US20090286080A1 - Method of manufacturing line of autohesion thread - Google Patents

Method of manufacturing line of autohesion thread Download PDF

Info

Publication number
US20090286080A1
US20090286080A1 US12/511,410 US51141009A US2009286080A1 US 20090286080 A1 US20090286080 A1 US 20090286080A1 US 51141009 A US51141009 A US 51141009A US 2009286080 A1 US2009286080 A1 US 2009286080A1
Authority
US
United States
Prior art keywords
thread
line
filaments
filament
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/511,410
Inventor
Shigeru Nakanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/511,410 priority Critical patent/US20090286080A1/en
Publication of US20090286080A1 publication Critical patent/US20090286080A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K91/00Lines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K75/00Accessories for fishing nets; Details of fishing nets, e.g. structure
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/444Yarns or threads for use in sports applications
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/228Stretching in two or more steps, with or without intermediate steps
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]

Definitions

  • the present invention relates to a method of manufacturing a line of autohesion thread in which adjacent filaments are substantially fused together.
  • Fishing lines for leisure and fishery, materials for fisheries such as a longline of tuna fishery, and threads to be employed for rope, gut or kite string are roughly divided mainly into monofilament yarn and braided yarn such that plural monofilaments are braided.
  • Monofilament yarn has low frictional resistance in rubbing against other matters because it has a smoother surface than braided yarn. For example, when using monofilament yarn as a fishing line, the frictional resistance caused by the rubbing of the fishing line and the guide in throwing in the fishing line is so low that bait can be thrown exactly to a long distance. Monofilament yarn is also superior in drainability because it holds no water inside. In addition, braided yarn is cut with difficulty, and when the yarn is cut, the yarn in the cut portion is split and the cut portion becomes feathery, so that the handling is difficult. Monofilament yarn also has an advantage in that it has no such problem.
  • braided yarn can be made into a line of thread having a thickness appropriate for uses as described above, irrespective of the kind of resin as a raw material, by reason of employing plural monofilaments or a multifilament.
  • braided yarn has such an advantage that it is possible to combine plural kinds of filaments. As a result, an effect such as adjustment of desired specific gravity, which is not obtained in a single filament, can be attained. In monofilament yarn, it is naturally impossible to combine plural kinds of filaments.
  • JP-A-9-98698 reports a method of manufacturing a fishing line in such a manner that plural filaments of polyolefin are braided or twisted, and thereafter exposed to a temperature in the melting range of polyolefin while drawn at a draw ratio of 1.0 or more to thereby fuse adjacent filaments.
  • the inventors of the present invention have found out that it is practically difficult to substantially fuse adjacent filaments in the above-mentioned fishing line by such a method. Accordingly, the application of physical force by use to the fishing line thus manufactured disjoints the bond of fiber by reason of not being actually substantially fused, so that it is incapable of achieving the original object of making a pseudo monofilament by fusing.
  • the problem is that the application of physical force by use causes the fishing line to have no differences with ordinary braided yarn. Further, the inventors of the present invention have found a defect such that heat treatment in such a method decreases the strength of the fishing line, which thus cannot but be drawn in order to compensate for the decreased strength. Consequently, the drawing compensates for the strength, while the fishing line becomes greatly thinner to the extent of the thickness of approximately 60% or less compared to the thickness of the fishing line before the treatment, thereby deteriorating wear resistance.
  • the present invention is intended to provide a method of manufacturing a line of fusion thread having the advantages of both monofilament yarn and braided yarn, such that a smooth surface is offered, the cutting thereof is easy, the filaments composed of the line of thread are not frayed in cutting, and the drainability and durability are superior, such that the application of physical force by use does not disjoint the bond of fiber. Further, more than one kind of filament can be combined.
  • the inventors of the present invention have unexpectedly found that plural filaments comprising a thermoplastic resin, which are paralleled, twisted and/or braided if desired, and subsequently drawn under heat at a draw ratio of less than 1.0, thereby substantially fuse the adjacent filaments completely without a fusing medium.
  • the inventors of the present invention have found that drawing under heat at a draw ratio of less than 1.0 allows a line of fusion thread obtained by hot drawing treatment to become thicker as compared with the line before the treatment, thus solving the above-mentioned problems in the publicly known art.
  • a line of fusion thread of the present invention has a smooth surface and is also superior in drainability because it holds no water inside.
  • the above-mentioned line of thread is easily cut and component filaments are not frayed by cutting or by long-term use.
  • a resin composed of a filament is not limited to a single kind while having the advantage of monofilament yarn, and a combination of filaments of two different kinds or more may possess the characteristics of each of the filaments.
  • the most preferable resin to be used is a high strength filament such as an ultra high molecular weight polyethylene filament.
  • the present invention relates to:
  • thermoplastic resin is a polyamide resin, a polyester resin, a fluororesin or a polyolefin resin
  • filaments composing the line of thread are fused together.
  • a line of autohesion thread while composed of plural filaments of the present invention has a smoother surface than a conventional line of thread comprising braided yarn. Therefore, frictional resistance in rubbing against other matters is decreased to improve durability.
  • a line of autohesion thread of the present invention when used as a fishing line, frictional resistance between a fishing line and a guide is so low that bait can be thrown exactly to a long distance.
  • reeling operation is so easily performed as to scarcely twine and tangle.
  • a line of autohesion thread of the present invention scarcely holds water therein and is superior in drainability because adjacent filaments are substantially fused completely.
  • a line of autohesion thread of the present invention can appropriately be used as fishing lines for leisure and fishery, and materials for fisheries.
  • a line of autohesion thread of the present invention is easily cut and component filaments are not frayed after being cut, that is, a cut portion does not become feathery, whereby the handling in tying thread is favorable.
  • an effect which is not obtained in a single filament such as adjustment of optional specific gravity, can be fulfilled by using plural kinds of filaments and inserting a core string into the center of a line of thread.
  • the initial strength can be maintained even though single yarn denier is not thinned, so that a line of thread superior in wear resistance can be manufactured.
  • the present invention relates to a method of manufacturing a line of autohesion thread, wherein plural filaments comprising a thermoplastic resin are paralleled, twisted and/or braided if desired, and subsequently drawn under heat at a draw ratio of less than 1.0 to thereby substantially completely fuse the adjacent filaments to be subsequently drawn under heat at a draw ratio of more than 1.0.
  • the present invention is characterized in that, for example, (a) plural filaments of thermoplastic resin are paralleled, (b) plural filaments of thermoplastic resin are paralleled and further twisted, (c) plural filaments of thermoplastic resin are paralleled and braided, or (d) plural filaments of thermoplastic resin are paralleled, twisted and subsequently braided, and thereafter subjected to drawing under heat at a draw ratio of less than 1.0 and further drawing under heat at a draw ratio of more than 1.0.
  • a filament comprising a thermoplastic resin to be employed in a manufacturing method of the present invention is hereinafter described.
  • thermoplastic resin to be employed in a manufacturing method of the present invention examples include polyamide resins, polyester resins, fluororesins and polyolefin resins.
  • polyamide resin examples include aliphatic polyamides such as nylon 6, nylon 66, nylon 12 and nylon 6, 10, and a copolymer thereof, or semi-aromatic polyamides formed by aromatic diamine and dicarboxylic acid, or a copolymer thereof.
  • polyester resin examples include polyesters or a copolymer thereof polycondensed from aromatic dicarboxylic acids (e.g. terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, phthalic acid, ⁇ , ⁇ -(4-carboxyphenyl)ethane, 4,4′-dicarboxyphenyl, 5-sodium sulfoisophthalic acid, etc.), aliphatic dicarboxylic acids (e.g. adipic acid, sebacic acid, etc.), or esters thereof, and diol compounds (e.g. ethylene glycol, diethylene glycol, 1,4-butanediol, polyethylene glycol, tetramethylene glycol, etc.).
  • aromatic dicarboxylic acids e.g. terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, phthalic acid, ⁇ , ⁇ -(4-
  • fluororesin are polyvinylidene fluoride, polytetrafluoroethylene, polymonochlorotrifluoroethylene or polyhexafluoropropylene, or a copolymer thereof.
  • polyolefin resin examples include polyethylene or polypropylene.
  • a filament comprising a thermoplastic resin to be employed in the present invention is preferably a high-strength filament having a tensile strength of approximately 20 g/d or more, preferably approximately 25 to 50 g/d, more preferably approximately 30 to 40 g/d.
  • tensile strength can easily be measured, for example, in a manner according to JIS L 1013 “Testing methods for man-made filament yarns” by a tensile tester such as the universal tester AUTOGRAPH AG-100kN1 (trade name, manufactured by Shimadzu Corporation).
  • the filament comprising a thermoplastic resin is preferably a high-strength filament.
  • high-strength filament examples include an ultra high molecular weight polyethylene filament, a fully aromatic polyamide filament, a heterocyclic high-performance filament, and a fully aromatic polyester filament.
  • an ultra high molecular weight polyethylene filament comprising a flexible polymer is preferable.
  • ultra high molecular weight polyethylene filament signifies a filament comprising ultra high molecular weight polyethylene.
  • ultra high molecular weight polyethylene has a molecular weight of approximately 200,000 or more, preferably approximately 600,000 or more, and includes a homopolymer of ethylene and also a copolymer of ethylene and lower ⁇ -olefins of about 3 to 10 carbon atoms such as propylene, butene, pentene and hexene.
  • a copolymer of ethylene and ⁇ -olefin preferred is a copolymer where in the proportion of the ⁇ -olefin is approximately 0.1 to 20 on average, preferably approximately 0.5 to 10 on average with respect to 1000 carbon atoms in the polyethylene chain.
  • a method of manufacturing the ultra high molecular weight polyethylene filament is disclosed, for example, in JP-A-55-5228 and JP-A-55-107506, and these publicly known methods may be employed.
  • Commercial products such as DYNEEMA (registered trademark) (tradename, manufactured by Toyobo. Co., Ltd.) and SPECTRA (trade name, manufactured by Honeywell International Inc.) may be used as the ultra high molecular weight polyethylene filament.
  • a filament as a raw material for a line of autohesion thread of the present invention may take any of the following forms: a multifilament made of plural filaments, a monofilament made of one filament and a monomultifilament such that a plurality of the above-mentioned monofilaments are doubled.
  • a line of autohesion thread of the present invention may be composed of a form of only one filament or a mixed form of plural filaments among a multifilament, a monofilament and a monomultifilament.
  • a filament to be used in the present invention may be a filament such that a cross section thereof is perfectly circular or flat.
  • a filament to be used in the present invention may have a hollow structure.
  • a filament to be used in the present invention may contain various publicly known additives within a range of not deteriorating the object of the invention.
  • additives include a pigment, a coloring matter, a stabilizer, a plasticizer or a lubricant to be detailed below, which may be used in a combination of two or more additives.
  • the additives also include a magnetic material, a conductive material and a material having a high dielectric constant.
  • Specific examples of the above-mentioned materials include calcium carbonate, barium carbonate, magnesium carbonate, clay, talc, mica, feldspar, bentonite, aluminum oxide, magnesium oxide, titanium dioxide, silica and gypsum. These materials may be coated with stearic acid, acrylic acid or the like.
  • a multi-, a mono- or a monomulti-filament to be used in the present invention may be colored with a solution or dispersion containing a coloring matter or a pigment.
  • a filament to be used in the present invention may contain metallic particles in order to adjust specific gravity and sedimentation velocity.
  • a raw material composing metallic particles include iron, copper, zinc, tin, nickel or tungsten, which may be used singly, or in a mixture or an alloy of two or more of metallic raw materials.
  • tungsten particles are preferably used. The reason therefore is that tungsten is so high in its specific gravity as to easily allow weight to a line of thread, and therefore addition in a small quantity thereof increases specific gravity while minimizing decreases in strength.
  • These metallic particles can be applied to the present invention irrespective of the form of powder or granules.
  • the average particle diameter thereof is appropriately approximately 20 ⁇ m or less, preferably approximately 10 ⁇ m or less.
  • the added quantity of metallic particles is preferably approximately 1 to 90 parts by weight, more preferably approximately 5 to 70 parts by weight with respect to 100 parts by weight of the resin.
  • Thermoplastic resin containing a metal is produced by melt-kneading metallic particles, for example, with the use of a uniaxial or biaxial kneader, and a filament containing the above-mentioned metallic particles can be manufactured from the resin by using a widely performed melt spinning method.
  • a filament comprising one kind of thermoplastic resin may be used, or a combination of filaments comprising plural kinds of thermoplastic resins may be used.
  • Preferable examples of an embodiment include a line of autohesion thread made of only a filament comprising one kind of thermoplastic resin.
  • a combination of filaments comprising thermoplastic resins having melting ranges close to each other is preferably used; more specifically, a combination of DYNEEMA (registered trademark) and a filament comprising polyethylene or polypropylene is preferably used.
  • the above-mentioned plural filaments comprising a thermoplastic resin are paralleled, and twisted and/or braided if desired.
  • the filaments may be paralleled so as to center a core string and surround it if desired.
  • a method of twisting plural filaments is not particularly limited, and twisting can be performed by using publicly known twisters such as a ring twister, a double twister or an Italian twister.
  • the degree of twisting in the present process is not particularly limited, and twisting is preferably performed so that twist constant K is approximately 0.2 to 1.5, more preferably approximately 0.3 to 1.2, further more preferably approximately 0.4 to 0.8.
  • a method of braiding plural filaments is not particularly limited, and braiding is ordinarily performed by using a braider (a braiding machine). For example, four filaments are prepared, and then a right-hand or left-hand filament are alternately placed in the middle and braided up.
  • the number of filaments to be used for braiding is not limited to four, but occasionally eight, twelve or sixteen. Filaments to be used for braiding may previously be twisted.
  • a core string as described above is centered, around which plural filaments can be braided.
  • the obtained paralleled yarn, twisted yarn or braided yarn is drawn under heat at a draw ratio of less than approximately 1.0.
  • a method of drawing treatment can adopt a publicly known method such as drawing while heating in the air. Drawing may be performed in one stage or two stages or more.
  • the temperature in drawing can not unconditionally be determined, since it varies depending on the kind or diameter of a filament, or draw speed, for example, it is ordinarily a temperature of the melting point of a filament—approximately 10° C. or more.
  • the upper limit of temperature in drawing is not particularly limited. More specifically, in the case where a filament is an ultra high molecular weight polyethylene filament, the temperature in drawing is approximately 150° C. or more (preferably approximately 150 to 170° C.).
  • the process of drawing is characterized by being performed at a draw ratio of less than approximately 1.0. This process allows plural filaments to be substantially fused together. Relaxation of a line of thread under heating in this manner allows adjacent filaments to be substantially fused together without a fusing medium.
  • adjacent filaments are substantially fused means that component filaments are not disentangled and frayed even though a line of autohesion thread manufactured in the present invention is cut in an optional place and then a cut portion is rubbed by hand.
  • a fusing medium means a substance for promoting or assisting fusion, for example, including thermal adhesion resin, an adhesive, a mineral oil (such as heat-transfer grade mineral oil having an average molecular weight of 250 to 700), a paraffin oil and a vegetable oil (such as coconut oil).
  • a mineral oil such as heat-transfer grade mineral oil having an average molecular weight of 250 to 700
  • a paraffin oil such as coconut oil
  • Such fusing medium is not necessary, needless to say, for manufacturing a line of autohesion thread to be manufactured in the present invention, and not necessary, for manufacturing other products such as a composite and fabric by using a line of autohesion thread to be manufactured in the present invention. However, such a medium may be used if desired.
  • the line of thread obtained in the previous process is drawn under heating at a draw ratio of more than approximately 1.0.
  • a line of thread which is difficult to draw is used for the core string, such as metal wire or inorganic fiber, it is preferable not to perform the present process, and in the case where a line of autohesion thread to be manufactured by a method of the present invention is composed of only a filament comprising a thermoplastic resin, it is preferable to perform the present process.
  • a method of drawing treatment can adopt a publicly known method such as drawing while heating in liquid or gas.
  • Drawing may be performed in one stage or two stages or more.
  • the drawing treatment is characterized by being performed at a draw ratio of more than approximately 1.0.
  • the draw ratio for the drawing treatment may be properly selected in accordance with the conditions such as the kind of filament to be used, whether or not drawing treatment has been performed for the filament as a raw material, or at what draw ratio the drawing was performed in the case where drawing treatment has been already performed.
  • a draw ratio in the present process (drawing under heating at a draw ratio of more than 1.0) is usually approximately 1.01 to 5, preferably approximately 1.01 to 3, more preferably approximately 2.2 to 3.
  • a draw ratio in the present process is usually approximately 1.01 to 15, preferably approximately 2 to 10, more preferably approximately 4 to 8.
  • an undrawn filament means a filament not drawn at all in manufacturing processes or a filament drawn at a draw ratio less than a draw ratio of a commercial filament in manufacturing.
  • a taper shape can be formed in drawing in the following manner. Specifically, a taper shape can be formed in drawing by adjusting the draw speed. More specifically, a taper shape can be formed by taking an advantage such that an increase in draw speed decreases diameter in a longitudinal direction and a decrease in draw speed increases diameter in a longitudinal direction. In changing draw speed as described above, it is preferable that change in draw speed is gently inclined toward increase or decrease. That is, draw speed is preferably increased or/and decreased gradually in drawing. If change in draw speed is such gentle change, draw speed may be linearly changed or not. Draw speed in drawing can not unconditionally be determined, since it varies depending on the kind or diameter of a filament. For example, the ratio of draw speed in forming a portion of the largest diameter to draw speed in forming a portion of the smallest diameter is preferably approximately 1:1.5 to 4.
  • a line of autohesion thread to be manufactured in the present invention include a line of autohesion thread having a core string comprising thermoplastic resin, in which plural filaments comprising a thermoplastic resin are placed so as to center the core string and the adjacent filaments are substantially completely fused. More specifically, a line of autohesion thread is included, in which plural filaments comprising thermoplastic resin are paralleled so as to surround the core string or plural filaments comprising thermoplastic resin are braided around core string, and then the adjacent filaments are substantially completely fused.
  • a filament comprising a thermoplastic resin only a filament comprising one kind of thermoplastic resin may be used, or a combination of filaments comprising plural kinds of thermoplastic resins may be used; only a filament comprising one kind of thermoplastic resin is preferably used.
  • the manufacture of a line of autohesion thread in the above manner generally allows the manufactured line of thread to contain no fusing medium and adjacent filaments to be substantially fused together.
  • the present invention provides a line of fusion thread containing plural filaments comprising a thermoplastic resin wherein the adjacent filaments are substantially fused, characterized in that the thickness of said line of thread is within an approximately ⁇ 10% range (preferably ⁇ 5%) of that of a line of thread containing filaments of the same thermoplastic resin wherein the number of the filaments is the same as said line of thread and the adjacent filaments are not fused; and the tensile strength of said line of thread is more than that of the line of unfused thread.
  • the thickness of the above-mentioned line of thread is ordinarily denoted as denier.
  • a line of autohesion thread of the present invention plural filaments composing a line of autohesion thread are substantially fused together.
  • “To be substantially fused” means a state such that even though the manufactured line of thread is cut to hold a cut portion between the pad of a forefinger and the pad of a thumb in a hand of an adult male and then the line of thread is attempted to be crumpled while the largest manual pressure of an adult male is applied thereto, the line of thread is not frayed through visual observation.
  • “Complete fusion” in the present invention means that in the case where the line of thread is cut in an optional place and the above-mentioned test is repeated 100 times, the line of thread is not frayed by 100%, and not fraying by 85% or more is regarded as pass in the present invention, preferably by 90% or more.
  • Plural filaments of a line of autohesion thread may be filaments of a single kind or a mixture of filaments of two kinds or more.
  • a line of autohesion thread to be obtained in the above manner may further be coated with a synthetic resin. It is needless to say that such a line of thread is also included in a line of fusion thread of the present invention.
  • the synthetic resin (hereinafter also referred to as “coating resin”) to be used for the above-mentioned coating in the present invention may employ publicly known resins, which can preferably adhere closely to a line of autohesion thread of the present invention.
  • a resin which withstands long-term use outdoors and is superior in durability such as rubbing and bending fatigue is more preferable as the above-mentioned coating resin.
  • the coating resin preferably has a melt index of approximately 0.1 g/10 minutes or more, more preferably approximately 0.1 g/10 minutes to 1000 g/10 minutes.
  • a coating resin having a melt index in the above-mentioned range is preferably used in order to coat without deteriorating tensile strength of a line of autohesion thread of the present invention as a core.
  • melt index of a resin is measured by a melt indexer (L-202, manufactured by Takara Kogyo Co., Ltd.) in a method in accordance with JIS K 7210 (1976) “Determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR) of thermoplastics”.
  • the coating resin examples include polyolefin resins such as high-density polyethylene, polypropylene, ethylene-vinyl acetate copolymer, and a modified product thereof; polyamide resins such as nylon and copolyamide; acrylic resins or a copolymerized modified product thereof; polyurethane resins; polystyrene resins; vinyl acetate resins; polyvinyl chloride resins; and epoxy resins.
  • a resin containing metallic particles may be used as a coating resin.
  • the inclusion of metallic particles is advantageous in that manufacturing a line of thread having an optional specific gravity, particularly a line of thread having a high specific gravity, can be performed irrespective of the specific gravity of the coating resin.
  • the kind or content of metallic particles here used is preferably the same as the case where metallic particles are contained in a filament.
  • a method of coating the outer periphery of a line of autohesion thread of the present invention with a coating resin can adopt a publicly known method such as pressure extrusion coating.
  • a method by pipe extrusion coating is appropriate.
  • a method by pipe extrusion coating is such that a molten coating resin is extruded from an extruder and adhered closely to a preheated line of thread as a core under pressurized conditions, whereby adherence of a film becomes markedly superior.
  • the coating resin may be applied by using publicly known means such as an applicator, a knife coater, a reverse-roll coater, a gravure coater, a flow coater, a rod coater and a brush, or a method in that a line of thread as a core is immersed in a tub storing coating resin in molten state or solution state and then pulled up, out of which line an excess quantity is squeezed, may be used.
  • publicly known means such as an applicator, a knife coater, a reverse-roll coater, a gravure coater, a flow coater, a rod coater and a brush, or a method in that a line of thread as a core is immersed in a tub storing coating resin in molten state or solution state and then pulled up, out of which line an excess quantity is squeezed, may be used.
  • the shape of a line of autohesion thread of the present invention can be formed into a taper shape.
  • a method of forming a taper shape may employ a publicly known method.
  • the number of revolutions of a measuring pump (a gear pump) put in an extruder is optionally fluctuated to change discharge quantity of the resin and further control the duration in the number of revolutions under each situation, so that a taper shape having respective lengths can be formed in intended thick portion, thin portion and taper portion.
  • the shape of a taper portion can be changed by relative length of change-over time in a measuring pump from high-velocity revolution to low-velocity revolution or from low-velocity revolution to high-velocity revolution.
  • a line of autohesion thread to be manufactured by a method of the present invention is not particularly limited, for example, which line can appropriately be used for fishing lines, particularly for various leisure and fishery, materials for fisheries such as a longline of tuna fishery, rope, gut, kite string, “weedeater” string, cords for various industrial materials such as cord for a blind, dial cord, cord for a portable phone strap, and extension cord, Western-style bowstring, musical instrument's string, string for safe lock, or suture for operation.
  • DYNEEMA registered trademark, manufactured by Toyobo. Co., Ltd.
  • 100 deniers were braided up by a braiding machine to manufacture braided yarn A.
  • This braided yarn A was sent into a heating furnace heated to a temperature of 149° C. at a speed of 100 m/minute of a send-in roller and 40 m/minute of a wind-up roller to manufacture fused yarn B.
  • This fused yarn B was sent again into a heating furnace heated to a temperature of 149° C. at a speed of 30 m/minute of a send-in roller and 40 m/minute of a wind-up roller to manufacture fused yarn C.
  • Eight pieces of nylon 6 multifilament yarn 210 deniers manufactured by Unitika Fibers Ltd. were braided up by a braiding machine to manufacture braided yarn A′.
  • This braided yarn A′ was sent into a heating furnace heated to a temperature of 220° C. at a speed of 5 m/minute of a send-in roller and 4 m/minute of a wind-up roller to manufacture fused yarn B′.
  • This fused yarn B′ was sent again into a heating furnace heated to a temperature of 220° C. at a speed of 4 m/minute of a send-in roller and 5.5 m/minute of a wind-up roller to manufacture fused yarn C′.
  • a line of thread of the present invention can be utilized for fishing lines for leisure and fishery, threads for fishery materials such as a longline of tuna fishery, and threads for rope, gut or kite string.

Abstract

A method of manufacturing autohesion thread such that a smooth surface is offered, the cutting thereof is easy, filaments composing thread are not frayed in cutting, drainability is superior, and plural kinds of filaments can be combined. A method of manufacturing a line of fusion thread, wherein plural filaments comprising thermoplastic resin are paralleled, twisted and/or braided if desired, subsequently drawn under heat at a draw ratio of less than 1.0 to thereby substantially fuse the adjacent filaments, and thereafter drawn under heat at a draw ratio of more than 1.0.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a method of manufacturing a line of autohesion thread in which adjacent filaments are substantially fused together.
  • 2. Background of the Invention
  • Fishing lines for leisure and fishery, materials for fisheries such as a longline of tuna fishery, and threads to be employed for rope, gut or kite string are roughly divided mainly into monofilament yarn and braided yarn such that plural monofilaments are braided.
  • Monofilament yarn has low frictional resistance in rubbing against other matters because it has a smoother surface than braided yarn. For example, when using monofilament yarn as a fishing line, the frictional resistance caused by the rubbing of the fishing line and the guide in throwing in the fishing line is so low that bait can be thrown exactly to a long distance. Monofilament yarn is also superior in drainability because it holds no water inside. In addition, braided yarn is cut with difficulty, and when the yarn is cut, the yarn in the cut portion is split and the cut portion becomes feathery, so that the handling is difficult. Monofilament yarn also has an advantage in that it has no such problem. However, for example, in the case where resin composing the yarn is ultra high molecular weight polyethylene or fully aromatic polyamide, it is necessary to use a solvent in spinning, and to remove the solvent after spinning. This is a problem that it is difficult to manufacture a monofilament having a certain thickness or more, which is appropriate for uses such as a fishing line, rope or gut as described above.
  • On the other hand, braided yarn can be made into a line of thread having a thickness appropriate for uses as described above, irrespective of the kind of resin as a raw material, by reason of employing plural monofilaments or a multifilament. In addition, braided yarn has such an advantage that it is possible to combine plural kinds of filaments. As a result, an effect such as adjustment of desired specific gravity, which is not obtained in a single filament, can be attained. In monofilament yarn, it is naturally impossible to combine plural kinds of filaments.
  • JP-A-9-98698 reports a method of manufacturing a fishing line in such a manner that plural filaments of polyolefin are braided or twisted, and thereafter exposed to a temperature in the melting range of polyolefin while drawn at a draw ratio of 1.0 or more to thereby fuse adjacent filaments. The inventors of the present invention, however, have found out that it is practically difficult to substantially fuse adjacent filaments in the above-mentioned fishing line by such a method. Accordingly, the application of physical force by use to the fishing line thus manufactured disjoints the bond of fiber by reason of not being actually substantially fused, so that it is incapable of achieving the original object of making a pseudo monofilament by fusing. The problem is that the application of physical force by use causes the fishing line to have no differences with ordinary braided yarn. Further, the inventors of the present invention have found a defect such that heat treatment in such a method decreases the strength of the fishing line, which thus cannot but be drawn in order to compensate for the decreased strength. Consequently, the drawing compensates for the strength, while the fishing line becomes greatly thinner to the extent of the thickness of approximately 60% or less compared to the thickness of the fishing line before the treatment, thereby deteriorating wear resistance.
  • The inventors of the present invention have earnestly studied a yarn having the above-mentioned advantages of both monofilament yarn and braided yarn to develop a line of thread in which plural filament yarn of high strength fiber are integrated by using low-temperature thermal adhesion resin having a lower melting point than the melting point of the above-mentioned filament yarn (JP-A-2002-54041). As a result of extensive studies, they have also developed a line of thread in which low-temperature thermal adhesion resin is replaced with a hot melt adhesive (JP-A-2003-116431).
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention is intended to provide a method of manufacturing a line of fusion thread having the advantages of both monofilament yarn and braided yarn, such that a smooth surface is offered, the cutting thereof is easy, the filaments composed of the line of thread are not frayed in cutting, and the drainability and durability are superior, such that the application of physical force by use does not disjoint the bond of fiber. Further, more than one kind of filament can be combined.
  • Through intensive studies for achieving the above-mentioned objectives, the inventors of the present invention have unexpectedly found that plural filaments comprising a thermoplastic resin, which are paralleled, twisted and/or braided if desired, and subsequently drawn under heat at a draw ratio of less than 1.0, thereby substantially fuse the adjacent filaments completely without a fusing medium. The inventors of the present invention have found that drawing under heat at a draw ratio of less than 1.0 allows a line of fusion thread obtained by hot drawing treatment to become thicker as compared with the line before the treatment, thus solving the above-mentioned problems in the publicly known art. Substantially complete fusing of adjacent filaments in this manner allows a new line of thread having the following advantages not found in monofilament yarn or braided yarn. That is to say, a line of fusion thread of the present invention has a smooth surface and is also superior in drainability because it holds no water inside. In addition, the above-mentioned line of thread is easily cut and component filaments are not frayed by cutting or by long-term use. Thus, a resin composed of a filament is not limited to a single kind while having the advantage of monofilament yarn, and a combination of filaments of two different kinds or more may possess the characteristics of each of the filaments. The most preferable resin to be used is a high strength filament such as an ultra high molecular weight polyethylene filament.
  • The inventors of the present invention have completed the present invention through further studies.
  • DETAILED DESCRIPTION OF THE INVENTION
  • That is to say, the present invention relates to:
  • (1) a method of manufacturing a line of fusion thread wherein plural filaments comprising a thermoplastic resin are paralleled, twisted and/or braided if desired, subsequently drawn under heat at a draw ratio of less than 1.0 to substantially fuse the adjacent filaments, and thereafter drawn under heat at a draw ratio of more than 1.0,
  • (2) the method of manufacturing a line of fusion thread according to the above (1), wherein the thermoplastic resin is a polyamide resin, a polyester resin, a fluororesin or a polyolefin resin,
  • (3) the method of manufacturing a line of fusion thread according to the above (1), wherein the filaments comprising a thermoplastic resin are filaments having a tensile strength of 20 g/d or more,
  • (4) the method of manufacturing a line of fusion thread according to any one of the above (1) to (3), wherein the temperature for the drawing under heat at a draw ratio of less than 1.0 is higher than the melting point of the filaments comprising a thermoplastic resin,
  • (5) the method of manufacturing a line of fusion thread according to any one of the above (1) to (4), wherein the outer periphery of the thread is further coated with a synthetic resin after the heat drawing at a draw ratio of more than 1.0,
  • (6) a method of manufacturing a line of fusion thread wherein plural filaments comprising a thermoplastic resin are paralleled so as to surround a core string and further twisted if desired, or plural filaments comprising a thermoplastic resin are braided around a core string, and subsequently drawn under heat at a draw ratio of less than 1.0 to thereby substantially fuse the adjacent filaments to be subsequently drawn under heat at a draw ratio of more than 1.0 if desired,
  • (7) a method of substantially fusing adjacent filaments wherein the plural filaments comprising a thermoplastic resin are paralleled, twisted and/or braided if desired, and subsequently drawn under heat at a draw ratio of less than 1.0,
  • (8) a line of fusion thread manufactured by a method according to any one of the above (1) to (7),
  • (9) a line of fusion thread containing plural filaments comprising a thermoplastic resin and not containing a fusing medium, wherein the adjacent filaments are substantially fused together, and
  • (10) the line of fusion thread according to the above (9), containing plural filaments comprising a thermoplastic resin wherein the adjacent filaments are substantially fused, wherein the thickness of said line of thread is within a ±10% range of that of a line of thread containing filaments of the same thermoplastic resin wherein the number of the filaments is the same as said line of thread and the adjacent filaments are not fused; and that the tensile strength of said line of thread is more than that of the line of unfused thread. As clarified from the above, in a line of thread of the present invention, filaments composing the line of thread are fused together. However, an adhesive for fusing the filaments and a fusing medium such as low-melting fusion thread described in JP-A-2003-116431 are not used. A manufacturing method of the present invention is characterized by performing hot drawing at a draw ratio of less than 1.0, and thereafter further hot drawing at a draw ratio of more than 1.0.
  • A line of autohesion thread while composed of plural filaments of the present invention has a smoother surface than a conventional line of thread comprising braided yarn. Therefore, frictional resistance in rubbing against other matters is decreased to improve durability. For example, when a line of autohesion thread of the present invention is used as a fishing line, frictional resistance between a fishing line and a guide is so low that bait can be thrown exactly to a long distance. In addition, reeling operation is so easily performed as to scarcely twine and tangle.
  • A line of autohesion thread of the present invention scarcely holds water therein and is superior in drainability because adjacent filaments are substantially fused completely. Thus, particularly, a line of autohesion thread of the present invention can appropriately be used as fishing lines for leisure and fishery, and materials for fisheries.
  • Further, a line of autohesion thread of the present invention is easily cut and component filaments are not frayed after being cut, that is, a cut portion does not become feathery, whereby the handling in tying thread is favorable.
  • In addition, in a line of autohesion thread of the present invention, an effect which is not obtained in a single filament, such as adjustment of optional specific gravity, can be fulfilled by using plural kinds of filaments and inserting a core string into the center of a line of thread. Alternatively, the initial strength can be maintained even though single yarn denier is not thinned, so that a line of thread superior in wear resistance can be manufactured.
  • DETAILED DESCRIPTION OF PREFERRED EXAMPLES
  • The present invention relates to a method of manufacturing a line of autohesion thread, wherein plural filaments comprising a thermoplastic resin are paralleled, twisted and/or braided if desired, and subsequently drawn under heat at a draw ratio of less than 1.0 to thereby substantially completely fuse the adjacent filaments to be subsequently drawn under heat at a draw ratio of more than 1.0. More particularly, the present invention is characterized in that, for example, (a) plural filaments of thermoplastic resin are paralleled, (b) plural filaments of thermoplastic resin are paralleled and further twisted, (c) plural filaments of thermoplastic resin are paralleled and braided, or (d) plural filaments of thermoplastic resin are paralleled, twisted and subsequently braided, and thereafter subjected to drawing under heat at a draw ratio of less than 1.0 and further drawing under heat at a draw ratio of more than 1.0.
  • A filament comprising a thermoplastic resin to be employed in a manufacturing method of the present invention is hereinafter described.
  • Examples of the thermoplastic resin to be employed in a manufacturing method of the present invention include polyamide resins, polyester resins, fluororesins and polyolefin resins.
  • Specific examples of the polyamide resin are aliphatic polyamides such as nylon 6, nylon 66, nylon 12 and nylon 6, 10, and a copolymer thereof, or semi-aromatic polyamides formed by aromatic diamine and dicarboxylic acid, or a copolymer thereof.
  • Specific examples of the polyester resin are polyesters or a copolymer thereof polycondensed from aromatic dicarboxylic acids (e.g. terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, phthalic acid, α,β-(4-carboxyphenyl)ethane, 4,4′-dicarboxyphenyl, 5-sodium sulfoisophthalic acid, etc.), aliphatic dicarboxylic acids (e.g. adipic acid, sebacic acid, etc.), or esters thereof, and diol compounds (e.g. ethylene glycol, diethylene glycol, 1,4-butanediol, polyethylene glycol, tetramethylene glycol, etc.).
  • Specific examples of the fluororesin are polyvinylidene fluoride, polytetrafluoroethylene, polymonochlorotrifluoroethylene or polyhexafluoropropylene, or a copolymer thereof.
  • Specific examples of the polyolefin resin are polyethylene or polypropylene.
  • A filament comprising a thermoplastic resin to be employed in the present invention is preferably a high-strength filament having a tensile strength of approximately 20 g/d or more, preferably approximately 25 to 50 g/d, more preferably approximately 30 to 40 g/d. Here, “tensile strength” can easily be measured, for example, in a manner according to JIS L 1013 “Testing methods for man-made filament yarns” by a tensile tester such as the universal tester AUTOGRAPH AG-100kN1 (trade name, manufactured by Shimadzu Corporation).
  • The filament comprising a thermoplastic resin is preferably a high-strength filament.
  • Specific examples of the above-mentioned high-strength filament include an ultra high molecular weight polyethylene filament, a fully aromatic polyamide filament, a heterocyclic high-performance filament, and a fully aromatic polyester filament. Among them, an ultra high molecular weight polyethylene filament comprising a flexible polymer is preferable.
  • The above-mentioned ultra high molecular weight polyethylene filament signifies a filament comprising ultra high molecular weight polyethylene. Here, ultra high molecular weight polyethylene has a molecular weight of approximately 200,000 or more, preferably approximately 600,000 or more, and includes a homopolymer of ethylene and also a copolymer of ethylene and lower α-olefins of about 3 to 10 carbon atoms such as propylene, butene, pentene and hexene. In the case of a copolymer of ethylene and α-olefin, preferred is a copolymer where in the proportion of the α-olefin is approximately 0.1 to 20 on average, preferably approximately 0.5 to 10 on average with respect to 1000 carbon atoms in the polyethylene chain.
  • A method of manufacturing the ultra high molecular weight polyethylene filament is disclosed, for example, in JP-A-55-5228 and JP-A-55-107506, and these publicly known methods may be employed. Commercial products such as DYNEEMA (registered trademark) (tradename, manufactured by Toyobo. Co., Ltd.) and SPECTRA (trade name, manufactured by Honeywell International Inc.) may be used as the ultra high molecular weight polyethylene filament.
  • A filament as a raw material for a line of autohesion thread of the present invention may take any of the following forms: a multifilament made of plural filaments, a monofilament made of one filament and a monomultifilament such that a plurality of the above-mentioned monofilaments are doubled. A line of autohesion thread of the present invention may be composed of a form of only one filament or a mixed form of plural filaments among a multifilament, a monofilament and a monomultifilament. A filament to be used in the present invention may be a filament such that a cross section thereof is perfectly circular or flat. A filament to be used in the present invention may have a hollow structure.
  • A filament to be used in the present invention may contain various publicly known additives within a range of not deteriorating the object of the invention. Examples of such additives include a pigment, a coloring matter, a stabilizer, a plasticizer or a lubricant to be detailed below, which may be used in a combination of two or more additives. Examples of the additives also include a magnetic material, a conductive material and a material having a high dielectric constant. Specific examples of the above-mentioned materials include calcium carbonate, barium carbonate, magnesium carbonate, clay, talc, mica, feldspar, bentonite, aluminum oxide, magnesium oxide, titanium dioxide, silica and gypsum. These materials may be coated with stearic acid, acrylic acid or the like. A multi-, a mono- or a monomulti-filament to be used in the present invention may be colored with a solution or dispersion containing a coloring matter or a pigment.
  • A filament to be used in the present invention may contain metallic particles in order to adjust specific gravity and sedimentation velocity. Examples of a raw material composing metallic particles include iron, copper, zinc, tin, nickel or tungsten, which may be used singly, or in a mixture or an alloy of two or more of metallic raw materials. Among them, tungsten particles are preferably used. The reason therefore is that tungsten is so high in its specific gravity as to easily allow weight to a line of thread, and therefore addition in a small quantity thereof increases specific gravity while minimizing decreases in strength. These metallic particles can be applied to the present invention irrespective of the form of powder or granules. The average particle diameter thereof is appropriately approximately 20 μm or less, preferably approximately 10 μm or less. The above-mentioned range is preferable for the reason that too large particle diameter of metallic particles deteriorates general uniformity after mixing. In addition, the added quantity of metallic particles is preferably approximately 1 to 90 parts by weight, more preferably approximately 5 to 70 parts by weight with respect to 100 parts by weight of the resin.
  • Thermoplastic resin containing a metal is produced by melt-kneading metallic particles, for example, with the use of a uniaxial or biaxial kneader, and a filament containing the above-mentioned metallic particles can be manufactured from the resin by using a widely performed melt spinning method.
  • In the present invention, only a filament comprising one kind of thermoplastic resin may be used, or a combination of filaments comprising plural kinds of thermoplastic resins may be used. Preferable examples of an embodiment include a line of autohesion thread made of only a filament comprising one kind of thermoplastic resin. With regard to the present invention, in the case of using a combination of filaments comprising plural kinds of thermoplastic resins, a combination of filaments comprising thermoplastic resins having melting ranges close to each other is preferably used; more specifically, a combination of DYNEEMA (registered trademark) and a filament comprising polyethylene or polypropylene is preferably used.
  • Each process in the manufacturing method of the present invention is hereinafter described.
  • In the present invention, the above-mentioned plural filaments comprising a thermoplastic resin are paralleled, and twisted and/or braided if desired.
  • In paralleling plural filaments, the filaments may be paralleled so as to center a core string and surround it if desired.
  • A method of twisting plural filaments is not particularly limited, and twisting can be performed by using publicly known twisters such as a ring twister, a double twister or an Italian twister. The degree of twisting in the present process is not particularly limited, and twisting is preferably performed so that twist constant K is approximately 0.2 to 1.5, more preferably approximately 0.3 to 1.2, further more preferably approximately 0.4 to 0.8. Twist constant K is calculated by the following equation: K=t×D1/2 [in which t denotes number of twist (time/m) and D denotes degree of fineness (tex)]. Degree of fineness in the above-mentioned equation is measured in accordance with JIS L 1013 (1999).
  • A method of braiding plural filaments is not particularly limited, and braiding is ordinarily performed by using a braider (a braiding machine). For example, four filaments are prepared, and then a right-hand or left-hand filament are alternately placed in the middle and braided up. The number of filaments to be used for braiding is not limited to four, but occasionally eight, twelve or sixteen. Filaments to be used for braiding may previously be twisted. In addition, a core string as described above is centered, around which plural filaments can be braided.
  • Subsequently, the obtained paralleled yarn, twisted yarn or braided yarn is drawn under heat at a draw ratio of less than approximately 1.0.
  • A method of drawing treatment can adopt a publicly known method such as drawing while heating in the air. Drawing may be performed in one stage or two stages or more. The temperature in drawing can not unconditionally be determined, since it varies depending on the kind or diameter of a filament, or draw speed, for example, it is ordinarily a temperature of the melting point of a filament—approximately 10° C. or more. The upper limit of temperature in drawing is not particularly limited. More specifically, in the case where a filament is an ultra high molecular weight polyethylene filament, the temperature in drawing is approximately 150° C. or more (preferably approximately 150 to 170° C.).
  • The process of drawing is characterized by being performed at a draw ratio of less than approximately 1.0. This process allows plural filaments to be substantially fused together. Relaxation of a line of thread under heating in this manner allows adjacent filaments to be substantially fused together without a fusing medium. Here, “adjacent filaments are substantially fused” means that component filaments are not disentangled and frayed even though a line of autohesion thread manufactured in the present invention is cut in an optional place and then a cut portion is rubbed by hand. A fusing medium means a substance for promoting or assisting fusion, for example, including thermal adhesion resin, an adhesive, a mineral oil (such as heat-transfer grade mineral oil having an average molecular weight of 250 to 700), a paraffin oil and a vegetable oil (such as coconut oil). Such fusing medium is not necessary, needless to say, for manufacturing a line of autohesion thread to be manufactured in the present invention, and not necessary, for manufacturing other products such as a composite and fabric by using a line of autohesion thread to be manufactured in the present invention. However, such a medium may be used if desired.
  • Subsequently, the line of thread obtained in the previous process (drawing under heat at a draw ratio of less than 1.0) is drawn under heating at a draw ratio of more than approximately 1.0. In the case where a line of thread which is difficult to draw is used for the core string, such as metal wire or inorganic fiber, it is preferable not to perform the present process, and in the case where a line of autohesion thread to be manufactured by a method of the present invention is composed of only a filament comprising a thermoplastic resin, it is preferable to perform the present process.
  • A method of drawing treatment can adopt a publicly known method such as drawing while heating in liquid or gas. Drawing may be performed in one stage or two stages or more. The drawing treatment is characterized by being performed at a draw ratio of more than approximately 1.0. The draw ratio for the drawing treatment may be properly selected in accordance with the conditions such as the kind of filament to be used, whether or not drawing treatment has been performed for the filament as a raw material, or at what draw ratio the drawing was performed in the case where drawing treatment has been already performed. In the case where a filament, such as a commercial filament, drawn already at a draw ratio of more than 1.0 is used as a raw material in the previous process, a draw ratio in the present process (drawing under heating at a draw ratio of more than 1.0) is usually approximately 1.01 to 5, preferably approximately 1.01 to 3, more preferably approximately 2.2 to 3. Meanwhile, in the case of using an undrawn filament in the previous process, a draw ratio in the present process is usually approximately 1.01 to 15, preferably approximately 2 to 10, more preferably approximately 4 to 8. Here, “an undrawn filament” means a filament not drawn at all in manufacturing processes or a filament drawn at a draw ratio less than a draw ratio of a commercial filament in manufacturing.
  • In the present invention, a taper shape can be formed in drawing in the following manner. Specifically, a taper shape can be formed in drawing by adjusting the draw speed. More specifically, a taper shape can be formed by taking an advantage such that an increase in draw speed decreases diameter in a longitudinal direction and a decrease in draw speed increases diameter in a longitudinal direction. In changing draw speed as described above, it is preferable that change in draw speed is gently inclined toward increase or decrease. That is, draw speed is preferably increased or/and decreased gradually in drawing. If change in draw speed is such gentle change, draw speed may be linearly changed or not. Draw speed in drawing can not unconditionally be determined, since it varies depending on the kind or diameter of a filament. For example, the ratio of draw speed in forming a portion of the largest diameter to draw speed in forming a portion of the smallest diameter is preferably approximately 1:1.5 to 4.
  • Other preferable examples of an embodiment of a line of autohesion thread to be manufactured in the present invention include a line of autohesion thread having a core string comprising thermoplastic resin, in which plural filaments comprising a thermoplastic resin are placed so as to center the core string and the adjacent filaments are substantially completely fused. More specifically, a line of autohesion thread is included, in which plural filaments comprising thermoplastic resin are paralleled so as to surround the core string or plural filaments comprising thermoplastic resin are braided around core string, and then the adjacent filaments are substantially completely fused. In the embodiment, with regard to a filament comprising a thermoplastic resin, only a filament comprising one kind of thermoplastic resin may be used, or a combination of filaments comprising plural kinds of thermoplastic resins may be used; only a filament comprising one kind of thermoplastic resin is preferably used.
  • The manufacture of a line of autohesion thread in the above manner generally allows the manufactured line of thread to contain no fusing medium and adjacent filaments to be substantially fused together. The present invention provides a line of fusion thread containing plural filaments comprising a thermoplastic resin wherein the adjacent filaments are substantially fused, characterized in that the thickness of said line of thread is within an approximately ±10% range (preferably ±5%) of that of a line of thread containing filaments of the same thermoplastic resin wherein the number of the filaments is the same as said line of thread and the adjacent filaments are not fused; and the tensile strength of said line of thread is more than that of the line of unfused thread. According to the present invention, the thickness of the above-mentioned line of thread is ordinarily denoted as denier.
  • In a line of autohesion thread of the present invention, plural filaments composing a line of autohesion thread are substantially fused together. “To be substantially fused” means a state such that even though the manufactured line of thread is cut to hold a cut portion between the pad of a forefinger and the pad of a thumb in a hand of an adult male and then the line of thread is attempted to be crumpled while the largest manual pressure of an adult male is applied thereto, the line of thread is not frayed through visual observation. “Complete fusion” in the present invention means that in the case where the line of thread is cut in an optional place and the above-mentioned test is repeated 100 times, the line of thread is not frayed by 100%, and not fraying by 85% or more is regarded as pass in the present invention, preferably by 90% or more. Plural filaments of a line of autohesion thread may be filaments of a single kind or a mixture of filaments of two kinds or more.
  • In the present invention, a line of autohesion thread to be obtained in the above manner may further be coated with a synthetic resin. It is needless to say that such a line of thread is also included in a line of fusion thread of the present invention.
  • The synthetic resin (hereinafter also referred to as “coating resin”) to be used for the above-mentioned coating in the present invention may employ publicly known resins, which can preferably adhere closely to a line of autohesion thread of the present invention. In particular, a resin which withstands long-term use outdoors and is superior in durability such as rubbing and bending fatigue is more preferable as the above-mentioned coating resin. In the case where the outer periphery of a line of autohesion thread, which is DYNEEMA, of the present invention is coated with a coating resin by extrusion coating to be detailed below, the coating resin preferably has a melt index of approximately 0.1 g/10 minutes or more, more preferably approximately 0.1 g/10 minutes to 1000 g/10 minutes. A coating resin having a melt index in the above-mentioned range is preferably used in order to coat without deteriorating tensile strength of a line of autohesion thread of the present invention as a core. Here, melt index of a resin is measured by a melt indexer (L-202, manufactured by Takara Kogyo Co., Ltd.) in a method in accordance with JIS K 7210 (1976) “Determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR) of thermoplastics”.
  • Examples of the coating resin include polyolefin resins such as high-density polyethylene, polypropylene, ethylene-vinyl acetate copolymer, and a modified product thereof; polyamide resins such as nylon and copolyamide; acrylic resins or a copolymerized modified product thereof; polyurethane resins; polystyrene resins; vinyl acetate resins; polyvinyl chloride resins; and epoxy resins.
  • In the present invention, a resin containing metallic particles may be used as a coating resin. The inclusion of metallic particles is advantageous in that manufacturing a line of thread having an optional specific gravity, particularly a line of thread having a high specific gravity, can be performed irrespective of the specific gravity of the coating resin. The kind or content of metallic particles here used is preferably the same as the case where metallic particles are contained in a filament.
  • In the present invention, a method of coating the outer periphery of a line of autohesion thread of the present invention with a coating resin can adopt a publicly known method such as pressure extrusion coating. Among them, a method by pipe extrusion coating is appropriate. A method by pipe extrusion coating is such that a molten coating resin is extruded from an extruder and adhered closely to a preheated line of thread as a core under pressurized conditions, whereby adherence of a film becomes markedly superior. In addition, the coating resin may be applied by using publicly known means such as an applicator, a knife coater, a reverse-roll coater, a gravure coater, a flow coater, a rod coater and a brush, or a method in that a line of thread as a core is immersed in a tub storing coating resin in molten state or solution state and then pulled up, out of which line an excess quantity is squeezed, may be used.
  • On the occasion of coating with the above-mentioned coating resin, the shape of a line of autohesion thread of the present invention can be formed into a taper shape. A method of forming a taper shape may employ a publicly known method. For example, the number of revolutions of a measuring pump (a gear pump) put in an extruder is optionally fluctuated to change discharge quantity of the resin and further control the duration in the number of revolutions under each situation, so that a taper shape having respective lengths can be formed in intended thick portion, thin portion and taper portion. The shape of a taper portion can be changed by relative length of change-over time in a measuring pump from high-velocity revolution to low-velocity revolution or from low-velocity revolution to high-velocity revolution.
  • The coating of the above-mentioned line of autohesion thread with coating resin in this manner makes a line of autohesion thread further superior in drainability.
  • The use of a line of autohesion thread to be manufactured by a method of the present invention is not particularly limited, for example, which line can appropriately be used for fishing lines, particularly for various leisure and fishery, materials for fisheries such as a longline of tuna fishery, rope, gut, kite string, “weedeater” string, cords for various industrial materials such as cord for a blind, dial cord, cord for a portable phone strap, and extension cord, Western-style bowstring, musical instrument's string, string for safe lock, or suture for operation.
  • Example 1
  • Four pieces of DYNEEMA (registered trademark, manufactured by Toyobo. Co., Ltd.) 100 deniers were braided up by a braiding machine to manufacture braided yarn A. This braided yarn A was sent into a heating furnace heated to a temperature of 149° C. at a speed of 100 m/minute of a send-in roller and 40 m/minute of a wind-up roller to manufacture fused yarn B. This fused yarn B was sent again into a heating furnace heated to a temperature of 149° C. at a speed of 30 m/minute of a send-in roller and 40 m/minute of a wind-up roller to manufacture fused yarn C.
  • Tenacity (kg) and elongation (%) of the manufactured braided yarn A, fused yarn B and fused yarn C were measured by using a universal tester AUTOGRAPH AG-100kN1 (trade name, manufactured by Shimadzu Corporation). The results of measuring were shown in Table 1.
  • TABLE 1
    Yarn Quality Data
    Tensile Tensile Elongation
    Denier Tenacity (kg) Strength (g/d) (%)
    Braided Yarn A 414 6.21 23.1 6.82
    Fused Yarn B 542 5.82 10.7 8.03
    Fused Yarn C 400 9.38 23.4 4.75
  • Example 2
  • Eight pieces of nylon 6 multifilament yarn 210 deniers manufactured by Unitika Fibers Ltd. were braided up by a braiding machine to manufacture braided yarn A′. This braided yarn A′ was sent into a heating furnace heated to a temperature of 220° C. at a speed of 5 m/minute of a send-in roller and 4 m/minute of a wind-up roller to manufacture fused yarn B′. This fused yarn B′ was sent again into a heating furnace heated to a temperature of 220° C. at a speed of 4 m/minute of a send-in roller and 5.5 m/minute of a wind-up roller to manufacture fused yarn C′.
  • Tensile tenacity (kg), tensile strength (g/d) and elongation (%) of the manufactured braided yarn A′, fused yarn B′ and fused yarn C′ were measured in the same manner as Example 1. The results of measuring were shown in Table 2.
  • TABLE 2
    Yarn Quality Data
    Tensile Tensile Elongation
    Denier Tenacity (kg) Strength (g/d) (%)
    Braided Yarn A′ 1924 12.49 6.5 34.71
    Fused Yarn B′ 2386 8.32 3.5 58.10
    Fused Yarn C′ 1900 13.68 7.2 28.32
  • A line of thread of the present invention can be utilized for fishing lines for leisure and fishery, threads for fishery materials such as a longline of tuna fishery, and threads for rope, gut or kite string.

Claims (5)

1-10. (canceled)
11. A method of manufacturing a line of fusion thread, wherein plural filaments comprising a thermoplastic resin are paralleled so as to surround a core string, or
plural filaments comprising a thermoplastic resin are braided around a core string, and
subsequently drawn under heat at a draw ratio of less than 1.0 to substantially fuse the adjacent filaments,
wherein the draw ratio is represented by the following formula:

a speed of a wind-up roller/a speed of a send-in roller.
12. A method of substantially fusing adjacent filaments, wherein plural filaments comprising a thermoplastic resin selected from the group consisting of polyamide resins, fluororesins and polyolefin resins are
(a) paralleled,
(b) paralleled and twisted,
(c) paralleled and braided, or
(d) paralleled, twisted and braided,
and subsequently drawn under heat at a draw ratio of less than 1.0,
wherein the draw ratio is represented by the following formula:

a speed of a wind-up roller/a speed of a send-in roller.
13. A line of fusion thread comprising plural filaments comprising a thermoplastic resin and not comprising a fusing medium, wherein adjacent filaments are substantially fused together, and the line of thread is not frayed by 85% or more through visual observation, when the line of thread is cut to hold a cut portion between a pad of a forefinger and a pad of a thumb in a hand of an adult male, and then the line of thread is attempted to be crumpled while a largest manual pressure of the adult male is applied thereto.
14. The line of fusion thread according to claim 13, wherein the line of thread is not frayed by 90% or more through visual observation.
US12/511,410 2003-09-01 2009-07-29 Method of manufacturing line of autohesion thread Abandoned US20090286080A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/511,410 US20090286080A1 (en) 2003-09-01 2009-07-29 Method of manufacturing line of autohesion thread

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003308444A JP4054736B2 (en) 2003-09-01 2003-09-01 Method for producing self-bonding yarn
JP2003-308444 2003-09-01
US11/331,142 US7584596B2 (en) 2003-09-01 2006-01-13 Method of manufacturing line of autohesion thread
US12/511,410 US20090286080A1 (en) 2003-09-01 2009-07-29 Method of manufacturing line of autohesion thread

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/331,142 Continuation US7584596B2 (en) 2003-09-01 2006-01-13 Method of manufacturing line of autohesion thread

Publications (1)

Publication Number Publication Date
US20090286080A1 true US20090286080A1 (en) 2009-11-19

Family

ID=34410914

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/331,142 Active US7584596B2 (en) 2003-09-01 2006-01-13 Method of manufacturing line of autohesion thread
US12/511,410 Abandoned US20090286080A1 (en) 2003-09-01 2009-07-29 Method of manufacturing line of autohesion thread

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/331,142 Active US7584596B2 (en) 2003-09-01 2006-01-13 Method of manufacturing line of autohesion thread

Country Status (2)

Country Link
US (2) US7584596B2 (en)
JP (1) JP4054736B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012054076A1 (en) * 2010-10-18 2012-04-26 Pure Fishing, Inc. Composite fishing line

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4054736B2 (en) 2003-09-01 2008-03-05 有限会社よつあみ Method for producing self-bonding yarn
US20080307691A1 (en) * 2004-07-26 2008-12-18 Halldor Egill Guonason High Speed, Increased Hydrodynamic Efficiency, Light-Weight Molded Trawl Door and Methods for Use and Manufacture
EP1647615A1 (en) * 2004-10-14 2006-04-19 DSM IP Assets B.V. Process for making a monofilament-like product
EP1647616A1 (en) 2004-10-14 2006-04-19 DSM IP Assets B.V. Process for making a monofilament-like product
US9334587B2 (en) * 2005-02-11 2016-05-10 W. L. Gore & Associates, Inc. Fluoropolymer fiber composite bundle
CN101360854B (en) * 2006-01-18 2011-06-15 优知亚米有限公司 Tapered multifilament yarn and process for producing the same
PT1985176E (en) * 2006-01-23 2014-04-14 Yoz Ami Corp Colored fishing line, and process for producing the same
BRPI0806684A2 (en) * 2007-01-29 2014-06-03 Y G K Co Ltd LUMINESCENT COMPOSITE WIRE
WO2010044241A1 (en) * 2008-10-14 2010-04-22 株式会社ワイ・ジー・ケー Fishing line having integrated composite yarn containing short fibers
FR2965208B1 (en) * 2010-09-23 2012-10-12 Michelin Soc Tech COMPOSITE REINFORCEMENT
FR2971188B1 (en) * 2011-02-03 2013-03-08 Michelin Soc Tech SOLDER COMPOSITE REINFORCEMENT OF A SELF-ADHERING RUBBER POLYMER LAYER
JP5992344B2 (en) * 2013-01-23 2016-09-14 株式会社ワイ・ジー・ケー String-making yarn and its manufacturing method
JP2015027291A (en) * 2013-06-24 2015-02-12 ダイキン工業株式会社 Fabric for preventing adhesion of aquatic organisms
AU2017391943A1 (en) * 2017-01-10 2019-08-22 Garware-Wall Ropes Limited Multifunctional polymer composite yarn
JP7014354B2 (en) * 2017-08-07 2022-02-01 国立大学法人群馬大学 High-strength fiber and method for manufacturing high-strength fiber
JP6862031B1 (en) * 2020-10-20 2021-04-21 株式会社デュエル Ultra high molecular weight polyethylene fused yarn

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620892A (en) * 1968-05-07 1971-11-16 Allied Chem Dimensionally stable articles and method of making same
US4086751A (en) * 1976-02-16 1978-05-02 Teijin Limited Process for producing a fused false twisted continuous filament yarn having crispness characteristics of hard high-twist yarn
US4296597A (en) * 1979-07-24 1981-10-27 Teijin Limited Cotton yarn-like textured composite yarn and a process for manufacturing the same
US4297835A (en) * 1979-11-23 1981-11-03 Mituo Shimizu Synthetic strings
US4485063A (en) * 1983-09-15 1984-11-27 E. I. Du Pont De Nemours & Company Process for drawing polyamide yarn
US4539805A (en) * 1982-02-19 1985-09-10 Asahi Kasei Kogyo Kabushiki Kaisha Process and apparatus for producing easily dyeable polyester false-twisted yarns
US5540990A (en) * 1995-04-27 1996-07-30 Berkley, Inc. Polyolefin line
US20020130433A1 (en) * 2000-10-10 2002-09-19 Hwo Charles Chiu-Hsiung Spin draw process of making partially oriented yarns from polytrimethylene terephthalate
US20030082381A1 (en) * 2001-10-29 2003-05-01 Yoz-Ami Corporation Specific gravity-adjustable yarns with low elongation rate and excellent abrasion resistance
US20040151904A1 (en) * 2003-02-05 2004-08-05 Zhuomin Ding Spin annealed poly(trimethylene terephthalate) yarn
US7043804B1 (en) * 1997-05-27 2006-05-16 Milliken & Company Method to produce improved polymeric yarn

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017848B2 (en) * 1978-03-24 1985-05-07 東レ株式会社 Method for manufacturing polyester sliver
JP4054736B2 (en) 2003-09-01 2008-03-05 有限会社よつあみ Method for producing self-bonding yarn

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620892A (en) * 1968-05-07 1971-11-16 Allied Chem Dimensionally stable articles and method of making same
US4086751A (en) * 1976-02-16 1978-05-02 Teijin Limited Process for producing a fused false twisted continuous filament yarn having crispness characteristics of hard high-twist yarn
US4296597A (en) * 1979-07-24 1981-10-27 Teijin Limited Cotton yarn-like textured composite yarn and a process for manufacturing the same
US4297835A (en) * 1979-11-23 1981-11-03 Mituo Shimizu Synthetic strings
US4539805A (en) * 1982-02-19 1985-09-10 Asahi Kasei Kogyo Kabushiki Kaisha Process and apparatus for producing easily dyeable polyester false-twisted yarns
US4485063A (en) * 1983-09-15 1984-11-27 E. I. Du Pont De Nemours & Company Process for drawing polyamide yarn
US5540990A (en) * 1995-04-27 1996-07-30 Berkley, Inc. Polyolefin line
US7043804B1 (en) * 1997-05-27 2006-05-16 Milliken & Company Method to produce improved polymeric yarn
US20020130433A1 (en) * 2000-10-10 2002-09-19 Hwo Charles Chiu-Hsiung Spin draw process of making partially oriented yarns from polytrimethylene terephthalate
US20030082381A1 (en) * 2001-10-29 2003-05-01 Yoz-Ami Corporation Specific gravity-adjustable yarns with low elongation rate and excellent abrasion resistance
US20040151904A1 (en) * 2003-02-05 2004-08-05 Zhuomin Ding Spin annealed poly(trimethylene terephthalate) yarn

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012054076A1 (en) * 2010-10-18 2012-04-26 Pure Fishing, Inc. Composite fishing line
US8181438B2 (en) 2010-10-18 2012-05-22 Pure Fishing, Inc. Composite fishing line
USRE45778E1 (en) 2010-10-18 2015-10-27 Pure Fishing, Inc. Composite fishing line

Also Published As

Publication number Publication date
US20060174536A1 (en) 2006-08-10
JP4054736B2 (en) 2008-03-05
JP2005076149A (en) 2005-03-24
US7584596B2 (en) 2009-09-08

Similar Documents

Publication Publication Date Title
US7584596B2 (en) Method of manufacturing line of autohesion thread
KR100900134B1 (en) Specific Gravity-Adjustable Yarns with Low Elongation Rate and Excellent Abrasion Resistance
JP5107454B2 (en) Tapered multifilament yarn
AU2009227297B2 (en) Fishing line of core-sheath structure containing short fibers
JP4695291B2 (en) Low elongation yarn
JP4054646B2 (en) Low elongation wear resistant yarn with adjustable specific gravity
JP4463844B2 (en) Self-bonding yarn
JP4256194B2 (en) Braid manufacturing method
CA2530039C (en) Method of manufacturing line of autohesion thread
JP4851486B2 (en) Yarn and fishing line made of the yarn
JP4041761B2 (en) Yarn containing glass fiber
AU2005244558B2 (en) Method of manufacturing line of autohesion thread
JP4754095B2 (en) Tapered multifilament yarn and method for producing the same
JP4504585B2 (en) Yarn composed of polyolefin filament yarn and polyacetal filament yarn
JP2003134979A (en) Fishline
JP2007330264A (en) Specific gravity-adjustable yarn with low elongation rate and abrasion resistance
JP2500011B2 (en) Fishing line and method of manufacturing the same
JP4615145B2 (en) Fishing line with a metal wire in the core
JP3828806B2 (en) Fishing line having a hollow portion

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION