US20090316855A1 - Control Means for Heat Load in X-Ray Scanning Apparatus - Google Patents

Control Means for Heat Load in X-Ray Scanning Apparatus Download PDF

Info

Publication number
US20090316855A1
US20090316855A1 US12/485,897 US48589709A US2009316855A1 US 20090316855 A1 US20090316855 A1 US 20090316855A1 US 48589709 A US48589709 A US 48589709A US 2009316855 A1 US2009316855 A1 US 2009316855A1
Authority
US
United States
Prior art keywords
ray
source
active
imaging apparatus
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/485,897
Inventor
Edward James Morton
Russell David Luggar
Paul De Antonis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rapiscan Systems Inc
Original Assignee
Edward James Morton
Russell David Luggar
Paul De Antonis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edward James Morton, Russell David Luggar, Paul De Antonis filed Critical Edward James Morton
Priority to US12/485,897 priority Critical patent/US20090316855A1/en
Publication of US20090316855A1 publication Critical patent/US20090316855A1/en
Priority to US12/712,476 priority patent/US8243876B2/en
Priority to US12/787,930 priority patent/US8223919B2/en
Priority to US12/788,083 priority patent/US8451974B2/en
Priority to US12/787,878 priority patent/US8804899B2/en
Priority to US12/792,931 priority patent/US8331535B2/en
Priority to US12/835,682 priority patent/US8204173B2/en
Priority to US13/032,593 priority patent/US9113839B2/en
Priority to US13/346,705 priority patent/US8559592B2/en
Priority to US13/532,862 priority patent/US10591424B2/en
Priority to US13/548,873 priority patent/US9020095B2/en
Priority to US13/674,086 priority patent/US9208988B2/en
Priority to US13/870,407 priority patent/US8885794B2/en
Priority to US14/312,540 priority patent/US9183647B2/en
Priority to US14/508,464 priority patent/US9158030B2/en
Priority to US14/641,777 priority patent/US9618648B2/en
Priority to US14/688,898 priority patent/US9726619B2/en
Priority to US14/798,195 priority patent/US9442082B2/en
Priority to US14/848,176 priority patent/US9606259B2/en
Priority to US14/848,590 priority patent/US9747705B2/en
Priority to US14/930,293 priority patent/US9576766B2/en
Priority to US15/437,033 priority patent/US20180038988A1/en
Priority to US15/439,837 priority patent/US10175381B2/en
Priority to US16/192,112 priority patent/US10901112B2/en
Assigned to RAPISCAN SYSTEMS, INC. reassignment RAPISCAN SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DE ANTONIS, PAUL, LUGGAR, RUSSELL DAVID, MORTON, EDWARD JAMES
Priority to US16/745,251 priority patent/US20200200690A1/en
Priority to US17/123,452 priority patent/US11796711B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4007Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4007Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
    • A61B6/4014Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units arranged in multiple source-detector units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • G01V5/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/045Electrodes for controlling the current of the cathode ray, e.g. control grids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/60Circuit arrangements for obtaining a series of X-ray photographs or for X-ray cinematography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4021Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis involving movement of the focal spot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph

Definitions

  • the present invention relates to X-ray scanning in which X-rays are directed through an object from a number of positions around the object and the X-rays transmitted through the object are detected and used to build up an image of the object.
  • This type of scanning is referred to as computed tomography (CT) scanning.
  • One method of CT scanning involves rotating an X-ray source around the object so that it directs X-rays through the object in different directions.
  • Another method for example as disclosed in U.S. Pat. No. 4,274,005, involves positioning a number of X-ray sources around the object and then operating the sources in turn so that the active source position scans round the object.
  • the present invention provides an X-ray imaging apparatus comprising X-ray production means arranged to produce X-rays from a plurality of source positions spaced around an object location and spaced from each other by a source spacing, a plurality of X-ray sensors arranged to be spaced around the object position so as to detect X-rays emitted from the source positions and passing through the object position, and control means arranged to control the order in which the source positions are active such that the average smallest displacement between an active source position in one emission period and an active source position in the subsequent period is greater than the source spacing.
  • This increase in average spacing between successively active source positions helps to spread the thermal load in the X-ray source.
  • said average smallest displacement is at least twice the source spacing. This can most easily be achieved by ensuring that the control means is arranged such that no active source position in any one emission period is adjacent a source position active in the next emission period.
  • the control means may arranged so that in each emission period only one source position is active.
  • control means may arrange such that in each emission period a plurality of source positions are active simultaneously. This can reduce the scanning time and increase the scanning rate.
  • the control means is preferably arranged such that in each emission period, there is no overlap between the groups of sensors for said plurality of source positions. This ensures that the detected X-rays from each of the simultaneously active sources can be distinguished.
  • each emission period Preferably in each emission period at least half of the sensors are arranged to receive X-rays from the active source positions. More preferably in each emission period substantially all of the sensors are arranged to receive X-rays from the active source positions.
  • the apparatus comprises a plurality of X-ray tubes each providing a plurality of said source positions.
  • control means is preferably arranged such that in each emission period the active source position is in a different tube from the active source position in the previous emission period.
  • the order in which the source positions are active is arranged such that in each emission period the active source position is non-adjacent to the source position active in the previous emission period.
  • FIG. 1 shows an X-ray emitter suitable for use with the invention
  • FIG. 2 is a diagram of an X-ray imaging system according to the invention including a number of emitter units as shown in FIG. 1 ;
  • FIG. 3 is a diagram of the layout of an X-ray imaging system according to a second embodiment of the invention.
  • FIG. 4 is a diagram of the layout of an X-ray imaging system according to a third embodiment of the invention.
  • a multi-focus X-ray tube 10 comprises a ceramic former 12 and an emitter element 18 extending along between the sides 14 , 16 of the former.
  • a number of grid elements in the form of grid wires 20 are supported on the former 12 and extend over the gap between its two sides 14 , 16 perpendicular to the emitter element 18 , but in a plane which is parallel to it.
  • a number of focusing elements in the form of focusing wires 22 are supported in another plane on the opposite side of the grid wires to the emitter element.
  • the focusing wires 22 are parallel to the grid wires 20 and spaced apart from each other with the same spacing as the grid wires, each focusing wire 22 being aligned with a respective one of the grid wires 20 .
  • the source 10 is enclosed in a housing 24 of an emitter unit 25 with the former 12 being supported on the base 24 a of the housing.
  • the focusing wires 22 are supported on two support rails 26 a, 26 b which extend parallel to the emitter element 18 , and are spaced from the former 12 , the support rails being mounted on the base 24 a of the housing.
  • the support rails 26 a, 26 b are electrically conducting so that all of the focusing wires 22 are electrically connected together.
  • One of the support rails 26 a is connected to a connector 28 which projects through the base 24 a of the housing to provide an electrical connection for the focusing wires 22 .
  • Each of the grid wires 20 extends down one side 16 of the former and is connected to a respective electrical connector 30 which provide separate electrical connections for each of the grid wires 20 .
  • An anode 32 is supported between the side walls 24 b, 24 c of the housing.
  • the anode extends parallel to the emitter element 18 .
  • the grid and focusing wires 20 , 22 therefore extend between the emitter element 18 and the anode 32 .
  • An electrical connector 34 to the anode extends through the side wall 24 b of the housing.
  • the emitter element 18 is supported in the ends of the former and is heated by means of an electric current supplied to it via further connectors 36 , 38 in the housing.
  • a pair of adjacent grid wires 20 can be connected to an extracting potential which is positive with respect to the element 18 while the remaining grid wires are connected to a blocking potential which is negative with respect to the element 18 .
  • the position of the beam of electrons can be chosen.
  • the position of the X-ray source can also be chosen by choosing the extracting pair of grid wires.
  • the focusing elements 22 are all kept at a positive potential with respect to the grid wires 20 so that electrons extracted between any pair of the grid wires will also pass between, and be focussed by, a corresponding pair of focusing elements 22 .
  • an X-ray scanner 50 is set up in a conventional geometry and comprises an array of emitter units 25 arranged in an arc around a central scanner axis X, and orientated so as to emit X-rays towards the scanner axis X.
  • a ring of sensors 52 is placed inside the emitters, directed inwards towards the scanner axis.
  • the sensors 52 and emitter units 25 are offset from each other along the axis X so that X-rays emitted from the emitter units pass by the sensors nearest to them, through the object, and are detected by a number of sensors furthest from them.
  • the number of sensors 52 that will detect X-rays from each source depends on the width of the fan of X-rays that is emitted from each source position in the tubes 25 .
  • the scanner is controlled by a control system which operates a number of functions represented by functional blocks in FIG. 5 .
  • a system control block 54 controls, and receives data from, an image display unit 56 , an X-ray tube control block 58 and an image reconstruction block 60 .
  • the X-ray tube control block 58 controls a focus control block 62 which controls the potentials of the focus wires 22 in each of the emitter units 25 , a grid control block 64 which controls the potential of the individual grid wires 20 in each emitter unit 25 , and a high voltage supply 68 which provides the power to the anode 32 of each of the emitter blocks and the power to the emitter elements 18 .
  • the image reconstruction block 60 controls and receives data from a sensor control block 70 which in turn controls and receives data from the sensors 52 .
  • an object to be scanned is passed along the axis X, and X-ray beams are directed through the object from the X-ray tubes 25 .
  • each source position in each tube 25 is used once, the scanning cycle being repeated as the object moves along the axis X.
  • Each source position produces a fan of X-rays which after passing through the object are detected by a number of the sensors 52 .
  • the order in which the tubes and the positions within the tubes are used is controlled as will now be described.
  • the order of X-ray emission from the source positions in the tubes 25 is chosen so as to minimize the thermal load on the X-ray tube. This is achieved by ordering the emissions so that each source position is non-adjacent to, and therefore spaced from, the previous one and the subsequent one. This ordering applies both to the source positions within each tube 25 , and also to the tubes themselves. Therefore each source position is in a different tube to the previous one and the next one. In fact the best distribution of thermal load is achieved if the source position cycles through all of the tubes, using one position from each tube, and then cycles through the tubes again using a different source position within each tube. The cycling is then repeated until all of the source positions in all of the tubes have been used once. This completes one scanning cycle which can then be repeated.
  • each tube the source positions are taken in an order which spreads the thermal load within the tube. This is achieved by ordering the source positions so that the distance between each source position and the next one in that tube, and the previous one in that tube, are both maximized. Firstly, therefore, if the number of source positions per tube allows it, each source position in the tube should be non-adjacent to the next and previous ones in that tube. Then, depending on the number of source positions, the ordering is chosen so as to distribute the thermal load as much as possible.
  • each one can produce X-rays from 5 source positions 70 , 71 , 72 , 73 , also numbered in order along the tube 60 as 1, 2, 3, 4 and 5, then best ordering for the source positions within each tube is 1, 3, 5, 2, 4.
  • the same sequence is also used for ordering the tubes so as to maximize the angular separation between successive emissions. This produces an emission ordering as follows, where the source positions are numbered in order round the object 75 starting at the left hand end of the tube 60 at the left end of the row and counting to the right hand end of the tube 64 at the right end of the row.
  • Source Position Overall Source Tube in Tube position 1 1 1 3 1 11 5 1 21 2 1 6 4 1 16 1 3 3 3 13 5 3 23 2 3 8 4 3 18 1 5 5 3 5 15 5 5 5 25 2 5 10 4 5 20 1 2 2 3 2 12 5 2 22 2 7 4 2 17 1 4 4 3 4 14 5 4 24 2 4 9 4 4 19
  • a plurality of X-ray sources 80 are spaced around an axis X, with a plurality of sensors 82 axially offset from the sources 80 as in the first embodiment.
  • the sources 80 a emits an X-ray beam 84 this diverges, passes through the object 86 and reaches a number of the sensors 82 .
  • the number of sensors 82 which will detect X-rays from each of the sources depends on the width of the beam of X-rays, which is a known quantity for any give system, and can be quantified in terms of a half-angle. This is the angle between the centre of the beam and the edge of the beam.
  • source positions can be selected which can emit simultaneously, provided that they do not require any common detectors. For example if there are 24 source positions 80 and 24 sensors 82 and each source position requires 5 sensors, then four of the sensors 80 a, 80 b, 80 c, 80 d, spaced around the object at 90° intervals can be used simultaneously.
  • N ⁇ ⁇ N s /2.
  • the ordering of the emission positions can be varied in a large number of ways for any given number of emission positions, and that the optimum ordering will also vary depending on the number of emission positions and the number of X-ray tubes.

Abstract

The present invention is an X-ray scanning system having at least one multi-focus X-ray tubes spaced around an axis and arranged to emit X-rays through an object on the axis. The emitted X-rays are detected by sensors. Each multi-focus X-ray tube can emit X-rays from a plurality of source positions. In an exemplary scanning cycle, each of the source positions in each X-ray tube is used at least once and ordered to minimize the thermal load on the tubes.

Description

    CROSS-REFERENCE TO PRIOR APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 10/554,656 filed on Oct. 25, 2005 which is a 371 national stage application of PCT/GB04/01729 which was filed on and relies on for priority UK Patent Application No. 0309387, filed on Apr. 25, 2003.
  • The present invention relates to X-ray scanning in which X-rays are directed through an object from a number of positions around the object and the X-rays transmitted through the object are detected and used to build up an image of the object. This type of scanning is referred to as computed tomography (CT) scanning.
  • One method of CT scanning involves rotating an X-ray source around the object so that it directs X-rays through the object in different directions. Another method, for example as disclosed in U.S. Pat. No. 4,274,005, involves positioning a number of X-ray sources around the object and then operating the sources in turn so that the active source position scans round the object.
  • As the use of X-ray scanners, for example in security applications, increases, there is an increasing demand for scanners which operate quickly and which have a long lifetime.
  • Accordingly the present invention provides an X-ray imaging apparatus comprising X-ray production means arranged to produce X-rays from a plurality of source positions spaced around an object location and spaced from each other by a source spacing, a plurality of X-ray sensors arranged to be spaced around the object position so as to detect X-rays emitted from the source positions and passing through the object position, and control means arranged to control the order in which the source positions are active such that the average smallest displacement between an active source position in one emission period and an active source position in the subsequent period is greater than the source spacing.
  • This increase in average spacing between successively active source positions helps to spread the thermal load in the X-ray source.
  • Preferably said average smallest displacement is at least twice the source spacing. This can most easily be achieved by ensuring that the control means is arranged such that no active source position in any one emission period is adjacent a source position active in the next emission period.
  • The control means may arranged so that in each emission period only one source position is active.
  • Alternatively the control means may arrange such that in each emission period a plurality of source positions are active simultaneously. This can reduce the scanning time and increase the scanning rate.
  • Where the source positions are each arranged to produce X-rays which will be detected by a corresponding group of sensors, the control means is preferably arranged such that in each emission period, there is no overlap between the groups of sensors for said plurality of source positions. This ensures that the detected X-rays from each of the simultaneously active sources can be distinguished.
  • Preferably in each emission period at least half of the sensors are arranged to receive X-rays from the active source positions. More preferably in each emission period substantially all of the sensors are arranged to receive X-rays from the active source positions.
  • Preferably the apparatus comprises a plurality of X-ray tubes each providing a plurality of said source positions.
  • In this case the control means is preferably arranged such that in each emission period the active source position is in a different tube from the active source position in the previous emission period.
  • Conveniently only one source position is active in each emission period and the active source positions are provided in each of the tubes in turn.
  • Preferably, within each tube, the order in which the source positions are active is arranged such that in each emission period the active source position is non-adjacent to the source position active in the previous emission period.
  • Preferred embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings in which:
  • FIG. 1 shows an X-ray emitter suitable for use with the invention,
  • FIG. 2 is a diagram of an X-ray imaging system according to the invention including a number of emitter units as shown in FIG. 1;
  • FIG. 3 is a diagram of the layout of an X-ray imaging system according to a second embodiment of the invention; and
  • FIG. 4 is a diagram of the layout of an X-ray imaging system according to a third embodiment of the invention.
  • Referring to FIG. 1, a multi-focus X-ray tube 10 comprises a ceramic former 12 and an emitter element 18 extending along between the sides 14, 16 of the former. A number of grid elements in the form of grid wires 20 are supported on the former 12 and extend over the gap between its two sides 14, 16 perpendicular to the emitter element 18, but in a plane which is parallel to it. A number of focusing elements in the form of focusing wires 22 are supported in another plane on the opposite side of the grid wires to the emitter element. The focusing wires 22 are parallel to the grid wires 20 and spaced apart from each other with the same spacing as the grid wires, each focusing wire 22 being aligned with a respective one of the grid wires 20.
  • The source 10 is enclosed in a housing 24 of an emitter unit 25 with the former 12 being supported on the base 24 a of the housing. The focusing wires 22 are supported on two support rails 26 a, 26 b which extend parallel to the emitter element 18, and are spaced from the former 12, the support rails being mounted on the base 24 a of the housing. The support rails 26 a, 26 b are electrically conducting so that all of the focusing wires 22 are electrically connected together. One of the support rails 26 a is connected to a connector 28 which projects through the base 24 a of the housing to provide an electrical connection for the focusing wires 22. Each of the grid wires 20 extends down one side 16 of the former and is connected to a respective electrical connector 30 which provide separate electrical connections for each of the grid wires 20.
  • An anode 32 is supported between the side walls 24 b, 24 c of the housing. The anode extends parallel to the emitter element 18. The grid and focusing wires 20, 22 therefore extend between the emitter element 18 and the anode 32. An electrical connector 34 to the anode extends through the side wall 24 b of the housing.
  • The emitter element 18 is supported in the ends of the former and is heated by means of an electric current supplied to it via further connectors 36, 38 in the housing.
  • In order to produce a beam of electrons from one position, a pair of adjacent grid wires 20 can be connected to an extracting potential which is positive with respect to the element 18 while the remaining grid wires are connected to a blocking potential which is negative with respect to the element 18. By selecting which pair of wires 20 is used to extract electrons, the position of the beam of electrons can be chosen. As the X-rays will be emitted from the anode 32 at a point where the electrons strike it, the position of the X-ray source can also be chosen by choosing the extracting pair of grid wires. The focusing elements 22 are all kept at a positive potential with respect to the grid wires 20 so that electrons extracted between any pair of the grid wires will also pass between, and be focussed by, a corresponding pair of focusing elements 22.
  • Referring to FIG. 2, an X-ray scanner 50 is set up in a conventional geometry and comprises an array of emitter units 25 arranged in an arc around a central scanner axis X, and orientated so as to emit X-rays towards the scanner axis X. A ring of sensors 52 is placed inside the emitters, directed inwards towards the scanner axis. The sensors 52 and emitter units 25 are offset from each other along the axis X so that X-rays emitted from the emitter units pass by the sensors nearest to them, through the object, and are detected by a number of sensors furthest from them. The number of sensors 52 that will detect X-rays from each source depends on the width of the fan of X-rays that is emitted from each source position in the tubes 25. The scanner is controlled by a control system which operates a number of functions represented by functional blocks in FIG. 5. A system control block 54 controls, and receives data from, an image display unit 56, an X-ray tube control block 58 and an image reconstruction block 60. The X-ray tube control block 58 controls a focus control block 62 which controls the potentials of the focus wires 22 in each of the emitter units 25, a grid control block 64 which controls the potential of the individual grid wires 20 in each emitter unit 25, and a high voltage supply 68 which provides the power to the anode 32 of each of the emitter blocks and the power to the emitter elements 18. The image reconstruction block 60 controls and receives data from a sensor control block 70 which in turn controls and receives data from the sensors 52.
  • In operation, an object to be scanned is passed along the axis X, and X-ray beams are directed through the object from the X-ray tubes 25. In each scanning cycle each source position in each tube 25 is used once, the scanning cycle being repeated as the object moves along the axis X. Each source position produces a fan of X-rays which after passing through the object are detected by a number of the sensors 52. However, the order in which the tubes and the positions within the tubes are used is controlled as will now be described.
  • The order of X-ray emission from the source positions in the tubes 25 is chosen so as to minimize the thermal load on the X-ray tube. This is achieved by ordering the emissions so that each source position is non-adjacent to, and therefore spaced from, the previous one and the subsequent one. This ordering applies both to the source positions within each tube 25, and also to the tubes themselves. Therefore each source position is in a different tube to the previous one and the next one. In fact the best distribution of thermal load is achieved if the source position cycles through all of the tubes, using one position from each tube, and then cycles through the tubes again using a different source position within each tube. The cycling is then repeated until all of the source positions in all of the tubes have been used once. This completes one scanning cycle which can then be repeated.
  • Within each tube the source positions are taken in an order which spreads the thermal load within the tube. This is achieved by ordering the source positions so that the distance between each source position and the next one in that tube, and the previous one in that tube, are both maximized. Firstly, therefore, if the number of source positions per tube allows it, each source position in the tube should be non-adjacent to the next and previous ones in that tube. Then, depending on the number of source positions, the ordering is chosen so as to distribute the thermal load as much as possible.
  • For example, if as in a second embodiment of the invention shown in FIG. 3, there are five X-ray tubes 60, 61, 62, 63, 64 numbered in the order in which they are positioned 1, 2, 3, 4 and 5, and each one can produce X-rays from 5 source positions 70, 71, 72, 73, also numbered in order along the tube 60 as 1, 2, 3, 4 and 5, then best ordering for the source positions within each tube is 1, 3, 5, 2, 4. The same sequence is also used for ordering the tubes so as to maximize the angular separation between successive emissions. This produces an emission ordering as follows, where the source positions are numbered in order round the object 75 starting at the left hand end of the tube 60 at the left end of the row and counting to the right hand end of the tube 64 at the right end of the row.
  • Source Position Overall Source
    Tube in Tube position
    1 1 1
    3 1 11
    5 1 21
    2 1 6
    4 1 16
    1 3 3
    3 3 13
    5 3 23
    2 3 8
    4 3 18
    1 5 5
    3 5 15
    5 5 25
    2 5 10
    4 5 20
    1 2 2
    3 2 12
    5 2 22
    2 2 7
    4 2 17
    1 4 4
    3 4 14
    5 4 24
    2 4 9
    4 4 19
  • The same ordering could also be used with, for example, 25 source positions in a single tube which is shaped around the object 75.
  • It will be appreciated that, for X-ray tubes with less than 5 source positions it is not possible to avoid using adjacent positions in subsequent emissions. However, for tubes with 5 or more source positions, this can be avoided.
  • Referring to FIG. 4, in a third embodiment of the invention a plurality of X-ray sources 80 are spaced around an axis X, with a plurality of sensors 82 axially offset from the sources 80 as in the first embodiment. When one of the sources 80a emits an X-ray beam 84 this diverges, passes through the object 86 and reaches a number of the sensors 82. The number of sensors 82 which will detect X-rays from each of the sources depends on the width of the beam of X-rays, which is a known quantity for any give system, and can be quantified in terms of a half-angle. This is the angle between the centre of the beam and the edge of the beam.
  • When the sensors 82 which are needed to detect X-rays from each of the source positions 80 are known, source positions can be selected which can emit simultaneously, provided that they do not require any common detectors. For example if there are 24 source positions 80 and 24 sensors 82 and each source position requires 5 sensors, then four of the sensors 80 a, 80 b, 80 c, 80 d, spaced around the object at 90° intervals can be used simultaneously.
  • In practice the number of source positions and sensors is likely to be higher than this. To satisfy the Nyquist sampling theorem, it is necessary to match the number of source positions Nφ to the number of sensors Ns of width d that are required to cover the linear dimension of the object Nsd. This leads to the result

  • N φ =πN s/2.
  • For example an image where Ns=64 will require Nφ=100 sampling points to satisfy the Nyquist sampling criterion.
  • It will be appreciated that the ordering of the emission positions can be varied in a large number of ways for any given number of emission positions, and that the optimum ordering will also vary depending on the number of emission positions and the number of X-ray tubes.

Claims (16)

1-13. (canceled)
14. An X-ray imaging apparatus comprising:
at least one X-ray tube comprising a first X-ray source and a second X-ray source, wherein each of said first and second X-ray sources produce X-rays and wherein the first X-ray source and the second X-ray source are adjacent each other and spaced from each other by a first spacing;
at least one X-ray sensor to detect X-rays emitted from the at least one X-ray tube; and
a controller for activating said first X-ray source when said second X-ray source is inactive and for activating said second X-ray source when said first X-ray source is inactive.
15. The X-ray imaging apparatus of claim 1 wherein said X-ray tube comprises a third X-ray source and wherein said third X-ray source is spaced from said first X-ray source by a second spacing.
16. The X-ray imaging apparatus of claim 15 wherein said second spacing is greater than said first spacing.
17. The X-ray imaging apparatus of claim 16 wherein said controller first activates said first X-ray source while keeping inactive the second X-ray source and the third X-ray source.
18. The X-ray imaging apparatus of claim 17 wherein said controller activates said third X-ray source, while keeping inactive the first and second X-ray sources, immediately after inactivating said first X-ray source.
19. The X-ray imaging apparatus of claim 14 further comprising a second X-ray tube comprising a first X-ray source and a second X-ray source, wherein each of said first and second X-ray sources produce X-rays and wherein the first X-ray source and the second X-ray source are adjacent each other and spaced from each other by a spacing;
20. The X-ray imaging apparatus of claim 19 wherein the controller immediately activates the first X-ray source in the second X-ray tube after inactivating the first X-ray source in the at least one X-ray tube and before activating the second X-ray source in the at least one X-ray tube.
21. An X-ray imaging apparatus comprising
a first X-ray tube comprising a first plurality of source positions, including a first source position and a second source position, wherein the first source position and the second source position are adjacent each other and spaced from each other by a first source spacing;
a second X-ray tube comprising a second plurality of source positions, including a third source position and a fourth source position, wherein the third source position and the fourth source position are adjacent each other and spaced from each other by a second source spacing;
at least one X-ray sensor to detect X-rays emitted from the first or second X-ray tubes; and
a controller for controlling an order in which the first, second, third, and fourth source positions are active such that a displacement between an active source position in one emission period and an active source position in a period immediately after the emission period is greater than an amount related to said first and second source spacing.
22. The imaging apparatus of claim 21 wherein said displacement is at least twice the first source spacing.
23. The imaging apparatus of claim 21 wherein said displacement is at least twice the second source spacing.
24. The imaging apparatus of claim 21 wherein an active source position in the emission period is not adjacent a source position that is active in the period immediately after the emission period.
25. The imaging apparatus of claim 21 wherein only one of the first, second, third or fourth source position in an X-ray tube is active in each emission period.
26. The imaging apparatus of claim 21 wherein one source in said first X-ray tube and one source in said second X-ray tube are active simultaneously in each emission period.
27. The imaging apparatus of claim 21 wherein, in each emission period, more than one source position is active and each of said active source positions is located in a different X-ray tube.
28. The imaging apparatus of claim 21 wherein only one source position in each X-ray tube is active in each emission period and each X-ray tube is active in a sequential order.
US12/485,897 2003-04-25 2009-06-16 Control Means for Heat Load in X-Ray Scanning Apparatus Abandoned US20090316855A1 (en)

Priority Applications (26)

Application Number Priority Date Filing Date Title
US12/485,897 US20090316855A1 (en) 2003-04-25 2009-06-16 Control Means for Heat Load in X-Ray Scanning Apparatus
US12/712,476 US8243876B2 (en) 2003-04-25 2010-02-25 X-ray scanners
US12/787,930 US8223919B2 (en) 2003-04-25 2010-05-26 X-ray tomographic inspection systems for the identification of specific target items
US12/788,083 US8451974B2 (en) 2003-04-25 2010-05-26 X-ray tomographic inspection system for the identification of specific target items
US12/787,878 US8804899B2 (en) 2003-04-25 2010-05-26 Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners
US12/792,931 US8331535B2 (en) 2003-04-25 2010-06-03 Graphite backscattered electron shield for use in an X-ray tube
US12/835,682 US8204173B2 (en) 2003-04-25 2010-07-13 System and method for image reconstruction by using multi-sheet surface rebinning
US13/032,593 US9113839B2 (en) 2003-04-25 2011-02-22 X-ray inspection system and method
US13/346,705 US8559592B2 (en) 2003-04-25 2012-01-09 System and method for image reconstruction by using multi-sheet surface rebinning
US13/532,862 US10591424B2 (en) 2003-04-25 2012-06-26 X-ray tomographic inspection systems for the identification of specific target items
US13/548,873 US9020095B2 (en) 2003-04-25 2012-07-13 X-ray scanners
US13/674,086 US9208988B2 (en) 2005-10-25 2012-11-11 Graphite backscattered electron shield for use in an X-ray tube
US13/870,407 US8885794B2 (en) 2003-04-25 2013-04-25 X-ray tomographic inspection system for the identification of specific target items
US14/312,540 US9183647B2 (en) 2003-04-25 2014-06-23 Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners
US14/508,464 US9158030B2 (en) 2003-04-25 2014-10-07 X-ray tomographic inspection system for the identification of specific target items
US14/641,777 US9618648B2 (en) 2003-04-25 2015-03-09 X-ray scanners
US14/688,898 US9726619B2 (en) 2005-10-25 2015-04-16 Optimization of the source firing pattern for X-ray scanning systems
US14/798,195 US9442082B2 (en) 2003-04-25 2015-07-13 X-ray inspection system and method
US14/848,176 US9606259B2 (en) 2003-04-25 2015-09-08 X-ray tomographic inspection system for the identification of specific target items
US14/848,590 US9747705B2 (en) 2003-04-25 2015-09-09 Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners
US14/930,293 US9576766B2 (en) 2003-04-25 2015-11-02 Graphite backscattered electron shield for use in an X-ray tube
US15/437,033 US20180038988A1 (en) 2003-04-25 2017-02-20 X-ray Tomographic Inspection System for the Identification of Specific Target Items
US15/439,837 US10175381B2 (en) 2003-04-25 2017-02-22 X-ray scanners having source points with less than a predefined variation in brightness
US16/192,112 US10901112B2 (en) 2003-04-25 2018-11-15 X-ray scanning system with stationary x-ray sources
US16/745,251 US20200200690A1 (en) 2003-04-25 2020-01-16 X-Ray Tomographic Inspection Systems for the Identification of Specific Target Items
US17/123,452 US11796711B2 (en) 2003-04-25 2020-12-16 Modular CT scanning system

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB0309387 2003-04-25
GBGB0309387.9A GB0309387D0 (en) 2003-04-25 2003-04-25 X-Ray scanning
PCT/GB2004/001729 WO2004097386A1 (en) 2003-04-25 2004-04-23 Control means for heat load in x-ray scanning apparatus
US55465607A 2007-03-29 2007-03-29
US12/485,897 US20090316855A1 (en) 2003-04-25 2009-06-16 Control Means for Heat Load in X-Ray Scanning Apparatus

Related Parent Applications (9)

Application Number Title Priority Date Filing Date
US10/554,656 Continuation US7564939B2 (en) 2003-04-25 2004-04-23 Control means for heat load in X-ray scanning apparatus
PCT/GB2004/001729 Continuation WO2004097386A1 (en) 2003-04-25 2004-04-23 Control means for heat load in x-ray scanning apparatus
US55465607A Continuation 2003-04-25 2007-03-29
US12/712,476 Continuation US8243876B2 (en) 2003-04-25 2010-02-25 X-ray scanners
US12/787,878 Continuation US8804899B2 (en) 2003-04-25 2010-05-26 Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners
US12/787,930 Continuation US8223919B2 (en) 2003-04-25 2010-05-26 X-ray tomographic inspection systems for the identification of specific target items
US12/788,083 Continuation US8451974B2 (en) 2003-04-25 2010-05-26 X-ray tomographic inspection system for the identification of specific target items
US12/792,931 Continuation US8331535B2 (en) 2003-04-25 2010-06-03 Graphite backscattered electron shield for use in an X-ray tube
US12/835,682 Continuation US8204173B2 (en) 2003-04-25 2010-07-13 System and method for image reconstruction by using multi-sheet surface rebinning

Related Child Applications (8)

Application Number Title Priority Date Filing Date
US55465607A Continuation-In-Part 2003-04-25 2007-03-29
US12/697,073 Continuation-In-Part US8085897B2 (en) 2003-04-25 2010-01-29 X-ray scanning system
US12/712,476 Continuation-In-Part US8243876B2 (en) 2003-04-25 2010-02-25 X-ray scanners
US12/787,878 Continuation-In-Part US8804899B2 (en) 2003-04-25 2010-05-26 Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners
US12/787,930 Continuation-In-Part US8223919B2 (en) 2003-04-25 2010-05-26 X-ray tomographic inspection systems for the identification of specific target items
US12/788,083 Continuation-In-Part US8451974B2 (en) 2003-04-25 2010-05-26 X-ray tomographic inspection system for the identification of specific target items
US12/792,931 Continuation-In-Part US8331535B2 (en) 2003-04-25 2010-06-03 Graphite backscattered electron shield for use in an X-ray tube
US12/835,682 Continuation-In-Part US8204173B2 (en) 2003-04-25 2010-07-13 System and method for image reconstruction by using multi-sheet surface rebinning

Publications (1)

Publication Number Publication Date
US20090316855A1 true US20090316855A1 (en) 2009-12-24

Family

ID=9957207

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/554,656 Expired - Lifetime US7564939B2 (en) 2003-04-25 2004-04-23 Control means for heat load in X-ray scanning apparatus
US12/485,897 Abandoned US20090316855A1 (en) 2003-04-25 2009-06-16 Control Means for Heat Load in X-Ray Scanning Apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/554,656 Expired - Lifetime US7564939B2 (en) 2003-04-25 2004-04-23 Control means for heat load in X-ray scanning apparatus

Country Status (9)

Country Link
US (2) US7564939B2 (en)
EP (1) EP1618368B1 (en)
JP (1) JP4861818B2 (en)
CN (1) CN1781018B (en)
AT (1) ATE443253T1 (en)
DE (1) DE602004023188D1 (en)
ES (1) ES2333331T3 (en)
GB (2) GB0309387D0 (en)
WO (1) WO2004097386A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9747705B2 (en) 2003-04-25 2017-08-29 Rapiscan Systems, Inc. Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners
US10585206B2 (en) 2017-09-06 2020-03-10 Rapiscan Systems, Inc. Method and system for a multi-view scanner
US10591424B2 (en) 2003-04-25 2020-03-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
US10663616B2 (en) 2017-04-17 2020-05-26 Rapiscan Systems, Inc. X-ray tomography inspection systems and methods
US10901112B2 (en) 2003-04-25 2021-01-26 Rapiscan Systems, Inc. X-ray scanning system with stationary x-ray sources
US10976271B2 (en) 2005-12-16 2021-04-13 Rapiscan Systems, Inc. Stationary tomographic X-ray imaging systems for automatically sorting objects based on generated tomographic images
US11551903B2 (en) 2020-06-25 2023-01-10 American Science And Engineering, Inc. Devices and methods for dissipating heat from an anode of an x-ray tube assembly
US11594001B2 (en) 2020-01-20 2023-02-28 Rapiscan Systems, Inc. Methods and systems for generating three-dimensional images that enable improved visualization and interaction with objects in the three-dimensional images

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7963695B2 (en) 2002-07-23 2011-06-21 Rapiscan Systems, Inc. Rotatable boom cargo scanning system
US8275091B2 (en) 2002-07-23 2012-09-25 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US8094784B2 (en) 2003-04-25 2012-01-10 Rapiscan Systems, Inc. X-ray sources
GB0309371D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-Ray tubes
US10483077B2 (en) 2003-04-25 2019-11-19 Rapiscan Systems, Inc. X-ray sources having reduced electron scattering
US9208988B2 (en) 2005-10-25 2015-12-08 Rapiscan Systems, Inc. Graphite backscattered electron shield for use in an X-ray tube
US7949101B2 (en) 2005-12-16 2011-05-24 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US9113839B2 (en) 2003-04-25 2015-08-25 Rapiscon Systems, Inc. X-ray inspection system and method
US8837669B2 (en) 2003-04-25 2014-09-16 Rapiscan Systems, Inc. X-ray scanning system
GB0812864D0 (en) 2008-07-15 2008-08-20 Cxr Ltd Coolign anode
US8451974B2 (en) 2003-04-25 2013-05-28 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
US6928141B2 (en) 2003-06-20 2005-08-09 Rapiscan, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
US7471764B2 (en) 2005-04-15 2008-12-30 Rapiscan Security Products, Inc. X-ray imaging system having improved weather resistance
US9046465B2 (en) * 2011-02-24 2015-06-02 Rapiscan Systems, Inc. Optimization of the source firing pattern for X-ray scanning systems
US7706499B2 (en) * 2006-08-30 2010-04-27 General Electric Company Acquisition and reconstruction of projection data using a stationary CT geometry
DE102007012362A1 (en) * 2007-03-14 2008-09-18 Siemens Ag X-ray machine
DE102008004473A1 (en) * 2008-01-15 2009-07-23 Siemens Aktiengesellschaft Method and device for generating a tomosynthetic 3D X-ray image
GB0803641D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
GB0803644D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
GB0809110D0 (en) 2008-05-20 2008-06-25 Rapiscan Security Products Inc Gantry scanner systems
US7809101B2 (en) 2008-06-06 2010-10-05 General Electric Company Modular multispot X-ray source and method of making same
GB0816823D0 (en) 2008-09-13 2008-10-22 Cxr Ltd X-ray tubes
GB0901338D0 (en) 2009-01-28 2009-03-11 Cxr Ltd X-Ray tube electron sources
US7756249B1 (en) * 2009-02-19 2010-07-13 Morpho Detection, Inc. Compact multi-focus x-ray source, x-ray diffraction imaging system, and method for fabricating compact multi-focus x-ray source
EP2436013A4 (en) 2009-05-26 2017-04-12 Rapiscan Security Products, Inc. X-ray tomographic inspection system for the idendification of specific target items
GB2501022B (en) 2009-05-26 2014-02-12 Rapiscan Systems Inc X-ray tomographic inspection systems for the identification of specific target items
US8713131B2 (en) 2010-02-23 2014-04-29 RHPiscan Systems, Inc. Simultaneous image distribution and archiving
US9218933B2 (en) 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
WO2013008685A1 (en) * 2011-07-12 2013-01-17 富士フイルム株式会社 Radiation output device, radiography system, and radiography method
US8948338B2 (en) * 2011-11-03 2015-02-03 Medtronic Navigation, Inc. Dynamically scanned X-ray detector panel
CN103308535B (en) * 2012-03-09 2016-04-13 同方威视技术股份有限公司 For equipment and the method for ray scanning imaging
CN104486997B (en) * 2012-06-05 2017-07-25 拉皮斯坎系统股份有限公司 The optimization of the radiographic source excitation mode of X-ray scanning system
MX350070B (en) 2013-01-31 2017-08-25 Rapiscan Systems Inc Portable security inspection system.
CN104470178A (en) 2013-09-18 2015-03-25 清华大学 X-ray device and CT device with same
CN109216137B (en) * 2017-06-30 2024-04-05 同方威视技术股份有限公司 Distributed X-ray source and control method thereof
JP2020532089A (en) 2017-09-02 2020-11-05 チェッテーン ゲゼルシャフト ミット ベシュレンクテル ハフツング Control devices for X-ray tubes and how to operate the X-ray tubes
CN111683601A (en) * 2018-01-31 2020-09-18 纳欧克斯影像有限责任公司 X-ray imaging apparatus and tomosynthesis image synthesis method
JP7184584B2 (en) * 2018-09-27 2022-12-06 富士フイルム株式会社 radiography equipment
EP3933881A1 (en) 2020-06-30 2022-01-05 VEC Imaging GmbH & Co. KG X-ray source with multiple grids

Citations (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2952790A (en) * 1957-07-15 1960-09-13 Raytheon Co X-ray tubes
US3239706A (en) * 1961-04-17 1966-03-08 High Voltage Engineering Corp X-ray target
US3768645A (en) * 1971-02-22 1973-10-30 Sunkist Growers Inc Method and means for automatically detecting and sorting produce according to internal damage
US4057725A (en) * 1974-09-06 1977-11-08 U.S. Philips Corporation Device for measuring local radiation absorption in a body
US4105922A (en) * 1977-04-11 1978-08-08 General Electric Company CT number identifier in a computed tomography system
US4228353A (en) * 1978-05-02 1980-10-14 Johnson Steven A Multiple-phase flowmeter and materials analysis apparatus and method
US4259721A (en) * 1977-02-10 1981-03-31 Siemens Aktiengesellschaft Computer system for the image synthesis of a transverse body section and method for the operation of the computer system
US4266425A (en) * 1979-11-09 1981-05-12 Zikonix Corporation Method for continuously determining the composition and mass flow of butter and similar substances from a manufacturing process
US4274005A (en) * 1978-09-29 1981-06-16 Tokyo Shibaura Denki Kabushiki Kaisha X-ray apparatus for computed tomography scanner
US4340816A (en) * 1976-10-19 1982-07-20 Siemens Aktiengesellschaft Method of producing tomograms with x-rays or similarly penetrating radiation
US4352021A (en) * 1980-01-07 1982-09-28 The Regents Of The University Of California X-Ray transmission scanning system and method and electron beam X-ray scan tube for use therewith
US4468802A (en) * 1981-03-02 1984-08-28 Siemens Aktiengesellschaft X-Ray tube
US4672649A (en) * 1984-05-29 1987-06-09 Imatron, Inc. Three dimensional scanned projection radiography using high speed computed tomographic scanning system
US4675890A (en) * 1982-10-05 1987-06-23 Thomson-Csf X-ray tube for producing a high-efficiency beam and especially a pencil beam
USRE32961E (en) * 1974-09-06 1989-06-20 U.S. Philips Corporation Device for measuring local radiation absorption in a body
US4866745A (en) * 1986-07-16 1989-09-12 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Ultrahigh speed X-ray CT scanner
US4868856A (en) * 1985-08-27 1989-09-19 National Research Development Corporation Multi-component flow measurement and imaging
US4887604A (en) * 1988-05-16 1989-12-19 Science Research Laboratory, Inc. Apparatus for performing dual energy medical imaging
US5033106A (en) * 1986-10-27 1991-07-16 Sharp Kabushiki Kaisha Information registering and retrieval system
US5247556A (en) * 1991-02-06 1993-09-21 Siemens Aktiengesellschaft Method and apparatus of operating a computer tomography apparatus to simultaneously obtain an x-ray shadowgraph and a tomographic exposure
US5259014A (en) * 1991-01-08 1993-11-02 U.S. Philips Corp. X-ray tube
US5272627A (en) * 1991-03-27 1993-12-21 Gulton Industries, Inc. Data converter for CT data acquisition system
US5313511A (en) * 1986-06-20 1994-05-17 American Science And Engineering, Inc. X-ray imaging particularly adapted for low Z materials
US5367552A (en) * 1991-10-03 1994-11-22 In Vision Technologies, Inc. Automatic concealed object detection system having a pre-scan stage
US5467377A (en) * 1994-04-15 1995-11-14 Dawson; Ralph L. Computed tomographic scanner
US5511104A (en) * 1994-03-11 1996-04-23 Siemens Aktiengesellschaft X-ray tube
US5604778A (en) * 1994-10-13 1997-02-18 Siemens Aktiengesellschaft Spiral scan computed tomography apparatus with multiple x-ray sources
US5633907A (en) * 1996-03-21 1997-05-27 General Electric Company X-ray tube electron beam formation and focusing
US5689541A (en) * 1995-11-14 1997-11-18 Siemens Aktiengesellschaft X-ray tube wherein damage to the radiation exit window due to back-scattered electrons is avoided
US5841831A (en) * 1996-05-09 1998-11-24 Siemens Aktiengesellschaft X-ray computed tomography apparatus
US5859891A (en) * 1997-03-07 1999-01-12 Hibbard; Lyn Autosegmentation/autocontouring system and method for use with three-dimensional radiation therapy treatment planning
US5966422A (en) * 1992-07-20 1999-10-12 Picker Medical Systems, Ltd. Multiple source CT scanner
US5974111A (en) * 1996-09-24 1999-10-26 Vivid Technologies, Inc. Identifying explosives or other contraband by employing transmitted or scattered X-rays
US5987097A (en) * 1997-12-23 1999-11-16 General Electric Company X-ray tube having reduced window heating
US6018562A (en) * 1995-11-13 2000-01-25 The United States Of America As Represented By The Secretary Of The Army Apparatus and method for automatic recognition of concealed objects using multiple energy computed tomography
US6122343A (en) * 1995-04-07 2000-09-19 Technological Resources Pty Limited Method and an apparatus for analyzing a material
US6181765B1 (en) * 1998-12-10 2001-01-30 General Electric Company X-ray tube assembly
US6183139B1 (en) * 1998-10-06 2001-02-06 Cardiac Mariners, Inc. X-ray scanning method and apparatus
US6218943B1 (en) * 1998-03-27 2001-04-17 Vivid Technologies, Inc. Contraband detection and article reclaim system
US6236709B1 (en) * 1998-05-04 2001-05-22 Ensco, Inc. Continuous high speed tomographic imaging system and method
US6269142B1 (en) * 1999-08-11 2001-07-31 Steven W. Smith Interrupted-fan-beam imaging
US20010022346A1 (en) * 1999-11-30 2001-09-20 Jeol Ltd. Scanning electron microscope
US6324249B1 (en) * 2001-03-21 2001-11-27 Agilent Technologies, Inc. Electronic planar laminography system and method
US20020031202A1 (en) * 2000-06-07 2002-03-14 Joseph Callerame X-ray scatter and transmission system with coded beams
US20020094064A1 (en) * 2000-10-06 2002-07-18 Zhou Otto Z. Large-area individually addressable multi-beam x-ray system and method of forming same
US20020176531A1 (en) * 2001-04-03 2002-11-28 Mcclelland Keith M. Remote baggage screening system, software and method
US20030031352A1 (en) * 2001-08-10 2003-02-13 Nelson Alan C. Optical projection imaging system and method for automatically detecting cells with molecular marker compartmentalization associated with malignancy and disease
US6546072B1 (en) * 1999-07-30 2003-04-08 American Science And Engineering, Inc. Transmission enhanced scatter imaging
US6735271B1 (en) * 2000-11-28 2004-05-11 Ge Medical Systems Global Technology Company Llc Electron beam computed tomographic scanner system with helical or tilted target, collimator, and detector components to eliminate cone beam error and to scan continuously moving objects
US20040120454A1 (en) * 2002-10-02 2004-06-24 Michael Ellenbogen Folded array CT baggage scanner
US20040252807A1 (en) * 2003-06-11 2004-12-16 Sondre Skatter Explosives detection system using computed tomography (CT) and quadrupole resonance (QR) sensors
US20040258305A1 (en) * 2001-06-27 2004-12-23 Burnham Keith J. Image segmentation
US20050031075A1 (en) * 2003-08-07 2005-02-10 Hopkins Forrest Frank System and method for detecting an object
US20050053189A1 (en) * 2003-09-05 2005-03-10 Makoto Gohno X-ray CT apparatus and X-ray tube
US20050105682A1 (en) * 2003-11-15 2005-05-19 Heumann John M. Highly constrained tomography for automated inspection of area arrays
US20050111610A1 (en) * 2003-11-26 2005-05-26 General Electric Company Stationary computed tomography system and method
US20050157925A1 (en) * 2002-03-23 2005-07-21 Cristian Lorenz Method for interactive segmentation of a structure contained in an object
US7233644B1 (en) * 2004-11-30 2007-06-19 Ge Homeland Protection, Inc. Computed tomographic scanner using rastered x-ray tubes

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US32961A (en) * 1861-07-30 Animal-trap
GB1497396A (en) 1974-03-23 1978-01-12 Emi Ltd Radiography
GB1526041A (en) 1975-08-29 1978-09-27 Emi Ltd Sources of x-radiation
NL7611391A (en) * 1975-10-18 1977-04-20 Emi Ltd ROENTGENTER.
DE2729353A1 (en) 1977-06-29 1979-01-11 Siemens Ag X=ray tube with migrating focal spot for tomography appts. - has shaped anode, several control grids at common potential and separately switched cathode
DE2807735B2 (en) 1978-02-23 1979-12-20 Philips Patentverwaltung Gmbh, 2000 Hamburg X-ray tube with a tubular piston made of metal
GB2089109B (en) 1980-12-03 1985-05-15 Machlett Lab Inc X-rays targets and tubes
GB2212903B (en) 1987-11-24 1991-11-06 Rolls Royce Plc Measuring two phase flow in pipes.
EP0432568A3 (en) 1989-12-11 1991-08-28 General Electric Company X ray tube anode and tube having same
DE69223884T2 (en) 1991-09-12 1998-08-27 Toshiba Kawasaki Kk Method and device for generating X-ray computer tomograms and for generating shadow images by means of spiral scanning
DE4228559A1 (en) 1992-08-27 1994-03-03 Dagang Tan X-ray tube with a transmission anode
DE4304332A1 (en) * 1993-02-13 1994-08-18 Philips Patentverwaltung Process for generating layer images and arrangement for carrying out the process
SE9401300L (en) 1994-04-18 1995-10-19 Bgc Dev Ab Rotating cylinder collimator for collimation of ionizing, electromagnetic radiation
JPH10272128A (en) * 1997-03-31 1998-10-13 Futec Inc Method and apparatus for direct tomographic photographing
US6149592A (en) 1997-11-26 2000-11-21 Picker International, Inc. Integrated fluoroscopic projection image data, volumetric image data, and surgical device position data
US6005918A (en) 1997-12-19 1999-12-21 Picker International, Inc. X-ray tube window heat shield
US6097786A (en) 1998-05-18 2000-08-01 Schlumberger Technology Corporation Method and apparatus for measuring multiphase flows
JP2001176408A (en) 1999-12-15 2001-06-29 New Japan Radio Co Ltd Electron tube
US6324247B1 (en) * 1999-12-30 2001-11-27 Ge Medical Systems Global Technology Company, Llc Partial scan weighting for multislice CT imaging with arbitrary pitch
US6385292B1 (en) * 2000-12-29 2002-05-07 Ge Medical Systems Global Technology Company, Llc Solid-state CT system and method
EP1277439A4 (en) 2001-02-28 2007-02-14 Mitsubishi Heavy Ind Ltd Multi-radiation source x-ray ct apparatus
CN1344534A (en) * 2001-11-09 2002-04-17 曹文田 Spiral computerized tomography instrument
AU2002360580A1 (en) 2001-12-14 2003-06-30 Wisconsin Alumni Research Foundation Virtual spherical anode computed tomography
US6754300B2 (en) 2002-06-20 2004-06-22 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for operating a radiation source
JP2004079128A (en) 2002-08-22 2004-03-11 Matsushita Electric Ind Co Ltd Optical disk recorder

Patent Citations (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2952790A (en) * 1957-07-15 1960-09-13 Raytheon Co X-ray tubes
US3239706A (en) * 1961-04-17 1966-03-08 High Voltage Engineering Corp X-ray target
US3768645A (en) * 1971-02-22 1973-10-30 Sunkist Growers Inc Method and means for automatically detecting and sorting produce according to internal damage
US4057725A (en) * 1974-09-06 1977-11-08 U.S. Philips Corporation Device for measuring local radiation absorption in a body
USRE32961E (en) * 1974-09-06 1989-06-20 U.S. Philips Corporation Device for measuring local radiation absorption in a body
US4340816A (en) * 1976-10-19 1982-07-20 Siemens Aktiengesellschaft Method of producing tomograms with x-rays or similarly penetrating radiation
US4259721A (en) * 1977-02-10 1981-03-31 Siemens Aktiengesellschaft Computer system for the image synthesis of a transverse body section and method for the operation of the computer system
US4105922A (en) * 1977-04-11 1978-08-08 General Electric Company CT number identifier in a computed tomography system
US4228353A (en) * 1978-05-02 1980-10-14 Johnson Steven A Multiple-phase flowmeter and materials analysis apparatus and method
US4274005A (en) * 1978-09-29 1981-06-16 Tokyo Shibaura Denki Kabushiki Kaisha X-ray apparatus for computed tomography scanner
US4266425A (en) * 1979-11-09 1981-05-12 Zikonix Corporation Method for continuously determining the composition and mass flow of butter and similar substances from a manufacturing process
US4352021A (en) * 1980-01-07 1982-09-28 The Regents Of The University Of California X-Ray transmission scanning system and method and electron beam X-ray scan tube for use therewith
US4468802A (en) * 1981-03-02 1984-08-28 Siemens Aktiengesellschaft X-Ray tube
US4675890A (en) * 1982-10-05 1987-06-23 Thomson-Csf X-ray tube for producing a high-efficiency beam and especially a pencil beam
US4672649A (en) * 1984-05-29 1987-06-09 Imatron, Inc. Three dimensional scanned projection radiography using high speed computed tomographic scanning system
US4868856A (en) * 1985-08-27 1989-09-19 National Research Development Corporation Multi-component flow measurement and imaging
US5313511A (en) * 1986-06-20 1994-05-17 American Science And Engineering, Inc. X-ray imaging particularly adapted for low Z materials
US5313511C1 (en) * 1986-06-20 2001-01-30 Us Trust Company X-ray imaging particularly adapted for low z materials
US4866745A (en) * 1986-07-16 1989-09-12 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Ultrahigh speed X-ray CT scanner
US5033106A (en) * 1986-10-27 1991-07-16 Sharp Kabushiki Kaisha Information registering and retrieval system
US4887604A (en) * 1988-05-16 1989-12-19 Science Research Laboratory, Inc. Apparatus for performing dual energy medical imaging
US5259014A (en) * 1991-01-08 1993-11-02 U.S. Philips Corp. X-ray tube
US5247556A (en) * 1991-02-06 1993-09-21 Siemens Aktiengesellschaft Method and apparatus of operating a computer tomography apparatus to simultaneously obtain an x-ray shadowgraph and a tomographic exposure
US5272627A (en) * 1991-03-27 1993-12-21 Gulton Industries, Inc. Data converter for CT data acquisition system
US5367552A (en) * 1991-10-03 1994-11-22 In Vision Technologies, Inc. Automatic concealed object detection system having a pre-scan stage
US5966422A (en) * 1992-07-20 1999-10-12 Picker Medical Systems, Ltd. Multiple source CT scanner
US5511104A (en) * 1994-03-11 1996-04-23 Siemens Aktiengesellschaft X-ray tube
US5467377A (en) * 1994-04-15 1995-11-14 Dawson; Ralph L. Computed tomographic scanner
US5604778A (en) * 1994-10-13 1997-02-18 Siemens Aktiengesellschaft Spiral scan computed tomography apparatus with multiple x-ray sources
US6122343A (en) * 1995-04-07 2000-09-19 Technological Resources Pty Limited Method and an apparatus for analyzing a material
US6018562A (en) * 1995-11-13 2000-01-25 The United States Of America As Represented By The Secretary Of The Army Apparatus and method for automatic recognition of concealed objects using multiple energy computed tomography
US5689541A (en) * 1995-11-14 1997-11-18 Siemens Aktiengesellschaft X-ray tube wherein damage to the radiation exit window due to back-scattered electrons is avoided
US5633907A (en) * 1996-03-21 1997-05-27 General Electric Company X-ray tube electron beam formation and focusing
US5841831A (en) * 1996-05-09 1998-11-24 Siemens Aktiengesellschaft X-ray computed tomography apparatus
US5974111A (en) * 1996-09-24 1999-10-26 Vivid Technologies, Inc. Identifying explosives or other contraband by employing transmitted or scattered X-rays
US5859891A (en) * 1997-03-07 1999-01-12 Hibbard; Lyn Autosegmentation/autocontouring system and method for use with three-dimensional radiation therapy treatment planning
US5987097A (en) * 1997-12-23 1999-11-16 General Electric Company X-ray tube having reduced window heating
US6218943B1 (en) * 1998-03-27 2001-04-17 Vivid Technologies, Inc. Contraband detection and article reclaim system
US6236709B1 (en) * 1998-05-04 2001-05-22 Ensco, Inc. Continuous high speed tomographic imaging system and method
US6183139B1 (en) * 1998-10-06 2001-02-06 Cardiac Mariners, Inc. X-ray scanning method and apparatus
US6181765B1 (en) * 1998-12-10 2001-01-30 General Electric Company X-ray tube assembly
US6546072B1 (en) * 1999-07-30 2003-04-08 American Science And Engineering, Inc. Transmission enhanced scatter imaging
US6269142B1 (en) * 1999-08-11 2001-07-31 Steven W. Smith Interrupted-fan-beam imaging
US20010022346A1 (en) * 1999-11-30 2001-09-20 Jeol Ltd. Scanning electron microscope
US20020031202A1 (en) * 2000-06-07 2002-03-14 Joseph Callerame X-ray scatter and transmission system with coded beams
US20020094064A1 (en) * 2000-10-06 2002-07-18 Zhou Otto Z. Large-area individually addressable multi-beam x-ray system and method of forming same
US6735271B1 (en) * 2000-11-28 2004-05-11 Ge Medical Systems Global Technology Company Llc Electron beam computed tomographic scanner system with helical or tilted target, collimator, and detector components to eliminate cone beam error and to scan continuously moving objects
US6324249B1 (en) * 2001-03-21 2001-11-27 Agilent Technologies, Inc. Electronic planar laminography system and method
US20020176531A1 (en) * 2001-04-03 2002-11-28 Mcclelland Keith M. Remote baggage screening system, software and method
US20040258305A1 (en) * 2001-06-27 2004-12-23 Burnham Keith J. Image segmentation
US20030031352A1 (en) * 2001-08-10 2003-02-13 Nelson Alan C. Optical projection imaging system and method for automatically detecting cells with molecular marker compartmentalization associated with malignancy and disease
US20050157925A1 (en) * 2002-03-23 2005-07-21 Cristian Lorenz Method for interactive segmentation of a structure contained in an object
US20040120454A1 (en) * 2002-10-02 2004-06-24 Michael Ellenbogen Folded array CT baggage scanner
US20040252807A1 (en) * 2003-06-11 2004-12-16 Sondre Skatter Explosives detection system using computed tomography (CT) and quadrupole resonance (QR) sensors
US20050031075A1 (en) * 2003-08-07 2005-02-10 Hopkins Forrest Frank System and method for detecting an object
US20050053189A1 (en) * 2003-09-05 2005-03-10 Makoto Gohno X-ray CT apparatus and X-ray tube
US20050105682A1 (en) * 2003-11-15 2005-05-19 Heumann John M. Highly constrained tomography for automated inspection of area arrays
US20050111610A1 (en) * 2003-11-26 2005-05-26 General Electric Company Stationary computed tomography system and method
US7233644B1 (en) * 2004-11-30 2007-06-19 Ge Homeland Protection, Inc. Computed tomographic scanner using rastered x-ray tubes

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9747705B2 (en) 2003-04-25 2017-08-29 Rapiscan Systems, Inc. Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners
US10591424B2 (en) 2003-04-25 2020-03-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
US10901112B2 (en) 2003-04-25 2021-01-26 Rapiscan Systems, Inc. X-ray scanning system with stationary x-ray sources
US11796711B2 (en) 2003-04-25 2023-10-24 Rapiscan Systems, Inc. Modular CT scanning system
US10976271B2 (en) 2005-12-16 2021-04-13 Rapiscan Systems, Inc. Stationary tomographic X-ray imaging systems for automatically sorting objects based on generated tomographic images
US10663616B2 (en) 2017-04-17 2020-05-26 Rapiscan Systems, Inc. X-ray tomography inspection systems and methods
US10585206B2 (en) 2017-09-06 2020-03-10 Rapiscan Systems, Inc. Method and system for a multi-view scanner
US11594001B2 (en) 2020-01-20 2023-02-28 Rapiscan Systems, Inc. Methods and systems for generating three-dimensional images that enable improved visualization and interaction with objects in the three-dimensional images
US11551903B2 (en) 2020-06-25 2023-01-10 American Science And Engineering, Inc. Devices and methods for dissipating heat from an anode of an x-ray tube assembly

Also Published As

Publication number Publication date
US7564939B2 (en) 2009-07-21
ATE443253T1 (en) 2009-10-15
US20070172023A1 (en) 2007-07-26
JP4861818B2 (en) 2012-01-25
JP2006524809A (en) 2006-11-02
GB2416654B (en) 2006-12-13
EP1618368A1 (en) 2006-01-25
EP1618368B1 (en) 2009-09-16
ES2333331T3 (en) 2010-02-19
GB2416654A (en) 2006-02-01
WO2004097386A8 (en) 2005-01-20
GB0520903D0 (en) 2005-11-23
DE602004023188D1 (en) 2009-10-29
WO2004097386A1 (en) 2004-11-11
CN1781018A (en) 2006-05-31
GB0309387D0 (en) 2003-06-04
CN1781018B (en) 2011-06-08

Similar Documents

Publication Publication Date Title
US7564939B2 (en) Control means for heat load in X-ray scanning apparatus
US6229870B1 (en) Multiple fan beam computed tomography system
US7440547B2 (en) CT scanner
US20210137470A1 (en) Optimization of the Source Firing Pattern for X-Ray Scanning Systems
EP1211917B1 (en) Imaging apparatus and method
RU2655916C2 (en) X-ray device and ct equipment having same
JP5797727B2 (en) Device and method for generating distributed X-rays
JP5675794B2 (en) X-ray tube for generating two focal spots and medical device having the same
US20100074392A1 (en) X-ray tube with multiple electron sources and common electron deflection unit
JP2016502886A (en) Cathode-controlled multi-cathode distributed X-ray apparatus and CT equipment having this apparatus
WO2010131209A1 (en) X-ray source with a plurality of electron emitters
EP1371330A1 (en) X-ray ct apparatus and x-ray ct apparatus imaging method
EP2465131B1 (en) X-ray tube with independent x- and z- dynamic focal spot deflection
WO2015119466A1 (en) X-ray imaging device
CN113133772A (en) PET-CT system and scanning method
JP2008168039A (en) X-ray generator and x-ray ct apparatus
US20050163285A1 (en) X-ray CT apparatus
JP2015518972A5 (en)
WO2013184103A1 (en) Optimization of the source firing pattern for x-ray scanning systems
WO2014209158A1 (en) Multibeam x-ray tube
EP2521490A1 (en) X-ray tube with a combined x- and y- focal spot deflection method
US11282668B2 (en) X-ray tube and a controller thereof
JP7403009B2 (en) Deflection electrode assembly, X-ray source and X-ray imaging system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: RAPISCAN SYSTEMS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MORTON, EDWARD JAMES;LUGGAR, RUSSELL DAVID;DE ANTONIS, PAUL;SIGNING DATES FROM 20190726 TO 20191022;REEL/FRAME:050840/0385