US20100116693A1 - Package with multi-sleeve structure - Google Patents

Package with multi-sleeve structure Download PDF

Info

Publication number
US20100116693A1
US20100116693A1 US12/517,255 US51725510A US2010116693A1 US 20100116693 A1 US20100116693 A1 US 20100116693A1 US 51725510 A US51725510 A US 51725510A US 2010116693 A1 US2010116693 A1 US 2010116693A1
Authority
US
United States
Prior art keywords
panels
panel
blank
tubular
sleeve structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/517,255
Inventor
Christopher J. Hession
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WestRock MWV LLC
Original Assignee
Meadwestvaco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meadwestvaco Corp filed Critical Meadwestvaco Corp
Assigned to MEADWESTVACO CORPORATION reassignment MEADWESTVACO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HESSION, CHRISTOPHER J.
Publication of US20100116693A1 publication Critical patent/US20100116693A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/04Containers or packages with special means for dispensing contents for dispensing annular, disc-shaped, or spherical or like small articles, e.g. tablets or pills
    • B65D83/0445Containers or packages with special means for dispensing contents for dispensing annular, disc-shaped, or spherical or like small articles, e.g. tablets or pills all the articles being stored in individual compartments
    • B65D83/0463Containers or packages with special means for dispensing contents for dispensing annular, disc-shaped, or spherical or like small articles, e.g. tablets or pills all the articles being stored in individual compartments formed in a band or a blisterweb, inserted in a dispensing device or container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/38Drawer-and-shell type containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2215/00Child-proof means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2583/00Containers or packages with special means for dispensing contents
    • B65D2583/04For dispensing annular, disc-shaped or spherical or like small articles or tablets
    • B65D2583/0445For dispensing annular, disc-shaped or spherical or like small articles or tablets characterised by the shape of the container
    • B65D2583/0468For dispensing annular, disc-shaped or spherical or like small articles or tablets characterised by the shape of the container of drawer-and-shell type

Definitions

  • This invention relates generally to packages and, more specifically, to packages with multi-sleeve structures for receiving slide cards.
  • Known packages include an outer sleeve and a slide card that is received in the outer sleeve. Such a package is useful in many applications as the slide card can be repeatedly removed from and returned to the outer sleeve, for example, in order to dispense unit doses from the package. For this use, the package allows the user to track the consumption of doses according to a prescribed schedule.
  • Certain of the known packages include a lock and release mechanism that provides a level of child resistance.
  • the slide card can be releasably locked in the outer sleeve and actions that are counter intuitive to a child are required to release the slide card from the outer sleeve.
  • the package include a greater amount of unit doses than what is included on a standard slide card.
  • a previous solution has been to alter the slide card design or to scale the package to fit a greater number of doses.
  • altering or customizing the slide card for each application adds additional manufacturing cost.
  • multiple different unit doses are taken by a patient, and those unit doses are separately packaged. To that end, the patient must track multiple, separate packages. What is needed is a package that is simple to manufacture and that is configured to include a greater amount of doses and/or different doses.
  • the various embodiments of the present invention overcome the shortcomings of the prior art by providing a multi-sleeve structure for receiving a plurality of slide cards.
  • the multi-sleeve structure can package, store, and dispense an increased number of doses from the blister packs.
  • the multi-sleeve structure is cost effective in that the same slide cards can be used as are used for single-sleeve structures.
  • the multi-sleeve structure includes a plurality of tubular structures for receiving slide cards.
  • Each tubular structure is defined by a plurality of walls and includes elements of a lock and release mechanism for releasably locking a slide card within the tubular structure.
  • each tubular structure includes a composite wall that is defined by an inner panel and an outer panel.
  • the inner panel includes a locking aperture and the outer panel includes a release tab.
  • the locking aperture and the release tab functionally align to cooperate with a locking tab of a slide card.
  • a first one of the tubular structures is hingedly connected to a second one of the tubular structures.
  • the multi-sleeve structure can be arranged such that walls of the first and second tubular structures are in flat face contact, for example, to conceal release tabs that are disposed in the walls.
  • the first and second tubular structures can be hingedly connected by a spine panel.
  • adjacent tubular structures share, or are defined by, a divider wall.
  • one or more divider walls extend between the outer walls of the multi-sleeve structure.
  • FIG. 1 is a plan view of an exemplary embodiment of a blank, according to the present invention.
  • FIG. 2 is a perspective view of a multi-sleeve structure formed from the blank of FIG. 1 .
  • FIG. 3 is a perspective view of an exemplary embodiment of a slide card.
  • FIG. 4 is a plan view of an alternative embodiment of a blank, according to the present invention.
  • FIG. 5 is a perspective view of a multi-sleeve structure formed from the blank of FIG. 4 .
  • FIG. 6 is a plan view of an alternative embodiment of a blank, according to the present invention.
  • FIG. 7 is a perspective view of a multi-sleeve structure formed from the blank of FIG. 6
  • FIG. 8 is a plan view of an alternative embodiment of a blank, according to the present invention.
  • FIG. 9 is a perspective view of a multi-sleeve structure formed from the blank of FIG. 8 .
  • FIG. 10 is a plan view of an alternative embodiment of a blank, according to the present invention.
  • FIG. 11 is a perspective view of a multi-sleeve structure formed from the blank of FIG. 10 .
  • the exemplary embodiments illustrate a package for packaging; storing, and dispensing various products.
  • the package provides primary packaging for products and, in other applications, the package provides secondary packaging for packaged products.
  • the exemplary embodiments of the package are illustrated in the context of a package for packaging, storing, and dispensing medicaments that are packaged in a blister pack that is associated with or integral to a slide card.
  • the package taught and claimed herein can be scaled or otherwise altered for alternative items or products.
  • the multi-sleeve structure includes a plurality of tubular structures that define sleeves, compartments, or slots for receiving the slide cards. Additionally, each of the tubular structures includes means for releasably locking a slide card in the tubular structure.
  • the multi-sleeve structure and the inner slide cards are formed from blanks.
  • the blanks can be formed from any suitable material including, but not limited to, paperboard, plastic, cardboard, combinations thereof, and the like.
  • the multi-sleeve structure can be formed by alternative processes including thermoforming, molding, casting, prototyping, combinations thereof, and the like.
  • the selection of material to form the package can be made according to certain packaging needs or constraints. For example, to package medicines, the selected material should be recognized as safe by the Food and Drug Administration (FDA).
  • FDA Food and Drug Administration
  • FIG. 1 an exemplary embodiment of a blank 10 is illustrated.
  • the blank 10 can be folded and secured to form an exemplary embodiment of a multi-sleeve structure 12 , as shown in FIG. 2 .
  • the multi-sleeve structure 12 can be formed from two or more blanks.
  • the blank 10 includes outer panels P 1 and inner panels P 2 .
  • the outer panels P 1 of the blank 10 include a top panel 20 , a first side panel 22 , a bottom panel 24 , and a second side panel 26 .
  • the outer panels P 1 are aligned along a longitudinal axis and hingedly connected one to the next along fold lines 34 , 36 , 38 that are substantially perpendicular to the longitudinal axis.
  • the inner panels P 2 of the blank 10 include a top inner panel 28 , a divider panel 30 , and a bottom inner panel 32 .
  • the inner panels P 2 are aligned along a longitudinal axis and hingedly connected one to the next along fold lines 42 , 44 that are substantially perpendicular to the longitudinal axis.
  • the inner panels P 2 are hingedly connected to the outer panels P 1 .
  • the second side panel 26 is hingedly connected to the top inner panel 28 along a fold line 40 .
  • the blank 10 further includes a top end flap 46 that is hingedly connected to the top panel 20 along a fold line 48 and a bottom end flap 50 that is hingedly connected to the bottom panel 24 along a fold line 52 .
  • the blank 10 includes elements that can be arranged to form a lock and release mechanism for an exemplary slide card, as described in further detail below.
  • the elements that form the lock and release mechanism include top and bottom release tabs 54 , 58 that are defined by severance lines 56 , 60 in the top and bottom panels 20 , 24 , respectively, and locking apertures 62 , 66 that are disposed in top and bottom inner panels 28 , 32 , respectively.
  • Each of the locking apertures 62 , 66 defines a locking edge E 1 and inner release tabs 64 , 68 , respectively.
  • the exemplary blank 10 includes elements that can be arranged to form a retention mechanism for an exemplary slide card, as described in further detail below.
  • the elements that form the retention mechanism include retention apertures 70 , 72 and retention flaps 74 , 76 that are hingedly connected to the top and bottom inner panels 28 , 32 along fold lines 78 , 80 , respectively.
  • the apertures 70 , 72 define retention edges E 2 and the distal ends of the retention flaps 74 , 76 define retention edges E 3 .
  • the blank 10 includes elements that facilitate access to a slide card, as described in further detail below.
  • the access elements include notches 82 , 84 that are disposed along an edge of top panel 20 , notches 86 , 88 that are disposed along an edge of bottom panel 24 , and apertures 90 , 92 .
  • Each aperture 90 , 92 interrupts a fold line 78 , 80 so as to be at least partially disposed on an inner panel 28 , 32 and at least partially disposed on a retention flap 74 , 76 .
  • the retention flaps 74 , 76 can be folded along the fold lines 78 , 80 such that the apertures 90 , 92 define notches, as described in further detail below.
  • a non limiting method of erecting the blank 10 to form the multi-sleeve structure 12 is now described. It should be understood by those skilled in the art that the method of erecting the multi-sleeve structure from the blank is not limited to the steps described herein or to the particular sequence of the steps described herein.
  • the side of the blank 10 that is shown in FIG. 1 is designated as the unprinted side that defines the inside surface and the opposite side is designated as the printed side that defines the outside surface.
  • the retention panels 74 , 76 are folded along fold lines 78 , 80 , respectively, such that the unprinted side of the retention panel 74 overlaps or is in flat face contact with the unprinted side of top inner panel 28 and such that the printed side of retention panel 76 overlaps or is in flat face contact with the printed side of bottom inner panel 32 .
  • retention edges E 3 substantially align with retention edges E 2 and notches N 1 , N 2 are defined as the retention panels 74 , 76 are folded along fold lines 78 , 80 .
  • the blank 10 can be folded and secured to form a multi-sleeve structure 12 in a collapsed condition, for example, for purposes of stacking and transporting.
  • the collapsed multi-sleeve structure 12 can thereafter be erected to form the multi-sleeve structure 12 shown in FIG. 2 .
  • glue or other adhesive is applied to the unprinted surface of the bottom inner panel 32 and the blank 10 is folded along the fold line 40 such that the unprinted sides of the inner panels P 2 are in flat face contact with the unprinted sides of the bottom panel 24 and second side panel 26 .
  • the bottom inner panel 32 is secured to the bottom panel 24
  • the bottom release tab 58 functionally aligns with the locking aperture 66
  • the notch N 2 functionally aligns with the notch 86 .
  • glue or other adhesive is applied to the printed side of the top inner panel 28 and the blank 10 is folded along the fold line 36 such that the unprinted sides of the top panel 20 and first side panel 22 are in flat face contact with the printed sides of the inner panels P 2 .
  • the top inner panel 28 is secured to the top panel 20
  • the top release tab 54 functionally aligns with the locking aperture 62
  • the notch N 1 functionally aligns with the notch 82 .
  • the collapsed multi-sleeve structure 12 is erected as the top panel 20 and the bottom panel 24 are pulled from one another such that the first and second side panels 22 , 26 and the divider panel 30 are substantially parallel to one another and are substantially perpendicular to the top and bottom panels 20 , 24 .
  • the outer panels P 1 define the outer walls of the multi-sleeve structure 12 .
  • the top panel defines a top wall 120
  • the first side panel 22 defines a first side wall 122
  • the bottom panel 24 defines a bottom wall 124
  • the second side panel 26 defines a second side wall 126 .
  • the top and bottom end flaps 46 , 50 are folded along fold lines 48 , 52 toward one another and secured to one another to define an end wall 148 .
  • the inner panels P 2 define composite portions of the top and bottom walls 120 , 124 and define a divider wall 130 as the divider panel 30 is erected within the outer walls.
  • the divider wall 130 defines a shared wall of adjacent tubular structures T 1 , T 2 .
  • Each of the tubular structures T 1 , T 2 is dimensioned for receiving an exemplary slide card and includes a composite wall with elements of a lock and release mechanism.
  • the first tubular structure T 1 is defined by the divider wall 130 , a portion of the top wall 120 , a composite bottom wall defined by the bottom inner panel 32 and a portion of the bottom wall 124 , and the first side wall 122 .
  • the second tubular structure T 2 is defined by the divider wall 130 , a portion of the bottom wall 124 , a composite top wall defined by the top inner panel 28 and a portion of the top wall 120 , and the second side wall 126 .
  • an exemplary slide card 150 that can be received and releasably secured in one of the tubular structures T 1 , T 2 of the multi-sleeve structure 12 includes a base panel 152 that is hingedly connected to a locking tab 154 along a fold line 160 .
  • the base panel 152 provides at least part of the flange portion of a blister pack.
  • the blister pack includes blisters 156 that are secured or integral to the base panel 152 and that house articles 158 , such as medications or tablets.
  • thermoformed or paperboard trays, inserts, structures or other means for receiving including mechanical fasteners, chemical based fasteners, combinations thereof, and the like can be mounted or integral to the slide card so as to receive, contain, or support various products, articles, or items such as vials, syringes, combinations thereof, and the like.
  • slide cards can be configured as illustrated and described in International Application No. PCT/US2004/038405 and International Application No. PCT/US2004/039032, which are incorporated herein by reference.
  • different slide card configurations for holding different products can be received in the tubular structures of the multi-sleeve structure.
  • a slide card that is configured to hold vials and a slide card that is configured to hold syringes can be loaded with vials of medications and syringes for administering the medications, respectively, and the loaded slide cards can be packaged together in the multi-sleeve structure.
  • one or more of the tubular structures can receive other items such as patient information, instruction booklets, coupons, marketing materials, electronic media, and the like.
  • lock and release mechanism is not limited to the illustrated elements. Rather, any known elements can be substituted for the illustrated elements.
  • the locking tab 154 and locking apertures 62 , 66 can be substituted with those taught in patents and published applications now or formally assigned to the present applicant, and other entities such as Howell Packaging of Elmira, N.Y. and Pharmagraphics of Portland, Conn.
  • the elements that form the lock and release mechanism can include detents, buttons, push tabs, recesses, apertures, locking tab support structures, ribs, protrusions, combinations thereof, and the like.
  • the slide card 150 can be inserted into each of the compartments defined by the tubular structures T 1 , T 2 of the multi-sleeve structure 12 to form a package.
  • the following method of inserting the slide card 150 into a tubular structure T 1 , T 2 is described for purposes of teaching and not limitation.
  • the locking tab 154 is folded along fold line 160 to be at an angle with the base panel 152 .
  • the slide card 150 is then inserted into the opening of the tubular structure T 1 , T 2 such that the edge of the slide card 150 defined by the fold line 160 is positioned toward the end wall 148 and engaging tab 154 is positioned toward the inner panel 32 , 28 or composite wall of the tubular structure T 1 , T 2 .
  • the slide card 150 becomes releasably secured in the tubular structure T 1 , T 2 by the elements of the lock and release mechanism.
  • the distal edge E 4 of the locking tab 154 is received in the locking aperture 62 , 66 so as to be in contact with the locking edge E 1 and the wall 124 , 120 .
  • the hinged connection between the base panel 152 and the locking tab 154 has an inherent spring resistance that forces the distal edge E 4 of the locking tab 154 into the locking aperture 62 , 66 .
  • the slide card 150 can be removed from the tubular structure T 1 , T 2 as the release tab 54 , 58 is depressed to displace the distal edge E 4 of the locking tab 154 from the locking edge E 1 of the locking aperture 62 , 66 .
  • the locking aperture 62 , 64 defines the inner release tab 64 , 68 to deflect with the release tab 54 , 58 .
  • the inner release tab 64 , 68 is omitted and the release tab 54 , 58 deflects through the locking aperture 62 , 64 .
  • the tubular structures T 1 , T 2 further include means for retention of the slide card 150 such that slide cards 150 cannot be fully removed from the tubular structures T 1 , T 2 .
  • edges E 2 , E 3 provide means for retention. Specifically, the distal edge E 4 of the locking tab 154 is received in the retention aperture 70 , 72 so as to contact the retention edge E 2 .
  • the retention edge E 2 is reinforced by the retention edge E 3 of the retention panel 74 , 76 .
  • means for retention is provided by the retention panels 74 , 76 where the retention panels 74 , 76 are not adhered to the adjacent panel 28 , 32 , but rather interlock with the locking tab 154 to prevent complete removal of the slide card 150 from the multi-sleeve structure 12 .
  • means for retention can include elastic bands, detents, recesses, apertures, ribs, protrusions, combinations thereof, and the like.
  • the configuration of the multi-sleeve structure is not limited to the embodiment described above. Rather, many variations of the multi-sleeve structure can be formed including, as described in further detail below, versions where the tubular structures are stacked on top of each other rather than side by side, versions where the open ends of the tubular structures are at opposite ends of the multi-sleeve structure rather than at the same end, and versions that provide more than two tubular structures.
  • the variations of the multi-sleeve structures can be formed from alternative embodiments of blanks.
  • the number, configuration, and/or dimensions of the outer panels, inner panels, or other panels is altered.
  • the number and/or position of elements that at least partially form a lock and release mechanism, a retention mechanism, and that facilitate access to a slide card is altered.
  • the blank 400 includes multiple sets S 1 , S 2 of panels for forming tubular structures T 1 , T 2 .
  • Each set S 1 , S 2 of panels includes outer panels P 1 that define the walls of a tubular structure T 1 , T 2 and an inner panel P 2 that at least partially defines a composite wall of a tubular structure T 1 , T 2 .
  • Each set S 1 , S 2 of panels includes a top panel 420 a , 420 b , a first side panel 422 a , 422 b , a bottom panel 424 a , 424 b , a second side panel 426 a , 426 b , and a top inner panel 428 a , 428 b that are hingedly connected one to the next along fold lines 434 a , 434 b , 436 a , 436 b , 438 a , 438 b , 440 a , 440 b .
  • the sets S 1 , S 2 of panels are hingedly connected to one another. Specifically, the top panels 420 a , 420 b are hingedly connected along a fold line 441 .
  • the blank 400 includes end flaps 446 a , 446 b , 450 a , 450 b that are hingedly connected to top and bottom panels 420 a , 420 b , 424 a , 424 b , respectively, along fold lines 448 a , 448 b , 452 a , 452 b .
  • the top panels 420 a , 420 b include release tabs 454 a , 454 b defined by severance lines 456 a , 456 b , as described above, and the top inner panels 428 a , 428 b include locking apertures 462 a , 462 b that define inner release tabs 464 a , 464 b , as described above.
  • the blank 400 includes retention flaps 474 a , 474 b hingedly connected along fold lines 478 a , 478 b , notches 482 a , 482 b , 488 a , 488 b , and apertures 490 a , 490 b , as described above.
  • each set S 1 , S 2 of panels is folded and secured to form a tubular structure T 1 , T 2 .
  • glue or other adhesive is applied to the outside surface of the top inner panel 428 a , 428 b and the blank 400 is folded along fold lines 436 a , 436 b , 440 a , 440 b such that the outside surface of the top inner panel 428 a , 428 b is disposed in flat face contact with, and thereby secured to, the top panel 420 a , 420 b , respectively, to define a composite top wall 520 a , 520 b .
  • the multi-sleeve structure 500 is arranged in a collapsed condition.
  • the multi-sleeve structure 500 can be erected as shown in FIG. 5 such that the panels define the walls of the tubular structures T 1 , T 2 .
  • the panels of the blanks described herein can be attached or secured to one another by any means for attaching including, but not limited to, mechanical fasteners, tape, staples, glue or other adhesives, chemical bonding, interlocking elements of the panels, combinations thereof, and the like.
  • the tubular structures T 1 , T 2 are hingedly connected to one another along the fold line 441 .
  • the hinged connection allows the tubular structures T 1 , T 2 to move independently and, in this embodiment, composite top walls 520 a , 520 b of the tubular structures T 1 , T 2 can be disposed in flat face contact with one another such that the release tabs 454 a , 454 b are concealed in order to provide a greater level of child resistance.
  • the multi-sleeve structure 500 can include means for releasably securing the tubular structures T 1 , T 2 to one another such that the composite top walls 520 a , 520 b remain in flat face contact with one another until released.
  • Means for releasably securing includes, but is not limited to, mechanical fasteners, glue or other adhesives, tape, bands, sleeves, lock and release mechanisms, combinations thereof, and the like.
  • FIG. 6 another alternative embodiment of a blank 600 is illustrated that can be folded and secured to form a multi-sleeve structure 700 as shown in FIG. 7 .
  • This embodiment is similar to the embodiment illustrated in FIGS. 4 and 5 . Accordingly, similar elements are designated with similar numbers, the difference being that the prefix “4” is replaced with the prefix “6” and the prefix “5” is replaced with the prefix “7”. Further, because of the similarities, only the material differences in the embodiments will be discussed in detail.
  • each set S 1 , S 2 of panels is hingedly connected to an edge of a spine panel 643 along fold lines 645 , 647 , respectively.
  • the tubular structures T 1 , T 2 are joined by the spine panel 643 .
  • the tubular structures T 1 , T 2 can move independently of one another and can be arranged such that release tabs 654 a , 654 b are exposed.
  • FIG. 8 yet another alternative embodiment of a blank 800 is illustrated, following the similar but different numbering scheme explained immediately above, that can be folded and secured to form a multi-sleeve structure 900 as shown in FIG. 9 .
  • the dimensions of the outer panels P 1 and the number and dimensions of the inner panels P 2 are such that, when the multi-sleeve structure 900 is erected, the tubular structures T 1 , T 2 are vertically stacked on one another.
  • the outer panels P 1 include a top panel 820 , a first side panel 822 , a bottom panel 824 , and a second side panel 826 that are hingedly connected one to the next along fold lines 834 , 836 , 838 .
  • the inner panels P 2 include a top inner panel 828 , a first spacing panel 829 , a divider panel 830 , a second spacer panel 831 , and a bottom inner panel 832 that are hingedly connected along fold lines 842 , 843 , 844 , 845 .
  • the outer panels P 1 are hingedly connected to the inner panels P 2 .
  • the second side panel 826 is hingedly connected to the top inner panel 826 along a fold line 840 .
  • End flaps 846 , 847 , 850 , 851 are hingedly connected to outer panels 820 , 822 , 824 , 826 along fold lines 848 , 849 , 852 , 853 .
  • the blank 800 includes elements that define a lock and release mechanism as the blank 800 is erected to form the multi-sleeve structure 900 .
  • the top and bottom panels 820 , 824 include release tabs 854 , 858 defined by severance lines 856 , 860 .
  • the top and bottom inner panels 828 , 832 include locking apertures 862 , 866 that define inner release tabs 864 , 868 .
  • the blank 800 includes retention flaps 874 , 876 that are hingedly connected to top and bottom inner panels 828 , 832 along fold lines 878 , 880 that provide means for retention.
  • the blank includes notches 882 , 886 in top and bottom panels 820 , 824 , apertures 890 , 892 in top and bottom inner panels 828 , 832 , and a notch 894 in the divider panel 830 that facilitate access to slide cards disposed in the tubular structures of the multi-sleeve structure 900 .
  • the multi-sleeve structure 900 can be formed from the blank 800 according to the following non-limiting method for folding and securing the blank 800 .
  • the surface of the blank 800 shown in FIG. 8 is designated as the outside surface and the opposite surface is designated the inside surface.
  • the retention flaps 874 , 876 are folded along the fold lines 878 , 880 such that the inside surface of the retention flap 874 is in flat face contact with the inside surface of the top inner panel 828 and the outside surface of the retention flap 876 is in flat face contact with the outside surface of the bottom inner panel 832 .
  • glue or other adhesive is applied to the inside surface of the bottom inner panel 832 and the blank is folded along the fold line 842 such that the inside surfaces of the panels 829 , 830 , 831 , 832 are in flat face contact with the inside surfaces of the panels 824 , 826 , 828 .
  • the bottom inner panel 832 is thereby secured to the bottom panel 824 .
  • the blank 800 is further folded along aligned fold lines 838 , 845 such that the outside surface of the panel 831 and a portion of the panel 830 are in flat face contact with the outside surface of the inner bottom panel 832 , and the outside surfaces of the panel 829 and a portion of the panel 830 are in flat face contact with the inside surface of the first side panel 822 .
  • Glue or other adhesive is applied to the outside surface of the top inner panel 828 and the top panel 820 is folded along the fold line 834 such that the inside surface of the top panel 820 is disposed in flat face contact with, and thereby secured to, the outside surface of the top inner panel 828 .
  • the spacing panels 829 , 831 can be optionally secured to the first and second side panels 822 , 826 .
  • An end wall of the multi-sleeve structure can be formed by folding the end flaps 846 , 847 , 850 , 851 along the fold lines 848 , 849 , 852 , 853 to overlap one another and securing the end flaps 846 , 847 , 850 , 851 to one another.
  • FIG. 10 yet another alternative embodiment of a blank 1000 is illustrated that can be folded and secured to form a multi-sleeve structure 1100 as shown in FIG. 11 .
  • This embodiment is substantially similar to the embodiment illustrated in FIGS. 1 and 2 . Accordingly, similar elements are designated with similar numbers, the difference being that the prefix “10” is added to the elements of FIG. 1 . Further, because of the similarities, only the material differences in the embodiments will be discussed in detail.
  • the blank 1000 continues a pattern of an arrangement of panels and elements to provide a multi-sleeve structure 1100 that includes three tubular structures T 1 , T 2 , T 3 . It should be understood that the pattern can be used to provide a multi-sleeve structure with any number of tubular structures.
  • the blank 1000 includes additional inner panels P 2 , the outer panels P 1 of the blank 1000 have been alternatively dimensioned, and the blank 1000 includes additional lock and release elements.
  • the addition inner panels P 2 are a second divider panel 1031 and a second top inner panel 1033 .
  • the second divider panel 1031 is hingedly connected to the bottom inner panel 1032 along fold line 1044 and the second top inner panel 1033 is hingedly connected to the second divider panel 1031 along a fold line 1045 .
  • the top and bottom panels 1020 , 1024 each have a width that is substantially equal to the widths of the inner panels 1028 , 1032 , and 1033 combined. Accordingly, the width of each of the top and bottom panels can be defined as a function of the number of inner panels or tubular structures.
  • the widths of the first and second side panels 1022 , 1026 and the widths of the divider panels 1030 , 1031 are substantially equal to one another.
  • Each of the inner panels 1028 , 1032 , 1033 include the elements of the lock and release mechanism described above.
  • the second top inner panel 1033 includes a locking aperture 1063 that defines an inner release tab 1065 .
  • the top panel 1020 includes a second release tab 1055 that is defined by a severance line 1057 .
  • the second release tab 1055 is positioned so as to functionally align with the locking aperture 1063 as the multi-sleeve structure 1100 is erected.
  • the blank 1000 can be folded and secured to form the multi-sleeve structure 1100 according to the following non-limiting method.
  • the blank 1000 can first be folded and secured to form a multi-sleeve structure 1100 in a collapsed condition. Glue or other adhesive is applied to the inside surface of the bottom inner panel 1032 and the blank is folded along the fold line 1040 such that the inside surface of the bottom inner panel 1032 is in flat face contact with and secured to the inside surface of the bottom panel 1024 .
  • Glue or other adhesive is applied to the outside surfaces of the first and second top inner panels 1028 , 1033 and the top panel 1020 is folded along the fold line 1034 such that the inside surface of the top panel 1020 is in flat face contact with and secured to the outside surface of the first and second top inner panels 1028 , 1033 .
  • the collapsed multi-sleeve structure 1100 can thereafter be erected.
  • An end wall of the multi-sleeve structure 1100 is formed as the end flaps 1046 , 1050 are folded to overlap one another and are secured to one another.
  • the tubular structures T 1 , T 2 , T 3 each include the lock and release mechanism described herein.

Abstract

The multi-sleeve structure (12, 500, 700, 900, 1100) includes a plurality of tubular structures (T1, T2, T3) for receiving slide cards (150). Each of the tubular structures (T1, T2, T3) is defined by a plurality of walls and includes elements of a lock and release mechanism for releasably locking a slide card (150) within the tubular structure (T1, T2, T3).

Description

    TECHNICAL FIELD
  • This invention relates generally to packages and, more specifically, to packages with multi-sleeve structures for receiving slide cards.
  • DESCRIPTION OF THE RELATED ART
  • Known packages include an outer sleeve and a slide card that is received in the outer sleeve. Such a package is useful in many applications as the slide card can be repeatedly removed from and returned to the outer sleeve, for example, in order to dispense unit doses from the package. For this use, the package allows the user to track the consumption of doses according to a prescribed schedule.
  • Certain of the known packages include a lock and release mechanism that provides a level of child resistance. In such embodiments, the slide card can be releasably locked in the outer sleeve and actions that are counter intuitive to a child are required to release the slide card from the outer sleeve.
  • In certain prescription regimens, it is desired that the package include a greater amount of unit doses than what is included on a standard slide card. To that end, a previous solution has been to alter the slide card design or to scale the package to fit a greater number of doses. However, altering or customizing the slide card for each application adds additional manufacturing cost. In other prescription regimens, multiple different unit doses are taken by a patient, and those unit doses are separately packaged. To that end, the patient must track multiple, separate packages. What is needed is a package that is simple to manufacture and that is configured to include a greater amount of doses and/or different doses.
  • BRIEF SUMMARY OF THE INVENTION
  • The various embodiments of the present invention overcome the shortcomings of the prior art by providing a multi-sleeve structure for receiving a plurality of slide cards. For example, for applications where each slide card includes an integral blister pack, the multi-sleeve structure can package, store, and dispense an increased number of doses from the blister packs. The multi-sleeve structure is cost effective in that the same slide cards can be used as are used for single-sleeve structures.
  • The multi-sleeve structure includes a plurality of tubular structures for receiving slide cards. Each tubular structure is defined by a plurality of walls and includes elements of a lock and release mechanism for releasably locking a slide card within the tubular structure.
  • In certain embodiments, each tubular structure includes a composite wall that is defined by an inner panel and an outer panel. The inner panel includes a locking aperture and the outer panel includes a release tab. The locking aperture and the release tab functionally align to cooperate with a locking tab of a slide card.
  • In certain embodiments, a first one of the tubular structures is hingedly connected to a second one of the tubular structures. Thereby, the multi-sleeve structure can be arranged such that walls of the first and second tubular structures are in flat face contact, for example, to conceal release tabs that are disposed in the walls. Alternatively, the first and second tubular structures can be hingedly connected by a spine panel.
  • In certain embodiments, adjacent tubular structures share, or are defined by, a divider wall. In such embodiments, one or more divider walls extend between the outer walls of the multi-sleeve structure.
  • The foregoing has broadly outlined some of the aspects and features of the present invention, which should be construed to be merely illustrative of various potential applications of the invention. Other beneficial results can be obtained by applying the disclosed information in a different manner or by combining various aspects of the disclosed embodiments. Accordingly, other aspects and a more comprehensive understanding of the invention may be obtained by referring to the detailed description of the exemplary embodiments taken in conjunction with the accompanying drawings, in addition to the scope of the invention defined by the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view of an exemplary embodiment of a blank, according to the present invention.
  • FIG. 2 is a perspective view of a multi-sleeve structure formed from the blank of FIG. 1.
  • FIG. 3 is a perspective view of an exemplary embodiment of a slide card.
  • FIG. 4 is a plan view of an alternative embodiment of a blank, according to the present invention.
  • FIG. 5 is a perspective view of a multi-sleeve structure formed from the blank of FIG. 4.
  • FIG. 6 is a plan view of an alternative embodiment of a blank, according to the present invention.
  • FIG. 7 is a perspective view of a multi-sleeve structure formed from the blank of FIG. 6
  • FIG. 8 is a plan view of an alternative embodiment of a blank, according to the present invention.
  • FIG. 9 is a perspective view of a multi-sleeve structure formed from the blank of FIG. 8.
  • FIG. 10 is a plan view of an alternative embodiment of a blank, according to the present invention.
  • FIG. 11 is a perspective view of a multi-sleeve structure formed from the blank of FIG. 10.
  • DETAILED DESCRIPTION
  • As required, detailed embodiments of the present invention are disclosed herein. It must be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms, and combinations thereof. As used herein, the word “exemplary” is used expansively to refer to embodiments that serve as illustrations, specimens, models, or patterns. The figures are not necessarily to scale and some features may be exaggerated or minimized to show details of particular components. In other instances, well-known components, systems, materials, or methods have not been described in detail in order to avoid obscuring the present invention. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention.
  • It will be understood that the exemplary embodiments illustrate a package for packaging; storing, and dispensing various products. In certain applications the package provides primary packaging for products and, in other applications, the package provides secondary packaging for packaged products. For purposes of illustration, the exemplary embodiments of the package are illustrated in the context of a package for packaging, storing, and dispensing medicaments that are packaged in a blister pack that is associated with or integral to a slide card. However, the package taught and claimed herein can be scaled or otherwise altered for alternative items or products.
  • Referring now to the drawings in which like numerals indicate like elements throughout the several views, the drawings illustrate certain of the various aspects of exemplary embodiments of a package that includes a multi-sleeve structure and a plurality of slide cards. Generally described, the multi-sleeve structure includes a plurality of tubular structures that define sleeves, compartments, or slots for receiving the slide cards. Additionally, each of the tubular structures includes means for releasably locking a slide card in the tubular structure.
  • The multi-sleeve structure and the inner slide cards are formed from blanks. The blanks can be formed from any suitable material including, but not limited to, paperboard, plastic, cardboard, combinations thereof, and the like. Alternatively, the multi-sleeve structure can be formed by alternative processes including thermoforming, molding, casting, prototyping, combinations thereof, and the like. The selection of material to form the package can be made according to certain packaging needs or constraints. For example, to package medicines, the selected material should be recognized as safe by the Food and Drug Administration (FDA).
  • Referring to FIG. 1, an exemplary embodiment of a blank 10 is illustrated. The blank 10 can be folded and secured to form an exemplary embodiment of a multi-sleeve structure 12, as shown in FIG. 2. In alternative embodiments, the multi-sleeve structure 12 can be formed from two or more blanks.
  • The blank 10 includes outer panels P1 and inner panels P2. The outer panels P1 of the blank 10 include a top panel 20, a first side panel 22, a bottom panel 24, and a second side panel 26. The outer panels P1 are aligned along a longitudinal axis and hingedly connected one to the next along fold lines 34, 36, 38 that are substantially perpendicular to the longitudinal axis. The inner panels P2 of the blank 10 include a top inner panel 28, a divider panel 30, and a bottom inner panel 32. The inner panels P2 are aligned along a longitudinal axis and hingedly connected one to the next along fold lines 42, 44 that are substantially perpendicular to the longitudinal axis. In the exemplary embodiment, the inner panels P2 are hingedly connected to the outer panels P1. Specifically, the second side panel 26 is hingedly connected to the top inner panel 28 along a fold line 40. The blank 10 further includes a top end flap 46 that is hingedly connected to the top panel 20 along a fold line 48 and a bottom end flap 50 that is hingedly connected to the bottom panel 24 along a fold line 52.
  • The blank 10 includes elements that can be arranged to form a lock and release mechanism for an exemplary slide card, as described in further detail below. The elements that form the lock and release mechanism include top and bottom release tabs 54, 58 that are defined by severance lines 56, 60 in the top and bottom panels 20, 24, respectively, and locking apertures 62, 66 that are disposed in top and bottom inner panels 28, 32, respectively. Each of the locking apertures 62, 66 defines a locking edge E1 and inner release tabs 64, 68, respectively.
  • The exemplary blank 10 includes elements that can be arranged to form a retention mechanism for an exemplary slide card, as described in further detail below. The elements that form the retention mechanism include retention apertures 70, 72 and retention flaps 74, 76 that are hingedly connected to the top and bottom inner panels 28, 32 along fold lines 78, 80, respectively. The apertures 70, 72 define retention edges E2 and the distal ends of the retention flaps 74, 76 define retention edges E3.
  • In the exemplary embodiment, the blank 10 includes elements that facilitate access to a slide card, as described in further detail below. The access elements include notches 82, 84 that are disposed along an edge of top panel 20, notches 86, 88 that are disposed along an edge of bottom panel 24, and apertures 90, 92. Each aperture 90, 92 interrupts a fold line 78, 80 so as to be at least partially disposed on an inner panel 28, 32 and at least partially disposed on a retention flap 74, 76. The retention flaps 74, 76 can be folded along the fold lines 78, 80 such that the apertures 90, 92 define notches, as described in further detail below.
  • A non limiting method of erecting the blank 10 to form the multi-sleeve structure 12 is now described. It should be understood by those skilled in the art that the method of erecting the multi-sleeve structure from the blank is not limited to the steps described herein or to the particular sequence of the steps described herein. For purposes of clarity, the side of the blank 10 that is shown in FIG. 1 is designated as the unprinted side that defines the inside surface and the opposite side is designated as the printed side that defines the outside surface.
  • The retention panels 74, 76 are folded along fold lines 78, 80, respectively, such that the unprinted side of the retention panel 74 overlaps or is in flat face contact with the unprinted side of top inner panel 28 and such that the printed side of retention panel 76 overlaps or is in flat face contact with the printed side of bottom inner panel 32. Thereby, retention edges E3 substantially align with retention edges E2 and notches N1, N2 are defined as the retention panels 74, 76 are folded along fold lines 78, 80.
  • The blank 10 can be folded and secured to form a multi-sleeve structure 12 in a collapsed condition, for example, for purposes of stacking and transporting. The collapsed multi-sleeve structure 12 can thereafter be erected to form the multi-sleeve structure 12 shown in FIG. 2. Referring to FIG. 1, to fold and secure the blank 10 as a collapsed multi-sleeve structure 12, glue or other adhesive is applied to the unprinted surface of the bottom inner panel 32 and the blank 10 is folded along the fold line 40 such that the unprinted sides of the inner panels P2 are in flat face contact with the unprinted sides of the bottom panel 24 and second side panel 26. Thereby, the bottom inner panel 32 is secured to the bottom panel 24, the bottom release tab 58 functionally aligns with the locking aperture 66, and the notch N2 functionally aligns with the notch 86.
  • Continuing with the method of forming a collapsed multi-sleeve structure 12, glue or other adhesive is applied to the printed side of the top inner panel 28 and the blank 10 is folded along the fold line 36 such that the unprinted sides of the top panel 20 and first side panel 22 are in flat face contact with the printed sides of the inner panels P2. Thereby, the top inner panel 28 is secured to the top panel 20, the top release tab 54 functionally aligns with the locking aperture 62, and the notch N1 functionally aligns with the notch 82.
  • Referring to FIG. 2, the collapsed multi-sleeve structure 12 is erected as the top panel 20 and the bottom panel 24 are pulled from one another such that the first and second side panels 22, 26 and the divider panel 30 are substantially parallel to one another and are substantially perpendicular to the top and bottom panels 20, 24.
  • Thereafter, the outer panels P1 define the outer walls of the multi-sleeve structure 12. The top panel defines a top wall 120, the first side panel 22 defines a first side wall 122, the bottom panel 24 defines a bottom wall 124, and the second side panel 26 defines a second side wall 126. The top and bottom end flaps 46, 50 are folded along fold lines 48, 52 toward one another and secured to one another to define an end wall 148. The inner panels P2 define composite portions of the top and bottom walls 120, 124 and define a divider wall 130 as the divider panel 30 is erected within the outer walls.
  • The divider wall 130 defines a shared wall of adjacent tubular structures T1, T2. Each of the tubular structures T1, T2 is dimensioned for receiving an exemplary slide card and includes a composite wall with elements of a lock and release mechanism. The first tubular structure T1 is defined by the divider wall 130, a portion of the top wall 120, a composite bottom wall defined by the bottom inner panel 32 and a portion of the bottom wall 124, and the first side wall 122. The second tubular structure T2 is defined by the divider wall 130, a portion of the bottom wall 124, a composite top wall defined by the top inner panel 28 and a portion of the top wall 120, and the second side wall 126.
  • Referring to FIG. 3, an exemplary slide card 150 that can be received and releasably secured in one of the tubular structures T1, T2 of the multi-sleeve structure 12 includes a base panel 152 that is hingedly connected to a locking tab 154 along a fold line 160. In the exemplary embodiment, the base panel 152 provides at least part of the flange portion of a blister pack. The blister pack includes blisters 156 that are secured or integral to the base panel 152 and that house articles 158, such as medications or tablets. It should be understood that, in alternative embodiments, thermoformed or paperboard trays, inserts, structures or other means for receiving including mechanical fasteners, chemical based fasteners, combinations thereof, and the like can be mounted or integral to the slide card so as to receive, contain, or support various products, articles, or items such as vials, syringes, combinations thereof, and the like. For example, slide cards can be configured as illustrated and described in International Application No. PCT/US2004/038405 and International Application No. PCT/US2004/039032, which are incorporated herein by reference. Advantageously, different slide card configurations for holding different products can be received in the tubular structures of the multi-sleeve structure. For example, a slide card that is configured to hold vials and a slide card that is configured to hold syringes can be loaded with vials of medications and syringes for administering the medications, respectively, and the loaded slide cards can be packaged together in the multi-sleeve structure. Further, one or more of the tubular structures can receive other items such as patient information, instruction booklets, coupons, marketing materials, electronic media, and the like.
  • It should be understood that the lock and release mechanism is not limited to the illustrated elements. Rather, any known elements can be substituted for the illustrated elements. For example, the locking tab 154 and locking apertures 62, 66 can be substituted with those taught in patents and published applications now or formally assigned to the present applicant, and other entities such as Howell Packaging of Elmira, N.Y. and Pharmagraphics of Portland, Conn. Further, the elements that form the lock and release mechanism can include detents, buttons, push tabs, recesses, apertures, locking tab support structures, ribs, protrusions, combinations thereof, and the like.
  • The slide card 150 can be inserted into each of the compartments defined by the tubular structures T1, T2 of the multi-sleeve structure 12 to form a package. The following method of inserting the slide card 150 into a tubular structure T1, T2 is described for purposes of teaching and not limitation. The locking tab 154 is folded along fold line 160 to be at an angle with the base panel 152. The slide card 150 is then inserted into the opening of the tubular structure T1, T2 such that the edge of the slide card 150 defined by the fold line 160 is positioned toward the end wall 148 and engaging tab 154 is positioned toward the inner panel 32, 28 or composite wall of the tubular structure T1, T2.
  • As the slide card 150 is substantially fully inserted in the tubular structure T1, T2, the slide card 150 becomes releasably secured in the tubular structure T1, T2 by the elements of the lock and release mechanism. Specifically, the distal edge E4 of the locking tab 154 is received in the locking aperture 62, 66 so as to be in contact with the locking edge E1 and the wall 124, 120. The hinged connection between the base panel 152 and the locking tab 154 has an inherent spring resistance that forces the distal edge E4 of the locking tab 154 into the locking aperture 62, 66. The slide card 150 can be removed from the tubular structure T1, T2 as the release tab 54, 58 is depressed to displace the distal edge E4 of the locking tab 154 from the locking edge E1 of the locking aperture 62, 66. In the exemplary embodiment, the locking aperture 62, 64 defines the inner release tab 64, 68 to deflect with the release tab 54, 58. In alternative embodiments, the inner release tab 64, 68 is omitted and the release tab 54, 58 deflects through the locking aperture 62, 64.
  • The tubular structures T1, T2 further include means for retention of the slide card 150 such that slide cards 150 cannot be fully removed from the tubular structures T1, T2. In the exemplary embodiment, edges E2, E3 provide means for retention. Specifically, the distal edge E4 of the locking tab 154 is received in the retention aperture 70, 72 so as to contact the retention edge E2. The retention edge E2 is reinforced by the retention edge E3 of the retention panel 74, 76. In alternative embodiments, means for retention is provided by the retention panels 74, 76 where the retention panels 74, 76 are not adhered to the adjacent panel 28, 32, but rather interlock with the locking tab 154 to prevent complete removal of the slide card 150 from the multi-sleeve structure 12. In other embodiments, means for retention can include elastic bands, detents, recesses, apertures, ribs, protrusions, combinations thereof, and the like.
  • It should be noted that the configuration of the multi-sleeve structure is not limited to the embodiment described above. Rather, many variations of the multi-sleeve structure can be formed including, as described in further detail below, versions where the tubular structures are stacked on top of each other rather than side by side, versions where the open ends of the tubular structures are at opposite ends of the multi-sleeve structure rather than at the same end, and versions that provide more than two tubular structures.
  • The variations of the multi-sleeve structures can be formed from alternative embodiments of blanks. In certain alternative embodiments, the number, configuration, and/or dimensions of the outer panels, inner panels, or other panels is altered. Additionally, in certain embodiments, the number and/or position of elements that at least partially form a lock and release mechanism, a retention mechanism, and that facilitate access to a slide card is altered.
  • Referring to FIG. 4, an alternative embodiment of a blank 400 is illustrated that can be folded and secured to form a multi-sleeve structure 500 as shown in FIG. 5. In this embodiment, the blank 400 includes multiple sets S1, S2 of panels for forming tubular structures T1, T2. Each set S1, S2 of panels includes outer panels P1 that define the walls of a tubular structure T1, T2 and an inner panel P2 that at least partially defines a composite wall of a tubular structure T1, T2.
  • Each set S1, S2 of panels includes a top panel 420 a, 420 b, a first side panel 422 a, 422 b, a bottom panel 424 a, 424 b, a second side panel 426 a, 426 b, and a top inner panel 428 a, 428 b that are hingedly connected one to the next along fold lines 434 a, 434 b, 436 a, 436 b, 438 a, 438 b, 440 a, 440 b. The sets S1, S2 of panels are hingedly connected to one another. Specifically, the top panels 420 a, 420 b are hingedly connected along a fold line 441.
  • The blank 400 includes end flaps 446 a, 446 b, 450 a, 450 b that are hingedly connected to top and bottom panels 420 a, 420 b, 424 a, 424 b, respectively, along fold lines 448 a, 448 b, 452 a, 452 b. The top panels 420 a, 420 b include release tabs 454 a, 454 b defined by severance lines 456 a, 456 b, as described above, and the top inner panels 428 a, 428 b include locking apertures 462 a, 462 b that define inner release tabs 464 a, 464 b, as described above. Further, the blank 400 includes retention flaps 474 a, 474 b hingedly connected along fold lines 478 a, 478 b, notches 482 a, 482 b, 488 a, 488 b, and apertures 490 a, 490 b, as described above.
  • To erect the multi-sleeve structure 500 shown in FIG. 5, each set S1, S2 of panels is folded and secured to form a tubular structure T1, T2. According to a non-limiting method, glue or other adhesive is applied to the outside surface of the top inner panel 428 a, 428 b and the blank 400 is folded along fold lines 436 a, 436 b, 440 a, 440 b such that the outside surface of the top inner panel 428 a, 428 b is disposed in flat face contact with, and thereby secured to, the top panel 420 a, 420 b, respectively, to define a composite top wall 520 a, 520 b. Thereafter, the multi-sleeve structure 500 is arranged in a collapsed condition. The multi-sleeve structure 500 can be erected as shown in FIG. 5 such that the panels define the walls of the tubular structures T1, T2.
  • It should be understood that the panels of the blanks described herein can be attached or secured to one another by any means for attaching including, but not limited to, mechanical fasteners, tape, staples, glue or other adhesives, chemical bonding, interlocking elements of the panels, combinations thereof, and the like.
  • The tubular structures T1, T2 are hingedly connected to one another along the fold line 441. The hinged connection allows the tubular structures T1, T2 to move independently and, in this embodiment, composite top walls 520 a, 520 b of the tubular structures T1, T2 can be disposed in flat face contact with one another such that the release tabs 454 a, 454 b are concealed in order to provide a greater level of child resistance. In alternative embodiments, the multi-sleeve structure 500 can include means for releasably securing the tubular structures T1, T2 to one another such that the composite top walls 520 a, 520 b remain in flat face contact with one another until released. Means for releasably securing includes, but is not limited to, mechanical fasteners, glue or other adhesives, tape, bands, sleeves, lock and release mechanisms, combinations thereof, and the like.
  • Referring to FIG. 6, another alternative embodiment of a blank 600 is illustrated that can be folded and secured to form a multi-sleeve structure 700 as shown in FIG. 7. This embodiment is similar to the embodiment illustrated in FIGS. 4 and 5. Accordingly, similar elements are designated with similar numbers, the difference being that the prefix “4” is replaced with the prefix “6” and the prefix “5” is replaced with the prefix “7”. Further, because of the similarities, only the material differences in the embodiments will be discussed in detail.
  • In this embodiment, each set S1, S2 of panels is hingedly connected to an edge of a spine panel 643 along fold lines 645, 647, respectively. Thereby, as each set S1, S2 of panels is folded and secured to form a tubular structure T1, T2 as described above, the tubular structures T1, T2 are joined by the spine panel 643. Thereby, the tubular structures T1, T2 can move independently of one another and can be arranged such that release tabs 654 a, 654 b are exposed.
  • Referring to FIG. 8, yet another alternative embodiment of a blank 800 is illustrated, following the similar but different numbering scheme explained immediately above, that can be folded and secured to form a multi-sleeve structure 900 as shown in FIG. 9. In this embodiment, the dimensions of the outer panels P1 and the number and dimensions of the inner panels P2 are such that, when the multi-sleeve structure 900 is erected, the tubular structures T1, T2 are vertically stacked on one another.
  • The outer panels P1 include a top panel 820, a first side panel 822, a bottom panel 824, and a second side panel 826 that are hingedly connected one to the next along fold lines 834, 836, 838. The inner panels P2 include a top inner panel 828, a first spacing panel 829, a divider panel 830, a second spacer panel 831, and a bottom inner panel 832 that are hingedly connected along fold lines 842, 843, 844, 845. The outer panels P1 are hingedly connected to the inner panels P2. Specifically, the second side panel 826 is hingedly connected to the top inner panel 826 along a fold line 840. End flaps 846, 847, 850, 851 are hingedly connected to outer panels 820, 822, 824, 826 along fold lines 848, 849, 852, 853.
  • The blank 800 includes elements that define a lock and release mechanism as the blank 800 is erected to form the multi-sleeve structure 900. The top and bottom panels 820, 824 include release tabs 854, 858 defined by severance lines 856, 860. The top and bottom inner panels 828, 832 include locking apertures 862, 866 that define inner release tabs 864, 868. The blank 800 includes retention flaps 874, 876 that are hingedly connected to top and bottom inner panels 828, 832 along fold lines 878, 880 that provide means for retention. The blank includes notches 882, 886 in top and bottom panels 820, 824, apertures 890, 892 in top and bottom inner panels 828, 832, and a notch 894 in the divider panel 830 that facilitate access to slide cards disposed in the tubular structures of the multi-sleeve structure 900.
  • The multi-sleeve structure 900 can be formed from the blank 800 according to the following non-limiting method for folding and securing the blank 800. For clarity, the surface of the blank 800 shown in FIG. 8 is designated as the outside surface and the opposite surface is designated the inside surface. The retention flaps 874, 876 are folded along the fold lines 878, 880 such that the inside surface of the retention flap 874 is in flat face contact with the inside surface of the top inner panel 828 and the outside surface of the retention flap 876 is in flat face contact with the outside surface of the bottom inner panel 832.
  • To fold and secure the blank 800 such that the multi-sleeve structure is in a collapsed condition, glue or other adhesive is applied to the inside surface of the bottom inner panel 832 and the blank is folded along the fold line 842 such that the inside surfaces of the panels 829, 830, 831, 832 are in flat face contact with the inside surfaces of the panels 824, 826, 828. The bottom inner panel 832 is thereby secured to the bottom panel 824.
  • The blank 800 is further folded along aligned fold lines 838, 845 such that the outside surface of the panel 831 and a portion of the panel 830 are in flat face contact with the outside surface of the inner bottom panel 832, and the outside surfaces of the panel 829 and a portion of the panel 830 are in flat face contact with the inside surface of the first side panel 822. Glue or other adhesive is applied to the outside surface of the top inner panel 828 and the top panel 820 is folded along the fold line 834 such that the inside surface of the top panel 820 is disposed in flat face contact with, and thereby secured to, the outside surface of the top inner panel 828. The spacing panels 829, 831 can be optionally secured to the first and second side panels 822, 826. An end wall of the multi-sleeve structure can be formed by folding the end flaps 846, 847, 850, 851 along the fold lines 848, 849, 852, 853 to overlap one another and securing the end flaps 846, 847, 850, 851 to one another.
  • Referring to FIG. 10, yet another alternative embodiment of a blank 1000 is illustrated that can be folded and secured to form a multi-sleeve structure 1100 as shown in FIG. 11. This embodiment is substantially similar to the embodiment illustrated in FIGS. 1 and 2. Accordingly, similar elements are designated with similar numbers, the difference being that the prefix “10” is added to the elements of FIG. 1. Further, because of the similarities, only the material differences in the embodiments will be discussed in detail.
  • In this embodiment, the blank 1000 continues a pattern of an arrangement of panels and elements to provide a multi-sleeve structure 1100 that includes three tubular structures T1, T2, T3. It should be understood that the pattern can be used to provide a multi-sleeve structure with any number of tubular structures.
  • The blank 1000 includes additional inner panels P2, the outer panels P1 of the blank 1000 have been alternatively dimensioned, and the blank 1000 includes additional lock and release elements. The addition inner panels P2 are a second divider panel 1031 and a second top inner panel 1033. The second divider panel 1031 is hingedly connected to the bottom inner panel 1032 along fold line 1044 and the second top inner panel 1033 is hingedly connected to the second divider panel 1031 along a fold line 1045.
  • The top and bottom panels 1020, 1024 each have a width that is substantially equal to the widths of the inner panels 1028, 1032, and 1033 combined. Accordingly, the width of each of the top and bottom panels can be defined as a function of the number of inner panels or tubular structures. The widths of the first and second side panels 1022, 1026 and the widths of the divider panels 1030, 1031 are substantially equal to one another.
  • Each of the inner panels 1028, 1032, 1033 include the elements of the lock and release mechanism described above. Specifically, the second top inner panel 1033 includes a locking aperture 1063 that defines an inner release tab 1065. Further, the top panel 1020 includes a second release tab 1055 that is defined by a severance line 1057. The second release tab 1055 is positioned so as to functionally align with the locking aperture 1063 as the multi-sleeve structure 1100 is erected.
  • The blank 1000 can be folded and secured to form the multi-sleeve structure 1100 according to the following non-limiting method. The blank 1000 can first be folded and secured to form a multi-sleeve structure 1100 in a collapsed condition. Glue or other adhesive is applied to the inside surface of the bottom inner panel 1032 and the blank is folded along the fold line 1040 such that the inside surface of the bottom inner panel 1032 is in flat face contact with and secured to the inside surface of the bottom panel 1024. Glue or other adhesive is applied to the outside surfaces of the first and second top inner panels 1028, 1033 and the top panel 1020 is folded along the fold line 1034 such that the inside surface of the top panel 1020 is in flat face contact with and secured to the outside surface of the first and second top inner panels 1028, 1033. The collapsed multi-sleeve structure 1100 can thereafter be erected. An end wall of the multi-sleeve structure 1100 is formed as the end flaps 1046, 1050 are folded to overlap one another and are secured to one another. The tubular structures T1, T2, T3 each include the lock and release mechanism described herein.
  • The present invention has been illustrated in relation to a particular embodiment which is intended in all respects to be illustrative rather than restrictive. Those skilled in the art will recognize that the present invention is capable of many modifications and variations without departing from the scope of the invention. For example, as used herein, directional references such as “top”, “base”, “bottom”, “end”, “side”, “inner”, “outer”, “upper”, “middle”, “lower”, “front” and “rear” do not limit the respective walls of the carton to such orientation, but merely serve to distinguish these walls from one another. Any reference to hinged connection should not be construed as necessarily referring to a junction including a single hinge only; indeed, it is envisaged that hinged connection can be formed from one or more potentially disparate means for hingedly connecting materials.
  • It must be emphasized that the law does not require and it is economically prohibitive to illustrate and teach every possible embodiment of the present claims. Hence, the above-described embodiments are merely exemplary illustrations of implementations set forth for a clear understanding of the principles of the invention. Many variations and modifications may be made to the above-described embodiments without departing from the scope of the claims. All such modifications, combinations, and variation are included herein by the scope of this disclosure and the following claims.

Claims (16)

1. A multi-sleeve structure (12, 500, 700, 900, 1100), comprising:
a plurality of tubular structures (T1, T2, T3), each tubular structure (T1, T2, T3) for receiving a slide card and each tubular structure (T1, T2, T3) being defined by a plurality of walls, at least one of the tubular structures (T1, T2, T3) comprising elements of a lock and release mechanism (54, 58, 62, 66) for releasably locking a slide card within the at least one tubular structure (T1, T2, T3).
2. The multi-sleeve structure (12, 500, 700, 900, 1100) of claim 1, wherein the at least one tubular structure (T1, T2, T3) includes a composite wall comprising an inner panel (28, 32, 428, 628, 828, 832, 1028, 1032, 1033) and an outer panel (20, 24, 420, 620, 820, 824, 1020, 1024) wherein the inner panel (28, 32, 428, 628, 828, 832, 1028, 1032, 1033) includes a locking aperture (54, 58) and the outer panel (20, 24, 420, 620, 820, 824, 1020, 1024) includes a release tab (62, 66), wherein the locking aperture (54, 58) and the release tab (62, 66) functionally align.
3. The multi-sleeve structure (12, 500, 700, 900, 1100) of claim 1, wherein a first one of the tubular structures (T1, T2, T3) is hingedly connected to a second one of the tubular structures (T1, T2, T3).
4. The multi-sleeve structure (12, 500, 700, 900, 1100) of claim 1, wherein adjacent tubular structures (T1, T2, T3) share a divider wall (130, 830, 1030, 1031).
5. The multi-sleeve structure (12, 500, 700, 900, 1100) of claim 3, wherein a wall (520 a, 520 b, 624 a, 624 b) of the first one of the tubular structures (T1, T2, T3) can be disposed in flat face contact with a wall (520 a, 520 b, 624 a, 624 b) of the second one of the tubular structures (T1, T2, T3).
6. The multi-sleeve structure (12, 500, 700, 900, 1100) of claim 5, wherein the lock and release elements (54, 58, 62, 66) are disposed in at least one of the walls (520 a, 520 b, 624 a, 624 b) of the tubular structures (T1, T2, T3).
7. A blank (10, 400, 600, 800, 1000) for forming a multi-sleeve structure that includes a plurality of tubular structures, the blank (10, 400, 600, 800, 1000) comprising a plurality of panels for forming the walls of the tubular structures, wherein certain of the panels include a plurality of sets of elements (54, 58, 62, 66), wherein each set of elements (54, 58, 62, 66) is arranged to provide a lock and release mechanism for one of the tubular structures.
8. The blank of claim 7, wherein the blank (10, 400, 600, 800, 1000) includes at least first inner and outer panels (P2, P1) that can be arranged to define a composite wall of a first one of the tubular structures.
9. The blank (10, 400, 600, 800, 1000) of claim 8, wherein the first inner and outer panels (P2, P1) include a first set of lock and release elements (54, 58, 62, 66) that functionally align as the composite wall is formed.
10. The blank (10, 400, 600, 800, 1000) of claim 7, wherein the plurality of panels comprises:
a first set of panels (S1) for forming a first tubular structure, the first set of panels (S1) comprising a first outer panel (P1) and a first inner panel (P2) that define a composite wall of the first tubular structure; and
a second set of panels (S2) for forming a second tubular structure, the second set of panels comprising a second outer panel (P1) and a second inner panel (P2) that define a composite wall of the second tubular structure.
11. The blank of claim 10, wherein one of the panels of the first set of panels (S1) is hingedly connected to one of the panels of the second set of panels (S2).
12. The blank of claim 10, wherein one of the panels of each of the first and second sets (S1, S2) is hingedly connected to a spine panel (643).
13. The blank of claim 7, wherein the plurality of panels comprises:
a plurality of outer panels (P1) for forming the outer walls of the multi-sleeve structure;
a plurality of inner panels (28, 32) that define composite portions of the outer walls, two of said inner panels being hingedly connected to a divider panel (30), wherein the divider panel extends between the outer walls as the multi-sleeve structure is erected.
14. A package comprising:
at least one slide card (150) for holding articles; and
A multi sleeve structure (12, 500, 700, 900, 1100) comprising a plurality of tubular structures (T1, T2, T3), each tubular structure (T1, T2, T3) for receiving a slide card (150) and each tubular structure (T1, T2, T3) being defined by a plurality of walls, at least one of the tubular structures (T1, T2, T3) comprising elements of a lock and release mechanism for releasably locking a slide card (150) within the at least one tubular structure (T1, T2, T3).
15. The package of claim 14, wherein said slide card further comprises a blister pack.
16. The package of claim 11, wherein said slide card further comprises means for receiving items.
US12/517,255 2006-12-07 2006-12-07 Package with multi-sleeve structure Abandoned US20100116693A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2006/061757 WO2008073117A2 (en) 2006-12-07 2006-12-07 Package with multi-sleeve structure

Publications (1)

Publication Number Publication Date
US20100116693A1 true US20100116693A1 (en) 2010-05-13

Family

ID=39512223

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/517,255 Abandoned US20100116693A1 (en) 2006-12-07 2006-12-07 Package with multi-sleeve structure

Country Status (7)

Country Link
US (1) US20100116693A1 (en)
EP (1) EP2097336B1 (en)
JP (1) JP5068826B2 (en)
AT (1) ATE506286T1 (en)
CA (1) CA2673105A1 (en)
DE (1) DE602006021495D1 (en)
WO (1) WO2008073117A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110042375A1 (en) * 2008-05-01 2011-02-24 Jones Steve P Dual packaging system with child resistance and senior friendly features
US8640874B2 (en) * 2008-05-01 2014-02-04 Wm. Wrigley Jr. Company Confectionery package
AU2011280237B2 (en) * 2010-07-19 2016-07-21 Keystone Folding Box Co. Child-resistant and senior-friendly eco-friendly pill dispenser blister package
IT201700114214A1 (en) * 2017-10-11 2019-04-11 Gd Spa Package for components of aerosol generation devices.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010094505A1 (en) * 2009-02-23 2010-08-26 Philip Morris Products S.A. Boxed blister pack having slide and retain feature

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1318124A (en) * 1919-10-07 Two-part container and blank therefor
US2569018A (en) * 1947-04-17 1951-09-25 Brown & Bigelow Compartment box
US5056708A (en) * 1990-08-27 1991-10-15 Waldorf Corporation Two-cell slide top dispenser with tamper evident top
US6230893B1 (en) * 2000-02-11 2001-05-15 Westvaco Corporation Unit dose packaging system (udps) having a child resistant locking feature
US6273260B1 (en) * 2000-03-08 2001-08-14 Eli Lilly And Company Pharmaceutical packaging system
US6412636B1 (en) * 2001-05-21 2002-07-02 Westvaco Corporation Unit dose packaging system with child resistance and senior friendly features
US6641031B2 (en) * 2001-08-03 2003-11-04 Pharmagraphics, Inc. Child resistant carton and method for using the same
US6695144B2 (en) * 2000-04-05 2004-02-24 Mpc Packaging Corp. Carton with extended panel
US6752272B2 (en) * 2001-09-13 2004-06-22 Mead Westvaco Corporation Unit dose packaging system with exterior pocket feature
US20080053863A1 (en) * 2006-08-30 2008-03-06 Cadbury Adams Usa Llc. Blister package assembly for confectionary products
US7658287B2 (en) * 2004-01-07 2010-02-09 Meadwestvaco Corporation Blister and package system
US7845496B2 (en) * 2005-08-10 2010-12-07 Meadwestvaco Corporation Packaging system with an improved inner structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48111526U (en) * 1972-03-29 1973-12-21
JPH084315Y2 (en) * 1989-10-26 1996-02-07 株式会社トンボ鉛筆 mechanical pencil
JP2529162B2 (en) * 1994-02-25 1996-08-28 今村 清 Medicine case
JPH0924927A (en) * 1995-07-12 1997-01-28 Dainippon Printing Co Ltd Wallet carton
JP3797893B2 (en) * 2001-06-25 2006-07-19 シャープ株式会社 Electrode structure of semiconductor element and semiconductor laser element manufactured using the same
JP2004010163A (en) * 2002-06-11 2004-01-15 Sato Kogyo Kk Box having projecting partition
DE202004021140U1 (en) * 2003-10-22 2007-01-18 Altana Pharma Ag Medicine pack has blister units with blister strip connected to protective case capable to be unfolded or opened out, and outer package for receiving the blister units and configured so that pack content is fixed in outer package inside
EP1699412A1 (en) * 2003-12-24 2006-09-13 Pfizer Products Incorporated Patient specific medication dispenser

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1318124A (en) * 1919-10-07 Two-part container and blank therefor
US2569018A (en) * 1947-04-17 1951-09-25 Brown & Bigelow Compartment box
US5056708A (en) * 1990-08-27 1991-10-15 Waldorf Corporation Two-cell slide top dispenser with tamper evident top
US6230893B1 (en) * 2000-02-11 2001-05-15 Westvaco Corporation Unit dose packaging system (udps) having a child resistant locking feature
US6273260B1 (en) * 2000-03-08 2001-08-14 Eli Lilly And Company Pharmaceutical packaging system
US6695144B2 (en) * 2000-04-05 2004-02-24 Mpc Packaging Corp. Carton with extended panel
US6412636B1 (en) * 2001-05-21 2002-07-02 Westvaco Corporation Unit dose packaging system with child resistance and senior friendly features
US6641031B2 (en) * 2001-08-03 2003-11-04 Pharmagraphics, Inc. Child resistant carton and method for using the same
US6752272B2 (en) * 2001-09-13 2004-06-22 Mead Westvaco Corporation Unit dose packaging system with exterior pocket feature
US7658287B2 (en) * 2004-01-07 2010-02-09 Meadwestvaco Corporation Blister and package system
US7845496B2 (en) * 2005-08-10 2010-12-07 Meadwestvaco Corporation Packaging system with an improved inner structure
US20080053863A1 (en) * 2006-08-30 2008-03-06 Cadbury Adams Usa Llc. Blister package assembly for confectionary products

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110042375A1 (en) * 2008-05-01 2011-02-24 Jones Steve P Dual packaging system with child resistance and senior friendly features
US8640874B2 (en) * 2008-05-01 2014-02-04 Wm. Wrigley Jr. Company Confectionery package
AU2011280237B2 (en) * 2010-07-19 2016-07-21 Keystone Folding Box Co. Child-resistant and senior-friendly eco-friendly pill dispenser blister package
IT201700114214A1 (en) * 2017-10-11 2019-04-11 Gd Spa Package for components of aerosol generation devices.
WO2019073438A1 (en) * 2017-10-11 2019-04-18 G.D Societa' Per Azioni Package for components of aerosol generating devices
US11332299B2 (en) 2017-10-11 2022-05-17 G.D Societa' Per Azioni Package for components of aerosol generating devices

Also Published As

Publication number Publication date
EP2097336A2 (en) 2009-09-09
EP2097336B1 (en) 2011-04-20
WO2008073117A3 (en) 2008-12-04
ATE506286T1 (en) 2011-05-15
DE602006021495D1 (en) 2011-06-01
JP2010511478A (en) 2010-04-15
JP5068826B2 (en) 2012-11-07
WO2008073117A2 (en) 2008-06-19
CA2673105A1 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
US7845496B2 (en) Packaging system with an improved inner structure
US20210323260A1 (en) Packaging System, Sleeve and Slide Card
US20070054525A1 (en) Packaging System With An Improved Locking Mechanism
US20070068843A1 (en) Packaging system with an improved lock and release mechanism
US20100084308A1 (en) Packaging system with a selectable locking feature
JP3190635B2 (en) Paperboard blank and method of forming a package from the blank
US9994353B2 (en) Lockable packaging
US8701889B2 (en) Container for housing a tray or blister pack
US6913149B2 (en) Unit dose packaging system with molded locking feature
EP1697232B1 (en) Lockable container with integral internal tray
US10710785B2 (en) Lockable packaging and a release mechanism therefor
US10273069B2 (en) Blister packaging
US10618683B2 (en) Lockable packaging
KR20030023435A (en) Unit dose packaging system with exterior pocket feature
WO2013151806A1 (en) Lockable packaging
US20100116693A1 (en) Package with multi-sleeve structure
EP1277670B1 (en) Unit dose packaging system with molded locking feature
US20160318651A1 (en) Lockable packaging
US20160120747A1 (en) Packaging

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEADWESTVACO CORPORATION,VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HESSION, CHRISTOPHER J.;REEL/FRAME:023751/0676

Effective date: 20100105

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION