US20100115570A1 - Methods and Devices For Providing Dedicated Bandwidth On-Demand - Google Patents

Methods and Devices For Providing Dedicated Bandwidth On-Demand Download PDF

Info

Publication number
US20100115570A1
US20100115570A1 US12/614,381 US61438109A US2010115570A1 US 20100115570 A1 US20100115570 A1 US 20100115570A1 US 61438109 A US61438109 A US 61438109A US 2010115570 A1 US2010115570 A1 US 2010115570A1
Authority
US
United States
Prior art keywords
media converter
customer
information
bandwidth
vlan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/614,381
Inventor
Wilbur Howard Long
Thomas Kevin Sullivan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/614,381 priority Critical patent/US20100115570A1/en
Publication of US20100115570A1 publication Critical patent/US20100115570A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2801Broadband local area networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2858Access network architectures
    • H04L12/2861Point-to-multipoint connection from the data network to the subscribers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • H04L12/287Remote access server, e.g. BRAS
    • H04L12/2874Processing of data for distribution to the subscribers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]

Definitions

  • CATV cable TV industry
  • HFC hybrid fiber-coax
  • High speed data has become a huge part of a cable operator's business. It has allowed the MSOs the ability to offer Voice over IP (VoIP) as well as Internet Protocol (IP) based video and data distribution.
  • VoIP Voice over IP
  • IP Internet Protocol
  • CMTS cable modem termination system
  • This channel is referred to as a shared channel because bandwidth of approximately 38 Mb/s is shared among all of the customers, allowing every customer in the same service group to share a portion of this bandwidth. This unfortunately leads to congestion.
  • Data integrity, security and access on the shared channel is provided by the Data Over Cable Service Interface Specification (DOCSIS) protocol running between the modem at the MSO head end and a modem at a particular customer premise.
  • DOCSIS Data Over Cable Service Interface Specification
  • a quadrature amplitude modulated (QAM) based media converter and set top box are provided.
  • the media converter may be responsible for all control plane setup for video streams and their associated spectrum allocation.
  • Complex signaling and control mechanisms are also provided between the STB and the media converter to deliver a program to a customer (i.e., customer's television).
  • the HSD channel may be established by a separate set of hardware, the CMTS and the cable modem. This simplifies the back-end process by adding intelligence to the STB and combines IP/HSD functionality into one set of devices instead of a QAM modulator for video and a CMTS for IP data.
  • the STB can become an IP gateway for all services for each customer.
  • portions of the RF spectrum may be dedicated to each individual customer premise as a dedicated carrier.
  • this can be accomplished by giving the media converter and a home gateway the ability to tune to the same frequency range, so each customer will be given a discrete frequency range or bandwidth.
  • This tuning capability may be granular to one hundredth of a MHz. This gives the cable operator the ability to deliver bandwidth to each customer on demand. If a customer needs more or less bandwidth the range can be tuned (i.e., adjusted) accordingly.
  • This bandwidth may be used to deliver all services to a home and/or business. Further, if everything is IP based; voice, video and data may be sent using the same frequency carrier, and only when the customer requests it.
  • the inventive techniques may be viewed as a complete IP based solution, information typically stored in a traditional modulator may be eliminated.
  • the inventive media converter is enabled to convert RF frequencies to 802.1q VLAN frames and visa-versa.
  • An upstream interface on the media converter may be Ethernet based and can be standard gigabit or ten gigabit speeds. This interface may be configured as a VLAN trunk, which can connect to an IP router. This will give the STB the ability to request any IP service directly from the IP network.
  • the media converter may also be designed to fit into an existing router chassis.
  • FIG. 1 is an example of RF frequency to VLAN mapping according to an embodiment of the invention.
  • FIG. 2 is a simplified block diagram of a cable network from a customer's premise (e.g., home or business) to a CATV operator's head end according to an embodiment of the invention.
  • a customer's premise e.g., home or business
  • CATV operator's head end e.g., CATV operator's head end
  • Such a platform may include a home gateway device 205 and an upstream media converter/modulator (hereafter “media converter”) 201 .
  • the platform may provide a full IP based solution when used in conjunction with an IP router 203 that is responsible for providing all services to a given home or business.
  • the media converter 201 may be located in a CATV head end and receive program requests from a customer's STB. In response, the media converter 201 may request programming information related to the customer's requests from upstream sources/systems and, upon receipt of the information from an upstream source, electronically insert (i.e., modulate) the information within a given time slot that is itself within a given frequency range and transmit the information to the STB.
  • the information includes data that identifies a location (or locations) of a requested service.
  • the STB may receive the information regarding the location of the requested service, tune to an associated frequency and send the program/content associated with the frequency/channel to the television set.
  • IP based high speed data communications and VoIP services can be removed from traditional DOCSIS channels and placed on a common RF channel dedicated to each customer. Further, because novel media converters operating in accordance with the present invention provide increased bandwidth to customers, DOCSIS based access rights and security functions are unnecessary.
  • a media converter 201 may comprise a QAM based modulator to convert RF frequencies to 802.1q VLAN Ids.
  • a home gateway 205 and the QAM modulator/media converter 201 may tune to the same frequency range to allow for dedicated bandwidth allocation to each customer premise. These devices may be tunable to one hundredth of a MHz.
  • the media converter 201 may attach to an upstream IP router 203 via a gigabit or ten-gigabit Ethernet port, configured as an 802.1q trunk 202 .
  • the media converter 201 may be transparent (e.g., the communications, signaling and control information may now take place between an IP router 203 , end systems and IP enabled devices within a customer's premise).
  • the current, downstream modulation scheme used by the RF-based plant of most cable operators is QAM 256 .
  • upstream is dedicated to a lower portion of the spectrum and uses a QPSK modulation format.
  • the techniques provided by the present invention are believed to be compatible with most cable operator's plants regardless of the modulation scheme used or in the event that the upstream and downstream channels are the same.
  • the present invention supports many IP based formats that may be offered by a cable operator, such as IPv4 or IPv6. Further, it is recognized that a particular transport IP format is transparent to the networking topology and or the applications running over them.
  • a customer's local area network (LAN) may be part of the same subnet as the first hop cable operator router 203 , or it may be internal to the customer premise with a centralized home gateway 205 communicating with the cable operator router 203 .
  • the RF frequency to VLAN translation may be the same regardless.
  • a first hop router 203 When the data is delivered to the end user, a first hop router 203 will receive the data and send it out on a trunk with the appropriate header information.
  • the media converter 201 may receive this information, strip the 802.1q header and modulate the underlying Ethernet frame into an appropriate frequency range.
  • the home gateway 205 tuned to that frequency range may receive the data on an RF channel, convert it to Ethernet and forward the frame onto the customer LAN to the IP enabled user device.

Abstract

A media converter that includes a QAM modulator converts and maps packets within RF frequencies to 802.1q VLAN identifications (ID). Use of the media converter solves content delivery, bandwidth capacity issues and simplifies head end design.

Description

    RELATED APPLICATION
  • This application is related to, and claims the benefit of priority from, U.S. Provisional Application No. 61/111,857 filed Nov. 6, 2008 the subject matter of which is incorporated in full herein as if it were set forth in full herein.
  • BACKGROUND OF THE INVENTION
  • The cable TV industry (CATV) is running out of bandwidth on their existing hybrid fiber-coax (HFC) plant. Presently, all CATV services (e.g., television) are delivered to their customers using RF frequencies in the range of 0-1000 MHz. Originally, television services were delivered in an analog format/technology where a 6 MHz slot of bandwidth was consumed for each television channel delivered. All channels were sent simultaneously to all customers whether they were watching the channel or not. As new digital television formats/technologies became available, more channels were able to fit into each 6 MHz slot, thus increasing the amount of content multiple system operators (MSOs) were able to deliver to their customer base.
  • High speed data (HSD) has become a huge part of a cable operator's business. It has allowed the MSOs the ability to offer Voice over IP (VoIP) as well as Internet Protocol (IP) based video and data distribution. These services are delivered by a cable modem termination system (CMTS) in an MSO head end that sends data down one of the 6 Mhz channels to customer cable modems residing in hundreds of homes and/or businesses. This channel is referred to as a shared channel because bandwidth of approximately 38 Mb/s is shared among all of the customers, allowing every customer in the same service group to share a portion of this bandwidth. This unfortunately leads to congestion. Data integrity, security and access on the shared channel is provided by the Data Over Cable Service Interface Specification (DOCSIS) protocol running between the modem at the MSO head end and a modem at a particular customer premise.
  • There are other bandwidth challenges faced by cable operators. For example, with the advent of high definition television on top of VoIP and HSD, bandwidth requirements are skyrocketing. However, the 1000 Mhz of spectrum typically allocated remains static. In response, cable operators are splitting nodes in an attempt to service less customers on a given DOCSIS channel. They are deploying switched digital video to try and limit the amount of unused channels being sent to customers. Some are starting to deploy fiber to the home, which is a very costly endeavor.
  • SUMMARY OF THE INVENTION
  • The inventors have discovered solutions to the bandwidth capacity issues described above as well as techniques that simplify overall head end design for content delivery. In one embodiment of the invention, this can be done using existing coaxial cables installed in each customer premise. In a further embodiment of the invention, a quadrature amplitude modulated (QAM) based media converter and set top box (STB) are provided. The media converter may be responsible for all control plane setup for video streams and their associated spectrum allocation. Complex signaling and control mechanisms are also provided between the STB and the media converter to deliver a program to a customer (i.e., customer's television). In yet a further embodiment of the invention, the HSD channel may be established by a separate set of hardware, the CMTS and the cable modem. This simplifies the back-end process by adding intelligence to the STB and combines IP/HSD functionality into one set of devices instead of a QAM modulator for video and a CMTS for IP data. The STB can become an IP gateway for all services for each customer.
  • In accordance with embodiments of the invention, portions of the RF spectrum may be dedicated to each individual customer premise as a dedicated carrier. In yet a further embodiment of the invention, this can be accomplished by giving the media converter and a home gateway the ability to tune to the same frequency range, so each customer will be given a discrete frequency range or bandwidth. This tuning capability may be granular to one hundredth of a MHz. This gives the cable operator the ability to deliver bandwidth to each customer on demand. If a customer needs more or less bandwidth the range can be tuned (i.e., adjusted) accordingly. This bandwidth may be used to deliver all services to a home and/or business. Further, if everything is IP based; voice, video and data may be sent using the same frequency carrier, and only when the customer requests it.
  • In still another embodiment of the invention, because the inventive techniques may be viewed as a complete IP based solution, information typically stored in a traditional modulator may be eliminated. Further, the inventive media converter is enabled to convert RF frequencies to 802.1q VLAN frames and visa-versa. An upstream interface on the media converter may be Ethernet based and can be standard gigabit or ten gigabit speeds. This interface may be configured as a VLAN trunk, which can connect to an IP router. This will give the STB the ability to request any IP service directly from the IP network. The media converter may also be designed to fit into an existing router chassis.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an example of RF frequency to VLAN mapping according to an embodiment of the invention.
  • FIG. 2 is a simplified block diagram of a cable network from a customer's premise (e.g., home or business) to a CATV operator's head end according to an embodiment of the invention.
  • DETAILED DESCRIPTION OF INVENTION
  • The techniques discovered by the inventors enable CATV operators to more efficiently utilize their HFC plant and gives them the ability to deliver dedicated bandwidth to each customer's premise in order to satisfy a particular customer's content delivery needs over the existing coaxial cable installed at each customer's premise. Instead of discrete systems dedicated to each type of service that a customer may request or that the CATV operator may wish to provide, multiple services can be provided using a novel, inventive platform (i.e., some combination of hardware, software and firmware). In accordance with one embodiment of the invention, such a platform may include a home gateway device 205 and an upstream media converter/modulator (hereafter “media converter”) 201. The platform may provide a full IP based solution when used in conjunction with an IP router 203 that is responsible for providing all services to a given home or business.
  • The media converter 201 may be located in a CATV head end and receive program requests from a customer's STB. In response, the media converter 201 may request programming information related to the customer's requests from upstream sources/systems and, upon receipt of the information from an upstream source, electronically insert (i.e., modulate) the information within a given time slot that is itself within a given frequency range and transmit the information to the STB. The information includes data that identifies a location (or locations) of a requested service. The STB may receive the information regarding the location of the requested service, tune to an associated frequency and send the program/content associated with the frequency/channel to the television set.
  • In accordance with additional embodiments of the invention, IP based high speed data communications and VoIP services can be removed from traditional DOCSIS channels and placed on a common RF channel dedicated to each customer. Further, because novel media converters operating in accordance with the present invention provide increased bandwidth to customers, DOCSIS based access rights and security functions are unnecessary.
  • Because RF to VLAN conversion is carried out by a novel QAM/media converter 201, all programming intelligence can be removed from the current QAM implementation. In accordance with embodiments of the invention, a media converter 201 may comprise a QAM based modulator to convert RF frequencies to 802.1q VLAN Ids. A home gateway 205 and the QAM modulator/media converter 201 may tune to the same frequency range to allow for dedicated bandwidth allocation to each customer premise. These devices may be tunable to one hundredth of a MHz. The media converter 201 may attach to an upstream IP router 203 via a gigabit or ten-gigabit Ethernet port, configured as an 802.1q trunk 202. The media converter 201 may be transparent (e.g., the communications, signaling and control information may now take place between an IP router 203, end systems and IP enabled devices within a customer's premise).
  • The current, downstream modulation scheme used by the RF-based plant of most cable operators is QAM 256. In comparison, upstream is dedicated to a lower portion of the spectrum and uses a QPSK modulation format. The techniques provided by the present invention are believed to be compatible with most cable operator's plants regardless of the modulation scheme used or in the event that the upstream and downstream channels are the same.
  • The present invention supports many IP based formats that may be offered by a cable operator, such as IPv4 or IPv6. Further, it is recognized that a particular transport IP format is transparent to the networking topology and or the applications running over them. A customer's local area network (LAN) may be part of the same subnet as the first hop cable operator router 203, or it may be internal to the customer premise with a centralized home gateway 205 communicating with the cable operator router 203. The RF frequency to VLAN translation may be the same regardless.
  • In accordance with embodiments of the invention, when an end user requests service an IP enabled device formats an IP packet with its own IP address in a source field and an end device IP address in a destination field. The so formatted IP packet may then be sent to a home gateway 205 for conversion into RF. The home gateway 205 then modulates the IP packet into the assigned RF frequency range. A novel media converter 201 may receive the IP packet on the RF frequency and map the packet to a VLAN ID. The media converter 201 may then send the data out on an 802.1q trunk 202 with the VLAN ID. A router 203 may then process an Ethernet frame and IP packet and send it to a remote destination for delivery to the user. When the data is delivered to the end user, a first hop router 203 will receive the data and send it out on a trunk with the appropriate header information. The media converter 201 may receive this information, strip the 802.1q header and modulate the underlying Ethernet frame into an appropriate frequency range. The home gateway 205 tuned to that frequency range may receive the data on an RF channel, convert it to Ethernet and forward the frame onto the customer LAN to the IP enabled user device.

Claims (4)

1. A media converter operable to:
receive program requests from a set-top box (STB);
request programming information related to a customer's requests from one or more upstream sources;
upon receipt of the information from the one or more upstream sources, insert the received information within a given time slot that is within a given frequency range; and
transmit the information to the STB.
2. The media converter as in claim 1 wherein the information includes data that identifies a location of a requested service.
3. The media converter as in claim 1 comprising a QAM modulator operable to convert packets within RF frequencies to 802.1q VLAN identifications (ID).
4. The media converter as in claim 3 wherein the QAM modulator is further operable to map an IP packet within an RF frequency to a VLAN ID.
US12/614,381 2008-11-06 2009-11-06 Methods and Devices For Providing Dedicated Bandwidth On-Demand Abandoned US20100115570A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/614,381 US20100115570A1 (en) 2008-11-06 2009-11-06 Methods and Devices For Providing Dedicated Bandwidth On-Demand

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11185708P 2008-11-06 2008-11-06
US12/614,381 US20100115570A1 (en) 2008-11-06 2009-11-06 Methods and Devices For Providing Dedicated Bandwidth On-Demand

Publications (1)

Publication Number Publication Date
US20100115570A1 true US20100115570A1 (en) 2010-05-06

Family

ID=42133078

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/614,381 Abandoned US20100115570A1 (en) 2008-11-06 2009-11-06 Methods and Devices For Providing Dedicated Bandwidth On-Demand

Country Status (1)

Country Link
US (1) US20100115570A1 (en)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481542A (en) * 1993-11-10 1996-01-02 Scientific-Atlanta, Inc. Interactive information services control system
US5488412A (en) * 1994-03-31 1996-01-30 At&T Corp. Customer premises equipment receives high-speed downstream data over a cable television system and transmits lower speed upstream signaling on a separate channel
US5600364A (en) * 1992-12-09 1997-02-04 Discovery Communications, Inc. Network controller for cable television delivery systems
US5613190A (en) * 1995-05-01 1997-03-18 Bell Atlantic Network Services, Inc. Customer premise wireless distribution of audio-video, control signals and voice
US5677905A (en) * 1995-03-28 1997-10-14 Bell Atlantic Network Services, Inc. Access subnetwork controller for video dial tone networks
US5812928A (en) * 1995-04-12 1998-09-22 Watson Technologies Cable television control apparatus and method with channel access controller at node of network including channel filtering system
US6005561A (en) * 1994-12-14 1999-12-21 The 3Do Company Interactive information delivery system
US6279158B1 (en) * 1994-09-26 2001-08-21 Adc Telecommunications, Inc. Dynamic bandwidth allocation
US20020059626A1 (en) * 2000-08-25 2002-05-16 Thomas Lemmons System and method for optimizing broadcast bandwidth and content
US6510152B1 (en) * 1997-12-31 2003-01-21 At&T Corp. Coaxial cable/twisted pair fed, integrated residence gateway controlled, set-top box
US6539548B1 (en) * 1992-12-09 2003-03-25 Discovery Communications, Inc. Operations center for a television program packaging and delivery system
US6643707B1 (en) * 2000-02-14 2003-11-04 General Instrument Corporation Method and apparatus for defining, managing and distributing broadcast names
US6909726B1 (en) * 1999-10-28 2005-06-21 Broadband Royalty Corporation Adaptive bandwidth system and method for broadcast data
US20060225106A1 (en) * 2005-03-31 2006-10-05 Bedingfield James C Sr Presence detection in a bandwidth management system
US20070016932A1 (en) * 2001-02-08 2007-01-18 Decisionmark Corp. Method and system for creating television programming guide
US7170905B1 (en) * 2000-08-10 2007-01-30 Verizon Communications Inc. Vertical services integration enabled content distribution mechanisms
US7194001B2 (en) * 2001-03-12 2007-03-20 Advent Networks, Inc. Time division multiplexing over broadband modulation method and apparatus
US20070171918A1 (en) * 2006-01-26 2007-07-26 Migaku Ota Frame forwarding apparatus for converting VLAN identifiers
US20070204311A1 (en) * 2006-02-27 2007-08-30 Hasek Charles A Methods and apparatus for selecting digital coding/decoding technology for programming and data delivery
US20080034386A1 (en) * 2006-06-20 2008-02-07 Broadband Royalty Corporaton Dynamic zoning for targeted ad insertion
US20090288125A1 (en) * 2005-07-15 2009-11-19 Yoshihiro Morioka Packet transmitting apparatus

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6539548B1 (en) * 1992-12-09 2003-03-25 Discovery Communications, Inc. Operations center for a television program packaging and delivery system
US5600364A (en) * 1992-12-09 1997-02-04 Discovery Communications, Inc. Network controller for cable television delivery systems
US5481542A (en) * 1993-11-10 1996-01-02 Scientific-Atlanta, Inc. Interactive information services control system
US5488412A (en) * 1994-03-31 1996-01-30 At&T Corp. Customer premises equipment receives high-speed downstream data over a cable television system and transmits lower speed upstream signaling on a separate channel
US6279158B1 (en) * 1994-09-26 2001-08-21 Adc Telecommunications, Inc. Dynamic bandwidth allocation
US6005561A (en) * 1994-12-14 1999-12-21 The 3Do Company Interactive information delivery system
US7069577B2 (en) * 1995-02-06 2006-06-27 Sdc Telecommunications, Inc. Dynamic bandwidth allocation
US5677905A (en) * 1995-03-28 1997-10-14 Bell Atlantic Network Services, Inc. Access subnetwork controller for video dial tone networks
US5812928A (en) * 1995-04-12 1998-09-22 Watson Technologies Cable television control apparatus and method with channel access controller at node of network including channel filtering system
US5613190A (en) * 1995-05-01 1997-03-18 Bell Atlantic Network Services, Inc. Customer premise wireless distribution of audio-video, control signals and voice
US6510152B1 (en) * 1997-12-31 2003-01-21 At&T Corp. Coaxial cable/twisted pair fed, integrated residence gateway controlled, set-top box
US6909726B1 (en) * 1999-10-28 2005-06-21 Broadband Royalty Corporation Adaptive bandwidth system and method for broadcast data
US6643707B1 (en) * 2000-02-14 2003-11-04 General Instrument Corporation Method and apparatus for defining, managing and distributing broadcast names
US7170905B1 (en) * 2000-08-10 2007-01-30 Verizon Communications Inc. Vertical services integration enabled content distribution mechanisms
US20020059626A1 (en) * 2000-08-25 2002-05-16 Thomas Lemmons System and method for optimizing broadcast bandwidth and content
US20070016932A1 (en) * 2001-02-08 2007-01-18 Decisionmark Corp. Method and system for creating television programming guide
US7194001B2 (en) * 2001-03-12 2007-03-20 Advent Networks, Inc. Time division multiplexing over broadband modulation method and apparatus
US20060225106A1 (en) * 2005-03-31 2006-10-05 Bedingfield James C Sr Presence detection in a bandwidth management system
US20090288125A1 (en) * 2005-07-15 2009-11-19 Yoshihiro Morioka Packet transmitting apparatus
US20070171918A1 (en) * 2006-01-26 2007-07-26 Migaku Ota Frame forwarding apparatus for converting VLAN identifiers
US20070204311A1 (en) * 2006-02-27 2007-08-30 Hasek Charles A Methods and apparatus for selecting digital coding/decoding technology for programming and data delivery
US20080034386A1 (en) * 2006-06-20 2008-02-07 Broadband Royalty Corporaton Dynamic zoning for targeted ad insertion

Similar Documents

Publication Publication Date Title
US6697376B1 (en) Logical node identification in an information transmission network
EP2756637B1 (en) Modular headend architecture with downstream multicast
US9692513B2 (en) HFC cable system with shadow fiber and coax fiber terminals
US9871687B2 (en) Method, cable modem and a device for providing video to a customer premises equipment
US8199684B2 (en) Broadband local area full-service backbone network
US9825772B2 (en) Apparatus and method for increasing upstream capacity in a broadband communications system
US20050022247A1 (en) Set-top box including a single tuner for video and data over cable
US8135035B2 (en) Video over cable modem
US8544051B1 (en) Broadcast solution for cable IPTV
EP3039839B1 (en) Cable modem
US11539999B2 (en) Session control of broadcast video services for DAA and non-DAA automation
US20110138434A1 (en) System and method for a digital tv converter with iptv capabilities
US20110053623A1 (en) Hfc banding for a virtual service group
EP2876860B1 (en) Control messaging in a cable network
US20160295251A1 (en) Gateway for Translating Signals Between a Legacy Frequency Split in a Home Network and a High Frequency Split in A Communications Network
US20060117361A1 (en) Data communications system using CATV network with wireless return path
US20100115570A1 (en) Methods and Devices For Providing Dedicated Bandwidth On-Demand
KR101517501B1 (en) The method and system for providing IPTV(internet protocol television) service
WO2024064389A1 (en) System for packetcable version management
WO2024059061A1 (en) Active system for partitioning identifier space
Wang et al. A New Architecture of Merged On-Demand Application Network

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION