US20090218347A1 - Releasable locking mechanism for packaging articles - Google Patents

Releasable locking mechanism for packaging articles Download PDF

Info

Publication number
US20090218347A1
US20090218347A1 US12/389,172 US38917209A US2009218347A1 US 20090218347 A1 US20090218347 A1 US 20090218347A1 US 38917209 A US38917209 A US 38917209A US 2009218347 A1 US2009218347 A1 US 2009218347A1
Authority
US
United States
Prior art keywords
cover
base
packaging article
snap fit
article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/389,172
Inventor
Elie Helou, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chamness Biodegradables LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/389,172 priority Critical patent/US20090218347A1/en
Assigned to BIOSPHERE INDUSTRIES, LLC reassignment BIOSPHERE INDUSTRIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HELOU, ELIE, JR.
Publication of US20090218347A1 publication Critical patent/US20090218347A1/en
Assigned to CHAMNESS BIODEGRADABLES, LLC reassignment CHAMNESS BIODEGRADABLES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BIOSPHERE INDUSTRIES, LLC
Assigned to CHAMNESS BIODEGRADABLES, LLC reassignment CHAMNESS BIODEGRADABLES, LLC CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE ADDRESS 2255 LITTLE WALL LAKE RD. BLAIRSBURG, IA 50034 PREVIOUSLY RECORDED ON REEL 033963 FRAME 0524. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNEE ADDRESS 1025 CINDY LANE CARPINTERIA, CA 93013. Assignors: BIOSPHERE INDUSTRIES, LLC
Assigned to BIOSPHERE INDUSTRIES, LLC reassignment BIOSPHERE INDUSTRIES, LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHAMNESS BIODEGRADABLES, LLC
Assigned to CHAMNESS BIODEGRADABLES, LLC reassignment CHAMNESS BIODEGRADABLES, LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BIOSPHERE INDUSTRIES, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/463Edible packaging materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D43/00Lids or covers for rigid or semi-rigid containers
    • B65D43/02Removable lids or covers
    • B65D43/0202Removable lids or covers without integral tamper element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/466Bio- or photodegradable packaging materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00592Snapping means
    • B65D2543/00601Snapping means on the container
    • B65D2543/00611Profiles
    • B65D2543/00666Hole
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00592Snapping means
    • B65D2543/00601Snapping means on the container
    • B65D2543/00675Periphery concerned
    • B65D2543/00703Dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00592Snapping means
    • B65D2543/00712Snapping means on the lid
    • B65D2543/00722Profiles
    • B65D2543/00731Groove or hollow bead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00592Snapping means
    • B65D2543/00712Snapping means on the lid
    • B65D2543/00787Periphery concerned
    • B65D2543/00805Segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package
    • B65D81/3446Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package specially adapted to be heated by microwaves
    • B65D81/3453Rigid containers, e.g. trays, bottles, boxes, cups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the invention generally relates to a novel packaging article.
  • Various types of rigid and semi-rigid containers are used to package food items and non-food items, such as medical supplies and devices.
  • these containers provide at least one shaped cavity defined by a base and a cover within which a product is supported and may be protected against environmental contamination when the container is sealed.
  • Such containers are often subject to treatments under various temperatures, such as, heating in a microwave or storing in a refrigerator. It is not uncommon for a food container to be subject to microwave heating immediately after it is taken out of a refrigerator. Such treatments could mechanically damage the structure of the container and affect its functionality (e.g., the function of providing proper sealing to the food in the container). For example, when the cover and the base of the container have different thermal expansion coefficients, when heated, the cover and the base expend or grow at different rates. Thus, the expansion of the one with larger thermal expansion coefficient may cause mechanical stress to the one with smaller thermal expansion coefficient.
  • end user may prefer clear, transparent, or semi-transparent covers for containers, such as, clear covers made from regular plastics which do not degrade or bioplastics which do degrade.
  • containers such as, clear covers made from regular plastics which do not degrade or bioplastics which do degrade.
  • bases such as, container bases which contain a high percentage of starch and pulp molded containers, which tend to grow and shrink in size based on the moisture content.
  • These containers may be affected by the moisture content or temperature variation of the environment.
  • current available packaging systems which are not designed to allow or compensate for the growth/shrinkage differences between the lids and the bases, tend to have difficulty to provide sufficient sealing for their content.
  • One embodiment of the present invention provides a packaging article, which includes a cover comprising a first structure and a base comprising a second structure, wherein connecting the first structure and the second structure causes the cover and the base to form an assembled packaging article, wherein the first structure and the second structure are not localized on the edge of the cover and the base, respectively.
  • the first structure may be a protrusion and the second structure may be a receptacle cavity.
  • the first structure may be a receptacle cavity and the second structure may be a protrusion.
  • at least one of the first structure and the second structure may comprise a locking structure (e.g., without limitation, a snap or snap fit structure). In some embodiments the locking structure can be releasable.
  • cover and the base may have different thermal expansion coefficients such that, when subject to heating (e.g., microwave heating) or cooling (e.g., refrigerated storage), the cover and the base do not expand or shrink to the same degree.
  • the cover may have a smaller thermal expansion coefficient than that of the base.
  • cover and the base may expand and/or shrink differently with a change of the moisture content and/or a change of moisture content in the environment.
  • a packaging article having a cover and/or a base, which may comprise a biodegradable or edible material, such as, without limitation, starch, and/or pulp.
  • FIG. 1 shows three perspective views of a representative packaging article in accordance with embodiments of the present invention.
  • FIG. 2 shows a perspective view of the base of a representative packaging article in accordance with embodiments of the present invention.
  • FIG. 3 shows the cover and the base of a representative packaging article in accordance with embodiments of the present invention.
  • FIG. 4 shows the packaging article of FIG. 3 , indicating the snap on the cover and the matching hole on the base of the packaging article.
  • FIG. 5 shows the cover and the base of a representative packaging article having two snaps and two holes, respectively, in accordance with embodiments of the present invention.
  • FIG. 6 shows the base of a representative packaging article in accordance with embodiments of the present invention.
  • FIG. 7 shows a representative assembled packaging article having a cover and a base in accordance with embodiments of the present invention.
  • FIG. 8 shows a cross-section view of a representative packaging article in accordance with embodiments of the present invention.
  • FIG. 9 shows the cover of a representative packaging article in accordance with embodiments of the present invention.
  • FIG. 10 shows the snap on the cover of a representative packaging article in accordance with embodiments of the present invention.
  • FIG. 11 shows a representative packaging article having double snaps and double holes in accordance with embodiments of the present invention.
  • FIG. 12 shows a perspective view of a representative packaging article in accordance with embodiments of the present invention.
  • FIG. 13 shows a cross-section view of a representative packaging article having double snaps and double holes in accordance with embodiments of the present invention.
  • FIG. 14 shows the cover and the base of a representative packaging article in accordance with embodiments of the present invention.
  • FIG. 15 shows a cross-section view of the representative packaging article of FIG. 14 .
  • FIG. 16 shows a cross-section view of the representative packaging article of FIG. 14 .
  • FIG. 17 shows a perspective view of the representative packaging article of FIG. 14 .
  • One embodiment of the present invention provides a packaging article, which includes a cover comprising a first structure and a base comprising a second structure, wherein connecting the first structure and the second structure causes the cover and the base to form an assembled packaging article, wherein the first structure and the second structure are not localized on the edge of the cover and the base, respectively.
  • FIGS. 1-17 depict a number of exemplary packaging articles that may be formed according to the present invention.
  • the exemplary packaging articles have regular, symmetrical shapes and configurations. However, it should be understood that other shapes and configurations are contemplated by the present invention. Examples of other shapes encompassed hereby include, but are not limited to, polygons, circles, ovals, cylinders, prisms, spheres, polyhedrons, ellipsoids, and any other shape that may be formed into a three-dimensional package, e.g., for receiving a food item therein.
  • the shape of the package may be determined by the shape of the product intended for use therewith, and it should be understood that different packages are contemplated for different products.
  • the packaging article comprises a cover 10 and a base 20 .
  • the cover 10 has a first structure 30 , a snap protrusion, which further comprises a locking structure 50 .
  • the base 20 has a second structure 40 , a receptacle cavity, for receiving the snap protrusion. Both the first structure 10 and the second structure 20 are located in the inner section of the cover and the base, respectively.
  • first structure 10 and the second structure 20 are both localized in the center of the cover and the base, respectively. In another embodiment, first structure 10 and the second structure 20 may be located in a non-center, inner section of the cover or the base of the packaging article of the present invention.
  • the first structure may be a protrusion and the second structure may be a receptacle cavity.
  • the first structure may be a receptacle cavity and the second structure may be a protrusion.
  • both the first and the second structures may be protrusions (e.g., protrusions with interactive locking features).
  • first structure and the second structure When functionally connected, the first structure and the second structure hold the cover and the base together to form an assembled packaging article and prevent the separation of the cover and the base during ordinary handling or processing of the packaging article.
  • a locking structure e.g., without limitation, a snap or snap fit.
  • Locking or interlocking structures suitable for the purposes of the present invention may include, but is not limited to, annular, cantilever, and torsion snap fits.
  • the cover and the base may be made of any materials suitable for the purposes of the packaging article.
  • suitable materials include, without limitations, starch, paper, natural fibrous materials, a homopolymer or copolymer of polyethylene (PE), polypropylene (PP), polyester, polystyrene (PS), polyvinylchloride (PVC), polycarbonate (PC), polyamide, nylon, ethylene/vinyl alcohol copolymer, such as, high-density polyethylene (HDPE), cyclic olefin copolymer (COC), polyethylene terephthalate (PET), amorphous polyethylene terephthalate (APET), glycol-modified polyethylene terephthalate (PETG), polylactic acid (PLA), polystyrene (PS), high-impact polystyrene (HIPS), polyvinylchloride (PVC), polycarbonate (PC), or mixtures thereof.
  • PE polyethylene
  • PP polypropylene
  • PS polystyrene
  • Sources of starch may include, but are not limited to, plant sources such as tubers, roots, seeds, and/or fruits of plants, and specific plants sources may include corn, potato, tapioca, rice, or wheat or similar, or animal sources, namely glycogen.
  • starch is a combination of both pregelatinized and uncooked or native starches.
  • the pregelatinized starch has a concentration in the range of about 0% to about 30% by weight of total starch in the formulation, and more preferably 3% to 20%, and most preferably 5% to 15%.
  • Food-grade starches that have been modified by cross-linking, stabilization, or addition of lipophilic functional groups may be included to increase resistance of the products to softening when exposed to aqueous foods.
  • the starch can be a water-resistant starch, and these starches can be a modified starch, an unmodified starch such high-amylose starch, or a combination thereof.
  • the starch component can include a high-amylose starch.
  • the starch component can comprise natural starch, pre-gelatinized starch, high-amylose starch, or a combination thereof.
  • a portion of the starch component can be comprised of one or more water-resistant starches.
  • the water-resistant starches may either be standard starches that have been chemically modified to be water resistant, or high amylose starches that are water resistant in their native, unmodified state.
  • the water-resistant fraction of the starch component may consist of chemically modified water-resistant starch, naturally water resistant high amylose starch, or a combination thereof. Use of water-resistant starches as a portion of the starch component increases the moisture resistance of the finished products.
  • polyamide and “nylon” are used synonymously herein and refer to a homopolymer or copolymer having an amide linkage between monomer units which may be formed by any method known to those skilled in the art.
  • nylon polymers include, but are not limited to, nylon 6 (polycaprolactam), nylon 11 (polyundecanolactam), nylon 12 (polyauryllactam), nylon 4,2 (polytetramethylene ethylenediamide), nylon 4,6 (polytetramethylene adipamide), nylon 6,6 (polyhexamethylene adipamide), nylon 6,9 (polyhexamethylene azelamide), nylon 6,10 (polyhexamethylene sebacamide), nylon 6,12 (polyhexamethylene dodecanediamide), nylon 7,7 (polyheptamethylene pimelamide), nylon 8,8 (polyoctamethylene suberamide), nylon 9,9 (polynonamethylene azelamide), nylon 10,9 (polydecamethylene azelamide), nylon 12,12 (polydodecamethylene dodecanediamide), and the like.
  • nylon copolymers include, but are not limited to, nylon 6,6/6 copolymer (polyhexamethylene adipamide/caprolactam copolymer), nylon 6,6/9 copolymer (polyhexamethylene adipamide/azelaiamide copolymer), nylon 6/6,6 copolymer (polycaprolactam/hexamethylene adipamide copolymer), nylon 6,2/6,2 copolymer (polyhexamethylene ethylenediamide/hexamethylene ethylenediamide copolymer), nylon 6,6/6,9/6 copolymer (polyhexamethylene adipamide/hexamethylene azelaiamide/caprolactam copolymer), as well as other nylons which are not particularly delineated here.
  • Exemplary of aromatic nylon polymers include, but are not limited to, nylon 4,1, nylon 6,1, nylon 6,6/61 copolymer, nylon 6,6/6T copolymer, nylon MXD6 (poly-m-xylylene adipamide), poly-p-xylylene adipamide, nylon 61/6T copolymer, nylon 6T/61 copolymer, nylon MXDI, nylon 6/MXDT/I copolymer, nylon 6T (polyhexamethylene terephthalamide), nylon 12T (polydodecamethylene terephthalamide), nylon 66T, nylon 6-3-T (poly(trimethyl hexamethylene terephthalamide).
  • Ethylene/vinyl alcohol copolymer refers to copolymers composed of repeating units of ethylene and vinyl alcohol.
  • Ethylene/vinyl alcohol copolymers can be represented by the general formula: [(CH 2 —CH 2 ) m —(CH 2 —CH(OH))] n .
  • Ethylene/vinyl alcohol copolymers may include saponified or hydrolyzed ethylene/vinyl acrylate copolymers, and refers to a vinyl alcohol copolymer having an ethylene comonomer, and prepared by, for example, hydrolysis of vinyl acrylate copolymers or by chemical reactions with vinyl alcohol.
  • the degree of hydrolysis is preferably at least 50%, and more preferably, at least 85%.
  • ethylene/vinyl alcohol copolymers include the family of EVOH sold under the trademark SOARNOLTM from Nippon Gohsei, Tokyo, Japan.
  • polypropylene refers to a homopolymer or copolymer having at least one propylene monomer linkage within the repeating backbone of the polymer.
  • the propylene linkage can be represented by the general formula: [CH 2 —CH(CH 3 )] n .
  • polyester refers to a homopolymer or copolymer having an ester linkage between monomer units which may be formed, for example, by condensation polymerization reactions between a dicarboxylic acid and a diol.
  • the dicarboxylic acid may be linear or aliphatic, i.e., lactic acid, oxalic acid, maleic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and the like; or may be aromatic or alkyl substituted aromatic, i.e., various isomers of phthalic acid, such as paraphthalic acid (or terephthalic acid), isophthalic acid and naphthalic acid.
  • a useful diol include, but not limited to, ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butane diol, neopentyl glycol, cyclohexane diol and the like.
  • Suitable polyesters may include, a homopolymer or copolymer of alkyl-aromatic esters, such as, for example, but not limited to, polyethylene terephthalate (PET), amorphous polyethylene terephthalate (APET), crystalline polyethylene terephthalate (CPET), glycol-modified polyethylene terephthalate (PETG), and polybutylene terephthalate; copolymers of terephthalate and isophthalate, such as, for example, but not limited to, polyethylene terephthalate/isophthalate copolymer; and a homopolymer or copolymer of aliphatic esters such as, for example, polylactic acid (PLA) and polyhydroxyalkonates, such as, for example, but not limited to, polyhydroxypropionate, poly(3-hydroxybutyrate) (PH3B), poly(3-hydroxyvalerate) (PH3V), poly(4-hydroxybutyrate) (PH4B), poly(4-hydroxyval
  • polystyrene refers to a homopolymer or copolymer having at least one styrene monomer (benzene, i.e., C 6 H 5 , having an ethylene substituent) linkage within the repeating backbone of the polymer.
  • the styrene linkage can be represented by the general formula: [CH 2 —CH 2 (C 6 H 5 )] n .
  • Polystyrene may be formed by any method known to those skilled in the art.
  • Suitable polystyrenes include, for example, but are not limited to, oriented polystyrene (OPS) film and resins, i.e., polystyrene (PS), syndiotactic polystyrene (SPS), acrylonitrile-butadiene-styrene (ABS), styrene-acrylonitrile (SAN), ethylene/styrene copolymers, styrene/acrylic copolymers, styrene block copolymers (SBC), and the like.
  • OPS oriented polystyrene
  • PS polystyrene
  • SPS syndiotactic polystyrene
  • ABS acrylonitrile-butadiene-styrene
  • SAN styrene-acrylonitrile
  • ethylene/styrene copolymers styrene/acrylic copolymers
  • SBC st
  • polyethylene refers to a homopolymer or copolymer having at least one ethylene monomer linkage within the repeating backbone of the polymer.
  • the ethylene linkage can be represented by the general formula: [CH 2 —CH 2 ] n .
  • Polyethylenes (PE) may be formed by any method known to those skilled in the art. Suitable polyethylenes may include, but is not limited to, high-density polyethylene (HDPE), ultra high-density polyethylene (UHDPE), and cyclic olefin copolymers (COC).
  • HDPE high-density polyethylene
  • UHDPE ultra high-density polyethylene
  • COC cyclic olefin copolymers
  • Exemplary of commercially available cyclic olefin copolymers suitable for use in the present invention include, but are not limited to, the TOPASTM family of resins which is supplied by Celanese-Ticona, Summit, N.J., U.S.A.
  • polyvinylchloride refers to a homopolymer or copolymer having at least one vinyl chloride monomer linkage, i.e., ethylene moiety having a chlorine atom substituent on a carbon atom, within the repeating backbone of the polymer.
  • Polyvinylchloride (PVC) can be represented by the general formula: [CH 2 —CH(Cl)] n .
  • polycarbonate refers to a homopolymer or copolymer having at least one carbonate monomer linkage within the repeating backbone of the polymer.
  • Polycarbonate (PC) can be represented by the general formula: [O—R—OC(O)] n .
  • the cover and the base may have different thermal expansion coefficients such that, when subject to heating (e.g., microwave heating) or cooling (e.g., refrigerated storage) or other environmental conditions, the cover and the base do not expand or shrink to the same degree.
  • the cover may have a smaller thermal expansion coefficient than that of the base. Due to the unique and advantageous configuration of the present invention, the differences in the degree of expansion or contraction may not substantially affect the functionality and/or structure integrity of the cover, the base, and/or the assembled packaging article.
  • cover and the base may expand and/or shrink differently with a change of the moisture content and/or a change of moisture content in the environment.
  • such covers may be clear, transparent, or semi-transparent covers, e.g., without limitations, clear covers made from regular plastics which do not degrade or bioplastics which do degrade (e.g., PLA), where the changes of the moisture content of the environment generally do not cause significant changes in the size and/or the shape of these covers; while the bases may be bases containing a high percentage of starch and/or pulp, which tend to grow and shrink in size based on the moisture content, which may be affected, e.g., by the moisture content of the environment. Therefore, the packaging article of the present invention provides better sealing to the content, at least partially due to the fact that it allows for the growth/shrinkage differences between the lids and the bases.
  • Packaging articles with enhanced moisture resistance can be provided by coating the article with a moisture resistant coating.
  • a moisture resistant coating Where long term storage of food products requires a sealed moisture and oxygen barrier, conventional coated paper or plastic film materials may be used for barrier materials, with a rigid biodegradable insert acting to hold and protect the food items.
  • Proteins and natural polymeric compounds may include, but are not limited to preparations made from casein, soy protein isolate or concentrate, or similar such preparations.
  • the preferred concentration of preservative in the preparation is about 0.1% or less, depending on the shelf life required for the protein solution, the concentration of protein required in the final product, and the limits imposed by government regulations on the dosages of preservative compounds in edible materials.
  • proteins may also be used in combination with the casein or soy protein preparation or separately to improve the water-resistant properties of the containers.
  • such proteins may include albumen, gelatin, or the like.
  • Fiber elements are used both to control the molding characteristics of the wet batter and to enhance the structural stability of the finished food service articles.
  • the fibrous portion of the formulation can be in a general sense separated into three classes (based on fiber length) that serve different functions. Long or very long (4 to 25 mm or longer) fibers or composite fiber elements are used to form a meshwork that helps prevent defects from forming in the batter as it expands in the mold.
  • Medium-length fibers (0.5 to 5 mm) also help control the flow characteristics of the wet batter, and serve to increase the toughness of the finished food service articles, preventing fracture during handling and during normal use.
  • Short fibers ( ⁇ 0.5 mm) serve mainly as a means to introduce readily biodegradable material into the formulation, i.e., filler material that is more water-resistant than the starch-based matrix that contains them.
  • the shorter fibers may be used in conjunction with, or replaced by other filler materials imparting the same advantages as the shorter fibers.
  • filler materials may include both organic and inorganic aggregates such as calcium carbonate, silica, calcium sulfate, calcium sulfate hydrate, magnesium silicate, micaceous minerals, clay minerals, titanium dioxide, talc, etc.
  • the concentration of aggregate and/or short fibers may be in a range from about 0% to about 25% by dry weight of the formulation, in a range from about 2.5% to about 20% by total dry weight of the formulation, in a range from about 5% to about 15% dry weight of the formulation, in a range from about 5% to about 20% by total dry weight of the formulation, or in a range from about 7% to about 17% dry weight of the formulation.
  • the organic filler material may include ground walnut shells. Ground walnut shells results in fibrous matter comprising short fibers.
  • the ground walnut shells may be used alone as the filler material or may be combined with other filler materials. When used alone the preferred concentration is about 8% by dry weight.
  • Fibers from several sources are typically included in the formulation. Relatively high quality fibers from grass or reed species provide the mid-length fibers that contribute most to the structural stability and resilience if the finished articles.
  • the long to very long fibers or fiber composites may come from lightly processed agricultural byproducts, e.g., stalk or husk materials that have been chopped, ground, or milled to an appropriate size, or they can come from traditional sources of long cellulose fiber, e.g., cotton or cotton linters. Under appropriate processing conditions (e.g., hammer milling), these materials can also provide a considerable amount of the very short fiber that serves to replace starch and add water resistance to the finished article.
  • Fibrous material in the form of ground nut shells may also serve as organic, relatively water resistant, biodegradable fibers that replace conventional filler materials.
  • these other sources of fiber suitable as structural elements in starch-based food service articles are readily available. Some of these are from fast-growing plants that can be broadly characterized as grasses or reeds, such as kenaf and bamboo, which provide fiber with smaller associated environmental costs than taking fiber from trees. A growing segment of the fiber industry is based on the use of fiber from these plants. In many cases the quality and consistency of fibers taken from these plants (after processing) is as good as that provided by the wood pulp industry. In addition, fiber is also widely available as a by-product of agricultural production.
  • Stalks, stems, and husks from cereal grains are a ready source of fibrous material that, while not as high in quality as the fiber taken from wood or the better grass species, is extremely cheap and, as a by-product, has essentially no additional environmental cost (beyond whatever environmental costs are associated with the production of the main crop).
  • the fibrous materials included in the formulations described here vary greatly in both fiber length and fiber aspect ratio. Overall, however, it is preferred that the materials have an average fiber length that is less than about 2 mm and an average aspect ratio that is in the range of about 5:1 to 25:1.
  • the preferred wax or wax emulsions in the formulation, used to increase water-resistance, is a stable aqueous emulsion usually made of carnauba, candelilla, rice bran, paraffin, or any other food-grade wax: vegetable waxes are preferred over animal and mineral waxes, and natural waxes are preferred over synthetic varieties.
  • the wax type is selected based on the particular application and desired properties of the final product.
  • the emulsion is usually prepared by means of emulsifying agents and mechanical agitation. Examples of wax emulsions suitable for use in the present formulation include emulsified carnauba wax and emulsified candelilla wax.
  • Emulsifiers include all of those permitted for food applications, including (but not limited to) sorbitan monostearate, Polysorbate 60, Polysorbate 65, Polysorbate 80, food-grade gums (e.g., arabinogalactan, carrageenan, furcelleran, xanthan), stearyl monoglyceridyl citrate, succistearin, hydroxylated lecithin, and many other compounds.
  • sorbitan monostearate Polysorbate 60, Polysorbate 65, Polysorbate 80
  • food-grade gums e.g., arabinogalactan, carrageenan, furcelleran, xanthan
  • stearyl monoglyceridyl citrate e.g., stearyl monoglyceridyl citrate
  • succistearin e.g., hydroxylated lecithin
  • the additive component can comprise an epoxidized vegetable oil, a hydrogenated triglyceride, poly(vinyl acetate), poly(vinylacetate-ethylene) copolymer, poly(ethylene-vinyl acetate) copolymer, or a combination thereof.
  • FIG. 2 depicts an exemplary base 20 in accordance with one embodiment of the present invention.
  • a hole 40 is localized in the center of the base 20 .
  • FIGS. 3 and 4 depict an exemplary packaging article having a cover 10 and a base 20 .
  • FIG. 4 shows that, when assembling the cover 10 and the base 20 , protrusion 30 should be connected with the hole 40 .
  • FIG. 5 shows an exemplary packaging article having double protrusions 31 and 32 and double holes 41 and 42 .
  • FIGS. 6-17 further depict a number of exemplary packaging articles that may be formed in accordance to various embodiments of the present invention.

Abstract

One embodiment of the present invention provides a novel packaging article, which includes a cover and a base having non-edge localized connecting structures, such as, a protrusion and a receptacle cavity. The cover and the base may have different thermal expansion coefficients such that, when subject to heating (e.g., microwave heating) or cooling (e.g., refrigerate storage), the cover and the base do not expand or shrink to the same degree. Furthermore, the cover and/or the base may comprise a biodegradable or edible material, such as, without limitation, starch.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application No. 61/029,901, filed Feb. 19, 2008, which is incorporated herein by reference.
  • FIELD
  • The invention generally relates to a novel packaging article.
  • BACKGROUND
  • Various types of rigid and semi-rigid containers are used to package food items and non-food items, such as medical supplies and devices. In general, these containers provide at least one shaped cavity defined by a base and a cover within which a product is supported and may be protected against environmental contamination when the container is sealed.
  • Such containers are often subject to treatments under various temperatures, such as, heating in a microwave or storing in a refrigerator. It is not uncommon for a food container to be subject to microwave heating immediately after it is taken out of a refrigerator. Such treatments could mechanically damage the structure of the container and affect its functionality (e.g., the function of providing proper sealing to the food in the container). For example, when the cover and the base of the container have different thermal expansion coefficients, when heated, the cover and the base expend or grow at different rates. Thus, the expansion of the one with larger thermal expansion coefficient may cause mechanical stress to the one with smaller thermal expansion coefficient.
  • In addition, under various circumstances, end user may prefer clear, transparent, or semi-transparent covers for containers, such as, clear covers made from regular plastics which do not degrade or bioplastics which do degrade. In most cases, a change in the moisture content of the environment does not change the size and/or the shape of these lids. However, some widely-used packaging systems have bases, such as, container bases which contain a high percentage of starch and pulp molded containers, which tend to grow and shrink in size based on the moisture content. These containers may be affected by the moisture content or temperature variation of the environment. Thus, current available packaging systems, which are not designed to allow or compensate for the growth/shrinkage differences between the lids and the bases, tend to have difficulty to provide sufficient sealing for their content.
  • Therefore, there is a need in the art for novel packaging articles where the change of temperature and/or moisture does not substantially affect their functionality and/or structural integrity.
  • SUMMARY
  • One embodiment of the present invention provides a packaging article, which includes a cover comprising a first structure and a base comprising a second structure, wherein connecting the first structure and the second structure causes the cover and the base to form an assembled packaging article, wherein the first structure and the second structure are not localized on the edge of the cover and the base, respectively. In said embodiment, the first structure may be a protrusion and the second structure may be a receptacle cavity. In another embodiment, the first structure may be a receptacle cavity and the second structure may be a protrusion. In yet another embodiment, at least one of the first structure and the second structure may comprise a locking structure (e.g., without limitation, a snap or snap fit structure). In some embodiments the locking structure can be releasable.
  • In addition, the cover and the base may have different thermal expansion coefficients such that, when subject to heating (e.g., microwave heating) or cooling (e.g., refrigerated storage), the cover and the base do not expand or shrink to the same degree. In one embodiment, the cover may have a smaller thermal expansion coefficient than that of the base.
  • Furthermore, the cover and the base may expand and/or shrink differently with a change of the moisture content and/or a change of moisture content in the environment.
  • Also provided is a packaging article having a cover and/or a base, which may comprise a biodegradable or edible material, such as, without limitation, starch, and/or pulp.
  • Other features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating the preferred embodiments of the present invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the present invention will become apparent to those skilled in the art from this detailed description.
  • FIGURES
  • FIG. 1 shows three perspective views of a representative packaging article in accordance with embodiments of the present invention.
  • FIG. 2 shows a perspective view of the base of a representative packaging article in accordance with embodiments of the present invention.
  • FIG. 3 shows the cover and the base of a representative packaging article in accordance with embodiments of the present invention.
  • FIG. 4 shows the packaging article of FIG. 3, indicating the snap on the cover and the matching hole on the base of the packaging article.
  • FIG. 5 shows the cover and the base of a representative packaging article having two snaps and two holes, respectively, in accordance with embodiments of the present invention.
  • FIG. 6 shows the base of a representative packaging article in accordance with embodiments of the present invention.
  • FIG. 7 shows a representative assembled packaging article having a cover and a base in accordance with embodiments of the present invention.
  • FIG. 8 shows a cross-section view of a representative packaging article in accordance with embodiments of the present invention.
  • FIG. 9 shows the cover of a representative packaging article in accordance with embodiments of the present invention.
  • FIG. 10 shows the snap on the cover of a representative packaging article in accordance with embodiments of the present invention.
  • FIG. 11 shows a representative packaging article having double snaps and double holes in accordance with embodiments of the present invention.
  • FIG. 12 shows a perspective view of a representative packaging article in accordance with embodiments of the present invention.
  • FIG. 13 shows a cross-section view of a representative packaging article having double snaps and double holes in accordance with embodiments of the present invention.
  • FIG. 14 shows the cover and the base of a representative packaging article in accordance with embodiments of the present invention.
  • FIG. 15 shows a cross-section view of the representative packaging article of FIG. 14.
  • FIG. 16 shows a cross-section view of the representative packaging article of FIG. 14.
  • FIG. 17 shows a perspective view of the representative packaging article of FIG. 14.
  • DETAILED DESCRIPTION
  • In order to fully understand the manner in which the above-recited details and other advantages and objects are obtained, a more detailed description will be rendered by reference to specific embodiments.
  • One embodiment of the present invention provides a packaging article, which includes a cover comprising a first structure and a base comprising a second structure, wherein connecting the first structure and the second structure causes the cover and the base to form an assembled packaging article, wherein the first structure and the second structure are not localized on the edge of the cover and the base, respectively.
  • FIGS. 1-17 depict a number of exemplary packaging articles that may be formed according to the present invention. The exemplary packaging articles have regular, symmetrical shapes and configurations. However, it should be understood that other shapes and configurations are contemplated by the present invention. Examples of other shapes encompassed hereby include, but are not limited to, polygons, circles, ovals, cylinders, prisms, spheres, polyhedrons, ellipsoids, and any other shape that may be formed into a three-dimensional package, e.g., for receiving a food item therein. The shape of the package may be determined by the shape of the product intended for use therewith, and it should be understood that different packages are contemplated for different products.
  • According to one embodiment of the present invention as shown in FIG. 1, the packaging article comprises a cover 10 and a base 20. The cover 10 has a first structure 30, a snap protrusion, which further comprises a locking structure 50. The base 20 has a second structure 40, a receptacle cavity, for receiving the snap protrusion. Both the first structure 10 and the second structure 20 are located in the inner section of the cover and the base, respectively.
  • The term “located in the inner section” or “in the inner section” as used herein refers to localizing a structure to a position on the cover or the base other than the edge thereof. In one embodiment, the first structure 10 and the second structure 20 are both localized in the center of the cover and the base, respectively. In another embodiment, first structure 10 and the second structure 20 may be located in a non-center, inner section of the cover or the base of the packaging article of the present invention.
  • In other embodiments of the present invention, the first structure may be a protrusion and the second structure may be a receptacle cavity. In other embodiments, the first structure may be a receptacle cavity and the second structure may be a protrusion. In yet additional embodiments, both the first and the second structures may be protrusions (e.g., protrusions with interactive locking features).
  • When functionally connected, the first structure and the second structure hold the cover and the base together to form an assembled packaging article and prevent the separation of the cover and the base during ordinary handling or processing of the packaging article. To secure the mechanical connection, in one embodiment, at least one of the first structure and the second structure may comprise a locking structure (e.g., without limitation, a snap or snap fit). Locking or interlocking structures suitable for the purposes of the present invention may include, but is not limited to, annular, cantilever, and torsion snap fits.
  • The cover and the base may be made of any materials suitable for the purposes of the packaging article. Examples of suitable materials include, without limitations, starch, paper, natural fibrous materials, a homopolymer or copolymer of polyethylene (PE), polypropylene (PP), polyester, polystyrene (PS), polyvinylchloride (PVC), polycarbonate (PC), polyamide, nylon, ethylene/vinyl alcohol copolymer, such as, high-density polyethylene (HDPE), cyclic olefin copolymer (COC), polyethylene terephthalate (PET), amorphous polyethylene terephthalate (APET), glycol-modified polyethylene terephthalate (PETG), polylactic acid (PLA), polystyrene (PS), high-impact polystyrene (HIPS), polyvinylchloride (PVC), polycarbonate (PC), or mixtures thereof.
  • Sources of starch may include, but are not limited to, plant sources such as tubers, roots, seeds, and/or fruits of plants, and specific plants sources may include corn, potato, tapioca, rice, or wheat or similar, or animal sources, namely glycogen. In some embodiments, starch is a combination of both pregelatinized and uncooked or native starches. In some embodiments, the pregelatinized starch has a concentration in the range of about 0% to about 30% by weight of total starch in the formulation, and more preferably 3% to 20%, and most preferably 5% to 15%. Food-grade starches (pregelatinized or uncooked) that have been modified by cross-linking, stabilization, or addition of lipophilic functional groups may be included to increase resistance of the products to softening when exposed to aqueous foods. In some embodiments, the starch can be a water-resistant starch, and these starches can be a modified starch, an unmodified starch such high-amylose starch, or a combination thereof. In some embodiments, the starch component can include a high-amylose starch. For example, the starch component can comprise natural starch, pre-gelatinized starch, high-amylose starch, or a combination thereof. In some embodiments, a portion of the starch component can be comprised of one or more water-resistant starches. The water-resistant starches may either be standard starches that have been chemically modified to be water resistant, or high amylose starches that are water resistant in their native, unmodified state. In these embodiments, the water-resistant fraction of the starch component may consist of chemically modified water-resistant starch, naturally water resistant high amylose starch, or a combination thereof. Use of water-resistant starches as a portion of the starch component increases the moisture resistance of the finished products.
  • As used herein, the terms “polyamide” and “nylon” are used synonymously herein and refer to a homopolymer or copolymer having an amide linkage between monomer units which may be formed by any method known to those skilled in the art. The amide linkage can be represented by the general formula: [C(O)—R—C(O)—NH—R′—NH]n where R and R′=the same or different alkyl (or aryl) group. Examples of nylon polymers include, but are not limited to, nylon 6 (polycaprolactam), nylon 11 (polyundecanolactam), nylon 12 (polyauryllactam), nylon 4,2 (polytetramethylene ethylenediamide), nylon 4,6 (polytetramethylene adipamide), nylon 6,6 (polyhexamethylene adipamide), nylon 6,9 (polyhexamethylene azelamide), nylon 6,10 (polyhexamethylene sebacamide), nylon 6,12 (polyhexamethylene dodecanediamide), nylon 7,7 (polyheptamethylene pimelamide), nylon 8,8 (polyoctamethylene suberamide), nylon 9,9 (polynonamethylene azelamide), nylon 10,9 (polydecamethylene azelamide), nylon 12,12 (polydodecamethylene dodecanediamide), and the like. Examples of nylon copolymers include, but are not limited to, nylon 6,6/6 copolymer (polyhexamethylene adipamide/caprolactam copolymer), nylon 6,6/9 copolymer (polyhexamethylene adipamide/azelaiamide copolymer), nylon 6/6,6 copolymer (polycaprolactam/hexamethylene adipamide copolymer), nylon 6,2/6,2 copolymer (polyhexamethylene ethylenediamide/hexamethylene ethylenediamide copolymer), nylon 6,6/6,9/6 copolymer (polyhexamethylene adipamide/hexamethylene azelaiamide/caprolactam copolymer), as well as other nylons which are not particularly delineated here. Exemplary of aromatic nylon polymers include, but are not limited to, nylon 4,1, nylon 6,1, nylon 6,6/61 copolymer, nylon 6,6/6T copolymer, nylon MXD6 (poly-m-xylylene adipamide), poly-p-xylylene adipamide, nylon 61/6T copolymer, nylon 6T/61 copolymer, nylon MXDI, nylon 6/MXDT/I copolymer, nylon 6T (polyhexamethylene terephthalamide), nylon 12T (polydodecamethylene terephthalamide), nylon 66T, nylon 6-3-T (poly(trimethyl hexamethylene terephthalamide).
  • As used herein, the phrase “ethylene/vinyl alcohol copolymer” (EVOH), refers to copolymers composed of repeating units of ethylene and vinyl alcohol. Ethylene/vinyl alcohol copolymers can be represented by the general formula: [(CH2—CH2)m—(CH2—CH(OH))]n. Ethylene/vinyl alcohol copolymers may include saponified or hydrolyzed ethylene/vinyl acrylate copolymers, and refers to a vinyl alcohol copolymer having an ethylene comonomer, and prepared by, for example, hydrolysis of vinyl acrylate copolymers or by chemical reactions with vinyl alcohol. The degree of hydrolysis is preferably at least 50%, and more preferably, at least 85%. Non-limiting examples of ethylene/vinyl alcohol copolymers include the family of EVOH sold under the trademark SOARNOL™ from Nippon Gohsei, Tokyo, Japan.
  • As used herein, the term “polypropylene” refers to a homopolymer or copolymer having at least one propylene monomer linkage within the repeating backbone of the polymer. The propylene linkage can be represented by the general formula: [CH2—CH(CH3)]n.
  • As used herein, the term “polyester” refers to a homopolymer or copolymer having an ester linkage between monomer units which may be formed, for example, by condensation polymerization reactions between a dicarboxylic acid and a diol. The ester linkage can be represented by the general formula: [O—R—OC(O)—R′—C(O)]n where R and R′=the same or different alkyl (or aryl) group and may be generally formed from the polymerization of dicarboxylic acid and diol monomers containing both carboxylic acid and hydroxyl moieties. The dicarboxylic acid may be linear or aliphatic, i.e., lactic acid, oxalic acid, maleic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and the like; or may be aromatic or alkyl substituted aromatic, i.e., various isomers of phthalic acid, such as paraphthalic acid (or terephthalic acid), isophthalic acid and naphthalic acid. Specific examples a useful diol include, but not limited to, ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butane diol, neopentyl glycol, cyclohexane diol and the like. Suitable polyesters may include, a homopolymer or copolymer of alkyl-aromatic esters, such as, for example, but not limited to, polyethylene terephthalate (PET), amorphous polyethylene terephthalate (APET), crystalline polyethylene terephthalate (CPET), glycol-modified polyethylene terephthalate (PETG), and polybutylene terephthalate; copolymers of terephthalate and isophthalate, such as, for example, but not limited to, polyethylene terephthalate/isophthalate copolymer; and a homopolymer or copolymer of aliphatic esters such as, for example, polylactic acid (PLA) and polyhydroxyalkonates, such as, for example, but not limited to, polyhydroxypropionate, poly(3-hydroxybutyrate) (PH3B), poly(3-hydroxyvalerate) (PH3V), poly(4-hydroxybutyrate) (PH4B), poly(4-hydroxyvalerate) (PH4V), poly(5-hydroxyvalerate) (PH5V), poly(6-hydroxydodecanoate) (PH6D) and blends of any of these materials.
  • As used herein, the term “polystyrene” refers to a homopolymer or copolymer having at least one styrene monomer (benzene, i.e., C6H5, having an ethylene substituent) linkage within the repeating backbone of the polymer. The styrene linkage can be represented by the general formula: [CH2—CH2(C6H5)]n. Polystyrene may be formed by any method known to those skilled in the art. Suitable polystyrenes include, for example, but are not limited to, oriented polystyrene (OPS) film and resins, i.e., polystyrene (PS), syndiotactic polystyrene (SPS), acrylonitrile-butadiene-styrene (ABS), styrene-acrylonitrile (SAN), ethylene/styrene copolymers, styrene/acrylic copolymers, styrene block copolymers (SBC), and the like. Other non-limiting examples of polystyrene suitable for use in the present invention include high-impact polystyrene (HIPS).
  • As used herein, the term “polyethylene” refers to a homopolymer or copolymer having at least one ethylene monomer linkage within the repeating backbone of the polymer. The ethylene linkage can be represented by the general formula: [CH2—CH2]n. Polyethylenes (PE) may be formed by any method known to those skilled in the art. Suitable polyethylenes may include, but is not limited to, high-density polyethylene (HDPE), ultra high-density polyethylene (UHDPE), and cyclic olefin copolymers (COC). Exemplary of commercially available cyclic olefin copolymers suitable for use in the present invention include, but are not limited to, the TOPAS™ family of resins which is supplied by Celanese-Ticona, Summit, N.J., U.S.A.
  • As used herein, the term “polyvinylchloride” refers to a homopolymer or copolymer having at least one vinyl chloride monomer linkage, i.e., ethylene moiety having a chlorine atom substituent on a carbon atom, within the repeating backbone of the polymer. Polyvinylchloride (PVC) can be represented by the general formula: [CH2—CH(Cl)]n.
  • As used herein, the term “polycarbonate” refers to a homopolymer or copolymer having at least one carbonate monomer linkage within the repeating backbone of the polymer. Polycarbonate (PC) can be represented by the general formula: [O—R—OC(O)]n.
  • The cover and the base may have different thermal expansion coefficients such that, when subject to heating (e.g., microwave heating) or cooling (e.g., refrigerated storage) or other environmental conditions, the cover and the base do not expand or shrink to the same degree. In one embodiment, the cover may have a smaller thermal expansion coefficient than that of the base. Due to the unique and advantageous configuration of the present invention, the differences in the degree of expansion or contraction may not substantially affect the functionality and/or structure integrity of the cover, the base, and/or the assembled packaging article.
  • Furthermore, the cover and the base may expand and/or shrink differently with a change of the moisture content and/or a change of moisture content in the environment. For instance, such covers may be clear, transparent, or semi-transparent covers, e.g., without limitations, clear covers made from regular plastics which do not degrade or bioplastics which do degrade (e.g., PLA), where the changes of the moisture content of the environment generally do not cause significant changes in the size and/or the shape of these covers; while the bases may be bases containing a high percentage of starch and/or pulp, which tend to grow and shrink in size based on the moisture content, which may be affected, e.g., by the moisture content of the environment. Therefore, the packaging article of the present invention provides better sealing to the content, at least partially due to the fact that it allows for the growth/shrinkage differences between the lids and the bases.
  • Packaging articles with enhanced moisture resistance can be provided by coating the article with a moisture resistant coating. Where long term storage of food products requires a sealed moisture and oxygen barrier, conventional coated paper or plastic film materials may be used for barrier materials, with a rigid biodegradable insert acting to hold and protect the food items.
  • A formulation according to the present invention from which the packaging items (containers, plates, trays, bowls, cones, and cups, as well as other novel shapes) can be produced is provided, comprising water; starch; and optionally natural fibrous materials, proteins, natural polymeric compounds, and wax or wax emulsions.
  • Proteins and natural polymeric compounds may include, but are not limited to preparations made from casein, soy protein isolate or concentrate, or similar such preparations. One such preparation can be prepared in the following three steps: 1) cooking a solution of casein or soy protein isolate in water (about 10% by weight) as per usual manufacturer's recommendations (generally, hydrating the protein by soaking, then gradually raising the temperature and pH of the solution to 180° F. and pH=9 to 9.5, then holding the solution at 180° F. for 15 minutes); 2) cooling the preparation to room temperature; and optionally, 3) adding a preservative and blending thoroughly. The preferred concentration of preservative in the preparation is about 0.1% or less, depending on the shelf life required for the protein solution, the concentration of protein required in the final product, and the limits imposed by government regulations on the dosages of preservative compounds in edible materials.
  • Other proteins may also be used in combination with the casein or soy protein preparation or separately to improve the water-resistant properties of the containers. For example, such proteins may include albumen, gelatin, or the like.
  • Several natural fibrous materials may be used in combination both as structural elements (at several size scales) in the baked items and or as inexpensive organic fillers. Fiber elements are used both to control the molding characteristics of the wet batter and to enhance the structural stability of the finished food service articles. Although there is a continuum of fiber lengths and fiber aspect ratios used in the formulation, the fibrous portion of the formulation can be in a general sense separated into three classes (based on fiber length) that serve different functions. Long or very long (4 to 25 mm or longer) fibers or composite fiber elements are used to form a meshwork that helps prevent defects from forming in the batter as it expands in the mold. Medium-length fibers (0.5 to 5 mm) also help control the flow characteristics of the wet batter, and serve to increase the toughness of the finished food service articles, preventing fracture during handling and during normal use. Short fibers (<0.5 mm) serve mainly as a means to introduce readily biodegradable material into the formulation, i.e., filler material that is more water-resistant than the starch-based matrix that contains them.
  • Optionally, the shorter fibers may be used in conjunction with, or replaced by other filler materials imparting the same advantages as the shorter fibers. For example, such filler materials may include both organic and inorganic aggregates such as calcium carbonate, silica, calcium sulfate, calcium sulfate hydrate, magnesium silicate, micaceous minerals, clay minerals, titanium dioxide, talc, etc. The concentration of aggregate and/or short fibers may be in a range from about 0% to about 25% by dry weight of the formulation, in a range from about 2.5% to about 20% by total dry weight of the formulation, in a range from about 5% to about 15% dry weight of the formulation, in a range from about 5% to about 20% by total dry weight of the formulation, or in a range from about 7% to about 17% dry weight of the formulation.
  • The organic filler material may include ground walnut shells. Ground walnut shells results in fibrous matter comprising short fibers. The ground walnut shells may be used alone as the filler material or may be combined with other filler materials. When used alone the preferred concentration is about 8% by dry weight.
  • Fibers from several sources are typically included in the formulation. Relatively high quality fibers from grass or reed species provide the mid-length fibers that contribute most to the structural stability and resilience if the finished articles. The long to very long fibers or fiber composites may come from lightly processed agricultural byproducts, e.g., stalk or husk materials that have been chopped, ground, or milled to an appropriate size, or they can come from traditional sources of long cellulose fiber, e.g., cotton or cotton linters. Under appropriate processing conditions (e.g., hammer milling), these materials can also provide a considerable amount of the very short fiber that serves to replace starch and add water resistance to the finished article. Fibrous material in the form of ground nut shells (or other very hard, lignin-rich plant materials) may also serve as organic, relatively water resistant, biodegradable fibers that replace conventional filler materials.
  • Moreover, these other sources of fiber suitable as structural elements in starch-based food service articles are readily available. Some of these are from fast-growing plants that can be broadly characterized as grasses or reeds, such as kenaf and bamboo, which provide fiber with smaller associated environmental costs than taking fiber from trees. A growing segment of the fiber industry is based on the use of fiber from these plants. In many cases the quality and consistency of fibers taken from these plants (after processing) is as good as that provided by the wood pulp industry. In addition, fiber is also widely available as a by-product of agricultural production. Stalks, stems, and husks from cereal grains, for example, are a ready source of fibrous material that, while not as high in quality as the fiber taken from wood or the better grass species, is extremely cheap and, as a by-product, has essentially no additional environmental cost (beyond whatever environmental costs are associated with the production of the main crop).
  • The fibrous materials included in the formulations described here vary greatly in both fiber length and fiber aspect ratio. Overall, however, it is preferred that the materials have an average fiber length that is less than about 2 mm and an average aspect ratio that is in the range of about 5:1 to 25:1.
  • The preferred wax or wax emulsions in the formulation, used to increase water-resistance, is a stable aqueous emulsion usually made of carnauba, candelilla, rice bran, paraffin, or any other food-grade wax: vegetable waxes are preferred over animal and mineral waxes, and natural waxes are preferred over synthetic varieties. The wax type is selected based on the particular application and desired properties of the final product. The emulsion is usually prepared by means of emulsifying agents and mechanical agitation. Examples of wax emulsions suitable for use in the present formulation include emulsified carnauba wax and emulsified candelilla wax. Emulsifiers include all of those permitted for food applications, including (but not limited to) sorbitan monostearate, Polysorbate 60, Polysorbate 65, Polysorbate 80, food-grade gums (e.g., arabinogalactan, carrageenan, furcelleran, xanthan), stearyl monoglyceridyl citrate, succistearin, hydroxylated lecithin, and many other compounds. In the alternative to wax, one may use an additive component or emulsion thereof in an amount ranging from about 0.5% to about 10% on a dry weight basis. The additive component can comprise an epoxidized vegetable oil, a hydrogenated triglyceride, poly(vinyl acetate), poly(vinylacetate-ethylene) copolymer, poly(ethylene-vinyl acetate) copolymer, or a combination thereof.
  • FIG. 2 depicts an exemplary base 20 in accordance with one embodiment of the present invention. A hole 40 is localized in the center of the base 20.
  • FIGS. 3 and 4 depict an exemplary packaging article having a cover 10 and a base 20. In addition, FIG. 4 shows that, when assembling the cover 10 and the base 20, protrusion 30 should be connected with the hole 40.
  • FIG. 5 shows an exemplary packaging article having double protrusions 31 and 32 and double holes 41 and 42.
  • FIGS. 6-17 further depict a number of exemplary packaging articles that may be formed in accordance to various embodiments of the present invention.
  • Although the invention has been described with respect to specific embodiments and examples, it will be readily appreciated by those skilled in the art that modifications and adaptations of the invention are possible without deviation from the spirit and scope of the invention. Accordingly, the scope of the present invention is limited only by the following claims.

Claims (30)

1. A packaging article comprising:
a cover comprising a first structure; and
a base comprising a second structure,
wherein connecting the first structure and the second structure links the cover and the base to form an assembled packaging article, wherein the first structure is not localized on an edge of the cover, and wherein the second structure is not localized on an edge of the base.
2. The packing article of claim 1, wherein the first structure is a protrusion and the second structure is a receptacle cavity.
3. The packing article of claim 1, wherein the first structure is a receptacle cavity and the second structure is a protrusion.
4. The packing article of claim 1, wherein at least one of the first structure and the second structure comprises a locking structure.
5. The packing article of claim 1, wherein the cover has a different thermal expansion coefficient from that of the base.
6. The packing article of claim 5, wherein the cover has a smaller thermal expansion coefficient than that of the base.
7. The packing article of claim 1, wherein the cover expands or contracts differently from the base with a change of moisture content.
8. The packing article of claim 1, wherein at least one of the cover and the base comprises a biodegradable or edible material.
9. The packing article of claim 7, wherein the biodegradable or edible material comprises starch.
10. A packaging article comprising:
a cover comprising a first connecting structure in an inner section of the cover; and
a base comprising a second connecting structure in an inner section of the base,
wherein connecting the first connecting structure and the second connecting structure links the cover and the base.
11. The packaging article of claim 10, wherein the first connecting structure and the second connecting structure together form a snap fit for releasably linking the cover and the base.
12. The packaging article of claim 11, wherein the snap fit is an annular snap fit.
13. The packaging article of claim 11, wherein the snap fit is an cantilever snap fit.
14. The packaging article of claim 10, wherein the cover and the base comprise different materials.
15. The packaging article of claim 10, wherein the cover and the base comprise the same material.
16. The packaging article of claim 10, wherein the cover and base expand or contract differently in response to environmental conditions.
17. The packaging article of claim 10, wherein the cover and base expand or contract the same in response to environmental conditions.
18. The packaging article of claim 10, wherein at least one of the cover and base comprises a starch-based material.
19. The packaging article of claim 18, wherein the first connecting structure and the second connecting structure together form a snap fit for releasably linking the cover and the base.
20. The packaging article of claim 19, wherein the snap fit is an annular snap fit.
21. The packaging article of claim 19, wherein the snap fit is an cantilever snap fit.
22. The packaging article of claim 10, wherein both the cover and base comprise a starch-based material.
23. The packaging article of claim 22, wherein the first connecting structure and the second connecting structure together form a snap fit for releasably linking the cover and the base.
24. The packaging article of claim 23, wherein the snap fit is an annular snap fit.
25. The packaging article of claim 23, wherein the snap fit is an cantilever snap fit.
26. A packaging article comprising:
a cover comprising a first connecting structure in an inner section of the cover; and
a base comprising a second connecting structure in an inner section of the base,
wherein connecting the first connecting structure and the second connecting structure links the cover and the base, and wherein at least one of the cover and the base comprises a starch-based material.
27. The packaging article of claim 26, wherein both the cover and base comprise a starch-based material.
28. The packaging article of claim 27, wherein the first connecting structure and the second connecting structure together form a snap fit for releasably linking the cover and the base.
29. The packaging article of claim 28, wherein the snap fit is an annular snap fit.
30. The packaging article of claim 28, wherein the snap fit is an cantilever snap fit.
US12/389,172 2008-02-19 2009-02-19 Releasable locking mechanism for packaging articles Abandoned US20090218347A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/389,172 US20090218347A1 (en) 2008-02-19 2009-02-19 Releasable locking mechanism for packaging articles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2990108P 2008-02-19 2008-02-19
US12/389,172 US20090218347A1 (en) 2008-02-19 2009-02-19 Releasable locking mechanism for packaging articles

Publications (1)

Publication Number Publication Date
US20090218347A1 true US20090218347A1 (en) 2009-09-03

Family

ID=40986183

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/389,172 Abandoned US20090218347A1 (en) 2008-02-19 2009-02-19 Releasable locking mechanism for packaging articles

Country Status (3)

Country Link
US (1) US20090218347A1 (en)
TW (1) TWI439401B (en)
WO (1) WO2009105563A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100086746A1 (en) * 2008-10-03 2010-04-08 Georgia-Pacific Corrugated Llc Corrugating linerboard, corrugated board, and methods of making the same
US20110305801A1 (en) * 2010-06-10 2011-12-15 Fres-Co System Usa, Inc. Single brew beverage cartridge system including same and method of use
US20160122100A1 (en) * 2013-05-17 2016-05-05 Empire Technology Development Llc Packaging materials and methods for their preparation and use
US20170174414A1 (en) * 2011-05-04 2017-06-22 Give And Go Prepared Foods Corp. Container for food items
USD864652S1 (en) * 2017-07-28 2019-10-29 Sistema Plastics Limited Container having a bottom and lid
US11186427B2 (en) 2018-02-02 2021-11-30 Wf Bakery Inc. Container for comestible products

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112318957A (en) * 2020-09-21 2021-02-05 乐美包装(昆山)有限公司 Packaging composite material layer, packaging container and manufacturing method of packaging composite material layer

Citations (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1875482A (en) * 1932-09-06 Frank s
US2176865A (en) * 1936-10-21 1939-10-17 Company Union Trust Pressure cooker
US3164478A (en) * 1961-12-15 1965-01-05 Poster Packaging Inc Doughnut package
US4545752A (en) * 1982-08-17 1985-10-08 Dai Nippon Insatsu Kabushiki Kaisha Device for injection molding articles while simultaneously forming patterns thereon
US4798133A (en) * 1985-10-16 1989-01-17 Johnson William N H Package and container for eggs
US4900242A (en) * 1986-05-05 1990-02-13 Maus Steven M Apparatus for injection molding articles
US5100586A (en) * 1990-07-20 1992-03-31 E. Khashoggi Industries Cementitious hazardous waste containers and their method of manufacture
US5205863A (en) * 1991-11-14 1993-04-27 International Communications & Energy Agricultural biodegradable plastics
US5209880A (en) * 1990-07-27 1993-05-11 Neo-Ex Lab. Inc. Process for making a sun visor by molding a pair of shells and bonding them together
US5232496A (en) * 1988-08-19 1993-08-03 E. Khashoggi Industries Process for producing improved building material and product thereof
US5352111A (en) * 1990-12-19 1994-10-04 Selbak's Cookie Cones, Inc. Apparatus for removing a hand held food product from a baking mold
US5354621A (en) * 1992-07-02 1994-10-11 Beltec International Biodegradable construction material and manufacturing method
US5356579A (en) * 1990-05-18 1994-10-18 E. Khashoggi Industries Methods of manufacture and use for low density hydraulically bonded cement compositions
US5358676A (en) * 1990-05-18 1994-10-25 E. Khashoggi Industries Methods of manufacture and use for hydraulically bonded cement
US5385764A (en) * 1992-08-11 1995-01-31 E. Khashoggi Industries Hydraulically settable containers and other articles for storing, dispensing, and packaging food and beverages and methods for their manufacture
US5412005A (en) * 1991-05-03 1995-05-02 Novamont S.P.A. Biodegradable polymeric compositions based on starch and thermoplastic polymers
US5506046A (en) * 1992-08-11 1996-04-09 E. Khashoggi Industries Articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix
US5508072A (en) * 1992-08-11 1996-04-16 E. Khashoggi Industries Sheets having a highly inorganically filled organic polymer matrix
US5514430A (en) * 1992-08-11 1996-05-07 E. Khashoggi Industries Coated hydraulically settable containers and other articles for storing, dispensing, and packaging food and beverages
US5527387A (en) * 1992-08-11 1996-06-18 E. Khashoggi Industries Computer implemented processes for microstructurally engineering cementious mixtures
US5543186A (en) * 1993-02-17 1996-08-06 E. Khashoggi Industries Sealable liquid-tight, thin-walled containers made from hydraulically settable materials
US5545297A (en) * 1992-08-11 1996-08-13 E. Khashoggi Industries Methods for continuously placing filaments within hydraulically settable compositions being extruded into articles of manufacture
US5545450A (en) * 1992-08-11 1996-08-13 E. Khashoggi Industries Molded articles having an inorganically filled organic polymer matrix
US5549859A (en) * 1992-08-11 1996-08-27 E. Khashoggi Industries Methods for the extrusion of novel, highly plastic and moldable hydraulically settable compositions
US5618341A (en) * 1992-08-11 1997-04-08 E. Khashoggi Industries Methods for uniformly dispersing fibers within starch-based compositions
US5631053A (en) * 1992-08-11 1997-05-20 E. Khashoggi Industries Hinged articles having an inorganically filled matrix
US5631097A (en) * 1992-08-11 1997-05-20 E. Khashoggi Industries Laminate insulation barriers having a cementitious structural matrix and methods for their manufacture
US5637412A (en) * 1990-05-18 1997-06-10 E. Khashoggi Industries Compressed hydraulically bonded composite articles
US5641584A (en) * 1992-08-11 1997-06-24 E. Khashoggi Industries Highly insulative cementitious matrices and methods for their manufacture
US5658603A (en) * 1992-08-11 1997-08-19 E. Khashoggi Industries Systems for molding articles having an inorganically filled organic polymer matrix
US5660903A (en) * 1992-08-11 1997-08-26 E. Khashoggi Industries Sheets having a highly inorganically filled organic polymer matrix
US5660904A (en) * 1992-08-11 1997-08-26 E. Khashoggi Industries Sheets having a highly inorganically filled organic polymer matrix
US5660900A (en) * 1992-08-11 1997-08-26 E. Khashoggi Industries Inorganically filled, starch-bound compositions for manufacturing containers and other articles having a thermodynamically controlled cellular matrix
US5662731A (en) * 1992-08-11 1997-09-02 E. Khashoggi Industries Compositions for manufacturing fiber-reinforced, starch-bound articles having a foamed cellular matrix
US5665439A (en) * 1992-08-11 1997-09-09 E. Khashoggi Industries Articles of manufacture fashioned from hydraulically settable sheets
US5665152A (en) * 1995-11-29 1997-09-09 Midwest Grain Products Biodegradable grain protein-based solid articles and forming methods
US5705203A (en) * 1994-02-07 1998-01-06 E. Khashoggi Industries Systems for molding articles which include a hinged starch-bound cellular matrix
US5705242A (en) * 1992-08-11 1998-01-06 E. Khashoggi Industries Coated food beverage containers made from inorganic aggregates and polysaccharide, protein, or synthetic organic binders
US5705239A (en) * 1992-08-11 1998-01-06 E. Khashoggi Industries Molded articles having an inorganically filled organic polymer matrix
US5709913A (en) * 1992-08-11 1998-01-20 E. Khashoggi Industries Method and apparatus for manufacturing articles of manufacture from sheets having a highly inorganically filled organic polymer matrix
US5709827A (en) * 1992-08-11 1998-01-20 E. Khashoggi Industries Methods for manufacturing articles having a starch-bound cellular matrix
US5716675A (en) * 1992-11-25 1998-02-10 E. Khashoggi Industries Methods for treating the surface of starch-based articles with glycerin
US5720913A (en) * 1992-08-11 1998-02-24 E. Khashoggi Industries Methods for manufacturing sheets from hydraulically settable compositions
US5736209A (en) * 1993-11-19 1998-04-07 E. Kashoggi, Industries, Llc Compositions having a high ungelatinized starch content and sheets molded therefrom
US5738921A (en) * 1993-08-10 1998-04-14 E. Khashoggi Industries, Llc Compositions and methods for manufacturing sealable, liquid-tight containers comprising an inorganically filled matrix
US5776388A (en) * 1994-02-07 1998-07-07 E. Khashoggi Industries, Llc Methods for molding articles which include a hinged starch-bound cellular matrix
US5783240A (en) * 1996-10-16 1998-07-21 Wenger Manufacturing, Inc. Method of producing high protein, high fat sinking aquatic feed
US5786080A (en) * 1996-04-03 1998-07-28 E. Khashoggi Industries Compositions and methods for manufacturing ettringite coated fibers and aggregates
US5810961A (en) * 1993-11-19 1998-09-22 E. Khashoggi Industries, Llc Methods for manufacturing molded sheets having a high starch content
US5928741A (en) * 1992-08-11 1999-07-27 E. Khashoggi Industries, Llc Laminated articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix
US6083586A (en) * 1993-11-19 2000-07-04 E. Khashoggi Industries, Llc Sheets having a starch-based binding matrix
US6168857B1 (en) * 1996-04-09 2001-01-02 E. Khashoggi Industries, Llc Compositions and methods for manufacturing starch-based compositions
US6214399B1 (en) * 2000-05-09 2001-04-10 Paul W. Garbo Apparatus and method for molding food
US6220849B1 (en) * 1998-02-20 2001-04-24 Dai Nippon Printing Co., Ltd. Sheet-decorating injection molding machine
US6228898B1 (en) * 1993-07-13 2001-05-08 Suzuki Sogyo, Co., Ltd. Biodegradable resin foam and method and apparatus for producing same
US6231970B1 (en) * 2000-01-11 2001-05-15 E. Khashoggi Industries, Llc Thermoplastic starch compositions incorporating a particulate filler component
US6240836B1 (en) * 1999-08-05 2001-06-05 Paul W. Garbo Aluminum foil compression mold and method of molding food
US6277899B1 (en) * 1992-08-03 2001-08-21 Novamont S.P.A. Biodegradable polymeric composition
US6347934B1 (en) * 2000-05-10 2002-02-19 E. Khashoggi Industries, Llc. System for metering and delivering a moldable composition into a mold
US6379446B1 (en) * 2000-04-03 2002-04-30 E. Khashoggi Industries, Llc. Methods for dispersing fibers within aqueous compositions
US6413069B2 (en) * 1994-04-25 2002-07-02 Dai Nippon Printing Co., Ltd. Apparatus for forming pattern onto article during injection molding
US20030047110A1 (en) * 1999-09-16 2003-03-13 Ngamtip Poovarodom Non-synthetic biodegradable starch-based composition for production of shaped bodies
US6585859B1 (en) * 1999-02-17 2003-07-01 Stora Kopparbergs Bergslags Aktiebolag (Publ) Method for the production of sized paper or sized cardboard, and sized paper or sized cardboard
US6589327B1 (en) * 1998-06-05 2003-07-08 Steven B. Snidow Organic composite material
US20030143417A1 (en) * 2000-01-11 2003-07-31 Anneliese Kesselring Composition for producing biological degradable shaped bodies and method for producing such a composition
US6846573B2 (en) * 2002-04-19 2005-01-25 Evco Research Llc Moisture resistant, repulpable paper products and method of making same
US6878199B2 (en) * 2002-01-11 2005-04-12 New Ice Limited Biodegradable or compostable containers
US20050089606A1 (en) * 2003-08-27 2005-04-28 David Dellinger Composition for use in biodegradable articles and method of use
US20050167317A1 (en) * 2003-10-27 2005-08-04 Patrick Barrett Packaging tray
US20060057319A1 (en) * 2004-09-11 2006-03-16 Gleich Klaus F Methods and systems for making fiber reinforced products and resultant products
US20060075544A1 (en) * 2004-10-08 2006-04-13 Matt Kriesel Helmets and vests
US20060110498A1 (en) * 2003-08-27 2006-05-25 David Dellinger Composition for use in edible biodegradable articles and method of use
US20070021534A1 (en) * 2005-07-19 2007-01-25 United States (as represented by the Secretary of Agriculture) Fiber-reinforced starch-based compositions and methods of manufacture and use
US7196124B2 (en) * 2003-01-08 2007-03-27 Texas Tech University Elastomeric material compositions obtained from castor oil and epoxidized soybean oil

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5167974A (en) * 1987-11-30 1992-12-01 Oscar Mayer Foods Corporation Vacuum packaging with hermetic reclosure
SE9902222D0 (en) * 1999-06-11 1999-06-11 Eggstra Pack Ab Packaging

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1875482A (en) * 1932-09-06 Frank s
US2176865A (en) * 1936-10-21 1939-10-17 Company Union Trust Pressure cooker
US3164478A (en) * 1961-12-15 1965-01-05 Poster Packaging Inc Doughnut package
US4545752A (en) * 1982-08-17 1985-10-08 Dai Nippon Insatsu Kabushiki Kaisha Device for injection molding articles while simultaneously forming patterns thereon
US4639341A (en) * 1982-08-17 1987-01-27 Dai Nippon Insatsu Kabushiki Kaisha Method for injection molding articles while simultaneously forming patterns thereon
US4798133A (en) * 1985-10-16 1989-01-17 Johnson William N H Package and container for eggs
US4900242A (en) * 1986-05-05 1990-02-13 Maus Steven M Apparatus for injection molding articles
US5232496A (en) * 1988-08-19 1993-08-03 E. Khashoggi Industries Process for producing improved building material and product thereof
US5635292A (en) * 1990-05-18 1997-06-03 E. Khashoggi Industries Compressed low density hydraulically bonded composite articles
US5637412A (en) * 1990-05-18 1997-06-10 E. Khashoggi Industries Compressed hydraulically bonded composite articles
US5356579A (en) * 1990-05-18 1994-10-18 E. Khashoggi Industries Methods of manufacture and use for low density hydraulically bonded cement compositions
US5358676A (en) * 1990-05-18 1994-10-25 E. Khashoggi Industries Methods of manufacture and use for hydraulically bonded cement
US5100586A (en) * 1990-07-20 1992-03-31 E. Khashoggi Industries Cementitious hazardous waste containers and their method of manufacture
US5209880A (en) * 1990-07-27 1993-05-11 Neo-Ex Lab. Inc. Process for making a sun visor by molding a pair of shells and bonding them together
US5352111A (en) * 1990-12-19 1994-10-04 Selbak's Cookie Cones, Inc. Apparatus for removing a hand held food product from a baking mold
US5412005A (en) * 1991-05-03 1995-05-02 Novamont S.P.A. Biodegradable polymeric compositions based on starch and thermoplastic polymers
US5205863A (en) * 1991-11-14 1993-04-27 International Communications & Energy Agricultural biodegradable plastics
US5354621A (en) * 1992-07-02 1994-10-11 Beltec International Biodegradable construction material and manufacturing method
US6277899B1 (en) * 1992-08-03 2001-08-21 Novamont S.P.A. Biodegradable polymeric composition
US5705239A (en) * 1992-08-11 1998-01-06 E. Khashoggi Industries Molded articles having an inorganically filled organic polymer matrix
US5766525A (en) * 1992-08-11 1998-06-16 E. Khashoggi Industries Methods for manufacturing articles from sheets of unhardened hydraulically settable compositions
US5527387A (en) * 1992-08-11 1996-06-18 E. Khashoggi Industries Computer implemented processes for microstructurally engineering cementious mixtures
US5385764A (en) * 1992-08-11 1995-01-31 E. Khashoggi Industries Hydraulically settable containers and other articles for storing, dispensing, and packaging food and beverages and methods for their manufacture
US5545297A (en) * 1992-08-11 1996-08-13 E. Khashoggi Industries Methods for continuously placing filaments within hydraulically settable compositions being extruded into articles of manufacture
US5545450A (en) * 1992-08-11 1996-08-13 E. Khashoggi Industries Molded articles having an inorganically filled organic polymer matrix
US5549859A (en) * 1992-08-11 1996-08-27 E. Khashoggi Industries Methods for the extrusion of novel, highly plastic and moldable hydraulically settable compositions
US5614307A (en) * 1992-08-11 1997-03-25 E. Khashoggi Industries Sheets made from moldable hydraulically settable compositions
US5618341A (en) * 1992-08-11 1997-04-08 E. Khashoggi Industries Methods for uniformly dispersing fibers within starch-based compositions
US5626954A (en) * 1992-08-11 1997-05-06 E. Khashoggi Industries Sheets made from moldable hydraulically settable materials
US5631053A (en) * 1992-08-11 1997-05-20 E. Khashoggi Industries Hinged articles having an inorganically filled matrix
US5631097A (en) * 1992-08-11 1997-05-20 E. Khashoggi Industries Laminate insulation barriers having a cementitious structural matrix and methods for their manufacture
US5631052A (en) * 1992-08-11 1997-05-20 E. Khashoggi Industries Coated cementitious packaging containers
US5508072A (en) * 1992-08-11 1996-04-16 E. Khashoggi Industries Sheets having a highly inorganically filled organic polymer matrix
US5506046A (en) * 1992-08-11 1996-04-09 E. Khashoggi Industries Articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix
US5641584A (en) * 1992-08-11 1997-06-24 E. Khashoggi Industries Highly insulative cementitious matrices and methods for their manufacture
US5654048A (en) * 1992-08-11 1997-08-05 E. Khashoggi Industries Cementitious packaging containers
US5658624A (en) * 1992-08-11 1997-08-19 E. Khashoggi Industries Articles formed by extruding hydraulically settable compositions
US5658603A (en) * 1992-08-11 1997-08-19 E. Khashoggi Industries Systems for molding articles having an inorganically filled organic polymer matrix
US5660903A (en) * 1992-08-11 1997-08-26 E. Khashoggi Industries Sheets having a highly inorganically filled organic polymer matrix
US5660904A (en) * 1992-08-11 1997-08-26 E. Khashoggi Industries Sheets having a highly inorganically filled organic polymer matrix
US5660900A (en) * 1992-08-11 1997-08-26 E. Khashoggi Industries Inorganically filled, starch-bound compositions for manufacturing containers and other articles having a thermodynamically controlled cellular matrix
US5662731A (en) * 1992-08-11 1997-09-02 E. Khashoggi Industries Compositions for manufacturing fiber-reinforced, starch-bound articles having a foamed cellular matrix
US5665439A (en) * 1992-08-11 1997-09-09 E. Khashoggi Industries Articles of manufacture fashioned from hydraulically settable sheets
US6180037B1 (en) * 1992-08-11 2001-01-30 E. Khashoggi Industries, Llc Methods for the manufacture of sheets having a highly inorganically filled organic polymer matrix
US5665442A (en) * 1992-08-11 1997-09-09 E. Khashoggi Industries Laminated sheets having a highly inorganically filled organic polymer matrix
US6090195A (en) * 1992-08-11 2000-07-18 E. Khashoggi Industries, Llc Compositions used in manufacturing articles having an inorganically filled organic polymer matrix
US5705237A (en) * 1992-08-11 1998-01-06 E. Khashoggi Industries Hydraulically settable containers and other articles for storing, dispensing, and packaging food or beverages
US5705242A (en) * 1992-08-11 1998-01-06 E. Khashoggi Industries Coated food beverage containers made from inorganic aggregates and polysaccharide, protein, or synthetic organic binders
US5453310A (en) * 1992-08-11 1995-09-26 E. Khashoggi Industries Cementitious materials for use in packaging containers and their methods of manufacture
US5705238A (en) * 1992-08-11 1998-01-06 E. Khashoggi Industries Articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix
US5707474A (en) * 1992-08-11 1998-01-13 E. Khashoggi, Industries Methods for manufacturing hinges having a highly inorganically filled matrix
US5709913A (en) * 1992-08-11 1998-01-20 E. Khashoggi Industries Method and apparatus for manufacturing articles of manufacture from sheets having a highly inorganically filled organic polymer matrix
US5709827A (en) * 1992-08-11 1998-01-20 E. Khashoggi Industries Methods for manufacturing articles having a starch-bound cellular matrix
US5928741A (en) * 1992-08-11 1999-07-27 E. Khashoggi Industries, Llc Laminated articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix
US5868824A (en) * 1992-08-11 1999-02-09 E. Khashoggi Industries, Llc Inorganically filled, starch-based compositions for manufacturing containers and other articles having a thermodynamically controlled cellular matrix
US5720913A (en) * 1992-08-11 1998-02-24 E. Khashoggi Industries Methods for manufacturing sheets from hydraulically settable compositions
US5800756A (en) * 1992-08-11 1998-09-01 E. Khashoggi Industries, Llc Methods for manufacturing containers and other articles from hydraulically settable mixtures
US5800647A (en) * 1992-08-11 1998-09-01 E. Khashoggi Industries, Llc Methods for manufacturing articles from sheets having a highly inorganically filled organic polymer matrix
US5753308A (en) * 1992-08-11 1998-05-19 E. Khashoggi Industries, Llc Methods for manufacturing food and beverage containers from inorganic aggregates and polysaccharide, protein, or synthetic organic binders
US5514430A (en) * 1992-08-11 1996-05-07 E. Khashoggi Industries Coated hydraulically settable containers and other articles for storing, dispensing, and packaging food and beverages
US5798151A (en) * 1992-08-11 1998-08-25 E. Khashoggi Industries, Llc Hydraulically settable articles which include helically wound filaments
US5783126A (en) * 1992-08-11 1998-07-21 E. Khashoggi Industries Method for manufacturing articles having inorganically filled, starch-bound cellular matrix
US5716675A (en) * 1992-11-25 1998-02-10 E. Khashoggi Industries Methods for treating the surface of starch-based articles with glycerin
US6030673A (en) * 1992-11-25 2000-02-29 E. Khashoggi Industries, Llc Molded starch-bound containers and other articles having natural and/or synthetic polymer coatings
US5543186A (en) * 1993-02-17 1996-08-06 E. Khashoggi Industries Sealable liquid-tight, thin-walled containers made from hydraulically settable materials
US5714217A (en) * 1993-02-17 1998-02-03 E. Khashoggi Industries Sealable liquid-tight containers comprised of coated hydraulically settable materials
US6228898B1 (en) * 1993-07-13 2001-05-08 Suzuki Sogyo, Co., Ltd. Biodegradable resin foam and method and apparatus for producing same
US5738921A (en) * 1993-08-10 1998-04-14 E. Khashoggi Industries, Llc Compositions and methods for manufacturing sealable, liquid-tight containers comprising an inorganically filled matrix
US6083586A (en) * 1993-11-19 2000-07-04 E. Khashoggi Industries, Llc Sheets having a starch-based binding matrix
US5736209A (en) * 1993-11-19 1998-04-07 E. Kashoggi, Industries, Llc Compositions having a high ungelatinized starch content and sheets molded therefrom
US5810961A (en) * 1993-11-19 1998-09-22 E. Khashoggi Industries, Llc Methods for manufacturing molded sheets having a high starch content
US5705203A (en) * 1994-02-07 1998-01-06 E. Khashoggi Industries Systems for molding articles which include a hinged starch-bound cellular matrix
US5776388A (en) * 1994-02-07 1998-07-07 E. Khashoggi Industries, Llc Methods for molding articles which include a hinged starch-bound cellular matrix
US6413069B2 (en) * 1994-04-25 2002-07-02 Dai Nippon Printing Co., Ltd. Apparatus for forming pattern onto article during injection molding
US5665152A (en) * 1995-11-29 1997-09-09 Midwest Grain Products Biodegradable grain protein-based solid articles and forming methods
US5786080A (en) * 1996-04-03 1998-07-28 E. Khashoggi Industries Compositions and methods for manufacturing ettringite coated fibers and aggregates
US6168857B1 (en) * 1996-04-09 2001-01-02 E. Khashoggi Industries, Llc Compositions and methods for manufacturing starch-based compositions
US6200404B1 (en) * 1996-04-09 2001-03-13 E. Khashoggi Industries, Llc Compositions and methods for manufacturing starch-based sheets
US5783240A (en) * 1996-10-16 1998-07-21 Wenger Manufacturing, Inc. Method of producing high protein, high fat sinking aquatic feed
US6220849B1 (en) * 1998-02-20 2001-04-24 Dai Nippon Printing Co., Ltd. Sheet-decorating injection molding machine
US6589327B1 (en) * 1998-06-05 2003-07-08 Steven B. Snidow Organic composite material
US6585859B1 (en) * 1999-02-17 2003-07-01 Stora Kopparbergs Bergslags Aktiebolag (Publ) Method for the production of sized paper or sized cardboard, and sized paper or sized cardboard
US6240836B1 (en) * 1999-08-05 2001-06-05 Paul W. Garbo Aluminum foil compression mold and method of molding food
US20030047110A1 (en) * 1999-09-16 2003-03-13 Ngamtip Poovarodom Non-synthetic biodegradable starch-based composition for production of shaped bodies
US6231970B1 (en) * 2000-01-11 2001-05-15 E. Khashoggi Industries, Llc Thermoplastic starch compositions incorporating a particulate filler component
US20030143417A1 (en) * 2000-01-11 2003-07-31 Anneliese Kesselring Composition for producing biological degradable shaped bodies and method for producing such a composition
US6379446B1 (en) * 2000-04-03 2002-04-30 E. Khashoggi Industries, Llc. Methods for dispersing fibers within aqueous compositions
US6214399B1 (en) * 2000-05-09 2001-04-10 Paul W. Garbo Apparatus and method for molding food
US6347934B1 (en) * 2000-05-10 2002-02-19 E. Khashoggi Industries, Llc. System for metering and delivering a moldable composition into a mold
US7083673B2 (en) * 2002-01-11 2006-08-01 New Ice Limited Biodegradable or compostable containers
US6878199B2 (en) * 2002-01-11 2005-04-12 New Ice Limited Biodegradable or compostable containers
US6846573B2 (en) * 2002-04-19 2005-01-25 Evco Research Llc Moisture resistant, repulpable paper products and method of making same
US7196124B2 (en) * 2003-01-08 2007-03-27 Texas Tech University Elastomeric material compositions obtained from castor oil and epoxidized soybean oil
US20050089606A1 (en) * 2003-08-27 2005-04-28 David Dellinger Composition for use in biodegradable articles and method of use
US20060110498A1 (en) * 2003-08-27 2006-05-25 David Dellinger Composition for use in edible biodegradable articles and method of use
US20050167317A1 (en) * 2003-10-27 2005-08-04 Patrick Barrett Packaging tray
US20060057319A1 (en) * 2004-09-11 2006-03-16 Gleich Klaus F Methods and systems for making fiber reinforced products and resultant products
US20060075544A1 (en) * 2004-10-08 2006-04-13 Matt Kriesel Helmets and vests
US20070021534A1 (en) * 2005-07-19 2007-01-25 United States (as represented by the Secretary of Agriculture) Fiber-reinforced starch-based compositions and methods of manufacture and use

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100086746A1 (en) * 2008-10-03 2010-04-08 Georgia-Pacific Corrugated Llc Corrugating linerboard, corrugated board, and methods of making the same
US8512850B2 (en) 2008-10-03 2013-08-20 Georgia-Pacific Corrugated Llc Corrugating linerboard, corrugated board, and methods of making the same
US20110305801A1 (en) * 2010-06-10 2011-12-15 Fres-Co System Usa, Inc. Single brew beverage cartridge system including same and method of use
US9085410B2 (en) * 2010-06-10 2015-07-21 Fres-Co System Usa, Inc. Single brew beverage cartridge system including same and method of use
US20170174414A1 (en) * 2011-05-04 2017-06-22 Give And Go Prepared Foods Corp. Container for food items
US20160122100A1 (en) * 2013-05-17 2016-05-05 Empire Technology Development Llc Packaging materials and methods for their preparation and use
USD864652S1 (en) * 2017-07-28 2019-10-29 Sistema Plastics Limited Container having a bottom and lid
US11186427B2 (en) 2018-02-02 2021-11-30 Wf Bakery Inc. Container for comestible products
US11858721B2 (en) 2018-02-02 2024-01-02 Cv Ne, Llc Container for comestible products

Also Published As

Publication number Publication date
TW200942460A (en) 2009-10-16
TWI439401B (en) 2014-06-01
WO2009105563A2 (en) 2009-08-27
WO2009105563A3 (en) 2009-12-30

Similar Documents

Publication Publication Date Title
US20090218347A1 (en) Releasable locking mechanism for packaging articles
Rydz et al. Present and future of biodegradable polymers for food packaging applications
CA2628130C (en) Composition for use in edible biodegradable articles and method of use
US8844720B2 (en) Biodegradable novelty package
CA2854396C (en) Biocomposite and/or biomaterial with sunflower seed shells/husks
US20190144664A1 (en) Process for Producing a Bioplastics Product
MXPA06002193A (en) Composition for use in biodegradable articles and method of use.
US20090104314A1 (en) Edible, biodegradable pet food container and packaging method
Vilpoux et al. Starch-based plastics
CN102272193A (en) Blends of polylactic acid and thermo-plastic polymers for packaging applications
WO2009055583A1 (en) Edible, biodegradable pet food container and packaging method
US20150218367A1 (en) Extrudable composition derived from renewable resources
Hrnjak-Murgic Nanoparticles in active polymer food packaging
Donkor et al. Bio-based and sustainable food packaging systems: Relevance, challenges, and prospects
Amir et al. Impact of biodegradable packaging materials on food quality: a sustainable approach
Копилова et al. Scientific bases of standardization of requirements for ecological packaging of food products
WO2014052300A1 (en) Extrudable composition derived from renewable resources
JP3599533B2 (en) Resin composition and molded product thereof
Zahid et al. Biobased Packaging from food industry waste
Katiyar et al. Environment friendly packaging plastics
Kurek et al. Bio-based Materials
Pandey Bio-based Packaging as Susiainą
GB2612641A (en) Biodegradable article
WO2021201708A1 (en) Composite substances with plant byproducts, uses and methods for producing composite substances
EA042026B1 (en) METHOD FOR OBTAINING PRODUCTS FROM BIOPLASTIC

Legal Events

Date Code Title Description
AS Assignment

Owner name: BIOSPHERE INDUSTRIES, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HELOU, ELIE, JR.;REEL/FRAME:022687/0183

Effective date: 20090429

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: CHAMNESS BIODEGRADABLES, LLC, IOWA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOSPHERE INDUSTRIES, LLC;REEL/FRAME:033963/0524

Effective date: 20141001

AS Assignment

Owner name: CHAMNESS BIODEGRADABLES, LLC, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE ADDRESS2255 LITTLE WALL LAKE RD.BLAIRSBURG, IA 50034 PREVIOUSLY RECORDED ON REEL 033963 FRAME 0524. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNEE ADDRESS1025 CINDY LANECARPINTERIA, CA 93013;ASSIGNOR:BIOSPHERE INDUSTRIES, LLC;REEL/FRAME:034181/0823

Effective date: 20141001

AS Assignment

Owner name: BIOSPHERE INDUSTRIES, LLC, NEW JERSEY

Free format text: SECURITY INTEREST;ASSIGNOR:CHAMNESS BIODEGRADABLES, LLC;REEL/FRAME:034265/0054

Effective date: 20141001

AS Assignment

Owner name: CHAMNESS BIODEGRADABLES, LLC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BIOSPHERE INDUSTRIES, LLC;REEL/FRAME:037443/0688

Effective date: 20151006