US20090243702A1 - Varactor bank switching based on negative control voltage generation - Google Patents

Varactor bank switching based on negative control voltage generation Download PDF

Info

Publication number
US20090243702A1
US20090243702A1 US12/331,158 US33115808A US2009243702A1 US 20090243702 A1 US20090243702 A1 US 20090243702A1 US 33115808 A US33115808 A US 33115808A US 2009243702 A1 US2009243702 A1 US 2009243702A1
Authority
US
United States
Prior art keywords
varactor
voltage
varactor bank
switch
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/331,158
Inventor
Marcel A. Kossel
Thomas E. Morf
Jonas R. Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalFoundries Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US12/331,158 priority Critical patent/US20090243702A1/en
Publication of US20090243702A1 publication Critical patent/US20090243702A1/en
Assigned to GLOBALFOUNDRIES U.S. 2 LLC reassignment GLOBALFOUNDRIES U.S. 2 LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL BUSINESS MACHINES CORPORATION
Assigned to GLOBALFOUNDRIES INC. reassignment GLOBALFOUNDRIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLOBALFOUNDRIES U.S. 2 LLC, GLOBALFOUNDRIES U.S. INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J5/00Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner
    • H03J5/24Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner with a number of separate pretuned tuning circuits or separate tuning elements selectively brought into circuit, e.g. for waveband selection or for television channel selection
    • H03J5/242Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner with a number of separate pretuned tuning circuits or separate tuning elements selectively brought into circuit, e.g. for waveband selection or for television channel selection used exclusively for band selection
    • H03J5/244Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner with a number of separate pretuned tuning circuits or separate tuning elements selectively brought into circuit, e.g. for waveband selection or for television channel selection used exclusively for band selection using electronic means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • H03B5/1212Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair
    • H03B5/1215Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair the current source or degeneration circuit being in common to both transistors of the pair, e.g. a cross-coupled long-tailed pair
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1228Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more field effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • H03B5/1243Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance the means comprising voltage variable capacitance diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/1262Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising switched elements
    • H03B5/1265Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising switched elements switched capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J3/00Continuous tuning
    • H03J3/02Details
    • H03J3/16Tuning without displacement of reactive element, e.g. by varying permeability
    • H03J3/18Tuning without displacement of reactive element, e.g. by varying permeability by discharge tube or semiconductor device simulating variable reactance
    • H03J3/185Tuning without displacement of reactive element, e.g. by varying permeability by discharge tube or semiconductor device simulating variable reactance with varactors, i.e. voltage variable reactive diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J2200/00Indexing scheme relating to tuning resonant circuits and selecting resonant circuits
    • H03J2200/01Circuitry controlling the selecting or switching action
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J2200/00Indexing scheme relating to tuning resonant circuits and selecting resonant circuits
    • H03J2200/10Tuning of a resonator by means of digitally controlled capacitor bank
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K2017/066Maximizing the OFF-resistance instead of minimizing the ON-resistance

Definitions

  • the present invention relates generally to varactor bank switching, and in particular to configuration of varactor bank switches.
  • Varactor banks are applied in LC-tank voltage controlled oscillators (VCO) to perform a coarse tuning of the oscillation frequency.
  • LC-tank oscillators are typically used in communication systems, such as in generating high frequency oscillator signals in microwave or radio frequency apparatus.
  • a typical LC-tank circuit includes inductors (L) and capacitors (C) configured in a circuit such that the inductors and capacitors oscillate because of current or voltage exchange between inductors and capacitors at a specified frequency.
  • switches are used in the varactor bank, where Cmax and Cmin denote the maximum and minimum capacitance values of the varactor at e.g., a logical low and high biasing voltage.
  • variable capacitors in the varactor bank can directly be driven by a control signal (i.e., logical low for Cmax and logical high for Cmin) and dedicated switches within the varactor banks are not necessary.
  • a control signal i.e., logical low for Cmax and logical high for Cmin
  • This invention assumes that the process technology available (e.g. a typical digital CMOS process for mainstream applications) does only provide varactors with a low or medium Cmax/Cmin-ratio, which requires the application of switches to maximize the overall Cmax/Cmin-ratio of the varactor bank.
  • FIG. 1 shows a schematic of a conventional varactor bank circuit, illustrating the problem that the varactor bank switch in the off-state becomes conductive during certain fractions of the oscillation period.
  • the varactor bank is part of a tuning capacitance.
  • the circuit in FIG. 1 includes two MOSFET varactors M 4 , M 5 whose diffusion-side terminals are connected to the source and drain nodes of a NMOS FET switch M 1 . In this configuration the source and drain potentials of M 1 are floating in the on-state of the varactor bank.
  • MOSFET switches M 2 and M 3 are connected between ground and the drain and source nodes of M 1 . All of the transistors M 1 -M 3 are either turned on if the varactor bank is enabled or turned off if the varactor bank is disabled. M 1 is much bigger than M 2 and M 3 because it has to provide a low impedance path for the oscillator signal propagating from M 5 to M 4 and vice versa. M 2 and M 3 are only used to provide a high impedance dc path such as to appropriately bias the source and drain nodes of M 1 .
  • a disadvantage of the circuit in FIG. 1 is that the switch transistor M 1 can get turned on in the off-state, if the source potential becomes sufficiently negative such that Vgs of M 1 is higher than the threshold voltage Vth despite the gate potential of M 1 is 0V (i.e., the control signal Vctrl is 0V).
  • This situation typically occurs in the areas around the peak values of the negative-going half-waves of the oscillation signal and the described effect increases the larger the signal swing becomes.
  • This phenomenon occurs in both half-waves of the oscillation period because the source and drain nodes exchange their roles in this symmetrical varactor bank design with respect to the definition of the half-wave directions.
  • the switch transistor M 1 becomes conductive despite the fact that it should remain turned off.
  • the time intervals where M 1 becomes conductive are indicated by waveforms in FIG. 1 as horizontal arrows below the actual oscillation signal curve.
  • phase noise performance is shown in Table I below, which summarizes certain measured results of a VCO design in 45 nm CMOS technology that applies the varactor bank switching of FIG. 1 . It is clear that the phase noise performance in the off-state of the varactor banks is worse by at least 12 dBc/Hz compared to the case where the varactor bank switches are turned on. A phase noise degradation of more than 12 dBc/Hz can be regarded as being quite significant in high-Q VCO design.
  • a method and apparatus for varactor bank switching for a voltage controlled oscillator involves generating a negative bias voltage signal as a control signal for a varactor bank switch in an off-state, the varactor bank switch comprising a pass-gate circuit including switching transistors; wherein generating the negative bias voltage signal includes employing an active rectifier circuit running at the speed of an oscillation signal, the negative bias voltage signal maintaining the gate-source voltage of the pass-gate circuit below a threshold voltage to prevent said switching transistors from becoming conductive in an off-state.
  • FIG. 1 shows a schematic of a conventional varactor bank switch, illustrating that the varactor bank switch in the off-state becomes conductive during certain fractions of the oscillation period.
  • FIGS. 2 a - d show equivalent circuits of an LC oscillator using a PMOS tail current source together with a varactor bank switch connected in parallel to an inductor coil, according to embodiments of the invention.
  • FIG. 3 shows details of a varactor bank switching topology implementing negative bias voltage generation for a control signal of varactor bank switch, according to an embodiment of the invention.
  • FIG. 4 shows example simulation results of voltage across an LC-tank and currents through varactors and the control voltage applied to a varactor switch if the varactor switch transistor M 1 in topology of FIG. 3 is disabled.
  • FIG. 5 shows example simulation results of a voltage across an LC-tank and currents through varactors and the control voltage applied to a varactor switch if the varactor switch transistor M 1 in topology of FIG. 3 is enabled.
  • varactor banks may disclose several preferred embodiments of varactor banks, as well as operation and/or component parts thereof. While the following description will be described in terms of varactor bank for LC-tank voltage controlled oscillators for clarity and to place the invention in context, it should be kept in mind that the teachings herein may have broad application to all types of oscillators.
  • varactor bank switching by generating a negative bias voltage signal such as a control signal.
  • varactor bank switching based on generating a negative bias voltage signal as a control signal for a varactor bank switch in an off-state is provided that prevents the varactor bank switch from getting turned on during certain fractions of the oscillation signal period despite the varactor bank switch being in the off-state.
  • An embodiment of varactor bank switching according to the invention involves generating a negative bias voltage signal as a control signal for a varactor bank switch in an off-state, the varactor bank switch comprising a pass-gate circuit including switching transistors; wherein generating the negative bias voltage signal includes employing an active rectifier circuit running at the speed of an oscillation signal, the negative bias voltage signal maintaining the gate-source voltage of the pass-gate circuit below a threshold voltage to prevent said switching transistors from becoming conductive in an off-state.
  • the negative bias voltage is generated by an active rectifier circuit that runs at the speed of the oscillation signal.
  • the negative control signal assures that the gate-source voltage of the varactor bank switching transistors remains below their threshold voltage. As a result, the switching transistors do not become conductive when they are in the off-state.
  • the negative bias voltage can either be (1) used as a replacement of a logical low control signal or (2) be superimposed to an already existing logical low control signal applied to the gate nodes of the actual varactor bank switching transistors.
  • the invention is applicable to all common mode voltage ranges of the oscillation signal as long as the negative control signal (negative bias voltage) in the off-state of the varactor bank switch is lower than the common mode voltage, minus the threshold voltage of the varactor bank switching transistors.
  • FIG. 2 a shows a generic equivalent topology (i.e., circuit) of an LC VCO 10
  • FIGS. 2 b - 2 d show additional different topologies of LC VCOs 20 , 30 , 40 , respectively, each using a PMOS tail current source 11 together with a varactor bank system 12 according to an embodiment of the invention, connected in parallel to the inductor coil 14 .
  • the three topologies 20 , 30 and 40 differ by the common mode voltage of the output signal. While topology 20 has a high output common mode voltage because of the center-tapped inductor coil that is connected to the tail current source, the output common mode voltage of topology 40 is low due to the ground connection of the inductor center tap.
  • Topology 30 uses a 2-port inductor that is located in between two PMOS and NMOS cross-coupled transistor pairs and hence the output common mode voltage is in the middle of the supply voltage.
  • FIG. 3 shows a varactor switch topology 50 implementing the varactor bank system 12 according to an embodiment of the invention.
  • the varactor switch topology 50 includes a varactor switch 51 (pass-gate circuit) and a control voltage circuit 52 generating a negative bias voltage signal as a control signal for the varactor bank switch 51 in an off-state.
  • the output signals outp (positive output of a VCO) and outn (negative output of a VCO) are first ac-coupled (alternate current coupled) via capacitors C dc1 , C dc,2 to the inputs of two buffers 54 .
  • Power-down switches sw 2 above both buffers are configured such that the buffers can be disabled.
  • the outputs of the buffers preferably have a rail-to-rail swing and are differential or complementary to each other.
  • the buffer outputs are level-shifted using dc-blocking (direct current block) capacitors C dc3 , C dc,4 .
  • resistors R 1 and R 2 provide a dc path from the source nodes of cross-coupled transistors M 4 , M 5 to ground.
  • the FETs M 4 and M 5 have a common drain node that is connected to the gate of the actual varactor switching transistor M 1 .
  • the topology 50 is implemented according to the invention in order for the varactor 51 to remain in a non-conductive state while in an off-state, thereby satisfying inequality (1) below:
  • Vgs,M 1 n ( t ) Vctrl ⁇ ( Vcm ⁇ V shift ⁇ V swing/2 ⁇ sin(2 ⁇ f osc t )) ⁇ Vth,M 1 n (1)
  • Vgs,M 1 is the gate-source voltage of the switch transistor
  • Vctrl denotes the control signal applied to the gate of the varactor switch transistor M 1
  • Vcm is the common mode voltage level at the drain or source nodes of the switch transistor M 1
  • Vswing is the voltage swing of the oscillation signal
  • 2 ⁇ f osc t denotes the instantaneous phase of the oscillation signal
  • Vth,M 1 n is the threshold voltage of the switch transistor M 1 .
  • Relation (1) shows that partially conductive states in the off-state of the varactor bank may still occur if either the output common mode voltage is low or the oscillation signal has a very high swing.
  • the gate-source voltage of the NMOS switch transistor M 1 n becomes higher than its threshold voltage and the transistor begins to become conductive though it should remain in the off-state.
  • the circuit 52 superimposes the control signal of the varactor switch 51 in the off-state with a negative offset voltage such that the gate voltage of the switch transistor M 1 is pulled down below 0V by the value of the negative offset voltage.
  • the inequality in relation (1) can then be extended as shown in relation (2) below by a term Voffset, which can be traded for either a lower output common mode voltage or a higher swing:
  • Vgs,M 1 n ( t ) Vctrlp ⁇ ( Vcm ⁇ V shift ⁇ V swing/2 ⁇ sin(2 ⁇ f osc t )) ⁇ V offset ⁇ Vth,M 1 n (2)
  • one of the buffer outputs is high while the other is low. If for example the buffer buf 1 has a low-going output and the buffer buf 2 has a high-going output, the transistor M 4 is turned on because its gate node is connected to the buf 2 output and it feeds the negative source control voltage (which became negative due to the level-shifting through C dc,3 ) to the common drain node 56 . If the buffer outputs change, the transistors M 4 and M 5 also change their roles and M 5 starts providing the negative voltage to the common drain node 56 . An additional capacitor C flat is connected to the common drain node 56 to flatten any ripples that may occur when switching from M 4 to M 5 and vice versa.
  • the negative bias voltage generation circuit 52 can also be regarded as an active rectifier that operates at the oscillation frequency of the VCO.
  • the generated negative voltage ripples occur at twice the oscillation frequency and can be filtered easily. Hence the ripples should be of no concern for the operation of the extended varactor bank switch within a phase-locked-loop (PLL) circuit.
  • FIG. 4 shows example simulation results of a switching topology method based on a negative bias voltage as the control signal of the varactor switch is in the off-state, according to the invention.
  • the circuit 52 FIG. 3
  • This negative offset voltage is generated with the circuit 52 running at 10 GHz.
  • the voltage across the LC-tank is 90-degree phase-shifted with respect to the current flowing through the varactors C var .
  • FIG. 4 shows the voltage across the LC-tank and currents through the varactors C var as well as the control voltage applied to the varactor switch, if the switch transistor M 1 is disabled.
  • FIG. 5 shows the same relations for the case where the varactor switch 51 ( FIG. 3 ) is turned on by a logical high signal applied to the gate of M 1 .
  • the voltage-to-current phase relationship is again 90-degrees.
  • FIG. 5 shows the voltage across the LC-tank and currents through the varactors as well as the control voltage applied to the varactor switch, if the switch transistor M 1 is enabled.

Abstract

A method and apparatus for varactor bank switching for a voltage controlled oscillator is disclosed. Varactor bank switching involves generating a negative bias voltage signal as a control signal for a varactor bank switch in an off-state, the varactor bank switch comprising a pass-gate circuit including switching transistors. Generating the negative bias voltage signal includes employing an active rectifier circuit running at the speed of an oscillation signal, the negative bias voltage signal maintaining the gate-source voltage of the pass-gate circuit below a threshold voltage to prevent said switching transistors from becoming conductive in an off-state.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a Continuation Patent Application under 35 USC § 120 of U.S. patent application Ser. No. 12/059,886, filed on Mar. 31, 2008, incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to varactor bank switching, and in particular to configuration of varactor bank switches.
  • 2. Background Information
  • Varactor banks are applied in LC-tank voltage controlled oscillators (VCO) to perform a coarse tuning of the oscillation frequency. LC-tank oscillators are typically used in communication systems, such as in generating high frequency oscillator signals in microwave or radio frequency apparatus. A typical LC-tank circuit includes inductors (L) and capacitors (C) configured in a circuit such that the inductors and capacitors oscillate because of current or voltage exchange between inductors and capacitors at a specified frequency. To achieve a high Cmax/Cmin-ratio, switches are used in the varactor bank, where Cmax and Cmin denote the maximum and minimum capacitance values of the varactor at e.g., a logical low and high biasing voltage. If the process technology provides varactors with an inherently high variability of the capacitance, i.e., a high Cmax/Cmin-ratio, the variable capacitors in the varactor bank can directly be driven by a control signal (i.e., logical low for Cmax and logical high for Cmin) and dedicated switches within the varactor banks are not necessary. This invention, however, assumes that the process technology available (e.g. a typical digital CMOS process for mainstream applications) does only provide varactors with a low or medium Cmax/Cmin-ratio, which requires the application of switches to maximize the overall Cmax/Cmin-ratio of the varactor bank.
  • If the varactor bank switches in the off-state become conductive during certain fractions of the oscillation period, the phase noise of the LC-tank VCO may significantly degrade. FIG. 1 shows a schematic of a conventional varactor bank circuit, illustrating the problem that the varactor bank switch in the off-state becomes conductive during certain fractions of the oscillation period. The varactor bank is part of a tuning capacitance. The circuit in FIG. 1 includes two MOSFET varactors M4, M5 whose diffusion-side terminals are connected to the source and drain nodes of a NMOS FET switch M1. In this configuration the source and drain potentials of M1 are floating in the on-state of the varactor bank. To prevent uncontrolled variations of the potentials at these nodes, two additional MOSFET switches M2 and M3 are connected between ground and the drain and source nodes of M1. All of the transistors M1-M3 are either turned on if the varactor bank is enabled or turned off if the varactor bank is disabled. M1 is much bigger than M2 and M3 because it has to provide a low impedance path for the oscillator signal propagating from M5 to M4 and vice versa. M2 and M3 are only used to provide a high impedance dc path such as to appropriately bias the source and drain nodes of M1.
  • A disadvantage of the circuit in FIG. 1 is that the switch transistor M1 can get turned on in the off-state, if the source potential becomes sufficiently negative such that Vgs of M1 is higher than the threshold voltage Vth despite the gate potential of M1 is 0V (i.e., the control signal Vctrl is 0V). This situation typically occurs in the areas around the peak values of the negative-going half-waves of the oscillation signal and the described effect increases the larger the signal swing becomes. This phenomenon occurs in both half-waves of the oscillation period because the source and drain nodes exchange their roles in this symmetrical varactor bank design with respect to the definition of the half-wave directions. During those fractions of the oscillation period where Vgs>Vth holds true, the switch transistor M1 becomes conductive despite the fact that it should remain turned off. The time intervals where M1 becomes conductive are indicated by waveforms in FIG. 1 as horizontal arrows below the actual oscillation signal curve.
  • The impact of these partially conductive states on the phase noise performance is shown in Table I below, which summarizes certain measured results of a VCO design in 45 nm CMOS technology that applies the varactor bank switching of FIG. 1. It is clear that the phase noise performance in the off-state of the varactor banks is worse by at least 12 dBc/Hz compared to the case where the varactor bank switches are turned on. A phase noise degradation of more than 12 dBc/Hz can be regarded as being quite significant in high-Q VCO design.
  • TABLE I
    Measurement results of implemented prior art circuit in a 45 nm CMOS
    technology CMOS SOI12S. The phase noise degradation owing to
    the partially conductive switches in the off-state of the varactor banks
    is more than 12 dBc/Hz. Note that the first two columns refer to the
    additionally implemented inductor switching, which is, however,
    not directly related to the discussed problem of varactor bank
    switching.
    all
    varactors phase noise
    banks at 1 MHz offset
    low frequency all secondary coils open off −114.2 dBc/Hz
    range on −121.6 dBc/Hz
    mid frequency outer secondary coil closed off −107.5 dBc/Hz
    range on −119.4 dBc/Hz
    high frequency outer and inner secondary off −101.5 dBc/Hz
    range coils closed on −119.4 dBc/Hz
  • SUMMARY OF THE INVENTION
  • A method and apparatus for varactor bank switching for a voltage controlled oscillator, is disclosed. One embodiment involves generating a negative bias voltage signal as a control signal for a varactor bank switch in an off-state, the varactor bank switch comprising a pass-gate circuit including switching transistors; wherein generating the negative bias voltage signal includes employing an active rectifier circuit running at the speed of an oscillation signal, the negative bias voltage signal maintaining the gate-source voltage of the pass-gate circuit below a threshold voltage to prevent said switching transistors from becoming conductive in an off-state.
  • Other aspects and advantages of the present invention will become apparent from the following detailed description, which, when taken in conjunction with the drawings, illustrate by way of example the principles of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a fuller understanding of the nature and advantages of the invention, as well as a preferred mode of use, reference should be made to the following detailed description read in conjunction with the accompanying drawings, in which:
  • FIG. 1 shows a schematic of a conventional varactor bank switch, illustrating that the varactor bank switch in the off-state becomes conductive during certain fractions of the oscillation period.
  • FIGS. 2 a-d show equivalent circuits of an LC oscillator using a PMOS tail current source together with a varactor bank switch connected in parallel to an inductor coil, according to embodiments of the invention.
  • FIG. 3 shows details of a varactor bank switching topology implementing negative bias voltage generation for a control signal of varactor bank switch, according to an embodiment of the invention.
  • FIG. 4 shows example simulation results of voltage across an LC-tank and currents through varactors and the control voltage applied to a varactor switch if the varactor switch transistor M1 in topology of FIG. 3 is disabled.
  • FIG. 5 shows example simulation results of a voltage across an LC-tank and currents through varactors and the control voltage applied to a varactor switch if the varactor switch transistor M1 in topology of FIG. 3 is enabled.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The following description is made for the purpose of illustrating the general principles of the invention and is not meant to limit the inventive concepts claimed herein. Further, particular features described herein can be used in combination with other described features in each of the various possible combinations and permutations. Unless otherwise specifically defined herein, all terms are to be given their broadest possible interpretation including meanings implied from the specification as well as meanings understood by those skilled in the art and/or as defined in dictionaries, treatises, etc.
  • The description may disclose several preferred embodiments of varactor banks, as well as operation and/or component parts thereof. While the following description will be described in terms of varactor bank for LC-tank voltage controlled oscillators for clarity and to place the invention in context, it should be kept in mind that the teachings herein may have broad application to all types of oscillators.
  • The embodiments described below disclose a new system for varactor bank switching by generating a negative bias voltage signal such as a control signal. According to one general embodiment, varactor bank switching based on generating a negative bias voltage signal as a control signal for a varactor bank switch in an off-state is provided that prevents the varactor bank switch from getting turned on during certain fractions of the oscillation signal period despite the varactor bank switch being in the off-state.
  • An embodiment of varactor bank switching according to the invention involves generating a negative bias voltage signal as a control signal for a varactor bank switch in an off-state, the varactor bank switch comprising a pass-gate circuit including switching transistors; wherein generating the negative bias voltage signal includes employing an active rectifier circuit running at the speed of an oscillation signal, the negative bias voltage signal maintaining the gate-source voltage of the pass-gate circuit below a threshold voltage to prevent said switching transistors from becoming conductive in an off-state.
  • The negative bias voltage is generated by an active rectifier circuit that runs at the speed of the oscillation signal. The negative control signal (negative bias voltage) assures that the gate-source voltage of the varactor bank switching transistors remains below their threshold voltage. As a result, the switching transistors do not become conductive when they are in the off-state. The negative bias voltage can either be (1) used as a replacement of a logical low control signal or (2) be superimposed to an already existing logical low control signal applied to the gate nodes of the actual varactor bank switching transistors.
  • The invention is applicable to all common mode voltage ranges of the oscillation signal as long as the negative control signal (negative bias voltage) in the off-state of the varactor bank switch is lower than the common mode voltage, minus the threshold voltage of the varactor bank switching transistors.
  • FIG. 2 a shows a generic equivalent topology (i.e., circuit) of an LC VCO 10, and FIGS. 2 b-2 d show additional different topologies of LC VCOs 20, 30, 40, respectively, each using a PMOS tail current source 11 together with a varactor bank system 12 according to an embodiment of the invention, connected in parallel to the inductor coil 14. The three topologies 20, 30 and 40, differ by the common mode voltage of the output signal. While topology 20 has a high output common mode voltage because of the center-tapped inductor coil that is connected to the tail current source, the output common mode voltage of topology 40 is low due to the ground connection of the inductor center tap. Topology 30 uses a 2-port inductor that is located in between two PMOS and NMOS cross-coupled transistor pairs and hence the output common mode voltage is in the middle of the supply voltage.
  • An example varactor bank switch topology according to the invention is described blow, suitable for VCO topologies. FIG. 3 shows a varactor switch topology 50 implementing the varactor bank system 12 according to an embodiment of the invention. The varactor switch topology 50 includes a varactor switch 51 (pass-gate circuit) and a control voltage circuit 52 generating a negative bias voltage signal as a control signal for the varactor bank switch 51 in an off-state. The output signals outp (positive output of a VCO) and outn (negative output of a VCO) are first ac-coupled (alternate current coupled) via capacitors Cdc1, Cdc,2 to the inputs of two buffers 54. Power-down switches sw2 above both buffers are configured such that the buffers can be disabled.
  • The outputs of the buffers preferably have a rail-to-rail swing and are differential or complementary to each other. The buffer outputs are level-shifted using dc-blocking (direct current block) capacitors Cdc3, Cdc,4. Further, resistors R1 and R2 provide a dc path from the source nodes of cross-coupled transistors M4, M5 to ground. The FETs M4 and M5 have a common drain node that is connected to the gate of the actual varactor switching transistor M1.
  • The topology 50 is implemented according to the invention in order for the varactor 51 to remain in a non-conductive state while in an off-state, thereby satisfying inequality (1) below:

  • Vgs,M1n(t)=Vctrl−(Vcm−Vshift−Vswing/2·sin(2πf osc t))<Vth,M1n  (1)
  • where Vgs,M1 is the gate-source voltage of the switch transistor, Vctrl denotes the control signal applied to the gate of the varactor switch transistor M1, Vcm is the common mode voltage level at the drain or source nodes of the switch transistor M1, Vswing is the voltage swing of the oscillation signal, 2πfosct denotes the instantaneous phase of the oscillation signal and Vth,M1 n is the threshold voltage of the switch transistor M1.
  • Relation (1) shows that partially conductive states in the off-state of the varactor bank may still occur if either the output common mode voltage is low or the oscillation signal has a very high swing. In both cases, the gate-source voltage of the NMOS switch transistor M1 n becomes higher than its threshold voltage and the transistor begins to become conductive though it should remain in the off-state. To prevent this, the circuit 52 superimposes the control signal of the varactor switch 51 in the off-state with a negative offset voltage such that the gate voltage of the switch transistor M1 is pulled down below 0V by the value of the negative offset voltage. The inequality in relation (1) can then be extended as shown in relation (2) below by a term Voffset, which can be traded for either a lower output common mode voltage or a higher swing:

  • Vgs,M1n(t)=Vctrlp−(Vcm−Vshift−Vswing/2·sin(2πf osc t))−Voffset<Vth,M1n  (2)
  • Because of the complementary output signals, one of the buffer outputs is high while the other is low. If for example the buffer buf1 has a low-going output and the buffer buf2 has a high-going output, the transistor M4 is turned on because its gate node is connected to the buf2 output and it feeds the negative source control voltage (which became negative due to the level-shifting through Cdc,3) to the common drain node 56. If the buffer outputs change, the transistors M4 and M5 also change their roles and M5 starts providing the negative voltage to the common drain node 56. An additional capacitor Cflat is connected to the common drain node 56 to flatten any ripples that may occur when switching from M4 to M5 and vice versa.
  • If the varactor switch 51 must be enabled, the power-down switches sw2 above both buffers buf1, buf2, are opened and the switch sw1 is closed to provide a logical high signal to the gate of the varactor switching transistor M1. The negative bias voltage generation circuit 52 can also be regarded as an active rectifier that operates at the oscillation frequency of the VCO. The generated negative voltage ripples occur at twice the oscillation frequency and can be filtered easily. Hence the ripples should be of no concern for the operation of the extended varactor bank switch within a phase-locked-loop (PLL) circuit.
  • FIG. 4 shows example simulation results of a switching topology method based on a negative bias voltage as the control signal of the varactor switch is in the off-state, according to the invention. In this example the circuit 52 (FIG. 3) generates a constant negative offset voltage of −0.35V. This negative offset voltage is generated with the circuit 52 running at 10 GHz. The voltage across the LC-tank is 90-degree phase-shifted with respect to the current flowing through the varactors Cvar. FIG. 4 shows the voltage across the LC-tank and currents through the varactors Cvar as well as the control voltage applied to the varactor switch, if the switch transistor M1 is disabled.
  • Referring to the example simulation results of FIG. 5, the same relations are obtained for the case where the varactor switch 51 (FIG. 3) is turned on by a logical high signal applied to the gate of M1. The voltage-to-current phase relationship is again 90-degrees. FIG. 5 shows the voltage across the LC-tank and currents through the varactors as well as the control voltage applied to the varactor switch, if the switch transistor M1 is enabled.
  • As is known to those skilled in the art, the aforementioned example embodiments described above, according to the present invention, can be implemented in many ways, such as program instructions for execution by a processor, as software modules, as computer program product on computer readable media, as logic circuits, as silicon wafers, as integrated circuits, as application specific integrated circuits, as firmware, etc. Though the present invention has been described with reference to certain versions thereof, however, other versions are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred versions contained herein.
  • Those skilled in the art will appreciate that various adaptations and modifications of the just-described preferred embodiments can be configured without departing from the scope and spirit of the invention. Therefore, it is to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described herein.

Claims (1)

1. A system for varactor bank switching for an oscillator, comprising:
a voltage controller configured for generating a negative bias voltage signal as a control signal for a varactor bank switch in an off-state, the varactor bank switch comprising a pass-gate circuit including switching transistors, the voltage controller comprising an active rectifier circuit configured for running at the speed of an oscillation signal, the negative bias voltage signal maintaining the gate-source voltage of the pass-gate circuit below a threshold voltage to prevent said switching transistors from becoming conductive in an off-state.
US12/331,158 2008-03-31 2008-12-09 Varactor bank switching based on negative control voltage generation Abandoned US20090243702A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/331,158 US20090243702A1 (en) 2008-03-31 2008-12-09 Varactor bank switching based on negative control voltage generation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/059,886 US7479839B1 (en) 2008-03-31 2008-03-31 Varactor bank switching based on negative control voltage generation
US12/331,158 US20090243702A1 (en) 2008-03-31 2008-12-09 Varactor bank switching based on negative control voltage generation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/059,886 Continuation US7479839B1 (en) 2008-03-31 2008-03-31 Varactor bank switching based on negative control voltage generation

Publications (1)

Publication Number Publication Date
US20090243702A1 true US20090243702A1 (en) 2009-10-01

Family

ID=40254663

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/059,886 Expired - Fee Related US7479839B1 (en) 2008-03-31 2008-03-31 Varactor bank switching based on negative control voltage generation
US12/331,158 Abandoned US20090243702A1 (en) 2008-03-31 2008-12-09 Varactor bank switching based on negative control voltage generation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/059,886 Expired - Fee Related US7479839B1 (en) 2008-03-31 2008-03-31 Varactor bank switching based on negative control voltage generation

Country Status (1)

Country Link
US (2) US7479839B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170288672A1 (en) * 2016-03-30 2017-10-05 Texas Instruments Incorporated Level shifter and method of calibration

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI321909B (en) * 2006-11-17 2010-03-11 Sunplus Technology Co Ltd Switch capacitance and varactor bank applied to voltage controlled oscillator having constant kvco
US8130044B2 (en) * 2008-06-19 2012-03-06 Altera Corporation Phase-locked loop circuitry with multiple voltage-controlled oscillators
US9473150B2 (en) * 2013-11-22 2016-10-18 Silicon Laboratories Inc. Peak detectors for amplitude control of oscillators
US9083349B1 (en) * 2014-01-21 2015-07-14 Pmc-Sierra Us, Inc. Voltage controlled oscillator with common mode adjustment start-up

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3693093A (en) * 1969-10-07 1972-09-19 Electrohome Ltd Agc impedance converter and voltage level shifter for high impedance source
US4138654A (en) * 1977-09-12 1979-02-06 Harris Corporation Digitally tuned circuit including switching of bank capacitors between plural tuned circuits
US4602222A (en) * 1985-04-19 1986-07-22 General Electric Company Circuit for bandswitching a voltage controlled oscillator
US5752179A (en) * 1995-08-17 1998-05-12 Zenith Electronics Corporation Selective RF circuit with varactor tuned and switched bandpass filters
US6323736B2 (en) * 1999-05-03 2001-11-27 Silicon Wave, Inc. Method and apparatus for calibrating a frequency adjustable oscillator in an integrated circuit device
US6774736B1 (en) * 2002-01-14 2004-08-10 Microtune (San Diego), Inc. Voltage-controlled oscillator circuit for direct modulation
US6778022B1 (en) * 2001-05-17 2004-08-17 Rf Micro Devices, Inc. VCO with high-Q switching capacitor bank
US20050088263A1 (en) * 2003-10-23 2005-04-28 Behzad Arya R. High performance switch for switched inductor tuned RF circuit
US20060128339A1 (en) * 2000-05-18 2006-06-15 Broadband Innovations, Inc. Varactor tunable RF filters having low distortion and high signal level capability
US7071790B2 (en) * 2004-10-29 2006-07-04 Broadcom Corporation Method and system for a differential switched capacitor array for a voltage controlled oscillator (VCO) or a local oscillator (LO) buffer
US20070046387A1 (en) * 2005-08-03 2007-03-01 Blum Gregory A Method and apparatus for amplitude control using dynamic biasing in a voltage controlled oscillator
US7221234B2 (en) * 2005-03-18 2007-05-22 Broadcom Corporation VCO with switchable varactor for low KVCO variation
US7230503B1 (en) * 2002-02-28 2007-06-12 Silicon Laboratories Inc. Imbalanced differential circuit control
US7239180B1 (en) * 2005-05-23 2007-07-03 Altera Corporation Programmable pin impedance reduction on multistandard input/outputs
US7332951B2 (en) * 2003-09-30 2008-02-19 Mediatek Incorporation Switched capacitor circuit capable of minimizing clock feedthrough effect and having low phase noise and method thereof

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3693093A (en) * 1969-10-07 1972-09-19 Electrohome Ltd Agc impedance converter and voltage level shifter for high impedance source
US4138654A (en) * 1977-09-12 1979-02-06 Harris Corporation Digitally tuned circuit including switching of bank capacitors between plural tuned circuits
US4602222A (en) * 1985-04-19 1986-07-22 General Electric Company Circuit for bandswitching a voltage controlled oscillator
US5752179A (en) * 1995-08-17 1998-05-12 Zenith Electronics Corporation Selective RF circuit with varactor tuned and switched bandpass filters
US6323736B2 (en) * 1999-05-03 2001-11-27 Silicon Wave, Inc. Method and apparatus for calibrating a frequency adjustable oscillator in an integrated circuit device
US20060128339A1 (en) * 2000-05-18 2006-06-15 Broadband Innovations, Inc. Varactor tunable RF filters having low distortion and high signal level capability
US6778022B1 (en) * 2001-05-17 2004-08-17 Rf Micro Devices, Inc. VCO with high-Q switching capacitor bank
US6774736B1 (en) * 2002-01-14 2004-08-10 Microtune (San Diego), Inc. Voltage-controlled oscillator circuit for direct modulation
US7230503B1 (en) * 2002-02-28 2007-06-12 Silicon Laboratories Inc. Imbalanced differential circuit control
US7332951B2 (en) * 2003-09-30 2008-02-19 Mediatek Incorporation Switched capacitor circuit capable of minimizing clock feedthrough effect and having low phase noise and method thereof
US20050088263A1 (en) * 2003-10-23 2005-04-28 Behzad Arya R. High performance switch for switched inductor tuned RF circuit
US7071790B2 (en) * 2004-10-29 2006-07-04 Broadcom Corporation Method and system for a differential switched capacitor array for a voltage controlled oscillator (VCO) or a local oscillator (LO) buffer
US7221234B2 (en) * 2005-03-18 2007-05-22 Broadcom Corporation VCO with switchable varactor for low KVCO variation
US7239180B1 (en) * 2005-05-23 2007-07-03 Altera Corporation Programmable pin impedance reduction on multistandard input/outputs
US20070046387A1 (en) * 2005-08-03 2007-03-01 Blum Gregory A Method and apparatus for amplitude control using dynamic biasing in a voltage controlled oscillator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170288672A1 (en) * 2016-03-30 2017-10-05 Texas Instruments Incorporated Level shifter and method of calibration
US10097183B2 (en) * 2016-03-30 2018-10-09 Texas Instruments Incorporated Level shifter and method of calibration
US20180358968A1 (en) * 2016-03-30 2018-12-13 Texas Instruments Incorporated Level shifter and method of calibration
US10644702B2 (en) * 2016-03-30 2020-05-05 Texas Instruments Incorporated Level shifter and method of calibration

Also Published As

Publication number Publication date
US7479839B1 (en) 2009-01-20

Similar Documents

Publication Publication Date Title
US7375596B2 (en) Quadrature voltage controlled oscillator
US20090243743A1 (en) Varactor bank switching based on anti-parallel branch configuration
US20060220754A1 (en) Voltage controlled oscillator
KR100662870B1 (en) Complementary metal oxide semiconductor voltage controlled oscillator
Sheu et al. A 1-V 4-GHz wide tuning range voltage-controlled ring oscillator in 0.18 μm CMOS
US9425735B2 (en) Voltage-controlled oscillator
US6777988B2 (en) 2-level series-gated current mode logic with inductive components for high-speed circuits
CN107248847B (en) Differential reference voltage-controlled oscillator
US7479839B1 (en) Varactor bank switching based on negative control voltage generation
US7675374B2 (en) Voltage controlled oscillator with switching bias
US20090237168A1 (en) Voltage-controlled oscillator
US10355643B2 (en) Differential Colpitts voltage-controlled oscillator
US8264290B2 (en) Dual positive-feedbacks voltage controlled oscillator
US10879798B2 (en) Charge pump circuit with capacitor swapping technique and associated method
US10778145B2 (en) Magnetically pumped voltage controlled oscillator
US11750199B2 (en) Quadrature oscillator circuitry and circuitry comprising the same
Hu et al. A transformer-based inverted complementary cross-coupled VCO with a 193.3 dBc/Hz FoM and 13kHz 1/f 3 noise corner
US8860492B2 (en) Switched capacitor circuit utilizing delayed control signal and inverting control signal for performing switching operation and related control method
US11637549B2 (en) Replica circuit and oscillator including the same
US11528022B2 (en) Leakage-current compensation
US9722536B2 (en) Digital controlled oscillator and switchable varactor for high frequency low noise operation
US20070069830A1 (en) Voltage-controlled oscillators (vco)
JP2009253401A (en) Capacity-switching circuit, vco, and pll circuit
CN110719070A (en) Low-power consumption voltage-controlled oscillator based on dynamic threshold technology
US6657506B1 (en) Low operating voltage crystal oscillator

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE

AS Assignment

Owner name: GLOBALFOUNDRIES U.S. 2 LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:036550/0001

Effective date: 20150629

AS Assignment

Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOBALFOUNDRIES U.S. 2 LLC;GLOBALFOUNDRIES U.S. INC.;REEL/FRAME:036779/0001

Effective date: 20150910