US20090255996A1 - Three-legacy mode payment card with parametric authentication and data input elements - Google Patents

Three-legacy mode payment card with parametric authentication and data input elements Download PDF

Info

Publication number
US20090255996A1
US20090255996A1 US12/489,662 US48966209A US2009255996A1 US 20090255996 A1 US20090255996 A1 US 20090255996A1 US 48966209 A US48966209 A US 48966209A US 2009255996 A1 US2009255996 A1 US 2009255996A1
Authority
US
United States
Prior art keywords
card
magnetic
user
payment card
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/489,662
Inventor
Kerry D. Brown
Daniel Chatelain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fitbit LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/800,821 external-priority patent/US20040177045A1/en
Application filed by Individual filed Critical Individual
Priority to US12/489,662 priority Critical patent/US20090255996A1/en
Publication of US20090255996A1 publication Critical patent/US20090255996A1/en
Assigned to QSECURE, INC. reassignment QSECURE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHATELAIN, DANIEL, MR.
Assigned to QSECURE, INC. reassignment QSECURE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BROWN, KERRY D, MR.
Assigned to COIN, INC. reassignment COIN, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: QSECURE, INC.
Assigned to FITBIT, INC. reassignment FITBIT, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COIN, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06187Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with magnetically detectable marking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06187Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with magnetically detectable marking
    • G06K19/06196Constructional details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/34Payment architectures, schemes or protocols characterised by the use of specific devices or networks using cards, e.g. integrated circuit [IC] cards or magnetic cards
    • G06Q20/341Active cards, i.e. cards including their own processing means, e.g. including an IC or chip
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/34Payment architectures, schemes or protocols characterised by the use of specific devices or networks using cards, e.g. integrated circuit [IC] cards or magnetic cards
    • G06Q20/343Cards including a counter
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/34Payment architectures, schemes or protocols characterised by the use of specific devices or networks using cards, e.g. integrated circuit [IC] cards or magnetic cards
    • G06Q20/354Card activation or deactivation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F7/00Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
    • G07F7/08Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
    • G07F7/0806Details of the card
    • G07F7/0813Specific details related to card security
    • G07F7/082Features insuring the integrity of the data on or in the card
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F7/00Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
    • G07F7/08Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
    • G07F7/10Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means together with a coded signal, e.g. in the form of personal identification information, like personal identification number [PIN] or biometric data
    • G07F7/1008Active credit-cards provided with means to personalise their use, e.g. with PIN-introduction/comparison system

Definitions

  • the present invention relates to a payment card, and more particularly to payment cards with contact/contactless smartcard interfaces, and an internally writeable magnetic data stripe readable by legacy card readers.
  • the magnetic data on the stripe on the back of payment cards now contains a standardized format and encoding.
  • the raised letters and numbers on the plastic cards are now rarely used or even read. This then gave rise to “skimming” devices that could be used by some unscrupulous merchant employees to electronically scan and save the information from many customers' cards. Reproducing an embossed card complete with photos is then rather easy.
  • Smartcards were first introduced around 1994 with embedded single-chip cryptoprocessors and contact interfaces. These required a new reader that could probe the smartcard's contact pad and electronically interrogate the card. Cards could be authenticated this way, but the contact interfaces proved to be troublesome. Such cards have not gained wide acceptance because new readers needed to be installed.
  • Dual interface smartcards started to appear around 2000. Such supported both contact (e.g., ISO/IEC-7816) and contactless (e.g., ISO/IEC-14443) interfaces, and used two completely independent cryptoprocessors and interfaces. They are therefore relatively expensive, because of the duplication. The independence of the two cryptoprocessors and interfaces meant that each had to be updated individually, the two may not talk to one another.
  • Type A has a range of about 10 cm
  • type B has a range of about 5 cm.
  • Type B supports a higher data rate, but has proven to be the less popular because of the shorter range.
  • Dual-input smartcard cryptoprocessors started to become available in 2004, e.g., Philips Semiconductors family of 8-bit MIFARE® PROX dual interface smart card controllers. These use one IC with a crypto co-processor that has both contact and contactless interfaces. Updating the data through either interface is effective for both interfaces. The total cost of a smartcard using dual-input devices is much closer to the original single-chip cryptoprocessors with contact interfaces.
  • a payment card embodiment of the present invention comprises electronic components disposed in a plastic card base needed to operate with magnetic reader, contact, and contactless legacy card payment systems.
  • a magnetic stripe with user account data allows card use in traditional point-of-sale magnetic card readers.
  • a dual-input crypto-processor embedded in the card provides for contact/contactless smart card operation.
  • a user input provides for user authentication by the crypto-processor.
  • a magnetic array Internal to the plastic card, and behind the magnetic stripe, a magnetic array includes a number of fixed-position magnetic write heads that allow the user account data to be automatically modified by the crypto-processor and support circuitry.
  • FIG. 1 is a functional block diagram of a payment card embodiment of the present invention
  • FIG. 2 is a functional block diagram of a legacy magnetic card and reader embodiment of the present invention
  • FIG. 3 is a state diagram of a card authentication process embodiment of the present invention.
  • FIG. 4 is a perspective diagram of a magnetic array embodiment of the present invention as can be used in the devices of FIGS. 1-3 .
  • FIG. 1 illustrates a payment card embodiment of the present invention, and is referred to herein by the general reference numeral 100 .
  • Payment card 100 operates in any of three ways, e.g., (a) as a typical magnetic stripe card, (b) as a typical contact-mode smart card, and (c) as a typical wireless (proximity) smart card. It is implemented in the familiar credit/debit card format as a plastic wallet card with a magnetic stripe on its back. For example, in the ISO/IEC-7810 format.
  • the payment card 100 comprises a dual-input crypto-processor 102 with a contact interface 104 , e.g., ISO/IEC-7816.
  • a Philips Semiconductor type P8RF6016 triple-DES secure dual interface smart card IC could be used.
  • Surface contacts on the card provide a conventional legacy contact 106 that can be used by traditional contact-mode card readers.
  • a magnetic array 108 is arranged on the back of the card and presents what appears to be an ordinary magnetic stripe 109 encoded with appropriate bank and user information for a conventional magnetic card reader. Such readers are ubiquitous throughout the world at point-of-sale terminals.
  • An antenna 110 provides wireless interface to conventional wireless smart card readers, e.g., ISO/IEC-14443-2 which operates at 13.56 MHz.
  • the payment card 100 includes a biometric sensor 114 that can sense some physical attribute about the user. For example, a fingerprint or signature input through a scanner or pressure sensor array.
  • the payment card 100 includes a keypad 116 with which a user can select a card personality and enter a personal identification number (PIN), password, or other data.
  • PIN personal identification number
  • Such personality selection can, e.g., be a choice amongst VISA, MasterCard, American Express, etc., so the payment card 100 presents the corresponding account and user numbers in the required formats for the particular bank and payment processor.
  • a liquid crystal display (LCD) 118 in its simplest form presents a blinking indication that keypad input has been accepted, the card is awake and active, etc.
  • a more complex LCD 118 can be used to display text message to the user in alternative embodiments of the present invention.
  • the communication between PIC 112 and dual-input crypto-processor 102 is such that each digit of a PIN entered is forwarded as it is entered. The whole PIN is not sent essentially in parallel. Such strategy makes the hacking of the card and access to user data more difficult.
  • the PIC 112 does not store the PIN, only individual digits and only long enough to receive them from the keypad 116 and forward them on.
  • An embedded power source is needed by payment card 100 that can last for the needed service life of a typical smartcard, e.g., about eighteen months to four years.
  • a battery 120 is included.
  • a piezoelectric generator 122 and charger 124 can be used that converts incidental temperature excursions and mechanical flexing of the card into electrical power that can charge a storage capacitor or help maintain battery 120 .
  • the piezoelectric generator 122 comprises a piezoelectric crystal arranged, e.g., to receive mechanical energy from card flexing and/or keypad use.
  • the charger 124 converts the alternating current (AC) received into direct current (DC) and steps it up to a voltage that will charge the battery.
  • Alternative embodiments can include embedded photovoltaic cells to power the card or charge the battery.
  • FIG. 2 illustrates a payment card embodiment of the present invention, and is referred to herein by the general reference numeral 200 .
  • FIG. 2 details the way magnetic array 108 and the legacy magnetic interface 109 can operate in the context of FIG. 1 .
  • a conventional, “legacy”, merchant point-of-sale magnetic-stripe card reader 201 is used to read user account data recorded on a magnetic stripe 202 on the payment card 200 .
  • Such is used by a merchant in a traditional way, the payment card 200 appears and functions equivalent to an ordinary debit, credit, loyalty, prepay, and similar cards with a magnetic stripe on the back.
  • User account data is recorded on the magnetic stripe 202 using industry-standard formats and encoding.
  • ISO/IEC-7810, ISO/IEC-7811(-1:6), and ISO/IEC-7813 available from American National Standards Institute (NYC, N.Y.). These standards specify the physical characteristics of the cards, embossing, low-coercivity magnetic stripe media characteristics, location of embossed characters, location of data tracks 2-3, high-coercivity magnetic stripe media characteristics, and financial transaction cards.
  • a typical Track-1 as defined by the International Air Transport Association (IATA), is seventy-nine alphanumeric characters recorded at 210-bits-per-inch (bpi) with 7-bit encoding.
  • a typical Track-2 as defined by the American Bankers Association (ABA), is forty numeric characters at 75-bpi with 5-bit encoding, and Track-3 (ISO/IEC-4909) is typically one hundred and seven numeric characters at 210-bpi with 5-bit encoding.
  • Each track has starting and ending sentinels, and a longitudinal redundancy check character (LRC).
  • LRC longitudinal redundancy check character
  • the Track-1 format includes user primary account information, user name, expiration date, service code, and discretionary data. These tracks conform to the ISO/IEC/IEC Standards 7810, 7811-1-6, and 7813, or other suitable formats.
  • a data generator 204 receives its initial programming and personalization data from a data receptor 205 .
  • data receptor 205 can be implemented as a serial inductor placed under the magnetic stripe which is excited by a standard magnetic card writer.
  • the data may be installed at the card issuer, bank agency, or manufacturer by existing legacy methods.
  • the data received is stored in non-volatile memory.
  • the data receptor 205 can be a radio frequency antenna and receiver, typical to ISO/IEC/IEC Specifications 24443 and 25693.
  • the data generator 204 may be part of a secure processor that can do cryptographic processing, similar to Europay-Mastercard-Visa (EMV) cryptoprocessors used in prior art “smart cards”.
  • EMV Europay-Mastercard-Visa
  • Card-swipes generate detection sensing signals from one or a pair of detectors 206 and 208 . These are embedded at one or each end of magnetic stripe 202 and can sense the typical pressure applied by a magnetic read head in a scanner.
  • a first set of magnetic-transducer write heads 210 - 212 are located immediately under bit positions d 0 -d 2 of magnetic stripe 202 . The data values of these bits can be controlled by data generator 204 . Therefore, bit positions d 0 -d 2 are programmable.
  • Such set of magnetic-transducer write heads 210 - 212 constitutes an array that can be fabricated as a single device and applied in many other applications besides payment cards.
  • Embodiments of the present invention combine parallel fixed-position write heads on one side of a thin, planar magnetic media, and a moving serial read head on the opposite side. Such operation resembles a parallel-in, serial-out shift register.
  • a next set of bit positions 213 - 216 (d 3 -d 6 ) of magnetic stripe 202 are fixed, and not programmable by data generator 204 .
  • a conventional card programmer is used by the card issuer to program these data bits.
  • a second set of magnetic write heads 217 - 221 are located under bit positions d 7 -d 11 of magnetic stripe 202 .
  • the data values of these bits can also be controlled by data generator 204 and are therefore programmable.
  • a last set of bit positions 222 - 225 (d 12 -d 15 ) of magnetic stripe 202 are fixed, and not programmable by data generator 204 .
  • as few as one bit is programmable with a corresponding write head connected to data generator 204 , or as many as all of the bits in all of the tracks.
  • the legacy card reader 201 is a conventional commercial unit as are already typically deployed throughout the world, but especially in the United States. Such deployment in the United States is so deep and widespread, that conversion to contact and contactless smartcard systems has been inhibited by merchant reluctance for more purchases, employee training, counter space, and other concerns.
  • the card reader 201 has a magnetic-transducer read head 230 that is manually translated along the length of data stripe 202 . It serially reads data bits d 0 -d 15 and these are converted to parallel digital data by a register 232 .
  • the magnetic-transducer write heads 210 - 212 and 217 - 221 must be very thin and small, as they must fit within the relatively thin body of a plastic payment card, and be packed dense enough to conform to the standard recording bit densities. Integrated combinations of micro-electro-mechanical systems (MEMS) nanotechnology, and longitudinal and perpendicular ferromagnetics are therefore useful in implementations that use standard semiconductor and magnetic recording thin-film technologies.
  • MEMS micro-electro-mechanical systems
  • FIG. 3 represents a card authentication process embodiment of the present invention, and is referred to herein by the general reference numeral 300 .
  • Such process details the way that the processor 102 ( FIG. 1 ) interacts with keypad 116 and LCD 118 in one embodiment of the present invention.
  • the keypad includes digits 0-9, CLEAR, and ENTER keys.
  • Process 300 comprises a power_up state 302 that passes through an “always” condition 304 to a sleep state 306 .
  • a “wake timeout” condition 308 occurs when a wake-up timer times out.
  • a wake_test state 310 checks battery condition and the CLEAR key.
  • a condition 312 causes a loop back if the battery is within proper operating voltage range and the CLEAR key is inactive. If the battery is in range and the CLEAR key is inactive, a condition 314 returns to sleep state 306 . But if the user has pressed the CLEAR key, a condition 316 passes to a card_entry state 318 . The LCD is caused to blink at 1.0 Hz.
  • a time-out for waiting for another key to be pressed, or an invalid key being entered, causes a condition 320 to return to sleep process 306 .
  • a condition 322 passes to a pin_entry state 324 . If CLEAR key was entered, a condition 326 returns to card_entry state 318 . The LCD is caused to blink at 1.0 Hz.
  • a PIN entry condition 328 processes each entry. If the user takes too long to enter the PIN, a time-out condition 330 returns to sleep state 306 . If the ENTER key is pressed too soon, e.g., not enough PIN digits have been entered, a condition 332 returns to sleep state 306 . If a proper number of PIN digit entries have been made, and that was followed by the ENTER key, a condition 334 passes to a pin_validate state 336 .
  • a condition 338 returns to sleep state 306 . Otherwise, a valid-response condition 340 passes to a transaction_wait state 342 . The LCD is caused to blink at 0.5 Hz. A transaction timer or CLEAR key entered condition 344 passes to a pin_invalidate state 346 . Any key being pressed or a time-out in a condition 348 passes to the sleep state 306 . This process may be used in conjunction with a smart card cryptoprocessor to unlock encrypted card data to be released for legacy transaction processes described herein and typical for magnetic stripe and smart cards.
  • FIG. 4 illustrates a magnetic data storage array embodiment of the present invention, and is referred to by the general reference numeral 400 .
  • the magnetic data storage array 400 includes a magnetic stripe 402 that mimics those commonly found on the backs of credit cards, debit cards, access cards, and drivers licenses.
  • array 400 can be a two-dimensional array, and not just a single track.
  • magnetic data bits d 0 -d 2 are arranged in a single track.
  • a set of fixed-position write heads 404 , 406 , and 408 respectively write and rewrite magnetic data bits d 0 -d 2 .
  • a moving, scanning read head 410 in a legacy magnetic card reader is used to read out the data written.
  • MEMS is the integration of mechanical elements, sensors, actuators, and electronics on a common substrate using microfabrication technology.
  • Electronics devices are typically fabricated with CMOS, bipolar, or BICMOS integrated circuit processes.
  • Micromechanical components can be fabricated using compatible “micromachining” processes that selectively etch away parts of a processing wafer, or add new structural layers to form mechanical and electro-mechanical devices.
  • MEMS technology can be used to fabricate coils that wind around Permalloy magnetic cores with gaps to produce very tiny magnetic transducer write heads.
  • a magnetic transducer write head that would be useful in the payment card 100 of FIG. 1 would have a gap length of 1-50 microns, a core length of 100-250 microns, a write track width of 1000-2500 microns, and a read track width of 1000 microns.
  • Nickel-iron core media permeability would be greater than 2000
  • cobalt-platinum or gamma ferric oxide media permeability would be greater than 2.0
  • the media coercivity would be a minimum of 300 Oe.
  • a parallel array static MEMS (S-MEMS) device is a magnetic transducer which will allow information to be written in-situ on the data tracks of a standard form factor magnetic stripe card.
  • S-MEMS static MEMS
  • an array of twenty-five individual magnetic bit cells can be located at one end of an ISO/IEC/IEC 7811 standard magnetic media.
  • Such a stripe includes some permanent encoding, as well as a region in which data patterns can be written by arrays of magnetic heads attached to a low-coercivity magnetic stripe.
  • a prototype write head included a high permeability NiFe core with electroplated windings of copper wires.
  • a useful write head has a z-dimension (track width) of 1000-2500 microns, a width of 100 microns in the x-direction, and a height in the y-direction of approximately 20 microns.
  • the cross sectional area of the coil was estimated at four microns square, with a three micron spacing. Total length in the x-direction, including core and coils, was 150 microns, and about a ten micron spacing between adjacent magnetic cells.
  • Transaction process embodiments of the present invention embed an algorithm with unique user data in a cryptoprocessor.
  • a method for a transaction process embeds an algorithm that encodes unique user data in a cryptoprocessor. It requests a new unique transaction encoding to be issued by using the cryptoprocessor to process the algorithm and to generate a data suited to a card-acceptance system pre-processing requirements.
  • a conventional transaction infrastructure and server can then be used to derive from the number the unique user data.
  • the new unique transaction encoding can be communicated to the conventional transaction infrastructure and server by a smart card contact or proximity connection.
  • the new unique transaction encoding can be communicated to the conventional transaction infrastructure and server by a reprogrammable magnetic stripe on a card read by a reader. Such is useful in validating and approving point-of-sale financial transactions.
  • a predictive algorithm is used that includes personal information about the user as some of its factors. This then generates a unique number that is not sequential and cannot be guessed. For example, such can be included as a card validation code value now in common use.
  • a payment processing center keeps track of this usage-counter data field, and will not authorize transaction requests that come out of sequence. For example, as can occur from a magnetic clone of a card that has been skimmed and tried later.
  • a card-swipe detector embedded in the plastic card detects each use in a POS terminal, and it signals an internal microcomputer which changes data bits sent to the write heads. Once scanned by the POS terminal or other reader, the payment card can also disable any reading of the user account data for a short fixed period of time.
  • the payment card 100 , 200 is constructed to provide an automatically incrementing usage-number that can be forwarded in an approval request message to a validation processing center.
  • the validation processing center stores the last incrementing usage-number used in a valid transaction and any new usage-number used must be greater. If it is not, an out-of-sequence transaction has been detected that is probably the result of card skimming and fraud. The transaction request is subsequently denied.
  • such dynamic number may be a unique algorithm composed of two or more factors that may include the user's billing address numbers and social security number or card numbers that provide unpredictable results not in a sequential manner.
  • the Assignee refers to such commercial analysis methods and devices with its trademark, Dynamic Numerical Analysis (DNATM).
  • DNA dynamic numerical analysis
  • the payment card 100 , 200 is constructed to provide a sort of PIN value that can be forwarded in an approval request message to a validation processing center.
  • unique-number generator 204 internal to the card is used to supply a value in a discretionary field of Track-2, or the card validation code (CVC) field.
  • CVC card validation code
  • the payment card 100 , 200 can also be constructed to provide user account data for only limited times.
  • a PIN pad integrated on the payment card 100 , 200 can require a user PIN number to be entered before card magnetic data 202 will present itself for swiping in the card reader 201 .
  • a lack of card magnetic data 202 simply looks to card reader 201 as a defective card, and denies the transaction. No hardware or software changes are needed in the card reader 201 to work with payment card 100 , 200 . Therefore, card reader 201 can be an already preexisting conventional device.
  • the card reader 201 performs various magnetic data operations and checks on the card magnetic data 202 . For example, a longitudinal redundancy code (LRC) check that helps assure a valid read of all the data has been made.
  • LRC longitudinal redundancy code
  • an approval request message is sent to a card acquirer. Such message includes the user account number, dollar amount of the transaction, and merchant identification (ID). It further contains special transaction serializing information to detect skimming and other fraud.
  • a validation processing center provides regional high-speed network servers that are often operated by third parties and not the issuing banks.
  • the validation processing center checks to see if the user card 100 , 200 is not stolen or lost, and other first level account validation. It may also have cached some information from an issuing bank about this user account if the account has been processed before very recently.
  • a card acquirer approval message is sent to an issuing bank. It also includes the user account number, dollar amount of the transaction, and merchant identification (ID).
  • the user account is checked to see if adequate funds are available, and if so, sends an authorization message.
  • a reconciliation of the user account is made and the merchant's account is credited with a day or two.
  • the card acquirer records the issuing-bank authorization and forwards an approval message.
  • the merchant point-of-sale card reader displays the approval and an authorization code, and the transaction is completed.

Abstract

A payment card comprises a plastic card and operates with three different legacy payment systems. A magnetic stripe with user account data allows card use in traditional point-of-sale magnetic card readers. A dual-input crypto-processor embedded in the card provides for contact/contactless smart card operation. A user input provides for user authentication by the crypto-processor. Internal to the plastic card, and behind the magnetic stripe, a magnetic array includes a number of fixed-position magnetic write heads that allow the user account data to be automatically modified by the crypto-processor.

Description

    RELATED APPLICATION
  • This Application is a Divisional of U.S. patent application Ser. No. 10/800,821, filed Mar. 15, 2004, by the present inventor, Kerry D. BROWN, and titled PAYMENT CARD WITH PARTIAL DYNAMIC MAGNETIC ACCOUNT DATA AND TIMEOUT. Such was, in turn, a Continuation-In-Part of an Application that is now U.S. Pat. No. 7,044,394, issued May 16, 2006, titled PROGRAMMABLE MAGNETIC DATA STORAGE CARD. These are incorporated by reference as if fully set forth herein.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a payment card, and more particularly to payment cards with contact/contactless smartcard interfaces, and an internally writeable magnetic data stripe readable by legacy card readers.
  • 2. Description of Related Art
  • Credit card and debit card use and systems have become ubiquitous throughout the world. Originally, credit cards simply carried raised numbers that were transferred to a carbon copy with a card-swiping machine. The merchant simply accepted any card presented. Spending limits and printed lists of lost/stolen cards were ineffective in preventing fraud and other financial losses. So merchants were required to telephone a transaction authorization center to get pre-approval of the transaction. These pre-approvals were initially required only for purchases above a certain threshold, but as time went on the amounts needing authorization dropped lower and lower. The volume of telephone traffic grew too great, and more automated authorization systems allowed faster, easier, and verified transactions. Magnetic stripes on the backs of these payment cards started to appear and that allowed computers to be used at both ends of the call.
  • The magnetic data on the stripe on the back of payment cards now contains a standardized format and encoding. The raised letters and numbers on the plastic cards are now rarely used or even read. This then gave rise to “skimming” devices that could be used by some unscrupulous merchant employees to electronically scan and save the information from many customers' cards. Reproducing an embossed card complete with photos is then rather easy.
  • Smartcards were first introduced around 1994 with embedded single-chip cryptoprocessors and contact interfaces. These required a new reader that could probe the smartcard's contact pad and electronically interrogate the card. Cards could be authenticated this way, but the contact interfaces proved to be troublesome. Such cards have not gained wide acceptance because new readers needed to be installed.
  • Dual interface smartcards started to appear around 2000. Such supported both contact (e.g., ISO/IEC-7816) and contactless (e.g., ISO/IEC-14443) interfaces, and used two completely independent cryptoprocessors and interfaces. They are therefore relatively expensive, because of the duplication. The independence of the two cryptoprocessors and interfaces meant that each had to be updated individually, the two may not talk to one another.
  • Typical dual interface smart cards support both contact and Type-A and/or Type-B antenna structures and the corresponding operating frequencies. Type A has a range of about 10 cm, and type B has a range of about 5 cm. Type B supports a higher data rate, but has proven to be the less popular because of the shorter range.
  • Dual-input smartcard cryptoprocessors started to become available in 2004, e.g., Philips Semiconductors family of 8-bit MIFARE® PROX dual interface smart card controllers. These use one IC with a crypto co-processor that has both contact and contactless interfaces. Updating the data through either interface is effective for both interfaces. The total cost of a smartcard using dual-input devices is much closer to the original single-chip cryptoprocessors with contact interfaces.
  • The proliferation of magnetic, contact, and contactless technologies is causing chaos, and the huge installed base of magnetic point-of-sale readers in the United States has been inhibiting the transition to smartcards, a USA cost, estimated by American Express in 2002, of approximately $4-14 billion dollars. What is needed is a transitional payment card that can continue to support magnetic reading while also being able to respond to smartcard readers. It further would be advantageous to have a payment card that can self-authenticate its users. Additionally, a card with EMV (Europay-MasterCard-Visa) security features of a smartcard and the transaction communications features compatible with magnetic stripe transaction acceptance systems and processing infrastructure.
  • SUMMARY OF THE INVENTION
  • Briefly, a payment card embodiment of the present invention comprises electronic components disposed in a plastic card base needed to operate with magnetic reader, contact, and contactless legacy card payment systems. A magnetic stripe with user account data allows card use in traditional point-of-sale magnetic card readers. A dual-input crypto-processor embedded in the card provides for contact/contactless smart card operation. A user input provides for user authentication by the crypto-processor. Internal to the plastic card, and behind the magnetic stripe, a magnetic array includes a number of fixed-position magnetic write heads that allow the user account data to be automatically modified by the crypto-processor and support circuitry.
  • The above and still further objects, features, and advantages of the present invention will become apparent upon consideration of the following detailed description of specific embodiments thereof, especially when taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a functional block diagram of a payment card embodiment of the present invention;
  • FIG. 2 is a functional block diagram of a legacy magnetic card and reader embodiment of the present invention;
  • FIG. 3 is a state diagram of a card authentication process embodiment of the present invention; and
  • FIG. 4 is a perspective diagram of a magnetic array embodiment of the present invention as can be used in the devices of FIGS. 1-3.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 illustrates a payment card embodiment of the present invention, and is referred to herein by the general reference numeral 100. Payment card 100 operates in any of three ways, e.g., (a) as a typical magnetic stripe card, (b) as a typical contact-mode smart card, and (c) as a typical wireless (proximity) smart card. It is implemented in the familiar credit/debit card format as a plastic wallet card with a magnetic stripe on its back. For example, in the ISO/IEC-7810 format. The payment card 100 comprises a dual-input crypto-processor 102 with a contact interface 104, e.g., ISO/IEC-7816. For example, a Philips Semiconductor type P8RF6016 triple-DES secure dual interface smart card IC could be used. Surface contacts on the card provide a conventional legacy contact 106 that can be used by traditional contact-mode card readers. A magnetic array 108 is arranged on the back of the card and presents what appears to be an ordinary magnetic stripe 109 encoded with appropriate bank and user information for a conventional magnetic card reader. Such readers are ubiquitous throughout the world at point-of-sale terminals. An antenna 110 provides wireless interface to conventional wireless smart card readers, e.g., ISO/IEC-14443-2 which operates at 13.56 MHz.
  • Particular details on the construction and operation of the magnetic array are included in a parent of the present application, U.S. Pat. No. 7,044,394, issued May 16, 2006, titled PROGRAMMABLE MAGNETIC DATA STORAGE CARD. Data sent to the magnetic array 108 can be withheld until the user authenticates themselves to the smartcard 100. And such data will only be readable by a magnetic reader or smartcard reader for only a limited time or limited number of swipes or contact/contactless transactions.
  • An economic way of implementing payment card 100 is to use commercially available dual-input crypto-processors for processor 102 because they inherently come with the contact interface 104. This then can be easily interfaced to a low-power microcontroller 112, e.g., a Microchip programmable interface controller (PIC). In one embodiment, the payment card 100 includes a biometric sensor 114 that can sense some physical attribute about the user. For example, a fingerprint or signature input through a scanner or pressure sensor array. In other embodiments, the payment card 100 includes a keypad 116 with which a user can select a card personality and enter a personal identification number (PIN), password, or other data. Such personality selection can, e.g., be a choice amongst VISA, MasterCard, American Express, etc., so the payment card 100 presents the corresponding account and user numbers in the required formats for the particular bank and payment processor. A liquid crystal display (LCD) 118 in its simplest form presents a blinking indication that keypad input has been accepted, the card is awake and active, etc. A more complex LCD 118 can be used to display text message to the user in alternative embodiments of the present invention.
  • The communication between PIC 112 and dual-input crypto-processor 102 is such that each digit of a PIN entered is forwarded as it is entered. The whole PIN is not sent essentially in parallel. Such strategy makes the hacking of the card and access to user data more difficult. The PIC 112 does not store the PIN, only individual digits and only long enough to receive them from the keypad 116 and forward them on.
  • An embedded power source is needed by payment card 100 that can last for the needed service life of a typical smartcard, e.g., about eighteen months to four years. A battery 120 is included. In more complex embodiments, a piezoelectric generator 122 and charger 124 can be used that converts incidental temperature excursions and mechanical flexing of the card into electrical power that can charge a storage capacitor or help maintain battery 120. The piezoelectric generator 122 comprises a piezoelectric crystal arranged, e.g., to receive mechanical energy from card flexing and/or keypad use. The charger 124 converts the alternating current (AC) received into direct current (DC) and steps it up to a voltage that will charge the battery. Alternative embodiments can include embedded photovoltaic cells to power the card or charge the battery.
  • FIG. 2 illustrates a payment card embodiment of the present invention, and is referred to herein by the general reference numeral 200. In particular, FIG. 2 details the way magnetic array 108 and the legacy magnetic interface 109 can operate in the context of FIG. 1.
  • A conventional, “legacy”, merchant point-of-sale magnetic-stripe card reader 201 is used to read user account data recorded on a magnetic stripe 202 on the payment card 200. Such is used by a merchant in a traditional way, the payment card 200 appears and functions equivalent to an ordinary debit, credit, loyalty, prepay, and similar cards with a magnetic stripe on the back.
  • User account data is recorded on the magnetic stripe 202 using industry-standard formats and encoding. For example, ISO/IEC-7810, ISO/IEC-7811(-1:6), and ISO/IEC-7813, available from American National Standards Institute (NYC, N.Y.). These standards specify the physical characteristics of the cards, embossing, low-coercivity magnetic stripe media characteristics, location of embossed characters, location of data tracks 2-3, high-coercivity magnetic stripe media characteristics, and financial transaction cards. A typical Track-1, as defined by the International Air Transport Association (IATA), is seventy-nine alphanumeric characters recorded at 210-bits-per-inch (bpi) with 7-bit encoding. A typical Track-2, as defined by the American Bankers Association (ABA), is forty numeric characters at 75-bpi with 5-bit encoding, and Track-3 (ISO/IEC-4909) is typically one hundred and seven numeric characters at 210-bpi with 5-bit encoding. Each track has starting and ending sentinels, and a longitudinal redundancy check character (LRC). The Track-1 format includes user primary account information, user name, expiration date, service code, and discretionary data. These tracks conform to the ISO/IEC/IEC Standards 7810, 7811-1-6, and 7813, or other suitable formats.
  • The magnetic stripe 202 is located on the back surface of payment card 200. A data generator 204, e.g., implemented with a microprocessor, receives its initial programming and personalization data from a data receptor 205. For example, such data receptor 205 can be implemented as a serial inductor placed under the magnetic stripe which is excited by a standard magnetic card writer. Additionally, the data may be installed at the card issuer, bank agency, or manufacturer by existing legacy methods. The data received is stored in non-volatile memory. Alternatively, the data receptor 205 can be a radio frequency antenna and receiver, typical to ISO/IEC/IEC Specifications 24443 and 25693. The data generator 204 may be part of a secure processor that can do cryptographic processing, similar to Europay-Mastercard-Visa (EMV) cryptoprocessors used in prior art “smart cards”.
  • Card-swipes generate detection sensing signals from one or a pair of detectors 206 and 208. These are embedded at one or each end of magnetic stripe 202 and can sense the typical pressure applied by a magnetic read head in a scanner. A first set of magnetic-transducer write heads 210-212 are located immediately under bit positions d0-d2 of magnetic stripe 202. The data values of these bits can be controlled by data generator 204. Therefore, bit positions d0-d2 are programmable.
  • Such set of magnetic-transducer write heads 210-212 constitutes an array that can be fabricated as a single device and applied in many other applications besides payment cards. Embodiments of the present invention combine parallel fixed-position write heads on one side of a thin, planar magnetic media, and a moving serial read head on the opposite side. Such operation resembles a parallel-in, serial-out shift register.
  • A next set of bit positions 213-216 (d3-d6) of magnetic stripe 202 are fixed, and not programmable by data generator 204. A conventional card programmer is used by the card issuer to program these data bits. A second set of magnetic write heads 217-221 are located under bit positions d7-d11 of magnetic stripe 202. The data values of these bits can also be controlled by data generator 204 and are therefore programmable. A last set of bit positions 222-225 (d12-d15) of magnetic stripe 202 are fixed, and not programmable by data generator 204. In alternative embodiments of the present invention, as few as one bit is programmable with a corresponding write head connected to data generator 204, or as many as all of the bits in all of the tracks.
  • The legacy card reader 201 is a conventional commercial unit as are already typically deployed throughout the world, but especially in the United States. Such deployment in the United States is so deep and widespread, that conversion to contact and contactless smartcard systems has been inhibited by merchant reluctance for more purchases, employee training, counter space, and other concerns.
  • It is an important aspect of the present invention that the outward use of the payment card 200 not require any modification of the behavior of the user, nor require any special types of card readers 201. Such is a distinguishing characteristic and a principle reason that embodiments of the present invention would be commercially successful. The card reader 201 has a magnetic-transducer read head 230 that is manually translated along the length of data stripe 202. It serially reads data bits d0-d15 and these are converted to parallel digital data by a register 232.
  • The magnetic-transducer write heads 210-212 and 217-221 must be very thin and small, as they must fit within the relatively thin body of a plastic payment card, and be packed dense enough to conform to the standard recording bit densities. Integrated combinations of micro-electro-mechanical systems (MEMS) nanotechnology, and longitudinal and perpendicular ferromagnetics are therefore useful in implementations that use standard semiconductor and magnetic recording thin-film technologies.
  • FIG. 3 represents a card authentication process embodiment of the present invention, and is referred to herein by the general reference numeral 300. Such process details the way that the processor 102 (FIG. 1) interacts with keypad 116 and LCD 118 in one embodiment of the present invention. Here, the keypad includes digits 0-9, CLEAR, and ENTER keys.
  • Process 300 comprises a power_up state 302 that passes through an “always” condition 304 to a sleep state 306. A “wake timeout” condition 308 occurs when a wake-up timer times out. A wake_test state 310 checks battery condition and the CLEAR key. A condition 312 causes a loop back if the battery is within proper operating voltage range and the CLEAR key is inactive. If the battery is in range and the CLEAR key is inactive, a condition 314 returns to sleep state 306. But if the user has pressed the CLEAR key, a condition 316 passes to a card_entry state 318. The LCD is caused to blink at 1.0 Hz. A time-out for waiting for another key to be pressed, or an invalid key being entered, causes a condition 320 to return to sleep process 306.
  • If a CARD key is entered, a condition 322 passes to a pin_entry state 324. If CLEAR key was entered, a condition 326 returns to card_entry state 318. The LCD is caused to blink at 1.0 Hz. A PIN entry condition 328 processes each entry. If the user takes too long to enter the PIN, a time-out condition 330 returns to sleep state 306. If the ENTER key is pressed too soon, e.g., not enough PIN digits have been entered, a condition 332 returns to sleep state 306. If a proper number of PIN digit entries have been made, and that was followed by the ENTER key, a condition 334 passes to a pin_validate state 336.
  • If the PIN entered is invalid or a time-out has occurred, a condition 338 returns to sleep state 306. Otherwise, a valid-response condition 340 passes to a transaction_wait state 342. The LCD is caused to blink at 0.5 Hz. A transaction timer or CLEAR key entered condition 344 passes to a pin_invalidate state 346. Any key being pressed or a time-out in a condition 348 passes to the sleep state 306. This process may be used in conjunction with a smart card cryptoprocessor to unlock encrypted card data to be released for legacy transaction processes described herein and typical for magnetic stripe and smart cards.
  • FIG. 4 illustrates a magnetic data storage array embodiment of the present invention, and is referred to by the general reference numeral 400. The magnetic data storage array 400 includes a magnetic stripe 402 that mimics those commonly found on the backs of credit cards, debit cards, access cards, and drivers licenses. In alternative embodiments of the present invention, array 400 can be a two-dimensional array, and not just a single track.
  • Here in FIG. 4, magnetic data bits d0-d2 are arranged in a single track. A set of fixed-position write heads 404, 406, and 408 respectively write and rewrite magnetic data bits d0-d2. A moving, scanning read head 410 in a legacy magnetic card reader is used to read out the data written.
  • Parts of magnetic data storage array 400 can be implemented with MEMS technology. In general, MEMS is the integration of mechanical elements, sensors, actuators, and electronics on a common substrate using microfabrication technology. Electronics devices are typically fabricated with CMOS, bipolar, or BICMOS integrated circuit processes. Micromechanical components can be fabricated using compatible “micromachining” processes that selectively etch away parts of a processing wafer, or add new structural layers to form mechanical and electro-mechanical devices.
  • In the present case, MEMS technology can be used to fabricate coils that wind around Permalloy magnetic cores with gaps to produce very tiny magnetic transducer write heads. For example, a magnetic transducer write head that would be useful in the payment card 100 of FIG. 1 would have a gap length of 1-50 microns, a core length of 100-250 microns, a write track width of 1000-2500 microns, and a read track width of 1000 microns. Nickel-iron core media permeability would be greater than 2000, and cobalt-platinum or gamma ferric oxide media permeability would be greater than 2.0, and the media coercivity would be a minimum of 300 Oe.
  • A parallel array static MEMS (S-MEMS) device is a magnetic transducer which will allow information to be written in-situ on the data tracks of a standard form factor magnetic stripe card. In a practical application, an array of twenty-five individual magnetic bit cells can be located at one end of an ISO/IEC/IEC 7811 standard magnetic media. Such a stripe includes some permanent encoding, as well as a region in which data patterns can be written by arrays of magnetic heads attached to a low-coercivity magnetic stripe.
  • Each cell of such parallel array is independently electronically addressed. Write transducer current may flow in one direction or the other, depending on the desired polarity of the magnetic data bits. The magnetic stripe transaction reader operates by detection of magnetic domain transitions within an F2F scheme typical of such cards and, therefore, magnetic domain reversal is not necessary. A prototype write head included a high permeability NiFe core with electroplated windings of copper wires. For example, a useful write head has a z-dimension (track width) of 1000-2500 microns, a width of 100 microns in the x-direction, and a height in the y-direction of approximately 20 microns. There are four coil turns around each pole piece, for a total of eight. The cross sectional area of the coil was estimated at four microns square, with a three micron spacing. Total length in the x-direction, including core and coils, was 150 microns, and about a ten micron spacing between adjacent magnetic cells.
  • Transaction process embodiments of the present invention embed an algorithm with unique user data in a cryptoprocessor. For example, a method for a transaction process embeds an algorithm that encodes unique user data in a cryptoprocessor. It requests a new unique transaction encoding to be issued by using the cryptoprocessor to process the algorithm and to generate a data suited to a card-acceptance system pre-processing requirements. A conventional transaction infrastructure and server can then be used to derive from the number the unique user data. The new unique transaction encoding can be communicated to the conventional transaction infrastructure and server by a smart card contact or proximity connection. The new unique transaction encoding can be communicated to the conventional transaction infrastructure and server by a reprogrammable magnetic stripe on a card read by a reader. Such is useful in validating and approving point-of-sale financial transactions.
  • The following several paragraphs are repeated here for convenience from parent case, U.S. Pat. No. 7,044,394, issued May 16, 2006, titled PROGRAMMABLE MAGNETIC DATA STORAGE CARD.
  • In general, a predictive algorithm is used that includes personal information about the user as some of its factors. This then generates a unique number that is not sequential and cannot be guessed. For example, such can be included as a card validation code value now in common use. A payment processing center keeps track of this usage-counter data field, and will not authorize transaction requests that come out of sequence. For example, as can occur from a magnetic clone of a card that has been skimmed and tried later. A card-swipe detector embedded in the plastic card detects each use in a POS terminal, and it signals an internal microcomputer which changes data bits sent to the write heads. Once scanned by the POS terminal or other reader, the payment card can also disable any reading of the user account data for a short fixed period of time.
  • In some embodiments of the present invention, the payment card 100, 200 is constructed to provide an automatically incrementing usage-number that can be forwarded in an approval request message to a validation processing center. The validation processing center stores the last incrementing usage-number used in a valid transaction and any new usage-number used must be greater. If it is not, an out-of-sequence transaction has been detected that is probably the result of card skimming and fraud. The transaction request is subsequently denied.
  • Alternatively, such dynamic number may be a unique algorithm composed of two or more factors that may include the user's billing address numbers and social security number or card numbers that provide unpredictable results not in a sequential manner. The Assignee refers to such commercial analysis methods and devices with its trademark, Dynamic Numerical Analysis (DNA™).
  • One way to implement a user validation test is with a dynamic numerical analysis (DNA). An algorithm is implemented that fetches a last used valid number from a private database, and compares this with the sequence number now being attempted.
  • In other embodiments of the present invention, the payment card 100, 200 is constructed to provide a sort of PIN value that can be forwarded in an approval request message to a validation processing center. In one instance, unique-number generator 204 internal to the card is used to supply a value in a discretionary field of Track-2, or the card validation code (CVC) field. Such unique number is generated by an algorithm that uses as its factors the user's social security number, the user's billing address, etc.
  • The payment card 100, 200 can also be constructed to provide user account data for only limited times. For example, a PIN pad integrated on the payment card 100, 200 can require a user PIN number to be entered before card magnetic data 202 will present itself for swiping in the card reader 201. A lack of card magnetic data 202 simply looks to card reader 201 as a defective card, and denies the transaction. No hardware or software changes are needed in the card reader 201 to work with payment card 100, 200. Therefore, card reader 201 can be an already preexisting conventional device.
  • The card reader 201 performs various magnetic data operations and checks on the card magnetic data 202. For example, a longitudinal redundancy code (LRC) check that helps assure a valid read of all the data has been made. Once the card reader 201 has determined the card magnetic data 202 is good, an approval request message is sent to a card acquirer. Such message includes the user account number, dollar amount of the transaction, and merchant identification (ID). It further contains special transaction serializing information to detect skimming and other fraud.
  • A validation processing center provides regional high-speed network servers that are often operated by third parties and not the issuing banks. The validation processing center checks to see if the user card 100, 200 is not stolen or lost, and other first level account validation. It may also have cached some information from an issuing bank about this user account if the account has been processed before very recently. A card acquirer approval message is sent to an issuing bank. It also includes the user account number, dollar amount of the transaction, and merchant identification (ID). The user account is checked to see if adequate funds are available, and if so, sends an authorization message. A reconciliation of the user account is made and the merchant's account is credited with a day or two. The card acquirer records the issuing-bank authorization and forwards an approval message. The merchant point-of-sale card reader displays the approval and an authorization code, and the transaction is completed.
  • Although particular embodiments of the present invention have been described and illustrated, such is not intended to limit the invention. Modifications and changes will no doubt become apparent to those skilled in the art, and it is intended that the invention only be limited by the scope of the appended claims.

Claims (17)

1. A three-mode payment card configured in a standardized credit card format equivalent to ISO/IEC-7810, and having:
a plastic card body in which all the other elements are disposed;
a contact interface with surface contacts and providing for communication of encoded bank and user information with a contact-type smartcard reader in a first mode;
a wireless interface with an antenna and providing for contactless communication of encoded bank and user information with a contactless-type smartcard reader in a second mode;
a dual-input crypto-processor for supporting contact-type smart card communication equivalent to ISO/IEC-7816 through the contact interface, and for also supporting contactless-type smart card communication equivalent to ISO/IEC-14443 through the wireless interface;
and characterized by:
a magnetic stripe with a magnetic array interfaced to the dual-input crypto-processor, and that provide for magnetic presentations in parallel that mimic a conventional legacy magnetic stripe encoded with bank and user information to a magnetic card reader in a third mode;
a magnetic recording serially accessible to a longitudinally moving read head on a front side of the magnetic stripe that includes at least one dynamic data bit controlled by said magnetic array;
a data generator and a data receptor for receiving an initial programming of personalization data from a card issuer, bank agency or manufacturer, and for outputting through the magnetic array a number of programmable data bits that are combined in a string with a number of permanent data bits;
a programmable interface controller (PIC) interfaced to the dual-input crypto-processor through the contact interface;
an input device for accepting information solicited from a user and providing it to the PIC; and
an electronic display connected to present text messages from the PIC to said user.
2. The payment card of claim 1, further comprising:
a component providing for user authentication based in-part on said information entered through the input device;
3. The payment card of claim 1, wherein:
the input device includes a biometric sensor for collecting physical characteristics of a user that are thereafter useful by the PIC in an authentication of said user.
4. The payment card of claim 1, wherein:
the input device includes a biometric sensor for collecting at least one of a fingerprint or signature of a user that are thereafter useful by the PIC in an authentication of said user.
5. The payment card of claim 1, further comprising:
an algorithm with data unique to said user and embedded in the dual-input crypto-processor, wherein a new unique transaction encoding is transmittable through the wireless, contact, and magnetic interfaces that permits a transaction infrastructure and server to derive a unique user data that is useful in validating and approving point-of-sale financial transactions involving the payment card.
6. The payment card of claim 1, wherein:
the PIC does not store more than one digit of a user password at a time, and sends each digit as it is received on to the contact interface and the dual-input crypto-processor for verification.
7. The payment card of claim 6, wherein:
the PIC does not store a whole user password at any time.
8. The payment card of claim 1, wherein:
a portion of a complete financial account number of the user is encoded with said permanent data bits.
9. The payment card of claim 1, wherein:
the data generator provides for a subsequent obfuscation of a financial account number being presented in whole by rewriting said at least one dynamic data bit controlled by said magnetic array.
10. The payment card of claim 1, further comprising:
a predictive algorithm that includes personal information about the user in some of its factors, and that generates a unique number that is not sequential and cannot be predicted without knowing the algorithm and the seed value, and wherein a payment processing center will not authorize transaction requests that come out of sequence.
11. The payment card of claim 10, further comprising:
detectors connected to signal the PIC when a reading of bank and user information in the magnetic recording has occurred.
12. The payment card of claim 1, further comprising:
an on-board electrical generator connected to power the payment card as needed.
13. The payment card of claim 1, further comprising:
a piezoelectric generator connected to charge a battery that powers the payment card as needed.
14. A three-mode payment card having:
means for providing communication of encoded bank and user information with a contact-type smartcard reader in a first mode;
means for providing communication of encoded bank and user information with a contactless-type smartcard reader in a second mode;
and characterized by:
means for providing magnetic presentations in parallel that mimic a conventional legacy magnetic stripe encoded with bank and user information to a magnetic card reader in a third mode;
means for providing a magnetic recording serially accessible to a longitudinally moving read head on a front side of the magnetic stripe that includes at least one dynamic data bit controlled by said magnetic array;
means for receiving an initial programming of personalization data from a card issuer, bank agency or manufacturer, and for outputting a number of programmable data bits that are combined in a string with a number of permanent data bits;
means for accepting information solicited from a user; and
means for presenting text messages from to said user.
15. A payment card configured in a standardized credit card format equivalent to ISO/IEC-7810, and having:
a plastic card body in which all the other elements are disposed;
at least one of a contact interface with contact-type smart card communication equivalent to ISO/IEC-7816, and a wireless interface with an antenna providing for contactless-type smart card communication equivalent to ISO/IEC-14443;
a crypto-processor for supporting smartcard communication through either of said contact and wireless interfaces;
and characterized by:
a data generator and a data receptor for receiving an initial programming of personalization data from a card issuer, bank agency or manufacturer, and for encoding bank and user information for output by either of said contact and wireless interfaces with sequenced portions that can be expected by the card issuer;
a programmable interface controller (PIC) interfaced to the crypto-processor; and
an electronic display connected to present text messages from the PIC and the crypto-processor to said user.
16. The payment card of claim 15, further comprising:
a device for automatically incrementing a value in a sequence that can be forwarded in an approval request message to a validation processing center, wherein changing values used in transactions must belong to an expected sequence in order to be valid.
17. The payment card of claim 15, further comprising:
a magnetic stripe with a magnetic array interfaced to the crypto-processor, and that provide for magnetic presentations in parallel that mimic a conventional legacy magnetic stripe encoded with bank and user information to a magnetic card reader in a third mode; and
a magnetic recording serially accessible to a longitudinally moving read head on a front side of the magnetic stripe that includes at least one dynamic data bit controlled by said magnetic array;
wherein, the data generator and data receptor further provide for outputting through the magnetic array a number of programmable data bits that are combined in a string with a permanent data bits.
US12/489,662 2003-12-17 2009-06-23 Three-legacy mode payment card with parametric authentication and data input elements Abandoned US20090255996A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/489,662 US20090255996A1 (en) 2003-12-17 2009-06-23 Three-legacy mode payment card with parametric authentication and data input elements

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/738,376 US7044394B2 (en) 2003-12-17 2003-12-17 Programmable magnetic data storage card
US10/800,821 US20040177045A1 (en) 2001-04-17 2004-03-15 Three-legacy mode payment card with parametric authentication and data input elements
US12/489,662 US20090255996A1 (en) 2003-12-17 2009-06-23 Three-legacy mode payment card with parametric authentication and data input elements

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/800,821 Division US20040177045A1 (en) 2001-04-17 2004-03-15 Three-legacy mode payment card with parametric authentication and data input elements

Publications (1)

Publication Number Publication Date
US20090255996A1 true US20090255996A1 (en) 2009-10-15

Family

ID=34677376

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/738,376 Expired - Lifetime US7044394B2 (en) 2001-04-17 2003-12-17 Programmable magnetic data storage card
US11/414,757 Expired - Lifetime US7246752B2 (en) 2003-12-17 2006-04-28 Magnetic stripe card with dynamic numbers
US12/489,662 Abandoned US20090255996A1 (en) 2003-12-17 2009-06-23 Three-legacy mode payment card with parametric authentication and data input elements

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/738,376 Expired - Lifetime US7044394B2 (en) 2001-04-17 2003-12-17 Programmable magnetic data storage card
US11/414,757 Expired - Lifetime US7246752B2 (en) 2003-12-17 2006-04-28 Magnetic stripe card with dynamic numbers

Country Status (3)

Country Link
US (3) US7044394B2 (en)
EP (1) EP1714237A4 (en)
WO (1) WO2005059691A2 (en)

Cited By (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090159682A1 (en) * 2007-12-24 2009-06-25 Dynamics Inc. Cards and devices with multi-function magnetic emulators and methods for using same
US7793851B2 (en) 2005-05-09 2010-09-14 Dynamics Inc. Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card
US20110010254A1 (en) * 2009-07-07 2011-01-13 Chenot Richard H Transaction processing systems and methods for per-transaction personal financial management
US20110010253A1 (en) * 2009-07-07 2011-01-13 Chenot Richard H Systems and methods for per-transaction financial card enabled personal financial management
US20110166997A1 (en) * 2009-07-09 2011-07-07 Cubic Corporation Proxy-based payment system
US20110166914A1 (en) * 2009-07-09 2011-07-07 Cubic Corporation Reloadable prepaid card distribution, reload, and registration in transit
US20110166936A1 (en) * 2009-07-09 2011-07-07 Cubic Corporation Predictive techniques in transit alerting
USD643063S1 (en) 2010-07-09 2011-08-09 Dynamics Inc. Interactive electronic card with display
US8066191B1 (en) 2009-04-06 2011-11-29 Dynamics Inc. Cards and assemblies with user interfaces
USD651238S1 (en) 2010-07-09 2011-12-27 Dynamics Inc. Interactive electronic card with display
USD651237S1 (en) 2010-07-09 2011-12-27 Dynamics Inc. Interactive electronic card with display
USD651644S1 (en) 2010-07-09 2012-01-03 Dynamics Inc. Interactive electronic card with display
USD652075S1 (en) 2010-07-02 2012-01-10 Dynamics Inc. Multiple button interactive electronic card
USD652076S1 (en) 2010-07-09 2012-01-10 Dynamics Inc. Multiple button interactive electronic card with display
USD652450S1 (en) 2010-07-09 2012-01-17 Dynamics Inc. Multiple button interactive electronic card
USD652448S1 (en) 2010-07-02 2012-01-17 Dynamics Inc. Multiple button interactive electronic card
USD652449S1 (en) 2010-07-02 2012-01-17 Dynamics Inc. Multiple button interactive electronic card
USD652867S1 (en) 2010-07-02 2012-01-24 Dynamics Inc. Multiple button interactive electronic card
USD653288S1 (en) 2010-07-09 2012-01-31 Dynamics Inc. Multiple button interactive electronic card
US8226001B1 (en) 2010-06-23 2012-07-24 Fiteq, Inc. Method for broadcasting a magnetic stripe data packet from an electronic smart card
US8231063B2 (en) 2005-03-26 2012-07-31 Privasys Inc. Electronic card and methods for making same
USD665022S1 (en) 2010-07-09 2012-08-07 Dynamics Inc. Multiple button interactive electronic card with light source
USD665447S1 (en) 2010-07-09 2012-08-14 Dynamics Inc. Multiple button interactive electronic card with light source and display
US8290868B2 (en) 2009-07-07 2012-10-16 Chenot Richard H Financial cards and methods for per-transaction personal financial management
USD670331S1 (en) 2011-05-12 2012-11-06 Dynamics Inc. Interactive display card
USD670332S1 (en) 2011-05-12 2012-11-06 Dynamics Inc. Interactive card
USD670330S1 (en) 2011-05-12 2012-11-06 Dynamics Inc. Interactive card
USD670329S1 (en) 2011-05-12 2012-11-06 Dynamics Inc. Interactive display card
USD670759S1 (en) 2010-07-02 2012-11-13 Dynamics Inc. Multiple button interactive electronic card with light sources
US8317103B1 (en) 2010-06-23 2012-11-27 FiTeq Method for broadcasting a magnetic stripe data packet from an electronic smart card
US8322623B1 (en) 2010-07-26 2012-12-04 Dynamics Inc. Systems and methods for advanced card printing
USD672389S1 (en) 2010-07-02 2012-12-11 Dynamics Inc. Multiple button interactive electronic card with light sources
US20120312879A1 (en) * 2011-01-06 2012-12-13 John Rolin PCB Design and Card Assembly for an Active RFID Tag in Credit Card Form Factor
USD673606S1 (en) 2012-08-27 2013-01-01 Dynamics Inc. Interactive electronic card with display and buttons
USD674013S1 (en) 2010-07-02 2013-01-08 Dynamics Inc. Multiple button interactive electronic card with light sources
US8348172B1 (en) 2010-03-02 2013-01-08 Dynamics Inc. Systems and methods for detection mechanisms for magnetic cards and devices
US20130019102A1 (en) * 2005-07-29 2013-01-17 Research In Motion Limited System and method for encrypted smart card pin entry
USD675256S1 (en) 2012-08-27 2013-01-29 Dynamics Inc. Interactive electronic card with display and button
USD676487S1 (en) 2012-08-27 2013-02-19 Dynamics Inc. Interactive electronic card with display and buttons
USD676904S1 (en) 2011-05-12 2013-02-26 Dynamics Inc. Interactive display card
US8393545B1 (en) 2009-06-23 2013-03-12 Dynamics Inc. Cards deployed with inactivated products for activation
US8393546B1 (en) 2009-10-25 2013-03-12 Dynamics Inc. Games, prizes, and entertainment for powered cards and devices
US8439274B2 (en) 2009-07-07 2013-05-14 Richard H Chenot Financial card with a per-transaction user definable magnetic strip portion
US8485446B1 (en) 2011-03-28 2013-07-16 Dynamics Inc. Shielded magnetic stripe for magnetic cards and devices
USD687094S1 (en) 2010-07-02 2013-07-30 Dynamics Inc. Multiple button interactive electronic card with light sources
USD687095S1 (en) 2012-08-27 2013-07-30 Dynamics Inc. Interactive electronic card with buttons
USD687490S1 (en) 2012-08-27 2013-08-06 Dynamics Inc. Interactive electronic card with display and button
USD687487S1 (en) 2012-08-27 2013-08-06 Dynamics Inc. Interactive electronic card with display and button
USD687488S1 (en) 2012-08-27 2013-08-06 Dynamics Inc. Interactive electronic card with buttons
USD687489S1 (en) 2012-08-27 2013-08-06 Dynamics Inc. Interactive electronic card with buttons
USD687887S1 (en) 2012-08-27 2013-08-13 Dynamics Inc. Interactive electronic card with buttons
US8511574B1 (en) 2009-08-17 2013-08-20 Dynamics Inc. Advanced loyalty applications for powered cards and devices
USD688744S1 (en) 2012-08-27 2013-08-27 Dynamics Inc. Interactive electronic card with display and button
US8523059B1 (en) 2009-10-20 2013-09-03 Dynamics Inc. Advanced payment options for powered cards and devices
CN103297392A (en) * 2012-02-27 2013-09-11 深圳市嘉乐祥珠宝饰品有限公司 Fingerprint identity authentication system and authentication method
US8540165B2 (en) 2005-03-26 2013-09-24 Privasys, Inc. Laminated electronic card assembly
US8561894B1 (en) 2010-10-20 2013-10-22 Dynamics Inc. Powered cards and devices designed, programmed, and deployed from a kiosk
USD692053S1 (en) 2012-08-27 2013-10-22 Dynamics Inc. Interactive electronic card with display and button
US8567679B1 (en) 2011-01-23 2013-10-29 Dynamics Inc. Cards and devices with embedded holograms
US8579203B1 (en) 2008-12-19 2013-11-12 Dynamics Inc. Electronic magnetic recorded media emulators in magnetic card devices
USD694322S1 (en) 2012-08-27 2013-11-26 Dynamics Inc. Interactive electronic card with display buttons
US8602312B2 (en) 2010-02-16 2013-12-10 Dynamics Inc. Systems and methods for drive circuits for dynamic magnetic stripe communications devices
USD695636S1 (en) 2012-08-27 2013-12-17 Dynamics Inc. Interactive electronic card with display and buttons
US8622309B1 (en) 2009-04-06 2014-01-07 Dynamics Inc. Payment cards and devices with budgets, parental controls, and virtual accounts
US8628022B1 (en) 2011-05-23 2014-01-14 Dynamics Inc. Systems and methods for sensor mechanisms for magnetic cards and devices
US8684267B2 (en) 2005-03-26 2014-04-01 Privasys Method for broadcasting a magnetic stripe data packet from an electronic smart card
US8702007B2 (en) 2009-01-07 2014-04-22 Powered Card Solutions, Llc On card display of data from secured chip
US8727219B1 (en) 2009-10-12 2014-05-20 Dynamics Inc. Magnetic stripe track signal having multiple communications channels
US8827153B1 (en) 2011-07-18 2014-09-09 Dynamics Inc. Systems and methods for waveform generation for dynamic magnetic stripe communications devices
US8856024B2 (en) 2010-10-26 2014-10-07 Cubic Corporation Determining companion and joint cards in transit
US8888009B1 (en) 2012-02-14 2014-11-18 Dynamics Inc. Systems and methods for extended stripe mechanisms for magnetic cards and devices
US8931703B1 (en) 2009-03-16 2015-01-13 Dynamics Inc. Payment cards and devices for displaying barcodes
US8942677B2 (en) 2009-07-09 2015-01-27 Cubic Corporation Transit account management with mobile device messaging
US8960545B1 (en) 2011-11-21 2015-02-24 Dynamics Inc. Data modification for magnetic cards and devices
US8991699B2 (en) 2009-09-08 2015-03-31 Cubic Corporation Association of contactless payment card primary account number
US9010644B1 (en) 2012-11-30 2015-04-21 Dynamics Inc. Dynamic magnetic stripe communications device with stepped magnetic material for magnetic cards and devices
US9010647B2 (en) 2012-10-29 2015-04-21 Dynamics Inc. Multiple sensor detector systems and detection methods of magnetic cards and devices
USD729871S1 (en) 2012-08-27 2015-05-19 Dynamics Inc. Interactive electronic card with display and buttons
USD729869S1 (en) 2012-08-27 2015-05-19 Dynamics Inc. Interactive electronic card with display and button
US9033218B1 (en) 2012-05-15 2015-05-19 Dynamics Inc. Cards, devices, systems, methods and dynamic security codes
USD729870S1 (en) 2012-08-27 2015-05-19 Dynamics Inc. Interactive electronic card with display and button
USD730438S1 (en) 2012-08-27 2015-05-26 Dynamics Inc. Interactive electronic card with display and button
USD730439S1 (en) 2012-08-27 2015-05-26 Dynamics Inc. Interactive electronic card with buttons
US9053398B1 (en) * 2010-08-12 2015-06-09 Dynamics Inc. Passive detection mechanisms for magnetic cards and devices
WO2015085137A1 (en) * 2013-12-06 2015-06-11 Mastercard International Incorporated Method and system for split-hashed payment account processing
US9064195B2 (en) 2012-06-29 2015-06-23 Dynamics Inc. Multiple layer card circuit boards
USD737373S1 (en) 2013-09-10 2015-08-25 Dynamics Inc. Interactive electronic card with contact connector
TWI503693B (en) * 2014-09-04 2015-10-11 Joe Chi Chen Full dynamic digital electronic transactions identification method
USD750167S1 (en) 2013-03-04 2016-02-23 Dynamics Inc. Interactive electronic card with buttons
USD750166S1 (en) 2013-03-04 2016-02-23 Dynamics Inc. Interactive electronic card with display and buttons
USD750168S1 (en) 2013-03-04 2016-02-23 Dynamics Inc. Interactive electronic card with display and button
USD751640S1 (en) 2013-03-04 2016-03-15 Dynamics Inc. Interactive electronic card with display and button
USD751639S1 (en) 2013-03-04 2016-03-15 Dynamics Inc. Interactive electronic card with display and button
US9306666B1 (en) 2009-10-08 2016-04-05 Dynamics Inc. Programming protocols for powered cards and devices
US9329619B1 (en) 2009-04-06 2016-05-03 Dynamics Inc. Cards with power management
USD764584S1 (en) 2013-03-04 2016-08-23 Dynamics Inc. Interactive electronic card with buttons
USD765173S1 (en) 2013-03-04 2016-08-30 Dynamics Inc. Interactive electronic card with display and button
USD765174S1 (en) 2013-03-04 2016-08-30 Dynamics Inc. Interactive electronic card with button
USD767024S1 (en) 2013-09-10 2016-09-20 Dynamics Inc. Interactive electronic card with contact connector
USD777252S1 (en) 2013-03-04 2017-01-24 Dynamics Inc. Interactive electronic card with buttons
WO2017024011A1 (en) * 2015-08-03 2017-02-09 Capital One Services, Llc Systems and methods for item-based transaction authentication
US9619741B1 (en) 2011-11-21 2017-04-11 Dynamics Inc. Systems and methods for synchronization mechanisms for magnetic cards and devices
US9646240B1 (en) 2010-11-05 2017-05-09 Dynamics Inc. Locking features for powered cards and devices
US9659246B1 (en) 2012-11-05 2017-05-23 Dynamics Inc. Dynamic magnetic stripe communications device with beveled magnetic material for magnetic cards and devices
USD792513S1 (en) 2010-07-09 2017-07-18 Dynamics Inc. Display with font
USD792512S1 (en) 2010-07-09 2017-07-18 Dynamics Inc. Display with font
USD792511S1 (en) 2010-07-09 2017-07-18 Dynamics Inc. Display with font
US9710745B1 (en) 2012-02-09 2017-07-18 Dynamics Inc. Systems and methods for automated assembly of dynamic magnetic stripe communications devices
US9734669B1 (en) 2012-04-02 2017-08-15 Dynamics Inc. Cards, devices, systems, and methods for advanced payment game of skill and game of chance functionality
US9818125B2 (en) 2011-02-16 2017-11-14 Dynamics Inc. Systems and methods for information exchange mechanisms for powered cards and devices
US9836680B1 (en) 2011-03-03 2017-12-05 Dynamics Inc. Systems and methods for advanced communication mechanisms for magnetic cards and devices
US9916992B2 (en) 2012-02-20 2018-03-13 Dynamics Inc. Systems and methods for flexible components for powered cards and devices
US20180189783A1 (en) * 2013-12-19 2018-07-05 Christian Flurscheim Cloud-based transactions with magnetic secure transmission
US10022884B1 (en) 2010-10-15 2018-07-17 Dynamics Inc. Systems and methods for alignment techniques for magnetic cards and devices
US10032049B2 (en) 2016-02-23 2018-07-24 Dynamics Inc. Magnetic cards and devices for motorized readers
US10055614B1 (en) 2010-08-12 2018-08-21 Dynamics Inc. Systems and methods for advanced detection mechanisms for magnetic cards and devices
US10062024B1 (en) 2012-02-03 2018-08-28 Dynamics Inc. Systems and methods for spike suppression for dynamic magnetic stripe communications devices
USD828870S1 (en) 2012-08-27 2018-09-18 Dynamics Inc. Display card
US10095970B1 (en) 2011-01-31 2018-10-09 Dynamics Inc. Cards including anti-skimming devices
US10108891B1 (en) 2014-03-21 2018-10-23 Dynamics Inc. Exchange coupled amorphous ribbons for electronic stripes
US10269042B2 (en) 2002-11-07 2019-04-23 Novitaz, Inc. Customer relationship management system for physical locations
US10504105B2 (en) 2010-05-18 2019-12-10 Dynamics Inc. Systems and methods for cards and devices operable to communicate to touch sensitive displays
US20190392277A1 (en) * 2018-06-21 2019-12-26 Mastercard International Incorporated Payment transaction methods and systems enabling verification of payment amount by payment card
US10643116B1 (en) 2018-11-16 2020-05-05 Graph-Tech-Usa, Llc System and method for contactless encoding and printing of a triple interface smart card through near-field network
US10664824B2 (en) 2013-12-19 2020-05-26 Visa International Service Association Cloud-based transactions methods and systems
US10693263B1 (en) 2010-03-16 2020-06-23 Dynamics Inc. Systems and methods for audio connectors for powered cards and devices
US10949627B2 (en) 2012-12-20 2021-03-16 Dynamics Inc. Systems and methods for non-time smearing detection mechanisms for magnetic cards and devices
US11036873B2 (en) 2014-08-22 2021-06-15 Visa International Service Association Embedding cloud-based functionalities in a communication device
US11074611B2 (en) 2002-11-07 2021-07-27 Maplebear, Inc. Customer relationship management system for physical locations
US11080693B2 (en) 2011-04-05 2021-08-03 Visa Europe Limited Payment system
US11100431B2 (en) 2011-05-10 2021-08-24 Dynamics Inc. Systems and methods for mobile authorizations
US11126997B1 (en) 2012-10-02 2021-09-21 Dynamics Inc. Cards, devices, systems, and methods for a fulfillment system
US11409971B1 (en) 2011-10-23 2022-08-09 Dynamics Inc. Programming and test modes for powered cards and devices
US11418483B1 (en) 2012-04-19 2022-08-16 Dynamics Inc. Cards, devices, systems, and methods for zone-based network management
US11455634B2 (en) 2018-06-21 2022-09-27 Mastercard International Incorporated Payment transaction methods and systems enabling verification of payment amount by fingerprint of customer
US11551046B1 (en) 2011-10-19 2023-01-10 Dynamics Inc. Stacked dynamic magnetic stripe commmunications device for magnetic cards and devices
US11842350B2 (en) 2014-05-21 2023-12-12 Visa International Service Association Offline authentication
US11961147B1 (en) 2013-04-12 2024-04-16 K. Shane Cupp Cards, devices, systems, and methods for financial management services

Families Citing this family (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7761374B2 (en) * 2003-08-18 2010-07-20 Visa International Service Association Method and system for generating a dynamic verification value
US7740168B2 (en) 2003-08-18 2010-06-22 Visa U.S.A. Inc. Method and system for generating a dynamic verification value
US20050269401A1 (en) * 2004-06-03 2005-12-08 Tyfone, Inc. System and method for securing financial transactions
WO2005119607A2 (en) * 2004-06-03 2005-12-15 Tyfone, Inc. System and method for securing financial transactions
US7185806B2 (en) * 2004-08-12 2007-03-06 Sines Randy D Financial and similar identification cards read by magnetic swipe card readers and methods relating thereto
US20060119973A1 (en) * 2004-12-07 2006-06-08 Transpectral System Llc Read/write head apparatus and method
US7234638B2 (en) * 2005-01-20 2007-06-26 Hitachi America, Ltd. Method and apparatus for performing benefit transactions using a portable integrated circuit device
US7581678B2 (en) * 2005-02-22 2009-09-01 Tyfone, Inc. Electronic transaction card
US20070262138A1 (en) * 2005-04-01 2007-11-15 Jean Somers Dynamic encryption of payment card numbers in electronic payment transactions
US20080308627A1 (en) * 2005-04-07 2008-12-18 Sines Randy D Financial and similar identification cards and methods relating thereto including awards
US20060226217A1 (en) * 2005-04-07 2006-10-12 Tyfone, Inc. Sleeve for electronic transaction card
US20080035738A1 (en) * 2005-05-09 2008-02-14 Mullen Jeffrey D Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card
CA2621844C (en) 2005-09-08 2014-04-22 Cardlab Aps A dynamic transaction card and a method of writing information to the same
US20070063020A1 (en) * 2005-09-21 2007-03-22 Capital One Financial Corporation System and method for charity gift card
US7503504B2 (en) * 2005-12-15 2009-03-17 Intel Corporation Transaction card supporting multiple transaction types
US7784692B1 (en) 2005-12-29 2010-08-31 United Services Automobile Association (Usaa) Single access vehicle
US7594611B1 (en) * 2005-12-29 2009-09-29 United Services Automobile Association (Usaa) Multi-account access card
US7818264B2 (en) * 2006-06-19 2010-10-19 Visa U.S.A. Inc. Track data encryption
US9065643B2 (en) 2006-04-05 2015-06-23 Visa U.S.A. Inc. System and method for account identifier obfuscation
US7380710B2 (en) * 2006-04-28 2008-06-03 Qsecure, Inc. Payment card preloaded with unique numbers
US20080017704A1 (en) * 2006-07-24 2008-01-24 First Data Corporation Contactless Electronic Wallet Payment Device
WO2008024813A2 (en) * 2006-08-22 2008-02-28 Rynne Group, Llc A discernment card and a discernment card business system using the discernment card
US7690580B2 (en) * 2006-11-17 2010-04-06 Austin William Shoemaker Transaction cards having dynamically reconfigurable data interface and methods for using same
US20080121726A1 (en) * 2006-11-29 2008-05-29 Colin Brady Self-Programming Transaction Card
US7991158B2 (en) 2006-12-13 2011-08-02 Tyfone, Inc. Secure messaging
US20080147496A1 (en) * 2006-12-19 2008-06-19 General Electric Company System and method for providing promotions
US20080147495A1 (en) * 2006-12-19 2008-06-19 General Electric Company System and method for providing promotions
US20080244208A1 (en) * 2007-03-30 2008-10-02 Narendra Siva G Memory card hidden command protocol
WO2008137535A1 (en) * 2007-05-03 2008-11-13 Mastercard International Incorporated Method and system for controlling risk using static payment data and an intelligent payment device
US8121942B2 (en) 2007-06-25 2012-02-21 Visa U.S.A. Inc. Systems and methods for secure and transparent cardless transactions
DE102007041370B4 (en) * 2007-08-30 2016-06-09 Bundesdruckerei Gmbh Chip card, electronic device, method for producing a chip card and method for using a chip card
US20090089148A1 (en) * 2007-09-27 2009-04-02 General Electric Company System and method for providing promotions
US8191782B2 (en) * 2007-12-11 2012-06-05 Mastercard International, Inc. Swipe card and a method and system of monitoring usage of a swipe card
US9741027B2 (en) * 2007-12-14 2017-08-22 Tyfone, Inc. Memory card based contactless devices
US8451122B2 (en) 2008-08-08 2013-05-28 Tyfone, Inc. Smartcard performance enhancement circuits and systems
US7961101B2 (en) 2008-08-08 2011-06-14 Tyfone, Inc. Small RFID card with integrated inductive element
US20100217708A1 (en) * 2009-02-26 2010-08-26 Arthur Vanmoor Superior identification system using numbers
BRPI0921124A2 (en) 2008-11-06 2016-09-13 Visa Int Service Ass system for authenticating a consumer, computer implemented method, computer readable medium, and server computer.
EP2199992A1 (en) * 2008-12-19 2010-06-23 Gemalto SA Secure activation before contactless banking smart card transaction
US10354321B2 (en) 2009-01-22 2019-07-16 First Data Corporation Processing transactions with an extended application ID and dynamic cryptograms
US10037524B2 (en) * 2009-01-22 2018-07-31 First Data Corporation Dynamic primary account number (PAN) and unique key per card
US10628881B2 (en) 2009-01-22 2020-04-21 First Data Corporation Processing transactions with an extended application ID and dynamic cryptograms
US8113435B2 (en) * 2009-01-28 2012-02-14 Cubic Corporation Card reader
US9509436B2 (en) 2009-01-29 2016-11-29 Cubic Corporation Protection of near-field communication exchanges
US8350668B2 (en) * 2009-01-29 2013-01-08 Cubic Corporation Smartcard protocol transmitter
EP2401708A4 (en) * 2009-02-24 2012-08-15 Tyfone Inc Contactless device with miniaturized antenna
JP5728791B2 (en) * 2009-03-05 2015-06-03 日本電産サンキョー株式会社 Card reader
US8413894B2 (en) 2009-11-05 2013-04-09 X-Card Holdings, Llc Card with illuminated codes for use in secure transactions
US10049356B2 (en) 2009-12-18 2018-08-14 First Data Corporation Authentication of card-not-present transactions
USD666241S1 (en) 2010-07-09 2012-08-28 Dynamics Inc. Multiple button interactive electronic card with light source
DE102010035312A1 (en) 2010-08-25 2012-03-01 Giesecke & Devrient Gmbh Portable data carrier medium i.e. smart card, has oscillating circuit whose detuning is caused by magnet read head when reading magnetic strip, where number of detuning of oscillating circuit is realized and processed by evaluation unit
US9838520B2 (en) 2011-04-22 2017-12-05 Mastercard International Incorporated Purchase Magnetic stripe attachment and application for mobile electronic devices
US8596549B2 (en) 2011-05-05 2013-12-03 Moon J. Kim Authorizing the use of a transaction card
US8490872B2 (en) 2011-06-15 2013-07-23 Moon J. Kim Light-powered smart card for on-line transaction processing
US8783578B2 (en) 2011-06-22 2014-07-22 Moon J. Kim Dynamic display information card
US9892357B2 (en) 2013-05-29 2018-02-13 Cardlab, Aps. Method for remotely controlling a reprogrammable payment card
US9286561B2 (en) 2012-05-29 2016-03-15 Stratos Technologies, Inc. Payment card and methods
US9406011B2 (en) 2012-05-29 2016-08-02 Stratos Technologies, Inc. Virtual wallet
US20140136410A1 (en) * 2012-11-09 2014-05-15 Jeremiah Joseph Akin Credit Card Fraud Detection
CA2912105A1 (en) * 2013-04-12 2014-10-16 Cardlab Aps A card with an offset field generator
US9275386B2 (en) 2013-05-29 2016-03-01 Stratos Technologies, Inc. Method for facilitating payment with a programmable payment card
US9590983B2 (en) 2014-04-09 2017-03-07 Cardex Systems Inc. Self-authenticating chips
EP3035230A1 (en) 2014-12-19 2016-06-22 Cardlab ApS A method and an assembly for generating a magnetic field
MA41187A (en) 2014-12-19 2021-04-07 Cardlab Aps PROCESS AND ASSEMBLY FOR GENERATING A MAGNETIC FIELD AND PROCESS FOR MANUFACTURING AN ASSEMBLY
US10074888B2 (en) 2015-04-03 2018-09-11 NXT-ID, Inc. Accordion antenna structure
EP3082071A1 (en) 2015-04-17 2016-10-19 Cardlab ApS Device for and method of outputting a magnetic field
JP6813310B2 (en) * 2016-09-02 2021-01-13 東芝テック株式会社 Article reader and program
US11861593B1 (en) 2018-01-11 2024-01-02 Wells Fargo Bank, N.A. Payment vehicle recycling system and method
US10546444B2 (en) 2018-06-21 2020-01-28 Capital One Services, Llc Systems and methods for secure read-only authentication
US10769299B2 (en) 2018-07-12 2020-09-08 Capital One Services, Llc System and method for dynamic generation of URL by smart card
AU2019355110A1 (en) 2018-10-02 2021-04-08 Capital One Services, Llc Systems and methods for cryptographic authentication of contactless cards
SG11202102798TA (en) 2018-10-02 2021-04-29 Capital One Services Llc Systems and methods for cryptographic authentication of contactless cards
US10554411B1 (en) 2018-10-02 2020-02-04 Capital One Services, Llc Systems and methods for cryptographic authentication of contactless cards
US10579998B1 (en) 2018-10-02 2020-03-03 Capital One Services, Llc Systems and methods for cryptographic authentication of contactless cards
US10841091B2 (en) 2018-10-02 2020-11-17 Capital One Services, Llc Systems and methods for cryptographic authentication of contactless cards
US10771254B2 (en) 2018-10-02 2020-09-08 Capital One Services, Llc Systems and methods for email-based card activation
US10489781B1 (en) 2018-10-02 2019-11-26 Capital One Services, Llc Systems and methods for cryptographic authentication of contactless cards
CA3108917A1 (en) 2018-10-02 2020-04-09 Capital One Services, Llc Systems and methods for cryptographic authentication of contactless cards
US10505738B1 (en) 2018-10-02 2019-12-10 Capital One Services, Llc Systems and methods for cryptographic authentication of contactless cards
US11210664B2 (en) 2018-10-02 2021-12-28 Capital One Services, Llc Systems and methods for amplifying the strength of cryptographic algorithms
US10607214B1 (en) 2018-10-02 2020-03-31 Capital One Services, Llc Systems and methods for cryptographic authentication of contactless cards
US10733645B2 (en) 2018-10-02 2020-08-04 Capital One Services, Llc Systems and methods for establishing identity for order pick up
US10542036B1 (en) 2018-10-02 2020-01-21 Capital One Services, Llc Systems and methods for signaling an attack on contactless cards
JP2022501861A (en) 2018-10-02 2022-01-06 キャピタル・ワン・サービシーズ・リミテッド・ライアビリティ・カンパニーCapital One Services, LLC Systems and methods for cryptographic authentication of non-contact cards
US10581611B1 (en) 2018-10-02 2020-03-03 Capital One Services, Llc Systems and methods for cryptographic authentication of contactless cards
US10783519B2 (en) 2018-10-02 2020-09-22 Capital One Services, Llc Systems and methods for cryptographic authentication of contactless cards
CA3110521A1 (en) 2018-10-02 2020-04-09 Capital One Services, Llc Systems and methods for cryptographic authentication of contactless cards
US10565587B1 (en) 2018-10-02 2020-02-18 Capital One Services, Llc Systems and methods for cryptographic authentication of contactless cards
CA3115252A1 (en) 2018-10-02 2020-04-09 Capital One Services, Llc Systems and methods for cryptographic authentication of contactless cards
US10582386B1 (en) 2018-10-02 2020-03-03 Capital One Services, Llc Systems and methods for cryptographic authentication of contactless cards
US10592710B1 (en) 2018-10-02 2020-03-17 Capital One Services, Llc Systems and methods for cryptographic authentication of contactless cards
CA3115084A1 (en) 2018-10-02 2020-04-09 Capital One Services, Llc Systems and methods for cryptographic authentication of contactless cards
US10909527B2 (en) 2018-10-02 2021-02-02 Capital One Services, Llc Systems and methods for performing a reissue of a contactless card
MX2021003217A (en) 2018-10-02 2021-05-12 Capital One Services Llc Systems and methods for cryptographic authentication of contactless cards.
JP2022508026A (en) 2018-10-02 2022-01-19 キャピタル・ワン・サービシーズ・リミテッド・ライアビリティ・カンパニー Systems and methods for cryptographic authentication of non-contact cards
WO2020072694A1 (en) 2018-10-02 2020-04-09 Capital One Services, Llc Systems and methods for cryptographic authentication of contactless cards
US10680824B2 (en) 2018-10-02 2020-06-09 Capital One Services, Llc Systems and methods for inventory management using cryptographic authentication of contactless cards
US10771253B2 (en) 2018-10-02 2020-09-08 Capital One Services, Llc Systems and methods for cryptographic authentication of contactless cards
US10949520B2 (en) 2018-10-02 2021-03-16 Capital One Services, Llc Systems and methods for cross coupling risk analytics and one-time-passcodes
US10511443B1 (en) 2018-10-02 2019-12-17 Capital One Services, Llc Systems and methods for cryptographic authentication of contactless cards
US11361302B2 (en) 2019-01-11 2022-06-14 Capital One Services, Llc Systems and methods for touch screen interface interaction using a card overlay
US11037136B2 (en) 2019-01-24 2021-06-15 Capital One Services, Llc Tap to autofill card data
US10467622B1 (en) 2019-02-01 2019-11-05 Capital One Services, Llc Using on-demand applications to generate virtual numbers for a contactless card to securely autofill forms
US11120453B2 (en) 2019-02-01 2021-09-14 Capital One Services, Llc Tap card to securely generate card data to copy to clipboard
US10510074B1 (en) 2019-02-01 2019-12-17 Capital One Services, Llc One-tap payment using a contactless card
US10425129B1 (en) 2019-02-27 2019-09-24 Capital One Services, Llc Techniques to reduce power consumption in near field communication systems
US10523708B1 (en) 2019-03-18 2019-12-31 Capital One Services, Llc System and method for second factor authentication of customer support calls
US10535062B1 (en) 2019-03-20 2020-01-14 Capital One Services, Llc Using a contactless card to securely share personal data stored in a blockchain
US10643420B1 (en) 2019-03-20 2020-05-05 Capital One Services, Llc Contextual tapping engine
US10438437B1 (en) 2019-03-20 2019-10-08 Capital One Services, Llc Tap to copy data to clipboard via NFC
US10984416B2 (en) 2019-03-20 2021-04-20 Capital One Services, Llc NFC mobile currency transfer
US10970712B2 (en) 2019-03-21 2021-04-06 Capital One Services, Llc Delegated administration of permissions using a contactless card
US10467445B1 (en) 2019-03-28 2019-11-05 Capital One Services, Llc Devices and methods for contactless card alignment with a foldable mobile device
US11521262B2 (en) 2019-05-28 2022-12-06 Capital One Services, Llc NFC enhanced augmented reality information overlays
US10516447B1 (en) 2019-06-17 2019-12-24 Capital One Services, Llc Dynamic power levels in NFC card communications
US11392933B2 (en) 2019-07-03 2022-07-19 Capital One Services, Llc Systems and methods for providing online and hybridcard interactions
US11694187B2 (en) 2019-07-03 2023-07-04 Capital One Services, Llc Constraining transactional capabilities for contactless cards
US10871958B1 (en) 2019-07-03 2020-12-22 Capital One Services, Llc Techniques to perform applet programming
US10713649B1 (en) 2019-07-09 2020-07-14 Capital One Services, Llc System and method enabling mobile near-field communication to update display on a payment card
US10498401B1 (en) 2019-07-15 2019-12-03 Capital One Services, Llc System and method for guiding card positioning using phone sensors
US10885514B1 (en) 2019-07-15 2021-01-05 Capital One Services, Llc System and method for using image data to trigger contactless card transactions
US10733601B1 (en) 2019-07-17 2020-08-04 Capital One Services, Llc Body area network facilitated authentication or payment authorization
US10832271B1 (en) 2019-07-17 2020-11-10 Capital One Services, Llc Verified reviews using a contactless card
US11182771B2 (en) 2019-07-17 2021-11-23 Capital One Services, Llc System for value loading onto in-vehicle device
US11521213B2 (en) 2019-07-18 2022-12-06 Capital One Services, Llc Continuous authentication for digital services based on contactless card positioning
US10506426B1 (en) 2019-07-19 2019-12-10 Capital One Services, Llc Techniques for call authentication
US10541995B1 (en) 2019-07-23 2020-01-21 Capital One Services, Llc First factor contactless card authentication system and method
JP2023503795A (en) 2019-10-02 2023-02-01 キャピタル・ワン・サービシーズ・リミテッド・ライアビリティ・カンパニー Client Device Authentication Using Contactless Legacy Magnetic Stripe Data
US10862540B1 (en) 2019-12-23 2020-12-08 Capital One Services, Llc Method for mapping NFC field strength and location on mobile devices
US10885410B1 (en) 2019-12-23 2021-01-05 Capital One Services, Llc Generating barcodes utilizing cryptographic techniques
US11651361B2 (en) 2019-12-23 2023-05-16 Capital One Services, Llc Secure authentication based on passport data stored in a contactless card
US11615395B2 (en) 2019-12-23 2023-03-28 Capital One Services, Llc Authentication for third party digital wallet provisioning
US10733283B1 (en) 2019-12-23 2020-08-04 Capital One Services, Llc Secure password generation and management using NFC and contactless smart cards
US11113685B2 (en) 2019-12-23 2021-09-07 Capital One Services, Llc Card issuing with restricted virtual numbers
US10657754B1 (en) 2019-12-23 2020-05-19 Capital One Services, Llc Contactless card and personal identification system
US10853795B1 (en) 2019-12-24 2020-12-01 Capital One Services, Llc Secure authentication based on identity data stored in a contactless card
US10664941B1 (en) 2019-12-24 2020-05-26 Capital One Services, Llc Steganographic image encoding of biometric template information on a card
US11200563B2 (en) 2019-12-24 2021-12-14 Capital One Services, Llc Account registration using a contactless card
US10909544B1 (en) 2019-12-26 2021-02-02 Capital One Services, Llc Accessing and utilizing multiple loyalty point accounts
US10757574B1 (en) 2019-12-26 2020-08-25 Capital One Services, Llc Multi-factor authentication providing a credential via a contactless card for secure messaging
US11038688B1 (en) 2019-12-30 2021-06-15 Capital One Services, Llc Techniques to control applets for contactless cards
US10860914B1 (en) 2019-12-31 2020-12-08 Capital One Services, Llc Contactless card and method of assembly
US11455620B2 (en) 2019-12-31 2022-09-27 Capital One Services, Llc Tapping a contactless card to a computing device to provision a virtual number
US11210656B2 (en) 2020-04-13 2021-12-28 Capital One Services, Llc Determining specific terms for contactless card activation
US10915888B1 (en) 2020-04-30 2021-02-09 Capital One Services, Llc Contactless card with multiple rotating security keys
US10861006B1 (en) 2020-04-30 2020-12-08 Capital One Services, Llc Systems and methods for data access control using a short-range transceiver
US11222342B2 (en) 2020-04-30 2022-01-11 Capital One Services, Llc Accurate images in graphical user interfaces to enable data transfer
US11030339B1 (en) 2020-04-30 2021-06-08 Capital One Services, Llc Systems and methods for data access control of personal user data using a short-range transceiver
US11823175B2 (en) 2020-04-30 2023-11-21 Capital One Services, Llc Intelligent card unlock
US10963865B1 (en) 2020-05-12 2021-03-30 Capital One Services, Llc Augmented reality card activation experience
US11063979B1 (en) 2020-05-18 2021-07-13 Capital One Services, Llc Enabling communications between applications in a mobile operating system
US11100511B1 (en) 2020-05-18 2021-08-24 Capital One Services, Llc Application-based point of sale system in mobile operating systems
US11216623B1 (en) 2020-08-05 2022-01-04 Capital One Services, Llc Systems and methods for controlling secured data transfer via URLs
US11683325B2 (en) 2020-08-11 2023-06-20 Capital One Services, Llc Systems and methods for verified messaging via short-range transceiver
US11062098B1 (en) 2020-08-11 2021-07-13 Capital One Services, Llc Augmented reality information display and interaction via NFC based authentication
US11165586B1 (en) 2020-10-30 2021-11-02 Capital One Services, Llc Call center web-based authentication using a contactless card
US11482312B2 (en) 2020-10-30 2022-10-25 Capital One Services, Llc Secure verification of medical status using a contactless card
US11373169B2 (en) 2020-11-03 2022-06-28 Capital One Services, Llc Web-based activation of contactless cards
CN112543417B (en) * 2020-11-23 2022-03-18 支付宝(杭州)信息技术有限公司 Data feedback system and method
US11216799B1 (en) 2021-01-04 2022-01-04 Capital One Services, Llc Secure generation of one-time passcodes using a contactless card
US11682012B2 (en) 2021-01-27 2023-06-20 Capital One Services, Llc Contactless delivery systems and methods
US11687930B2 (en) 2021-01-28 2023-06-27 Capital One Services, Llc Systems and methods for authentication of access tokens
US11792001B2 (en) 2021-01-28 2023-10-17 Capital One Services, Llc Systems and methods for secure reprovisioning
US11562358B2 (en) 2021-01-28 2023-01-24 Capital One Services, Llc Systems and methods for near field contactless card communication and cryptographic authentication
US11438329B2 (en) 2021-01-29 2022-09-06 Capital One Services, Llc Systems and methods for authenticated peer-to-peer data transfer using resource locators
US11777933B2 (en) 2021-02-03 2023-10-03 Capital One Services, Llc URL-based authentication for payment cards
US11637826B2 (en) 2021-02-24 2023-04-25 Capital One Services, Llc Establishing authentication persistence
US11245438B1 (en) 2021-03-26 2022-02-08 Capital One Services, Llc Network-enabled smart apparatus and systems and methods for activating and provisioning same
US11935035B2 (en) 2021-04-20 2024-03-19 Capital One Services, Llc Techniques to utilize resource locators by a contactless card to perform a sequence of operations
US11902442B2 (en) 2021-04-22 2024-02-13 Capital One Services, Llc Secure management of accounts on display devices using a contactless card
US11354555B1 (en) 2021-05-04 2022-06-07 Capital One Services, Llc Methods, mediums, and systems for applying a display to a transaction card

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280527A (en) * 1992-04-14 1994-01-18 Kamahira Safe Co., Inc. Biometric token for authorizing access to a host system
US5771446A (en) * 1995-06-23 1998-06-23 Audiovox Corporation Anti-fraud cellular security system
US6068193A (en) * 1995-02-03 2000-05-30 Angewandte Digital Elektronik Gmbh Process for exchanging energy and data between a read/write terminal and a chip card with contactless connections and/or contact connections as well as a device for this purpose
US6338435B1 (en) * 1999-01-15 2002-01-15 Todd Carper Smart card patch manager
US20020032657A1 (en) * 2000-01-10 2002-03-14 Singh Kunwar C. Credit card duplication prevention system and method
US6466780B1 (en) * 1997-09-03 2002-10-15 Interlok Technologies, Llc Method and apparatus for securing digital communications
US20030019942A1 (en) * 2001-07-24 2003-01-30 Blossom George W. System and method for electronically readable card having power source
US6592044B1 (en) * 2000-05-15 2003-07-15 Jacob Y. Wong Anonymous electronic card for generating personal coupons useful in commercial and security transactions
US20050109841A1 (en) * 2003-11-17 2005-05-26 Ryan Dennis J. Multi-interface compact personal token apparatus and methods of use

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4354100A (en) * 1980-10-06 1982-10-12 International Business Machines Corporation Scannable readout device
DE3223034C2 (en) * 1982-06-19 1986-12-11 Mico Datensysteme GmbH, 7252 Weil der Stadt Procedure for the detection of counterfeit data carriers
US4791283A (en) * 1986-06-03 1988-12-13 Intellicard International, Inc. Transaction card magnetic stripe emulator
US4868376A (en) * 1987-05-15 1989-09-19 Smartcard International Inc. Intelligent portable interactive personal data system
US5955961A (en) * 1991-12-09 1999-09-21 Wallerstein; Robert S. Programmable transaction card
US5412192A (en) * 1993-07-20 1995-05-02 American Express Company Radio frequency activated charge card
US5623552A (en) * 1994-01-21 1997-04-22 Cardguard International, Inc. Self-authenticating identification card with fingerprint identification
US5434398A (en) * 1994-02-22 1995-07-18 Haim Labenski Magnetic smartcard
JPH0836826A (en) * 1994-07-21 1996-02-06 Tokin Corp Method for preventing forgery and alteration of magnetic card
US5834747A (en) * 1994-11-04 1998-11-10 Pixel Instruments Universal credit card apparatus and method
US6089451A (en) * 1995-02-17 2000-07-18 Krause; Arthur A. Systems for authenticating the use of transaction cards having a magnetic stripe
US5907142A (en) * 1995-12-12 1999-05-25 Kelsey; Craig E. Fraud resistant personally activated transaction card
US5834756A (en) * 1996-06-03 1998-11-10 Motorola, Inc. Magnetically communicative card
US6012636A (en) * 1997-04-22 2000-01-11 Smith; Frank E. Multiple card data system having first and second memory elements including magnetic strip and fingerprints scanning means
US7177835B1 (en) * 1997-08-28 2007-02-13 Walker Digital, Llc Method and device for generating a single-use financial account number
US6188309B1 (en) * 1998-01-07 2001-02-13 At&T Corp Method and apparatus for minimizing credit card fraud
WO2002008980A1 (en) * 2000-07-26 2002-01-31 Fujitsu Limited Electronic money transaction system
JP2002163690A (en) * 2000-11-28 2002-06-07 Canon Inc Device and method for processing card and recording medium
US20040177045A1 (en) * 2001-04-17 2004-09-09 Brown Kerry Dennis Three-legacy mode payment card with parametric authentication and data input elements

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280527A (en) * 1992-04-14 1994-01-18 Kamahira Safe Co., Inc. Biometric token for authorizing access to a host system
US6068193A (en) * 1995-02-03 2000-05-30 Angewandte Digital Elektronik Gmbh Process for exchanging energy and data between a read/write terminal and a chip card with contactless connections and/or contact connections as well as a device for this purpose
US5771446A (en) * 1995-06-23 1998-06-23 Audiovox Corporation Anti-fraud cellular security system
US6466780B1 (en) * 1997-09-03 2002-10-15 Interlok Technologies, Llc Method and apparatus for securing digital communications
US6338435B1 (en) * 1999-01-15 2002-01-15 Todd Carper Smart card patch manager
US20020032657A1 (en) * 2000-01-10 2002-03-14 Singh Kunwar C. Credit card duplication prevention system and method
US6592044B1 (en) * 2000-05-15 2003-07-15 Jacob Y. Wong Anonymous electronic card for generating personal coupons useful in commercial and security transactions
US20030019942A1 (en) * 2001-07-24 2003-01-30 Blossom George W. System and method for electronically readable card having power source
US20050109841A1 (en) * 2003-11-17 2005-05-26 Ryan Dennis J. Multi-interface compact personal token apparatus and methods of use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1977 Catalog, MicroElectronics, General Instruments Corp., Section 10C. *

Cited By (249)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10269042B2 (en) 2002-11-07 2019-04-23 Novitaz, Inc. Customer relationship management system for physical locations
US11074611B2 (en) 2002-11-07 2021-07-27 Maplebear, Inc. Customer relationship management system for physical locations
US8480002B2 (en) 2005-03-26 2013-07-09 Mark Poidomani Conducting a transaction with an electronic card
US9053399B2 (en) 2005-03-26 2015-06-09 Privasys Method for broadcasting a magnetic stripe data packet from an electronic smart card
US8286889B2 (en) 2005-03-26 2012-10-16 Privasys, Inc Electronic financial transaction cards and methods
US8302871B2 (en) 2005-03-26 2012-11-06 Privasys, Inc Method for conducting a transaction between a magnetic stripe reader and an electronic card
US8231063B2 (en) 2005-03-26 2012-07-31 Privasys Inc. Electronic card and methods for making same
US8684267B2 (en) 2005-03-26 2014-04-01 Privasys Method for broadcasting a magnetic stripe data packet from an electronic smart card
US8360332B2 (en) 2005-03-26 2013-01-29 Privasys Electronic card
US8540165B2 (en) 2005-03-26 2013-09-24 Privasys, Inc. Laminated electronic card assembly
US8500019B2 (en) 2005-03-26 2013-08-06 Mark Poidomani Electronic cards and methods for making same
US7828220B2 (en) 2005-05-09 2010-11-09 Dynamics Inc. Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card
US7954705B2 (en) 2005-05-09 2011-06-07 Dynamics Inc. Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card
US7931195B2 (en) 2005-05-09 2011-04-26 Dynamics Inc. Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card
US7793851B2 (en) 2005-05-09 2010-09-14 Dynamics Inc. Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card
US20130019102A1 (en) * 2005-07-29 2013-01-17 Research In Motion Limited System and method for encrypted smart card pin entry
US9003516B2 (en) * 2005-07-29 2015-04-07 Blackberry Limited System and method for encrypted smart card pin entry
US8881989B2 (en) 2007-12-24 2014-11-11 Dynamics Inc. Cards and devices with magnetic emulators with zoning control and advanced interiors
US8973824B2 (en) 2007-12-24 2015-03-10 Dynamics Inc. Cards and devices with magnetic emulators with zoning control and advanced interiors
US9384438B2 (en) 2007-12-24 2016-07-05 Dynamics, Inc. Cards with serial magnetic emulators
US9361569B2 (en) 2007-12-24 2016-06-07 Dynamics, Inc. Cards with serial magnetic emulators
US9639796B2 (en) 2007-12-24 2017-05-02 Dynamics Inc. Cards and devices with magnetic emulators with zoning control and advanced interiors
US9684861B2 (en) 2007-12-24 2017-06-20 Dynamics Inc. Payment cards and devices with displays, chips, RFIDs, magnetic emulators, magnetic decoders, and other components
US9697454B2 (en) 2007-12-24 2017-07-04 Dynamics Inc. Payment cards and devices with displays, chips, RFIDs, magnetic emulators, magnetic encoders, and other components
US9704088B2 (en) 2007-12-24 2017-07-11 Dynamics Inc. Cards and devices with multifunction magnetic emulators and methods for using same
US9704089B2 (en) 2007-12-24 2017-07-11 Dynamics Inc. Systems and methods for programmable payment cards and devices with loyalty-based payment applications
US9727813B2 (en) 2007-12-24 2017-08-08 Dynamics Inc. Credit, security, debit cards and the like with buttons
US20090159709A1 (en) * 2007-12-24 2009-06-25 Dynamics Inc. Advanced dynamic credit cards
US20090159682A1 (en) * 2007-12-24 2009-06-25 Dynamics Inc. Cards and devices with multi-function magnetic emulators and methods for using same
US9805297B2 (en) 2007-12-24 2017-10-31 Dynamics Inc. Systems and methods for programmable payment cards and devices with loyalty-based payment applications
US9010630B2 (en) 2007-12-24 2015-04-21 Dynamics Inc. Systems and methods for programmable payment cards and devices with loyalty-based payment applications
US10032100B2 (en) 2007-12-24 2018-07-24 Dynamics Inc. Cards and devices with multifunction magnetic emulators and methods for using same
US9004368B2 (en) 2007-12-24 2015-04-14 Dynamics Inc. Payment cards and devices with enhanced magnetic emulators
US7784687B2 (en) 2007-12-24 2010-08-31 Dynamics Inc. Payment cards and devices with displays, chips, RFIDS, magnetic emulators, magnetic decoders, and other components
US8074877B2 (en) 2007-12-24 2011-12-13 Dynamics Inc. Systems and methods for programmable payment cards and devices with loyalty-based payment applications
US8286876B2 (en) 2007-12-24 2012-10-16 Dynamics Inc. Cards and devices with magnetic emulators and magnetic reader read-head detectors
US10095974B1 (en) 2007-12-24 2018-10-09 Dynamics Inc. Payment cards and devices with displays, chips, RFIDs, magnetic emulators, magnetic encoders, and other components
US11494606B2 (en) 2007-12-24 2022-11-08 Dynamics Inc. Cards and devices with magnetic emulators with zoning control and advanced interiors
US11238329B2 (en) 2007-12-24 2022-02-01 Dynamics Inc. Payment cards and devices with gift card, global integration, and magnetic stripe reader communication functionality
US10169692B2 (en) 2007-12-24 2019-01-01 Dynamics Inc. Credit, security, debit cards and the like with buttons
US9547816B2 (en) 2007-12-24 2017-01-17 Dynamics Inc. Cards and devices with multifunction magnetic emulators and methods for using same
US8875999B2 (en) 2007-12-24 2014-11-04 Dynamics Inc. Payment cards and devices with gift card, global integration, and magnetic stripe reader communication functionality
US8302872B2 (en) 2007-12-24 2012-11-06 Dynamics Inc. Advanced dynamic credit cards
US8733638B2 (en) 2007-12-24 2014-05-27 Dynamics Inc. Payment cards and devices with displays, chips, RFIDs, magnetic emulators, magentic decoders, and other components
US8668143B2 (en) 2007-12-24 2014-03-11 Dynamics Inc. Payment cards and devices with gift card, global integration, and magnetic stripe reader communication functionality
US10198687B2 (en) 2007-12-24 2019-02-05 Dynamics Inc. Cards and devices with multifunction magnetic emulators and methods for using same
US8608083B2 (en) 2007-12-24 2013-12-17 Dynamics Inc. Cards and devices with magnetic emulators with zoning control and advanced interiors
US8020775B2 (en) 2007-12-24 2011-09-20 Dynamics Inc. Payment cards and devices with enhanced magnetic emulators
US11062195B2 (en) 2007-12-24 2021-07-13 Dynamics Inc. Cards and devices with multifunction magnetic emulators and methods for using same
US10223631B2 (en) 2007-12-24 2019-03-05 Dynamics Inc. Cards and devices with multifunction magnetic emulators and methods for using same
US10255545B2 (en) 2007-12-24 2019-04-09 Dynamics Inc. Cards and devices with multifunction magnetic emulators and methods for using same
US8011577B2 (en) 2007-12-24 2011-09-06 Dynamics Inc. Payment cards and devices with gift card, global integration, and magnetic stripe reader communication functionality
US11055600B2 (en) 2007-12-24 2021-07-06 Dynamics Inc. Cards with serial magnetic emulators
US10325199B2 (en) 2007-12-24 2019-06-18 Dynamics Inc. Payment cards and devices with displays, chips, RFIDs, magnetic emulators, magentic decoders, and other components
US11037045B2 (en) 2007-12-24 2021-06-15 Dynamics Inc. Cards and devices with magnetic emulators with zoning control and advanced interiors
US8382000B2 (en) 2007-12-24 2013-02-26 Dynamics Inc. Payment cards and devices with enhanced magnetic emulators
US10430704B2 (en) 2007-12-24 2019-10-01 Dynamics Inc. Payment cards and devices with displays, chips, RFIDs, magnetic emulators, magnetic encoders, and other components
US10467521B2 (en) 2007-12-24 2019-11-05 Dynamics Inc. Payment cards and devices with gift card, global integration, and magnetic stripe reader communication functionality
US8517276B2 (en) 2007-12-24 2013-08-27 Dynamics Inc. Cards and devices with multifunction magnetic emulators and methods for using same
US8413892B2 (en) 2007-12-24 2013-04-09 Dynamics Inc. Payment cards and devices with displays, chips, RFIDs, magnetic emulators, magnetic encoders, and other components
US8424773B2 (en) 2007-12-24 2013-04-23 Dynamics Inc. Payment cards and devices with enhanced magnetic emulators
US10496918B2 (en) 2007-12-24 2019-12-03 Dynamics Inc. Cards and devices with multifunction magnetic emulators and methods for using the same
US8459548B2 (en) 2007-12-24 2013-06-11 Dynamics Inc. Payment cards and devices with gift card, global integration, and magnetic stripe reader communication functionality
US10579920B2 (en) 2007-12-24 2020-03-03 Dynamics Inc. Systems and methods for programmable payment cards and devices with loyalty-based payment applications
US10997489B2 (en) 2007-12-24 2021-05-04 Dynamics Inc. Cards and devices with multifunction magnetic emulators and methods for using same
US8485437B2 (en) 2007-12-24 2013-07-16 Dynamics Inc. Systems and methods for programmable payment cards and devices with loyalty-based payment applications
US8579203B1 (en) 2008-12-19 2013-11-12 Dynamics Inc. Electronic magnetic recorded media emulators in magnetic card devices
US9798965B2 (en) 2009-01-07 2017-10-24 Powered Card Solutions, Llc On card display of data from secured chip
US8702007B2 (en) 2009-01-07 2014-04-22 Powered Card Solutions, Llc On card display of data from secured chip
US8931703B1 (en) 2009-03-16 2015-01-13 Dynamics Inc. Payment cards and devices for displaying barcodes
US9928456B1 (en) 2009-04-06 2018-03-27 Dynamics Inc. Cards and assemblies with user interfaces
US8172148B1 (en) 2009-04-06 2012-05-08 Dynamics Inc. Cards and assemblies with user interfaces
US9329619B1 (en) 2009-04-06 2016-05-03 Dynamics Inc. Cards with power management
US8590796B1 (en) 2009-04-06 2013-11-26 Dynamics Inc. Cards having dynamic magnetic stripe communication devices fabricated from multiple boards
US10948964B1 (en) 2009-04-06 2021-03-16 Dynamics Inc. Cards with power management
US10176419B1 (en) 2009-04-06 2019-01-08 Dynamics Inc. Cards and assemblies with user interfaces
US8622309B1 (en) 2009-04-06 2014-01-07 Dynamics Inc. Payment cards and devices with budgets, parental controls, and virtual accounts
US8282007B1 (en) 2009-04-06 2012-10-09 Dynamics Inc. Laminated cards with manual input interfaces
US8757499B2 (en) 2009-04-06 2014-06-24 Dynamics Inc. Laminated cards with manual input interfaces
US8066191B1 (en) 2009-04-06 2011-11-29 Dynamics Inc. Cards and assemblies with user interfaces
US8393545B1 (en) 2009-06-23 2013-03-12 Dynamics Inc. Cards deployed with inactivated products for activation
US11144909B1 (en) 2009-06-23 2021-10-12 Dynamics Inc. Cards deployed with inactivated products for activation
US8757483B1 (en) 2009-06-23 2014-06-24 Dynamics Inc. Cards deployed with inactivated products for activation
US9064255B1 (en) 2009-06-23 2015-06-23 Dynamics Inc. Cards deployed with inactivated products for activation
US8515815B2 (en) 2009-07-07 2013-08-20 Richard H. Chenot Management system and method for personal per-card use subaccount transaction financial management
US8265998B2 (en) 2009-07-07 2012-09-11 Chenot Richard H Systems and methods for per-transaction financial card enabled personal financial management
US20110010253A1 (en) * 2009-07-07 2011-01-13 Chenot Richard H Systems and methods for per-transaction financial card enabled personal financial management
US10671997B2 (en) 2009-07-07 2020-06-02 Richard H. Chenot Transaction processing systems and methods for per-transaction personal financial management
US8439274B2 (en) 2009-07-07 2013-05-14 Richard H Chenot Financial card with a per-transaction user definable magnetic strip portion
US20110010254A1 (en) * 2009-07-07 2011-01-13 Chenot Richard H Transaction processing systems and methods for per-transaction personal financial management
US8290868B2 (en) 2009-07-07 2012-10-16 Chenot Richard H Financial cards and methods for per-transaction personal financial management
US20110166997A1 (en) * 2009-07-09 2011-07-07 Cubic Corporation Proxy-based payment system
US8942677B2 (en) 2009-07-09 2015-01-27 Cubic Corporation Transit account management with mobile device messaging
US20110166936A1 (en) * 2009-07-09 2011-07-07 Cubic Corporation Predictive techniques in transit alerting
US10121288B2 (en) 2009-07-09 2018-11-06 Cubic Corporation Transit account management with mobile device messaging
US20110166914A1 (en) * 2009-07-09 2011-07-07 Cubic Corporation Reloadable prepaid card distribution, reload, and registration in transit
US9996985B2 (en) 2009-07-09 2018-06-12 Cubic Corporation Distribution and enablement of reloadable prepaid cards in transit
US9852368B1 (en) 2009-08-17 2017-12-26 Dynamics Inc. Advanced loyalty applications for powered cards and devices
US8511574B1 (en) 2009-08-17 2013-08-20 Dynamics Inc. Advanced loyalty applications for powered cards and devices
US11003970B1 (en) 2009-08-17 2021-05-11 Dynamics Inc. Advanced loyalty applications for powered cards and devices
US9953255B1 (en) 2009-08-17 2018-04-24 Dynamics Inc. Advanced loyalty applications for powered cards and devices
US8991699B2 (en) 2009-09-08 2015-03-31 Cubic Corporation Association of contactless payment card primary account number
US9306666B1 (en) 2009-10-08 2016-04-05 Dynamics Inc. Programming protocols for powered cards and devices
US8727219B1 (en) 2009-10-12 2014-05-20 Dynamics Inc. Magnetic stripe track signal having multiple communications channels
US10181097B1 (en) 2009-10-20 2019-01-15 Dynamics Inc. Advanced payment options for powered cards and devices
US8814050B1 (en) 2009-10-20 2014-08-26 Dynamics Inc. Advanced payment options for powered cards and devices
US9292843B1 (en) 2009-10-20 2016-03-22 Dynamics Inc. Advanced payment options for powered cards and devices
US8523059B1 (en) 2009-10-20 2013-09-03 Dynamics Inc. Advanced payment options for powered cards and devices
US9652436B1 (en) 2009-10-25 2017-05-16 Dynamics Inc. Games, prizes, and entertainment for powered cards and devices
US8393546B1 (en) 2009-10-25 2013-03-12 Dynamics Inc. Games, prizes, and entertainment for powered cards and devices
US9875437B2 (en) 2010-02-16 2018-01-23 Dynamics Inc. Systems and methods for drive circuits for dynamic magnetic stripe communications devices
US8602312B2 (en) 2010-02-16 2013-12-10 Dynamics Inc. Systems and methods for drive circuits for dynamic magnetic stripe communications devices
US9373069B2 (en) 2010-02-16 2016-06-21 Dynamics Inc. Systems and methods for drive circuits for dynamic magnetic stripe communications devices
US8573503B1 (en) 2010-03-02 2013-11-05 Dynamics Inc. Systems and methods for detection mechanisms for magnetic cards and devices
US8746579B1 (en) 2010-03-02 2014-06-10 Dynamics Inc. Systems and methods for detection mechanisms for magnetic cards and devices
US10482363B1 (en) 2010-03-02 2019-11-19 Dynamics Inc. Systems and methods for detection mechanisms for magnetic cards and devices
US8348172B1 (en) 2010-03-02 2013-01-08 Dynamics Inc. Systems and methods for detection mechanisms for magnetic cards and devices
US10693263B1 (en) 2010-03-16 2020-06-23 Dynamics Inc. Systems and methods for audio connectors for powered cards and devices
US10504105B2 (en) 2010-05-18 2019-12-10 Dynamics Inc. Systems and methods for cards and devices operable to communicate to touch sensitive displays
US11120427B2 (en) 2010-05-18 2021-09-14 Dynamics Inc. Systems and methods for cards and devices operable to communicate via light pulsing
US8226001B1 (en) 2010-06-23 2012-07-24 Fiteq, Inc. Method for broadcasting a magnetic stripe data packet from an electronic smart card
US8317103B1 (en) 2010-06-23 2012-11-27 FiTeq Method for broadcasting a magnetic stripe data packet from an electronic smart card
USD687094S1 (en) 2010-07-02 2013-07-30 Dynamics Inc. Multiple button interactive electronic card with light sources
USD652867S1 (en) 2010-07-02 2012-01-24 Dynamics Inc. Multiple button interactive electronic card
USD652075S1 (en) 2010-07-02 2012-01-10 Dynamics Inc. Multiple button interactive electronic card
USD674013S1 (en) 2010-07-02 2013-01-08 Dynamics Inc. Multiple button interactive electronic card with light sources
USD672389S1 (en) 2010-07-02 2012-12-11 Dynamics Inc. Multiple button interactive electronic card with light sources
USD670759S1 (en) 2010-07-02 2012-11-13 Dynamics Inc. Multiple button interactive electronic card with light sources
USD652448S1 (en) 2010-07-02 2012-01-17 Dynamics Inc. Multiple button interactive electronic card
USD652449S1 (en) 2010-07-02 2012-01-17 Dynamics Inc. Multiple button interactive electronic card
USD665022S1 (en) 2010-07-09 2012-08-07 Dynamics Inc. Multiple button interactive electronic card with light source
USD792513S1 (en) 2010-07-09 2017-07-18 Dynamics Inc. Display with font
USD792512S1 (en) 2010-07-09 2017-07-18 Dynamics Inc. Display with font
USD652450S1 (en) 2010-07-09 2012-01-17 Dynamics Inc. Multiple button interactive electronic card
USD651237S1 (en) 2010-07-09 2011-12-27 Dynamics Inc. Interactive electronic card with display
USD643063S1 (en) 2010-07-09 2011-08-09 Dynamics Inc. Interactive electronic card with display
USD792511S1 (en) 2010-07-09 2017-07-18 Dynamics Inc. Display with font
USD653288S1 (en) 2010-07-09 2012-01-31 Dynamics Inc. Multiple button interactive electronic card
USD652076S1 (en) 2010-07-09 2012-01-10 Dynamics Inc. Multiple button interactive electronic card with display
USD651238S1 (en) 2010-07-09 2011-12-27 Dynamics Inc. Interactive electronic card with display
USD665447S1 (en) 2010-07-09 2012-08-14 Dynamics Inc. Multiple button interactive electronic card with light source and display
USD651644S1 (en) 2010-07-09 2012-01-03 Dynamics Inc. Interactive electronic card with display
US8322623B1 (en) 2010-07-26 2012-12-04 Dynamics Inc. Systems and methods for advanced card printing
US9053398B1 (en) * 2010-08-12 2015-06-09 Dynamics Inc. Passive detection mechanisms for magnetic cards and devices
US10055614B1 (en) 2010-08-12 2018-08-21 Dynamics Inc. Systems and methods for advanced detection mechanisms for magnetic cards and devices
US10022884B1 (en) 2010-10-15 2018-07-17 Dynamics Inc. Systems and methods for alignment techniques for magnetic cards and devices
US8561894B1 (en) 2010-10-20 2013-10-22 Dynamics Inc. Powered cards and devices designed, programmed, and deployed from a kiosk
US8856024B2 (en) 2010-10-26 2014-10-07 Cubic Corporation Determining companion and joint cards in transit
US9646240B1 (en) 2010-11-05 2017-05-09 Dynamics Inc. Locking features for powered cards and devices
US20120312879A1 (en) * 2011-01-06 2012-12-13 John Rolin PCB Design and Card Assembly for an Active RFID Tag in Credit Card Form Factor
US11182661B2 (en) 2011-01-06 2021-11-23 Maplebear Inc. Reader network system for presence management in a physical retail environment
US8567679B1 (en) 2011-01-23 2013-10-29 Dynamics Inc. Cards and devices with embedded holograms
US8944333B1 (en) 2011-01-23 2015-02-03 Dynamics Inc. Cards and devices with embedded holograms
US10176423B1 (en) 2011-01-23 2019-01-08 Dynamics Inc. Cards and devices with embedded holograms
US9721201B1 (en) 2011-01-23 2017-08-01 Dynamics Inc. Cards and devices with embedded holograms
US10095970B1 (en) 2011-01-31 2018-10-09 Dynamics Inc. Cards including anti-skimming devices
US9818125B2 (en) 2011-02-16 2017-11-14 Dynamics Inc. Systems and methods for information exchange mechanisms for powered cards and devices
US10990867B1 (en) 2011-03-03 2021-04-27 Dynamics Inc. Systems and methods for advanced communication mechanisms for magnetic cards and devices
US9836680B1 (en) 2011-03-03 2017-12-05 Dynamics Inc. Systems and methods for advanced communication mechanisms for magnetic cards and devices
US8485446B1 (en) 2011-03-28 2013-07-16 Dynamics Inc. Shielded magnetic stripe for magnetic cards and devices
US11080693B2 (en) 2011-04-05 2021-08-03 Visa Europe Limited Payment system
US11694199B2 (en) 2011-04-05 2023-07-04 Visa Europe Limited Payment system
US11100431B2 (en) 2011-05-10 2021-08-24 Dynamics Inc. Systems and methods for mobile authorizations
US11501217B2 (en) 2011-05-10 2022-11-15 Dynamics Inc. Systems and methods for a mobile electronic wallet
USD676904S1 (en) 2011-05-12 2013-02-26 Dynamics Inc. Interactive display card
USD670329S1 (en) 2011-05-12 2012-11-06 Dynamics Inc. Interactive display card
USD670330S1 (en) 2011-05-12 2012-11-06 Dynamics Inc. Interactive card
USD670332S1 (en) 2011-05-12 2012-11-06 Dynamics Inc. Interactive card
USD670331S1 (en) 2011-05-12 2012-11-06 Dynamics Inc. Interactive display card
US8628022B1 (en) 2011-05-23 2014-01-14 Dynamics Inc. Systems and methods for sensor mechanisms for magnetic cards and devices
US9349089B1 (en) 2011-05-23 2016-05-24 Dynamics Inc. Systems and methods for sensor mechanisms for magnetic cards and devices
US10936926B1 (en) 2011-05-23 2021-03-02 Dynamics Inc. Systems and methods for sensor mechanisms for magnetic cards and devices
US9881245B1 (en) 2011-05-23 2018-01-30 Dynamics Inc. Systems and methods for sensor mechanisms for magnetic cards and devices
US8827153B1 (en) 2011-07-18 2014-09-09 Dynamics Inc. Systems and methods for waveform generation for dynamic magnetic stripe communications devices
US11551046B1 (en) 2011-10-19 2023-01-10 Dynamics Inc. Stacked dynamic magnetic stripe commmunications device for magnetic cards and devices
US11409971B1 (en) 2011-10-23 2022-08-09 Dynamics Inc. Programming and test modes for powered cards and devices
US10169693B1 (en) 2011-11-21 2019-01-01 Dynamics Inc. Data modification for magnetic cards and devices
US8960545B1 (en) 2011-11-21 2015-02-24 Dynamics Inc. Data modification for magnetic cards and devices
US9619741B1 (en) 2011-11-21 2017-04-11 Dynamics Inc. Systems and methods for synchronization mechanisms for magnetic cards and devices
US11941469B1 (en) 2011-11-21 2024-03-26 Dynamics Inc. Systems and methods for synchronization mechanisms for magnetic cards and devices
US10062024B1 (en) 2012-02-03 2018-08-28 Dynamics Inc. Systems and methods for spike suppression for dynamic magnetic stripe communications devices
US9710745B1 (en) 2012-02-09 2017-07-18 Dynamics Inc. Systems and methods for automated assembly of dynamic magnetic stripe communications devices
US8888009B1 (en) 2012-02-14 2014-11-18 Dynamics Inc. Systems and methods for extended stripe mechanisms for magnetic cards and devices
US9916992B2 (en) 2012-02-20 2018-03-13 Dynamics Inc. Systems and methods for flexible components for powered cards and devices
CN103297392A (en) * 2012-02-27 2013-09-11 深圳市嘉乐祥珠宝饰品有限公司 Fingerprint identity authentication system and authentication method
US9734669B1 (en) 2012-04-02 2017-08-15 Dynamics Inc. Cards, devices, systems, and methods for advanced payment game of skill and game of chance functionality
US11418483B1 (en) 2012-04-19 2022-08-16 Dynamics Inc. Cards, devices, systems, and methods for zone-based network management
US10395156B1 (en) 2012-05-15 2019-08-27 Dynamics Inc. Cards, devices, systems, methods and dynamic security codes
US9033218B1 (en) 2012-05-15 2015-05-19 Dynamics Inc. Cards, devices, systems, methods and dynamic security codes
US9064195B2 (en) 2012-06-29 2015-06-23 Dynamics Inc. Multiple layer card circuit boards
USD695636S1 (en) 2012-08-27 2013-12-17 Dynamics Inc. Interactive electronic card with display and buttons
USD676487S1 (en) 2012-08-27 2013-02-19 Dynamics Inc. Interactive electronic card with display and buttons
USD828870S1 (en) 2012-08-27 2018-09-18 Dynamics Inc. Display card
USD730438S1 (en) 2012-08-27 2015-05-26 Dynamics Inc. Interactive electronic card with display and button
USD687095S1 (en) 2012-08-27 2013-07-30 Dynamics Inc. Interactive electronic card with buttons
USD729870S1 (en) 2012-08-27 2015-05-19 Dynamics Inc. Interactive electronic card with display and button
USD694322S1 (en) 2012-08-27 2013-11-26 Dynamics Inc. Interactive electronic card with display buttons
USD687490S1 (en) 2012-08-27 2013-08-06 Dynamics Inc. Interactive electronic card with display and button
USD687487S1 (en) 2012-08-27 2013-08-06 Dynamics Inc. Interactive electronic card with display and button
USD692053S1 (en) 2012-08-27 2013-10-22 Dynamics Inc. Interactive electronic card with display and button
USD730439S1 (en) 2012-08-27 2015-05-26 Dynamics Inc. Interactive electronic card with buttons
USD729871S1 (en) 2012-08-27 2015-05-19 Dynamics Inc. Interactive electronic card with display and buttons
USD729869S1 (en) 2012-08-27 2015-05-19 Dynamics Inc. Interactive electronic card with display and button
USD688744S1 (en) 2012-08-27 2013-08-27 Dynamics Inc. Interactive electronic card with display and button
USD687887S1 (en) 2012-08-27 2013-08-13 Dynamics Inc. Interactive electronic card with buttons
USD687489S1 (en) 2012-08-27 2013-08-06 Dynamics Inc. Interactive electronic card with buttons
USD673606S1 (en) 2012-08-27 2013-01-01 Dynamics Inc. Interactive electronic card with display and buttons
USD687488S1 (en) 2012-08-27 2013-08-06 Dynamics Inc. Interactive electronic card with buttons
USD675256S1 (en) 2012-08-27 2013-01-29 Dynamics Inc. Interactive electronic card with display and button
US11126997B1 (en) 2012-10-02 2021-09-21 Dynamics Inc. Cards, devices, systems, and methods for a fulfillment system
US9010647B2 (en) 2012-10-29 2015-04-21 Dynamics Inc. Multiple sensor detector systems and detection methods of magnetic cards and devices
US10922597B1 (en) 2012-11-05 2021-02-16 Dynamics Inc. Dynamic magnetic stripe communications device with beveled magnetic material for magnetic cards and devices
US9659246B1 (en) 2012-11-05 2017-05-23 Dynamics Inc. Dynamic magnetic stripe communications device with beveled magnetic material for magnetic cards and devices
US10311349B1 (en) 2012-11-30 2019-06-04 Dynamics Inc. Dynamic magnetic stripe communications device with stepped magnetic material for magnetic cards and devices
US11023796B1 (en) 2012-11-30 2021-06-01 Dynamics Inc. Dynamic magnetic stripe communications device with stepped magnetic material for magnetic cards and devices
US9010644B1 (en) 2012-11-30 2015-04-21 Dynamics Inc. Dynamic magnetic stripe communications device with stepped magnetic material for magnetic cards and devices
US9646750B1 (en) 2012-11-30 2017-05-09 Dynamics Inc. Dynamic magnetic stripe communications device with stepped magnetic material for magnetic cards and devices
US10949627B2 (en) 2012-12-20 2021-03-16 Dynamics Inc. Systems and methods for non-time smearing detection mechanisms for magnetic cards and devices
USD751640S1 (en) 2013-03-04 2016-03-15 Dynamics Inc. Interactive electronic card with display and button
USD750168S1 (en) 2013-03-04 2016-02-23 Dynamics Inc. Interactive electronic card with display and button
USD765174S1 (en) 2013-03-04 2016-08-30 Dynamics Inc. Interactive electronic card with button
USD764584S1 (en) 2013-03-04 2016-08-23 Dynamics Inc. Interactive electronic card with buttons
USD777252S1 (en) 2013-03-04 2017-01-24 Dynamics Inc. Interactive electronic card with buttons
USD751639S1 (en) 2013-03-04 2016-03-15 Dynamics Inc. Interactive electronic card with display and button
USD765173S1 (en) 2013-03-04 2016-08-30 Dynamics Inc. Interactive electronic card with display and button
USD750167S1 (en) 2013-03-04 2016-02-23 Dynamics Inc. Interactive electronic card with buttons
USD750166S1 (en) 2013-03-04 2016-02-23 Dynamics Inc. Interactive electronic card with display and buttons
US11961147B1 (en) 2013-04-12 2024-04-16 K. Shane Cupp Cards, devices, systems, and methods for financial management services
USD767024S1 (en) 2013-09-10 2016-09-20 Dynamics Inc. Interactive electronic card with contact connector
USD737373S1 (en) 2013-09-10 2015-08-25 Dynamics Inc. Interactive electronic card with contact connector
WO2015085137A1 (en) * 2013-12-06 2015-06-11 Mastercard International Incorporated Method and system for split-hashed payment account processing
US11164176B2 (en) 2013-12-19 2021-11-02 Visa International Service Association Limited-use keys and cryptograms
US10664824B2 (en) 2013-12-19 2020-05-26 Visa International Service Association Cloud-based transactions methods and systems
US11875344B2 (en) 2013-12-19 2024-01-16 Visa International Service Association Cloud-based transactions with magnetic secure transmission
US10909522B2 (en) 2013-12-19 2021-02-02 Visa International Service Association Cloud-based transactions methods and systems
US11017386B2 (en) * 2013-12-19 2021-05-25 Visa International Service Association Cloud-based transactions with magnetic secure transmission
US20180189783A1 (en) * 2013-12-19 2018-07-05 Christian Flurscheim Cloud-based transactions with magnetic secure transmission
US11062188B1 (en) 2014-03-21 2021-07-13 Dynamics Inc Exchange coupled amorphous ribbons for electronic stripes
US10108891B1 (en) 2014-03-21 2018-10-23 Dynamics Inc. Exchange coupled amorphous ribbons for electronic stripes
US11842350B2 (en) 2014-05-21 2023-12-12 Visa International Service Association Offline authentication
US11036873B2 (en) 2014-08-22 2021-06-15 Visa International Service Association Embedding cloud-based functionalities in a communication device
US11783061B2 (en) 2014-08-22 2023-10-10 Visa International Service Association Embedding cloud-based functionalities in a communication device
TWI503693B (en) * 2014-09-04 2015-10-11 Joe Chi Chen Full dynamic digital electronic transactions identification method
WO2017024011A1 (en) * 2015-08-03 2017-02-09 Capital One Services, Llc Systems and methods for item-based transaction authentication
US10032049B2 (en) 2016-02-23 2018-07-24 Dynamics Inc. Magnetic cards and devices for motorized readers
US20190392277A1 (en) * 2018-06-21 2019-12-26 Mastercard International Incorporated Payment transaction methods and systems enabling verification of payment amount by payment card
US11568194B2 (en) * 2018-06-21 2023-01-31 Mastercard International Incorporated Payment transaction methods and systems enabling verification of payment amount by payment card
US11455634B2 (en) 2018-06-21 2022-09-27 Mastercard International Incorporated Payment transaction methods and systems enabling verification of payment amount by fingerprint of customer
US10643116B1 (en) 2018-11-16 2020-05-05 Graph-Tech-Usa, Llc System and method for contactless encoding and printing of a triple interface smart card through near-field network

Also Published As

Publication number Publication date
EP1714237A4 (en) 2009-02-11
WO2005059691A3 (en) 2005-12-29
US20050133606A1 (en) 2005-06-23
US20060192006A1 (en) 2006-08-31
US7044394B2 (en) 2006-05-16
US7246752B2 (en) 2007-07-24
EP1714237A2 (en) 2006-10-25
WO2005059691A2 (en) 2005-06-30

Similar Documents

Publication Publication Date Title
US20090255996A1 (en) Three-legacy mode payment card with parametric authentication and data input elements
US20040177045A1 (en) Three-legacy mode payment card with parametric authentication and data input elements
US20220270077A1 (en) Multi-function electronic payment card and device system
US6607127B2 (en) Magnetic stripe bridge
US7472829B2 (en) Payment card with internally generated virtual account numbers for its magnetic stripe encoder and user display
US7631804B2 (en) Payment card financial validation processing center
US6811082B2 (en) Advanced magnetic stripe bridge (AMSB)
US7584153B2 (en) Financial transactions with dynamic card verification values
US7580898B2 (en) Financial transactions with dynamic personal account numbers
US8712892B2 (en) Verification of a portable consumer device in an offline environment
US9704089B2 (en) Systems and methods for programmable payment cards and devices with loyalty-based payment applications
US6592044B1 (en) Anonymous electronic card for generating personal coupons useful in commercial and security transactions
US7543739B2 (en) Automated payment card fraud detection and location
US20060287964A1 (en) Contact/contactless and magnetic-stripe data collaboration in a payment card
US20080201264A1 (en) Payment card financial transaction authenticator
US20090006262A1 (en) Financial transaction payment processor
US20070241183A1 (en) Pin-secured dynamic magnetic stripe payment card
US20080222047A1 (en) Device and Method for Conducting Secure Economic Transactions with a Programmable Magnetic Stripe
US20110240745A1 (en) Magnetic emissive use of preloaded secret-key encrypted use-once payment card account numbers
EP2089834B1 (en) Card with variable magnetic stripe
US20080126262A1 (en) System and Method for Secure Transactions
JP2001266088A (en) Card and its forger-preventing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: QSECURE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHATELAIN, DANIEL, MR.;REEL/FRAME:027381/0754

Effective date: 20111212

Owner name: QSECURE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROWN, KERRY D, MR.;REEL/FRAME:027386/0037

Effective date: 20111212

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: COIN, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QSECURE, INC.;REEL/FRAME:032609/0559

Effective date: 20140326

AS Assignment

Owner name: FITBIT, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COIN, INC.;REEL/FRAME:041126/0364

Effective date: 20170130