts
US5224969A (en) * 1990-07-20 1993-07-06 Norton Company Diamond having multiple coatings and methods for their manufacture
US5372799A (en) * 1988-10-20 1994-12-13 Sumitomo Electric Industries, Ltd. Process for the synthesis of granular diamond
US5833021A (en) * 1996-03-12 1998-11-10 Smith International, Inc. Surface enhanced polycrystalline diamond composite cutters
US5914181A (en) * 1992-04-17 1999-06-22 Sumitomo Electric Industries, Ltd. Coated cemented carbide member
US5980982A (en) * 1995-04-13 1999-11-09 Sunitomo Electric Industries, Ltd. Coated particles for synthesizing diamond and process for production of diamond abrasive for sawing
US20020069592A1 (en) * 1999-12-07 2002-06-13 Sherman Andrew J. Abrasive particles with metallurgically bonded metal coatings
US20030162648A1 (en) * 2002-02-26 2003-08-28 Stewart Middlemiss Elongate ultra hard particle reinforced ultra hard materials and ceramics, tools and parts incorporating the same, and method of making the same
US20030192259A1 (en) * 2000-12-04 2003-10-16 D'evelyn Mark Philip Abrasive diamond composite and method of making thereof
US20070160830A1 (en) * 2004-01-15 2007-07-12 Egan David P Coated abrasives
US20070157525A1 (en) * 2004-01-15 2007-07-12 Egan David P Method for coating abrasives
US20070214727A1 (en) * 2004-01-15 2007-09-20 Egan David P Coated Abrasives
US20080034669A1 (en) * 2004-01-15 2008-02-14 David Patrick Egan Coated Abrasives

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024680A (en) * 1988-11-07 1991-06-18 Norton Company Multiple metal coated superabrasive grit and methods for their manufacture
JPH04202490A (en) * 1990-11-30 1992-07-23 Sumitomo Electric Ind Ltd Coated diamond abrasive grain
HUT62831A (en) * 1991-09-12 1993-06-28 Gen Electric Method for producing covered cubed leather-nitride abrasive grain, abrasive grain and grinding tool by using the same
ZA934588B (en) 1992-06-29 1994-02-01 De Beers Ind Diamond Abrasive compact
JPH0761615B2 (en) * 1992-09-28 1995-07-05 東芝タンガロイ株式会社 Coated high hardness powder and method for producing the same

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370905A (en) * 1976-12-07 1978-06-23 Sumitomo Electric Ind Ltd Triply coated superhard alloy parts and their preparation
US4959929A (en) * 1986-12-23 1990-10-02 Burnand Richard P Tool insert
US5062865A (en) * 1987-12-04 1991-11-05 Norton Company Chemically bonded superabrasive grit
US5372799A (en) * 1988-10-20 1994-12-13 Sumitomo Electric Industries, Ltd. Process for the synthesis of granular diamond
US4988421A (en) * 1989-01-12 1991-01-29 Ford Motor Company Method of toughening diamond coated tools
US4992082A (en) * 1989-01-12 1991-02-12 Ford Motor Company Method of toughening diamond coated tools
US5096465A (en) * 1989-12-13 1992-03-17 Norton Company Diamond metal composite cutter and method for making same
US5085671A (en) * 1990-05-02 1992-02-04 Minnesota Mining And Manufacturing Company Method of coating alumina particles with refractory material, abrasive particles made by the method and abrasive products containing the same
US5224969A (en) * 1990-07-20 1993-07-06 Norton Company Diamond having multiple coatings and methods for their manufacture
US5211726A (en) * 1991-03-14 1993-05-18 General Electric Company Products and process for making multigrain abrasive compacts
US5914181A (en) * 1992-04-17 1999-06-22 Sumitomo Electric Industries, Ltd. Coated cemented carbide member
US5980982A (en) * 1995-04-13 1999-11-09 Sunitomo Electric Industries, Ltd. Coated particles for synthesizing diamond and process for production of diamond abrasive for sawing
US5833021A (en) * 1996-03-12 1998-11-10 Smith International, Inc. Surface enhanced polycrystalline diamond composite cutters
US20020069592A1 (en) * 1999-12-07 2002-06-13 Sherman Andrew J. Abrasive particles with metallurgically bonded metal coatings
US20030192259A1 (en) * 2000-12-04 2003-10-16 D'evelyn Mark Philip Abrasive diamond composite and method of making thereof
US20030162648A1 (en) * 2002-02-26 2003-08-28 Stewart Middlemiss Elongate ultra hard particle reinforced ultra hard materials and ceramics, tools and parts incorporating the same, and method of making the same
US20070160830A1 (en) * 2004-01-15 2007-07-12 Egan David P Coated abrasives
US20070157525A1 (en) * 2004-01-15 2007-07-12 Egan David P Method for coating abrasives
US20070214727A1 (en) * 2004-01-15 2007-09-20 Egan David P Coated Abrasives
US20080034669A1 (en) * 2004-01-15 2008-02-14 David Patrick Egan Coated Abrasives
US20090031637A1 (en) * 2004-01-15 2009-02-05 David Patrick Egan Coated abrasives

Also Published As

Publication number Publication date
KR101114680B1 (en) 2012-03-05
ATE390468T1 (en) 2008-04-15
JP4861831B2 (en) 2012-01-25
RU2006129350A (en) 2008-02-20
WO2005078042A1 (en) 2005-08-25
EP1709136A1 (en) 2006-10-11
IL176850A0 (en) 2006-10-31
EP1709136B1 (en) 2008-03-26
DE602005005634T2 (en) 2009-05-14
CA2553566C (en) 2012-06-19
CA2553566A1 (en) 2005-08-25
CN1918259A (en) 2007-02-21
ZA200606016B (en) 2007-11-28
CN100564475C (en) 2009-12-02
JP2007517955A (en) 2007-07-05
UA83414C2 (en) 2008-07-10
AU2005213530A1 (en) 2005-08-25
RU2372371C2 (en) 2009-11-10
DE602005005634D1 (en) 2008-05-08
US20070160839A1 (en) 2007-07-12
KR20070003833A (en) 2007-01-05
ES2304684T3 (en) 2008-10-16

Similar Documents

Publication Publication Date Title
EP1709136B1 (en) Coated abrasives
EP1709135B1 (en) Coated abrasives
JP4850074B2 (en) Method for coating abrasives
JP5420533B2 (en) Coated CBN
US20070214727A1 (en) Coated Abrasives
US20090031637A1 (en) Coated abrasives
WO2005078040A1 (en) Coated abrasives

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION