US20100042213A1 - Drug delivery implants - Google Patents

Drug delivery implants Download PDF

Info

Publication number
US20100042213A1
US20100042213A1 US12/540,676 US54067609A US2010042213A1 US 20100042213 A1 US20100042213 A1 US 20100042213A1 US 54067609 A US54067609 A US 54067609A US 2010042213 A1 US2010042213 A1 US 2010042213A1
Authority
US
United States
Prior art keywords
reservoir
implant
therapeutic agent
channels
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/540,676
Inventor
Paul S. Nebosky
Sarah L. Zimmerman
Gregory C. Stalcup
Troy D. Knapp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smed TA TD LLC
Original Assignee
Smed TA TD LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smed TA TD LLC filed Critical Smed TA TD LLC
Priority to US12/540,676 priority Critical patent/US20100042213A1/en
Priority to PCT/US2009/053724 priority patent/WO2010019781A1/en
Priority claimed from US12/540,760 external-priority patent/US8475505B2/en
Priority to JP2011525237A priority patent/JP5658154B2/en
Priority to ES09810665.1T priority patent/ES2613943T3/en
Priority to EP09810665.1A priority patent/EP2328511B1/en
Priority to US12/549,748 priority patent/US9616205B2/en
Priority to PCT/US2009/055380 priority patent/WO2010025378A2/en
Assigned to SMED-TA/TD, LLC reassignment SMED-TA/TD, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KNAPP, TROY D., NEBOSKY, PAUL S, STALCUP, GREGORY C., ZIMMERMAN, SARAH L.
Publication of US20100042213A1 publication Critical patent/US20100042213A1/en
Priority to US14/505,144 priority patent/US9561354B2/en
Assigned to ANTHREX, INC. reassignment ANTHREX, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SMED-TA/TD, LLC
Priority to US15/413,493 priority patent/US10357298B2/en
Priority to US15/700,788 priority patent/US10349993B2/en
Assigned to SMED-TA/TD, LLC reassignment SMED-TA/TD, LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: ARTHREX, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M31/00Devices for introducing or retaining media, e.g. remedies, in cavities of the body
    • A61M31/002Devices for releasing a drug at a continuous and controlled rate for a prolonged period of time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/60Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/8625Shanks, i.e. parts contacting bone tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/864Pins or screws or threaded wires; nuts therefor hollow, e.g. with socket or cannulated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/866Material or manufacture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7061Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant for stabilising vertebrae or discs by improving the condition of their tissues, e.g. using implanted medication or fluid exchange
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/846Nails or pins, i.e. anchors without movable parts, holding by friction only, with or without structured surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/40Joints for shoulders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30672Features concerning an interaction with the environment or a particular use of the prosthesis temporary
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30677Means for introducing or releasing pharmaceutical products, e.g. antibiotics, into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30677Means for introducing or releasing pharmaceutical products, e.g. antibiotics, into the body
    • A61F2002/3068Means for introducing or releasing pharmaceutical products, e.g. antibiotics, into the body the pharmaceutical product being in a reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/3071Identification means; Administration of patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3092Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having an open-celled or open-pored structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • A61F2250/0068Means for introducing or releasing pharmaceutical products into the body the pharmaceutical product being in a reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0085Identification means; Administration of patients
    • A61F2250/0089Identification means; Administration of patients coded with symbols, e.g. dots, numbers, letters, words
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14276Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body specially adapted for implantation

Definitions

  • Orthopaedic implants include short-term implants, long-term implants, and non-permanent implants.
  • Short-term implants include implants for the treatment of infection.
  • Long-term implants include total implants for total hip, knee, shoulder, and elbow joints.
  • Non-permanent implants include trauma products such as nails, plates, and external fixation devices.
  • antibiotic cements typically provide useful local antibiotic levels for a duration of less than one week.
  • the treatment time is frequently 6 to 8 weeks. However, beyond one week, the antibiotic cement implants provide no useful amount of antibiotics.
  • infections can be caused by a great number of bacteria, viruses, yeast, etc.
  • the effectiveness of various antibiotics depends greatly upon what in particular has caused the infection.
  • the cause of that infection must be known.
  • the results of cell cultures give this information and indicate which antibiotic and dose will most effectively treat the infection.
  • the samples for culturing are usually collected during surgery.
  • the results of the culture are not known until several days after the surgery. Since the type of antibiotic cement used in current temporary implants must be chosen at or before the time of surgery, the information gained from the cultures cannot be applied to the antibiotics used at the infection site.
  • one key to a patient recovering from joint surgery with full range of motion in that joint is to encourage movement of that joint. This helps to prevent the formation of scar tissue and stiffening of tissue around the joint.
  • the current options for temporary implants allow limited range of motion and weight bearing at best.
  • bone ingrowth into a porous material is sometimes required to provide stability or fixation of an implant to the bone.
  • porous coatings on total joint components fusion devices (i.e., spinal fusion devices), and bone augmentation components (i.e., tibial wedges).
  • External fixation devices typically include several pins fixed in the bone and extending through the skin to a rigid plate, ring, rod, or similar stabilizing device. These devices carry the added risk of infection due to their extending through the skin. Bacteria can travel along the pins directly to the soft tissue and bone.
  • an orthopaedic implant which includes a reservoir and a plurality of channels leading from the reservoir to deliver at least one therapeutic agent locally to bone or surrounding soft tissue.
  • the present invention provides an orthopaedic implant which includes a reservoir and a plurality of channels leading from the reservoir to deliver at least one therapeutic agent locally to bone or surrounding soft tissue.
  • the porous surface is configured for receiving at least one of bone and tissue ingrowth therein and includes a first side attached to the exterior surface and a second side opposing the first side.
  • the porous surface includes a plurality of through-holes running from the first side to the second side.
  • the plurality of surface channels communicate and cooperate with the plurality of through-holes to provide the therapeutic agent from the plurality of surface channels to the first side of the porous surface and to the second side of the porous surface.
  • An advantage of the present invention is that it provides an orthopaedic implant that allows for the delivery of drugs directly to the bone.
  • Yet another advantage of the present invention is that the implant according to the present invention allows for the delivery of the correct dose of antibiotics, continuously for any length of time required.
  • Yet another advantage of the present invention is that is provides an orthopaedic implant which can deliver a therapeutic agent locally to bone or surrounding soft tissue as long as the implant remains implanted in a corporeal body.
  • Yet another advantage of the present invention is that it provides a long-term implant which would allow drugs to be delivered directly to the bone and surrounding tissue (or to any specific location).
  • Yet another advantage of the present invention is that, with regard to enhancing bone ingrowth and combating resorbtion, it provides that bone growth stimulators can be injected intraoperatively or postoperatively to enhance or speed bone ingrowth into porous material (i.e., porous coatings on total joint components; fusion devices, i.e., spinal fusion devices; bone augmentation components, i.e., tibial wedges); these drugs could also be injected months to years post-operatively, using an implant according to the present invention, to combat bone resorbtion due to such causes as stress-shielding, osteolysis, or bone metabolic disorders.
  • porous material i.e., porous coatings on total joint components
  • fusion devices i.e., spinal fusion devices
  • bone augmentation components i.e., tibial wedges
  • Yet another advantage of the present invention is that, with regard to oncology, the present invention provides an implant that would similarly allow for delivery of drugs to some or all tissue surrounding the implant.
  • Yet another advantage of the present invention is that it would allow antibiotics to be delivered to the bone surrounding the nail of the present invention as a preventative or to treat an infection if one develops.
  • Yet another advantage of the present invention is that it provides a non-permanent implant, such as a nail according to the present invention, which can provide localized delivery of oncological drugs in the region of tumors which may improve results in slowing/halting tumor growth; this ability for localized delivery provided by the present invention may also lessen the need/dose of systemic drugs, resulting in fewer side effects.
  • Yet another advantage of the present invention is that it provides an external fixation device that would allow antibiotics or other anti-infective agents to be provided to the bone and soft tissue surrounding the pins.
  • FIG. 2 is a schematic representation of a sectional view of a short-term femoral hip implant system according to the present invention
  • FIG. 4 is a schematic representation of a top view of a short-term femoral knee implant according to the present invention.
  • FIG. 5 is a schematic representation of a sectional view of the short-term femoral knee implant taken along line 5 - 5 in FIG. 4 ;
  • FIG. 17 is a schematic representation of a sectional view of an orthopaedic nail according to the present invention.
  • FIG. 21 is a schematic representation of a sectional view of an orthopaedic implant of FIG. 20 without the therapeutic agent cartridge inserted therein;
  • FIG. 22 is a schematic representation of a side view of an orthopaedic implant that is entirely porous
  • FIG. 25 is a schematic representation of a sectional view of an orthopaedic implant that is partially porous and includes a reservoir and drug delivery channels according to the present invention
  • FIG. 1 shows two reservoirs 38 and a plurality of channels 40 running from each reservoir 38 .
  • the implant according to the present invention i.e., implant 232
  • the reservoirs 38 of FIG. 1 can optionally hold different therapeutic agents 36 at the same time; stated another way, each reservoir 38 can hold a different therapeutic agent 36 , or each reservoir 38 can hold at least two therapeutic agents 36 .
  • the implant according to the present invention is configured for delivering a plurality of therapeutic agents to the corporeal body via the reservoir and the plurality of channels; examples of such implants include implant 32 ( FIG. 1 ) and implant 232 ( FIG. 3 ). Further, implant 32 may be formed such that no seal or seal cap is formed over any of channels 40 prior to release of any therapeutic agent 36 .
  • FIG. 1 shows that both the stem and the femoral head include reservoirs 38 and a plurality of channels 40 running from the respective reservoirs 38 to the exterior surface 46 of the implant 32 .
  • channels 40 can be formed as holes or apertures in body 44 .
  • therapeutic agent 36 is inserted in reservoirs 38 prior to and/or after implantation of implant in body 34 .
  • Therapeutic agent 36 can then migrate into channels 40 and travel via channels 40 to exterior surface 46 (channels 40 forming holes in exterior surface 46 ).
  • Therapeutic agent 36 exits channels 40 and contacts treatment site 42 , which can be for example bone or tissue.
  • FIG. 8 shows a sectional view of a short-term tibial knee implant 632 according to the present invention. Structural features in FIG. 8 corresponding to similar features in prior figures have reference characters raised by a multiple of 100.
  • the body 644 of implant 632 is the tibial knee implant 632 .
  • Body 644 includes a tibial tray (the generally horizontal piece in FIG. 8 ) and an optional stem (the generally vertical piece below the horizontal piece in FIG. 8 ). Both the lower portion and the stem define drug reservoirs 638 and drug delivery channels/holes 640 communicating the respective reservoir 638 with exterior surface 646 to deliver the therapeutic agent(s) to the treatment site(s) 642 .
  • the therapeutic agent can move from the reservoir 638 to the treatment site 642 via channels 640 .
  • a device such as a port could be used to allow for post-operative injections of antibiotics into the implant. (See FIG. 2 ). This would allow for the delivery of multiple antibiotics throughout treatment. Reservoirs and/or channels in the implant would allow the antibiotics from these injections to be delivered over a time-period from hours to weeks. ( FIGS. 1-8 ). Injection intervals of approximately a week would likely be well-accepted clinically. The drugs could be delivered to all bone and soft tissue surrounding the implant or only to specific locations. Variations of this concept would allow for a range of joint mobility from no motion at the joint to the mobility typical of a permanent total joint. These short-term implants can be held in the bone with a loose press-fit or with antibiotic or standard bone cement. In the case of bone cement, cement restrictors would also be included in the technology to prevent cement from sealing over the drug delivery holes.
  • the present invention further provides a long-term implant which would allow drugs to be delivered directly to the bone and surrounding tissue (or to any specific location).
  • a device such as a port could be used to allow for post-operative injections of drugs into the long-term implant. (See FIG. 14 ). This would allow for the delivery of any number of drugs throughout treatment and allow for the refilling of drugs to provide proper drug dosing throughout treatment. Reservoirs and/or channels in the long-term implant according to the present invention would allow the drugs from these injections to be delivered over a time period from hours to weeks. (See FIGS. 9-16 ). The drugs could be delivered to all bone and soft tissue surrounding the implant or only to specific locations.
  • FIGS. 9 and 10 show a long-term femoral hip prosthetic implant system 730 according to the present invention. Structural features in FIGS. 9 and 10 corresponding to similar features in prior figures have reference characters raised by multiples of 100.
  • System 730 includes a long-term femoral hip prosthetic implant 732 and a porous surface 754 attached to the exterior surface 746 . Similar to the short-term implants discussed above, implant has a body 744 defining a drug reservoir 738 and a plurality of drug delivery channels 740 running from the reservoir 738 to the exterior surface 746 so as to deliver a therapeutic agent(s) to a treatment site in the corporeal body. Porous surface 754 is configured for receiving bone and/or tissue ingrowth therein.
  • the lower portion also includes at least one drug delivery channel 840 leading from reservoir to a treatment site.
  • the therapeutic agent can move from the reservoir 838 to the treatment site via channels 840 .
  • FIG. 13 shows a long-term femoral knee implant system 930 according to the present invention. Structural features in FIG. 13 corresponding to similar features in prior figures have reference characters raised by multiples of 100.
  • System 930 includes a prosthetic implant 932 similar to the implant 832 of FIG. 12 but with a plurality of ingrowth porous surfaces 954 attached to the body 944 of implant 932 . Each porous surface 954 is configured for receiving bone and/or tissue ingrowth therein.
  • a drug delivery channel 940 leading from the drug reservoir is shown in FIG. 13 .
  • the reservoir of FIG. 13 can be situated just under exterior surface 946 as reservoir 838 is shown in FIG. 12 .
  • implant body 1044 may or may not define an additional internal reservoir.
  • the therapeutic agent can move from the reservoir of implant 1032 to the treatment site via the drug delivery channels. If implant 1032 does not have an internal reservoir, then the therapeutic agent moves to the treatment site via the drug delivery channels from external reservoir 1062 via catheter 1060 , injection port 1058 , and attachment element 1050 .
  • FIGS. 15 and 16 show a long-term femoral hip implant system 1130 according to the present invention. Structural features in FIGS. 15 and 16 corresponding to similar features in prior figures have reference characters raised by multiples of 100.
  • FIG. 15 shows long-term femoral hip implant system 1130 including a long-term femoral hip prosthetic implant 1132 and an ingrowth porous surface 1154 .
  • FIG. 16 shows a first porous surface 1154 on the top (as oriented in FIG. 16 ) of the implant body 1144 or substrate 1144 (in each of the figures, the body 1144 can also be referred to as a substrate) and a second porous surface 1154 on the bottom (as oriented in FIG. 16 ) of the body 1144 .
  • Porous surfaces 1154 are configured for receiving bone and/or tissue ingrowth therein, as shown by arrow 1156 . While FIG. 16 shows some space between porous surfaces 1154 and body 1144 , it is understood that this space is for illustrative purposes and that porous surfaces 1154 can be flush with body 1144 but for any adhesive that may be used to attach surfaces 1154 with exterior surface 1146 of body 1144 .
  • Each porous surface 1154 includes a first side 1164 attached to exterior surface 1146 of body 1144 and a second side 1166 opposing said first side 1164 .
  • Each porous surface 1154 includes a through-hole 1168 running from first side 1164 to second side 1166 .
  • FIG. 16 shows a reservoir 1138 and connecting channels 1140 in broken lines; for, it is understood that such a reservoir 1138 and connecting channels 1140 (connecting reservoir 1138 with channels 1170 and/or 1172 ) may not be visible in this section, or, alternatively, that such a reservoir 1138 and connecting channels 1140 can be optional (stated another way, the implant 1132 would not contain such an interior reservoir 1138 and connecting channels 1140 leading from the reservoir 1138 to the surface channels 1170 or the sub-surface channels 1172 ).
  • FIG. 16 shows that exterior surface 1146 of body 1144 can define a surface channel 1170 which is in communication with and cooperates with channel 1140 and through-hole 1168 of porous surface 1154 to provide the therapeutic agent 1136 from the reservoir 1138 to the treatment site 1142 .
  • FIG. 16 shows a plurality of such surface channels 1170 , each of which can optionally be connected to reservoir 1138 via a respective connecting channel 1140 , as discussed above. If implant 1132 has reservoir 1138 and connecting channels 1140 , then upon filling reservoir 1138 with the therapeutic agent (either initially or as a refill), the therapeutic agent can move from reservoir 1138 to the treatment site via the channels 1140 and 1170 .
  • surface channels 1170 can be filled with the therapeutic agent (either initially and/or as a refill) and the therapeutic agent moves via surface channels 1170 , through through-holes 1168 , to the treatment site 1142 .
  • the therapeutic agent can also be provided to the bone and/or tissue growing into porous surface 1154 .
  • FIG. 16 shows that channels 1140 running from reservoir 1138 can connect to the sub-surface channels 1172 .
  • Sub-surface channels 1172 and through-holes 1168 in porous surface 1154 are aligned with and cooperate with one another to provide the therapeutic agent 1136 from the reservoir 1138 to the treatment site 1142 .
  • Holes 1174 (which can also be considered as channels of the present invention, like channels 40 ) are also provided in body 1144 leading from subsurface channels 1172 to exterior surface 1146 . These holes 1174 can be considered to be part of the respective channels 1140 and 1172 .
  • the plurality of surface channels 1170 are configured for receiving, holding, delivering, and being refilled with the therapeutic agent 1136 after implant 1132 has been implanted in corporeal body 1134 .
  • Orthopaedic implant 1132 is a prosthesis.
  • implant 1132 can be formed as a nail ( FIG. 17 ), a plate ( FIG. 18 ), or an external fixation device with an implantable pin ( FIG. 19 ).
  • Porous surface 1154 is attached to exterior surface 1146 .
  • Porous surface 1154 is configured for receiving at least one of bone and tissue ingrowth therein, as shown by arrow 1156 .
  • porous surface 1154 includes a first side 1164 attached to exterior surface 1146 and a second side 1166 opposing first side 1164 .
  • Porous surface 1154 includes a plurality of through-holes 1168 running from first side 1164 to second side 1166 .
  • the plurality of surface channels 1170 communicate and cooperate with the plurality of through-holes 1168 to provide the therapeutic agent 1136 from the plurality of surface channels 1170 , then to first side 1164 of porous surface 1154 , and then to second side 1166 of porous surface 1154 .
  • Surface channels 1170 can be filled with the therapeutic agent (either initially and/or as a refill) and the therapeutic agent 1136 moves via surface channels 1170 , through through-holes 1168 , to the treatment site 1142 .
  • Nails are temporary, intramedullary devices. They are typically used to treat traumatic fracture. The risk of infection can be high especially in the case of open fractures.
  • the present invention would allow antibiotics to be delivered to the bone surrounding the nail as a preventative or to treat an infection if one develops.
  • the drug delivery portion of plate is similar to that for orthopaedic nails according to the present invention.
  • Plate allows drugs to be delivered directly to the bone and surrounding tissue (or to any specific location).
  • a device such as a port could be used to allow for post-operative injections of drugs into plate. This would allow for the delivery any number of drugs throughout treatment.
  • Reservoirs 1338 and/or channels 1340 in the plate implant 1332 allow the drugs from these injections to be delivered over a time-period from hours to weeks. The drugs could be delivered to all bone and soft tissue surrounding the plate implant 1332 or only to specific locations.
  • Sheath 1478 serves to prevent drugs from exiting that portion of the external fixation device 1432 which is outside of the skin 1434 .
  • drug reservoir 1480 is attached to sheath 1478 .
  • Drug reservoir 1480 is shaped to allow attachment of the external fixation device 1432 to external fixation rods and/or plates (not shown).
  • the therapeutic agent moves from drug reservoir 1480 to the inner spatial area 1484 of pin 1476 , through channels/holes 1440 in pin wall 1482 , and to the treatment site.
  • the therapeutic agent can move from the reservoir 1480 to the treatment site 1442 via inner spatial area 1484 and channel(s) 1440 .
  • the replaceable cartridge may be optionally formed relative to the implant.
  • the cartridge may be considered a distinct device relative to the implant but which can be directly attached to the implant, as shown in FIG. 20 .
  • the cartridge may be considered a portion of the implant which can be detached from the implant body.
  • the cartridge may be a second replaceable implant located within the patient body away from the first implant (i.e., the femoral hip implant) but connected to the first implant, such as via a catheter.
  • the cartridge may be a device that is situated external to the patient body, while the implant (i.e., the femoral hip implant) is implanted in the patient body.
  • FIG. 22 does not include in addition thereto a drug reservoir or drug delivery channels.
  • the therapeutic agent is delivered via the pores 1690 of implant 1632 to the treatment site, which can be within or outside of the pores 1690 .
  • FIG. 23 shows a drug reservoir 1638 and drug delivery channels 1640 embedded in or defined by the body 1644 of the implant 1632 .
  • the therapeutic agent can move from the reservoir 1638 to the treatment site via channels 1640 .
  • FIGS. 24-26 each shows a femoral hip prosthetic implant 1732 in which a portion of the body 1744 of the implant 1732 is porous to facilitate leaching of therapeutic agents therefrom.
  • the therapeutic agent can move from the reservoir 1838 (and thus also from spongy element 1892 ) to the treatment site via channels 1840 .
  • the material of the sponge-like element 1892 can be a number of possibilities. For example, if the sponge 1892 is to remain in reservoir 1838 for a long time, then a Polyvinyl Alcohol (PVA) or Ivalon sponge, for example, can be used.
  • the sponge 1892 is to last a shorter amount of time, then a collagen based material (i.e., Instat, by Johnson and Johnson, for example) or a gelatin sponge (i.e., Gelfoam, by Pfizer, for example), for example, can be used.
  • a collagen based material i.e., Instat, by Johnson and Johnson, for example
  • a gelatin sponge i.e., Gelfoam, by Pfizer, for example
  • therapeutic agents can be introduced into the delivery channels/paths and/or implant reservoir of the implant of the present invention by one or more of the following ways:
  • orthopaedic implants of the present invention can be applied in conjunction with any currently available designs, including porous coatings, and can also be used in conjunction with cemented implants.
  • the present invention further provides a method of using an orthopaedic implant system, such as system 30 .
  • the method includes the steps of: implanting an orthopaedic implant 32 at a selected location within a corporeal body 34 , implant 32 including a reservoir 38 and a plurality of channels 40 ; receiving at least one therapeutic agent 36 in reservoir 38 ; conveying at least one therapeutic agent 36 from reservoir 38 to a treatment site 42 relative to corporeal body 34 via channels 40 ; and delivering at least one therapeutic agent 42 to corporeal body 34 .
  • the implant according to the present invention is a prosthesis, a nail, a plate, or an external fixation device with an implanted pin.
  • Implant 32 includes a body 44 which is implanted at the selected location, body 44 defining reservoir 38 and channels 40 and including an exterior surface 46 , channels 40 fluidly communicating reservoir 38 with exterior surface 46 and thereby conveying therapeutic agent 36 from reservoir 38 to exterior surface 46 .
  • the method can include attaching a porous surface 1154 to exterior surface 1146 , porous surface 1154 receiving bone and/or tissue ingrowth 1156 therein, porous surface 1154 including a first side 1164 attached to exterior surface 1146 and a second side 1166 opposing first side 1164 , porous surface 1154 including a through-hole 1168 running from first side 1164 to second side 1166 , through-hole 1168 communicating at least one therapeutic agent 1136 from first side 1164 to second side 1166 and thereby communicating at least one therapeutic agent 1136 to treatment site 1142 .
  • Exterior surface 1146 can define a surface channel 1170 , surface channel 1170 being in communication with and cooperating with at least one channel 1140 and at least one through-hole 1168 and thereby providing at least one therapeutic agent 1136 from reservoir 1138 to treatment site 1142 .
  • At least one channel 40 can be a sub-surface channel 1172 , sub-surface channel 1172 and through-hole 1168 being aligned with and cooperating with one another and thereby providing at least one therapeutic agent 1136 from reservoir 1138 to treatment site 1142 .
  • the method can include implanting a second reservoir 1994 , a pump 1995 , and/or a port 1996 in corporeal body 1934 remote from implant 1932 , connecting second reservoir 1994 , pump 1995 , and/or port 1996 to reservoir 1938 of implant 1932 by at least one catheter 1998 implanted in corporeal body 1934 , and delivering at least one therapeutic agent 1936 to treatment site 1942 via implant 1932 , catheter 1998 , and second reservoir 1994 , pump 1995 , and/or port 1996 .
  • the method can include inserting a cartridge 1586 into reservoir 1538 , cartridge 1586 containing at least one therapeutic agent 1536 and releasing at least one therapeutic agent 1536 into reservoir 1538 and/or at least one channel 1540 such that at least one therapeutic agent 1536 moves away from reservoir 1538 in at least one channel 1540 , removing cartridge 1586 from reservoir 1538 after implant 1532 has been implanted in corporeal body 1534 , and replacing cartridge 1586 with another cartridge 1586 after implant 1532 has been implanted in corporeal body 1534 .
  • the method can include providing a spongy element 1892 , reservoir 1838 containing spongy element 1892 .
  • Body 1644 , 1744 of implant 1632 , 1732 can be partially or completely porous.
  • External fixation device 1432 can include implantable pin 1476 , a sheath 1478 coupled with pin 1476 , and reservoir 1480 coupled with sheath 1478 , pin 1476 defining a plurality of channels 1440 .
  • Implant may include only one reservoir.
  • the method can include refilling reservoir 38 with at least one therapeutic agent 36 after implant 32 has been implanted in corporeal body 34 .
  • the method can include delivering a plurality of therapeutic agents 36 to corporeal body 34 via reservoir 38 and channels 40 of implant 32 .

Abstract

An orthopaedic implant system includes an orthopaedic implant implantable at a selected location within a corporeal body and configured for delivering at least one therapeutic agent to the corporeal body. The implant includes a reservoir and a plurality of channels. The reservoir is configured for receiving the at least one therapeutic agent. The plurality of channels are configured for conveying the at least one therapeutic agent from the reservoir to a treatment site relative to the corporeal body.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This is a non-provisional application based upon U.S. provisional patent application Ser. No. 61/088,379, entitled “DRUG DELIVERY IMPLANTS”, filed Aug. 13, 2008, which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to implants, and, more particularly, to orthopaedic implants.
  • 2. Description of the Related Art
  • Orthopaedic implants include short-term implants, long-term implants, and non-permanent implants. Short-term implants include implants for the treatment of infection. Long-term implants include total implants for total hip, knee, shoulder, and elbow joints. Non-permanent implants include trauma products such as nails, plates, and external fixation devices.
  • Regarding short-term implants, when tissue, especially bone, surrounding an orthopaedic implant becomes infected, that implant must typically be removed, the infection must be eliminated, and a new implant (revision implant) is then implanted. The span of time between implant removal and revision implantation can be from several weeks (about 4 weeks) to a few months (approximately 3 months). During this time surgeons currently have two basic options: create temporary implants during surgery with antibiotic bone cement (created with or without the aid of a mold) or use a preformed antibiotic bone cement temporary implant (e.g. Exactech's InterSpace™ Hip and Knee). In either case, antibiotic bone cement is used to deliver antibiotics directly to the site of the infection in the bone. The patient also typically receives IV antibiotics. The shortcomings of such implants are the limited duration in which they deliver a clinically relevant dose of antibiotics, the lack of ability to change antibiotic type or dose during the 4-12 week treatment time, and the limited patient mobility, range of motion, and weight bearing that they allow.
  • Further, antibiotic cements typically provide useful local antibiotic levels for a duration of less than one week. The treatment time is frequently 6 to 8 weeks. However, beyond one week, the antibiotic cement implants provide no useful amount of antibiotics.
  • Further, infections can be caused by a great number of bacteria, viruses, yeast, etc. The effectiveness of various antibiotics depends greatly upon what in particular has caused the infection. Thus, in order to treat an infection most effectively, the cause of that infection must be known. The results of cell cultures give this information and indicate which antibiotic and dose will most effectively treat the infection. The samples for culturing are usually collected during surgery. The results of the culture are not known until several days after the surgery. Since the type of antibiotic cement used in current temporary implants must be chosen at or before the time of surgery, the information gained from the cultures cannot be applied to the antibiotics used at the infection site.
  • Further, one key to a patient recovering from joint surgery with full range of motion in that joint is to encourage movement of that joint. This helps to prevent the formation of scar tissue and stiffening of tissue around the joint. The current options for temporary implants allow limited range of motion and weight bearing at best.
  • Regarding long-term implants, with regard to bone ingrowth, bone ingrowth into a porous material is sometimes required to provide stability or fixation of an implant to the bone. Examples of this include porous coatings on total joint components, fusion devices (i.e., spinal fusion devices), and bone augmentation components (i.e., tibial wedges).
  • With regard to resorbtion, resorbtion can occur in the region surrounding a total joint implant for a number of reasons and can lead to implant loosening and subsequent revision surgery. Some causes of resorbtion include:
      • Stress shielding—Bone tissue requires loading to remain strong and healthy. If an implant does not properly transfer loads to the surrounding bone, regions of bone can resorb.
      • Lysis due to wear particles—Osteolysis and resorbtion are frequently caused by the body's reaction to wear particles created by the bearing of one total joint component on another.
      • Osteoporosis or other bone disorders—bone metabolic disorders can also cause the resorbtion of bone.
  • With regard to oncology, localized delivery of oncological drugs in the region of tumors may improve results in slowing/halting tumor growth. The ability for localized delivery may also lessen the need/dose of systemic drugs, resulting in fewer side effects.
  • Regarding non-permanent implants (i.e., trauma implants), such non-permanent implants include nails, plates, and external fixation devices. Nails are temporary, intramedullary devices. They are typically used to treat traumatic fracture. The risk of infection can be high especially in the case of open fractures. With regard to oncology, nails can be used to treat fractures associated with bone tumors. They can also be used to help prevent a fracture where cancer has weakened bone. Plates treat many of the same indications as nails; however plates are applied to the outside of the bone. External fixation devices are a temporary implant that is used to stabilize a fracture. These can be used for days to months. External fixation devices typically include several pins fixed in the bone and extending through the skin to a rigid plate, ring, rod, or similar stabilizing device. These devices carry the added risk of infection due to their extending through the skin. Bacteria can travel along the pins directly to the soft tissue and bone.
  • What is needed in the art is an orthopaedic implant which includes a reservoir and a plurality of channels leading from the reservoir to deliver at least one therapeutic agent locally to bone or surrounding soft tissue.
  • SUMMARY OF THE INVENTION
  • The present invention provides an orthopaedic implant which includes a reservoir and a plurality of channels leading from the reservoir to deliver at least one therapeutic agent locally to bone or surrounding soft tissue.
  • The invention in one form is directed to an orthopaedic implant system, including an orthopaedic implant implantable at a selected location within a corporeal body and configured for delivering at least one therapeutic agent to the corporeal body. The implant includes a reservoir and a plurality of channels. The reservoir is configured for receiving the at least one therapeutic agent. The plurality of channels are configured for conveying the at least one therapeutic agent from the reservoir to a treatment site relative to the corporeal body.
  • The invention in another form is directed to a method of using an orthopaedic implant system, the method including the steps of: implanting an orthopaedic implant at a selected location within a corporeal body, the implant including a reservoir and a plurality of channels; receiving at least one therapeutic agent in the reservoir; conveying the at least one therapeutic agent from the reservoir to a treatment site relative to the corporeal body via the plurality of channels; and delivering the at least one therapeutic agent to the corporeal body.
  • The invention in yet another form is directed to an orthopaedic implant system including an orthopaedic implant and a porous surface. The orthopaedic implant includes a body implantable at a selected location within a corporeal body and which is configured for delivering a therapeutic agent to the corporeal body. The body includes an exterior surface defining a plurality of surface channels and having an absence of a therapeutic agent reservoir. The plurality of surface channels are configured for receiving, holding, delivering, and being refilled with the therapeutic agent after the implant has been implanted in the corporeal body. The porous surface is attached to the exterior surface. The porous surface is configured for receiving at least one of bone and tissue ingrowth therein and includes a first side attached to the exterior surface and a second side opposing the first side. The porous surface includes a plurality of through-holes running from the first side to the second side. The plurality of surface channels communicate and cooperate with the plurality of through-holes to provide the therapeutic agent from the plurality of surface channels to the first side of the porous surface and to the second side of the porous surface.
  • An advantage of the present invention is that it provides an orthopaedic implant that allows for the delivery of drugs directly to the bone.
  • Another advantage of the present invention is that it provides a temporary or short-term implant that would allow for the delivery of antibiotics directly to the bone and surrounding tissue.
  • Yet another advantage of the present invention is that it would allow for post-operative injections of antibiotics into the implant, thereby allowing for the delivery of multiple antibiotics throughout treatment.
  • Yet another advantage of the present invention is that the implant according to the present invention allows for the delivery of the correct dose of antibiotics, continuously for any length of time required.
  • Yet another advantage of the present invention is that is provides an orthopaedic implant which can deliver a therapeutic agent locally to bone or surrounding soft tissue as long as the implant remains implanted in a corporeal body.
  • Yet another advantage of the present invention is that it provides a long-term implant which would allow drugs to be delivered directly to the bone and surrounding tissue (or to any specific location).
  • Yet another advantage of the present invention is that, with regard to enhancing bone ingrowth and combating resorbtion, it provides that bone growth stimulators can be injected intraoperatively or postoperatively to enhance or speed bone ingrowth into porous material (i.e., porous coatings on total joint components; fusion devices, i.e., spinal fusion devices; bone augmentation components, i.e., tibial wedges); these drugs could also be injected months to years post-operatively, using an implant according to the present invention, to combat bone resorbtion due to such causes as stress-shielding, osteolysis, or bone metabolic disorders.
  • Yet another advantage of the present invention is that, with regard to oncology, the present invention provides an implant that would similarly allow for delivery of drugs to some or all tissue surrounding the implant.
  • Yet another advantage of the present invention is that it would allow antibiotics to be delivered to the bone surrounding the nail of the present invention as a preventative or to treat an infection if one develops.
  • Yet another advantage of the present invention is that it provides a non-permanent implant, such as a nail according to the present invention, which can provide the delivery of bone growth stimulators directly to the region of bone fracture(s); such delivery of bone growth stimulators can be advantageous in difficult cases such as non-unions, bony defects, and osteotomies.
  • Yet another advantage of the present invention is that it provides a non-permanent implant, such as a nail according to the present invention, which can provide localized delivery of oncological drugs in the region of tumors which may improve results in slowing/halting tumor growth; this ability for localized delivery provided by the present invention may also lessen the need/dose of systemic drugs, resulting in fewer side effects.
  • Yet another advantage of the present invention is that it provides an external fixation device that would allow antibiotics or other anti-infective agents to be provided to the bone and soft tissue surrounding the pins.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
  • FIG. 1 is a schematic representation of a sectional view of a short-term femoral hip implant according to the present invention;
  • FIG. 2 is a schematic representation of a sectional view of a short-term femoral hip implant system according to the present invention;
  • FIG. 3 is a schematic representation of a sectional view of a short-term acetabular cup implant according to the present invention;
  • FIG. 4 is a schematic representation of a top view of a short-term femoral knee implant according to the present invention;
  • FIG. 5 is a schematic representation of a sectional view of the short-term femoral knee implant taken along line 5-5 in FIG. 4;
  • FIG. 6 is a schematic representation of a top view of a short-term femoral knee implant according to the present invention;
  • FIG. 7 is a schematic representation of a front view of short-term femoral knee implant;
  • FIG. 8 is a schematic representation of a sectional view of a short-term tibial knee implant;
  • FIG. 9 is a schematic representation of a side view of a long-term femoral hip implant system according to the present invention;
  • FIG. 10 is a schematic representation of a sectional view of the long-term femoral hip implant of FIG. 9;
  • FIG. 11 is a schematic representation of a top view of a long-term femoral knee implant according to the present invention;
  • FIG. 12 is a schematic representation of a sectional view of the long-term femoral knee implant taken along line 12-12 in FIG. 11;
  • FIG. 13 is a schematic representation of a top view of a long-term femoral knee implant system according to the present invention;
  • FIG. 14 is a schematic representation of a side view of a long-term femoral knee implant system according to the present invention, the long-term femoral implant being attached to a femur;
  • FIG. 15 is a schematic representation of a side view of a long-term femoral hip implant system according to the present invention;
  • FIG. 16 is a schematic representation of a sectional view of the long-term femoral hip implant system of FIG. 15 taken along line 16-16;
  • FIG. 17 is a schematic representation of a sectional view of an orthopaedic nail according to the present invention;
  • FIG. 18 is a schematic representation of a sectional view of an orthopaedic plate according to the present invention;
  • FIG. 19 is a schematic representation of a sectional view of an external fixation device according to the present invention;
  • FIG. 20 is a schematic representation of a sectional view of an orthopaedic implant system including a therapeutic agent cartridge;
  • FIG. 21 is a schematic representation of a sectional view of an orthopaedic implant of FIG. 20 without the therapeutic agent cartridge inserted therein;
  • FIG. 22 is a schematic representation of a side view of an orthopaedic implant that is entirely porous;
  • FIG. 23 is a schematic representation of a side view of an orthopaedic implant that is entirely porous and includes a reservoir and drug delivery channels according to the present invention;
  • FIG. 24 is a schematic representation of a sectional view of an orthopaedic implant that is partially porous;
  • FIG. 25 is a schematic representation of a sectional view of an orthopaedic implant that is partially porous and includes a reservoir and drug delivery channels according to the present invention;
  • FIG. 26 is a schematic representation of a sectional view of an orthopaedic implant that is partially porous and includes a reservoir and drug delivery channels according to the present invention;
  • FIG. 27 is a schematic representation of a sectional view of an orthopaedic implant system according to the present invention including a sponge-like material;
  • FIG. 28 is a schematic representation of an orthopaedic implant system according to the present invention; and
  • FIG. 29 is a schematic representation of an orthopaedic implant system according to the present invention.
  • Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate embodiments of the invention, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to the drawings, and more particularly to FIG. 1, there is shown an orthopaedic implant system 30 according to the present invention which generally includes an orthopaedic implant 32 implantable at a selected location within a corporeal body 34 and configured for delivering at least one therapeutic agent 36 to the corporeal body 34. The implant 32 includes at least one reservoir 38 and a plurality of channels 40. The reservoir 38 is configured for receiving at least one therapeutic agent 36 and can be configured for being refilled with the therapeutic 36 agent after the implant 32 has been implanted in the corporeal body 34. Channels 40 form pathways for the therapeutic agent 36 to move from the reservoir 38 to a treatment site 42 relative to the corporeal body 34. Each pathway formed by a channel 40 is an interior space formed by the walls of channel 40. Channel 40 can, for example, have a circular, square, or some other cross-sectional shape. Thus, channels 40 are configured for conveying at least one therapeutic agent 36 from reservoir 38 to treatment site 42 relative to corporeal body 34.
  • FIG. 1 shows two reservoirs 38 and a plurality of channels 40 running from each reservoir 38. The implant according to the present invention (i.e., implant 232) may include only one reservoir (i.e., reservoir 238). The reservoirs 38 of FIG. 1 can optionally hold different therapeutic agents 36 at the same time; stated another way, each reservoir 38 can hold a different therapeutic agent 36, or each reservoir 38 can hold at least two therapeutic agents 36. Thus, the implant according to the present invention is configured for delivering a plurality of therapeutic agents to the corporeal body via the reservoir and the plurality of channels; examples of such implants include implant 32 (FIG. 1) and implant 232 (FIG. 3). Further, implant 32 may be formed such that no seal or seal cap is formed over any of channels 40 prior to release of any therapeutic agent 36.
  • A corporeal body herein means the physical body of a human being or of an animal (i.e., a veterinary patient). Thus, a corporeal body is one of flesh and bones. The corporeal body can be alive or dead. The corporeal body can also be referred to as a patient body herein, which includes both human and veterinary “patients”, alive or dead. Therapeutic agents can also be referred to herein as drugs or medicinal agents. Therapeutic agents can be formed, for example, as a liquid, a solid, a capsule, or a bead.
  • Further, FIG. 1 shows that implant 32 includes a body 44 implantable at the selected location. Body 44 defines reservoir 38 and channels 40 and includes an exterior surface 46. The reservoir of the present invention can be a cavity or an enclosed pocket (closed but for channels extending to the surface of the body of the implant) formed by the body of the implant. The reservoir can be formed by the core (i.e., the central interior portion) of the body, rather than in the exterior surface of the body. The reservoir can occupy a substantial portion of the core but yet still have elongate channels running from the reservoir to the exterior surface. Reservoir 38 is a cavity in body 44. Reservoir 38 is not a through-hole through body 44. Channels 40 fluidly communicate reservoir 38 with exterior surface 46 and thereby forms the pathways for the at least one therapeutic agent 36 to move from reservoir 38 to exterior surface 46. That is, channels 40 fluidly communicate reservoir 38 with exterior surface 46 and thereby convey at least one therapeutic agent 36 from reservoir 38 to exterior surface 46. FIG. 1 shows the body 44 of the implant 32 being the implant 32 itself.
  • Further, FIG. 1 shows that implant 32 is formed as a hip prosthesis and that corporeal body 34 is formed as a hip. More specifically, FIG. 1 shows a sectional view of a short-term femoral hip implant 32 (which is one type of orthopaedic implant) which forms part of the upper femur (or, thighbone) and is thus load-bearing. The body 44 of the femoral hip prosthesis 32 of FIG. 1 (the body 44 and the femoral hip prosthesis 32 being coextensive relative to one another and thus being the same structural member in FIG. 1) includes a stem (the downward extending portion of implant 32 in FIG. 1) which can be inserted into the upper femur of a body 34 and a femoral head (the ball portion of implant 32 in FIG. 1) which is received by and mates with an acetabulum (i.e., the patient's natural acetabulum, or a prosthetic acetabular cup). FIG. 1 shows that both the stem and the femoral head include reservoirs 38 and a plurality of channels 40 running from the respective reservoirs 38 to the exterior surface 46 of the implant 32. Depending upon the size of reservoir 38 relative to exterior surface 46 and/or the nearness of reservoir 38 to exterior surface 46, channels 40 can be formed as holes or apertures in body 44. In use, therapeutic agent 36 is inserted in reservoirs 38 prior to and/or after implantation of implant in body 34. Therapeutic agent 36 can then migrate into channels 40 and travel via channels 40 to exterior surface 46 (channels 40 forming holes in exterior surface 46). Therapeutic agent 36 exits channels 40 and contacts treatment site 42, which can be for example bone or tissue.
  • The orthopaedic implant of the present invention can be a prosthesis, a nail, a plate, or an external fixation device formed as an implantable pin. FIGS. 1-16 and 20-27 shows orthopaedic implants which are prostheses. A prosthesis is an implant that substitutes for or supplements a missing or defective part of the corporeal body. FIG. 17 shows an orthopaedic implant which is a nail. FIG. 18 shows an orthopaedic implant which is a plate. FIG. 19 shows an orthopaedic implant which is an external fixation device with an implantable pin.
  • FIG. 2 shows another embodiment of the orthopaedic implant according to the present invention. Structural features in FIG. 2 corresponding to similar features in FIG. 1 have reference characters raised by a multiple of 100. Short-term orthopaedic implant system 130 includes a short-term prosthetic implant 132 and an attachment feature 150. Body 144 defines reservoir 138 and channels 140 running from reservoir 138 to exterior surface 146. Attachment feature 150 is for attaching a port (not shown in FIG. 2) thereto. The attachment feature 150 can be a tubular element. The attachment feature 150 and the port can be used to refill the reservoir 138 with a therapeutic agent. Upon filling reservoir 138 with the therapeutic agent (either initially and/or as a refill) via attachment feature 150, the therapeutic agent can move from the reservoir 138 to the treatment site via channels 140.
  • FIG. 3 shows another embodiment of the orthopaedic implant according to the present invention. Structural features in FIG. 3 corresponding to similar features in prior figures have reference characters raised by a multiple of 100. FIG. 3 shows a sectional view of another short-term hip implant 232. Prosthetic implant 232 is formed as an acetabular cup, which receives a femoral head. The body 244 of the acetabular cup 232 is the acetabular cup 232 in FIG. 3. Body 244 defines reservoir 238 and a plurality of channels 240 running from reservoir 238 to exterior surface 246. Upon filling reservoir 238 with the therapeutic agent (either initially and/or as a refill), the therapeutic agent moves from the reservoir 238 to the treatment site via channels 240.
  • FIGS. 4-8 show additional embodiments of orthopaedic implants according to the present invention. More specifically, FIGS. 4-8 show short-term orthopaedic implants formed as prosthetic knee implants, both femoral and tibial prosthetic knee implants. Structural features in FIGS. 4-7 corresponding to similar features in prior figures have reference characters raised by a multiple of 100. FIGS. 4 and 5 show that the body 344 of implant 332 is the femoral knee implant 332. Body 344 includes a lower portion (the generally U-shaped piece in FIG. 5) and an optional stem (the vertical, upstanding piece atop the lower portion in FIG. 5). Both the lower portion and the stem include drug reservoirs 338 and drug delivery channels/holes 340 communicating the respective reservoir 338 with exterior surface 346 to deliver the therapeutic agent(s) in the reservoirs 338 to the treatment site(s) 342. FIG. 6 shows a top view of femoral knee implant 432 similar to the implant 332 shown in FIG. 5. Channels 440 are shown as exit holes in exterior surface 446 of the lower portion. The circle in FIG. 6 represents an optional, upstanding stem 452. FIG. 7 shows a front view of short-term femoral knee implant 532 marked with lettering which is more radiopaque than the implant body 544 so that the letters are visible on an X-ray or fluoroscope, as shown in FIG. 7. Upon filling the reservoirs for FIGS. 5 and 6 with the therapeutic agent (either initially and/or as a refill), the therapeutic agent can move from these reservoirs to the treatment site via channels 340, 440.
  • FIG. 8 shows a sectional view of a short-term tibial knee implant 632 according to the present invention. Structural features in FIG. 8 corresponding to similar features in prior figures have reference characters raised by a multiple of 100. The body 644 of implant 632 is the tibial knee implant 632. Body 644 includes a tibial tray (the generally horizontal piece in FIG. 8) and an optional stem (the generally vertical piece below the horizontal piece in FIG. 8). Both the lower portion and the stem define drug reservoirs 638 and drug delivery channels/holes 640 communicating the respective reservoir 638 with exterior surface 646 to deliver the therapeutic agent(s) to the treatment site(s) 642. Upon filling reservoir 638 with the therapeutic agent (either initially and/or as a refill), the therapeutic agent can move from the reservoir 638 to the treatment site 642 via channels 640.
  • The implants according to the present invention shown in FIGS. 1-8 are thus short-term implants that can be used, for example, to treat infections within a corporeal body. Such short-term or temporary implants allow for the delivery of therapeutic agents, such as antibiotics, directly to the bone of a corporeal body and to surrounding tissue.
  • A device such as a port could be used to allow for post-operative injections of antibiotics into the implant. (See FIG. 2). This would allow for the delivery of multiple antibiotics throughout treatment. Reservoirs and/or channels in the implant would allow the antibiotics from these injections to be delivered over a time-period from hours to weeks. (FIGS. 1-8). Injection intervals of approximately a week would likely be well-accepted clinically. The drugs could be delivered to all bone and soft tissue surrounding the implant or only to specific locations. Variations of this concept would allow for a range of joint mobility from no motion at the joint to the mobility typical of a permanent total joint. These short-term implants can be held in the bone with a loose press-fit or with antibiotic or standard bone cement. In the case of bone cement, cement restrictors would also be included in the technology to prevent cement from sealing over the drug delivery holes.
  • Antibiotic cements typically provide useful local antibiotic levels for a duration of less than one week. The treatment time is frequently six to eight weeks. However, beyond one week, the antibiotic cement implants provide no useful amount of antibiotics. The implant according to the present invention, by contrast, allows the delivery of the correct dose of antibiotics continuously for any length of time required. Through a feature such as a port attached to the implant of the present invention, the implant reservoir can be refilled as often as necessary to provide the proper drug dosing.
  • The implant of the present invention allows for any number of antibiotics to be used at any time during treatment. An initial antibiotic can be used at the time of surgery. If the cell cultures indicate that a different antibiotic or dose would be more effective, that change in treatment regimen can be made in accordance with the present invention.
  • A short-term femoral hip implant, as discussed above, can include a stem and a separate head or could be a one-piece construction. Multiple sizes of stem and head size could be accommodated. A separate acetabular component could be provided, as discussed above. The femoral head could mate with a short-term acetabular component or with the patient's acetabulum. (See FIGS. 1-3). According to the present invention, drugs can be delivered to the acetabulum through the head of the femoral component if an acetabular component is not used (See FIG. 1) or through the acetabular component if one is used (See FIG. 3).
  • A short term knee implant can include a one-piece tibial component (combining the two pieces of a standard total knee replacement) and a one- or two-piece femoral component (the two-piece design would combine the condyles and stem). The present invention provides multiple sizes of tibia components and of stem and condyles (either combined as one piece or separate). (See FIGS. 4-8). Similar components are provided for shoulder, elbow, and other joints, according to the present invention.
  • Since the implants of FIGS. 1-8 are designed for short-term use, the short-term implants of the present invention can include markings which are both visible on the implant surface by the naked eye and visible by X-ray, as indicated above. These markings would clearly indicate that the implants are intended for short-term use only. (See FIG. 7).
  • The present invention provides an orthopaedic implant system (whether short-term, long-term, or non-permanent implants) which provide for continuously delivering drugs to a point near the implant or to the entire region surrounding the implant for extended periods of time. The implants according to the present invention shown in FIGS. 9-16 are long-term implants. Such implants can be used, for example, as total hip, knee, shoulder, and elbow joints within a patient body. The long-term implants of the present invention have a basic similarity with the short-term implants described above. Thus, structural features in FIGS. 9-16 corresponding to similar features in prior figures have reference characters raised by multiples of 100. Thus, similar to the short-term implants described above, the present invention further provides a long-term implant which would allow drugs to be delivered directly to the bone and surrounding tissue (or to any specific location). A device such as a port could be used to allow for post-operative injections of drugs into the long-term implant. (See FIG. 14). This would allow for the delivery of any number of drugs throughout treatment and allow for the refilling of drugs to provide proper drug dosing throughout treatment. Reservoirs and/or channels in the long-term implant according to the present invention would allow the drugs from these injections to be delivered over a time period from hours to weeks. (See FIGS. 9-16). The drugs could be delivered to all bone and soft tissue surrounding the implant or only to specific locations.
  • FIGS. 9 and 10 show a long-term femoral hip prosthetic implant system 730 according to the present invention. Structural features in FIGS. 9 and 10 corresponding to similar features in prior figures have reference characters raised by multiples of 100. System 730 includes a long-term femoral hip prosthetic implant 732 and a porous surface 754 attached to the exterior surface 746. Similar to the short-term implants discussed above, implant has a body 744 defining a drug reservoir 738 and a plurality of drug delivery channels 740 running from the reservoir 738 to the exterior surface 746 so as to deliver a therapeutic agent(s) to a treatment site in the corporeal body. Porous surface 754 is configured for receiving bone and/or tissue ingrowth therein. Such ingrowth is shown by arrow 756 in FIG. 9. The porous surface 754 can be variously referred to as a porous member, a porous pad, or a scaffold. Drug delivery channels 740 can be routed by or through body 744 so as to avoid the ingrowth region. Stated another way, channels 740 can be routed by or through body 744 so as to avoid releasing therapeutic agents into porous surface 754. By contrast, channels 740 can be routed by or through body 744 so as to release drugs through the ingrowth porous surface 754. FIG. 9 shows channels 740 which avoid releasing drugs into porous surface 754. Upon filling reservoir 738 with the therapeutic agent (either initially and/or as a refill), the therapeutic agent can move from the reservoir 738 to the treatment site via channels 740.
  • FIGS. 11 and 12 show a long-term femoral knee implant according to the present invention. Structural features in FIGS. 11 and 12 corresponding to similar features in prior figures have reference characters raised by multiples of 100. The body 844 of implant 832 is the femoral knee implant 832. Body 844 includes a lower portion (the generally U-shaped piece in FIG. 12) and an optional stem (the vertical, upstanding piece atop the lower portion in FIG. 12). Both the lower portion and the stem include drug reservoirs 838. The stem further includes drug delivery channels/holes 840 communicating the respective reservoir 838 with exterior surface 846 to deliver the therapeutic agent(s) to the treatment site(s) 846. The lower portion also includes at least one drug delivery channel 840 leading from reservoir to a treatment site. Upon filling reservoir 838 with the therapeutic agent (either initially and/or as a refill), the therapeutic agent can move from the reservoir 838 to the treatment site via channels 840.
  • FIG. 13 shows a long-term femoral knee implant system 930 according to the present invention. Structural features in FIG. 13 corresponding to similar features in prior figures have reference characters raised by multiples of 100. System 930 includes a prosthetic implant 932 similar to the implant 832 of FIG. 12 but with a plurality of ingrowth porous surfaces 954 attached to the body 944 of implant 932. Each porous surface 954 is configured for receiving bone and/or tissue ingrowth therein. Further, while the reservoir cannot be seen in FIG. 13, a drug delivery channel 940 leading from the drug reservoir is shown in FIG. 13. The reservoir of FIG. 13 can be situated just under exterior surface 946 as reservoir 838 is shown in FIG. 12. Channel 940 routes around (and thereby avoids) ingrowth pads 954. Upon filling the reservoir of implant 932 with the therapeutic agent (either initially and/or as a refill), the therapeutic agent can move from the reservoir of implant 932 to the treatment site via channels 940.
  • FIG. 14 shows a long-term femoral knee implant system 1030 according to the present invention. Structural features in FIG. 14 corresponding to similar features in prior figures have reference characters raised by multiples of 100. System 1030 includes a prosthetic implant 1032 similar to the implant 832 of FIG. 12. Implant 1032 is attached to a femur 1035. The system 1030 further includes an attachment feature or element 1050 (such as a tubular element) for an injection port 1058, an injection port 1058, a catheter 1060, and a reservoir 1062 remote to the implant 1032. The injection port is provided for additional refilling of drugs into the implant 1032, which includes at least one channel for routing the therapeutic agent to the treatment site. Since an external reservoir 1062 is attached to implant 1032, implant body 1044 may or may not define an additional internal reservoir. Upon filling the internal reservoir of implant 1032 with the therapeutic agent (either initially and/or as a refill) via attachment element 1050, injection port 1058, catheter 1060, and external reservoir 1062, the therapeutic agent can move from the reservoir of implant 1032 to the treatment site via the drug delivery channels. If implant 1032 does not have an internal reservoir, then the therapeutic agent moves to the treatment site via the drug delivery channels from external reservoir 1062 via catheter 1060, injection port 1058, and attachment element 1050.
  • FIGS. 15 and 16 show a long-term femoral hip implant system 1130 according to the present invention. Structural features in FIGS. 15 and 16 corresponding to similar features in prior figures have reference characters raised by multiples of 100. FIG. 15 shows long-term femoral hip implant system 1130 including a long-term femoral hip prosthetic implant 1132 and an ingrowth porous surface 1154. FIG. 16 shows a first porous surface 1154 on the top (as oriented in FIG. 16) of the implant body 1144 or substrate 1144 (in each of the figures, the body 1144 can also be referred to as a substrate) and a second porous surface 1154 on the bottom (as oriented in FIG. 16) of the body 1144. Porous surfaces 1154 are configured for receiving bone and/or tissue ingrowth therein, as shown by arrow 1156. While FIG. 16 shows some space between porous surfaces 1154 and body 1144, it is understood that this space is for illustrative purposes and that porous surfaces 1154 can be flush with body 1144 but for any adhesive that may be used to attach surfaces 1154 with exterior surface 1146 of body 1144. Each porous surface 1154 includes a first side 1164 attached to exterior surface 1146 of body 1144 and a second side 1166 opposing said first side 1164. Each porous surface 1154 includes a through-hole 1168 running from first side 1164 to second side 1166. Through-hole 1168 is configured for communicating the therapeutic agent 1136 from first side 1164 to second side 1166 and thereby for communicating the therapeutic agent 1136 to the treatment site 1142. The through-holes 1168 in porous surfaces 1154 lead to surface channels 1170 and sub-surface channels 1172, respectively. Channels 1170 and 1172 can function essentially the same as channels 40 in that they are drug delivery channels. FIG. 16 shows a reservoir 1138 and connecting channels 1140 in broken lines; for, it is understood that such a reservoir 1138 and connecting channels 1140 (connecting reservoir 1138 with channels 1170 and/or 1172) may not be visible in this section, or, alternatively, that such a reservoir 1138 and connecting channels 1140 can be optional (stated another way, the implant 1132 would not contain such an interior reservoir 1138 and connecting channels 1140 leading from the reservoir 1138 to the surface channels 1170 or the sub-surface channels 1172).
  • Further, FIG. 16 shows that exterior surface 1146 of body 1144 can define a surface channel 1170 which is in communication with and cooperates with channel 1140 and through-hole 1168 of porous surface 1154 to provide the therapeutic agent 1136 from the reservoir 1138 to the treatment site 1142. FIG. 16 shows a plurality of such surface channels 1170, each of which can optionally be connected to reservoir 1138 via a respective connecting channel 1140, as discussed above. If implant 1132 has reservoir 1138 and connecting channels 1140, then upon filling reservoir 1138 with the therapeutic agent (either initially or as a refill), the therapeutic agent can move from reservoir 1138 to the treatment site via the channels 1140 and 1170. If implant 1132 does not have reservoir 1138 and connecting channels 1140, then surface channels 1170 can be filled with the therapeutic agent (either initially and/or as a refill) and the therapeutic agent moves via surface channels 1170, through through-holes 1168, to the treatment site 1142. The therapeutic agent can also be provided to the bone and/or tissue growing into porous surface 1154.
  • Further, FIG. 16 shows that channels 1140 running from reservoir 1138 can connect to the sub-surface channels 1172. Sub-surface channels 1172 and through-holes 1168 in porous surface 1154 are aligned with and cooperate with one another to provide the therapeutic agent 1136 from the reservoir 1138 to the treatment site 1142. Holes 1174 (which can also be considered as channels of the present invention, like channels 40) are also provided in body 1144 leading from subsurface channels 1172 to exterior surface 1146. These holes 1174 can be considered to be part of the respective channels 1140 and 1172.
  • FIGS. 15 and 16 thus also show an orthopaedic implant system 1130 including an orthopaedic implant 1132 and a porous surface 1154. The orthopaedic implant 1132 includes a body 1144 implantable at a selected location within a corporeal body 1134 and configured for delivering a therapeutic agent 1136 to corporeal body 1134. Body 1144 of implant 1132 includes an exterior surface 1146 defining a plurality of surface channels 1170 and, as discussed above, can have an absence of a therapeutic agent reservoir 1138. The broken lines of the reservoir 1138 in FIG. 16, as stated above, indicates that the reservoir 1138 is optional. The plurality of surface channels 1170 are configured for receiving, holding, delivering, and being refilled with the therapeutic agent 1136 after implant 1132 has been implanted in corporeal body 1134. Orthopaedic implant 1132 is a prosthesis. Alternatively, implant 1132 can be formed as a nail (FIG. 17), a plate (FIG. 18), or an external fixation device with an implantable pin (FIG. 19). Porous surface 1154 is attached to exterior surface 1146. Porous surface 1154 is configured for receiving at least one of bone and tissue ingrowth therein, as shown by arrow 1156. As discussed above, porous surface 1154 includes a first side 1164 attached to exterior surface 1146 and a second side 1166 opposing first side 1164. Porous surface 1154 includes a plurality of through-holes 1168 running from first side 1164 to second side 1166. The plurality of surface channels 1170 communicate and cooperate with the plurality of through-holes 1168 to provide the therapeutic agent 1136 from the plurality of surface channels 1170, then to first side 1164 of porous surface 1154, and then to second side 1166 of porous surface 1154. Surface channels 1170 can be filled with the therapeutic agent (either initially and/or as a refill) and the therapeutic agent 1136 moves via surface channels 1170, through through-holes 1168, to the treatment site 1142.
  • Thus, the present invention could be applied to long-term implants with any type of porous coating or surface or to cemented implants. Drugs could be delivered through the porous coatings or be routed to regions without porous coatings (as disclosed above), depending on the requirements. (See FIGS. 9, 10, 13, 15, and 16). For delivery through the porous coatings, channels can be created on the surface of the implant substrate (the solid material of the implant to which the porous surface is attached - see FIG. 14) or below the surface, as disclosed above relative to FIGS. 15 and 16. For surface channels, holes can be drilled through the porous surface to the surface channels to create a path through which the drugs can be delivered. For sub-surface channels, holes must be drilled from the surface of the substrate (the body of the implant) to the sub-surface channels to create paths for drugs to be delivered. (See FIG. 16). This drilling can occur prior to attaching the porous coating/surface or after the porous coating/surface is attached. If this drilling occurs after the porous coating/surface is attached, the holes will be created through the porous coating/surface and the substrate/body surface. (See FIG. 16).
  • Cement restrictors can also be used according to the present invention to prevent cement from sealing over the drug delivery holes. The present invention can be applied to all types of total joint implants, such as total hip components, total knee components, total shoulder components, and total elbow components.
  • With regard to enhancing bone ingrowth and combating resorbtion, bone growth stimulators can be injected intraoperatively or postoperatively to enhance or speed bone ingrowth into porous material (i.e., porous coatings or pads or surfaces on total joint components, on fusion devices (i.e., spinal fusion devices), or on bone augmentation components (i.e., tibial wedges)). These drugs could also be injected months to years post-operatively, using a long-term implant according to the present invention, to combat bone resorbtion due to such causes as stress-shielding, osteolysis, or bone metabolic disorders.
  • With regard to oncology, the implant of the present invention would similarly allow for delivery of drugs to some or all tissue surrounding the implant. The implants of the present invention may be cemented. The present invention provides a way to route the drugs around the regions of cement and provides a way for preventing the cement from sealing over the drug delivery holes.
  • The implants according to the present invention shown in FIGS. 17-19 are non-permanent implants. Such implants can be trauma products, such as nails, plates, and external fixation devices. The non-permanent implants of the present invention are not necessarily limited to these devices. The non-permanent implants of the present invention have a basic similarity with the short-term and long-term implants described above. Thus, structural features in FIGS. 17-19 corresponding to similar features in FIG. 1 have reference characters raised by multiples of 100. Thus, similar to the short-term and long-term implants described above, the present invention further provides a non-permanent implant which would allow drugs to be delivered directly to the bone and surrounding tissue (or to any specific location). Reservoirs and/or channels in the non-permanent implant according to the present invention would allow the drugs to be delivered to the treatment site and could be refilled. A nail according to the present invention is shown in FIG. 17. A plate according to the present invention is shown in FIG. 18. An external fixation device according to the present invention is shown in 19.
  • Nails are temporary, intramedullary devices. They are typically used to treat traumatic fracture. The risk of infection can be high especially in the case of open fractures. The present invention would allow antibiotics to be delivered to the bone surrounding the nail as a preventative or to treat an infection if one develops.
  • With regard to bone growth, in the case of fractures, there are instances in which the delivery of bone growth stimulators directly to the region of the fracture(s) would be beneficial. This is especially true in difficult cases such as non-unions, bony defects, and osteotomies. The nail according to the present invention would allow for such delivery bone growth stimulators directly to the region of the fracture(s).
  • With regard to oncology, nails can be used to treat fractures associated with bone tumors. They can also be used to help prevent a fracture where cancer has weakened bone. The nail according to the present invention provides for localized delivery of oncological drugs in the region of tumors which may improve results in slowing/halting tumor growth. This ability for localized delivery provided by the nail according to the present invention may also lessen the need/dose of systemic drugs, resulting in fewer side effects.
  • FIG. 17 shows an orthopaedic nail 1232 implantable in the corporeal body. Structural features in FIG. 17 corresponding to similar features in prior figures have reference characters raised by multiples of 100. Nail 1232 includes a body 1244 defining a reservoir 1238 and a drug delivery channel 1240 leading from drug reservoir 1238 to exterior surface 1246 of nail 1232. The present invention thus provides an orthopaedic nail 1232 with a drug delivery portion, which is similar to that, for instance, for long-term implants, such as a femoral hip implant (such as a hip stem). This design allows drugs to be delivered directly to all areas of the bone or to any specific location. (FIG. 17). A device such as a port could be used to allow for post-operative injections of drugs into the nail 1232. This would allow for the delivery of any number of drugs throughout treatment. Reservoirs 1238 and/or channels 1240 in the nail 1232 would allow the drugs from these injections to be delivered over a time period from hours to weeks. Thus, upon filling reservoir 1238 with the therapeutic agent (either initially and/or as a refill), the therapeutic agent can move from the reservoir 1238 to the treatment site via channels 1240. The drugs could be delivered to all bone tissue surrounding the implant or only to specific locations. All types of nails could utilize this technology, including antegrade and retrograde versions of femoral, tibial, and humeral nails.
  • Orthopaedic plates treat many of the same indications as nails; however, plates are applied to the outside of the bone. Plates offer the same opportunities for delivering drugs locally. Since nails are intramedullary, they can be used to deliver drugs, according to the present invention, primarily to the bone tissue. Since plates are applied to the outside of the bone, they can be used to deliver drugs, according to the present invention, to both bone and soft tissues. Examples of potential soft tissue treatments benefited by localized drug delivery include the enhancement of soft tissue ingrowth or healing, the prevention of infection by the delivery of antibiotics, and the treatment of nearby soft tissue tumors with localized delivery of oncological drugs.
  • FIG. 18 shows an orthopaedic plate 1332 that is implantable in a corporeal body. Structural features in FIG. 18 corresponding to similar features in prior figures have reference characters raised by multiples of 100. Plate 1332 includes a body 1344 defining a reservoir 1338 and a drug delivery channel 1340 leading from drug reservoir 1338 to exterior surface 1346 of plate 1332. Upon filling reservoir 1338 with the therapeutic agent (either initially and/or as a refill), the therapeutic agent can move from the reservoir 1338 to the treatment site via channels 1340.
  • Thus, the drug delivery portion of plate is similar to that for orthopaedic nails according to the present invention. Plate allows drugs to be delivered directly to the bone and surrounding tissue (or to any specific location). A device such as a port could be used to allow for post-operative injections of drugs into plate. This would allow for the delivery any number of drugs throughout treatment. Reservoirs 1338 and/or channels 1340 in the plate implant 1332 allow the drugs from these injections to be delivered over a time-period from hours to weeks. The drugs could be delivered to all bone and soft tissue surrounding the plate implant 1332 or only to specific locations.
  • External fixation devices are temporary implants that are used to stabilize a fracture. These external fixation devices can be used for days to months. External fixation devices typically include several pins fixed in the bone and extending through the skin to a rigid plate, ring, rod, or similar stabilizing device. These devices carry the added risk of infection considering that the pins extend through the skin. Bacteria can travel along the pins directly to the soft tissue and bone. The present invention can be applied to external fixation devices. Thus, antibiotics or other anti-infective agents can be provided to the bone and soft tissue surrounding the pins. (FIG. 19). An external reservoir could be used to supply/pump antibiotics to the bone and soft tissue.
  • FIG. 19, for instance, shows an external fixation device 1432 according to the present invention which is a trauma device. Structural features in FIG. 19 corresponding to similar features in prior figures have reference characters raised by multiples of 100. External fixation device 1432 includes an implantable pin 1476, a sheath 1478 coupled with pin 1476, and a reservoir 1480 coupled with sheath 1478, pin 1476 defining a plurality of channels 1440. More specifically, pin 1476 includes a wall 1482 defining an inner spatial area 1484 and a plurality of drug delivery channels 1440 or holes 1440. Connected to the outer circumference of the pin 1476 is sheath 1478, which can be coaxial with pin 1476. Sheath 1478 serves to prevent drugs from exiting that portion of the external fixation device 1432 which is outside of the skin 1434. To the right (as oriented on the page of FIG. 19) of the wall of skin 1434 is space that is external to the corporeal body. Further, drug reservoir 1480 is attached to sheath 1478. Drug reservoir 1480 is shaped to allow attachment of the external fixation device 1432 to external fixation rods and/or plates (not shown). The therapeutic agent moves from drug reservoir 1480 to the inner spatial area 1484 of pin 1476, through channels/holes 1440 in pin wall 1482, and to the treatment site. Thus, upon filling reservoir 1480 with the therapeutic agent (either initially and/or as a refill), the therapeutic agent can move from the reservoir 1480 to the treatment site 1442 via inner spatial area 1484 and channel(s) 1440.
  • Shortcomings of temporary bone cement implants used to treat infections are discussed above. An additional shortcoming includes the difficulty of delivering adequate quantities of therapeutic agents through such implants to bone due to lack of blood flow. FIGS. 20-27 provide orthopaedic drug delivery implants which address this shortcoming. More specifically, FIGS. 20-21 provide therapeutic agent delivery via a removable and replaceable cartridge. Further, FIGS. 22-26 provide therapeutic agent delivery via leaching through an implant that is partially or totally porous. Further, FIG. 27 provides a modified reservoir design. The designs shown in FIGS. 20-27 can be used in short-term, long-term, or non-permanent orthopaedic implants. Structural features in FIGS. 20-27 corresponding to similar features in prior figures have reference characters raised by multiples of 100.
  • FIGS. 20 and 21 show an orthopaedic implant system 1530 including an orthopaedic implant 1532 and a cartridge 1586. More specifically, FIG. 20 shows cartridge 1586 inserted in implant 1532. FIG. 21, however, shows implant 1532 with cartridge 1586 removed. Implant 1532 is formed as, for example, a short-term femoral hip prosthetic implant 1532. Implant 1532 is implanted in corporeal body 1534. Implant 1532 is defined by its body 1544. Body 1544 defines a reservoir 1538 and a plurality of channels 1540 running from the reservoir 1538 to the exterior surface 1546 of body 1544. Cartridge 1586 is inserted into and thus received by reservoir 1538, which serves as a housing for cartridge 1586. Thus, reservoir 1538, as a housing for cartridge 1586, may be shaped to matingly accommodate and connect to cartridge 1586. Reservoir 1538 can be generally cup-shaped and thus be open to exterior surface 1546 (and thus reservoir 1538 can essentially be a blind hole in exterior surface 1546) so as to receive cartridge 1586. Cartridge 1586 contains at least one therapeutic agent 1536, which is shown in broken lines in FIG. 20. Cartridge 1586 is configured for releasing the therapeutic agent 1536 (shown as a circle in cartridge 1586) into reservoir 1538 and/or at least one channel 1540 such that the therapeutic agent 1536 moves away from reservoir 1538 in at least one channel 1540 and thus to exterior surface 1546 of body 1544. Cartridge 1586 is removable from reservoir 1538 and is replaceable with another cartridge 1586 after implant 1532 has been implanted in the corporeal body. The first cartridge 1586 is replaced when it is empty of the therapeutic agent (or when it has otherwise released the desired amount of therapeutic agent from the first cartridge 1586). The second cartridge 1586, which replaces the empty first cartridge 1586, is full (or has the desired amount of therapeutic agent therein) of therapeutic agent when it is inserted into reservoir 1538 and thereby replaces first cartridge 1586. Thus, the refilling of reservoir 1538 in system 1530 occurs by replacing first cartridge 1586 with a second cartridge 1586.
  • Thus, system 1530 can have implant body 1544 and a replaceable portion or cartridge 1586. (FIGS. 20-21). Replaceable cartridge 1586, as stated, contains therapeutics. Upon implantation, the surgeon can decide with what therapeutics to fill cartridge 1586. Over time, cartridge 1586 can be replaced with a new cartridge 1586 filled with the same therapeutic as before or a different therapeutic. Ideally, cartridge replacement would occur as a minor outpatient procedure.
  • The replaceable cartridge may be optionally formed relative to the implant. As a first option, the cartridge may be considered a distinct device relative to the implant but which can be directly attached to the implant, as shown in FIG. 20. As a second option, the cartridge may be considered a portion of the implant which can be detached from the implant body. As a third option, the cartridge may be a second replaceable implant located within the patient body away from the first implant (i.e., the femoral hip implant) but connected to the first implant, such as via a catheter. As a fourth option, the cartridge may be a device that is situated external to the patient body, while the implant (i.e., the femoral hip implant) is implanted in the patient body.
  • FIGS. 22-26 show implants that are partially or totally porous to facilitate therapeutic agent delivery via leaching through the respective implant. In much the same manner of powder metallurgy bearings that are self-lubricating, therapeutic agents may be delivered to the patient body from an implant that is partially or totally porous. (FIGS. 22-26). Therapeutics will leach from the porous portions of the implant to the body. Such implants may also contain drug delivery channels, reservoirs, and the various ways of recharging therapeutics as previously discussed herein. FIGS. 22 and 23 each shows a femoral hip prosthetic implant 1632 in which the entire body 1644 of the implant 1632 is porous to facilitate leaching of therapeutic agents therefrom. Pores are labeled as 1690. The implant 1632 of FIG. 22, however, does not include in addition thereto a drug reservoir or drug delivery channels. Thus, the therapeutic agent is delivered via the pores 1690 of implant 1632 to the treatment site, which can be within or outside of the pores 1690. By contrast, FIG. 23 shows a drug reservoir 1638 and drug delivery channels 1640 embedded in or defined by the body 1644 of the implant 1632. Thus, upon filling reservoir 1638 with the therapeutic agent (either initially and/or as a refill), the therapeutic agent can move from the reservoir 1638 to the treatment site via channels 1640. FIGS. 24-26 each shows a femoral hip prosthetic implant 1732 in which a portion of the body 1744 of the implant 1732 is porous to facilitate leaching of therapeutic agents therefrom. The porous portion of body 1744 is labeled as 1790. The implant 1732 of FIG. 24, however, does not include in addition thereto a drug reservoir or drug delivery channels. Thus, the therapeutic agent can be delivered via the porous portion 1790 to the treatment site, which can be within or outside of the porous portion 1790. By contrast, the implants 1732 of FIGS. 25 and 26 do include in addition thereto a drug reservoir 1738 and drug delivery channels 1740. FIG. 25 shows the reservoir 1738 embedded in or defined by the porous portion 1790 of the body 1744 of the implant 1732 and drug delivery channels 1740 at least partially embedded in or defined by the porous portion 1790 of the body 1744 of the implant 1732. Thus, upon filling reservoir 1738 with the therapeutic agent (either initially and/or as a refill), the therapeutic agent can move from the reservoir 1738 to the treatment site (which can be either within or outside of the porous portion 1790) via channels 1740. FIG. 26 shows that the reservoir 1738 is not located in the porous portion 1790 and shows the drug delivery channels 1740 at least in part leading to the porous portion 1790. Thus, upon filling reservoir 1738 with the therapeutic agent (either initially and/or as a refill), the therapeutic agent can move from the reservoir 1738 to the treatment site (which can be either within or outside of the porous portion 1790) via channels 1740.
  • FIG. 27 shows an orthopaedic implant system 1830 with a femoral hip prosthetic implant 1832 and a sponge-like or spongy material or element 1892. Similar to the implants discussed above, the body 1844 of the implant 1832 defines a drug reservoir 1838 and drug delivery channels 1840 leading from the reservoir 1838 to the exterior surface 1846 of the body 1844. The reservoir 1838 contains or houses the spongy element 1892. The purpose of this material is to control dispersion of the therapeutic agents from the reservoir 1838 into the drug delivery channels 1840, to keep bone and tissue from growing into and filling the reservoir 1838, and/or to stiffen the implant 1832. Upon filling reservoir 1838 with the therapeutic agent (either initially and/or as a refill) and having positioned sponge-like material 1892 in reservoir 1838, the therapeutic agent can move from the reservoir 1838 (and thus also from spongy element 1892) to the treatment site via channels 1840. Depending upon the outcome desired, the material of the sponge-like element 1892 can be a number of possibilities. For example, if the sponge 1892 is to remain in reservoir 1838 for a long time, then a Polyvinyl Alcohol (PVA) or Ivalon sponge, for example, can be used. On the other hand, if the sponge 1892 is to last a shorter amount of time, then a collagen based material (i.e., Instat, by Johnson and Johnson, for example) or a gelatin sponge (i.e., Gelfoam, by Pfizer, for example), for example, can be used. These examples of the sponge 1892 are provided by way of example, and not by way of limitation.
  • Any of the devices according to the present invention described above can include a single or multiple attachment features (such as connections for catheters or ports) and a single or multiple sets of reservoirs and/or channels. The same therapeutic agent can be used in all reservoirs/channels, or several therapeutic agents can be used at one time. Separate reservoirs/channels allow each of the therapeutic agents to be delivered to a specific location on the implant, if desired.
  • Any of the internal (implanted) devices according to the present invention described above can include an internal reservoir (contained within the implant) in conjunction with delivery channels/paths to allow for short- and/or long-term delivery of the therapeutic agents. If an internal reservoir does not exist, the implant can contain delivery channels/paths to allow for the dispersion of the therapeutic agent.
  • According to the present invention, therapeutic agents can be introduced into the delivery channels/paths and/or implant reservoir of the implant of the present invention by one or more of the following ways:
      • a. Direct interface between a delivery vessel (such as a hypodermic syringe).
      • b. Direct attachment of a drug pump, external reservoir (external to the implant, but can be located internally or externally to the patient), and/or port to the implant; that is, a drug pump, external reservoir, and/or port can be attached directly to the implant. A catheter can be, but is not necessarily, located between the drug pump, external reservoir, and/or port and the implant. The therapeutic agent is then introduced into one of these intermediary devices by, for example, a hypodermic syringe. The therapeutic agent is then transferred to the implant delivery channels/paths and/or implant reservoir.
      • c. A drug pump, reservoir, and/or port can be implanted in the body in another location remote to the implant and/or can be connected to the implant by, for example, a delivery tube or catheter. FIG. 28 shows schematically this option for an orthopaedic implant system. According to system 1930, a reservoir 1994, a pump 1995, and a port 1996 are implanted under the skin of a patient body 1934 remote from implant 1932 and are shown connected via an implanted catheter 1998 to the reservoir 1938 of the implant 1932. The reservoir 1994, pump 1995, and port 1996 are thereby configured for delivering the therapeutic agent (shown by arrow 1936, which also shows the direction of travel of the therapeutic agent) from the reservoir 1994 to the treatment site 1942 via the implant 1932. Stated another way, the pump 1995 and port 1996 can cooperate with the reservoir 1938 to deliver the therapeutic agent 1936 via the catheter 1998 to the reservoir 1938 defined by the body of the implant 1932. The body of implant 1932 can define channels, either sub-surface or surface channels, running from reservoir 1938 to the exterior surface of implant 1932. The implant 1932 is an orthopaedic implant, such as a prosthesis, a nail, a plate, or an implanted pin of an external fixation device.
      • d. A drug pump, reservoir, and/or port can be located external to the body and connected to the implant by, for example, a delivery tube or catheter. The main difference between the example of this subparagraph and the example of subparagraph c of this paragraph is that the catheter runs from one location inside the body to another location inside the body in the example of subparagraph c of this paragraph, while the catheter runs from outside of the body to the implant inside the body in the example of this subparagraph. FIG. 29 shows schematically this option for an orthopaedic implant system. According to system 2030, a reservoir 2094, a pump 2095, and a port 2096 are not implanted under the skin of a patient body 2034 but are shown connected to the reservoir 2038 of the implant 2032 by a transcutaneous (passing, entering, or made by penetration through the skin) catheter 2098. The reservoir 2094, pump 2095, and port 2096 are thereby configured for delivering the therapeutic agent (shown by arrow 2036, which also shows the direction of travel of the therapeutic agent) from the reservoir 2094 to the treatment site 2042 via the implant 2032. Stated another way, the pump 2095 and port 2096 can cooperate with the reservoir 2094 to deliver the therapeutic agent 2036 via the catheter 2098 to the reservoir 2038 defined by the body of the implant 2032. The body of implant 2032 can define channels, either sub-surface or surface channels, running from reservoir 2038 to the exterior surface of implant 2032. The implant 2032 is an orthopaedic implant, such as a prosthesis, a nail, a plate, or an implanted pin of an external fixation device.
      • e. A catheter runs from outside the body to the implant inside the body but would not include a pump, a reservoir, or a port being attached to the outside end of the catheter (the outside end being the end opposite the end which is attached to the implant).
  • The orthopaedic implants of the present invention can be applied in conjunction with any currently available designs, including porous coatings, and can also be used in conjunction with cemented implants.
  • The present invention further provides a method of using an orthopaedic implant system, such as system 30. The method includes the steps of: implanting an orthopaedic implant 32 at a selected location within a corporeal body 34, implant 32 including a reservoir 38 and a plurality of channels 40; receiving at least one therapeutic agent 36 in reservoir 38; conveying at least one therapeutic agent 36 from reservoir 38 to a treatment site 42 relative to corporeal body 34 via channels 40; and delivering at least one therapeutic agent 42 to corporeal body 34. As discussed above, the implant according to the present invention is a prosthesis, a nail, a plate, or an external fixation device with an implanted pin. Implant 32 includes a body 44 which is implanted at the selected location, body 44 defining reservoir 38 and channels 40 and including an exterior surface 46, channels 40 fluidly communicating reservoir 38 with exterior surface 46 and thereby conveying therapeutic agent 36 from reservoir 38 to exterior surface 46. The method can include attaching a porous surface 1154 to exterior surface 1146, porous surface 1154 receiving bone and/or tissue ingrowth 1156 therein, porous surface 1154 including a first side 1164 attached to exterior surface 1146 and a second side 1166 opposing first side 1164, porous surface 1154 including a through-hole 1168 running from first side 1164 to second side 1166, through-hole 1168 communicating at least one therapeutic agent 1136 from first side 1164 to second side 1166 and thereby communicating at least one therapeutic agent 1136 to treatment site 1142. Exterior surface 1146 can define a surface channel 1170, surface channel 1170 being in communication with and cooperating with at least one channel 1140 and at least one through-hole 1168 and thereby providing at least one therapeutic agent 1136 from reservoir 1138 to treatment site 1142. At least one channel 40 can be a sub-surface channel 1172, sub-surface channel 1172 and through-hole 1168 being aligned with and cooperating with one another and thereby providing at least one therapeutic agent 1136 from reservoir 1138 to treatment site 1142. The method can include implanting a second reservoir 1994, a pump 1995, and/or a port 1996 in corporeal body 1934 remote from implant 1932, connecting second reservoir 1994, pump 1995, and/or port 1996 to reservoir 1938 of implant 1932 by at least one catheter 1998 implanted in corporeal body 1934, and delivering at least one therapeutic agent 1936 to treatment site 1942 via implant 1932, catheter 1998, and second reservoir 1994, pump 1995, and/or port 1996. The method can include providing a second reservoir 2094, a pump 2095, and/or a port 2096 which is not implanted in corporeal body 2034, connecting second reservoir 2094, pump 2095, and/or port 2096 to reservoir 2038 of implant 2032 by at least one transcutaneous catheter 2098, and delivering at least one therapeutic agent 2036 to treatment site 2042 via implant 2032, catheter 2098, and second reservoir 2094, pump 2095, and/or port 2096. The method can include inserting a cartridge 1586 into reservoir 1538, cartridge 1586 containing at least one therapeutic agent 1536 and releasing at least one therapeutic agent 1536 into reservoir 1538 and/or at least one channel 1540 such that at least one therapeutic agent 1536 moves away from reservoir 1538 in at least one channel 1540, removing cartridge 1586 from reservoir 1538 after implant 1532 has been implanted in corporeal body 1534, and replacing cartridge 1586 with another cartridge 1586 after implant 1532 has been implanted in corporeal body 1534. The method can include providing a spongy element 1892, reservoir 1838 containing spongy element 1892. Body 1644, 1744 of implant 1632, 1732 can be partially or completely porous. External fixation device 1432 can include implantable pin 1476, a sheath 1478 coupled with pin 1476, and reservoir 1480 coupled with sheath 1478, pin 1476 defining a plurality of channels 1440. Implant may include only one reservoir. The method can include refilling reservoir 38 with at least one therapeutic agent 36 after implant 32 has been implanted in corporeal body 34. The method can include delivering a plurality of therapeutic agents 36 to corporeal body 34 via reservoir 38 and channels 40 of implant 32.
  • While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.

Claims (32)

1. An orthopaedic implant system, comprising:
an orthopaedic implant implantable at a selected location within a corporeal body and configured for delivering at least one therapeutic agent to said corporeal body, said implant including a reservoir and a plurality of channels, said reservoir configured for receiving said at least one therapeutic agent, said plurality of channels configured for conveying said at least one therapeutic agent from said reservoir to a treatment site relative to said corporeal body.
2. The orthopaedic implant system of claim 1, wherein said implant is one of a prosthesis, a nail, a plate, and an external fixation device with an implantable pin.
3. The orthopaedic implant system of claim 2, wherein said implant includes a body implantable at said selected location, said body defining said reservoir and said plurality of channels and including an exterior surface, said plurality of channels fluidly communicating said reservoir with said exterior surface and thereby being configured for conveying said at least one therapeutic agent from said reservoir to said exterior surface.
4. The orthopaedic implant system of claim 3, further including a porous surface attached to said exterior surface, said porous surface configured for receiving at least one of bone and tissue ingrowth therein, said porous surface including a first side attached to said exterior surface and a second side opposing said first side, said porous surface including a through-hole running from said first side to said second side, said through-hole configured for communicating said at least one therapeutic agent from said first side to said second side and thereby for communicating said at least one therapeutic agent to said treatment site.
5. The orthopaedic implant system of claim 4, further including a surface channel defined by said exterior surface, said surface channel being in communication with and cooperating with one said channel and said through-hole to provide said at least one therapeutic agent from said reservoir to said treatment site.
6. The orthopaedic implant system of claim 4, wherein at least one of said channels is a sub-surface channel, said sub-surface channel and said through-hole being aligned with and cooperating with one another to provide said at least one therapeutic agent from said reservoir to said treatment site.
7. The orthopaedic implant system of claim 3, further including at least one of a second reservoir, a pump, and a port implantable in said corporeal body remote from said implant and connected to said reservoir of said implant by at least one catheter implantable in said corporeal body and thereby configured for delivering said at least one therapeutic agent to said treatment site via said implant.
8. The orthopaedic implant system of claim 3, further including at least one of a second reservoir, a pump, and a port not implantable in said corporeal body but which is connected to said reservoir of said implant by at least one transcutaneous catheter and which is thereby configured for delivering said at least one therapeutic agent to said treatment site via said implant.
9. The orthopaedic implant system of claim 3, further including a cartridge inserted into said reservoir, said cartridge containing said at least one therapeutic agent and being configured for releasing said at least one therapeutic agent into at least one of said reservoir and at least one of said channels such that said at least one therapeutic agent moves away from said reservoir in said at least one channel, said cartridge being removable from said reservoir and replaceable with another cartridge after said implant has been implanted in said corporeal body.
10. The orthopaedic implant system of claim 3, further including a spongy element, said reservoir containing said spongy element.
11. The orthopaedic implant system of claim 3, wherein said body of said implant is one of partially porous and completely porous.
12. The orthopaedic implant system of claim 2, wherein said external fixation device includes said implantable pin, a sheath coupled with said pin, and said reservoir coupled with said sheath, said pin defining said plurality of channels.
13. The orthopaedic implant system of claim 2, wherein said implant includes only one said reservoir.
14. The orthopaedic implant system of claim 2, wherein said reservoir is configured for being refilled with said at least one therapeutic agent after said implant has been implanted in said corporeal body.
15. The orthopaedic implant system of claim 2, wherein said implant is configured for delivering a plurality of therapeutic agents to said corporeal body via said reservoir and said plurality of channels.
16. A method of using an orthopaedic implant system, said method comprising the steps of:
implanting an orthopaedic implant at a selected location within a corporeal body, said implant including a reservoir and a plurality of channels;
receiving at least one therapeutic agent in said reservoir;
conveying said at least one therapeutic agent from said reservoir to a treatment site relative to said corporeal body via said plurality of channels; and
delivering said at least one therapeutic agent to said corporeal body.
17. The method of claim 16, wherein said implant is one of a prosthesis, a nail, a plate, and an external fixation device with an implanted pin.
18. The method of claim 17, wherein said implant includes a body which is implanted at said selected location, said body defining said reservoir and said plurality of channels and including an exterior surface, said plurality of channels fluidly communicating said reservoir with said exterior surface and thereby conveying said at least one therapeutic agent from said reservoir to said exterior surface.
19. The method of claim 18, further including attaching a porous surface to said exterior surface, said porous surface receiving at least one of bone and tissue ingrowth therein, said porous surface including a first side attached to said exterior surface and a second side opposing said first side, said porous surface including a through-hole running from said first side to said second side, said through-hole communicating said at least one therapeutic agent from said first side to said second side and thereby communicating said at least one therapeutic agent to said treatment site.
20. The method of claim 19, wherein a surface channel is defined by said exterior surface, said surface channel being in communication with and cooperating with one said channel and said through-hole and thereby providing said at least one therapeutic agent from said reservoir to said treatment site.
21. The method of claim 19, wherein at least one of said channels is a sub-surface channel, said sub-surface channel and said through-hole being aligned with and cooperating with one another and thereby providing said at least one therapeutic agent from said reservoir to said treatment site.
22. The method of claim 18, further including implanting at least one of a second reservoir, a pump, and a port in said corporeal body remote from said implant, connecting at least one of said second reservoir, said pump, and said port to said reservoir of said implant by at least one catheter implanted in said corporeal body, and delivering said at least one therapeutic agent to said treatment site via said implant, said catheter, and at least one of said second reservoir, said pump, and said port.
23. The method of claim 18, further including providing at least one of a second reservoir, a pump, and a port which is not implanted in said corporeal body, connecting at least one of said second reservoir, said pump, and said port to said reservoir of said implant by at least one transcutaneous catheter, and delivering said at least one therapeutic agent to said treatment site via said implant, said catheter, and at least one of said second reservoir, said pump, and said port.
24. The method of claim 18, further including inserting a cartridge into said reservoir, said cartridge containing said at least one therapeutic agent and releasing said at least one therapeutic agent into at least one of said reservoir and at least one of said channels such that said at least one therapeutic agent moves away from said reservoir in said at least one channel, removing said cartridge from said reservoir after said implant has been implanted in said corporeal body, and replacing said cartridge with another cartridge after said implant has been implanted in said corporeal body.
25. The method of claim 18, further including providing a spongy element, said reservoir containing said spongy element.
26. The method of claim 18, wherein said body of said implant is one of partially porous and completely porous.
27. The method of claim 17, wherein said external fixation device includes said implantable pin, a sheath coupled with said pin, and said reservoir coupled with said sheath, said pin defining said plurality of channels.
28. The method of claim 17, wherein said implant includes only one said reservoir.
29. The method of claim 17, further including refilling said reservoir with said at least one therapeutic agent after said implant has been implanted in said corporeal body.
30. The method of claim 17, further including delivering a plurality of therapeutic agents to said corporeal body via said reservoir and said plurality of channels of said implant.
31. An orthopaedic implant system, comprising:
an orthopaedic implant including a body implantable at a selected location within a corporeal body and configured for delivering a therapeutic agent to said corporeal body, said body including an exterior surface defining a plurality of surface channels and having an absence of a therapeutic agent reservoir, said plurality of surface channels configured for receiving, holding, delivering, and being refilled with said therapeutic agent after said implant has been implanted in said corporeal body; and
a porous surface attached to said exterior surface, said porous surface configured for receiving at least one of bone and tissue ingrowth therein, said porous surface including a first side attached to said exterior surface and a second side opposing said first side, said porous surface including a plurality of through-holes running from said first side to said second side, said plurality of surface channels communicating and cooperating with said plurality of through-holes to provide said therapeutic agent from said plurality of surface channels to said first side of said porous surface and to said second side of said porous surface.
32. The therapeutic agent delivery system of claim 31 wherein said implant is one of a prosthesis, a nail, a plate, and an external fixation device with an implantable pin.
US12/540,676 2008-08-13 2009-08-13 Drug delivery implants Abandoned US20100042213A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US12/540,676 US20100042213A1 (en) 2008-08-13 2009-08-13 Drug delivery implants
PCT/US2009/053724 WO2010019781A1 (en) 2008-08-13 2009-08-13 Drug delivery implants
PCT/US2009/055380 WO2010025378A2 (en) 2008-08-13 2009-08-28 Drug delivery implants
JP2011525237A JP5658154B2 (en) 2008-08-29 2009-08-28 Drug delivery implants
ES09810665.1T ES2613943T3 (en) 2008-08-29 2009-08-28 Implants for drug administration
EP09810665.1A EP2328511B1 (en) 2008-08-29 2009-08-28 Drug delivery implants
US12/549,748 US9616205B2 (en) 2008-08-13 2009-08-28 Drug delivery implants
US14/505,144 US9561354B2 (en) 2008-08-13 2014-10-02 Drug delivery implants
US15/413,493 US10357298B2 (en) 2008-08-13 2017-01-24 Drug delivery implants
US15/700,788 US10349993B2 (en) 2008-08-13 2017-09-11 Drug delivery implants

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US8838308P 2008-08-13 2008-08-13
US8837908P 2008-08-13 2008-08-13
US9288008P 2008-08-29 2008-08-29
US12/540,676 US20100042213A1 (en) 2008-08-13 2009-08-13 Drug delivery implants
US12/540,760 US8475505B2 (en) 2008-08-13 2009-08-13 Orthopaedic screws

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/540,760 Continuation-In-Part US8475505B2 (en) 2008-08-13 2009-08-13 Orthopaedic screws

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/549,748 Continuation-In-Part US9616205B2 (en) 2008-08-13 2009-08-28 Drug delivery implants
US14/505,144 Division US9561354B2 (en) 2008-08-13 2014-10-02 Drug delivery implants

Publications (1)

Publication Number Publication Date
US20100042213A1 true US20100042213A1 (en) 2010-02-18

Family

ID=41722313

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/540,676 Abandoned US20100042213A1 (en) 2008-08-13 2009-08-13 Drug delivery implants
US14/505,144 Active 2029-11-11 US9561354B2 (en) 2008-08-13 2014-10-02 Drug delivery implants

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/505,144 Active 2029-11-11 US9561354B2 (en) 2008-08-13 2014-10-02 Drug delivery implants

Country Status (2)

Country Link
US (2) US20100042213A1 (en)
WO (2) WO2010019781A1 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110015754A1 (en) * 2009-07-16 2011-01-20 Teknimed Articular implant comprising at least two cavities
US20110040278A1 (en) * 2009-06-23 2011-02-17 Hugo Antonio Pedrozo Device and method for fabricating cellularized implants with a predetermined architecture at the point of care
US20120116310A1 (en) * 2009-07-10 2012-05-10 Milux Holding Sa Implantable medical device for lubricating an artificial contacting surface and method of implanting the device
US8475505B2 (en) 2008-08-13 2013-07-02 Smed-Ta/Td, Llc Orthopaedic screws
US20130211334A1 (en) * 2009-02-25 2013-08-15 Brian C. de Beaubien Antibiotic delivery system for treating an infected synovial joint during re-implantation of an orthopedic prosthesis
US20130245602A1 (en) * 2003-07-15 2013-09-19 Spinal Generations, Llc Method and device for delivering medicine to bone
CN103997984A (en) * 2012-03-22 2014-08-20 黄致日 Drug delivery system using implant
US20150038941A1 (en) * 2008-08-13 2015-02-05 Smed-Ta/Td, Llc Drug delivery implants
WO2014150920A3 (en) * 2013-03-15 2015-02-19 Smed-Ta/Td, Llc Fixation of bone implants
US20150134068A1 (en) * 2012-04-19 2015-05-14 Teknimed Spacer implant for the temporary replacement of a knee prosthesis
US9358056B2 (en) 2008-08-13 2016-06-07 Smed-Ta/Td, Llc Orthopaedic implant
US20160235955A1 (en) * 2015-02-16 2016-08-18 Augusto Magagnoli Spacer device for treatment of an infected seat of the human body
EP2781206B1 (en) 2013-03-22 2016-11-23 Heraeus Medical GmbH Two-part knee spacer with recesses
US9603644B2 (en) 2012-08-07 2017-03-28 Spinal Generations, Llc Methods and devices for delivery of medicine to bone
US9616205B2 (en) 2008-08-13 2017-04-11 Smed-Ta/Td, Llc Drug delivery implants
KR20170072246A (en) * 2014-10-21 2017-06-26 테크레스 에스.피.에이. Spacer device for treating infections of the shoulder articulation
ITUB20159789A1 (en) * 2015-12-30 2017-06-30 Tecres Spa SOUL FOR SPACE
US9700431B2 (en) 2008-08-13 2017-07-11 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
US9839523B1 (en) * 2016-06-10 2017-12-12 Jared Ruben Hillel FORAN Antibiotic dispensing spacer apparatus and method for infected total knee arthroplasty
US9861410B2 (en) 2016-05-06 2018-01-09 Medos International Sarl Methods, devices, and systems for blood flow
US9962188B2 (en) 2013-10-29 2018-05-08 Cardinal Health 247. Inc. External fixation system and methods of use
US10022233B1 (en) * 2017-12-04 2018-07-17 Duke University Orthopedic implant for sustained drug release
US20180243095A1 (en) * 2015-10-26 2018-08-30 Leon E. POPOVITZ Circulation replenishing joint implant
US10350332B2 (en) 2013-03-15 2019-07-16 Smed-Ta/Td, Llc Fixation of orthopaedic devices
EP3542759A1 (en) 2018-03-21 2019-09-25 Heraeus Medical GmbH Femoral hip joint spacer with flushing device
US10433965B2 (en) 2015-06-17 2019-10-08 Joint Purification Systems Llc Total joint replacement infection control devices and methods
DE102019101081A1 (en) 2019-01-16 2020-07-16 Heraeus Medical Gmbh Femoral hip joint spacer with flushing device
KR20200130679A (en) * 2018-03-07 2020-11-19 코싱턴 리미티드 Acetabular spacer device containing pharmaceutical substance
US10842645B2 (en) 2008-08-13 2020-11-24 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
KR20200141441A (en) * 2018-03-07 2020-12-18 코싱턴 리미티드 Temporary spacer device for human joints
US20210282932A1 (en) * 2015-07-30 2021-09-16 Tecres S.P.A. Prosthetic device with antibiotics
EP3881803A1 (en) 2020-03-20 2021-09-22 Heraeus Medical GmbH Device and method for producing spacers
EP3900680A1 (en) 2020-04-24 2021-10-27 Heraeus Medical GmbH Device and method for producing spacers with variable head
EP3906896A1 (en) 2020-05-07 2021-11-10 Heraeus Medical GmbH Manufacture of spacers in casting mould with kink or clamp mechanism
US20210369465A1 (en) * 2020-05-26 2021-12-02 Howmedica Osteonics Corp. Orthopedic surgical implant device with porous material and fluid channels for cleaning the porous material
EP3939546A1 (en) 2020-07-17 2022-01-19 Heraeus Medical GmbH Device and method for producing spacers
EP3957280A1 (en) 2020-08-17 2022-02-23 Heraeus Medical GmbH Device and method for producing spacers
EP3978065A1 (en) 2020-10-02 2022-04-06 Heraeus Medical GmbH Implant for local drug release
US20220313440A1 (en) * 2021-04-02 2022-10-06 Arthrex, Inc. Orthopaedic implant systems including internal networks and methods of repair
US11712278B2 (en) 2014-02-19 2023-08-01 Spinal Generations, Llc Compressible mixing and delivery system for medical substances

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2323587B1 (en) * 2008-08-13 2016-08-03 SMed - TA/TD LLC Drug delivery implants
US8500819B2 (en) * 2010-03-05 2013-08-06 Biomet Manufacturing, Llc Drug delivery and diagnostic system for orthopedic implants
BR112013020618A2 (en) * 2011-02-14 2016-11-08 Nat Res Council Canada systems and methods for injecting fluid into bone and inserting bone screws, and bone screws for bone
WO2015039104A2 (en) * 2013-09-16 2015-03-19 Neuraxis, Llc Methods and devices for applying localized thermal therapy
USD867594S1 (en) 2015-06-19 2019-11-19 Edwards Lifesciences Corporation Prosthetic heart valve
CA2914094C (en) 2014-06-20 2021-01-05 Edwards Lifesciences Corporation Surgical heart valves identifiable post-implant
CN110799151A (en) * 2017-06-23 2020-02-14 福卡斯特矫形外科公司 Methods, systems, and devices for repairing a knee joint
WO2019023617A1 (en) 2017-07-27 2019-01-31 University Of Utah Research Foundation Therapeutic delivery device
US10709561B2 (en) * 2017-09-12 2020-07-14 DePuy Synthes Products, Inc. Externally fed graft containment cage/scaffold
CA3084200A1 (en) 2019-06-20 2020-12-20 Smed-Ta/Td, Llc Orthopaedic trauma devices with porous regions and therapeutic agent delivery
US11674617B2 (en) 2019-12-27 2023-06-13 Horizon Healthcare LLC Tube lock
US11635148B2 (en) 2019-12-27 2023-04-25 Horizon Healthcare LLC Tube clamp
US11439511B2 (en) 2020-04-30 2022-09-13 Depuy Ireland Unlimited Company Orthopaedic knee implant system with controlled stiffness

Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3662405A (en) * 1969-03-12 1972-05-16 Iit Res Inst Reinforced porous ceramic bone prosthesis
US3683421A (en) * 1970-07-13 1972-08-15 Skf Ind Inc Prosthetic joint assembly
US3855638A (en) * 1970-06-04 1974-12-24 Ontario Research Foundation Surgical prosthetic device with porous metal coating
US3867728A (en) * 1971-12-30 1975-02-25 Cutter Lab Prosthesis for spinal repair
US4011602A (en) * 1975-10-06 1977-03-15 Battelle Memorial Institute Porous expandable device for attachment to bone tissue
US4060081A (en) * 1975-07-15 1977-11-29 Massachusetts Institute Of Technology Multilayer membrane useful as synthetic skin
US4156943A (en) * 1977-08-24 1979-06-05 Collier John P High-strength porous prosthetic device and process for making the same
US4222128A (en) * 1977-05-20 1980-09-16 Kureha Kagaku Kogyo Kabushiki Kaisha Composite implant materials and process for preparing same
US4450150A (en) * 1973-05-17 1984-05-22 Arthur D. Little, Inc. Biodegradable, implantable drug delivery depots, and method for preparing and using the same
US4453537A (en) * 1981-08-04 1984-06-12 Spitzer Daniel E Apparatus for powering a body implant device
US4485097A (en) * 1982-05-26 1984-11-27 Massachusetts Institute Of Technology Bone-equivalent and method for preparation thereof
US4520821A (en) * 1982-04-30 1985-06-04 The Regents Of The University Of California Growing of long-term biological tissue correction structures in vivo
US4608052A (en) * 1984-04-25 1986-08-26 Minnesota Mining And Manufacturing Company Implant with attachment surface
US4609551A (en) * 1984-03-20 1986-09-02 Arnold Caplan Process of and material for stimulating growth of cartilage and bony tissue at anatomical sites
US4620327A (en) * 1984-07-05 1986-11-04 Caplan Arnold I Process of adapting soluble bone protein for use in stimulating osteoinduction
US4644627A (en) * 1985-09-12 1987-02-24 Palazzo David T Method of making double wall storage tank for liquids
US4660755A (en) * 1985-09-09 1987-04-28 Zimmer, Inc. Method for constructing a surgical implant
US4737411A (en) * 1986-11-25 1988-04-12 University Of Dayton Controlled pore size ceramics particularly for orthopaedic and dental applications
US4769041A (en) * 1985-07-15 1988-09-06 Sulzer Brothers Limited Hip joint socket
US4846834A (en) * 1986-05-27 1989-07-11 Clemson University Method for promoting tissue adhesion to soft tissue implants
US4858603A (en) * 1988-06-06 1989-08-22 Johnson & Johnson Orthopaedics, Inc. Bone pin
US4936859A (en) * 1988-01-14 1990-06-26 Sulzer Brothers Limited Reinforcement for anchoring a prosthesis stem
US4976738A (en) * 1985-01-09 1990-12-11 Sulzer Brothers Limited Porous metal overlay for an implant surface
US5030233A (en) * 1984-10-17 1991-07-09 Paul Ducheyne Porous flexible metal fiber material for surgical implantation
US5041107A (en) * 1989-10-06 1991-08-20 Cardiac Pacemakers, Inc. Electrically controllable, non-occluding, body implantable drug delivery system
US5084051A (en) * 1986-11-03 1992-01-28 Toermaelae Pertti Layered surgical biocomposite material
US5092898A (en) * 1988-05-31 1992-03-03 Ngk Spark Plug Co., Ltd. Artificial joint
US5100392A (en) * 1989-12-08 1992-03-31 Biosynthesis, Inc. Implantable device for administration of drugs or other liquid solutions
US5104410A (en) * 1990-10-22 1992-04-14 Intermedics Orthopedics, Inc Surgical implant having multiple layers of sintered porous coating and method
US5190550A (en) * 1990-08-02 1993-03-02 Exactech, Inc. Locking surgical tool handle system
US5197985A (en) * 1990-11-16 1993-03-30 Caplan Arnold I Method for enhancing the implantation and differentiation of marrow-derived mesenchymal cells
US5204055A (en) * 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
US5219363A (en) * 1988-03-22 1993-06-15 Zimmer, Inc. Bone implant
US5226914A (en) * 1990-11-16 1993-07-13 Caplan Arnold I Method for treating connective tissue disorders
US5281210A (en) * 1992-09-18 1994-01-25 Infusaid, Inc. Accumulator for implantable pump
US5282861A (en) * 1992-03-11 1994-02-01 Ultramet Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
US5306309A (en) * 1992-05-04 1994-04-26 Calcitek, Inc. Spinal disk implant and implantation kit
US5328765A (en) * 1989-04-28 1994-07-12 Hoechst Celanese Corporation Organic polymers having a modified surface and process therefor
US5370690A (en) * 1992-02-28 1994-12-06 Mayo Foundation For Medical Education And Research Artificial bladder
US5380328A (en) * 1993-08-09 1995-01-10 Timesh, Inc. Composite perforated implant structures
US5443471A (en) * 1993-02-16 1995-08-22 Howmedica, Inc. Quick release handle assembly
US5458643A (en) * 1991-03-29 1995-10-17 Kyocera Corporation Artificial intervertebral disc
US5462362A (en) * 1993-04-30 1995-10-31 Nsk Ltd. Wear resisting slide member
US5490962A (en) * 1993-10-18 1996-02-13 Massachusetts Institute Of Technology Preparation of medical devices by solid free-form fabrication methods
US5496372A (en) * 1992-04-17 1996-03-05 Kyocera Corporation Hard tissue prosthesis including porous thin metal sheets
US5514182A (en) * 1993-08-17 1996-05-07 University Of Utah Prosthetic joint with semipermeable capsule with reinforcing ribs
US5518680A (en) * 1993-10-18 1996-05-21 Massachusetts Institute Of Technology Tissue regeneration matrices by solid free form fabrication techniques
US5531750A (en) * 1994-07-15 1996-07-02 Snap-On Incorporated Surgical tool and adjustable locking handle therefor
US5534028A (en) * 1993-04-20 1996-07-09 Howmedica, Inc. Hydrogel intervertebral disc nucleus with diminished lateral bulging
US5537851A (en) * 1993-01-05 1996-07-23 Aluminum Company Of America Sheet product produced by massive reduction in last stand of cold rolling process
US5549700A (en) * 1993-09-07 1996-08-27 Ortho Development Corporation Segmented prosthetic articulation
US5571187A (en) * 1992-02-27 1996-11-05 Zimmer, Inc. Implant having a metallic porous surface
US5593443A (en) * 1991-03-13 1997-01-14 Nph Ltd. Prosthetic anal sphincter
US5637175A (en) * 1988-10-05 1997-06-10 Helisys Corporation Apparatus for forming an integral object from laminations
US5641323A (en) * 1994-02-18 1997-06-24 Johnson & Johnson Professional, Inc. Self-lubricating implantable articulation member
US5702449A (en) * 1995-06-07 1997-12-30 Danek Medical, Inc. Reinforced porous spinal implants
US5730817A (en) * 1996-04-22 1998-03-24 Helisys, Inc. Laminated object manufacturing system
US5750103A (en) * 1990-10-19 1998-05-12 The New York University Medical Center Method for transplanting cells into the brain and therapeutic uses therefor
US5769897A (en) * 1991-12-13 1998-06-23 Haerle; Anton Synthetic bone
US5776199A (en) * 1988-06-28 1998-07-07 Sofamor Danek Properties Artificial spinal fusion implants
US5800828A (en) * 1991-04-25 1998-09-01 Brown University Research Foundation Implantable biocompatible immunoisolatory vehicle for delivery of selected therapeutic products
US5807406A (en) * 1994-10-07 1998-09-15 Baxter International Inc. Porous microfabricated polymer membrane structures
US5848989A (en) * 1997-06-05 1998-12-15 Davinci Biomedical Research Products, Inc. Implantable port with low profile housing for delivery/collection of fluids and implantation method
US5849015A (en) * 1997-09-11 1998-12-15 Bristol-Myers Squibb Company Orthopaedic stem inserter with quick release lever and ratchet
US5871484A (en) * 1995-11-09 1999-02-16 General Orthopedics Apparatus and method for administering a biologically active substance to a bone
US5876550A (en) * 1988-10-05 1999-03-02 Helisys, Inc. Laminated object manufacturing apparatus and method
US5879406A (en) * 1997-07-15 1999-03-09 Saint-Gobain Industrial Ceramics, Inc. Artificial joint bioprosthesis for mitigation of wear
US5916269A (en) * 1996-06-03 1999-06-29 Depuy Orthopaedics, Inc. Wear reduced acetabular component
US5971985A (en) * 1997-09-12 1999-10-26 Ace Surgical Supply Co., Inc. Bone attachment device for use with tissue grafts and membranes
US5989250A (en) * 1996-10-24 1999-11-23 Spinal Concepts, Inc. Method and apparatus for spinal fixation
US6010336A (en) * 1994-12-26 2000-01-04 Kyocera Corporation Living body-supporting member and preparation process thereof
US6045581A (en) * 1997-12-12 2000-04-04 Sulzer Orthopedics Inc. Implantable prosthesis having textured bearing surfaces
US6110179A (en) * 1998-03-02 2000-08-29 Benoist Girard Sas Prosthesis inserter
US6136029A (en) * 1997-10-01 2000-10-24 Phillips-Origen Ceramic Technology, Llc Bone substitute materials
US6136031A (en) * 1998-06-17 2000-10-24 Surgical Dynamics, Inc. Artificial intervertebral disc
US6139574A (en) * 1993-10-18 2000-10-31 Children's Medical Center Corporation Vascularized tissue regeneration matrices formed by solid free form fabrication techniques
US6143035A (en) * 1999-01-28 2000-11-07 Depuy Orthopaedics, Inc. Implanted bone stimulator and prosthesis system and method of enhancing bone growth
US6159247A (en) * 1996-11-06 2000-12-12 Ascension Orthopedics, Inc. Metacarpal-phalangeal joint replacement
US6238435B1 (en) * 2000-03-10 2001-05-29 Bristol-Myers Squibb Co Assembly tool for prosthetic implant
US6283997B1 (en) * 1998-11-13 2001-09-04 The Trustees Of Princeton University Controlled architecture ceramic composites by stereolithography
US6290726B1 (en) * 2000-01-30 2001-09-18 Diamicron, Inc. Prosthetic hip joint having sintered polycrystalline diamond compact articulation surfaces
US6306424B1 (en) * 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
US20010039455A1 (en) * 2000-03-14 2001-11-08 Timothy Simon Cartilage repair plug
US20010038848A1 (en) * 2000-02-18 2001-11-08 Donda Russell S. Implantable tissues infused with growth factors and other additives
US6322564B1 (en) * 1998-06-18 2001-11-27 Depuy Orthopaedics, Inc. Proximal alignment insertion guide and method therefor
US6328765B1 (en) * 1998-12-03 2001-12-11 Gore Enterprise Holdings, Inc. Methods and articles for regenerating living tissue
US6333029B1 (en) * 1999-06-30 2001-12-25 Ethicon, Inc. Porous tissue scaffoldings for the repair of regeneration of tissue
US6337198B1 (en) * 1999-04-16 2002-01-08 Rutgers, The State University Porous polymer scaffolds for tissue engineering
US20020022884A1 (en) * 2000-03-27 2002-02-21 Mansmann Kevin A. Meniscus-type implant with hydrogel surface reinforced by three-dimensional mesh
US20020029083A1 (en) * 1999-09-13 2002-03-07 Zucherman James F. Implantable prosthetic or tissue expanding device
US20020035400A1 (en) * 2000-08-08 2002-03-21 Vincent Bryan Implantable joint prosthesis
US6379391B1 (en) * 1999-09-15 2002-04-30 Medidea, Llc Method and apparatus for positioning a prosthetic element relative to a bone to achieve a desired orientation
US20020062154A1 (en) * 2000-09-22 2002-05-23 Ayers Reed A. Non-uniform porosity tissue implant
US20040180072A1 (en) * 2003-03-12 2004-09-16 Howmedica Osteonics Corp. Prosthesis with sustained release analgesic
US20050021084A1 (en) * 2003-05-19 2005-01-27 Lu William Weijia Bone treatment device and method

Family Cites Families (290)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274163A (en) * 1979-07-16 1981-06-23 The Regents Of The University Of California Prosthetic fixation technique
US4892550A (en) * 1985-12-30 1990-01-09 Huebsch Donald L Endoprosthesis device and method
JP2587625B2 (en) 1986-12-27 1997-03-05 京セラ株式会社 Hip prosthesis
DE3912465C1 (en) * 1989-04-15 1990-11-08 Orthoplant Endoprothetik Gmbh, 2800 Bremen, De
US5635482A (en) 1989-08-14 1997-06-03 The Regents Of The University Of California Synthetic compounds and compositions with enhanced cell binding
CH680564A5 (en) * 1989-12-07 1992-09-30 Experimentelle Chirurgie Schwe
US5133772B1 (en) * 1990-01-17 1997-08-05 Osteonics Corp Femoral implant for hip arthroplasty
US5868711A (en) * 1991-04-29 1999-02-09 Board Of Regents, The University Of Texas System Implantable intraosseous device for rapid vascular access
US5340362A (en) * 1991-10-16 1994-08-23 Carbone John J Method and apparatus for cementing intramedullary bone prosthesis
US5290291A (en) * 1992-03-16 1994-03-01 Hall Surgical, Division Of Zimmer, Inc. Method for implant removal
DE4211345C1 (en) 1992-04-04 1993-11-04 S & G Implants Gmbh Two-shell acetabulum for hip joint prosthesis - has outer shell of metal with an external, open-cell or open-pore surface structure,and inner cell of plastics
DE69328047T2 (en) 1992-04-17 2000-07-13 Kyocera Corp Prosthesis and process for its manufacture
US6989033B1 (en) 1992-09-17 2006-01-24 Karlheinz Schmidt Implant for recreating verterbrae and tubular bones
FR2697155B1 (en) 1992-10-23 1994-12-23 Gaffuri Jean Gilles Total metatarsophalangeal surfacing prosthesis.
US5702446A (en) * 1992-11-09 1997-12-30 Board Of Regents, The University Of Texas System Bone prosthesis
DE4310592A1 (en) 1993-03-31 1994-10-06 Dieter Prof Dr Med Wessinghage Artificial acetabular cup
EP1498079A1 (en) * 1994-01-26 2005-01-19 Kyphon Inc. Improved device for use in surgical protocol relating to fixation of bone
DE4423020A1 (en) 1994-06-30 1996-01-04 Wolfgang Dr Fitz Joint prosthesis giving min. wear and resistance and abrasion
US6676704B1 (en) 1994-08-12 2004-01-13 Diamicron, Inc. Prosthetic joint component having at least one sintered polycrystalline diamond compact articulation surface and substrate surface topographical features in said polycrystalline diamond compact
US6398815B1 (en) 2000-01-30 2002-06-04 Diamicron, Inc. Prosthetic joint having at least one superhard articulation surface
ES2287636T3 (en) 1995-03-27 2007-12-16 Warsaw Orthopedic, Inc. IMPLANT FOR VERTEBRAL FUSION.
US5782919A (en) 1995-03-27 1998-07-21 Sdgi Holdings, Inc. Interbody fusion device and method for restoration of normal spinal anatomy
US20020143402A1 (en) 1995-09-04 2002-10-03 Limber Ltd. Hip joint prostheses
US6132674A (en) 1995-10-12 2000-10-17 Bristol-Myers Squibb Company Method of making an orthopaedic implant having a porous surface
US6423095B1 (en) 1995-10-16 2002-07-23 Sdgi Holdings, Inc. Intervertebral spacers
EP0827726A3 (en) 1996-09-04 1999-03-03 Implantech Medizintechnik Ges.m.b.H. Implant, especially prosthetic joint implant
US7618451B2 (en) 2001-05-25 2009-11-17 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty
US6240616B1 (en) 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US6471993B1 (en) 1997-08-01 2002-10-29 Massachusetts Institute Of Technology Three-dimensional polymer matrices
ATE220564T1 (en) 1997-08-14 2002-08-15 Sulzer Innotec Ag COMPOSITION AND DEVICE FOR REPAIRING CARTILAGE TISSUE IN VIVO CONSISTING OF NANOCAPSULES WITH OSTEOINDUCTIVE AND/OR CHONDROINDUCTIVE FACTORS
US6440734B1 (en) 1998-09-25 2002-08-27 Cytomatrix, Llc Methods and devices for the long-term culture of hematopoietic progenitor cells
US6296667B1 (en) 1997-10-01 2001-10-02 Phillips-Origen Ceramic Technology, Llc Bone substitutes
EP1019117B2 (en) 1997-10-02 2015-03-18 Micromed Technology, Inc. Controller module for implantable pump system
DE19750121C1 (en) 1997-11-13 1999-04-08 Eska Implants Gmbh & Co Sliding surfaces for an artificial joint
US6214049B1 (en) 1999-01-14 2001-04-10 Comfort Biomedical, Inc. Method and apparatus for augmentating osteointegration of prosthetic implant devices
US7323013B2 (en) 1998-04-14 2008-01-29 Encore Medical Asset Corporation Differential porosity prosthetic hip system
SE9801405D0 (en) 1998-04-22 1998-04-22 Pacesetter Ab Implant
DE69900984T2 (en) 1998-04-22 2002-10-31 St Jude Medical BIOCOMPATIBLE MATERIAL FOR IMPLANTS
US6296664B1 (en) 1998-06-17 2001-10-02 Surgical Dynamics, Inc. Artificial intervertebral disc
US6395011B1 (en) 1998-07-17 2002-05-28 Johnson & Johnson Method and apparatus for harvesting and implanting bone plugs
US6547824B1 (en) 1998-08-25 2003-04-15 Peter E. Price Extended life prosthetic joints through thermal management
US20030114936A1 (en) 1998-10-12 2003-06-19 Therics, Inc. Complex three-dimensional composite scaffold resistant to delimination
US6454811B1 (en) 1998-10-12 2002-09-24 Massachusetts Institute Of Technology Composites for tissue regeneration and methods of manufacture thereof
US6409764B1 (en) 1998-12-03 2002-06-25 Charles F. White Methods and articles for regenerating bone or peridontal tissue
DE19904436A1 (en) 1999-02-04 2000-08-10 Ceramtec Ag Hip joint socket with coupling element between socket housing and socket insert
US6656489B1 (en) 1999-02-10 2003-12-02 Isotis N.V. Scaffold for tissue engineering cartilage having outer surface layers of copolymer and ceramic material
AU2777399A (en) * 1999-02-19 2000-09-04 James B. Grimes Bone prosthesis and method of implantation
EP1038538A1 (en) 1999-03-19 2000-09-27 IsoTis B.V. Muscle tissue engineering
US6541022B1 (en) 1999-03-19 2003-04-01 The Regents Of The University Of Michigan Mineral and cellular patterning on biomaterial surfaces
US20030206928A1 (en) 1999-04-07 2003-11-06 Pertti Tormala Bioactive, bioabsorbable surgical polyethylene glycol and polybutylene terephtalate copolymer composites and devices
US6635049B1 (en) 1999-04-30 2003-10-21 Medtronic, Inc. Drug bolus delivery system
US7371400B2 (en) 2001-01-02 2008-05-13 The General Hospital Corporation Multilayer device for tissue engineering
JP2003500112A (en) 1999-05-20 2003-01-07 ボストン・ユニバーシティ Anatomically accurate polymer-reinforced bioactive prosthesis
US6419704B1 (en) 1999-10-08 2002-07-16 Bret Ferree Artificial intervertebral disc replacement methods and apparatus
US6554857B1 (en) 1999-07-20 2003-04-29 Medtronic, Inc Transmural concentric multilayer ingrowth matrix within well-defined porosity
WO2001008717A1 (en) * 1999-08-03 2001-02-08 Smith & Nephew, Inc. Controlled release implantable devices
US6458162B1 (en) 1999-08-13 2002-10-01 Vita Special Purpose Corporation Composite shaped bodies and methods for their production and use
US6471689B1 (en) 1999-08-16 2002-10-29 Thomas Jefferson University Implantable drug delivery catheter system with capillary interface
MXPA03003600A (en) 1999-08-18 2004-12-02 Intrinsic Orthopedics Inc Devices and method for nucleus pulposus augmentation and retention.
CA2378755A1 (en) 1999-08-30 2001-03-08 I.D.M. Immuno-Designed Molecules New humanized biomaterials, a process for their preparation and their applications
US6264695B1 (en) 1999-09-30 2001-07-24 Replication Medical, Inc. Spinal nucleus implant
US7090668B1 (en) * 1999-10-29 2006-08-15 Cytori Therapeutics, Inc. Time-released substance delivery device
WO2001035928A1 (en) * 1999-11-17 2001-05-25 Microchips, Inc. Microfabricated devices for the delivery of molecules into a carrier fluid
US6709463B1 (en) 2000-01-30 2004-03-23 Diamicron, Inc. Prosthetic joint component having at least one solid polycrystalline diamond component
US20040199260A1 (en) 2000-01-30 2004-10-07 Pope Bill J. Prosthetic joint component having at least one sintered polycrystalline diamond compact articulation surface and substrate surface topographical features in said polycrystalline diamond compact
WO2001078798A1 (en) 2000-02-10 2001-10-25 Regeneration Technologies, Inc. Assembled implant
ATE390100T1 (en) 2000-02-22 2008-04-15 Warsaw Orthopedic Inc SPINAL IMPLANT AND INTRODUCTION DEVICE
US6551290B1 (en) 2000-03-31 2003-04-22 Medtronic, Inc. Catheter for target specific drug delivery
US6565572B2 (en) 2000-04-10 2003-05-20 Sdgi Holdings, Inc. Fenestrated surgical screw and method
US6482234B1 (en) 2000-04-26 2002-11-19 Pearl Technology Holdings, Llc Prosthetic spinal disc
US7082333B1 (en) 2000-04-27 2006-07-25 Medtronic, Inc. Patient directed therapy management
US6423252B1 (en) 2000-06-23 2002-07-23 Ethicon, Inc. Methods of making micropatterned foams
US7018416B2 (en) 2000-07-06 2006-03-28 Zimmer Spine, Inc. Bone implants and methods
GB0017148D0 (en) 2000-07-12 2000-08-30 Isis Innovation An improved bone-implant prosthesis
US7094371B2 (en) 2000-08-04 2006-08-22 Orthogem Limited Porous synthetic bone graft and method of manufacture thereof
AU2001281166B2 (en) 2000-08-08 2006-07-20 Warsaw Orthopedic, Inc. Implantable joint prosthesis
US6913623B1 (en) 2000-08-15 2005-07-05 Centerpulse Orthopedics, Inc. Two piecefused femoral hip stem
GB0020610D0 (en) 2000-08-21 2000-10-11 Dytech Corp Ltd Uses of porous carriers
DE60139262D1 (en) 2000-08-28 2009-08-27 Disc Dynamics Inc SYSTEM FOR RECONSTRUCTING JOINT SURFACES OF MAMMALS
US6620196B1 (en) 2000-08-30 2003-09-16 Sdgi Holdings, Inc. Intervertebral disc nucleus implants and methods
CA2549687A1 (en) 2000-08-30 2002-03-07 Sdgi Holdings, Inc. Intervertebral disc nucleus implants and methods
US6475137B1 (en) * 2000-10-13 2002-11-05 James Elist Subcutaneous penile implant
DE10051438B4 (en) 2000-10-17 2006-11-09 Tutech Innovation Gmbh Tibial component of a knee endoprosthesis with a three-dimensional fiber-reinforced structure and method of manufacture
AU2002243270B2 (en) 2000-10-25 2006-03-09 Warsaw Orthopedic, Inc. Vertically expanding intervertebral body fusion device
WO2002036049A2 (en) 2000-11-03 2002-05-10 Osteotech, Inc. Spinal intervertebral implant and method of making
US6692528B2 (en) 2000-11-09 2004-02-17 The Polymer Technology Group Incorporated Devices that change size/shape via osmotic pressure
US20020169507A1 (en) 2000-12-14 2002-11-14 David Malone Interbody spine fusion cage
US6520993B2 (en) 2000-12-29 2003-02-18 Depuy Acromed, Inc. Spinal implant
US6645251B2 (en) 2001-01-22 2003-11-11 Smith & Nephew, Inc. Surfaces and processes for wear reducing in orthopaedic implants
US7018418B2 (en) 2001-01-25 2006-03-28 Tecomet, Inc. Textured surface having undercut micro recesses in a surface
US6599322B1 (en) 2001-01-25 2003-07-29 Tecomet, Inc. Method for producing undercut micro recesses in a surface, a surgical implant made thereby, and method for fixing an implant to bone
GB0102171D0 (en) 2001-01-27 2001-03-14 Krumme John A drug delivery service
US6562073B2 (en) 2001-02-06 2003-05-13 Sdgi Holding, Inc. Spinal bone implant
US6547828B2 (en) 2001-02-23 2003-04-15 Smith & Nephew, Inc. Cross-linked ultra-high molecular weight polyethylene for medical implant use
US6852272B2 (en) 2001-03-07 2005-02-08 Advanced Ceramics Research, Inc. Method for preparation of metallic and ceramic foam products and products made
US6749636B2 (en) 2001-04-02 2004-06-15 Gary K. Michelson Contoured spinal fusion implants made of bone or a bone composite material
US6890355B2 (en) 2001-04-02 2005-05-10 Gary K. Michelson Artificial contoured spinal fusion implants made of a material other than bone
EP1247537A1 (en) 2001-04-04 2002-10-09 Isotis B.V. Coating for medical devices
DE10120330A1 (en) 2001-04-26 2002-11-21 Ulrich Muender Casting model, for a joint prosthesis implant, uses a lost mold method to give the casting a macro-pore surface structure with interconnecting zones for the bone to fuse to it without bonding cement
JP2002325781A (en) 2001-04-27 2002-11-12 Kobe Steel Ltd Artificial joint implant member
US20050177238A1 (en) 2001-05-01 2005-08-11 Khandkar Ashok C. Radiolucent bone graft
CN1294885C (en) 2001-06-05 2007-01-17 江苏阳生生物工程有限公司 Biotechnological body bone tissue rack and its making process and use
WO2003000857A2 (en) 2001-06-22 2003-01-03 The Regents Of The University Of Michigan Design methodology for tissue engineering scaffolds and biomaterial implants
US7087200B2 (en) 2001-06-22 2006-08-08 The Regents Of The University Of Michigan Controlled local/global and micro/macro-porous 3D plastic, polymer and ceramic/cement composite scaffold fabrication and applications thereof
US20030003127A1 (en) 2001-06-27 2003-01-02 Ethicon, Inc. Porous ceramic/porous polymer layered scaffolds for the repair and regeneration of tissue
US6626950B2 (en) 2001-06-28 2003-09-30 Ethicon, Inc. Composite scaffold with post anchor for the repair and regeneration of tissue
JP3646162B2 (en) 2001-07-04 2005-05-11 独立行政法人産業技術総合研究所 Transplant for cartilage tissue regeneration
US6702857B2 (en) 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US6494916B1 (en) 2001-07-30 2002-12-17 Biomed Solutions, Llc Apparatus for replacing musculo-skeletal parts
US7056338B2 (en) 2003-03-28 2006-06-06 Conor Medsystems, Inc. Therapeutic agent delivery device with controlled therapeutic agent release rates
US7108828B2 (en) 2001-08-27 2006-09-19 National Research Council Of Canada Method of making open cell material
US20030047253A1 (en) 2001-08-28 2003-03-13 Robinson Mark L. Method of producing textured surfaces on medical implants
US6682567B1 (en) 2001-09-19 2004-01-27 Biomet, Inc. Method and apparatus for providing a shell component incorporating a porous ingrowth material and liner
JP4691322B2 (en) 2001-09-24 2011-06-01 ワルソー・オーソペディック,インコーポレイテッド Porous ceramic composite bone graft
US6692529B2 (en) * 2001-09-27 2004-02-17 Mrugesh K. Shah Hip replacement system having fat lubricant
US6916321B2 (en) 2001-09-28 2005-07-12 Ethicon, Inc. Self-tapping resorbable two-piece bone screw
WO2003028660A2 (en) 2001-10-04 2003-04-10 Case Western Reserve University Drug delivery devices and methods
JP4403268B2 (en) 2001-10-21 2010-01-27 独立行政法人産業技術総合研究所 Method for producing calcium phosphate porous sintered body and method for producing artificial bone using the same
US6686437B2 (en) 2001-10-23 2004-02-03 M.M.A. Tech Ltd. Medical implants made of wear-resistant, high-performance polyimides, process of making same and medical use of same
GB2381753B (en) 2001-11-07 2005-04-06 Michael Thomas Clarke Improvements to joint prostheses
JP2003153924A (en) * 2001-11-21 2003-05-27 Tomihisa Koshino Stem of perforated prosthetic hip joint
DE10157315C1 (en) 2001-11-23 2003-08-14 Alcove Surfaces Gmbh Hip replacement joint comprises ball and socket, surface of ball being etched to roughen it by forming microstructure of grooves
DE50205771D1 (en) 2001-11-23 2006-04-13 Univ Duisburg Essen implant
US6712850B2 (en) 2001-11-30 2004-03-30 Ethicon, Inc. Porous tissue scaffolds for the repair and regeneration of dermal tissue
US6979353B2 (en) 2001-12-03 2005-12-27 Howmedica Osteonics Corp. Apparatus for fusing adjacent bone structures
US7238203B2 (en) 2001-12-12 2007-07-03 Vita Special Purpose Corporation Bioactive spinal implants and method of manufacture thereof
US6660040B2 (en) 2001-12-19 2003-12-09 Depuy Orthopaedics, Inc. Prosthetic joints having reduced area bearing surfaces and application thereof to a range of sizes of prosthetic joints
US6736850B2 (en) 2001-12-28 2004-05-18 Spinal Concepts, Inc. Vertebral pseudo arthrosis device and method
US20060129242A1 (en) 2001-12-28 2006-06-15 Brian Bergeron Pseudo arthrosis device
US6770093B2 (en) * 2002-01-23 2004-08-03 Ophtec B.V. Fixation of an intraocular implant to the iris
US20030171738A1 (en) * 2002-03-06 2003-09-11 Konieczynski David D. Convection-enhanced drug delivery device and method of use
US6979336B2 (en) * 2002-03-26 2005-12-27 Depuy Orthopaedics, Inc. System and method for delivering biological materials to a prosthesis implantation site
DE10215996B4 (en) 2002-04-11 2005-07-21 Gundolf, Ferdinand, Dr.med. Device for promoting bone growth, in particular for osteosynthesis of bone fragments and / or fixation of bone fractures
US7514249B2 (en) 2002-04-18 2009-04-07 The University Of Florida Research Foundation, Inc. Biomimetic organic/inorganic composites
GB2389791B (en) * 2002-04-30 2006-12-13 Steven Gill Implantable drug delivery pump
US20050222688A1 (en) 2002-05-10 2005-10-06 Medtronic, Inc. Transmural concentric multilayer ingrowth matrix within well-defined porosity
AU2003228083A1 (en) 2002-05-23 2003-12-12 Discure, Ltd. Joint and dental implants
GB0212667D0 (en) 2002-05-31 2002-07-10 Psimedica Ltd Orthopaedic scaffolds for tissue engineering
WO2004000174A1 (en) 2002-06-21 2003-12-31 Medical Carbon Research Institute Bone and tissue implants and method of making
US20060100716A1 (en) 2002-06-27 2006-05-11 Reto Lerf Open-pored metal coating for joint replacement implants and method for production thereof
US20040073197A1 (en) 2002-07-09 2004-04-15 Kim Philip S. Selective peripheral nerve plexus implantable infusion device and method
WO2004016217A2 (en) 2002-08-15 2004-02-26 David Gerber Controlled artificial intervertebral disc implant
US6958078B2 (en) 2002-08-19 2005-10-25 The University Of Toledo Bioartificial intervertebral disc
GB0220514D0 (en) 2002-09-04 2002-10-09 Depuy Int Ltd Acetabular cup spacer arrangement
US6969383B2 (en) 2002-09-27 2005-11-29 Medtronic, Inc. Method for treating severe tinnitus
US20040063206A1 (en) 2002-09-30 2004-04-01 Rowley Jon A. Programmable scaffold and method for making and using the same
DE60300277T2 (en) 2002-11-08 2006-01-12 Howmedica Osteonics Corp. Laser generated porous surface
AT507045B1 (en) * 2002-11-29 2010-04-15 Cochlear Ltd IMPLANTABLE, TISSUE-STIMULATING DEVICE
US20040126405A1 (en) 2002-12-30 2004-07-01 Scimed Life Systems, Inc. Engineered scaffolds for promoting growth of cells
US7087086B2 (en) 2003-01-31 2006-08-08 Depuy Products, Inc. Biological agent-containing ceramic coating and method
WO2004085998A2 (en) 2003-03-28 2004-10-07 The Children's Hospital Of Philadelphia Biomimetic hierarchies using functionalized nanoparticles as building blocks
US6893465B2 (en) 2003-03-31 2005-05-17 Shi, Tain-Yew Vividly simulated prosthetic intervertebral disc
DE10318374B3 (en) 2003-04-14 2005-01-13 Eska Implants Gmbh & Co. joint ball
US7938861B2 (en) 2003-04-15 2011-05-10 Depuy Products, Inc. Implantable orthopaedic device and method for making the same
US7963956B2 (en) * 2003-04-22 2011-06-21 Antisense Pharma Gmbh Portable equipment for administration of fluids into tissues and tumors by convection enhanced delivery technique
US20090005874A1 (en) 2003-04-22 2009-01-01 Fleischmann Lewis W Compressible, rotatable, and tiltable hydraulic spinal disc prosthesis system with selectable modular components
US6993406B1 (en) 2003-04-24 2006-01-31 Sandia Corporation Method for making a bio-compatible scaffold
US7494811B2 (en) 2003-05-01 2009-02-24 Lifenet Health In vitro growth of tissues suitable to the formation of bone and bone forming tissue formed thereby
US7537617B2 (en) 2003-06-05 2009-05-26 Warsaw Orthopedic, Inc. Bone strip implants and method of making same
US7300439B2 (en) 2003-06-24 2007-11-27 Depuy Mitek, Inc. Porous resorbable graft fixation pin
US20040267367A1 (en) 2003-06-30 2004-12-30 Depuy Acromed, Inc Intervertebral implant with conformable endplate
US7575572B2 (en) 2003-07-15 2009-08-18 Spinal Generations, Llc Method and device for delivering medicine to bone
US20050015150A1 (en) * 2003-07-17 2005-01-20 Lee Casey K. Intervertebral disk and nucleus prosthesis
JP2006528515A (en) 2003-07-24 2006-12-21 テコメット・インコーポレーテッド Spongy structure
US7217294B2 (en) 2003-08-20 2007-05-15 Histogenics Corp. Acellular matrix implants for treatment of articular cartilage, bone or osteochondral defects and injuries and method for use thereof
US7250055B1 (en) * 2003-08-26 2007-07-31 Biomet Manufacturing Corp. Method and apparatus for cement delivering buttress pin
US20050055099A1 (en) 2003-09-09 2005-03-10 Ku David N. Flexible spinal disc
US7766914B2 (en) 2003-09-10 2010-08-03 Warsaw Orthopedic, Inc. Adjustable drill guide
US8070785B2 (en) 2003-09-16 2011-12-06 Spineco, Inc. Bone anchor prosthesis and system
JP2007507306A (en) 2003-09-30 2007-03-29 ジンテーズ アクチエンゲゼルシャフト クール Antimicrobial hyaluronic acid coating on orthopedic implants
US7192440B2 (en) 2003-10-15 2007-03-20 Xtent, Inc. Implantable stent delivery devices and methods
US7674477B1 (en) 2003-11-06 2010-03-09 University Of Notre Dame Du Lac Bone and tissue scaffolding for delivery of therapeutic agents
US20050100578A1 (en) 2003-11-06 2005-05-12 Schmid Steven R. Bone and tissue scaffolding and method for producing same
US20050208095A1 (en) * 2003-11-20 2005-09-22 Angiotech International Ag Polymer compositions and methods for their use
US7666230B2 (en) 2003-12-08 2010-02-23 Depuy Products, Inc. Implant device for cartilage regeneration in load bearing articulation regions
EP1706170A4 (en) 2003-12-12 2010-03-24 Philometron Inc Multiple section parenteral drug delivery apparatus
US7255713B2 (en) 2003-12-18 2007-08-14 Malek Michel H Systems and methods for agent delivery
US7137997B2 (en) 2003-12-29 2006-11-21 Globus Medical, Inc. Spinal fusion implant
US20070202145A1 (en) 2003-12-31 2007-08-30 Ragae Ghabrial Method for incorporation of bioactives into a porous hydrophobic polymer scaffold
US7250060B2 (en) 2004-01-27 2007-07-31 Sdgi Holdings, Inc. Hybrid intervertebral disc system
US20050272153A1 (en) 2004-01-27 2005-12-08 Zou Xuenong Bone tissue engineering by ex vivo stem cells ongrowth into three-dimensional trabecular metal
US8025960B2 (en) 2004-02-02 2011-09-27 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
CA2558661C (en) 2004-02-06 2012-09-04 Georgia Tech Research Corporation Load bearing biocompatible device
US8323349B2 (en) 2004-02-17 2012-12-04 The University Of Notre Dame Du Lac Textured surfaces for orthopedic implants
DE102004009429A1 (en) 2004-02-24 2005-09-22 Biedermann Motech Gmbh Bone anchoring element
US20070185585A1 (en) 2004-03-09 2007-08-09 Brat Bracy Implant Scaffold Combined With Autologous Tissue, Allogenic Tissue, Cultured Tissue, or combinations Thereof
US7189409B2 (en) 2004-03-09 2007-03-13 Inion Ltd. Bone grafting material, method and implant
DE102004012411A1 (en) 2004-03-13 2005-09-29 Dot Gmbh Composite materials based on polysilicic acids and process for their preparation
KR101013999B1 (en) 2004-03-19 2011-02-14 재단법인서울대학교산학협력재단 Membrane and implant immobilized osteogenic enhancing peptides on the surface
EP1737378A2 (en) 2004-04-02 2007-01-03 Baylor College of Medicine Novel modification of medical prostheses
US8282625B2 (en) 2004-04-30 2012-10-09 Medtronic, Inc. Implantable medical device with time for therapeutic output replenishment determination and method therefore
US8535379B2 (en) 2006-04-04 2013-09-17 Nathan C. Moskowitz Artificial cervical and lumbar discs, disc plate insertion gun for performing sequential single plate intervertebral implantation enabling symmetric bi-disc plate alignment for interplate mobile core placement
JP2005329179A (en) 2004-05-21 2005-12-02 Osaka Industrial Promotion Organization Medical implant, its manufacturing method, and method and device for forming groove in device
US7892290B2 (en) * 2004-05-28 2011-02-22 Smith & Nephew, Inc. Fluted sleeve hip prosthesis for modular stem
US7766885B2 (en) 2004-06-07 2010-08-03 Medtronic, Inc. Drug delivery system
US7674426B2 (en) 2004-07-02 2010-03-09 Praxis Powder Technology, Inc. Porous metal articles having a predetermined pore character
US20060047341A1 (en) * 2004-08-24 2006-03-02 Trieu Hai H Spinal disc implants with reservoirs for delivery of therapeutic agents
ATE424928T1 (en) 2004-09-01 2009-03-15 Microchips Inc CONTAINER DEVICES WITH MULTIPLE CLOSURES FOR CONTROLLED DISPENSING OR EXPOSURE OF CONTAINERS CONTENTS
US20060064170A1 (en) 2004-09-17 2006-03-23 Smith Jeffrey A Closed system artificial intervertebral disc
CN101060821A (en) 2004-09-21 2007-10-24 麻省理工学院 Gradient scaffolding and methods of producing the same
EP1796603A2 (en) 2004-09-23 2007-06-20 Akiva Raphael Katz Inter-vertebral disc prosthesis
CA2583911A1 (en) * 2004-10-28 2006-05-11 Microchips, Inc. Orthopedic and dental implant devices providing controlled drug delivery
EP1816987A4 (en) 2004-11-09 2011-03-09 Proxy Biomedical Ltd Tissue scaffold
US20060100706A1 (en) * 2004-11-10 2006-05-11 Shadduck John H Stent systems and methods for spine treatment
US7875080B2 (en) 2004-11-10 2011-01-25 Warsaw Orthopedic, Inc. Intervertebral spacer
US8329202B2 (en) 2004-11-12 2012-12-11 Depuy Products, Inc. System and method for attaching soft tissue to an implant
US20060111779A1 (en) 2004-11-22 2006-05-25 Orthopedic Development Corporation, A Florida Corporation Minimally invasive facet joint fusion
US9981063B2 (en) 2004-11-24 2018-05-29 Mayo Foundation For Medical Education And Research Biosynthetic composite for osteochondral defect repair
BRPI0519285B8 (en) 2004-12-24 2021-06-22 Admedus Regen Pty Ltd method for producing a calcification resistant implantable biomaterial, calcification resistant implantable biomaterial, implantable biological device, biocompatible implant, kit to repair a tissue injury, wound dressing
US20060173542A1 (en) 2004-12-28 2006-08-03 Takiron Co., Ltd. Biomaterial for artificial cartilage
CN101137340B (en) 2005-01-19 2010-11-10 耐可真脊柱有限公司 Fixation of elastomer to rigid structures
ES2344569T3 (en) 2005-01-28 2010-08-31 Advanced Medical Technologies Ag IMPLANT FOR TRANSFORAMINAL INTERCORPORAL FUSION.
US8083797B2 (en) 2005-02-04 2011-12-27 Spinalmotion, Inc. Intervertebral prosthetic disc with shock absorption
BRPI0519961A2 (en) 2005-03-24 2009-04-07 Synthes Gmbh bone implant cement reinforcement device and method
US7749269B2 (en) 2005-03-28 2010-07-06 Warsaw Orthopedic, Inc. Spinal system and method including lateral approach
US20060229715A1 (en) 2005-03-29 2006-10-12 Sdgi Holdings, Inc. Implants incorporating nanotubes and methods for producing the same
US20060241593A1 (en) 2005-04-08 2006-10-26 Sdgi Holdings, Inc. Multi-piece vertebral attachment device
US7879103B2 (en) 2005-04-15 2011-02-01 Musculoskeletal Transplant Foundation Vertebral disc repair
US20070041952A1 (en) 2005-04-18 2007-02-22 Duke University Three-dimensional fiber scaffolds for tissue engineering
EP1885263A1 (en) 2005-05-18 2008-02-13 Sonoma Orthopaedic Products, Inc Minimally invasive actuable bone fixation devices, systems and methods of use
US7531190B2 (en) 2005-05-25 2009-05-12 Biomet Manufacturing Corp. Porous ceramic structure containing biologics
US8034030B2 (en) 2005-05-25 2011-10-11 Palyon Medical (Bvi) Limited Multi-reservoir implantable pump with variable flow rate capabilities
US20060276900A1 (en) 2005-06-01 2006-12-07 Carpenter Clyde T Anatomic total disc replacement
US20060282166A1 (en) 2005-06-09 2006-12-14 Sdgi Holdings, Inc. Compliant porous coating
US8092548B2 (en) 2005-06-22 2012-01-10 Warsaw Orthopedic, Inc. Osteograft treatment to promote osteoinduction and osteograft incorporation
US7368065B2 (en) 2005-06-23 2008-05-06 Depuy Products, Inc. Implants with textured surface and methods for producing the same
WO2007001624A2 (en) * 2005-06-28 2007-01-04 Microchips, Inc. Medical and dental implant devices for controlled drug delivery
US20070038299A1 (en) 2005-08-12 2007-02-15 Arthrotek, Inc Multilayer microperforated implant
US20070077267A1 (en) 2005-10-03 2007-04-05 Sdgi Holdings, Inc. Bioactive composite implants
US20070141105A1 (en) 2005-10-07 2007-06-21 Cambrex Bio Science Walkersville, Inc. Engineered Biological Matrices
US8920827B2 (en) 2005-10-21 2014-12-30 Wake Forest University Health Sciences Keratin bioceramic compositions
FR2893248A1 (en) 2005-11-16 2007-05-18 Vincent Pointillart INTERVERTEBRAL DISC PROSTHESIS
US20070116734A1 (en) 2005-11-18 2007-05-24 Akash Akash Porous, load-bearing, ceramic or metal implant
CA2632322C (en) 2005-12-08 2014-04-08 Fbcdevice Aps Disc implant
US20070161986A1 (en) 2005-12-13 2007-07-12 Levy Mark M Polyaxial fastener assembly
US8887913B2 (en) 2005-12-19 2014-11-18 Symmetry Medical Manufacturing, Inc. Grommet matrix
US20070141533A1 (en) 2005-12-20 2007-06-21 Ford Christopher W Polymeric dental implant assembly
US20070150064A1 (en) 2005-12-22 2007-06-28 Depuy Spine, Inc. Methods and devices for intervertebral augmentation
US20070150063A1 (en) 2005-12-22 2007-06-28 Depuy Spine, Inc. Devices for intervertebral augmentation and methods of controlling their delivery
US7578851B2 (en) 2005-12-23 2009-08-25 Howmedica Osteonics Corp. Gradient porous implant
US20070162110A1 (en) 2006-01-06 2007-07-12 Vipul Bhupendra Dave Bioabsorbable drug delivery devices
DE102006001430A1 (en) 2006-01-10 2007-07-12 Siebel, Thomas, Dr. Implant for forming an acetabular cup
US20070168021A1 (en) 2006-01-17 2007-07-19 Holmes David R Jr Porous three dimensional nest scaffolding
WO2007084725A2 (en) 2006-01-19 2007-07-26 Osteotech, Inc. Injectable and moldable bone substitute materials
US20070208420A1 (en) 2006-02-08 2007-09-06 Northwestern University Functionalizing implantable devices with a poly (diol co-citrate) polymer
EP1818024A1 (en) 2006-02-09 2007-08-15 Inion Oy Plastically deformable intervertebral fusion implant
US9327056B2 (en) 2006-02-14 2016-05-03 Washington State University Bone replacement materials
US7850717B2 (en) 2006-03-01 2010-12-14 Warsaw Orthopedic, Inc. Bone anchors having two or more portions exhibiting different performance characteristics and method of forming the same
US7741273B2 (en) * 2006-04-13 2010-06-22 Warsaw Orthopedic, Inc. Drug depot implant designs
US8221354B2 (en) * 2006-04-27 2012-07-17 Medtronic, Inc. Infusion device with positive pressure elastic bladder reservoir
US20070270859A1 (en) 2006-04-28 2007-11-22 Sdgi Holdings, Inc. Orthopedic screw with break away drive
US7658766B2 (en) 2006-05-01 2010-02-09 Warsaw Orthopedic, Inc. Intervertebral implants with covered inner chamber and methods of use
GB0610333D0 (en) 2006-05-24 2006-07-05 Orthogem Ltd Bone repair or augmentation device
US20080015578A1 (en) 2006-07-12 2008-01-17 Dave Erickson Orthopedic implants comprising bioabsorbable metal
US20080065218A1 (en) 2006-09-13 2008-03-13 O'neil Michael J Annulus fibrosus repair devices and techniques
WO2008039428A2 (en) 2006-09-22 2008-04-03 Alphatec Spine, Inc. Spinal spacer
US7632338B2 (en) 2006-10-05 2009-12-15 United Technologies Corporation Electrochemical oxygen pump for fuel stabilization unit
EP1925272B1 (en) 2006-11-23 2010-01-13 BIEDERMANN MOTECH GmbH Expandable intervertebral implant
WO2008069760A1 (en) 2006-12-05 2008-06-12 Nanyang Technological University Three-dimensional porous hybrid scaffold and manufacture thereof
USD580551S1 (en) 2007-02-01 2008-11-11 Zimmer Spine, Inc. Spinal implant
USD566842S1 (en) 2007-02-19 2008-04-15 Zimmer Spine, Inc. Spinal implant
US8623090B2 (en) 2007-04-18 2014-01-07 Life Spine, Inc. Spinal disc prostheses
US20100076559A1 (en) 2007-05-04 2010-03-25 Titan Spine, Llc Composite telescoping anterior interbody spinal implant
US20080288074A1 (en) 2007-05-15 2008-11-20 O'neil Michael J Internally reinforced elastomeric intervertebral disc implants
US8298287B2 (en) 2007-06-26 2012-10-30 Depuy Spine, Inc. Intervertebral motion disc with helical shock absorber
US9744043B2 (en) 2007-07-16 2017-08-29 Lifenet Health Crafting of cartilage
WO2009015238A1 (en) * 2007-07-23 2009-01-29 Kamshad Raiszadeh Drug delivery device and method
CA2696386C (en) 2007-08-29 2012-12-18 Vito Nv Method for producing a three-dimensional macroporous filament construct based on phase inversion and construct thereby obtained
US7842095B2 (en) * 2007-09-11 2010-11-30 Howmedica Osteonics Corp. Antibiotic bone cement spacer
EP2266643B1 (en) * 2008-01-03 2015-06-17 University Of Southern California Implantable drug-delivery devices, and apparatus and methods for refilling the devices
US20090222098A1 (en) 2008-02-28 2009-09-03 Warsaw Orthopedics, Inc. Spinal nucleus replacement with varying modulus
US20090248162A1 (en) 2008-03-25 2009-10-01 Warsaw Orthopedic, Inc. Microparticle delivery syringe and needle for placing suspensions and removing vehicle fluid
EP2273952B1 (en) 2008-04-02 2018-02-21 Pioneer Surgical Technology, Inc. Intervertebral implant devices for supporting vertebrae and devices for insertion thereof
US20090270988A1 (en) 2008-04-24 2009-10-29 Ranier Limited Artificial spinal disc implant
US20090281625A1 (en) 2008-05-06 2009-11-12 Rhausler, Inc. Expandable intervertebral implant
US20090292363A1 (en) 2008-05-23 2009-11-26 Vanderbilt University Intervertebral prosthesis
US20090326657A1 (en) 2008-06-25 2009-12-31 Alexander Grinberg Pliable Artificial Disc Endplate
US8231387B2 (en) 2008-07-02 2012-07-31 Zimmer, Inc. Porous implant with non-porous threads
US8172902B2 (en) 2008-07-17 2012-05-08 Spinemedica, Llc Spinal interbody spacers
US8475505B2 (en) * 2008-08-13 2013-07-02 Smed-Ta/Td, Llc Orthopaedic screws
US20100042213A1 (en) * 2008-08-13 2010-02-18 Nebosky Paul S Drug delivery implants
US20100042226A1 (en) 2008-08-13 2010-02-18 Nebosky Paul S Orthopaedic implant with spatially varying porosity
EP2326281A4 (en) 2008-08-13 2013-05-29 Smed Ta Td Llc Orthopaedic implant with porous structural member
US9616205B2 (en) * 2008-08-13 2017-04-11 Smed-Ta/Td, Llc Drug delivery implants
EP2341852B1 (en) * 2008-08-29 2018-08-15 SMed-TA/TD, LLC Orthopaedic implant
US8454706B2 (en) * 2009-02-25 2013-06-04 Brian C. de Beaubien Antibiotic delivery system and method for treating an infected synovial joint during re-implantation of an orthopedic prosthesis
EP2338530B1 (en) 2009-12-22 2015-04-22 Arthrex, Inc. Hybrid polymer/metal plug for treating chondral defects
US8500819B2 (en) * 2010-03-05 2013-08-06 Biomet Manufacturing, Llc Drug delivery and diagnostic system for orthopedic implants
JP6007388B2 (en) 2012-10-01 2016-10-12 大成建設株式会社 Fluid force reducing structure and method of constructing fluid force reducing structure
US20150238691A1 (en) * 2014-02-25 2015-08-27 Elwha Llc Control systems for release of medication responsive to joint activity

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3662405A (en) * 1969-03-12 1972-05-16 Iit Res Inst Reinforced porous ceramic bone prosthesis
US3855638A (en) * 1970-06-04 1974-12-24 Ontario Research Foundation Surgical prosthetic device with porous metal coating
US3683421A (en) * 1970-07-13 1972-08-15 Skf Ind Inc Prosthetic joint assembly
US3867728A (en) * 1971-12-30 1975-02-25 Cutter Lab Prosthesis for spinal repair
US4450150A (en) * 1973-05-17 1984-05-22 Arthur D. Little, Inc. Biodegradable, implantable drug delivery depots, and method for preparing and using the same
US4060081A (en) * 1975-07-15 1977-11-29 Massachusetts Institute Of Technology Multilayer membrane useful as synthetic skin
US4011602A (en) * 1975-10-06 1977-03-15 Battelle Memorial Institute Porous expandable device for attachment to bone tissue
US4222128A (en) * 1977-05-20 1980-09-16 Kureha Kagaku Kogyo Kabushiki Kaisha Composite implant materials and process for preparing same
US4156943A (en) * 1977-08-24 1979-06-05 Collier John P High-strength porous prosthetic device and process for making the same
US4453537A (en) * 1981-08-04 1984-06-12 Spitzer Daniel E Apparatus for powering a body implant device
US4520821A (en) * 1982-04-30 1985-06-04 The Regents Of The University Of California Growing of long-term biological tissue correction structures in vivo
US4485097A (en) * 1982-05-26 1984-11-27 Massachusetts Institute Of Technology Bone-equivalent and method for preparation thereof
US4609551A (en) * 1984-03-20 1986-09-02 Arnold Caplan Process of and material for stimulating growth of cartilage and bony tissue at anatomical sites
US4608052A (en) * 1984-04-25 1986-08-26 Minnesota Mining And Manufacturing Company Implant with attachment surface
US4620327A (en) * 1984-07-05 1986-11-04 Caplan Arnold I Process of adapting soluble bone protein for use in stimulating osteoinduction
US5030233A (en) * 1984-10-17 1991-07-09 Paul Ducheyne Porous flexible metal fiber material for surgical implantation
US4976738A (en) * 1985-01-09 1990-12-11 Sulzer Brothers Limited Porous metal overlay for an implant surface
US4769041A (en) * 1985-07-15 1988-09-06 Sulzer Brothers Limited Hip joint socket
US4660755A (en) * 1985-09-09 1987-04-28 Zimmer, Inc. Method for constructing a surgical implant
US4644627A (en) * 1985-09-12 1987-02-24 Palazzo David T Method of making double wall storage tank for liquids
US4846834A (en) * 1986-05-27 1989-07-11 Clemson University Method for promoting tissue adhesion to soft tissue implants
US5084051A (en) * 1986-11-03 1992-01-28 Toermaelae Pertti Layered surgical biocomposite material
US4737411A (en) * 1986-11-25 1988-04-12 University Of Dayton Controlled pore size ceramics particularly for orthopaedic and dental applications
US4936859A (en) * 1988-01-14 1990-06-26 Sulzer Brothers Limited Reinforcement for anchoring a prosthesis stem
US5219363A (en) * 1988-03-22 1993-06-15 Zimmer, Inc. Bone implant
US5092898A (en) * 1988-05-31 1992-03-03 Ngk Spark Plug Co., Ltd. Artificial joint
US4858603A (en) * 1988-06-06 1989-08-22 Johnson & Johnson Orthopaedics, Inc. Bone pin
US5776199A (en) * 1988-06-28 1998-07-07 Sofamor Danek Properties Artificial spinal fusion implants
US5876550A (en) * 1988-10-05 1999-03-02 Helisys, Inc. Laminated object manufacturing apparatus and method
US5637175A (en) * 1988-10-05 1997-06-10 Helisys Corporation Apparatus for forming an integral object from laminations
US5328765A (en) * 1989-04-28 1994-07-12 Hoechst Celanese Corporation Organic polymers having a modified surface and process therefor
US5041107A (en) * 1989-10-06 1991-08-20 Cardiac Pacemakers, Inc. Electrically controllable, non-occluding, body implantable drug delivery system
US5204055A (en) * 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
US5100392A (en) * 1989-12-08 1992-03-31 Biosynthesis, Inc. Implantable device for administration of drugs or other liquid solutions
US5190550A (en) * 1990-08-02 1993-03-02 Exactech, Inc. Locking surgical tool handle system
US5750103A (en) * 1990-10-19 1998-05-12 The New York University Medical Center Method for transplanting cells into the brain and therapeutic uses therefor
US5104410A (en) * 1990-10-22 1992-04-14 Intermedics Orthopedics, Inc Surgical implant having multiple layers of sintered porous coating and method
US5226914A (en) * 1990-11-16 1993-07-13 Caplan Arnold I Method for treating connective tissue disorders
US5197985A (en) * 1990-11-16 1993-03-30 Caplan Arnold I Method for enhancing the implantation and differentiation of marrow-derived mesenchymal cells
US5593443A (en) * 1991-03-13 1997-01-14 Nph Ltd. Prosthetic anal sphincter
US5458643A (en) * 1991-03-29 1995-10-17 Kyocera Corporation Artificial intervertebral disc
US5800828A (en) * 1991-04-25 1998-09-01 Brown University Research Foundation Implantable biocompatible immunoisolatory vehicle for delivery of selected therapeutic products
US5769897A (en) * 1991-12-13 1998-06-23 Haerle; Anton Synthetic bone
US5571187A (en) * 1992-02-27 1996-11-05 Zimmer, Inc. Implant having a metallic porous surface
US5370690A (en) * 1992-02-28 1994-12-06 Mayo Foundation For Medical Education And Research Artificial bladder
US5282861A (en) * 1992-03-11 1994-02-01 Ultramet Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
US5496372A (en) * 1992-04-17 1996-03-05 Kyocera Corporation Hard tissue prosthesis including porous thin metal sheets
US5732469A (en) * 1992-04-17 1998-03-31 Kyocera Corporation Prosthesis and a method of making the same
US5306309A (en) * 1992-05-04 1994-04-26 Calcitek, Inc. Spinal disk implant and implantation kit
US5281210A (en) * 1992-09-18 1994-01-25 Infusaid, Inc. Accumulator for implantable pump
US5537851A (en) * 1993-01-05 1996-07-23 Aluminum Company Of America Sheet product produced by massive reduction in last stand of cold rolling process
US5443471A (en) * 1993-02-16 1995-08-22 Howmedica, Inc. Quick release handle assembly
US5534028A (en) * 1993-04-20 1996-07-09 Howmedica, Inc. Hydrogel intervertebral disc nucleus with diminished lateral bulging
US5462362A (en) * 1993-04-30 1995-10-31 Nsk Ltd. Wear resisting slide member
US5380328A (en) * 1993-08-09 1995-01-10 Timesh, Inc. Composite perforated implant structures
US5514182A (en) * 1993-08-17 1996-05-07 University Of Utah Prosthetic joint with semipermeable capsule with reinforcing ribs
US5549700A (en) * 1993-09-07 1996-08-27 Ortho Development Corporation Segmented prosthetic articulation
US5869170A (en) * 1993-10-18 1999-02-09 Massachusetts Institute Of Technology Preparation of medical devices by solid free-form fabrication methods
US5490962A (en) * 1993-10-18 1996-02-13 Massachusetts Institute Of Technology Preparation of medical devices by solid free-form fabrication methods
US6176874B1 (en) * 1993-10-18 2001-01-23 Masschusetts Institute Of Technology Vascularized tissue regeneration matrices formed by solid free form fabrication techniques
US6139574A (en) * 1993-10-18 2000-10-31 Children's Medical Center Corporation Vascularized tissue regeneration matrices formed by solid free form fabrication techniques
US5518680A (en) * 1993-10-18 1996-05-21 Massachusetts Institute Of Technology Tissue regeneration matrices by solid free form fabrication techniques
US5641323A (en) * 1994-02-18 1997-06-24 Johnson & Johnson Professional, Inc. Self-lubricating implantable articulation member
US5531750A (en) * 1994-07-15 1996-07-02 Snap-On Incorporated Surgical tool and adjustable locking handle therefor
US5807406A (en) * 1994-10-07 1998-09-15 Baxter International Inc. Porous microfabricated polymer membrane structures
US6010336A (en) * 1994-12-26 2000-01-04 Kyocera Corporation Living body-supporting member and preparation process thereof
US5702449A (en) * 1995-06-07 1997-12-30 Danek Medical, Inc. Reinforced porous spinal implants
US5871484A (en) * 1995-11-09 1999-02-16 General Orthopedics Apparatus and method for administering a biologically active substance to a bone
US5730817A (en) * 1996-04-22 1998-03-24 Helisys, Inc. Laminated object manufacturing system
US5916269A (en) * 1996-06-03 1999-06-29 Depuy Orthopaedics, Inc. Wear reduced acetabular component
US5989250A (en) * 1996-10-24 1999-11-23 Spinal Concepts, Inc. Method and apparatus for spinal fixation
US6159247A (en) * 1996-11-06 2000-12-12 Ascension Orthopedics, Inc. Metacarpal-phalangeal joint replacement
US5848989A (en) * 1997-06-05 1998-12-15 Davinci Biomedical Research Products, Inc. Implantable port with low profile housing for delivery/collection of fluids and implantation method
US5879406A (en) * 1997-07-15 1999-03-09 Saint-Gobain Industrial Ceramics, Inc. Artificial joint bioprosthesis for mitigation of wear
US5849015A (en) * 1997-09-11 1998-12-15 Bristol-Myers Squibb Company Orthopaedic stem inserter with quick release lever and ratchet
US5971985A (en) * 1997-09-12 1999-10-26 Ace Surgical Supply Co., Inc. Bone attachment device for use with tissue grafts and membranes
US6136029A (en) * 1997-10-01 2000-10-24 Phillips-Origen Ceramic Technology, Llc Bone substitute materials
US6045581A (en) * 1997-12-12 2000-04-04 Sulzer Orthopedics Inc. Implantable prosthesis having textured bearing surfaces
US6110179A (en) * 1998-03-02 2000-08-29 Benoist Girard Sas Prosthesis inserter
US6136031A (en) * 1998-06-17 2000-10-24 Surgical Dynamics, Inc. Artificial intervertebral disc
US6315797B1 (en) * 1998-06-17 2001-11-13 Surgical Dynamics, Inc. Artificial intervertebral disc
US6322564B1 (en) * 1998-06-18 2001-11-27 Depuy Orthopaedics, Inc. Proximal alignment insertion guide and method therefor
US6283997B1 (en) * 1998-11-13 2001-09-04 The Trustees Of Princeton University Controlled architecture ceramic composites by stereolithography
US6328765B1 (en) * 1998-12-03 2001-12-11 Gore Enterprise Holdings, Inc. Methods and articles for regenerating living tissue
US6143035A (en) * 1999-01-28 2000-11-07 Depuy Orthopaedics, Inc. Implanted bone stimulator and prosthesis system and method of enhancing bone growth
US6337198B1 (en) * 1999-04-16 2002-01-08 Rutgers, The State University Porous polymer scaffolds for tissue engineering
US6306424B1 (en) * 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
US6333029B1 (en) * 1999-06-30 2001-12-25 Ethicon, Inc. Porous tissue scaffoldings for the repair of regeneration of tissue
US20020029083A1 (en) * 1999-09-13 2002-03-07 Zucherman James F. Implantable prosthetic or tissue expanding device
US6379391B1 (en) * 1999-09-15 2002-04-30 Medidea, Llc Method and apparatus for positioning a prosthetic element relative to a bone to achieve a desired orientation
US6290726B1 (en) * 2000-01-30 2001-09-18 Diamicron, Inc. Prosthetic hip joint having sintered polycrystalline diamond compact articulation surfaces
US20010038848A1 (en) * 2000-02-18 2001-11-08 Donda Russell S. Implantable tissues infused with growth factors and other additives
US6238435B1 (en) * 2000-03-10 2001-05-29 Bristol-Myers Squibb Co Assembly tool for prosthetic implant
US20010039455A1 (en) * 2000-03-14 2001-11-08 Timothy Simon Cartilage repair plug
US20020022884A1 (en) * 2000-03-27 2002-02-21 Mansmann Kevin A. Meniscus-type implant with hydrogel surface reinforced by three-dimensional mesh
US20020035400A1 (en) * 2000-08-08 2002-03-21 Vincent Bryan Implantable joint prosthesis
US20020062154A1 (en) * 2000-09-22 2002-05-23 Ayers Reed A. Non-uniform porosity tissue implant
US20040180072A1 (en) * 2003-03-12 2004-09-16 Howmedica Osteonics Corp. Prosthesis with sustained release analgesic
US20050021084A1 (en) * 2003-05-19 2005-01-27 Lu William Weijia Bone treatment device and method

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130245602A1 (en) * 2003-07-15 2013-09-19 Spinal Generations, Llc Method and device for delivering medicine to bone
US9949777B2 (en) * 2003-07-15 2018-04-24 Spinal Generations, Llc Method and device for delivering medicine to bone
US20180206898A1 (en) * 2003-07-15 2018-07-26 Spinal Generations, Llc Method and device for delivering medicine to bone
US10188440B2 (en) 2003-07-15 2019-01-29 Spinal Generations, Llc Method and device for delivering medicine to bone
US9445852B2 (en) 2003-07-15 2016-09-20 Spinal Generations, Llc Method and device for delivering medicine to bone
US9358056B2 (en) 2008-08-13 2016-06-07 Smed-Ta/Td, Llc Orthopaedic implant
US11426291B2 (en) 2008-08-13 2022-08-30 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
US9616205B2 (en) 2008-08-13 2017-04-11 Smed-Ta/Td, Llc Drug delivery implants
US8702767B2 (en) 2008-08-13 2014-04-22 Smed-Ta/Td, Llc Orthopaedic Screws
US10349993B2 (en) 2008-08-13 2019-07-16 Smed-Ta/Td, Llc Drug delivery implants
US9561354B2 (en) * 2008-08-13 2017-02-07 Smed-Ta/Td, Llc Drug delivery implants
US10357298B2 (en) 2008-08-13 2019-07-23 Smed-Ta/Td, Llc Drug delivery implants
US8475505B2 (en) 2008-08-13 2013-07-02 Smed-Ta/Td, Llc Orthopaedic screws
US20150038941A1 (en) * 2008-08-13 2015-02-05 Smed-Ta/Td, Llc Drug delivery implants
US10842645B2 (en) 2008-08-13 2020-11-24 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
US9700431B2 (en) 2008-08-13 2017-07-11 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
US8900323B2 (en) * 2009-02-25 2014-12-02 Brian C. de Beaubien Antibiotic delivery system for treating an infected synovial joint during re-implantation of an orthopedic prosthesis
USRE46669E1 (en) * 2009-02-25 2018-01-16 Joint Purification Systems Llc Antibiotic delivery system and method for treating an infected synovial joint during re-implantation of an orthopedic prosthesis
USRE49239E1 (en) * 2009-02-25 2022-10-11 Osteal Therapeutics, Inc. Antibiotic delivery system and method for treating an infected synovial joint during re-implantation of an orthopedic prosthesis
USRE46283E1 (en) * 2009-02-25 2017-01-24 Joint Purification Systems Llc Antibiotic delivery system and method for treating an infected synovial joint during re-implantation of an orthopedic prosthesis
US8900322B2 (en) * 2009-02-25 2014-12-02 Brian C. de Beaubien Antibiotic delivery system and method for treating an infected synovial joint during re-implantation of an orthopedic prosthesis
US20130211334A1 (en) * 2009-02-25 2013-08-15 Brian C. de Beaubien Antibiotic delivery system for treating an infected synovial joint during re-implantation of an orthopedic prosthesis
US20130211369A1 (en) * 2009-02-25 2013-08-15 Brian C. de Beaubien Antibiotic delivery system and method for treating an infected synovial joint during re-implantation of an orthopedic prosthesis
USRE48119E1 (en) * 2009-02-25 2020-07-28 Joint Purification Systems, Inc. Antibiotic delivery system and method for treating an infected synovial joint during re-implantation of an orthopedic prosthesis
US8496642B2 (en) * 2009-06-23 2013-07-30 Ortho Biomedical, Llc Device and method for fabricating cellularized implants with a predetermined architecture at the point of care
US20110040278A1 (en) * 2009-06-23 2011-02-17 Hugo Antonio Pedrozo Device and method for fabricating cellularized implants with a predetermined architecture at the point of care
US9675460B2 (en) * 2009-07-10 2017-06-13 Peter Forsell Implantable medical device for lubricating an artificial contacting surface
US20120116310A1 (en) * 2009-07-10 2012-05-10 Milux Holding Sa Implantable medical device for lubricating an artificial contacting surface and method of implanting the device
US20110015754A1 (en) * 2009-07-16 2011-01-20 Teknimed Articular implant comprising at least two cavities
US20150011951A1 (en) * 2012-03-22 2015-01-08 Snu R&Db Foundation Drug delivery system using implant
CN103997984A (en) * 2012-03-22 2014-08-20 黄致日 Drug delivery system using implant
US20150134068A1 (en) * 2012-04-19 2015-05-14 Teknimed Spacer implant for the temporary replacement of a knee prosthesis
US9603644B2 (en) 2012-08-07 2017-03-28 Spinal Generations, Llc Methods and devices for delivery of medicine to bone
US20190151002A1 (en) * 2013-03-15 2019-05-23 Smed-Ta/Td, Llc Fixation of bone implants
US9681906B2 (en) 2013-03-15 2017-06-20 SMcd-TA/TD, LLC Fixation of bone implants
US10350332B2 (en) 2013-03-15 2019-07-16 Smed-Ta/Td, Llc Fixation of orthopaedic devices
WO2014150920A3 (en) * 2013-03-15 2015-02-19 Smed-Ta/Td, Llc Fixation of bone implants
US11051865B2 (en) * 2013-03-15 2021-07-06 Smed-Ta/Td, Llc Fixation of bone implants
US10194963B2 (en) 2013-03-15 2019-02-05 Smed-Ta/Td, Llc Fixation of bone implants
EP2781206B1 (en) 2013-03-22 2016-11-23 Heraeus Medical GmbH Two-part knee spacer with recesses
US9962188B2 (en) 2013-10-29 2018-05-08 Cardinal Health 247. Inc. External fixation system and methods of use
US11712278B2 (en) 2014-02-19 2023-08-01 Spinal Generations, Llc Compressible mixing and delivery system for medical substances
KR102497061B1 (en) * 2014-10-21 2023-02-06 테크레스 에스.피.에이. Spacer device for treating infections of the shoulder articulation
KR20170072246A (en) * 2014-10-21 2017-06-26 테크레스 에스.피.에이. Spacer device for treating infections of the shoulder articulation
CN107405200A (en) * 2015-02-16 2017-11-28 A·马加尼奥利 For the separator device treated to the infected seat in human body
KR20170121196A (en) 2015-02-16 2017-11-01 아우구스토 마가뇰리 A spacer device for treating an infected seat within a human body
CN107405200B (en) * 2015-02-16 2020-08-18 科辛顿有限公司 Spacer device and method for producing a spacer device
KR102552415B1 (en) * 2015-02-16 2023-07-06 코싱턴 리미티드 Spacer device for treating infected sites inside the human body
US9925363B2 (en) * 2015-02-16 2018-03-27 Augusto Magagnoli Spacer device for treatment of an infected seat of the human body
US20160235955A1 (en) * 2015-02-16 2016-08-18 Augusto Magagnoli Spacer device for treatment of an infected seat of the human body
US11504242B2 (en) 2015-06-17 2022-11-22 Osteal Therapeutics, Inc. Total joint replacement infection control devices and methods
US10433965B2 (en) 2015-06-17 2019-10-08 Joint Purification Systems Llc Total joint replacement infection control devices and methods
EP3967276A3 (en) * 2015-06-17 2022-05-18 Osteal Therapeutics, Inc. Total joint replacement infection control devices
US20210282932A1 (en) * 2015-07-30 2021-09-16 Tecres S.P.A. Prosthetic device with antibiotics
US20180243095A1 (en) * 2015-10-26 2018-08-30 Leon E. POPOVITZ Circulation replenishing joint implant
US10828162B2 (en) 2015-12-30 2020-11-10 Tecres S.P.A. Core for a spacer
WO2017115249A1 (en) * 2015-12-30 2017-07-06 Tecres S.P.A. A core for a spacer
ITUB20159789A1 (en) * 2015-12-30 2017-06-30 Tecres Spa SOUL FOR SPACE
US11026729B2 (en) 2016-05-06 2021-06-08 Medos International Sarl Methods, devices, and systems for blood flow
US9861410B2 (en) 2016-05-06 2018-01-09 Medos International Sarl Methods, devices, and systems for blood flow
US10639085B2 (en) 2016-05-06 2020-05-05 Medos International Sarl Methods, devices, and systems for blood flow
US20170354507A1 (en) * 2016-06-10 2017-12-14 Jared Ruben Hillel FORAN Antibiotic dispensing spacer apparatus and method for infected total knee arthroplasty
US9839523B1 (en) * 2016-06-10 2017-12-12 Jared Ruben Hillel FORAN Antibiotic dispensing spacer apparatus and method for infected total knee arthroplasty
US10265182B2 (en) 2016-06-10 2019-04-23 Forcast Orthopedics, Inc. Antibiotic dispensing spacer apparatus and method for infected total knee arthroplasty
US10022233B1 (en) * 2017-12-04 2018-07-17 Duke University Orthopedic implant for sustained drug release
US11833051B2 (en) * 2018-03-07 2023-12-05 Cossington Limited Acetabular spacer device comprising a pharmaceutical substance
KR20200130679A (en) * 2018-03-07 2020-11-19 코싱턴 리미티드 Acetabular spacer device containing pharmaceutical substance
KR20200141441A (en) * 2018-03-07 2020-12-18 코싱턴 리미티드 Temporary spacer device for human joints
KR102574670B1 (en) * 2018-03-07 2023-09-05 코싱턴 리미티드 Temporary spacer device for joints in the human body
KR102580753B1 (en) 2018-03-07 2023-09-20 코싱턴 리미티드 Acetabular spacer device containing pharmaceutical substances
US10729841B2 (en) 2018-03-21 2020-08-04 Heraeus Medical Gmbh Femoral hip joint spacer with irrigation device
DE102018106705B4 (en) * 2018-03-21 2021-05-27 Heraeus Medical Gmbh Femoral hip joint spacer with spray device
EP3542759A1 (en) 2018-03-21 2019-09-25 Heraeus Medical GmbH Femoral hip joint spacer with flushing device
DE102018106705A1 (en) * 2018-03-21 2019-09-26 Heraeus Medical Gmbh Femoral hip joint spacer with spraying device
EP3701912A1 (en) 2019-01-16 2020-09-02 Heraeus Medical GmbH Femoral hip joint spacer with flushing device
DE102019101081A1 (en) 2019-01-16 2020-07-16 Heraeus Medical Gmbh Femoral hip joint spacer with flushing device
US11109977B2 (en) 2019-01-16 2021-09-07 Heraeus Medical Gmbh Femoral hip joint spacer with irrigation device
DE102019101081B4 (en) 2019-01-16 2020-08-06 Heraeus Medical Gmbh Femoral hip joint spacer with flushing device
EP3881803A1 (en) 2020-03-20 2021-09-22 Heraeus Medical GmbH Device and method for producing spacers
EP3900680A1 (en) 2020-04-24 2021-10-27 Heraeus Medical GmbH Device and method for producing spacers with variable head
EP3906896A1 (en) 2020-05-07 2021-11-10 Heraeus Medical GmbH Manufacture of spacers in casting mould with kink or clamp mechanism
US20210369465A1 (en) * 2020-05-26 2021-12-02 Howmedica Osteonics Corp. Orthopedic surgical implant device with porous material and fluid channels for cleaning the porous material
US11850158B2 (en) * 2020-05-26 2023-12-26 Howmedica Osteonics Corp. Orthopedic surgical implant device with porous material and fluid channels for cleaning the porous material
EP3939546A1 (en) 2020-07-17 2022-01-19 Heraeus Medical GmbH Device and method for producing spacers
EP3957280A1 (en) 2020-08-17 2022-02-23 Heraeus Medical GmbH Device and method for producing spacers
US11865006B2 (en) 2020-08-17 2024-01-09 Heraeus Medical Gmbh Device and method for producing spacers
EP3978065A1 (en) 2020-10-02 2022-04-06 Heraeus Medical GmbH Implant for local drug release
US20220313440A1 (en) * 2021-04-02 2022-10-06 Arthrex, Inc. Orthopaedic implant systems including internal networks and methods of repair
US11819415B2 (en) * 2021-04-02 2023-11-21 Arthrex, Inc. Orthopaedic implant systems including internal networks and methods of repair

Also Published As

Publication number Publication date
WO2010025378A3 (en) 2010-06-03
US9561354B2 (en) 2017-02-07
WO2010019781A1 (en) 2010-02-18
US20150038941A1 (en) 2015-02-05
WO2010025378A2 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
US9561354B2 (en) Drug delivery implants
EP2323587B1 (en) Drug delivery implants
US10349993B2 (en) Drug delivery implants
US7255713B2 (en) Systems and methods for agent delivery
US5895375A (en) Fixation device chemical dispensing system
US7641699B2 (en) Femoral head calcar loading prosthesis
US20100222750A1 (en) Replenishable drug delivery implant for bone and cartilage
EP2328511B1 (en) Drug delivery implants
US20220168109A1 (en) Prosthetic implant
CN107920900A (en) Prosthetic appliance with antibiotic
US11273044B2 (en) Method, system, and apparatus for antibiotic dispensing knee prosthesis
CA2734253C (en) Drug delivery implants
CA2735235C (en) Drug delivery implants
EP2780069A1 (en) Method of a pharmaceutical delivery system for use within a joint replacement
US20150051539A1 (en) Method of a Pharmaceutical Delivery System for Use Within a Joint Replacement
US20240016976A1 (en) Methods and compositions to graft bone using iron excipients
CN115089351A (en) Femoral stem
WO2019226805A1 (en) Selective targeted release
WO2008034452A1 (en) Percutaneous implant

Legal Events

Date Code Title Description
AS Assignment

Owner name: SMED-TA/TD, LLC,INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NEBOSKY, PAUL S;ZIMMERMAN, SARAH L.;STALCUP, GREGORY C.;AND OTHERS;REEL/FRAME:023391/0196

Effective date: 20090818

AS Assignment

Owner name: ANTHREX, INC., FLORIDA

Free format text: SECURITY INTEREST;ASSIGNOR:SMED-TA/TD, LLC;REEL/FRAME:035568/0164

Effective date: 20150504

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SMED-TA/TD, LLC, INDIANA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ARTHREX, INC.;REEL/FRAME:058265/0866

Effective date: 20211201