US20090297167A1 - Illuminative light communication device and lighting device - Google Patents

Illuminative light communication device and lighting device Download PDF

Info

Publication number
US20090297167A1
US20090297167A1 US12/461,223 US46122309A US2009297167A1 US 20090297167 A1 US20090297167 A1 US 20090297167A1 US 46122309 A US46122309 A US 46122309A US 2009297167 A1 US2009297167 A1 US 2009297167A1
Authority
US
United States
Prior art keywords
lighting
communication
light emitting
light
illuminative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/461,223
Inventor
Masao Nakagawa
Toshihiko Komine
Shinichiro Haruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakagawa Laboratories Inc
Original Assignee
Nakagawa Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002309557A external-priority patent/JP3827082B2/en
Priority claimed from JP2002352075A external-priority patent/JP3922560B2/en
Priority claimed from JP2003004560A external-priority patent/JP2004221747A/en
Priority claimed from JP2003037746A external-priority patent/JP2004248128A/en
Priority claimed from JP2003070673A external-priority patent/JP4450303B2/en
Priority claimed from JP2003084819A external-priority patent/JP2004297295A/en
Priority claimed from JP2003161859A external-priority patent/JP2004282685A/en
Priority claimed from JP2003177816A external-priority patent/JP2004259248A/en
Priority claimed from JP2003323052A external-priority patent/JP2004229273A/en
Priority to US12/461,223 priority Critical patent/US20090297167A1/en
Application filed by Nakagawa Laboratories Inc filed Critical Nakagawa Laboratories Inc
Publication of US20090297167A1 publication Critical patent/US20090297167A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/08Lighting devices intended for fixed installation with a standard
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B27/00Alarm systems in which the alarm condition is signalled from a central station to a plurality of substations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/1141One-way transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/1149Arrangements for indoor wireless networking of information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/185Controlling the light source by remote control via power line carrier transmission
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/19Controlling the light source by remote control via wireless transmission
    • H05B47/195Controlling the light source by remote control via wireless transmission the transmission using visible or infrared light
    • H05B47/1965
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/65Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction specially adapted for changing the characteristics or the distribution of the light, e.g. by adjustment of parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for
    • F21V33/0004Personal or domestic articles
    • F21V33/0052Audio or video equipment, e.g. televisions, telephones, cameras or computers; Remote control devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5412Methods of transmitting or receiving signals via power distribution lines by modofying wave form of the power source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5429Applications for powerline communications
    • H04B2203/5458Monitor sensor; Alarm systems

Definitions

  • illuminative light communication is carried out while the lighting unit is on, using a conventional communication unit such as infrared light communication unit.
  • a communication unit such as infrared light data communication. This allows continuous communication even without lighting.
  • This structure allows communication with lighting with sufficient light intensity for lighting, and communication using emitted light only required for the communication when light intensity is unnecessary or without lighting. As a result, users can turn the lighting either on or off, and optical communication is possible even without lighting.
  • a lighting device for emitting illuminative light includes an illuminative light emitting device that emits white light for lighting and an infrared light emitting device that emits infrared light for infrared data communication.
  • the illuminative light emitting device can be controlled for modulation to carry out illuminative light communication independently of the infrared light emitting device. This allows illuminative light communication with lighting by illuminative light emitted from the illuminative light emitting device, and infrared light data communication without lighting by infrared light emitted from the infrared light emitting device. As a result, communication is possible even without lighting, although communication could not be carried out through conventional illuminative light communication without lighting.
  • an additional communicating unit is not needed for infrared light data communication, influences of shadowing can be reduced and stable infrared light data communication can be carried out, thereby increasing the possibility of infrared light data communication.
  • FIG. 5 is a schematic diagram of another exemplary lighting element, according to the present invention, which is preferable to being used for the illuminative light communication device, according to the present invention
  • Lighting elements are often provided on the ceiling or a wall surface, or a pole is set up to irradiate a certain area from above, thereby preventing generation of a shadow.
  • wireless communication including optical communication has a problem of shadowing which causes decrease in signal intensity and disturbance in communication behind an object.
  • lighting elements are often provided so as to prevent shadowing as described above, this means that illuminative light communication is possible without development of shadowing.
  • high communication quality is ensured using a high electric power for lighting.
  • illuminative light develops a problem that illuminative light communication cannot be carried out without lighting. Lights may be kept on even when unnecessary. However, users may not appreciate keeping lights turned on when unnecessary in view of energy conservation, or lighting may be prohibited at night, for example. There is a problem that communication cannot be carried out without lighting and cannot be carried out when unattended, at night, or while using a projector.
  • infrared light communication has been widely used, and standardization has been carried out by the infrared data association (IrDA) or the like.
  • IrDA infrared data association
  • it is characterized in that it is easily influenced by shadowing, which causes decrease in communication quality due to characteristics of light when an obstruction such as a user exists. From these reasons, an available range is limited, and that communication may not be stably carried out.
  • the communicating unit 317 may transmit data using an optical communication method other than illuminative light communication such as infrared light communication.
  • the lighting unit 316 and the communicating unit 317 may be deployed in the same device to be described later. Needless to say, those may be formed separately.
  • FIG. 2 is a table describing exemplary operations defined according to respective combinations of an on and an off status of the switches 312 through 314 .
  • the communicating unit 317 carries out communication while the lighting unit 316 is illuminating as shown in FIG. 2 ( 1 ).
  • communication by the communicating unit 317 is described as ‘infrared light communication’, but the present invention is not limited to this.
  • setting of the switches 312 and 313 is the same as that just described, and the switch is off, only lighting is carried out without carrying out communication as shown in FIG. 2 ( 2 ). In this case, illuminative light is not used for communication.
  • the infrared light emitting element 335 is provided in an LED which emits white light by mixing red, green, and blue emitted lights as shown in FIG. 8A . Even though the infrared light emitting element 335 is provided in this manner, the package size is several millimeters wide and several millimeters high, which is almost the same as that of typical LEDs.
  • the present invention allows provision of an illuminative light communication device capable of carrying out communication even without lighting, and also provision of a lighting element preferable to be used for the illuminative light communication device.

Abstract

In the case of performing communication by using illumination light when the illumination is on, switches are turned on, a signal modulated in an optical modulation part in accordance with information is superposed to a power waveform for the illumination with a power distributor and the illumination 16 is driven in a modulated state. When the illumination is off, the switches are turned off, a switch is turned on and a communication part is driven in a modulated state by the optical modulation part. The communication part can be constituted so as to include an infrared light emitting element part to perform infrared communication when the illumination is off. Consequently communication can be performed not only when the of illumination is on but also when the lighting is kept off. The communication device can be constituted of one element integrating the illumination part and the communication part, so that a compact system can be constituted.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 10/532,250 filed Oct. 23, 2003, as International Application No. PCT/JP03/013539, now pending, the contents of which, including specification, claims and drawings, are incorporated herein by reference in their entirety. This application claims priority from Japanese Patent Application Serial No. 2003-070673 filed Mar. 14, 2003, the contents of which are incorporated herein by reference in their entireties.
  • BACKGROUND OF THE INVENTION
  • The present invention aims to provide an illuminative light communication device, which allows communication even without lighting and effectively utilizes infrared light data communication, and a lighting device preferable for such illuminative light communication device.
  • According to such objective, the illuminative light communication device includes a lighting unit that emits light for lighting, a modulator that controls blinking or light intensity of the lighting unit in accordance with data, thereby modulating the emitted light, a communicating unit that transmits the data through optical communication other than illuminative light communication, and a switch that changes over respective operations of the modulator and the communicating unit based on whether the lighting unit is on or off. The switch changes over such that the communicating unit can operate while the lighting unit is off. The communicating unit may be structured so as to transmit data through infrared light data communication.
  • As described above, in addition to illuminative light communication that is made possible by the lighting unit outputting illuminative light modulated by the modulator, illuminative light communication is carried out while the lighting unit is on, using a conventional communication unit such as infrared light communication unit. On the other hand, without lighting, communication is carried out using a communication unit such as infrared light data communication. This allows continuous communication even without lighting.
  • Note that when carrying out infrared light data communication, an infrared light emitting device that can selectively emit infrared light can be included in multiple LED devices in the lighting unit. As a result, it is unnecessary to separately provide another communicating unit to be used without lighting, and an indoor lighting unit that is deployed so as to prevent generation of a shadow can be used for infrared light data communication. This allows reduction in influences of shadowing, and stable infrared light data communication.
  • An illuminative light communication device includes a lighting unit that emits light for lighting and a modulator that controls blinking or light intensity of the lighting unit in accordance with data, thereby modulating the emitted light. In response to an on-switching instruction, the modulator modulates in accordance with the data while supplying sufficient electric power for lighting to the lighting unit while in response to an off-switching instruction, the modulator modulates in accordance with the data to allow the lighting unit to blink a number of times necessary for communication.
  • This structure allows communication with lighting with sufficient light intensity for lighting, and communication using emitted light only required for the communication when light intensity is unnecessary or without lighting. As a result, users can turn the lighting either on or off, and optical communication is possible even without lighting.
  • Furthermore, a lighting device for emitting illuminative light includes an illuminative light emitting device that emits white light for lighting and an infrared light emitting device that emits infrared light for infrared data communication. The illuminative light emitting device can be controlled for modulation to carry out illuminative light communication independently of the infrared light emitting device. This allows illuminative light communication with lighting by illuminative light emitted from the illuminative light emitting device, and infrared light data communication without lighting by infrared light emitted from the infrared light emitting device. As a result, communication is possible even without lighting, although communication could not be carried out through conventional illuminative light communication without lighting. In addition, an additional communicating unit is not needed for infrared light data communication, influences of shadowing can be reduced and stable infrared light data communication can be carried out, thereby increasing the possibility of infrared light data communication.
  • Note that the lighting device can be structured of a red, a blue, and a green light emitting device in line with the infrared light emitting devices. Alternatively, it may be structured of infrared light emitting devices in line with illuminative light emitting devices, which are made up of a blue or an ultraviolet light emitting device and fluorescer provided surrounding the light emitting devices.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of an illuminative light communication device, according to a first embodiment of the present invention;
  • FIG. 2 is a table describing exemplary operations defined according to respective combinations of an ON and an OFF status of switches 12 through 14;
  • FIG. 3 is a schematic diagram of an exemplary lighting element, according to the present invention, which is preferable to being used for the illuminative light communication device, according to the present invention;
  • FIG. 4 is a diagram describing an application of an exemplary lighting element, according to the present invention, to the illuminative light communication device, according to the present invention;
  • FIG. 5 is a schematic diagram of another exemplary lighting element, according to the present invention, which is preferable to being used for the illuminative light communication device, according to the present invention;
  • FIG. 6 is a diagram describing another application of an exemplary lighting element, according to the present invention, to the illuminative light communication device, according to the present invention;
  • FIG. 7 is a block diagram of an illuminative light communication device, according to a second embodiment of the present invention; and
  • FIGS. 8A-8B each is a diagram of an exemplary structure of a typical white LED; FIG. 8A shows an exemplary structure using three color light emitting elements; and FIG. 8B shows an exemplary structure using fluorescer.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 8 is a diagram of a configuration of an exemplary typical white LED. In the drawing, 331 and 341 denote LED devices, 332 denotes a red light emitting element, 333 denotes a green light emitting element, 334 denotes a blue light emitting element, 342 denotes a light emitting element, and 343 denotes fluorescer. An exemplary white LED shown in FIG. 8A is configured such that the red light emitting element 332, the green light emitting element 333, and the blue light emitting element 334 are arranged in the LED device 331. White light can be seen when red, green, and blue light emitted from respective light emitting elements are mixed.
  • In the case of an exemplary white LED shown in FIG. 8B, a blue or an ultraviolet light emitting element 342 is provided in the LED device 341, and the fluorescer 343 is provided surrounding the light emitting element 342. As with a fluorescent lamp, the LED device 341 has the fluorescer 343, which emits white light when blue light or ultraviolet light emitted from the light emitting element 342 is irradiated on the fluorescer 343. As a result, white light is emitted.
  • Since such single LED device has less light intensity for lighting, an LED array made up of multiple LED devices is typically used. In the following description, the LED array may be referred to as just LED. Such LED array is used for some traffic control signals, rear lamps of an automobile, desk lamps, and foot lights, for example. The features of LEDs are longer life, smaller size, and lower power consumption than those of conventional illuminative light sources such as incandescent lamps and fluorescent lamps. Accordingly use of LEDs as a future illuminative light source is considered.
  • In addition, another feature of light emitting elements such as LEDs is a very fast response speed since a preheating time is unnecessary. Paying attention to those features such as a fast response speed and electrical controllability, a study of superimposing a signal on an illuminative LED light and thereby transferring the signal has been conducted.
  • Lighting elements are often provided on the ceiling or a wall surface, or a pole is set up to irradiate a certain area from above, thereby preventing generation of a shadow. Typically, wireless communication including optical communication has a problem of shadowing which causes decrease in signal intensity and disturbance in communication behind an object. However, since lighting elements are often provided so as to prevent shadowing as described above, this means that illuminative light communication is possible without development of shadowing. In addition, there is an advantage that high communication quality is ensured using a high electric power for lighting.
  • However, use of illuminative light develops a problem that illuminative light communication cannot be carried out without lighting. Lights may be kept on even when unnecessary. However, users may not appreciate keeping lights turned on when unnecessary in view of energy conservation, or lighting may be prohibited at night, for example. There is a problem that communication cannot be carried out without lighting and cannot be carried out when unattended, at night, or while using a projector.
  • On the other hand, infrared light communication has been widely used, and standardization has been carried out by the infrared data association (IrDA) or the like. There is fear that infrared light communication may adversely influence the human body such as eyes. As a result, it is impossible to carry out high electric power communication. In addition, it is characterized in that it is easily influenced by shadowing, which causes decrease in communication quality due to characteristics of light when an obstruction such as a user exists. From these reasons, an available range is limited, and that communication may not be stably carried out.
  • To solve such problems, a communication device with the following structure uses illuminative light and infrared light together and is available even without lighting.
  • FIG. 1 is a block diagram of an illuminative light communication device, according to a first embodiment of the present invention. In the drawing, 311 denotes an optical modulator, 312 through 314 denote switches, 315 denotes an electric power divider, 316 denotes a lighting unit, 317 denotes a communicating unit, 321 denotes a data terminal, and 322 denotes a light receiving unit. A light source which emits light for lighting is provided in the lighting unit 316. Since a semiconductor light emitting element capable of operating at a fast response speed such as a white LED is used as a light source, illuminative light communication is possible by controlling blinking and/or light intensity. In addition, the communicating unit 317 may transmit data using an optical communication method other than illuminative light communication such as infrared light communication. Note that the lighting unit 316 and the communicating unit 317 may be deployed in the same device to be described later. Needless to say, those may be formed separately.
  • The optical modulator 311 and the electric power divider 315, which are used as a modulation means according to the present invention, modulate illuminative light by controlling blinking and/or light intensity of the lighting unit 316 in conformity with data. In this exemplary structure, the optical modulator 311 modulates received data using a predetermined modulation method, superimposes the resulting modulated data on an electric power waveform, and then transmits the resulting superimposed data waveform to the electric power divider 315 via the switch 313 or to the communicating unit 317 via the switch 314. This allows control of light intensity and on/off control of the lighting unit 316 and the communicating unit 317.
  • The electric power divider 315 mainly supplies electric power to the lighting unit 316. When an electric power superimposed with modulated data to be transmitted from the optical modulator 311 via the switch 313 is supplied, this electric power is supplied to the lighting unit 316.
  • The switches 312 through 314, which are switching means of the present invention, are turned on or off in conformity with an external command for turning on or off. The switch 312 allows or prohibits electric power supply to the electric power divider 315, thereby turning lights on or off. The switch 313 allows or prohibits provision of the modulated data to the electric power divider 315, thereby allowing or prohibiting transmission of data via illuminative light (illuminative light communication) while the lighting unit 316 is illuminating. The switch 314 allows or prohibits transmission of the modulated data to the communicating unit 317. Note that either the switch 312 or the switch 313 is turned on or both of them are turned off at the same time.
  • FIG. 2 is a table describing exemplary operations defined according to respective combinations of an on and an off status of the switches 312 through 314. When the switch 312 is on, the switch 313 is off, and the switch 314 is on, the communicating unit 317 carries out communication while the lighting unit 316 is illuminating as shown in FIG. 2 (1). Note that in FIG. 2, communication by the communicating unit 317 is described as ‘infrared light communication’, but the present invention is not limited to this. When setting of the switches 312 and 313 is the same as that just described, and the switch is off, only lighting is carried out without carrying out communication as shown in FIG. 2 (2). In this case, illuminative light is not used for communication. When the switch 312 is off, the switch 313 is on, and the switch 314 is on, as shown in FIG. 2 (3), the lighting unit 316 carries out lighting and illuminative light communication, and the communicating unit 317 also carries out data communication. In this configuration, when the switch 314 is off, the lighting unit 316 carries out lighting and illuminative light communication as shown in FIG. 2 (4). When both switches 312 and 313 are off, the lighting unit 316 is not used. In this configuration, when the switch 314 is on, the communicating unit 317 carries out data communication as shown in FIG. 2 (5). Otherwise, when the switch 314 is off, neither lighting nor communication is carried out as shown in FIG. 2 (6).
  • For example, in the case of carrying out communication when lighting is needed, data communication by the communicating unit 317 or illuminative light communication by the lighting unit 316 may be carried out by turning the switch 312 on, the switch 313 off, and the switch 314 on as shown in FIG. 2 (1), or turning the switch 312 off, the switch 313 on, and the switch 314 either on or off as shown in FIG. 2 (3) or FIG. 2 (4). On the other hand, when lighting is unnecessary, data communication by the communicating unit 317 is carried out by turning both switches 312 and 313 off, and the switch 314 on as shown in FIG. 2 (5).
  • As described above, illuminative light communication with lighting is possible, and communication without lighting is also possible. When infrared light communication is used as a communication method for the communicating unit 317 as described above, since infrared light is invisible, a person cannot sense the brightness during communication. Therefore, communication can be carried out even without lighting.
  • FIG. 3 is a schematic diagram of an exemplary lighting element, according to the present invention, which is preferable to be used for the illuminative light communication device, according to the present invention. FIG. 4 is a diagram describing an exemplary application of the lighting element, according to the present invention, to the illuminative light communication device, according to the present invention. In the drawing, the same symbols are given to the same parts as those in FIG. 8, and repetitive descriptions thereof are thus omitted. 335 denotes an infrared light emitting element. As shown in FIG. 8, needless to say, typical LEDs for lighting emit only visible lights, and do not emit infrared light. Accordingly, in the case of carrying out infrared light communication by the communicating unit 317 as described above, an infrared light LED must be additionally provided as the communicating unit 317. Needless to say, different LEDs may be used in the lighting unit 316 and the communicating unit 317. Alternatively, since both LEDs have similar structures, they can be integrated into one. An example of this case is shown in FIG. 3.
  • In the example shown in FIG. 3, the infrared light emitting element 335 is provided in an LED which emits white light by mixing red, green, and blue emitted lights as shown in FIG. 8A. Even though the infrared light emitting element 335 is provided in this manner, the package size is several millimeters wide and several millimeters high, which is almost the same as that of typical LEDs.
  • To use such lighting element in an illuminative light communication device, as shown in FIG. 4, the red light emitting element 332, the green light emitting element 333, and the blue light emitting element 334 are electrically connected to the electric power divider 315 so as to receive electric power with lighting or modulated electric power during illuminative light communication. In addition, the infrared light emitting element 335 is connected to the optical modulator 311 via the switch 314, allowing the optical modulator 311 to modulate and drive the infrared light emitting element 335 when the switch 314 is turned on. Furthermore, a shared electrode may be grounded along with the optical modulator 311 and the electric power divider 315.
  • For ordinary lighting, a visible white illuminative light is emitted by mixing three color lights emitted from the red light emitting element 332, the green light emitting element 333, and the blue light emitting element 334. High-speed modulation of this illuminative light allows illuminative light communication. In addition, light emitted from the infrared light emitting element 335 is invisible. However, high-speed modulation of light to be emitted allows wireless communication using invisible infrared light.
  • As described above, illuminative light communication by carrying out high-speed modulation of respective lights emitted from the red light emitting element 332, the green light emitting element 333, and the blue light emitting element 334, and infrared light communication by carrying out high-speed modulation of light emitted from the infrared light emitting element 335 can be changed over by changing settings of the switches 312 through 314 as described above. For example, when both lighting and communication are required, the red light emitting element 332, the green light emitting element 333, and the blue light emitting element 334 are operated to emit respective lights, and at the same time the emitted lights are modulated at a high speed, thereby transmitting data. As a result, since an optical power needed for lighting may also be used for communication, high-speed and high-quality communication can be carried out. In addition, when lighting is unnecessary but communication is required, communication is carried out by modulating and driving the infrared light emitting element 335 and operating it to emit infrared light. In this case, since infrared light is invisible, communication can be carried out even without lighting. In addition, typically, since people are often absent when lights are off, adverse influences on the human body such as eyes can be decreased.
  • Needless to say, infrared light communication may also be carried out with lighting, by modulating and driving the infrared light emitting element 335. In this case, what should be done on a receiver side is to receive only infrared light, and there is no need to deal with multiple wavelengths, allowing provision of a simplified structure.
  • Alternatively, communication using both illuminative light and infrared light may be carried out by modulating and driving respective lights from the red light emitting element 332, the green light emitting element 333, the blue light emitting element 334, and also modulating and driving light from the infrared light emitting element 335. In this case, since all power is available, higher-speed and higher-quality communication than that using the aforementioned methods is possible.
  • Note that since the red light emitting element 332, the green light emitting element 333, the blue light emitting element 334, and the infrared light emitting element 335 in the configuration shown in FIG. 3 may be driven independently, multiple pieces of data can be transmitted at the same time by dividing wavelengths.
  • FIG. 5 is a schematic diagram of another exemplary lighting element, according to the present invention, which is preferable to be used for the illuminative light communication device according to the present invention. FIG. 6 is a diagram describing another application of an exemplary lighting element, according to the present invention, to the illuminative light communication device according to the present invention. In the drawing, the same symbols are given to the same parts as those in FIG. 8, and repetitive descriptions thereof are thus omitted. 344 denotes an infrared light emitting element. In the example shown in FIG. 5, the infrared light emitting element 344 is provided in the LED device 341 structured as shown in FIG. 8B.
  • To use such a lighting element in the illuminative light communication device, as shown in FIG. 6, the light emitting element 342 is electrically connected to the electric power divider 315 and receives electric power with lighting, and receives modulated power during illuminative light communication. In addition, the infrared light emitting element 335 is electrically connected to the optical modulator 311 via the switch 314, allowing the optical modulator 311 to modulate and drive the infrared light emitting element 335 while the switch 314 is turned on. Furthermore, a shared electrode may be grounded along with the optical modulator 311 and the electric power divider 315.
  • For ordinary lighting, white light is emitted by irradiating the fluorescer 343 with blue light or ultraviolet light emitted from the light emitting element 342. In this case, illuminative light can be used for communication by carrying out high-speed modulation and driving the light emitting element 342. In addition, modulation and driving of the infrared light emitting element 344 allow wireless communication using invisible infrared light.
  • As with the example shown in FIG. 3, when both lighting and communication are required, modulation and driving of the light emitting element 342 are carried out, thereby transmitting data. As a result, since optical power needed for lighting can also be used for communication, high-speed and high-quality communication can be carried out. In addition, when lighting is unnecessary but communication is required, communication is carried out by modulating and driving the infrared light emitting element 335 to emit infrared light. In this case, since infrared light is invisible, communication can be carried out without lighting. In addition, typically, since people are often absent when lights are off, adverse influences on the human body such as eyes can be decreased.
  • Needless to say, as with the example shown in FIG. 3, with lighting, infrared light communication may be carried out by modulating and driving the infrared light emitting element 344, or by modulating and driving both the light emitting element 342 and the infrared light emitting element 344. Note that according to the configuration shown in FIG. 5, it is possible to transmit different pieces of data in parallel by driving the light emitting element 342 and the infrared light emitting element 344 individually, however, it is impossible to transmit different pieces of data via a red, a green, and a blue illuminative light wavelength, respectively.
  • FIG. 7 is a block diagram of an illuminative light communication device, according to a second embodiment of the present invention. Symbols in the drawing are the same as those in FIG. 1. According to the aforementioned first embodiment, communication without lighting is carried out by the communicating unit 317, which is additionally provided. In the second embodiment, an example where communication is carried out by a lighting unit 316 without a communicating unit 317 without lighting is shown.
  • In this exemplary structure, a switch 312 is used for turning lights on or off while a switch 313 is used for changing over between carrying out and not carrying out communication.
  • An electric power divider 315 drives the lighting unit 316 in accordance with the statuses of the respective switches 312 and 313. It carries out optical communication by modulating in accordance with data to be transmitted while supplying electric power sufficient for lighting to the lighting unit 316. On the other hand, it carries out communication without lighting by modulation-controlling in conformity with data to be transmitted so as to make the lighting unit 316 blink a necessary number of times for communication.
  • For example, when the switches 312 and 313 are turned on, illuminative light communication is carried out through modulation while the lighting unit 316 is illuminating. In addition, when the switch 312 is turned off and the switch 313 is turned on, communication is carried out by driving the lighting unit 316 in conformity with a modulation signal from an optical modulator 311, and making the lighting unit 316 emit for a short time in conformity with data to be transmitted. Short time light emission is unperceivable. Accordingly, even when light is actually emitted, it appears to the human eye as if not illuminating, thereby allowing carrying out communication even when not illuminating. Note that when the switch 312 is turned on and the switch 313 is turned off, ordinary lighting is carried out; otherwise, when both the switches 312 and 313 are turned off, communication is not carried out without lighting.
  • In this manner, since without lighting, the lighting unit 316 is controlled not to continuously illuminate, but is allowed to illuminate for a short time in conformity with data, visible light communication can be carried out by the lighting unit 316 while it appears to the human eye as if not illuminating.
  • As described above, other than communication through short time light emission, communication by making the lighting unit 316 emit a low intensity of light that allows communication is possible. In this case, without lighting, communication is often possible as long as lighting is not completely prohibited, or illuminating with almost the same intensity as that provided by a safety lamp.
  • As described above, the present invention allows provision of an illuminative light communication device capable of carrying out communication even without lighting, and also provision of a lighting element preferable to be used for the illuminative light communication device.
  • An illuminating facility may be available around the clock, or otherwise, may not illuminate while unattended, while surrounded by sunlight or while using a projector. An attempt of data transmission using only illuminative light in such a case develops a problem that lighting is required as data is transmitted. The present invention allows communication even without lighting by carrying out infrared light communication without lighting, or by using a low light intensity for short-time communication.
  • In addition, in the case of using infrared light communication, provision of a lighting element integrally made up of an illuminative light emitting element and an infrared light emitting element allows infrared light communication without lighting, as described above. Furthermore, lights ranging from visible light to infrared light can be emitted by an integrated element, which allows decrease in device size. In other words, rather than using an independent lighting system and an independent infrared data communication system, a new compact system structured by integrating lighting elements can be provided. From a different point of view, wireless infrared light data communication has been well-known, but it has been structured regardless of lighting. In other words, a transmitter/receiver unit other than a lighting unit is fixed to the ceiling. Therefore, it is often difficult to fix it across a large area of the ceiling, and an adverse influence of shadowing or the like may prevent utilization thereof. However, use of the lighting elements, according to the present invention, allows easy integration of an infrared light data communication system and a lighting system. Since lighting units are typically fixed to a large area of the ceiling or the like, the lighting elements, according to the present invention, can be easily fixed to the large area for data communication. As a result, an adverse influence of shadowing is decreased, and reliable wireless infrared light communication can be provided.

Claims (8)

1. An illuminative light communication device, comprising:
a lighting unit that emits light for lighting;
a modulator that controls blinking or light intensity of the lighting unit in accordance with data, thereby modulating the emitted light;
a communicating unit that transmits the data through optical communication other than illuminative light communication; and
a switching unit that changes over respective operations of the modulator and the communicating unit based on whether the lighting unit is on or off; wherein the switching unit changes over such that the communicating unit can operate while the lighting unit is off.
2. The illuminative light communication device according to claim 1, wherein the communicating unit transmits data through infrared light communication.
3. The illuminative light communication device according to claim 2, wherein: the lighting unit comprises a plurality of LED devices; the LED devices comprise an infrared light emitting device that can selectively emit infrared light; and the infrared light emitting device is used as the communicating unit.
4. An illuminative light communication device, comprising:
a lighting unit that emits light for lighting; and
a modulator that controls blinking or light intensity of the lighting unit in accordance with data, thereby modulating the emitted light; wherein in response to an on-switching instruction, the modulator modulate in accordance with the data while supplying sufficient electric power for lighting to the lighting unit, while in response to an off-switching instruction, the modulator modulate in accordance with the data to allow the lighting unit to blink a number of times necessary for communication.
5. A lighting device for emitting illuminative light, comprising:
an illuminative light emitting device that emits white light for lighting; and
an infrared light emitting device that emits infrared light for infrared data communication.
6. The lighting device according to claim 5, wherein the illuminative light emitting device is controlled for modulation to carry out illuminative light communication independently of the infrared light emitting device.
7. The lighting device according to claim 5, wherein the illuminative light emitting device comprises a red, a blue, and a green light emitting device, and the infrared light emitting device is arranged along with each light emitting device.
8. The lighting device according to claim 5, wherein the illuminative light emitting device comprises a blue or an ultraviolet light emitting device and fluorescer that is provided surrounding the light emitting device.
US12/461,223 2002-10-24 2009-08-05 Illuminative light communication device and lighting device Abandoned US20090297167A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/461,223 US20090297167A1 (en) 2002-10-24 2009-08-05 Illuminative light communication device and lighting device

Applications Claiming Priority (23)

Application Number Priority Date Filing Date Title
JP2002-309557 2002-10-24
JP2002309557A JP3827082B2 (en) 2002-10-24 2002-10-24 Broadcast system, light bulb, lighting device
JP2002-352075 2002-12-04
JP2002352075A JP3922560B2 (en) 2002-12-04 2002-12-04 Emergency light and emergency light wireless data transmission system
JP2003004560A JP2004221747A (en) 2003-01-10 2003-01-10 Illuminating light communication system
JP2003-004560 2003-01-10
JP2003-037746 2003-02-17
JP2003037746A JP2004248128A (en) 2003-02-17 2003-02-17 Electric appliance and controller
JP2003070673A JP4450303B2 (en) 2003-03-14 2003-03-14 Illumination light communication device and illumination element
JP2003-070673 2003-03-14
JP2003082278 2003-03-25
JP2003-082278 2003-03-25
JP2003-084819 2003-03-26
JP2003084819A JP2004297295A (en) 2003-03-26 2003-03-26 Illumination light communication system, illuminator, and illumination light source
JP2003161859A JP2004282685A (en) 2003-06-06 2003-06-06 Mobile optical communication system and mobile optical communication method
JP2003-161859 2003-06-06
JP2003177816A JP2004259248A (en) 2003-03-25 2003-06-23 Road lighting control system and method
JP2003-177816 2003-06-23
JP2003-323052 2003-09-16
JP2003323052A JP2004229273A (en) 2003-09-16 2003-09-16 Communication method using illumination light
US10/532,250 US7583901B2 (en) 2002-10-24 2003-10-23 Illuminative light communication device
PCT/JP2003/013539 WO2004038962A1 (en) 2002-10-24 2003-10-23 Illumination light communication device
US12/461,223 US20090297167A1 (en) 2002-10-24 2009-08-05 Illuminative light communication device and lighting device

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2003/013539 Continuation WO2004038962A1 (en) 2002-10-24 2003-10-23 Illumination light communication device
US10/532,250 Continuation US7583901B2 (en) 2002-10-24 2003-10-23 Illuminative light communication device

Publications (1)

Publication Number Publication Date
US20090297167A1 true US20090297167A1 (en) 2009-12-03

Family

ID=32180882

Family Applications (6)

Application Number Title Priority Date Filing Date
US10/532,250 Expired - Fee Related US7583901B2 (en) 2002-10-24 2003-10-23 Illuminative light communication device
US12/461,227 Abandoned US20090297166A1 (en) 2002-10-24 2009-08-05 Illuminative light communication device
US12/461,226 Abandoned US20090297156A1 (en) 2002-10-24 2009-08-05 Illuminative light communication system, lighting device and illuminative light source
US12/461,225 Abandoned US20090310976A1 (en) 2002-10-24 2009-08-05 Illuminative light communication system
US12/461,229 Expired - Fee Related US7929867B2 (en) 2002-10-24 2009-08-05 Emergency lamp and wireless emergency lamp data transmission system
US12/461,223 Abandoned US20090297167A1 (en) 2002-10-24 2009-08-05 Illuminative light communication device and lighting device

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US10/532,250 Expired - Fee Related US7583901B2 (en) 2002-10-24 2003-10-23 Illuminative light communication device
US12/461,227 Abandoned US20090297166A1 (en) 2002-10-24 2009-08-05 Illuminative light communication device
US12/461,226 Abandoned US20090297156A1 (en) 2002-10-24 2009-08-05 Illuminative light communication system, lighting device and illuminative light source
US12/461,225 Abandoned US20090310976A1 (en) 2002-10-24 2009-08-05 Illuminative light communication system
US12/461,229 Expired - Fee Related US7929867B2 (en) 2002-10-24 2009-08-05 Emergency lamp and wireless emergency lamp data transmission system

Country Status (9)

Country Link
US (6) US7583901B2 (en)
EP (8) EP1860800A1 (en)
KR (1) KR100970034B1 (en)
CN (1) CN101714898A (en)
AT (1) ATE372614T1 (en)
AU (1) AU2003275606A1 (en)
DE (3) DE60336770D1 (en)
HK (2) HK1087848A1 (en)
WO (1) WO2004038962A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090027511A1 (en) * 2005-03-25 2009-01-29 Nikon Corporation Illumination Device, Imaging Device, and Imaging System
US20100254714A1 (en) * 2007-09-11 2010-10-07 Oscar Cristobal Gaete Jamett Data transmission with room illuminations having light emitting diodes
DE102012001398A1 (en) * 2012-01-26 2013-08-01 Eads Deutschland Gmbh Transmission apparatus for optical free-space data communication based on discrete power levels
US20140099107A1 (en) * 2012-10-09 2014-04-10 Booz, Allen & Hamilton Method and system for data transmission and communication using imperceptible differences in visible light
US20160094291A1 (en) * 2014-09-26 2016-03-31 Industrial Technology Research Institute Optical communication device and control method thereof
US9377639B2 (en) 2014-02-19 2016-06-28 Panasonic Intellectual Property Corporation Of America Transmitter and transmitting method
US9591232B2 (en) 2012-12-27 2017-03-07 Panasonic Intellectual Property Corporation Of America Information communication method
US9608725B2 (en) 2012-12-27 2017-03-28 Panasonic Intellectual Property Corporation Of America Information processing program, reception program, and information processing apparatus
US9608727B2 (en) 2012-12-27 2017-03-28 Panasonic Intellectual Property Corporation Of America Switched pixel visible light transmitting method, apparatus and program
US9613596B2 (en) 2012-12-27 2017-04-04 Panasonic Intellectual Property Corporation Of America Video display method using visible light communication image including stripe patterns having different pitches
US9635278B2 (en) 2012-12-27 2017-04-25 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information specified by striped pattern of bright lines
US9641766B2 (en) 2012-12-27 2017-05-02 Panasonic Intellectual Property Corporation Of America Information communication method
US9646568B2 (en) 2012-12-27 2017-05-09 Panasonic Intellectual Property Corporation Of America Display method
US9713234B2 (en) 2015-04-10 2017-07-18 Panasonic Intellectual Property Management Co., Ltd. Lighting fixture, lighting system, and method performed by the lighting fixture
US9768869B2 (en) 2012-12-27 2017-09-19 Panasonic Intellectual Property Corporation Of America Information communication method
US9918016B2 (en) 2012-12-27 2018-03-13 Panasonic Intellectual Property Corporation Of America Information communication apparatus, method, and recording medium using switchable normal mode and visible light communication mode
US9960847B2 (en) 2015-09-10 2018-05-01 Panasonic Intellectual Property Management Co., Ltd. Information presenting method, server, and information presenting system
DE102017102136A1 (en) 2017-02-03 2018-08-09 Osram Opto Semiconductors Gmbh Optoelectronic lighting device and method for operating an optoelectronic lighting device
US10148354B2 (en) 2012-12-27 2018-12-04 Panasonic Intellectual Property Corporation Of America Luminance change information communication method
US10225014B2 (en) 2012-12-27 2019-03-05 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information using ID list and bright line image
US20190132055A1 (en) * 2016-06-27 2019-05-02 Philips Lighting Holding B.V. Emitting coded light from a multi-lamp luminaire
US10303945B2 (en) 2012-12-27 2019-05-28 Panasonic Intellectual Property Corporation Of America Display method and display apparatus
US10523876B2 (en) 2012-12-27 2019-12-31 Panasonic Intellectual Property Corporation Of America Information communication method
US10530486B2 (en) 2012-12-27 2020-01-07 Panasonic Intellectual Property Corporation Of America Transmitting method, transmitting apparatus, and program
US10951310B2 (en) 2012-12-27 2021-03-16 Panasonic Intellectual Property Corporation Of America Communication method, communication device, and transmitter
WO2021144202A1 (en) 2020-01-13 2021-07-22 Signify Holding B.V. Lifi power management

Families Citing this family (476)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130243425A1 (en) * 1996-12-24 2013-09-19 Convergence Wireless, Inc. Method and apparatus for the zonal transmission of data using building lighting fixtures
WO2006041486A1 (en) * 2004-10-01 2006-04-20 Franklin Philip G Method and apparatus for the zonal transmission of data using building lighting fixtures
US8188878B2 (en) 2000-11-15 2012-05-29 Federal Law Enforcement Development Services, Inc. LED light communication system
US8536985B1 (en) * 2001-07-30 2013-09-17 Imaging Systems Technology, Inc. Data isolation
US8462079B2 (en) * 2002-10-15 2013-06-11 Gregory A Piccionelli Ornament apparatus, system and method
FR2852168B1 (en) 2003-03-06 2005-04-29 Excem DIGITAL METHOD AND DEVICE FOR TRANSMISSION WITH LOW CROSSTALK
FR2852467B1 (en) 2003-03-13 2005-07-15 Excem METHOD AND DEVICE FOR TRANSMISSION WITHOUT CROSSTALK
JP2005218066A (en) * 2004-02-02 2005-08-11 Nakagawa Kenkyusho:Kk Positional information communication device
US10575376B2 (en) 2004-02-25 2020-02-25 Lynk Labs, Inc. AC light emitting diode and AC LED drive methods and apparatus
US10499465B2 (en) 2004-02-25 2019-12-03 Lynk Labs, Inc. High frequency multi-voltage and multi-brightness LED lighting devices and systems and methods of using same
WO2011143510A1 (en) 2010-05-12 2011-11-17 Lynk Labs, Inc. Led lighting system
KR20060130715A (en) * 2004-03-03 2006-12-19 닛본 덴끼 가부시끼가이샤 Positioning system, positioning method, and program thereof
US9312929B2 (en) 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
KR100818392B1 (en) * 2004-05-31 2008-04-02 가시오게산키 가부시키가이샤 Information reception device, information transmission system, and information reception method
JPWO2006001237A1 (en) 2004-06-25 2008-04-17 日本電気株式会社 Article position management system, article position management method, terminal device, server, and article position management program
US9685997B2 (en) 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
JP2006085594A (en) * 2004-09-17 2006-03-30 Nec Corp Visible light information providing device and system, visible light information reader, visible light information providing method, its program and computer readable information recording medium with the program recorded
FR2875653B1 (en) * 2004-09-20 2006-10-20 Excem Sa TRANSMISSION DEVICE FOR OPTICAL TRANSMISSION IN FREE SPACE
WO2006033263A1 (en) 2004-09-22 2006-03-30 Kyocera Corporation Optical transmission apparatus and optical communication system
US7689175B2 (en) * 2005-01-21 2010-03-30 Sony Corporation Configurable frequency band elimination for powerline network
GB2424777A (en) * 2005-04-01 2006-10-04 Agilent Technologies Inc Transmitting a wake-up instruction to a receiving device by modulating data on illumination light, such as that provided by an electroluminescent room light.
EP1882395B1 (en) 2005-04-22 2019-06-19 Signify Holding B.V. Method and system for lighting control
KR100614518B1 (en) * 2005-07-29 2006-08-22 (주)포스트미디어 Infrared rays tag equipment including radiation instrument offering infrared rays
US7570246B2 (en) * 2005-08-01 2009-08-04 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Method and apparatus for communication using pulse-width-modulated visible light
JP4643403B2 (en) * 2005-09-13 2011-03-02 株式会社東芝 Visible light communication system and method
JP4325604B2 (en) * 2005-09-30 2009-09-02 日本電気株式会社 Visible light control device, visible light communication device, visible light control method and program
JP4849872B2 (en) * 2005-11-04 2012-01-11 パナソニック株式会社 Electrical device, visible light communication method, and circuit module
US7977942B2 (en) * 2005-11-16 2011-07-12 Board Of Regents, The University Of Texas System Apparatus and method for tracking movement of a target
KR100725945B1 (en) * 2006-01-03 2007-06-11 삼성전자주식회사 Broadcasting signal retransmitting system and method using illuminated light communication
DE102006003846A1 (en) * 2006-01-26 2007-08-09 Siemens Ag Device and method for transmitting at least one secret parameter within a room and an arrangement with at least one transmitter and one room
CN101026413B (en) * 2006-02-17 2012-01-04 华为技术有限公司 Lighting light wireless communication system
CN101395826B (en) * 2006-03-02 2012-04-11 皇家飞利浦电子股份有限公司 A lighting device
FR2898226B1 (en) * 2006-03-06 2009-03-06 Excem Soc Par Actions Simplifi ELECTROLUMINESCENT TRANSMISSION DEVICE FOR OPTICAL TRANSMISSION IN FREE SPACE
JP2007274566A (en) * 2006-03-31 2007-10-18 Nakagawa Kenkyusho:Kk Illumination light communication device
KR100790181B1 (en) * 2006-04-24 2008-01-02 삼성전자주식회사 Illumination light communication system and method thereof
WO2008007268A2 (en) * 2006-06-23 2008-01-17 Koninklijke Philips Electronics N.V. Method and device for driving an array of light sources
US8494367B2 (en) * 2006-06-28 2013-07-23 Koninklijke Philips Electronics N.V. Method and device for modulating the light emission of a lighting device
TW200642316A (en) * 2006-06-29 2006-12-01 Formolight Technologies Inc Light-illumination communication method
KR101271293B1 (en) * 2006-09-06 2013-06-04 삼성전자주식회사 Hand over system of illumination light communication and method therefor
CN101578704B (en) * 2006-09-28 2012-07-18 皇家飞利浦电子股份有限公司 Solid-state light source with color feedback and combined communication means
DE102006046489B4 (en) * 2006-09-29 2020-08-13 Tridonic Gmbh & Co Kg Method and system for wireless communication between several operating devices for lamps
KR101272440B1 (en) * 2006-10-18 2013-06-07 삼성전자주식회사 Video signal output device for providing data signal using back light unit and method thereof
KR100770918B1 (en) * 2006-10-20 2007-10-26 삼성전자주식회사 Apparatus and method for controlling emitted visible light color according to current state in visible light optical communication
JP4885234B2 (en) * 2006-10-23 2012-02-29 パナソニック株式会社 Optical space transmission system using visible light and infrared light
KR100810297B1 (en) * 2006-10-31 2008-03-06 삼성전자주식회사 Wireless communication interface for portable wireless terminal
KR100834621B1 (en) * 2006-11-22 2008-06-02 삼성전자주식회사 Optical transceiver for visible light communication and optical communication system using the same
US20080122994A1 (en) * 2006-11-28 2008-05-29 Honeywell International Inc. LCD based communicator system
DE102007006097A1 (en) * 2007-02-02 2008-08-07 Kwasny Gmbh Two-component pressure box with sealed release mechanism
US8059972B2 (en) * 2007-03-01 2011-11-15 Taiyo Yuden Co., Ltd. Optical receiver and visible light communication system
JP2008219773A (en) * 2007-03-07 2008-09-18 Toshiba Corp Transmitter, receiver, and optical communication method
KR100875925B1 (en) * 2007-03-22 2008-12-26 한국전자통신연구원 High Power Efficiency Optical-Wireless Senders
US7917034B2 (en) 2007-04-13 2011-03-29 Motorola Mobility, Inc. Synchronization and processing of secure information via optically transmitted data
US20080253202A1 (en) * 2007-04-13 2008-10-16 Motorola, Inc. Communicating Information Using an Existing Light Source of an Electronic Device
KR101355302B1 (en) * 2007-05-11 2014-02-05 삼성전자주식회사 Navigation system and method using visible light communication
US9100124B2 (en) 2007-05-24 2015-08-04 Federal Law Enforcement Development Services, Inc. LED Light Fixture
US9294198B2 (en) * 2007-05-24 2016-03-22 Federal Law Enforcement Development Services, Inc. Pulsed light communication key
US9455783B2 (en) 2013-05-06 2016-09-27 Federal Law Enforcement Development Services, Inc. Network security and variable pulse wave form with continuous communication
US9258864B2 (en) 2007-05-24 2016-02-09 Federal Law Enforcement Development Services, Inc. LED light control and management system
US11265082B2 (en) * 2007-05-24 2022-03-01 Federal Law Enforcement Development Services, Inc. LED light control assembly and system
WO2008148050A1 (en) 2007-05-24 2008-12-04 Federal Law Enforcement Development Services, Inc. Led light interior room and building communication system
US9414458B2 (en) 2007-05-24 2016-08-09 Federal Law Enforcement Development Services, Inc. LED light control assembly and system
JP4859761B2 (en) * 2007-06-13 2012-01-25 パナソニック株式会社 Optical space transmission equipment
JP5804702B2 (en) * 2007-06-18 2015-11-04 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Directionally controllable lighting unit
KR101375015B1 (en) * 2007-07-06 2014-03-14 삼성전자주식회사 Apparatus and method for communication link keeping visibility using visible light communication
CN101378613B (en) * 2007-08-27 2012-07-04 佶益投资股份有限公司 LED light source and LED lamp body
US7974536B2 (en) 2007-09-06 2011-07-05 Motorola Mobility, Inc. System and method for pre-configuring and authenticating data communication links
US10986714B2 (en) 2007-10-06 2021-04-20 Lynk Labs, Inc. Lighting system having two or more LED packages having a specified separation distance
US11297705B2 (en) 2007-10-06 2022-04-05 Lynk Labs, Inc. Multi-voltage and multi-brightness LED lighting devices and methods of using same
US11317495B2 (en) 2007-10-06 2022-04-26 Lynk Labs, Inc. LED circuits and assemblies
US20090122045A1 (en) * 2007-11-09 2009-05-14 Kabushiki Kaisha Toshiba Power Source Display Apparatus, Power Source Display Method, and Electronic Apparatus
US8118447B2 (en) 2007-12-20 2012-02-21 Altair Engineering, Inc. LED lighting apparatus with swivel connection
KR101508976B1 (en) * 2007-12-31 2015-04-10 삼성전자주식회사 navigation system and method using visible light communication
KR101442836B1 (en) * 2008-01-07 2014-11-04 삼성전자주식회사 Method for providing additional information of video using visible communication and apparatus for the same
DE102008062674B3 (en) * 2008-12-17 2010-06-17 Osram Gesellschaft mit beschränkter Haftung Method for controlling the radiation behavior of luminaires in an arrangement of a plurality of luminaires and arrangement of a plurality of luminaires
JP2009186203A (en) * 2008-02-04 2009-08-20 B-Core Inc Optical recognition data display method and marking method by light-emitting object with a plurality of colors, light-emitting device, and data and position detection method
JP2009225196A (en) * 2008-03-17 2009-10-01 Tamura Seisakusho Co Ltd Visible light communication system and optical wireless lan device
JP2009222579A (en) * 2008-03-17 2009-10-01 Kyocera Corp Navigation apparatus and navigation method
US9163518B2 (en) * 2008-03-18 2015-10-20 United Technologies Corporation Full coverage trailing edge microcircuit with alternating converging exits
JP5374202B2 (en) 2008-03-28 2013-12-25 株式会社プランナーズランド Visible light communication device
JP4654264B2 (en) * 2008-04-10 2011-03-16 シャープ株式会社 Optical communication device and electronic equipment
US8390291B2 (en) * 2008-05-19 2013-03-05 The Board Of Regents, The University Of Texas System Apparatus and method for tracking movement of a target
US8360599B2 (en) 2008-05-23 2013-01-29 Ilumisys, Inc. Electric shock resistant L.E.D. based light
US8294483B2 (en) 2008-05-30 2012-10-23 Freescale Semiconductor, Inc. Testing of multiple integrated circuits
US8032030B2 (en) 2008-05-30 2011-10-04 Freescale Semiconductor, Inc. Multiple core system
CN105827332B (en) * 2008-06-11 2019-09-03 飞利浦灯具控股公司 Optical receiver for lighting system
GB2460721A (en) * 2008-06-13 2009-12-16 Red Dot Technologies Ltd Electrical apparatus having operation status indicator which cn transmit parameter values
DE102008041337A1 (en) * 2008-08-19 2010-02-25 Robert Bosch Gmbh IR optics for audio transmission
US8441216B2 (en) * 2008-09-03 2013-05-14 ALVA Systems, Inc. Power supply system for a building
US8521035B2 (en) * 2008-09-05 2013-08-27 Ketra, Inc. Systems and methods for visible light communication
US8456092B2 (en) * 2008-09-05 2013-06-04 Ketra, Inc. Broad spectrum light source calibration systems and related methods
US10210750B2 (en) 2011-09-13 2019-02-19 Lutron Electronics Co., Inc. System and method of extending the communication range in a visible light communication system
US8674913B2 (en) 2008-09-05 2014-03-18 Ketra, Inc. LED transceiver front end circuitry and related methods
US8773336B2 (en) 2008-09-05 2014-07-08 Ketra, Inc. Illumination devices and related systems and methods
US9509525B2 (en) 2008-09-05 2016-11-29 Ketra, Inc. Intelligent illumination device
US9276766B2 (en) 2008-09-05 2016-03-01 Ketra, Inc. Display calibration systems and related methods
WO2010027459A2 (en) 2008-09-05 2010-03-11 Firefly Green Technologies Inc. Optical communication device, method and system
US8471496B2 (en) * 2008-09-05 2013-06-25 Ketra, Inc. LED calibration systems and related methods
US20110063214A1 (en) * 2008-09-05 2011-03-17 Knapp David J Display and optical pointer systems and related methods
JP4653828B2 (en) * 2008-09-12 2011-03-16 株式会社東芝 Visible light communication system and visible light communication apparatus
US8687977B2 (en) 2008-09-18 2014-04-01 Sennheiser Electronic Gmbh & Co. Kg Reading lamp
US8214084B2 (en) * 2008-10-24 2012-07-03 Ilumisys, Inc. Integration of LED lighting with building controls
US8653984B2 (en) 2008-10-24 2014-02-18 Ilumisys, Inc. Integration of LED lighting control with emergency notification systems
US8324817B2 (en) 2008-10-24 2012-12-04 Ilumisys, Inc. Light and light sensor
US8901823B2 (en) 2008-10-24 2014-12-02 Ilumisys, Inc. Light and light sensor
US7938562B2 (en) 2008-10-24 2011-05-10 Altair Engineering, Inc. Lighting including integral communication apparatus
JP5475798B2 (en) 2008-12-04 2014-04-16 コーニンクレッカ フィリップス エヌ ヴェ Illumination apparatus and method for embedding a data signal in a luminance output using an AC drive light source
KR100921954B1 (en) * 2009-01-30 2009-10-23 주식회사 아이디로 Visible ray multiple communication system
KR200453114Y1 (en) * 2009-01-30 2011-04-13 주식회사 메자인 Monitor Type Cigarette Signboard for Indoor
KR101042772B1 (en) 2009-02-13 2011-06-20 삼성전자주식회사 Method for driving color lamp and apparatus thereof
KR20100094910A (en) * 2009-02-19 2010-08-27 삼성전자주식회사 Apparatus for controlling lighting equipment for lighting communication
CN102334387B (en) 2009-02-26 2016-06-22 皇家飞利浦电子股份有限公司 The method and apparatus of network route message of interconnection equipment in the control system of networking
US8890773B1 (en) 2009-04-01 2014-11-18 Federal Law Enforcement Development Services, Inc. Visible light transceiver glasses
WO2010116299A1 (en) * 2009-04-08 2010-10-14 Koninklijke Philips Electronics N.V. Efficient address assignment in coded lighting systems
JP5272863B2 (en) * 2009-04-14 2013-08-28 ソニー株式会社 Transmission apparatus, imaging apparatus, and transmission method
EP2436236A4 (en) 2009-05-28 2012-11-21 Lynk Labs Inc Multi-voltage and multi-brightness led lighting devices and methods of using same
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US20100322635A1 (en) * 2009-06-18 2010-12-23 Sony Ericsson Mobile Communications Ab Using ambient led light for broadcasting info and navigation
EP2454922A4 (en) * 2009-07-12 2017-03-29 Firefly Green Technologies Inc. Intelligent illumination device
KR101596471B1 (en) * 2009-08-24 2016-02-23 삼성디스플레이 주식회사 Visible light communications system
GB0915163D0 (en) * 2009-09-01 2009-10-07 Board A communication system
KR101101889B1 (en) * 2009-09-03 2012-01-05 유영호 Lighting system for cultivation of plants
CN102714549A (en) * 2009-09-17 2012-10-03 杜伊斯堡-埃森大学 Transmitter and receiver for transceiving optical signals
US8639124B2 (en) 2009-09-18 2014-01-28 Interdigital Patent Holdings, Inc. Method and apparatus for dimming with rate control for visible light communications (VLC)
US8792790B2 (en) * 2009-09-19 2014-07-29 Samsung Electronics Co., Ltd Apparatus and method for supporting mobility of a mobile terminal that performs visible light communication
KR101269211B1 (en) 2009-09-24 2013-05-30 한국전자통신연구원 Textile-type interface devices for optical communication in wearable computing system
KR20110037229A (en) * 2009-10-06 2011-04-13 삼성전자주식회사 Display apparatus, system and method for outputting data thereof
KR101654934B1 (en) * 2009-10-31 2016-09-23 삼성전자주식회사 Visible communication method and apparatus
FR2953080B1 (en) * 2009-11-24 2012-01-13 Hmi Innovation LED LIGHTING DEVICE INCORPORATING IMPROVED ORDER
KR101656525B1 (en) 2010-01-08 2016-09-12 삼성전자주식회사 Apparatus and method for transmitting synchronized data using visible light communication
KR20110083961A (en) * 2010-01-15 2011-07-21 삼성전자주식회사 System and method for indoor navigation using led lamp
US10977965B2 (en) 2010-01-29 2021-04-13 Avery Dennison Retail Information Services, Llc Smart sign box using electronic interactions
ES2504973T3 (en) 2010-01-29 2014-10-09 Avery Dennison Corporation RFID / NFC panel and / or assembly used in intelligent signaling applications and method of use
KR100991062B1 (en) * 2010-03-12 2010-10-29 한상규 Transmission device for visible light communication and power control method of visible light in transmission device
CA2792940A1 (en) 2010-03-26 2011-09-19 Ilumisys, Inc. Led light with thermoelectric generator
WO2011119958A1 (en) 2010-03-26 2011-09-29 Altair Engineering, Inc. Inside-out led bulb
US9288525B2 (en) 2010-04-27 2016-03-15 Interdigital Patent Holdings, Inc Inter-device communications using visible light
EP2577569B1 (en) * 2010-05-25 2016-07-27 RF Code, Inc. Asset tracking system for rack-based enclosures
US20110293286A1 (en) * 2010-05-25 2011-12-01 Leddynamics, Inc. Method for optical data transmission using existing indicator or illumination lamp
JP5499905B2 (en) 2010-05-28 2014-05-21 三菱電機株式会社 Display / lighting device
JP2011254285A (en) * 2010-06-02 2011-12-15 Jamco Corp Visible light radio communication apparatus for aircraft cabin amusement system
JP2011254317A (en) * 2010-06-02 2011-12-15 Sony Corp Transmission device, transmission method, reception device, reception method, communication system and communication method
US8494374B2 (en) * 2010-06-14 2013-07-23 Streamlight, Inc. Portable light providing illumination and data
US8261971B2 (en) 2010-06-30 2012-09-11 Hong Kong Applied Science And Technology Research Self-powered electronic label
CN101909389A (en) * 2010-07-07 2010-12-08 四川电力试验研究院 Energy-saving monitoring system of wireless communication street lamp
JP5842090B2 (en) * 2010-08-25 2016-01-13 パナソニックIpマネジメント株式会社 Illumination light communication device
US9386668B2 (en) 2010-09-30 2016-07-05 Ketra, Inc. Lighting control system
USRE49454E1 (en) * 2010-09-30 2023-03-07 Lutron Technology Company Llc Lighting control system
US20120093517A1 (en) * 2010-10-15 2012-04-19 Samsung Electronics Co., Ltd. Cell design and mobility support for visible light communication
US8523394B2 (en) 2010-10-29 2013-09-03 Ilumisys, Inc. Mechanisms for reducing risk of shock during installation of light tube
EP2455840A1 (en) * 2010-11-02 2012-05-23 Sony Ericsson Mobile Communications AB Communication device and method
JP5959150B2 (en) * 2011-01-12 2016-08-02 オリンパス株式会社 Endoscope system
WO2012097291A1 (en) 2011-01-14 2012-07-19 Federal Law Enforcement Development Services, Inc. Method of providing lumens and tracking of lumen consumption
JP5752945B2 (en) * 2011-01-24 2015-07-22 オリンパス株式会社 Endoscope system
DE102011003516A1 (en) * 2011-02-02 2012-08-02 Osram Ag Emergency power box has semiconductor light source that is utilized for displaying usage data and for optically transmitting the usage data
KR101519938B1 (en) 2011-02-25 2015-05-13 트릴라이트 테크놀로지스 게엠베하 Display device with movement elements for obtaining a high resolution and/or a 3d effect
KR101850815B1 (en) 2011-03-08 2018-04-20 삼성전자주식회사 Wireless network system, wireless device and registering method of the wireless device
KR101247901B1 (en) * 2011-04-19 2013-03-26 영남대학교 산학협력단 Visible light transmitter, visible light receiver, visible light communication system
WO2011113385A2 (en) * 2011-04-26 2011-09-22 华为技术有限公司 Method, base station and system for wireless communication
US8666254B2 (en) * 2011-04-26 2014-03-04 The Boeing Company System and method of wireless optical communication
US20120320627A1 (en) 2011-05-17 2012-12-20 Pixi Lighting Llc Flat panel lighting device and driving circuitry
WO2012157976A2 (en) * 2011-05-17 2012-11-22 한양대학교 산학협력단 Lighting apparatus for measuring the position of a mobile terminal, and position measuring system using same
KR101797946B1 (en) * 2011-05-25 2017-12-12 삼성전자주식회사 Self diagnostic system of home appliance and operating method the same
US20120321321A1 (en) * 2011-06-14 2012-12-20 Scott Riesebosch Methods of communication utilizing an led lamp
US8928735B2 (en) * 2011-06-14 2015-01-06 Microsoft Corporation Combined lighting, projection, and image capture without video feedback
US8749172B2 (en) 2011-07-08 2014-06-10 Ketra, Inc. Luminance control for illumination devices
KR20130008422A (en) * 2011-07-12 2013-01-22 삼성전자주식회사 Visible light communication method using illuminance sensor and mobile communication terminal therefor
US8457502B2 (en) 2011-07-26 2013-06-04 ByteLight, Inc. Method and system for modulating a beacon light source in a light based positioning system
US9444547B2 (en) 2011-07-26 2016-09-13 Abl Ip Holding Llc Self-identifying one-way authentication method using optical signals
US8432438B2 (en) 2011-07-26 2013-04-30 ByteLight, Inc. Device for dimming a beacon light source used in a light based positioning system
US9723676B2 (en) 2011-07-26 2017-08-01 Abl Ip Holding Llc Method and system for modifying a beacon light source for use in a light based positioning system
US9787397B2 (en) 2011-07-26 2017-10-10 Abl Ip Holding Llc Self identifying modulated light source
US8436896B2 (en) 2011-07-26 2013-05-07 ByteLight, Inc. Method and system for demodulating a digital pulse recognition signal in a light based positioning system using a Fourier transform
US8520065B2 (en) 2011-07-26 2013-08-27 ByteLight, Inc. Method and system for video processing to determine digital pulse recognition tones
US8866391B2 (en) 2011-07-26 2014-10-21 ByteLight, Inc. Self identifying modulated light source
US8334901B1 (en) 2011-07-26 2012-12-18 ByteLight, Inc. Method and system for modulating a light source in a light based positioning system using a DC bias
WO2013016439A1 (en) * 2011-07-26 2013-01-31 ByteLight, Inc. Self identifying modulater light source
US8334898B1 (en) 2011-07-26 2012-12-18 ByteLight, Inc. Method and system for configuring an imaging device for the reception of digital pulse recognition information
US8416290B2 (en) 2011-07-26 2013-04-09 ByteLight, Inc. Method and system for digital pulse recognition demodulation
US8994799B2 (en) 2011-07-26 2015-03-31 ByteLight, Inc. Method and system for determining the position of a device in a light based positioning system using locally stored maps
US8964016B2 (en) 2011-07-26 2015-02-24 ByteLight, Inc. Content delivery based on a light positioning system
US9418115B2 (en) 2011-07-26 2016-08-16 Abl Ip Holding Llc Location-based mobile services and applications
RU2599201C2 (en) 2011-08-17 2016-10-10 Конинклейке Филипс Н.В. Method and system for locating on a dc lighting and power grid
US20140239809A1 (en) 2011-08-18 2014-08-28 Lynk Labs, Inc. Devices and systems having ac led circuits and methods of driving the same
US9072171B2 (en) 2011-08-24 2015-06-30 Ilumisys, Inc. Circuit board mount for LED light
CN102957481A (en) * 2011-08-31 2013-03-06 深圳光启高等理工研究院 Method and system for converting signals of photo-communication sending end
CN104025556B (en) 2011-09-01 2018-08-10 艾利丹尼森公司 Equipment, system and method for consumer's tracking
DE102011082490A1 (en) 2011-09-12 2013-03-14 Siemens Aktiengesellschaft Light profile hose
US8492995B2 (en) 2011-10-07 2013-07-23 Environmental Light Technologies Corp. Wavelength sensing lighting system and associated methods
US8515289B2 (en) * 2011-11-21 2013-08-20 Environmental Light Technologies Corp. Wavelength sensing lighting system and associated methods for national security application
KR20130037997A (en) * 2011-10-07 2013-04-17 한국전자통신연구원 System and method for wireless communication using directive communication
US8630908B2 (en) 2011-11-02 2014-01-14 Avery Dennison Corporation Distributed point of sale, electronic article surveillance, and product information system, apparatus and method
US8547036B2 (en) * 2011-11-20 2013-10-01 Available For Licensing Solid state light system with broadband optical communication capability
WO2013082609A1 (en) 2011-12-02 2013-06-06 Lynk Labs, Inc. Color temperature controlled and low thd led lighting devices and systems and methods of driving the same
US8749146B2 (en) 2011-12-05 2014-06-10 Mojo Labs, Inc. Auto commissioning of light fixture using optical bursts
US8749145B2 (en) 2011-12-05 2014-06-10 Mojo Labs, Inc. Determination of lighting contributions for light fixtures using optical bursts
US8842009B2 (en) 2012-06-07 2014-09-23 Mojo Labs, Inc. Multiple light sensor multiple light fixture control
US20140334825A1 (en) * 2011-12-06 2014-11-13 Koninklijke Philips N.V. Protocols for coded light communications
KR20130093699A (en) * 2011-12-23 2013-08-23 삼성전자주식회사 Apparatus for receiving and transmitting optical information
CN104081753B (en) 2011-12-31 2016-09-21 李汶基 The most flash visible light communication system, dispensing device, reception device and communication means
JP6125535B2 (en) * 2012-01-17 2017-05-10 フィリップス ライティング ホールディング ビー ヴィ Visible light communication
WO2013131002A1 (en) 2012-03-02 2013-09-06 Ilumisys, Inc. Electrical connector header for an led-based light
TWI467935B (en) * 2012-03-06 2015-01-01 Ind Tech Res Inst Visible light communication transceiver and system
JP2013188844A (en) * 2012-03-14 2013-09-26 Hitachi Koki Co Ltd Electric tool and method of transmitting data
US8873965B2 (en) * 2012-04-10 2014-10-28 Disney Enterprises, Inc. Visible light communication with flickering prevention
JP5936902B2 (en) * 2012-04-13 2016-06-22 株式会社東芝 Transmission system, transmission device and reception device
DE102012206691A1 (en) * 2012-04-24 2013-10-24 Zumtobel Lighting Gmbh Road and path lighting system
US8680457B2 (en) 2012-05-07 2014-03-25 Lighting Science Group Corporation Motion detection system and associated methods having at least one LED of second set of LEDs to vary its voltage
JP5393917B1 (en) 2012-05-24 2014-01-22 パナソニック株式会社 Information communication method and information communication apparatus
JP2013257212A (en) * 2012-06-12 2013-12-26 Ricoh Co Ltd Light device, communication device and positional information management system
EP2675084B1 (en) * 2012-06-15 2019-01-23 VLC Co., Ltd. Content supplying system which uses spatial light
US8958700B2 (en) 2012-06-15 2015-02-17 Vlc Co., Ltd. Spatial light communication device
JP6019442B2 (en) 2012-06-22 2016-11-02 株式会社アウトスタンディングテクノロジー Content provision system using spatial light transmission
DE102012012362B3 (en) * 2012-06-22 2013-08-01 Bundesrepublik Deutschland, vertreten durch das Bundesministerium der Verteidigung, dieses vertreten durch das Bundesamt für Ausrüstung, Informationstechnik und Nutzung der Bundeswehr Device for establishing communication between military vehicles, has radio station to which message received back over second radio device is sent such that radio station is paged with same message from radio devices
US9872367B2 (en) * 2012-07-01 2018-01-16 Cree, Inc. Handheld device for grouping a plurality of lighting fixtures
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
WO2014008463A1 (en) 2012-07-06 2014-01-09 Ilumisys, Inc. Power supply assembly for led-based light tube
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US20180048178A1 (en) * 2013-06-25 2018-02-15 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US9271367B2 (en) 2012-07-09 2016-02-23 Ilumisys, Inc. System and method for controlling operation of an LED-based light
JP5994486B2 (en) * 2012-08-27 2016-09-21 富士通株式会社 Optical transmission system, optical transmission method, and optical module
CN102868449A (en) * 2012-09-05 2013-01-09 华中科技大学 Visible light communication-based underground radio communication system
NL2009458C2 (en) 2012-09-13 2014-03-18 Eldolab Holding Bv Led fixture and led lighting arrangement comprising such led fixture.
EP2771845B1 (en) 2012-09-10 2019-01-02 Avery Dennison Corporation Method for preventing unauthorized diversion of nfc tags
CN103684595B (en) * 2012-09-18 2019-07-09 中兴通讯股份有限公司 Visible light communication system
CN103684529B (en) * 2012-09-20 2018-01-23 中兴通讯股份有限公司 Method for transmitting signals and device
EP2713229B1 (en) 2012-09-26 2017-11-08 Siemens Aktiengesellschaft Method for transmission of address, diagnosis and/or configuration information, infrastructure apparatus and diagnostic apparatus
US10540527B2 (en) 2012-10-18 2020-01-21 Avery Dennison Retail Information Services Llc Method, system and apparatus for NFC security
WO2014063150A2 (en) * 2012-10-19 2014-04-24 Daniel Ryan Self-identifying one-way authentication method using optical signals
JP2014094624A (en) * 2012-11-08 2014-05-22 Honda Motor Co Ltd Vehicle display device
CN104471969B (en) 2012-11-19 2019-07-30 艾利丹尼森公司 Disable unwarranted NFC security system and method
US20140143034A1 (en) * 2012-11-19 2014-05-22 Axlen, Inc. Optical communications via illumination light of led lighting system
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11189917B2 (en) * 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
WO2014082646A1 (en) * 2012-11-29 2014-06-05 Sabry Abdo El-Alfy An intelligent energy saving lighting device
CN103034193B (en) * 2012-11-30 2016-08-24 广州广日电气设备有限公司 City intelligent terminal
US9252878B2 (en) 2012-12-27 2016-02-02 Panasonic Intellectual Property Corporation Of America Information communication method
EP2940889B1 (en) * 2012-12-27 2019-07-31 Panasonic Intellectual Property Corporation of America Visible-light-communication-signal display method and display device
SG11201504988UA (en) * 2012-12-27 2015-07-30 Panasonic Ip Corp America Information communication method
US9166683B2 (en) 2013-02-14 2015-10-20 Qualcomm Incorporated Methods and apparatus for efficient joint power line and visible light communication
US9245443B2 (en) 2013-02-21 2016-01-26 The Boeing Company Passenger services system for an aircraft
US9118415B2 (en) * 2013-02-26 2015-08-25 Cooper Technologies Company Visible light communication with increased signal-to-noise ratio
US9721442B2 (en) 2013-03-12 2017-08-01 Philips Lighting Holding B.V. Emergency manager for a lighting device
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
WO2014160096A1 (en) 2013-03-13 2014-10-02 Federal Law Enforcement Development Services, Inc. Led light control and management system
US9285084B2 (en) 2013-03-14 2016-03-15 Ilumisys, Inc. Diffusers for LED-based lights
US9804024B2 (en) 2013-03-14 2017-10-31 Mojo Labs, Inc. Light measurement and/or control translation for daylighting
US10547358B2 (en) 2013-03-15 2020-01-28 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US9705594B2 (en) * 2013-03-15 2017-07-11 Cree, Inc. Optical communication for solid-state light sources
US8971715B2 (en) * 2013-03-15 2015-03-03 Jingxi Zhang Apparatus and methods of displaying messages for electronic devices
US9310064B2 (en) * 2013-03-17 2016-04-12 Bao Tran Liquid cooled light bulb
CN103235536B (en) * 2013-04-12 2015-09-02 青岛海尔空调电子有限公司 A kind of alternating current-direct current communication self-reacting device and method
US9546781B2 (en) 2013-04-17 2017-01-17 Ever Venture Solutions, Inc. Field-serviceable flat panel lighting device
US9500328B2 (en) 2013-04-17 2016-11-22 Pixi Lighting, Inc. Lighting assembly
US9476552B2 (en) 2013-04-17 2016-10-25 Pixi Lighting, Inc. LED light fixture and assembly method therefor
US9407367B2 (en) * 2013-04-25 2016-08-02 Beijing Guo Cheng Wan Tong Information Co. Ltd Methods and devices for transmitting/obtaining information by visible light signals
US9264138B2 (en) 2013-05-16 2016-02-16 Disney Enterprises, Inc. Reliable visibile light communication with dark light synchronization
US9753137B2 (en) 2013-05-26 2017-09-05 Intel Corporation Apparatus, system and method of communicating positioning information
US9705600B1 (en) 2013-06-05 2017-07-11 Abl Ip Holding Llc Method and system for optical communication
WO2015001444A1 (en) * 2013-07-04 2015-01-08 Koninklijke Philips N.V. Distance or position determination
JP6184776B2 (en) * 2013-07-04 2017-08-23 ローム株式会社 Visible light communication system
US9432115B2 (en) * 2013-07-10 2016-08-30 Intel Corporation Apparatus, system and method of communicating positioning transmissions
CA2856896A1 (en) * 2013-07-18 2015-01-18 Spo Systems Inc. Limited Virtual video patrol system and components therefor
US9155155B1 (en) 2013-08-20 2015-10-06 Ketra, Inc. Overlapping measurement sequences for interference-resistant compensation in light emitting diode devices
US9237620B1 (en) 2013-08-20 2016-01-12 Ketra, Inc. Illumination device and temperature compensation method
US9651632B1 (en) 2013-08-20 2017-05-16 Ketra, Inc. Illumination device and temperature calibration method
US9769899B2 (en) 2014-06-25 2017-09-19 Ketra, Inc. Illumination device and age compensation method
US9578724B1 (en) 2013-08-20 2017-02-21 Ketra, Inc. Illumination device and method for avoiding flicker
US9360174B2 (en) 2013-12-05 2016-06-07 Ketra, Inc. Linear LED illumination device with improved color mixing
USRE48955E1 (en) 2013-08-20 2022-03-01 Lutron Technology Company Llc Interference-resistant compensation for illumination devices having multiple emitter modules
US9332598B1 (en) 2013-08-20 2016-05-03 Ketra, Inc. Interference-resistant compensation for illumination devices having multiple emitter modules
USRE48956E1 (en) 2013-08-20 2022-03-01 Lutron Technology Company Llc Interference-resistant compensation for illumination devices using multiple series of measurement intervals
US9247605B1 (en) 2013-08-20 2016-01-26 Ketra, Inc. Interference-resistant compensation for illumination devices
US9345097B1 (en) 2013-08-20 2016-05-17 Ketra, Inc. Interference-resistant compensation for illumination devices using multiple series of measurement intervals
DE102013109085A1 (en) * 2013-08-22 2015-02-26 Inotec Sicherheitstechnik Gmbh Method for providing luminaire parameters at an interface of a luminaire, luminaire with an interface for reading luminaire parameters and device for reading out the luminaire parameters
JP6092049B2 (en) * 2013-08-28 2017-03-08 東芝ライフスタイル株式会社 Imaging system and imaging apparatus
EP2846611B1 (en) * 2013-09-06 2015-12-23 Tridonic GmbH & Co. KG Driver circuit for a light source and method of transmitting data over a power line
US9496955B2 (en) 2013-09-19 2016-11-15 eocys, LLC Devices and methods to produce and receive an encoded light signature
US9736895B1 (en) 2013-10-03 2017-08-15 Ketra, Inc. Color mixing optics for LED illumination device
US9267650B2 (en) 2013-10-09 2016-02-23 Ilumisys, Inc. Lens for an LED-based light
DE102013018363B4 (en) * 2013-11-02 2019-12-05 Audi Ag Method and system for data transmission in motor vehicle production
JP5839018B2 (en) 2013-11-07 2016-01-06 カシオ計算機株式会社 Information terminal, communication system, server, communication method and program
EP2871708B1 (en) 2013-11-07 2021-06-16 Swisscom AG Communication cable with illumination
JP6371158B2 (en) * 2013-11-14 2018-08-08 ルネサスエレクトロニクス株式会社 LED lamp, projector, data processing method, and collision prevention apparatus
KR101505650B1 (en) * 2013-11-15 2015-03-25 한국광기술원 wireless energy and data transmission system using light for mobile phone
CN103561525B (en) * 2013-11-18 2015-05-27 北京格林曼光电科技有限公司 Optical communication device based on white light LED illumination
US10509101B2 (en) 2013-11-21 2019-12-17 General Electric Company Street lighting communications, control, and special services
US9439269B2 (en) 2013-11-21 2016-09-06 General Electric Company Powerline luminaire communications
US9646495B2 (en) 2013-11-21 2017-05-09 General Electric Company Method and system for traffic flow reporting, forecasting, and planning
US9420674B2 (en) 2013-11-21 2016-08-16 General Electric Company System and method for monitoring street lighting luminaires
US9621265B2 (en) 2013-11-21 2017-04-11 General Electric Company Street lighting control, monitoring, and data transportation system and method
EP3075106A4 (en) 2013-11-25 2017-06-14 ABL IP Holding LLC System and method for communication with a mobile device via a positioning system including rf communication devices and modulated beacon light sources
US9146028B2 (en) 2013-12-05 2015-09-29 Ketra, Inc. Linear LED illumination device with improved rotational hinge
DE102013226378A1 (en) * 2013-12-18 2015-06-18 BSH Hausgeräte GmbH System with a household appliance and a functional module, household appliance, functional module and corresponding method
JP2017510126A (en) * 2014-01-10 2017-04-06 パルマー ラボ,エルエルシー Divergent beam communication system
US20150198941A1 (en) 2014-01-15 2015-07-16 John C. Pederson Cyber Life Electronic Networking and Commerce Operating Exchange
KR20160111975A (en) 2014-01-22 2016-09-27 일루미시스, 인크. Led-based light with addressed leds
FR3017691B1 (en) * 2014-02-14 2019-06-28 Zedel PORTABLE ELECTRIC LAMP WITH WIRELESS COMMUNICATION SYSTEM
CN103812230B (en) * 2014-02-21 2016-02-24 北京智谷睿拓技术服务有限公司 Wireless energy transfer method and apparatus
KR101680128B1 (en) * 2014-03-11 2016-11-28 한국전자통신연구원 Apparatus and method for managing shop using lighting network and visible light communication
CH709355A1 (en) * 2014-03-13 2015-09-15 Alessandro Pasquali Method and systems for connections using light beams.
DE102014004170A1 (en) 2014-03-21 2015-09-24 Ceag Notlichtsysteme Gmbh Emergency lighting system and corresponding procedure
EP3123638B1 (en) * 2014-03-25 2018-07-18 Osram Sylvania Inc. Techniques for indoor navigation with occupancy tracking and location tracking via light-based communication
US9979476B2 (en) 2014-03-25 2018-05-22 Osram Sylvania Inc. Techniques for indoor navigation with hazard avoidance via light-based communication
CN106416098B (en) 2014-03-25 2020-08-04 奥斯兰姆施尔凡尼亚公司 Commissioning luminaires using location information
US9756706B2 (en) * 2014-03-25 2017-09-05 Osram Sylvania Inc. Controlling a system that includes light-based communication (LCom)-enabled luminaires
US20150280820A1 (en) * 2014-03-25 2015-10-01 Osram Sylvania Inc. Techniques for adaptive light modulation in light-based communication
US9780873B2 (en) * 2014-03-25 2017-10-03 Osram Sylvania Inc. Light-based communication transmission protocol
KR101586938B1 (en) 2014-03-27 2016-01-29 국민대학교산학협력단 Color independent visual-mimo communication system and method using the color-space-based image processing
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US9510400B2 (en) 2014-05-13 2016-11-29 Ilumisys, Inc. User input systems for an LED-based light
US20150341113A1 (en) * 2014-05-20 2015-11-26 The Boeing Company Lighting and data communication system using a remotely located lighting array
US20150349882A1 (en) * 2014-05-27 2015-12-03 Honeywell International Inc. Wireless data communication using airborne lighting and ground support systems
US9648452B1 (en) 2014-06-05 2017-05-09 ProSports Technologies, LLC Wireless communication driven by object tracking
US10290067B1 (en) 2014-06-05 2019-05-14 ProSports Technologies, LLC Wireless concession delivery
US10592924B1 (en) 2014-06-05 2020-03-17 ProSports Technologies, LLC Managing third party interactions with venue communications
US9635506B1 (en) 2014-06-05 2017-04-25 ProSports Technologies, LLC Zone based wireless player communications
US10161786B2 (en) 2014-06-25 2018-12-25 Lutron Ketra, Llc Emitter module for an LED illumination device
US9736903B2 (en) 2014-06-25 2017-08-15 Ketra, Inc. Illumination device and method for calibrating and controlling an illumination device comprising a phosphor converted LED
US9392663B2 (en) 2014-06-25 2016-07-12 Ketra, Inc. Illumination device and method for controlling an illumination device over changes in drive current and temperature
US9557214B2 (en) 2014-06-25 2017-01-31 Ketra, Inc. Illumination device and method for calibrating an illumination device over changes in temperature, drive current, and time
JP6434724B2 (en) * 2014-07-01 2018-12-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Information communication method
US20170142248A1 (en) * 2014-07-02 2017-05-18 Arcelik Anonim Sirketi Electrical household appliance network communication method
US9655027B1 (en) 2014-07-11 2017-05-16 ProSports Technologies, LLC Event data transmission to eventgoer devices
WO2016007965A1 (en) 2014-07-11 2016-01-14 ProSports Technologies, LLC Ball tracker camera
US9965938B1 (en) 2014-07-11 2018-05-08 ProSports Technologies, LLC Restroom queue management
US9760572B1 (en) 2014-07-11 2017-09-12 ProSports Technologies, LLC Event-based content collection for network-based distribution
US9571903B2 (en) 2014-07-11 2017-02-14 ProSports Technologies, LLC Ball tracker snippets
WO2016007962A1 (en) 2014-07-11 2016-01-14 ProSports Technologies, LLC Camera feed distribution from event venue virtual seat cameras
US9729644B1 (en) 2014-07-28 2017-08-08 ProSports Technologies, LLC Event and fantasy league data transmission to eventgoer devices
US9892371B1 (en) 2014-07-28 2018-02-13 ProSports Technologies, LLC Queue information transmission
JP6379811B2 (en) * 2014-07-30 2018-08-29 カシオ計算機株式会社 Display device, display control method, and display control program
US9607497B1 (en) 2014-08-25 2017-03-28 ProSports Technologies, LLC Wireless communication security system
WO2016032714A1 (en) 2014-08-25 2016-03-03 ProSports Technologies, LLC Disposable connectable wireless communication receiver
US9392660B2 (en) 2014-08-28 2016-07-12 Ketra, Inc. LED illumination device and calibration method for accurately characterizing the emission LEDs and photodetector(s) included within the LED illumination device
US9510416B2 (en) 2014-08-28 2016-11-29 Ketra, Inc. LED illumination device and method for accurately controlling the intensity and color point of the illumination device over time
US9699523B1 (en) 2014-09-08 2017-07-04 ProSports Technologies, LLC Automated clip creation
CN105490756A (en) * 2014-09-17 2016-04-13 施耐德电器工业公司 Device, system and method for utilizing display backlight to realize wireless data transmission
JP6405820B2 (en) 2014-09-17 2018-10-17 富士通株式会社 Signal transmission device, signal transmission method, and signal transmission program
US10289213B2 (en) * 2014-09-29 2019-05-14 Koninklijke Philips N.V. Remote control device, user device and system thereof, and method , computer program product and identification signal
CN107072740B (en) 2014-11-21 2020-05-22 思外科有限公司 Visual tracking system and visible light communication system for transmitting data between tracking recognizers
EP3029380A1 (en) * 2014-12-03 2016-06-08 Electrolux Appliances Aktiebolag Method for performing a treatment by a domestic appliance and for processing information of said treatment by a mobile computer device
FR3030161B1 (en) * 2014-12-16 2018-04-27 Airbus Operations (S.A.S.) AIRCRAFT COMMUNICATION SYSTEM
US9432117B2 (en) 2014-12-29 2016-08-30 Industrial Technology Research Institute Visible light communication apparatus and method of visible light communication
US9485813B1 (en) 2015-01-26 2016-11-01 Ketra, Inc. Illumination device and method for avoiding an over-power or over-current condition in a power converter
US9237612B1 (en) 2015-01-26 2016-01-12 Ketra, Inc. Illumination device and method for determining a target lumens that can be safely produced by an illumination device at a present temperature
US9237623B1 (en) 2015-01-26 2016-01-12 Ketra, Inc. Illumination device and method for determining a maximum lumens that can be safely produced by the illumination device to achieve a target chromaticity
US9806810B2 (en) * 2015-01-28 2017-10-31 Abl Ip Holding Llc Auto-discovery of neighbor relationships and lighting installation self-mapping via visual light communication
US10277317B2 (en) 2015-02-10 2019-04-30 Brightcodes Technologies Ltd. System and method for providing optically coded information
EP3235349B1 (en) * 2015-02-20 2021-08-18 Siemens Mobility GmbH Brightness control for a light signal system
US9564027B2 (en) 2015-03-24 2017-02-07 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Modulating brightness of optical element conveying human-discernible information to also convey machine-discernible information
WO2016150146A1 (en) * 2015-03-25 2016-09-29 中国科学院深圳先进技术研究院 Indoor positioning device and indoor positioning method
FR3034270A1 (en) * 2015-03-27 2016-09-30 Orange COMBINED OPTICAL LIGHTING AND COMMUNICATION DEVICE
US10070496B2 (en) 2015-03-30 2018-09-04 Mojo Labs, Inc. Task to wall color control
CN107535037B (en) * 2015-04-20 2019-05-28 约翰·阿姆斯特朗 The RFID reader with software radio powered by existing electrical system
US9557022B2 (en) 2015-04-30 2017-01-31 Ever Venture Solutions, Inc. Non-round retrofit recessed LED lighting fixture
EP3295587B1 (en) 2015-05-11 2020-05-13 University Of South Florida Information beamforming for visible light communication
US10161568B2 (en) 2015-06-01 2018-12-25 Ilumisys, Inc. LED-based light with canted outer walls
CN105049117A (en) * 2015-07-06 2015-11-11 成都弘毅天承科技有限公司 Intelligent traffic system based on visible light communication
US9642216B1 (en) * 2015-08-11 2017-05-02 Stack Labs, Inc. Systems and methods for synchronizing lighting devices
US20170046950A1 (en) * 2015-08-11 2017-02-16 Federal Law Enforcement Development Services, Inc. Function disabler device and system
US10879673B2 (en) 2015-08-19 2020-12-29 Soraa Laser Diode, Inc. Integrated white light source using a laser diode and a phosphor in a surface mount device package
US10938182B2 (en) 2015-08-19 2021-03-02 Soraa Laser Diode, Inc. Specialized integrated light source using a laser diode
US11437774B2 (en) * 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. High-luminous flux laser-based white light source
US11437775B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. Integrated light source using a laser diode
JP6655810B2 (en) * 2015-08-21 2020-02-26 パナソニックIpマネジメント株式会社 Lighting control system and lighting control device used therein
US9559773B1 (en) * 2015-09-01 2017-01-31 Aleddra Inc. Add-on VLC controller for LED lighting device
KR101708210B1 (en) 2015-09-22 2017-02-27 한국해양대학교 산학협력단 Lighting Communication System Based Power Line Communication
US9698908B2 (en) * 2015-09-30 2017-07-04 Osram Sylvania Inc. Sub-sampling raster lines in rolling shutter mode for light-based communication
EP3163160A1 (en) * 2015-10-28 2017-05-03 Sebastian Mayer Image presentation device
KR101683472B1 (en) * 2015-12-08 2016-12-07 파워실리콘 (주) Color lighting device for controlling color
WO2017110935A1 (en) * 2015-12-22 2017-06-29 株式会社小糸製作所 Vehicle illumination device, vehicle, and illumination control system
CL2015003778A1 (en) * 2015-12-30 2017-10-13 Univ Santiago Chile System and method of communication through visible light for underground tunnels.
CN108474929B (en) 2015-12-30 2022-06-21 艾伦神火公司 Optical narrowcast
FR3046512B1 (en) * 2015-12-31 2019-02-01 Sunpartner Technologies PHOTOVOLTAIC RECEPTOR OPTIMIZED FOR CODED LIGHT COMMUNICATION
DE102016013880A1 (en) * 2016-01-14 2017-07-20 Sew-Eurodrive Gmbh & Co Kg A system comprising a first part and a second part
DE102016102858A1 (en) * 2016-02-18 2017-08-24 Abb Ag Arrangement for wireless data transmission in a house or building installation system
CN117028910A (en) * 2016-06-10 2023-11-10 奇跃公司 Integral point light source of texture projection bulb
US10027410B2 (en) 2016-06-23 2018-07-17 Abl Ip Holding Llc System and method using a gated retro-reflector for visible light uplink communication
DE102016111971A1 (en) * 2016-06-30 2018-01-04 Fresenius Medical Care Deutschland Gmbh Dedicated remote control of several dialysis machines
CN106211508B (en) * 2016-07-20 2018-05-29 合肥联信电源有限公司 Emergence lighting lamp control system based on DC circuit
CN106230677A (en) * 2016-07-27 2016-12-14 深圳前海弘稼科技有限公司 Communication system under greenhouse and communication means
DE102016117523A1 (en) 2016-09-16 2018-03-22 Osram Opto Semiconductors Gmbh Optoelectronic component and method for operating an optoelectronic component
US20180375576A1 (en) * 2016-09-23 2018-12-27 Osram Sylvania Inc. Techniques for indoor navigation with emergency assistance via light-based communication
JP6449830B2 (en) * 2016-10-11 2019-01-09 日機装株式会社 Test apparatus and light emitting device manufacturing method
TWI814236B (en) * 2016-10-27 2023-09-01 美商李爾登公司 Systems and methods for distributing radioheads
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
US10539711B2 (en) * 2016-11-10 2020-01-21 Z Image, Llc Laser beam detector including a light source for use in a laser attraction
FR3059500A1 (en) * 2016-11-29 2018-06-01 Orange LIGHTING AND OPTICAL COMMUNICATION DEVICE COMBINED WITH VISUALIZATION OF THE FIELD OF COMMUNICATION
US10225013B2 (en) 2016-12-01 2019-03-05 Arris Enterprises Llc Channel management to provide narrowcast data services using visible light communication
US11561450B2 (en) 2016-12-06 2023-01-24 Lensvector Inc. Liquid crystal beam control
DE102016224613A1 (en) * 2016-12-09 2018-06-14 Siemens Aktiengesellschaft Network connection of vehicles
RU2645654C1 (en) * 2017-01-11 2018-02-26 Алексей Викторович Шторм Device of led lamel with wireless data transmission
GB201701209D0 (en) * 2017-01-24 2017-03-08 Purelifi Ltd Optical wireless communication system
KR101990372B1 (en) * 2017-02-16 2019-06-20 빛생활연구소 주식회사 Lighting system using wireless optical communication
FR3064150B1 (en) * 2017-03-20 2021-07-09 Continental Automotive France COMMUNICATION PROCESS BY LUMINOUS FLUX OF INFORMATION BETWEEN AT LEAST TWO STREET LAMPS AND NETWORK OF A CENTRAL CONTROL UNIT AND TWO STREET LAMPS
US9866325B1 (en) * 2017-03-28 2018-01-09 Les Industries Show Canada Inc System and method for bidirectional exchange of data with a mobile apparatus through at least one leaky optical fiber
WO2018183892A1 (en) 2017-03-30 2018-10-04 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
GB201706127D0 (en) * 2017-04-18 2017-05-31 Purelifi Ltd Luminaire system for optical wireless communication
RU2662384C1 (en) * 2017-04-26 2018-07-25 Алексей Викторович Шторм Led screen with wireless data transfer bus (options)
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
EP3605880B1 (en) * 2017-05-23 2024-01-17 Mitsubishi Electric Corporation Base station apparatus, terrestrial station device and terrestrial antenna device
DE102017209094A1 (en) 2017-05-31 2018-12-06 Osram Gmbh WIRELESS TRANSMISSION OF DATA BETWEEN A COMMUNICATION TERMINAL POSITIONED IN A PRESENT AREA AND A COMMUNICATION OBJECT
DE102017209103A1 (en) * 2017-05-31 2018-12-06 Osram Gmbh PROVIDING A WIRELESS COMMUNICATION CONNECTION BETWEEN AT LEAST ONE COMMUNICATION TERMINAL POSITIONED IN A PREFERABABLE ROOM AREA AND A COMMUNICATION NETWORK
US9917652B1 (en) 2017-06-06 2018-03-13 Surefire Llc Adaptive communications focal plane array
JP7286162B2 (en) * 2017-06-13 2023-06-05 シグニファイ ホールディング ビー ヴィ LED module for signal transmission
GB201710545D0 (en) * 2017-06-30 2017-08-16 Purelifi Ltd Optical wireless communication system and method
CA3068944C (en) * 2017-07-03 2023-07-25 Marsupial Holdings, Inc. Light-based communications system
CN110915149A (en) * 2017-07-19 2020-03-24 昕诺飞控股有限公司 Illumination system for transmitting data
US20190065789A1 (en) * 2017-08-29 2019-02-28 Motorola Solutions, Inc. Device and method for power source based device authentication
US11079077B2 (en) 2017-08-31 2021-08-03 Lynk Labs, Inc. LED lighting system and installation methods
FR3068849A1 (en) * 2017-09-05 2019-01-11 Orange METHOD AND DEVICE FOR OPTICAL TRANSMISSION FOR BANK TRANSACTION
US11333837B2 (en) * 2017-09-07 2022-05-17 Murata Machinery, Ltd. Optical communication system for rail-guided truck
WO2019049090A1 (en) * 2017-09-08 2019-03-14 Slux Sagl System for transmitting data by means of optical radiation by means of diffusion by power lines and associated method
IT201700101065A1 (en) * 2017-09-08 2019-03-08 Slux Sagl DATA TRANSMISSION SYSTEM USING OPTICAL RADIATION USING DIFFUSION THROUGH CONVOGULATED WAVES AND ASSOCIATED METHOD
KR102039083B1 (en) * 2017-09-08 2019-10-31 주식회사 블랙라벨 Internet of things hub communicating system using illumination device and internet of things hub communicating method
DE102017123715A1 (en) 2017-10-12 2019-04-18 HELLA GmbH & Co. KGaA Lighting device for a motor vehicle
DE102017123720A1 (en) * 2017-10-12 2019-04-18 HELLA GmbH & Co. KGaA Communication system for a motor vehicle
DE102017124321A1 (en) * 2017-10-18 2019-04-18 Osram Opto Semiconductors Gmbh Semiconductor device
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
WO2019114952A1 (en) * 2017-12-13 2019-06-20 Osram Opto Semiconductors Gmbh Luminaire and method for wireless data transfer using such a luminaire
CN108242954B (en) * 2017-12-14 2020-07-14 中国空间技术研究院 Visible light communication system and method applied to spacecraft cabin data transmission
US10250948B1 (en) 2018-01-05 2019-04-02 Aron Surefire, Llc Social media with optical narrowcasting
US10473439B2 (en) 2018-01-05 2019-11-12 Aron Surefire, Llc Gaming systems and methods using optical narrowcasting
US10236986B1 (en) 2018-01-05 2019-03-19 Aron Surefire, Llc Systems and methods for tiling free space optical transmissions
WO2019164780A1 (en) * 2018-02-26 2019-08-29 Lumeova, Inc. A free space optical communication apparatus
WO2019173543A1 (en) * 2018-03-06 2019-09-12 Quarkstar Llc Luminaire and lighting system providing directional light output
CN111989874A (en) * 2018-04-24 2020-11-24 昕诺飞控股有限公司 System and method for free space optical communication using active beam steering
WO2019238532A1 (en) * 2018-06-11 2019-12-19 Basf Se Optical data communication system comprising para-phenylenevinylenes and specific para-phenylenevinylenes
FR3082687B1 (en) * 2018-06-18 2021-10-01 Safran Nacelles DEVICE AND METHOD FOR COMMUNICATION OF DATA IN AN AIRCRAFT SUB-ASSEMBLY
US11272599B1 (en) 2018-06-22 2022-03-08 Lutron Technology Company Llc Calibration procedure for a light-emitting diode light source
JP7067315B2 (en) * 2018-06-28 2022-05-16 コニカミノルタ株式会社 Image forming device
CN109067472B (en) * 2018-08-23 2021-09-07 东南大学 Multicolor optical signal receiving method based on overlapping covering optical filter set
US11191138B1 (en) * 2018-09-19 2021-11-30 Lumitec, Llc Light control systems, methods, devices, and uses thereof
US20200107422A1 (en) * 2018-09-27 2020-04-02 Lumileds Llc Programmable light-emitting diode (led) lighting system and methods of operation
WO2020109158A1 (en) * 2018-11-29 2020-06-04 Signify Holding B.V. Power line communication power adaptor
JP6836573B2 (en) * 2018-11-29 2021-03-03 コイト電工株式会社 In-car communication system
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
KR20210117283A (en) 2019-01-28 2021-09-28 에너저스 코포레이션 Systems and methods for a small antenna for wireless power transmission
CN113661660B (en) 2019-02-06 2023-01-24 艾诺格思公司 Method of estimating optimal phase, wireless power transmitting apparatus, and storage medium
EP3928442A4 (en) 2019-02-21 2022-12-07 Dialight Corporation Lifi network and associated method
KR102031513B1 (en) * 2019-02-22 2019-10-11 정원식 The Amplifier Protection Apparatus of Broadcasting Line for Fire Hydrant
US11128376B1 (en) * 2019-02-22 2021-09-21 Securus Technologies, Llc Data communication with light in controlled environment facilities
FR3094501B1 (en) * 2019-03-29 2021-04-02 Oledcomm Lighting and communication system comprising a transmitter and a receiver of modulated light signals
CN110261823B (en) * 2019-05-24 2022-08-05 南京航空航天大学 Visible light indoor communication positioning method and system based on single LED lamp
WO2020239263A1 (en) * 2019-05-29 2020-12-03 Sew-Eurodrive Gmbh & Co. Kg System, in particular installation, having a mobile part and a holding part, which holds a screen
CN218300556U (en) * 2019-06-21 2023-01-13 京瓷Sld激光公司 White light source based on high-luminous-flux laser
US11177880B2 (en) * 2019-08-30 2021-11-16 Textron Innovations Inc. Cockpit and cabin LiFi power and data
DE202019104854U1 (en) * 2019-09-03 2020-12-07 Zumtobel Lighting Gmbh Continuous-row lighting system with data transmission function
KR102325302B1 (en) * 2019-09-04 2021-11-11 주식회사 에스아이웨어 Explosion-proof LED Lamp
RU197045U1 (en) * 2019-09-06 2020-03-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский политехнический университет" (Московский Политех) LIGHT-TRANSFER MODULE OF VLC TECHNOLOGY WIRELESS COMMUNICATION SYSTEM
GB201912938D0 (en) * 2019-09-09 2019-10-23 Purelifi Ltd an optical wireless communication system and method
CN110649971A (en) * 2019-09-29 2020-01-03 福州京东方光电科技有限公司 Visible light generation and communication method and device and visible light communication system
EP3800792B1 (en) * 2019-10-02 2022-08-03 Zumtobel Lighting GmbH Communication adaptor for a light trunking system, light trunking system comprising at least two such communication adaptors, and method for communicating data over such a light trunking system
CN112804025B (en) * 2019-11-14 2024-02-20 Oppo广东移动通信有限公司 Electromagnetic shielding room and communication system
CN111140795B (en) * 2020-01-13 2023-12-05 中铁第四勘察设计院集团有限公司 Intelligent adjustment street lamp and street lamp system
US11956012B2 (en) * 2020-01-27 2024-04-09 Shimadzu Corporation Fiber branch structure for spatial optical communication and optical communication system equipped with same
EP4099582A4 (en) * 2020-01-27 2023-10-25 Shimadzu Corporation Optical communication device
EP4109784A4 (en) * 2020-02-21 2023-04-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Visible light communication network
US11005531B1 (en) * 2020-04-13 2021-05-11 Nxp B.V. System and method for communicating over a single-wire transmission line
US11133864B1 (en) * 2020-04-24 2021-09-28 Ciena Corporation Measurement of crosstalk
CN111756444B (en) * 2020-06-28 2023-03-24 新疆大学 Communication method of visible light communication transmitter based on switchable light beams
CN112822360B (en) * 2020-12-30 2022-05-13 西安电子科技大学 Deep sea video shooting and wireless transmission integrated system
CN113037379A (en) * 2021-02-24 2021-06-25 中航光电科技股份有限公司 Big wide angle wireless optical communication subassembly under water based on fisheye lens
US11956021B1 (en) * 2023-04-24 2024-04-09 Wireless Photonics Llc Communication system and method for cloud-assisted free-space optical backhaul

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602668A (en) * 1994-11-30 1997-02-11 International Business Machines Corporation Data communications and illuminated light on the same optical fiber
US20020167701A1 (en) * 2001-03-28 2002-11-14 Shoji Hirata Optical transmission apparatus employing an illumination light
US20030043972A1 (en) * 2001-08-29 2003-03-06 Burnham Robert J. Wireless entertainment system for a vehicle
US6548967B1 (en) * 1997-08-26 2003-04-15 Color Kinetics, Inc. Universal lighting network methods and systems

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640334A (en) * 1979-09-11 1981-04-16 Komatsu Ltd Indoor information transmission system
JPS5938253A (en) 1982-08-27 1984-03-02 Mitsubishi Rayon Co Ltd Light-diffusing acrylic resin molding
JPS5958406A (en) 1982-09-29 1984-04-04 Toshiba Electric Equip Corp Optical fiber device
JPS5986971A (en) * 1982-11-10 1984-05-19 Canon Inc Light remote controlling method and its receiving device
GB2186457A (en) 1984-10-18 1987-08-12 Gec Avionics Optical communications
GB2169464B (en) * 1985-01-09 1988-09-21 Stc Plc Optical fibre transmission systems
JPS6248139A (en) 1985-08-27 1987-03-02 Casio Comput Co Ltd Data communication equipment
JPS6248129A (en) 1985-08-27 1987-03-02 Osaki Electric Co Ltd Signal carrying method
JPS62173895A (en) * 1986-01-27 1987-07-30 Pioneer Electronic Corp Two-way remote control system
JPS63187102A (en) 1987-01-30 1988-08-02 Nikon Corp Pattern detector
JPH087284B2 (en) 1987-02-16 1996-01-29 株式会社フジクラ Leaked optical fiber and its manufacturing method
JPS63269106A (en) 1987-04-28 1988-11-07 Mitsubishi Rayon Co Ltd Optical element made of plastic
JPS63187102U (en) 1987-05-18 1988-11-30
JPH01122220A (en) 1987-11-05 1989-05-15 Seiko Instr & Electron Ltd Ceiling information transmission system
JPH01176127A (en) * 1987-12-28 1989-07-12 Ncr Corp Optical space communication system
JPH02284533A (en) 1989-04-25 1990-11-21 Mitsubishi Electric Corp Infrared remote controller
US5239295A (en) * 1990-04-16 1993-08-24 Motorola, Inc. Serial light interface which also functions as an ambient light detector
JPH04131000A (en) 1990-09-21 1992-05-01 Komatsu Ltd Traffic information system
JP2848981B2 (en) * 1991-03-27 1999-01-20 日本ビクター株式会社 Relay device and relay system
JPH05302006A (en) 1991-07-04 1993-11-16 Mitsubishi Rayon Co Ltd Light-diffusing methacrylate resin
JPH0562505A (en) 1991-09-03 1993-03-12 Stanley Electric Co Ltd Indicator lamp
DE4137032A1 (en) 1991-11-11 1993-05-13 Siemens Ag Optical data transmitter to receiver - has external light source and internal reflector for reflecting partial light onto photodetector
JP3119524B2 (en) 1992-04-02 2000-12-25 株式会社東芝 Mobile monitoring device
WO1994002997A1 (en) * 1992-07-28 1994-02-03 British Telecommunications Public Limited Company Free space optical communication system
US5424859A (en) * 1992-09-24 1995-06-13 Nippon Telegraph And Telephone Corp. Transceiver for wireless in-building communication sytem
JPH06325264A (en) * 1993-05-12 1994-11-25 Toshiba Corp Refuge guidance supporting system
JP2556259B2 (en) 1993-06-08 1996-11-20 村田機械株式会社 Light receiving signal processor
JPH07169572A (en) 1993-08-11 1995-07-04 Hitachi Lighting Ltd Guide light lighting device
JP3448088B2 (en) 1993-12-24 2003-09-16 東日本旅客鉄道株式会社 Obstacle detection system
JPH0867203A (en) 1994-08-29 1996-03-12 Ono Denki Kk Emergency lamp
US5633629A (en) * 1995-02-08 1997-05-27 Hochstein; Peter A. Traffic information system using light emitting diodes
JPH08330077A (en) 1995-03-31 1996-12-13 Toshiba Lighting & Technol Corp Emergency lighting device and emergency light
JPH08299475A (en) 1995-04-27 1996-11-19 Toyo Commun Equip Co Ltd Emergency exit guide system
JPH0919084A (en) 1995-06-30 1997-01-17 Toshiba Lighting & Technol Corp Emergency lighting circuit and emergency lighting apparatus
JPH0944627A (en) * 1995-07-25 1997-02-14 Toshiba Corp Tunnel illumination controller
JP3690852B2 (en) 1995-12-27 2005-08-31 シャープ株式会社 Surface-emitting display device
JPH1066167A (en) 1996-08-15 1998-03-06 Sony Corp Remote controller
JPH10157621A (en) 1996-11-27 1998-06-16 Hitachi Ltd Train radio operation support system
US6441943B1 (en) * 1997-04-02 2002-08-27 Gentex Corporation Indicators and illuminators using a semiconductor radiation emitter package
JP3661912B2 (en) 1997-09-12 2005-06-22 株式会社リコー Optical access station and terminal device
JPH11127170A (en) 1997-10-23 1999-05-11 Horiba Ltd Communication method using fluorescent light and its communication equipment
JPH11234210A (en) * 1997-12-11 1999-08-27 Nippon Telegr & Teleph Corp <Ntt> Optical wiring system
JP2000081516A (en) 1998-02-18 2000-03-21 Hikariya Lighting:Kk Optical fiber with light diffusion part and its production
JPH11266190A (en) 1998-03-17 1999-09-28 Sekisui Chem Co Ltd Electrical lamp communication transmitting and receiving device, and electrical lamp line communication device and method
WO1999049446A1 (en) * 1998-03-20 1999-09-30 Versitech Ltd. Tricolor led display system having audio output
US6400482B1 (en) * 1998-04-15 2002-06-04 Talking Lights, Llc Communication system
EP0967590A1 (en) 1998-06-25 1999-12-29 Hewlett-Packard Company Optical display device using LEDs and its operating method
JP2000067377A (en) 1998-08-25 2000-03-03 Nippon Signal Co Ltd:The Information transmitter-receiver
JP2001052501A (en) 1999-05-17 2001-02-23 Sadao Momiyama Bulb base type led electric decorative sign
JP2001036592A (en) 1999-07-21 2001-02-09 Mitsubishi Electric Corp Distribution line carrier system and its terminal
JP2001176678A (en) * 1999-12-21 2001-06-29 Japan Storage Battery Co Ltd Lighting device
CA2299559A1 (en) * 2000-02-23 2001-08-23 Oneline Ag A power line communications system
JP2001243807A (en) 2000-02-28 2001-09-07 Mitsubishi Electric Lighting Corp Led electric bulb
JP2001292107A (en) * 2000-04-06 2001-10-19 Sony Corp Reception device, transmission device and communication system
JP4770058B2 (en) 2000-05-17 2011-09-07 日亜化学工業株式会社 LIGHT EMITTING ELEMENT AND DEVICE
BR0113283A (en) * 2000-08-14 2004-07-20 Main Net Comm Ltd Power Line Communication System
JP2002148442A (en) 2000-11-14 2002-05-22 Nichia Chem Ind Ltd Light emitting device
JP2002144984A (en) * 2000-11-17 2002-05-22 Matsushita Electric Ind Co Ltd On-vehicle electronic apparatus
JP2002190776A (en) 2000-12-20 2002-07-05 Showa Electric Wire & Cable Co Ltd Optical data transmission system
JP4574878B2 (en) 2001-03-12 2010-11-04 オリンパス株式会社 Light scattering glass material
JP2002344478A (en) 2001-05-18 2002-11-29 Mitsubishi Electric Corp Network connection system in train
JP3465017B2 (en) 2002-04-23 2003-11-10 学校法人慶應義塾 Illumination light transmitting device, illumination light receiving device, and phosphor type illumination light communication system
JP2004221747A (en) 2003-01-10 2004-08-05 Global Com:Kk Illuminating light communication system
JP3922560B2 (en) 2002-12-04 2007-05-30 株式会社中川研究所 Emergency light and emergency light wireless data transmission system
JP2004229273A (en) 2003-09-16 2004-08-12 Global Com:Kk Communication method using illumination light
JP2004297295A (en) 2003-03-26 2004-10-21 Global Com:Kk Illumination light communication system, illuminator, and illumination light source
JP4450303B2 (en) 2003-03-14 2010-04-14 株式会社中川研究所 Illumination light communication device and illumination element
JP4007159B2 (en) 2002-10-30 2007-11-14 株式会社ジェイテクト Electric power steering device and joint
JP2004265774A (en) 2003-03-03 2004-09-24 Matsushita Electric Works Ltd Illumination system
JP4057468B2 (en) 2003-06-03 2008-03-05 シャープ株式会社 Illumination device with light transmission mechanism
JP4885234B2 (en) * 2006-10-23 2012-02-29 パナソニック株式会社 Optical space transmission system using visible light and infrared light

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602668A (en) * 1994-11-30 1997-02-11 International Business Machines Corporation Data communications and illuminated light on the same optical fiber
US6548967B1 (en) * 1997-08-26 2003-04-15 Color Kinetics, Inc. Universal lighting network methods and systems
US20020167701A1 (en) * 2001-03-28 2002-11-14 Shoji Hirata Optical transmission apparatus employing an illumination light
US20030043972A1 (en) * 2001-08-29 2003-03-06 Burnham Robert J. Wireless entertainment system for a vehicle

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090027511A1 (en) * 2005-03-25 2009-01-29 Nikon Corporation Illumination Device, Imaging Device, and Imaging System
US20100254714A1 (en) * 2007-09-11 2010-10-07 Oscar Cristobal Gaete Jamett Data transmission with room illuminations having light emitting diodes
US8811826B2 (en) 2007-09-11 2014-08-19 Siemens Aktiengesellschaft Data transmission with room illuminations having light emitting diodes
DE102012001398A1 (en) * 2012-01-26 2013-08-01 Eads Deutschland Gmbh Transmission apparatus for optical free-space data communication based on discrete power levels
US8824896B2 (en) 2012-01-26 2014-09-02 Eads Deutschland Gmbh System for optical open space data communication based on discrete output levels
DE102012001398B4 (en) * 2012-01-26 2015-09-24 Airbus Defence and Space GmbH Transmission device for free-space optical data communication based on discrete power levels and use
US9917644B2 (en) * 2012-10-09 2018-03-13 Booz Allen Hamilton Inc. Method and system for data transmission and communication using imperceptible differences in visible light
US20140099107A1 (en) * 2012-10-09 2014-04-10 Booz, Allen & Hamilton Method and system for data transmission and communication using imperceptible differences in visible light
US10218914B2 (en) 2012-12-20 2019-02-26 Panasonic Intellectual Property Corporation Of America Information communication apparatus, method and recording medium using switchable normal mode and visible light communication mode
US10148354B2 (en) 2012-12-27 2018-12-04 Panasonic Intellectual Property Corporation Of America Luminance change information communication method
US10334177B2 (en) 2012-12-27 2019-06-25 Panasonic Intellectual Property Corporation Of America Information communication apparatus, method, and recording medium using switchable normal mode and visible light communication mode
US9635278B2 (en) 2012-12-27 2017-04-25 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information specified by striped pattern of bright lines
US9641766B2 (en) 2012-12-27 2017-05-02 Panasonic Intellectual Property Corporation Of America Information communication method
US9646568B2 (en) 2012-12-27 2017-05-09 Panasonic Intellectual Property Corporation Of America Display method
US9756255B2 (en) 2012-12-27 2017-09-05 Panasonic Intellectual Property Corporation Of America Information communication method
US11659284B2 (en) 2012-12-27 2023-05-23 Panasonic Intellectual Property Corporation Of America Information communication method
US11490025B2 (en) 2012-12-27 2022-11-01 Panasonic Intellectual Property Corporation Of America Information communication method
US11165967B2 (en) 2012-12-27 2021-11-02 Panasonic Intellectual Property Corporation Of America Information communication method
US9768869B2 (en) 2012-12-27 2017-09-19 Panasonic Intellectual Property Corporation Of America Information communication method
US9794489B2 (en) 2012-12-27 2017-10-17 Panasonic Intellectual Property Corporation Of America Information communication method
US10951310B2 (en) 2012-12-27 2021-03-16 Panasonic Intellectual Property Corporation Of America Communication method, communication device, and transmitter
US10887528B2 (en) 2012-12-27 2021-01-05 Panasonic Intellectual Property Corporation Of America Information communication method
US9859980B2 (en) 2012-12-27 2018-01-02 Panasonic Intellectual Property Corporation Of America Information processing program, reception program, and information processing apparatus
US9608727B2 (en) 2012-12-27 2017-03-28 Panasonic Intellectual Property Corporation Of America Switched pixel visible light transmitting method, apparatus and program
US9918016B2 (en) 2012-12-27 2018-03-13 Panasonic Intellectual Property Corporation Of America Information communication apparatus, method, and recording medium using switchable normal mode and visible light communication mode
US10742891B2 (en) 2012-12-27 2020-08-11 Panasonic Intellectual Property Corporation Of America Information communication method
US10666871B2 (en) 2012-12-27 2020-05-26 Panasonic Intellectual Property Corporation Of America Information communication method
US9998220B2 (en) 2012-12-27 2018-06-12 Panasonic Intellectual Property Corporation Of America Transmitting method, transmitting apparatus, and program
US10638051B2 (en) 2012-12-27 2020-04-28 Panasonic Intellectual Property Corporation Of America Information communication method
US10051194B2 (en) 2012-12-27 2018-08-14 Panasonic Intellectual Property Corporation Of America Information communication method
US9608725B2 (en) 2012-12-27 2017-03-28 Panasonic Intellectual Property Corporation Of America Information processing program, reception program, and information processing apparatus
US10165192B2 (en) 2012-12-27 2018-12-25 Panasonic Intellectual Property Corporation Of America Information communication method
US10205887B2 (en) 2012-12-27 2019-02-12 Panasonic Intellectual Property Corporation Of America Information communication method
US9591232B2 (en) 2012-12-27 2017-03-07 Panasonic Intellectual Property Corporation Of America Information communication method
US10225014B2 (en) 2012-12-27 2019-03-05 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information using ID list and bright line image
US10616496B2 (en) 2012-12-27 2020-04-07 Panasonic Intellectual Property Corporation Of America Information communication method
US10303945B2 (en) 2012-12-27 2019-05-28 Panasonic Intellectual Property Corporation Of America Display method and display apparatus
US9613596B2 (en) 2012-12-27 2017-04-04 Panasonic Intellectual Property Corporation Of America Video display method using visible light communication image including stripe patterns having different pitches
US10354599B2 (en) 2012-12-27 2019-07-16 Panasonic Intellectual Property Corporation Of America Display method
US10361780B2 (en) 2012-12-27 2019-07-23 Panasonic Intellectual Property Corporation Of America Information processing program, reception program, and information processing apparatus
US10368006B2 (en) 2012-12-27 2019-07-30 Panasonic Intellectual Property Corporation Of America Information communication method
US10368005B2 (en) 2012-12-27 2019-07-30 Panasonic Intellectual Property Corporation Of America Information communication method
US10530486B2 (en) 2012-12-27 2020-01-07 Panasonic Intellectual Property Corporation Of America Transmitting method, transmitting apparatus, and program
US10447390B2 (en) 2012-12-27 2019-10-15 Panasonic Intellectual Property Corporation Of America Luminance change information communication method
US10455161B2 (en) 2012-12-27 2019-10-22 Panasonic Intellectual Property Corporation Of America Information communication method
US10516832B2 (en) 2012-12-27 2019-12-24 Panasonic Intellectual Property Corporation Of America Information communication method
US10523876B2 (en) 2012-12-27 2019-12-31 Panasonic Intellectual Property Corporation Of America Information communication method
US10521668B2 (en) 2012-12-27 2019-12-31 Panasonic Intellectual Property Corporation Of America Display method and display apparatus
US10531010B2 (en) 2012-12-27 2020-01-07 Panasonic Intellectual Property Corporation Of America Information communication method
US10531009B2 (en) 2012-12-27 2020-01-07 Panasonic Intellectual Property Corporation Of America Information communication method
US10419115B2 (en) 2014-02-19 2019-09-17 Panasonic Intellectual Property Corporation Of America Transmitter, transmitting method, and receiving method
US9791727B2 (en) 2014-02-19 2017-10-17 Panasonic Intellectual Property Corporation Of America Transmitter, transmitting method, and receiving method
US9377638B2 (en) 2014-02-19 2016-06-28 Panasonic Intellectual Property Corporation Of America Transmitter, transmitting method, and receiving method
US9377639B2 (en) 2014-02-19 2016-06-28 Panasonic Intellectual Property Corporation Of America Transmitter and transmitting method
US9825703B2 (en) * 2014-09-26 2017-11-21 Industrial Technology Research Institute Optical communication device and control method thereof
US20160094291A1 (en) * 2014-09-26 2016-03-31 Industrial Technology Research Institute Optical communication device and control method thereof
US9713234B2 (en) 2015-04-10 2017-07-18 Panasonic Intellectual Property Management Co., Ltd. Lighting fixture, lighting system, and method performed by the lighting fixture
US9960847B2 (en) 2015-09-10 2018-05-01 Panasonic Intellectual Property Management Co., Ltd. Information presenting method, server, and information presenting system
US10601516B2 (en) * 2016-06-27 2020-03-24 Signify Holding B.V. Emitting coded light from a multi-lamp luminaire
US20190132055A1 (en) * 2016-06-27 2019-05-02 Philips Lighting Holding B.V. Emitting coded light from a multi-lamp luminaire
DE102017102136A1 (en) 2017-02-03 2018-08-09 Osram Opto Semiconductors Gmbh Optoelectronic lighting device and method for operating an optoelectronic lighting device
WO2021144202A1 (en) 2020-01-13 2021-07-22 Signify Holding B.V. Lifi power management

Also Published As

Publication number Publication date
EP1860801A1 (en) 2007-11-28
DE60316178D1 (en) 2007-10-18
KR20050071617A (en) 2005-07-07
ATE372614T1 (en) 2007-09-15
US20090297156A1 (en) 2009-12-03
EP1860799A1 (en) 2007-11-28
DE60336770D1 (en) 2011-05-26
US20090310976A1 (en) 2009-12-17
EP1855398A1 (en) 2007-11-14
KR100970034B1 (en) 2010-07-16
EP1564914A4 (en) 2006-01-25
EP1858179A1 (en) 2007-11-21
DE60316178T2 (en) 2008-06-05
EP1564914B1 (en) 2007-09-05
US20090297166A1 (en) 2009-12-03
AU2003275606A1 (en) 2004-05-13
HK1129164A1 (en) 2009-11-20
US7583901B2 (en) 2009-09-01
EP1863203A1 (en) 2007-12-05
CN101714898A (en) 2010-05-26
US20060056855A1 (en) 2006-03-16
HK1087848A1 (en) 2006-10-20
EP1860800A1 (en) 2007-11-28
EP1855398B1 (en) 2010-02-10
EP1865631B1 (en) 2011-04-13
US7929867B2 (en) 2011-04-19
EP1865631A1 (en) 2007-12-12
DE60331271D1 (en) 2010-03-25
US20090297157A1 (en) 2009-12-03
EP1564914A1 (en) 2005-08-17
WO2004038962A1 (en) 2004-05-06

Similar Documents

Publication Publication Date Title
US20090297167A1 (en) Illuminative light communication device and lighting device
US7560677B2 (en) Step-wise intensity control of a solid state lighting system
JP4450303B2 (en) Illumination light communication device and illumination element
CN102264177B (en) Power source control device of illuminator and lighting system
CN1991238B (en) Surgical lamp
JP4298661B2 (en) LIGHT EMITTING DIODE LIGHTING DEVICE WITH A COMMUNICATION DEVICE AND EQUIPMENT HAVING SUCH DEVICE
KR100968352B1 (en) Underwater lighting controller
WO2003015067B1 (en) Led light apparatus with instantly adjustable color and intensity
RU2000132978A (en) LED LIGHTING DEVICE WITH LIGHT RADIATION CONTROL
JP5000327B2 (en) Visible light communication system
US11559594B2 (en) Hybrid far UV-C and visible lamp
JP4569115B2 (en) Lighting device
CN104378892A (en) LED intelligent crystal lamp controlled via wireless (Bluetooth) control technology
KR100756723B1 (en) A variable color lamp system for a vehicle
JP2008034989A (en) Lighting fixture and lighting system
US20100237803A1 (en) Dimmable color selectable light emitting diodes
JP2013021458A (en) Lighting device
KR20190023240A (en) Light system capable of adjusting brightness, color temperature and saturation value
CN209418108U (en) Information shows that the display control unit of lamps and lanterns, information show lamps and lanterns
JP2004235097A (en) Lighting equipment using light emitting diode element
JP2008181777A (en) Illumination device
CN113301684B (en) LED control circuit
KR20120050751A (en) High color rendering led lighting apparatus for adjusting color temperature
WO2020261966A1 (en) Illumination device
JP4420199B2 (en) Lighting control device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION