US20100118479A1 - Display apparatus - Google Patents

Display apparatus Download PDF

Info

Publication number
US20100118479A1
US20100118479A1 US12/692,386 US69238610A US2010118479A1 US 20100118479 A1 US20100118479 A1 US 20100118479A1 US 69238610 A US69238610 A US 69238610A US 2010118479 A1 US2010118479 A1 US 2010118479A1
Authority
US
United States
Prior art keywords
display apparatus
front panel
frame
display
display module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/692,386
Inventor
Man Yong CHOI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Priority to US12/692,386 priority Critical patent/US20100118479A1/en
Publication of US20100118479A1 publication Critical patent/US20100118479A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels

Definitions

  • the present disclosure relates to a display apparatus.
  • LCD liquid crystal displays
  • PDP plasma display panels
  • These display apparatuses have front covers covering the front perimeters thereof.
  • a front panel made of a transparent material for transmitting images while protecting the display module is installed on the front surface of a display module.
  • a front cover is fixed and coupled to the perimeter of the front panel. The front cover thus functions to support the front panel.
  • front cover Because the periphery of the front panel must be supported by the front cover, a portion of the front panel is necessarily covered by the front cover.
  • Embodiments provide a display apparatus with a front exterior that is neatly finished, while the display screen appears larger from the outside than it actually is.
  • Embodiments also provide a display apparatus having front panel at the front thereof that is securely supported by the frame, so that even when product dimensions are increased, the front panel will not warp or slip downward.
  • Embodiments further provide a display apparatus with a configuration that does not require a separate covering member to enclose the frontal perimeter of the display apparatus, so that the assembling process of the product is simplified, and manufacturing costs can be reduced.
  • a display apparatus includes: a front panel defining a front of the display apparatus; a plurality of frames fixed to a rear surface of the front panel, to support the front panel; a display module fixed to the frames, to output an image; and a rear housing receiving the display module, and disposed at a rear of the front panel, wherein each of the frames includes a body in close contact the front panel, and a protrusion protruded rearward from the body.
  • FIG. 1 is a perspective view of a display apparatus according to an embodiment of the present disclosure.
  • FIG. 2 is a sectional view of FIG. 2 taken along line I-I′.
  • FIG. 3 is an exploded perspective view of a display apparatus according to an embodiment of the present disclosure.
  • FIG. 4 is a frontal perspective view of a frame for a display apparatus according to an embodiment of the present disclosure.
  • FIG. 5 is a rear perspective view of a frame for a display apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is an enlarged perspective view of region A in FIG. 5 .
  • FIG. 7 is an exploded perspective view of region A in FIG. 5 .
  • FIG. 8 is a sectional view of FIG. 7 taken along line II-II′.
  • FIG. 9 is a frontal view showing the coupling structure of a front panel according to another embodiment of the present disclosure.
  • FIG. 10 is a rear perspective view of region B in FIG. 9 .
  • FIG. 11 is a sectional view of FIG. 10 taken along line III-III′.
  • FIG. 12 is a side sectional view showing the coupling structure of a rear housing according to an embodiment of the present disclosure.
  • FIG. 13 is a side sectional view showing the coupling structure of a rear housing according to another embodiment of the present disclosure.
  • FIG. 14 is an enlarged perspective view showing a front panel supporting structure of a display apparatus depicted in a frontal view according to an embodiment of the present disclosure.
  • FIG. 15 is a partial rear perspective view of region C in FIG. 14 .
  • FIG. 16 is a sectional view of FIG. 15 taken along line IV-IV′.
  • FIG. 17 is a sectional view showing an electromagnetic interference (EMI) grounding structure according to an embodiment of the present disclosure.
  • EMI electromagnetic interference
  • FIG. 1 is a perspective view of a display apparatus according to an embodiment of the present disclosure
  • FIG. 2 is a sectional view of FIG. 2 taken along line I-I′
  • FIG. 3 is an exploded perspective view of a display apparatus according to an embodiment of the present disclosure.
  • a display apparatus 10 includes a display module 13 outputting an image, a front panel 11 protecting the front surface of the display module 13 , a frame 12 coupled tightly to the front panel 11 and having the display module 13 fixed to the rear thereof, a bracket 15 connecting the frame 12 and the display module 13 , and a rear housing 14 coupled at the rear of the front panel 11 and enclosing and protecting the display module 13 .
  • an adhering member 17 is interposed between the front panel 11 and frame 12 to fix the frame 12 to the front panel 11 .
  • a gasket 16 for blocking electromagnetic interference (EMI) is interposed between the front panel 11 and the frame 12 .
  • the adhering member 17 and the gasket 16 are respectively disposed at a predetermined distance.
  • An opaque film layer 111 is formed along the rear perimeter of the front panel 11 .
  • the film layer ill may be provided in a variety of ways, and may be coated on the front panel in one embodiment.
  • the frame 12 is mounted along the film layer 111 , so that the frame 12 is not visible from the front of the display apparatus 10 .
  • the front panel 11 may be formed of a transparent material enabling an image provided through the display module 13 to be viewed.
  • the front panel may be made of tempered glass.
  • the material for the front panel 11 is not restricted to any embodiment, and may one of various materials including transparent plastic. That is, any material that is transparent and satisfies predetermined strength specifications may be used within the scope of the present disclosure.
  • a sealing member 18 is applied to a frontal upper portion of the frame 12 to prevent impurities from entering through a gap between the frame 12 and front panel 11 .
  • the frame surrounds the rear perimeter of the front panel 11 .
  • a plurality of frames 12 is mounted at positions separated a predetermined distance from the edges of the front panel 11 . When the end portions of adjacent frames 12 are pressed together and connected, the bracket 15 is mounted on the connected portions.
  • a front perimeter portion is pressed against the frame at the rear housing 14 that covers and protects the display module 13 , and includes an inner housing 141 formed of a conductive material, and an outer housing 142 covering the inner housing 141 .
  • the rear housing 14 does not have to include the two components, and may include only one conductive cover.
  • the frame 12 is made of a conductive material, and may be made of an aluminum material according to one embodiment.
  • the material for the frame 12 does not have to be limited to an aluminum material, and may be made of any material through which electric current can flow.
  • the frame 12 may be manufactured of a non-conductive material, such as a plastic injection molded material.
  • a separate EMI grounding structure for grounding EMI is required, which will be described below with reference to the diagrams.
  • FIG. 4 is a frontal perspective view of a frame for a display apparatus according to an embodiment of the present disclosure
  • FIG. 5 is a rear perspective view of a frame for a display apparatus according to an embodiment of the present disclosure.
  • a plurality of frames 12 of a display apparatus 10 are tightly fixed against a front panel 11 .
  • the frames 12 are pressed against other frames 12 at the ends thereof, and portions pressed against each other are connected through brackets 15 .
  • a portion of the frames 12 have a hole 12 a of a predetermined size defined therein, and a control panel for controlling the display apparatus is mounted in the hole 12 a.
  • a front panel 11 made of tempered glass is mounted to the front of the frame 12 , and a touch-screen type control panel is coupled behind the frame 12 .
  • a user may turn power on/off or switch channels and control volume by touching the surface of the front panel 11 where the control panel is inserted.
  • the frame 12 is formed of straightly formed metal or plastic material with a predetermined degree of strength. This is to prevent warping of the front panel 11 when the dimensions of the display apparatus 10 are increased.
  • FIG. 6 is an enlarged perspective view of region A in FIG. 5
  • FIG. 7 is an exploded perspective view of region A in FIG. 5 .
  • the frames 12 mounted at the rear surface of the front panel 11 are connected together in plurality through a bracket 15 .
  • the bracket 15 is bent in an “L” shape to be seated at the joining portions at the ends of the frames 12 .
  • a protruding portion namely, a bracket mounting portion 123 (in FIG. 8 ) is formed on the frame 12 in order to mount the bracket 15 .
  • a plurality of fastening members are passed through the bracket 15 and inserted into the frame 12 .
  • a boss 151 of a predetermined height is protrudingly formed at the center of the bracket 15 .
  • An edge portion of the display module 13 (that is, a module lug 131 in FIG. 10 ) is mounted on the boss 151 . Accordingly, the display module 13 and the frame 12 are connected with a gap equal to the length of the boss 151 .
  • An anti-movement rib 152 protrudes at the corner of the bracket 15 to ensure that the display module 13 remains coupled in a proper position. In other words, when the display module 13 is mounted at the rear of the frame 12 , it is guided to remain in its proper position. Therefore, the fastening hole defined in the module lug 132 is precisely positioned. Also, a screw or other fastening member is passed through the fastening hole and inserted into the boss, to fix the display module 13 to the frame 12 .
  • each end of the frames 12 are connected to each other at right angles.
  • each end of the frames 12 are tapered at 45° with respect to the lengths of the frames.
  • the ends of the frames 12 are not formed with a 45° taper, when two frames 12 are coupled, the surfaces pressed together may slip and be displaced. To prevent the latter from occurring, the ends of the frames 12 may be formed in a shape that is not straight. In other words, the ends of the frames 12 form a straight portion S and a stepped portion H that is stepped at a certain point of the straight portion S. Further, the stepped portion H may be provided singularly or in plurality. Here, the stepped portion H is bent from an extending direction of the straight portion S in another direction (or deviating direction).
  • the stepped portion H prevents the joined ends of the frames 12 from being displaced.
  • the reference number 122 a is a fastening hole and 122 b is a fixing projection.
  • the fastening hole and the fixing projection are provided in plurality and are alternately provided on the frame 12 . They will be explained below more clearly.
  • FIG. 8 is a sectional view of FIG. 7 taken along line II-II′.
  • the frames 12 are formed of a conductive material, and are pressed against the rear of the front panel 11 , to support the front panel 11 and also prevent curving of the front panel 11 .
  • the frame 12 includes a body 121 at the rear of the front panel 11 , and a head 122 protruding rearward from an upper end of the body 121 .
  • an adhering surface 125 on which the adhering member 17 is mounted, and a gasket mounting surface 126 on which a gasket 16 is mounted are formed on the front surface of the frame 12 .
  • a dividing rib 127 separating the adhering surface 125 and the gasket mounting surface 126 is further formed. The dividing rib 127 prevents the adhering member 17 and the gasket 16 from sticking to one another.
  • the adhering surface 125 and the gasket mounting surface 126 may be formed by being recessed a predetermined from the front surface of the body 121 . If the adhering surface 125 and the gasket mounting surface 126 share the same surface with the body 121 , and are divided by the dividing rib 127 , they would be separated by a gap between the front panel 11 and the frame 12 equal to the height of the dividing rib 127 . Thus, the dividing rib 127 may be formed on the same surface as the front surface of the body 121 , and the adhering surface 125 and the gasket mounting surface 126 may be recessed to form a mutually protruding structure.
  • the adhering member 17 may be a double-sided tape with a predetermined adhering strength, or may be a liquid adhesive.
  • the gasket 16 may be formed of a conductive material to block EMI.
  • a sealing surface 128 is formed with a slant of a predetermined angle.
  • a recessed portion is formed between the sealing surface 128 and the rear surface of the front panel 11 , and the sealing member 18 is interposed in the recessed portion.
  • the interposition of the sealing member 18 blocks the formation of gaps between the coupled surfaces of the front panel and the frame 12 and therefore entry of impurities therein.
  • a cavity 129 is formed within the head 122 . That is, the formation of the cavity 129 prevents deformation of the head 122 during the forming of the frame 12 and reduces manufacturing cost.
  • a bracket mounting portion 123 protrudes at a rear of the body 121 and extends in the lengthwise direction of the frame 12 .
  • the bracket 15 is mounted on the bracket mounting portion 123 , and the bracket 15 mounted on the bracket mounting portion 123 is bent in a shape. Therefore, the bracket 15 and the bracket mounting portion 123 contact one another on three sides. Due to the shape of the bracket mounting portion 123 , the bracket 15 does not move and is securely mounted to the frame 12 . Also, the frame 12 is firmly fixed by the bracket 15 .
  • a reinforcing rib 124 protrudes from a predetermined position below the bracket mounting portion 123 , and extends in the lengthwise direction of the frame 12 . Specifically, the reinforcing rib 124 is formed to reinforce the frame 12 . Also, the reinforcing rib 124 allows the frame 12 to retain a straight disposition without bending even when its length is extended.
  • a leakage preventing rib 125 a is protruded from a perimeter of the adhering surface 125 , in detail, an upper perimeter of the front portion of the body 121 .
  • the leakage preventing rib 125 a prevents the adhering member 17 anointed on the adhering surface 125 from leaking or spreading to an outside of the frame 12 .
  • the leakage preventing rib 125 a is not provided, the adhering member 17 spreads towards the perimeter of the front panel 11 and is exposed to an outside, and then the exterior of the display doesn't look neat. In order to resolve this kind of problem, the leakage preventing rib 125 a is protruded on the frontal perimeter which is located on the edge of the front panel 11 .
  • the rear housing 14 is coupled to the head 122 .
  • a plurality of fastening holes 122 a are arranged at predetermined intervals in the edges of the head 122 and rear housing 14 , and fastening members are inserted in the fastening holes 122 a to fix the rear housing 14 to the head 122 .
  • a plurality of fixing projections 122 b may protrude from the head 122 , and a plurality of fixing holes may be formed in the edge of the rear housing 14 to insert the fixing projections 122 b in.
  • a fixing projection 122 b may protrude at a point between a fixing hole 122 a and another fixing hole 122 a.
  • the fixing projection 122 b may be inserted into a fixing hole formed in the rear housing 14 , so that the fixing hole formed in the rear housing 14 is aligned with the fixing hole 122 a formed in the head 123 .
  • FIG. 9 is a frontal view showing the coupling structure of a front panel according to another embodiment of the present disclosure
  • FIG. 10 is a rear perspective view of region B in FIG. 9
  • FIG. 11 is a sectional view of FIG. 10 taken along line III-III′.
  • the front panel 11 and the display module 13 form a directly coupled structure.
  • the front panel 11 and the frame 12 are coupled through the adhering member 17 , there is the possibility of the front panel 11 detaching from the frame 12 .
  • the display apparatus 10 is enlarged, the dimensions of the front panel 11 increase and its weight also increases.
  • the front panel 11 can disengage from the frame 12 and fall to the floor.
  • the present embodiment provides the front panel 11 integrally coupled to the display module 13 .
  • a nut 30 is inserted into the front edge of the front panel 11 , and a fastening member is passed through the bracket 15 and the module lug 131 and inserted into the nut 30 .
  • a rubber bushing 31 may be inserted over the outer circumference of the nut 30 .
  • the boss 151 formed at the center of the bracket 15 extends further to the opposite side, and the extended portion is inserted into a portion of the nut 30 .
  • the fastening member passes through the module lug 131 and the boss 151 in sequence, and inserts into the nut 30 .
  • the rear housing 14 is coupled to the frame 12 , and the way of coupling the rear housing 14 and the frame 12 may be the same as the way described in FIG. 1 to FIG. 8 , using the fixing projections 122 b and fastening holes 122 a.
  • FIG. 12 is a side sectional view showing the coupling structure of a rear housing according to another embodiment of the present disclosure.
  • the present embodiment is characterized by the rear housing 14 being coupled directly to the front panel 11 .
  • the front edge of the rear housing 14 may be formed in a size that is the same as or smaller than the front panel 11 , so that the front edges of the rear housing 14 cannot be seen from the front of the display apparatus 10 .
  • the front edge of the rear housing 14 is bent in parallel directions with the front panel 11 to form the coupling surfaces.
  • a screw 40 or other fastening member is inserted from the front of the front panel 11 through the rear housing 14 .
  • a nut 42 is inserted over the outer circumference of the screw 40 that passes and protrudes through the rear housing.
  • an anti-wear bushing 41 is inserted between the screw 40 and the front panel 11 .
  • a structure in which the screw is inserted in the front of the front panel 11 may be employed.
  • FIG. 13 is a side sectional view showing the coupling structure of a rear housing according to another embodiment of the present disclosure.
  • the rear housing 14 is fixed to the display module 13 .
  • the screw 50 may be sequentially passed through the rear housing 14 and the module lug 131 , and inserted into the boss 151 of the bracket 15 .
  • a screw thread is formed on the inner circumference of the boss 151 .
  • the fastening member passing through the rear housing 14 is passed through the module lug 131 and the boss 151 , inserted in the front surface of the front panel 11 , and ultimately inserted into the nut 30 .
  • front panel 11 , frame 12 , display module 13 , and rear housing 14 may be integrally coupled through a single screw 32 and nut 30 .
  • FIG. 14 is an enlarged perspective view showing a front panel supporting structure of a display apparatus depicted in a frontal view according to an embodiment of the present disclosure
  • FIG. 15 is a partial rear perspective view of region C in FIG. 14
  • FIG. 16 is a sectional view of FIG. 15 taken along line IV-IV′.
  • a separate supporting structure may be provided.
  • a supporter 60 (as shown in FIGS. 14 to 16 ) may be coupled at the upper surface and lower surface of the front panel 11 .
  • the supporter 60 may be formed in a length that entirely or partially covers the top and bottom edges of the front panel 11 .
  • the supporter 60 is bent a plurality of times in order to securely support the front panel 11 , to cover portions of the rear, bottom, and front surfaces of the front panel 11 .
  • the supporter 60 mounted at the top end of the front panel 11 provides a structure that covers portions of the rear, top, and front surfaces of the front panel 11 .
  • the supporter 60 is coupled to the head 122 of the frame. That is, a fastening hole is defined in the head 122 , and a fastening hole is also formed at an end of the supporter 60 . A screw or other fastening member is passed through the supporter 60 and inserted into the head 122 .
  • the upper edge of the front panel 11 is securely supported, preventing the front panel 11 from disengaging from the frame 12 and leaning forward.
  • the bottom edge of the front panel 11 is also securely supported, so that the front panel 11 is prevented from falling due to excessive weight.
  • the supporter 60 may be provided only at the lower end of the front panel 11 .
  • FIG. 17 is a sectional view showing an EMI grounding structure according to an embodiment of the present disclosure.
  • the present embodiment provides a grounding structure for blocking EMI when a frame 12 made of a non-conductive material is used.
  • a structure is needed to absorb EMI.
  • a separate grounding member 80 is attached to the frame 12 .
  • one end of the grounding member 80 is inserted in the gasket mounting surface 126 of the frame 12 .
  • the grounding member 80 is extended along the surface of the frame 12 and connected at the other end to the rear housing 14 .
  • the rear housing 14 made of a conductive material acts as a ground to block EMI.
  • the grounding member 80 may cover the entire rear surface of the frame 12 or a portion thereof. However, it is sufficient to electrically connect the front panel 11 and the rear housing 14 through the grounding member 80 . For example, even if the grounding member 80 is only disposed between the perimeter and the center of the frame 12 , EMI is sufficiently blocked.

Abstract

A display apparatus is provided. A frame is fixed and supported at the rear of a front panel forming the front portion of the display apparatus, and a separate bracket member is not mounted on the edges of the front panel. Thus, the front exterior of the display apparatus is neatly finished, and the display screen looks bigger than it actually is.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS BACKGROUND
  • The present disclosure relates to a display apparatus.
  • The appearance of display apparatuses such as liquid crystal displays (LCD) and plasma display panels (PDP) with high-definition and large-sized screens is a relatively recent phenomenon.
  • These display apparatuses have front covers covering the front perimeters thereof.
  • Specifically, a front panel made of a transparent material for transmitting images while protecting the display module is installed on the front surface of a display module. A front cover is fixed and coupled to the perimeter of the front panel. The front cover thus functions to support the front panel.
  • Because the periphery of the front panel must be supported by the front cover, a portion of the front panel is necessarily covered by the front cover.
  • Because a portion of the perimeter of the front panel is blocked by the front cover, a limitation arises in which the display screen appears smaller from the outside.
  • Additionally, because a separate front cover is needed to support the front panel, the overall manufacturing cost of the display apparatus increases, and assembly becomes more complicated.
  • SUMMARY
  • Embodiments provide a display apparatus with a front exterior that is neatly finished, while the display screen appears larger from the outside than it actually is.
  • Embodiments also provide a display apparatus having front panel at the front thereof that is securely supported by the frame, so that even when product dimensions are increased, the front panel will not warp or slip downward.
  • Embodiments further provide a display apparatus with a configuration that does not require a separate covering member to enclose the frontal perimeter of the display apparatus, so that the assembling process of the product is simplified, and manufacturing costs can be reduced.
  • In one embodiment, a display apparatus includes: a front panel defining a front of the display apparatus; a plurality of frames fixed to a rear surface of the front panel, to support the front panel; a display module fixed to the frames, to output an image; and a rear housing receiving the display module, and disposed at a rear of the front panel, wherein each of the frames includes a body in close contact the front panel, and a protrusion protruded rearward from the body.
  • The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a display apparatus according to an embodiment of the present disclosure.
  • FIG. 2 is a sectional view of FIG. 2 taken along line I-I′.
  • FIG. 3 is an exploded perspective view of a display apparatus according to an embodiment of the present disclosure.
  • FIG. 4 is a frontal perspective view of a frame for a display apparatus according to an embodiment of the present disclosure.
  • FIG. 5 is a rear perspective view of a frame for a display apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is an enlarged perspective view of region A in FIG. 5.
  • FIG. 7 is an exploded perspective view of region A in FIG. 5.
  • FIG. 8 is a sectional view of FIG. 7 taken along line II-II′.
  • FIG. 9 is a frontal view showing the coupling structure of a front panel according to another embodiment of the present disclosure.
  • FIG. 10 is a rear perspective view of region B in FIG. 9.
  • FIG. 11 is a sectional view of FIG. 10 taken along line III-III′.
  • FIG. 12 is a side sectional view showing the coupling structure of a rear housing according to an embodiment of the present disclosure.
  • FIG. 13 is a side sectional view showing the coupling structure of a rear housing according to another embodiment of the present disclosure.
  • FIG. 14 is an enlarged perspective view showing a front panel supporting structure of a display apparatus depicted in a frontal view according to an embodiment of the present disclosure.
  • FIG. 15 is a partial rear perspective view of region C in FIG. 14.
  • FIG. 16 is a sectional view of FIG. 15 taken along line IV-IV′.
  • FIG. 17 is a sectional view showing an electromagnetic interference (EMI) grounding structure according to an embodiment of the present disclosure.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Reference will now be made in detail to the embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings.
  • FIG. 1 is a perspective view of a display apparatus according to an embodiment of the present disclosure, FIG. 2 is a sectional view of FIG. 2 taken along line I-I′, and FIG. 3 is an exploded perspective view of a display apparatus according to an embodiment of the present disclosure.
  • Referring to FIGS. 1 to 3, a display apparatus 10 according to an embodiment of the present disclosure includes a display module 13 outputting an image, a front panel 11 protecting the front surface of the display module 13, a frame 12 coupled tightly to the front panel 11 and having the display module 13 fixed to the rear thereof, a bracket 15 connecting the frame 12 and the display module 13, and a rear housing 14 coupled at the rear of the front panel 11 and enclosing and protecting the display module 13.
  • In detail, an adhering member 17 is interposed between the front panel 11 and frame 12 to fix the frame 12 to the front panel 11. Also, a gasket 16 for blocking electromagnetic interference (EMI) is interposed between the front panel 11 and the frame 12. The adhering member 17 and the gasket 16 are respectively disposed at a predetermined distance.
  • An opaque film layer 111 is formed along the rear perimeter of the front panel 11. Specifically, the film layer ill may be provided in a variety of ways, and may be coated on the front panel in one embodiment. The frame 12 is mounted along the film layer 111, so that the frame 12 is not visible from the front of the display apparatus 10.
  • The front panel 11 may be formed of a transparent material enabling an image provided through the display module 13 to be viewed. In order to satisfy strength requirements for larger sizes, the front panel may be made of tempered glass. However, the material for the front panel 11 is not restricted to any embodiment, and may one of various materials including transparent plastic. That is, any material that is transparent and satisfies predetermined strength specifications may be used within the scope of the present disclosure.
  • A sealing member 18 is applied to a frontal upper portion of the frame 12 to prevent impurities from entering through a gap between the frame 12 and front panel 11. The frame surrounds the rear perimeter of the front panel 11. Specifically, a plurality of frames 12 is mounted at positions separated a predetermined distance from the edges of the front panel 11. When the end portions of adjacent frames 12 are pressed together and connected, the bracket 15 is mounted on the connected portions.
  • A front perimeter portion is pressed against the frame at the rear housing 14 that covers and protects the display module 13, and includes an inner housing 141 formed of a conductive material, and an outer housing 142 covering the inner housing 141. However, the rear housing 14 does not have to include the two components, and may include only one conductive cover.
  • Here, electromagnetic interference (EMI) emitted from the display module 13 flows through an EMI grounding gasket, 16 attached to the front of the frame 12, and the frame 12. The EMI flowing along the frame 12 is transferred to the rear housing 14. Therefore, it is preferable that the frame 12 is made of a conductive material, and may be made of an aluminum material according to one embodiment. However the material for the frame 12 does not have to be limited to an aluminum material, and may be made of any material through which electric current can flow.
  • Here, the frame 12 may be manufactured of a non-conductive material, such as a plastic injection molded material. In this case, a separate EMI grounding structure for grounding EMI is required, which will be described below with reference to the diagrams.
  • FIG. 4 is a frontal perspective view of a frame for a display apparatus according to an embodiment of the present disclosure, and FIG. 5 is a rear perspective view of a frame for a display apparatus according to an embodiment of the present disclosure.
  • Referring to FIGS. 4 and 5, a plurality of frames 12 of a display apparatus 10 according to an embodiment of the present disclosure are tightly fixed against a front panel 11.
  • That is, the frames 12 are pressed against other frames 12 at the ends thereof, and portions pressed against each other are connected through brackets 15.
  • A portion of the frames 12 have a hole 12 a of a predetermined size defined therein, and a control panel for controlling the display apparatus is mounted in the hole 12 a.
  • In more detail, a front panel 11 made of tempered glass is mounted to the front of the frame 12, and a touch-screen type control panel is coupled behind the frame 12. Thus, a user may turn power on/off or switch channels and control volume by touching the surface of the front panel 11 where the control panel is inserted.
  • The frame 12 is formed of straightly formed metal or plastic material with a predetermined degree of strength. This is to prevent warping of the front panel 11 when the dimensions of the display apparatus 10 are increased.
  • Below, a detailed description of the connecting parts of the frame 12 will be given with reference to the diagrams.
  • FIG. 6 is an enlarged perspective view of region A in FIG. 5, and FIG. 7 is an exploded perspective view of region A in FIG. 5.
  • Referring to FIGS. 6 and 7, the frames 12 mounted at the rear surface of the front panel 11 are connected together in plurality through a bracket 15.
  • That is, the bracket 15 is bent in an “L” shape to be seated at the joining portions at the ends of the frames 12. Also, a protruding portion, namely, a bracket mounting portion 123 (in FIG. 8) is formed on the frame 12 in order to mount the bracket 15. A plurality of fastening members are passed through the bracket 15 and inserted into the frame 12.
  • A boss 151 of a predetermined height is protrudingly formed at the center of the bracket 15. An edge portion of the display module 13 (that is, a module lug 131 in FIG. 10) is mounted on the boss 151. Accordingly, the display module 13 and the frame 12 are connected with a gap equal to the length of the boss 151.
  • An anti-movement rib 152 protrudes at the corner of the bracket 15 to ensure that the display module 13 remains coupled in a proper position. In other words, when the display module 13 is mounted at the rear of the frame 12, it is guided to remain in its proper position. Therefore, the fastening hole defined in the module lug 132 is precisely positioned. Also, a screw or other fastening member is passed through the fastening hole and inserted into the boss, to fix the display module 13 to the frame 12.
  • The ends of the frames 12 are connected to each other at right angles. Thus, each end of the frames 12 are tapered at 45° with respect to the lengths of the frames.
  • If the ends of the frames 12 are not formed with a 45° taper, when two frames 12 are coupled, the surfaces pressed together may slip and be displaced. To prevent the latter from occurring, the ends of the frames 12 may be formed in a shape that is not straight. In other words, the ends of the frames 12 form a straight portion S and a stepped portion H that is stepped at a certain point of the straight portion S. Further, the stepped portion H may be provided singularly or in plurality. Here, the stepped portion H is bent from an extending direction of the straight portion S in another direction (or deviating direction).
  • As shown, by forming the stepped portion H at a point of the straight portion S, even when force is applied to one of two joined frames 12 in its lengthwise direction, the stepped portion H prevents the joined ends of the frames 12 from being displaced.
  • The reference number 122 a is a fastening hole and 122 b is a fixing projection. The fastening hole and the fixing projection are provided in plurality and are alternately provided on the frame 12. They will be explained below more clearly.
  • FIG. 8 is a sectional view of FIG. 7 taken along line II-II′.
  • Referring to FIG. 8, the frames 12 according to an embodiment of the present disclosure are formed of a conductive material, and are pressed against the rear of the front panel 11, to support the front panel 11 and also prevent curving of the front panel 11.
  • Specifically, the frame 12 includes a body 121 at the rear of the front panel 11, and a head 122 protruding rearward from an upper end of the body 121.
  • More specifically, an adhering surface 125 on which the adhering member 17 is mounted, and a gasket mounting surface 126 on which a gasket 16 is mounted are formed on the front surface of the frame 12. A dividing rib 127 separating the adhering surface 125 and the gasket mounting surface 126 is further formed. The dividing rib 127 prevents the adhering member 17 and the gasket 16 from sticking to one another.
  • Here, the adhering surface 125 and the gasket mounting surface 126 may be formed by being recessed a predetermined from the front surface of the body 121. If the adhering surface 125 and the gasket mounting surface 126 share the same surface with the body 121, and are divided by the dividing rib 127, they would be separated by a gap between the front panel 11 and the frame 12 equal to the height of the dividing rib 127. Thus, the dividing rib 127 may be formed on the same surface as the front surface of the body 121, and the adhering surface 125 and the gasket mounting surface 126 may be recessed to form a mutually protruding structure.
  • The adhering member 17 may be a double-sided tape with a predetermined adhering strength, or may be a liquid adhesive. The gasket 16 may be formed of a conductive material to block EMI.
  • To hold the sealing member 18 in the front upper end of the head 122, a sealing surface 128 is formed with a slant of a predetermined angle. Thus, when the frame 12 is pressed against and coupled to the rear of the front panel 11, a recessed portion is formed between the sealing surface 128 and the rear surface of the front panel 11, and the sealing member 18 is interposed in the recessed portion. The interposition of the sealing member 18 blocks the formation of gaps between the coupled surfaces of the front panel and the frame 12 and therefore entry of impurities therein.
  • A cavity 129 is formed within the head 122. That is, the formation of the cavity 129 prevents deformation of the head 122 during the forming of the frame 12 and reduces manufacturing cost.
  • A bracket mounting portion 123 protrudes at a rear of the body 121 and extends in the lengthwise direction of the frame 12. The bracket 15 is mounted on the bracket mounting portion 123, and the bracket 15 mounted on the bracket mounting portion 123 is bent in a
    Figure US20100118479A1-20100513-P00001
    shape. Therefore, the bracket 15 and the bracket mounting portion 123 contact one another on three sides. Due to the shape of the bracket mounting portion 123, the bracket 15 does not move and is securely mounted to the frame 12. Also, the frame 12 is firmly fixed by the bracket 15.
  • A reinforcing rib 124 protrudes from a predetermined position below the bracket mounting portion 123, and extends in the lengthwise direction of the frame 12. Specifically, the reinforcing rib 124 is formed to reinforce the frame 12. Also, the reinforcing rib 124 allows the frame 12 to retain a straight disposition without bending even when its length is extended.
  • A leakage preventing rib 125 a is protruded from a perimeter of the adhering surface 125, in detail, an upper perimeter of the front portion of the body 121. The leakage preventing rib 125 a prevents the adhering member 17 anointed on the adhering surface 125 from leaking or spreading to an outside of the frame 12.
  • More in detail, if the leakage preventing rib 125 a is not provided, the adhering member 17 spreads towards the perimeter of the front panel 11 and is exposed to an outside, and then the exterior of the display doesn't look neat. In order to resolve this kind of problem, the leakage preventing rib 125 a is protruded on the frontal perimeter which is located on the edge of the front panel 11.
  • The rear housing 14 is coupled to the head 122.
  • In detail, a plurality of fastening holes 122 a are arranged at predetermined intervals in the edges of the head 122 and rear housing 14, and fastening members are inserted in the fastening holes 122 a to fix the rear housing 14 to the head 122. Also, a plurality of fixing projections 122 b may protrude from the head 122, and a plurality of fixing holes may be formed in the edge of the rear housing 14 to insert the fixing projections 122 b in. In one exemplary embodiment, a fixing projection 122 b may protrude at a point between a fixing hole 122 a and another fixing hole 122 a. The fixing projection 122 b may be inserted into a fixing hole formed in the rear housing 14, so that the fixing hole formed in the rear housing 14 is aligned with the fixing hole 122 a formed in the head 123.
  • FIG. 9 is a frontal view showing the coupling structure of a front panel according to another embodiment of the present disclosure, FIG. 10 is a rear perspective view of region B in FIG. 9, and FIG. 11 is a sectional view of FIG. 10 taken along line III-III′.
  • Referring to FIGS. 9 to 11, according to an embodiment of the present disclosure, the front panel 11 and the display module 13 form a directly coupled structure.
  • That is, when the front panel 11 and the frame 12 are coupled through the adhering member 17, there is the possibility of the front panel 11 detaching from the frame 12. In other words, when the display apparatus 10 is enlarged, the dimensions of the front panel 11 increase and its weight also increases. When the display apparatus 10 is mounted on a wall, if the weight of the front panel 11 exceeds the adhering strength of the adhering member 17, the front panel 11 can disengage from the frame 12 and fall to the floor.
  • To obviate this possibility, the present embodiment provides the front panel 11 integrally coupled to the display module 13.
  • In further detail, a nut 30 is inserted into the front edge of the front panel 11, and a fastening member is passed through the bracket 15 and the module lug 131 and inserted into the nut 30. To prevent damage to the front panel 11 by the nut 30, a rubber bushing 31 may be inserted over the outer circumference of the nut 30. The boss 151 formed at the center of the bracket 15 extends further to the opposite side, and the extended portion is inserted into a portion of the nut 30. The fastening member passes through the module lug 131 and the boss 151 in sequence, and inserts into the nut 30. Through this coupling structure, disengaging of the front panel 11 from the frame 12 due to weight can be avoided.
  • The rear housing 14 is coupled to the frame 12, and the way of coupling the rear housing 14 and the frame 12 may be the same as the way described in FIG. 1 to FIG. 8, using the fixing projections 122 b and fastening holes 122 a.
  • FIG. 12 is a side sectional view showing the coupling structure of a rear housing according to another embodiment of the present disclosure.
  • Referring to FIG. 12, the present embodiment is characterized by the rear housing 14 being coupled directly to the front panel 11.
  • In detail, the front edge of the rear housing 14 may be formed in a size that is the same as or smaller than the front panel 11, so that the front edges of the rear housing 14 cannot be seen from the front of the display apparatus 10.
  • The front edge of the rear housing 14 is bent in parallel directions with the front panel 11 to form the coupling surfaces. A screw 40 or other fastening member is inserted from the front of the front panel 11 through the rear housing 14. A nut 42 is inserted over the outer circumference of the screw 40 that passes and protrudes through the rear housing. Of course, an anti-wear bushing 41 is inserted between the screw 40 and the front panel 11.
  • As depicted in FIG. 11, a structure in which the screw is inserted in the front of the front panel 11 may be employed.
  • FIG. 13 is a side sectional view showing the coupling structure of a rear housing according to another embodiment of the present disclosure.
  • Referring to FIG. 13, the rear housing 14 is fixed to the display module 13.
  • That is, the screw 50 may be sequentially passed through the rear housing 14 and the module lug 131, and inserted into the boss 151 of the bracket 15.
  • Here, to prevent the screw 50 from loosening, a screw thread is formed on the inner circumference of the boss 151.
  • In another method, as shown in FIG. 11, the fastening member passing through the rear housing 14 is passed through the module lug 131 and the boss 151, inserted in the front surface of the front panel 11, and ultimately inserted into the nut 30.
  • In this configuration, the front panel 11, frame 12, display module 13, and rear housing 14 may be integrally coupled through a single screw 32 and nut 30.
  • FIG. 14 is an enlarged perspective view showing a front panel supporting structure of a display apparatus depicted in a frontal view according to an embodiment of the present disclosure, FIG. 15 is a partial rear perspective view of region C in FIG. 14, and FIG. 16 is a sectional view of FIG. 15 taken along line IV-IV′.
  • Referring to FIGS. 14 to 16, to prevent the front panel 11 of a display apparatus 10 according to the present disclosure from separating from the frame 12 due to excessive weight, a separate supporting structure may be provided.
  • That is, a supporter 60 (as shown in FIGS. 14 to 16) may be coupled at the upper surface and lower surface of the front panel 11.
  • In further detail, the supporter 60 may be formed in a length that entirely or partially covers the top and bottom edges of the front panel 11. The supporter 60 is bent a plurality of times in order to securely support the front panel 11, to cover portions of the rear, bottom, and front surfaces of the front panel 11. Of course, the supporter 60 mounted at the top end of the front panel 11 provides a structure that covers portions of the rear, top, and front surfaces of the front panel 11.
  • The supporter 60 is coupled to the head 122 of the frame. That is, a fastening hole is defined in the head 122, and a fastening hole is also formed at an end of the supporter 60. A screw or other fastening member is passed through the supporter 60 and inserted into the head 122.
  • In the above configuration, the upper edge of the front panel 11 is securely supported, preventing the front panel 11 from disengaging from the frame 12 and leaning forward.
  • The bottom edge of the front panel 11 is also securely supported, so that the front panel 11 is prevented from falling due to excessive weight.
  • Here, the supporter 60 may be provided only at the lower end of the front panel 11.
  • FIG. 17 is a sectional view showing an EMI grounding structure according to an embodiment of the present disclosure.
  • Referring to FIG. 17, the present embodiment provides a grounding structure for blocking EMI when a frame 12 made of a non-conductive material is used.
  • Specifically, when the frame 12 is made of a plastic injection molded material or the like, a structure is needed to absorb EMI. Thus, in order to ground EMI that is emitted at the rear housing 14, a separate grounding member 80 is attached to the frame 12.
  • In further detail, one end of the grounding member 80 is inserted in the gasket mounting surface 126 of the frame 12. The grounding member 80 is extended along the surface of the frame 12 and connected at the other end to the rear housing 14. Thus, the rear housing 14 made of a conductive material acts as a ground to block EMI.
  • Here, the grounding member 80 may cover the entire rear surface of the frame 12 or a portion thereof. However, it is sufficient to electrically connect the front panel 11 and the rear housing 14 through the grounding member 80. For example, even if the grounding member 80 is only disposed between the perimeter and the center of the frame 12, EMI is sufficiently blocked.
  • Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.

Claims (35)

1-7. (canceled)
8. A display apparatus, comprising:
a front panel that defines a front of the display apparatus, wherein side edge portions of the front panel are externally exposed;
a frame attached to a rear surface of the front panel;
a display module attached to the frame; and
wherein the front panel covers whole of the front surface of the display module.
9. The display apparatus according to claim 8, wherein the frame is formed of a nonconductive material.
10. The display apparatus according to claim 8, wherein the frame is formed of a plastic material.
11. The display apparatus according to claim 8, further comprising a rear housing to accommodate the display module.
12. The display apparatus according to claim 11, wherein a size of the rear housing is smaller than a size of the front panel.
13. The display apparatus according to claim 11, wherein the rear housing is coupled to the display module.
14. The display apparatus according to claim 13, further comprising at least one screw to attach the display module to the rear housing.
15. The display apparatus according to claim 11, wherein the rear housing covers the entire display module.
16. The display apparatus according to claim 8, wherein the frame is attached to the rear surface of the front panel by an adhering member, wherein the adhering member includes one of a double-sided tape or an adhesive.
17. The display apparatus according to claim 8, further comprising an opaque layer formed along a perimeter of the front panel.
18. The display apparatus according to claim 17, wherein the frame is provided along the opaque layer.
19. The display apparatus according to claim 8, wherein the frame includes a body in close contact with the front panel, and a head that protrudes rearward from the body.
20. The display apparatus according to claim 8, wherein the frame includes a cavity.
21. The display apparatus according to claim 20, wherein the cavity is formed in the head of the frame.
22. The display apparatus according to claim 8, wherein the frame has a hole of a predetermined size.
23. The display apparatus according to claim 22, further comprising a control panel for controlling the display apparatus, wherein the control panel is provided in the hole.
24. The display apparatus according to claim 23, wherein the control panel is a touch screen type.
25. The display apparatus according to claim 21, wherein one of power on/off, switching channels or controlling volume is controlled by touching a surface of the front panel at an area corresponding to the control panel.
26. The display apparatus according to claim 8, wherein the frame comprises a plurality of frame portions attached to the rear surface of the front panel.
27. The display apparatus according to claim 8, wherein the frame couples the display module to the front panel.
28. The display apparatus according to claim 8, wherein the front panel includes a light transmission material to enable an image output by the display module to be viewed from outside of the display apparatus.
29. The display apparatus, comprising:
a front panel that defines a front of the display apparatus;
a frame attached to a rear surface of the front panel;
a display module attached to the frame;
a control panel attached to the rear surface of the front panel for controlling the display apparatus; and
wherein at least one of power on/off, switching channels or controlling volume is controlled by touching a surface of the front panel at an area corresponding to the control panel.
30. The display apparatus according to claim 29, wherein side edge portions of the front panel are externally exposed.
31. The display apparatus according to claim 29, wherein the front panel covers whole of a front surface of the display module.
32. The display apparatus according to claim 29, wherein the frame has a hole of a predetermined size, and the control panel is provided in the hole.
33. The display apparatus according to claim 29, further comprising a rear housing to accommodate the display module, wherein a size of the rear housing is smaller than a size of the front panel.
34. The display apparatus according to claim 33, wherein the rear housing is coupled to the display module.
35. The display apparatus according to claim 33, wherein the frame is coupled to the rear surface of the front panel by an adhering member, and the adhering member includes one of a double-sided tape or an adhesive.
36. The display apparatus according to claim 33, wherein the rear housing covers the entire display module.
37. The display apparatus according to claim 29, further comprising an opaque layer formed along a perimeter of the front panel, wherein the frame is provided along the opaque layer.
38. The display apparatus according to claim 29, wherein the frame includes a body in close contact with the front panel, and a head that protrudes rearward from the body.
39. The display apparatus according to claim 29, wherein the frame comprises a plurality of frame portions attached to the rear surface of the front panel.
40. The display apparatus according to claim 29, wherein the frame couples the display module to the front panel.
41. The display apparatus according to claim 29, wherein the front panel includes a light transmission material to enable an image output by the display module to be viewed from outside of the display apparatus.
US12/692,386 2007-06-04 2010-01-22 Display apparatus Abandoned US20100118479A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/692,386 US20100118479A1 (en) 2007-06-04 2010-01-22 Display apparatus

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2007-0054207 2007-06-04
KR1020070054207A KR101335741B1 (en) 2007-06-04 2007-06-04 Display apparatus
US12/031,178 US7663870B2 (en) 2007-06-04 2008-02-14 Display apparatus
US12/609,279 US8345415B2 (en) 2007-06-04 2009-10-30 Display apparatus
US12/692,386 US20100118479A1 (en) 2007-06-04 2010-01-22 Display apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/031,178 Continuation US7663870B2 (en) 2007-06-04 2008-02-14 Display apparatus

Publications (1)

Publication Number Publication Date
US20100118479A1 true US20100118479A1 (en) 2010-05-13

Family

ID=40087893

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/031,178 Active US7663870B2 (en) 2007-06-04 2008-02-14 Display apparatus
US12/609,279 Active US8345415B2 (en) 2007-06-04 2009-10-30 Display apparatus
US12/692,386 Abandoned US20100118479A1 (en) 2007-06-04 2010-01-22 Display apparatus

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/031,178 Active US7663870B2 (en) 2007-06-04 2008-02-14 Display apparatus
US12/609,279 Active US8345415B2 (en) 2007-06-04 2009-10-30 Display apparatus

Country Status (5)

Country Link
US (3) US7663870B2 (en)
EP (1) EP2160894B1 (en)
KR (1) KR101335741B1 (en)
CN (1) CN101731006B (en)
WO (1) WO2008150053A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090141198A1 (en) * 2007-12-03 2009-06-04 Jin Hyuk Kim Display apparatus
US20100046193A1 (en) * 2007-06-04 2010-02-25 Lg Electronics, Inc. Display apparatus
US20100245280A1 (en) * 2007-06-04 2010-09-30 Lg Electronics Inc. Display apparatus
US9690129B1 (en) 2016-01-05 2017-06-27 Lg Electronics Inc. Display device

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101335769B1 (en) 2007-06-04 2013-12-02 엘지전자 주식회사 Display apparatus
KR101361295B1 (en) * 2007-06-04 2014-02-11 엘지전자 주식회사 Display apparatus
KR20100043539A (en) * 2008-10-20 2010-04-29 엘지전자 주식회사 Display device
KR101559999B1 (en) * 2008-12-29 2015-10-13 엘지전자 주식회사 Display apparatus
AT507984B1 (en) * 2009-03-10 2012-01-15 Cochius Gabriela ADAPTER WASHER
KR101575906B1 (en) 2009-07-17 2015-12-08 엘지전자 주식회사 Display apparatus
KR20110087402A (en) * 2010-01-26 2011-08-03 삼성전자주식회사 Display unit and manufacturing mold for front cover
JP2011244257A (en) * 2010-05-19 2011-12-01 Sony Corp Display device
EP2416131A1 (en) * 2010-08-05 2012-02-08 Mettler-Toledo (Albstadt) GmbH Casing to install electronic components in weighing scales
CN102548326B (en) * 2010-12-28 2015-06-03 富泰华工业(深圳)有限公司 Electronic device
JP5039853B1 (en) 2011-06-07 2012-10-03 シャープ株式会社 Display device and television receiver
CN102231816B (en) * 2011-07-29 2013-09-04 青岛海信电器股份有限公司 Television set
JP5122010B1 (en) * 2011-09-27 2013-01-16 シャープ株式会社 Display device and television receiver
US20140139781A1 (en) * 2012-11-22 2014-05-22 Shenzhen China Star Optoelectronics Technology Co., Ltd Backlight module and lcd device
KR102177834B1 (en) * 2014-05-14 2020-11-12 삼성디스플레이 주식회사 Display device
JP5883067B2 (en) * 2014-05-15 2016-03-09 キヤノン株式会社 Image display device
KR20160126160A (en) * 2015-04-22 2016-11-02 삼성디스플레이 주식회사 Display device and manufacturing method thereof
KR102579620B1 (en) * 2016-01-05 2023-09-15 엘지전자 주식회사 Display device
CN107329301B (en) * 2016-04-29 2020-10-16 群创光电股份有限公司 Display device
JP7064264B2 (en) * 2017-04-04 2022-05-10 トライベイル テクノロジーズ, エルエルシー Display device
CN108388312B (en) * 2018-03-06 2020-07-03 武汉飞越信息技术有限公司 Industrial control computer screen separate use device and use method
KR101966787B1 (en) * 2018-06-28 2019-04-08 엘지디스플레이 주식회사 Display device

Citations (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146354A (en) * 1991-05-07 1992-09-08 Compaq Computer Corporation LCD system with a backlight having a light source at a light pipe's edge and with the LCD enframed
US5164542A (en) * 1991-08-02 1992-11-17 Tusk, Inc. Composite housing for a computer system
US5335100A (en) * 1991-05-10 1994-08-02 Sharp Kabushiki Kaisha Apparatus for lighting a liquid crystal element
US5422751A (en) * 1992-10-14 1995-06-06 Apple Computer, Inc. Liquid crystal display assembly employing front bezel, frame holding liquid crystal cell attached to bezel, and light source and back plate attached to bezel
US5524908A (en) * 1994-09-14 1996-06-11 W. L. Gore & Associates Multi-layer EMI/RFI gasket shield
US5579595A (en) * 1994-08-05 1996-12-03 Dutton; Sydney R. Stretcher bar apparatus
US5841227A (en) * 1996-01-24 1998-11-24 Terpin; David J. Radiation shield with opaque and transparent portion
US6008870A (en) * 1997-04-10 1999-12-28 Lg Electronics Inc. Liquid crystal display
US6144552A (en) * 1999-04-26 2000-11-07 Emc Corporation Handheld computer system
US6181390B1 (en) * 1999-01-27 2001-01-30 Compal Electronics, Inc. Display holder with multiple side frames
US6310768B1 (en) * 2000-03-10 2001-10-30 Compal Electronics, Inc. Portable computer with detachable display
US6330045B1 (en) * 1999-02-16 2001-12-11 Nec Corporation Liquid-crystal display device with a gasket for controlling thermal gradient within the device
US20020067591A1 (en) * 1999-02-24 2002-06-06 Hisao Tajima Image display device
US6462939B1 (en) * 1999-12-30 2002-10-08 Apple Computer, Inc. Bezel mount apparatus and method
US6522371B1 (en) * 1999-09-07 2003-02-18 Kabushiki Kaisha Advanced Display Liquid crystal display and manufacturing method thereof
US6560124B1 (en) * 1998-10-30 2003-05-06 Matsushita Electric Industrial Co., Ltd. Display device with plasma display panel
US6578972B1 (en) * 2001-07-17 2003-06-17 Apple Computer, Inc. Computer monitor bezel
US20030184958A1 (en) * 2002-03-27 2003-10-02 Chi-Lie Kao Protective case for a tablet personal computer
US6707478B2 (en) * 2000-12-27 2004-03-16 Samsung Electronics Co., Ltd. OSD controller assembly and assembling process in a displaying apparatus
US20040090560A1 (en) * 2002-10-25 2004-05-13 Lg Electronics Inc. Flat display monitor and flat display panel fixing apparatus and method
US20040156168A1 (en) * 2003-02-12 2004-08-12 Levasseur Lewis H. Sealed force-based touch sensor
US6801195B2 (en) * 2001-03-07 2004-10-05 Nec Lcd Technologies, Ltd. Display device
US6802717B2 (en) * 2001-04-26 2004-10-12 Felix Castro Teaching method and device
US6809713B2 (en) * 2002-02-27 2004-10-26 Ching-Lung Peng Aluminum-extruded LCD frame
US6819550B2 (en) * 2001-11-08 2004-11-16 Apple Computer, Inc. Computer controlled display device
US20040239619A1 (en) * 2002-08-02 2004-12-02 Hitoshi Takahashi Flat type image display device
US20050093429A1 (en) * 2003-10-29 2005-05-05 Joong-Ha Ahn Display device and heat dissipating means therefor
US6891582B2 (en) * 2002-09-03 2005-05-10 Lg.Philips Lcd Co., Ltd. Mold frame structure of liquid crystal display
US6894739B2 (en) * 2002-06-11 2005-05-17 Samsung Electronics Co., Ltd. Display apparatus having snap pin reinforcing member fastening mechanism
US20050117283A1 (en) * 2003-08-04 2005-06-02 Samsung Electronics Co., Ltd. Display apparatus and method
US20050168930A1 (en) * 1998-10-23 2005-08-04 Kim Jong H. Portable computer and method for mounting a flat panel display device thereon
US20050174726A1 (en) * 2003-10-16 2005-08-11 Heung-Chul Bang Display apparatus having stress-diffusing means
US6930734B2 (en) * 2002-06-19 2005-08-16 Samsung Electronics Co., Ltd. Liquid crystal display module and liquid crystal display apparatus having the same
US6937297B2 (en) * 2002-01-22 2005-08-30 Chi Mei Optoelectronics Corp. Liquid display device having a plurality of fixing pieces on corners of its panel module
US20050212982A1 (en) * 2004-03-10 2005-09-29 Kabushiki Kaisha Toshiba Display apparatus
US20050270734A1 (en) * 1999-05-14 2005-12-08 Apple Computer, Inc. Display housing for computing device
US20060012962A1 (en) * 2004-06-04 2006-01-19 Pioneer Corporation Display device
US20060023407A1 (en) * 2004-07-27 2006-02-02 Alex Ling Notebook suitable for display panels of different sizes
US20060040520A1 (en) * 2004-08-19 2006-02-23 Samsung Electronics Co., Ltd. Flat panel display device including a conductive compressible body
US20060044746A1 (en) * 2004-08-24 2006-03-02 Sok-San Kim Corner reinforcing member for chassis base and display module having the same
US20060043854A1 (en) * 2004-08-28 2006-03-02 Sok-San Kim Plasma display apparatus
US20060077620A1 (en) * 2004-10-11 2006-04-13 Ki-Jung Kim Plasma display apparatus
US20060133017A1 (en) * 2004-12-17 2006-06-22 Won-Kyu Bang Chassis base assembly, method of manufacturing the chassis base assembly and plasma display panel (PDP) assembly using the chassis base assembly
US20060192753A1 (en) * 2005-02-17 2006-08-31 Sony Corporation Control signal input system and control signal input method
US20060209502A1 (en) * 2005-02-14 2006-09-21 Tatsuya Sakata Display apparatus
USD532011S1 (en) * 2004-06-24 2006-11-14 Apple Computer, Inc. Electronic device
US20070040891A1 (en) * 2005-08-17 2007-02-22 Jacob Calloway Community message board
US20070076138A1 (en) * 2005-09-30 2007-04-05 Yung-Chun Chiu Liquid crystal display monitor
US7206038B2 (en) * 2002-11-05 2007-04-17 Lg Electronics Inc. Touch screen mounting assembly for LCD monitor
US7251140B2 (en) * 2003-10-17 2007-07-31 Samsung Sdi Co., Ltd Display apparatus having heat dissipating structure for driver integrated circuit
US20070211191A1 (en) * 2006-03-13 2007-09-13 Samsung Electronics Co., Ltd. Liquid crystal panel assembly and liquid crystal display apparatus having the same
US20070217132A1 (en) * 2006-03-14 2007-09-20 Sony Ericsson Mobile Communications Ab Housing arrangement for a portable device with a display
US7304250B2 (en) * 2002-08-08 2007-12-04 Dai Nippon Printing Co., Ltd. Electromagnetic shielding sheet
US7319499B2 (en) * 2005-06-03 2008-01-15 Ching-Lung Peng Composite structure of aluminum extrusion external framework of LCD monitor
US7327407B2 (en) * 2002-08-06 2008-02-05 Toshiba America Consumer Products, L.L.C. Integrated structural screen panel for projection television
US7348964B1 (en) * 2001-05-22 2008-03-25 Palm, Inc. Single-piece top surface display layer and integrated front cover for an electronic device
US20080186662A1 (en) * 2007-02-07 2008-08-07 Sang-Gu Lee Plasma display device
US7423878B2 (en) * 2004-06-24 2008-09-09 Samsung Sdi Co., Ltd. Plasma display panel assembly
US7433178B2 (en) * 2003-11-29 2008-10-07 Samsung Sdi Co., Ltd. Plasma display apparatus
US7450112B2 (en) * 1999-02-26 2008-11-11 Jonathan Shneidman Telescreen operating method
US20080297999A1 (en) * 2007-06-04 2008-12-04 Choi Man Yong Display apparatus
US20080298001A1 (en) * 2007-06-04 2008-12-04 Choi Man Yong Display apparatus
US20080297798A1 (en) * 2005-07-18 2008-12-04 Hans Wyssen Apparatus and Method to Monitor Particulates
US7466540B2 (en) * 2005-12-08 2008-12-16 Sony Corporation Image display device
US7495894B2 (en) * 2005-11-04 2009-02-24 Innocom Technology (Shenzhen) Co. Ltd Liquid crystal display
US7515403B2 (en) * 2006-09-21 2009-04-07 Lg Electronics Inc. Flat panel display device and frame for the same
US7561422B2 (en) * 2005-12-16 2009-07-14 Innocom Technology (Shenzhen) Co., Ltd. Flat panel display subassembly having shielding structure
US20090225507A1 (en) * 2008-03-05 2009-09-10 Canon Kabushiki Kaisha Image display apparatus
US20090279240A1 (en) * 2006-04-11 2009-11-12 Symbicon Oy Electronic information board
US7626809B2 (en) * 2007-01-09 2009-12-01 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Display device having anti-fog transparent protection plate
US7626808B2 (en) * 2006-12-29 2009-12-01 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Display device having anti-fog transparent protection plate
US7663870B2 (en) * 2007-06-04 2010-02-16 Lg Electronics Inc. Display apparatus
US7760491B2 (en) * 2007-06-04 2010-07-20 Lg Electronics Inc. Display apparatus
US7764332B2 (en) * 2005-12-21 2010-07-27 Innocom Technology (Shenzhen) Co., Ltd. Liquid crystal display having connecting member for push button array
US7929287B2 (en) * 2007-07-05 2011-04-19 Sony Corporation Electronic apparatus
USRE42309E1 (en) * 2000-07-05 2011-04-26 Hitachi, Ltd. Liquid crystal display device module and liquid crystal display monitor mounting the liquid crystal display module
US8174496B2 (en) * 2007-02-07 2012-05-08 Lg Electronics Inc. Mobile communication terminal with touch screen and information inputing method using the same

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1681390A (en) * 1923-06-28 1928-08-21 Charles H Pearson Time fuse for aerial bombs
US6532152B1 (en) 1998-11-16 2003-03-11 Intermec Ip Corp. Ruggedized hand held computer
JP3616535B2 (en) 1999-10-25 2005-02-02 株式会社デジタル Liquid crystal display
JP4197240B2 (en) 2002-07-31 2008-12-17 大日本印刷株式会社 Photocurable resin, photocurable resin composition, fine uneven pattern forming method, transfer foil, optical article and stamper
JP3724487B2 (en) * 2002-12-19 2005-12-07 ソニー株式会社 Projector device
JP4260519B2 (en) * 2003-03-31 2009-04-30 シャープ株式会社 Liquid crystal display
JP4438322B2 (en) 2003-06-04 2010-03-24 ソニー株式会社 Panel display
JP4466013B2 (en) 2003-08-27 2010-05-26 ソニー株式会社 Panel display
JP2005079865A (en) 2003-08-29 2005-03-24 Toshiba Corp Display device
KR100969133B1 (en) * 2003-09-23 2010-07-08 엘지전자 주식회사 Flat panel type display device
KR100528928B1 (en) 2003-10-08 2005-11-15 삼성에스디아이 주식회사 Assembly of plasma display panel
GB0412092D0 (en) 2004-05-29 2004-06-30 Benn Alastair Flat screen television unit
JP4779314B2 (en) * 2004-06-24 2011-09-28 ソニー株式会社 Liquid crystal display
KR20060008751A (en) 2004-07-24 2006-01-27 주식회사 대우일렉트로닉스 Penal front installing structure of displaying device
KR100640889B1 (en) * 2004-08-20 2006-11-02 엘지전자 주식회사 ??? Module for ???
KR100568215B1 (en) 2004-09-02 2006-04-05 삼성전자주식회사 Display apparatus
JP2006106618A (en) 2004-10-08 2006-04-20 Hitachi Ltd Display device
JP2006235425A (en) 2005-02-28 2006-09-07 Sharp Corp Thin display device and assembling method for thin display device
KR100633074B1 (en) * 2005-03-08 2006-10-12 삼성전자주식회사 Display device
US7633870B2 (en) * 2005-04-18 2009-12-15 Symmetricom, Inc. Network forwarding device and method that forward timing packets through the device with a constant delay
US20060237599A1 (en) * 2005-04-22 2006-10-26 John Ternus Flat panel display including a hinge assembly
JP2007017513A (en) 2005-07-05 2007-01-25 Fujitsu General Ltd Thin display device
KR100759569B1 (en) 2006-02-28 2007-09-18 삼성에스디아이 주식회사 Display device
JP4484884B2 (en) * 2007-01-11 2010-06-16 日立プラズマディスプレイ株式会社 Plasma display device
KR101058730B1 (en) 2007-09-28 2011-08-22 가시오게산키 가부시키가이샤 Display element with integral protective plate and display device using same

Patent Citations (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146354A (en) * 1991-05-07 1992-09-08 Compaq Computer Corporation LCD system with a backlight having a light source at a light pipe's edge and with the LCD enframed
US5335100A (en) * 1991-05-10 1994-08-02 Sharp Kabushiki Kaisha Apparatus for lighting a liquid crystal element
US5164542A (en) * 1991-08-02 1992-11-17 Tusk, Inc. Composite housing for a computer system
US5422751A (en) * 1992-10-14 1995-06-06 Apple Computer, Inc. Liquid crystal display assembly employing front bezel, frame holding liquid crystal cell attached to bezel, and light source and back plate attached to bezel
US5579595A (en) * 1994-08-05 1996-12-03 Dutton; Sydney R. Stretcher bar apparatus
US5524908A (en) * 1994-09-14 1996-06-11 W. L. Gore & Associates Multi-layer EMI/RFI gasket shield
US5841227A (en) * 1996-01-24 1998-11-24 Terpin; David J. Radiation shield with opaque and transparent portion
US6008870A (en) * 1997-04-10 1999-12-28 Lg Electronics Inc. Liquid crystal display
US20050168930A1 (en) * 1998-10-23 2005-08-04 Kim Jong H. Portable computer and method for mounting a flat panel display device thereon
US6813159B2 (en) * 1998-10-30 2004-11-02 Matsushita Electric Industrial Co., Ltd. Display device equipped with plasma display panel
US6560124B1 (en) * 1998-10-30 2003-05-06 Matsushita Electric Industrial Co., Ltd. Display device with plasma display panel
US6181390B1 (en) * 1999-01-27 2001-01-30 Compal Electronics, Inc. Display holder with multiple side frames
US6330045B1 (en) * 1999-02-16 2001-12-11 Nec Corporation Liquid-crystal display device with a gasket for controlling thermal gradient within the device
US6477039B2 (en) * 1999-02-24 2002-11-05 Canon Kabushiki Kaisha Image display device
US20020067591A1 (en) * 1999-02-24 2002-06-06 Hisao Tajima Image display device
US7450112B2 (en) * 1999-02-26 2008-11-11 Jonathan Shneidman Telescreen operating method
US6144552A (en) * 1999-04-26 2000-11-07 Emc Corporation Handheld computer system
US6381124B1 (en) * 1999-04-26 2002-04-30 Emc Corporation Handheld computer system
US20050270734A1 (en) * 1999-05-14 2005-12-08 Apple Computer, Inc. Display housing for computing device
US6522371B1 (en) * 1999-09-07 2003-02-18 Kabushiki Kaisha Advanced Display Liquid crystal display and manufacturing method thereof
US6462939B1 (en) * 1999-12-30 2002-10-08 Apple Computer, Inc. Bezel mount apparatus and method
US6310768B1 (en) * 2000-03-10 2001-10-30 Compal Electronics, Inc. Portable computer with detachable display
USRE42309E1 (en) * 2000-07-05 2011-04-26 Hitachi, Ltd. Liquid crystal display device module and liquid crystal display monitor mounting the liquid crystal display module
US6707478B2 (en) * 2000-12-27 2004-03-16 Samsung Electronics Co., Ltd. OSD controller assembly and assembling process in a displaying apparatus
US6801195B2 (en) * 2001-03-07 2004-10-05 Nec Lcd Technologies, Ltd. Display device
US6802717B2 (en) * 2001-04-26 2004-10-12 Felix Castro Teaching method and device
US7348964B1 (en) * 2001-05-22 2008-03-25 Palm, Inc. Single-piece top surface display layer and integrated front cover for an electronic device
US6578972B1 (en) * 2001-07-17 2003-06-17 Apple Computer, Inc. Computer monitor bezel
US6819550B2 (en) * 2001-11-08 2004-11-16 Apple Computer, Inc. Computer controlled display device
US6937297B2 (en) * 2002-01-22 2005-08-30 Chi Mei Optoelectronics Corp. Liquid display device having a plurality of fixing pieces on corners of its panel module
US6809713B2 (en) * 2002-02-27 2004-10-26 Ching-Lung Peng Aluminum-extruded LCD frame
US20030184958A1 (en) * 2002-03-27 2003-10-02 Chi-Lie Kao Protective case for a tablet personal computer
US6894739B2 (en) * 2002-06-11 2005-05-17 Samsung Electronics Co., Ltd. Display apparatus having snap pin reinforcing member fastening mechanism
US6930734B2 (en) * 2002-06-19 2005-08-16 Samsung Electronics Co., Ltd. Liquid crystal display module and liquid crystal display apparatus having the same
US20040239619A1 (en) * 2002-08-02 2004-12-02 Hitoshi Takahashi Flat type image display device
US7327407B2 (en) * 2002-08-06 2008-02-05 Toshiba America Consumer Products, L.L.C. Integrated structural screen panel for projection television
US7304250B2 (en) * 2002-08-08 2007-12-04 Dai Nippon Printing Co., Ltd. Electromagnetic shielding sheet
US6891582B2 (en) * 2002-09-03 2005-05-10 Lg.Philips Lcd Co., Ltd. Mold frame structure of liquid crystal display
US20040090560A1 (en) * 2002-10-25 2004-05-13 Lg Electronics Inc. Flat display monitor and flat display panel fixing apparatus and method
US7206038B2 (en) * 2002-11-05 2007-04-17 Lg Electronics Inc. Touch screen mounting assembly for LCD monitor
US20040156168A1 (en) * 2003-02-12 2004-08-12 Levasseur Lewis H. Sealed force-based touch sensor
US20050117283A1 (en) * 2003-08-04 2005-06-02 Samsung Electronics Co., Ltd. Display apparatus and method
US7508654B2 (en) * 2003-08-04 2009-03-24 Samsung Electronics Co., Ltd. Display apparatus and method
US20050174726A1 (en) * 2003-10-16 2005-08-11 Heung-Chul Bang Display apparatus having stress-diffusing means
US7251140B2 (en) * 2003-10-17 2007-07-31 Samsung Sdi Co., Ltd Display apparatus having heat dissipating structure for driver integrated circuit
US20050093429A1 (en) * 2003-10-29 2005-05-05 Joong-Ha Ahn Display device and heat dissipating means therefor
US7433178B2 (en) * 2003-11-29 2008-10-07 Samsung Sdi Co., Ltd. Plasma display apparatus
US20050212982A1 (en) * 2004-03-10 2005-09-29 Kabushiki Kaisha Toshiba Display apparatus
US20060012962A1 (en) * 2004-06-04 2006-01-19 Pioneer Corporation Display device
US7423878B2 (en) * 2004-06-24 2008-09-09 Samsung Sdi Co., Ltd. Plasma display panel assembly
USD532011S1 (en) * 2004-06-24 2006-11-14 Apple Computer, Inc. Electronic device
US20060023407A1 (en) * 2004-07-27 2006-02-02 Alex Ling Notebook suitable for display panels of different sizes
US20060040520A1 (en) * 2004-08-19 2006-02-23 Samsung Electronics Co., Ltd. Flat panel display device including a conductive compressible body
US20060044746A1 (en) * 2004-08-24 2006-03-02 Sok-San Kim Corner reinforcing member for chassis base and display module having the same
US20060043854A1 (en) * 2004-08-28 2006-03-02 Sok-San Kim Plasma display apparatus
US20060077620A1 (en) * 2004-10-11 2006-04-13 Ki-Jung Kim Plasma display apparatus
US20060133017A1 (en) * 2004-12-17 2006-06-22 Won-Kyu Bang Chassis base assembly, method of manufacturing the chassis base assembly and plasma display panel (PDP) assembly using the chassis base assembly
US20060209502A1 (en) * 2005-02-14 2006-09-21 Tatsuya Sakata Display apparatus
US20060192753A1 (en) * 2005-02-17 2006-08-31 Sony Corporation Control signal input system and control signal input method
US7319499B2 (en) * 2005-06-03 2008-01-15 Ching-Lung Peng Composite structure of aluminum extrusion external framework of LCD monitor
US20080297798A1 (en) * 2005-07-18 2008-12-04 Hans Wyssen Apparatus and Method to Monitor Particulates
US20070040891A1 (en) * 2005-08-17 2007-02-22 Jacob Calloway Community message board
US20070076138A1 (en) * 2005-09-30 2007-04-05 Yung-Chun Chiu Liquid crystal display monitor
US7495894B2 (en) * 2005-11-04 2009-02-24 Innocom Technology (Shenzhen) Co. Ltd Liquid crystal display
US7466540B2 (en) * 2005-12-08 2008-12-16 Sony Corporation Image display device
US7561422B2 (en) * 2005-12-16 2009-07-14 Innocom Technology (Shenzhen) Co., Ltd. Flat panel display subassembly having shielding structure
US7764332B2 (en) * 2005-12-21 2010-07-27 Innocom Technology (Shenzhen) Co., Ltd. Liquid crystal display having connecting member for push button array
US20070211191A1 (en) * 2006-03-13 2007-09-13 Samsung Electronics Co., Ltd. Liquid crystal panel assembly and liquid crystal display apparatus having the same
US20070217132A1 (en) * 2006-03-14 2007-09-20 Sony Ericsson Mobile Communications Ab Housing arrangement for a portable device with a display
US20090279240A1 (en) * 2006-04-11 2009-11-12 Symbicon Oy Electronic information board
US7515403B2 (en) * 2006-09-21 2009-04-07 Lg Electronics Inc. Flat panel display device and frame for the same
US7626808B2 (en) * 2006-12-29 2009-12-01 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Display device having anti-fog transparent protection plate
US7626809B2 (en) * 2007-01-09 2009-12-01 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Display device having anti-fog transparent protection plate
US8174496B2 (en) * 2007-02-07 2012-05-08 Lg Electronics Inc. Mobile communication terminal with touch screen and information inputing method using the same
US20080186662A1 (en) * 2007-02-07 2008-08-07 Sang-Gu Lee Plasma display device
US20110037719A1 (en) * 2007-06-04 2011-02-17 Lg Electronics Inc. Display apparatus
US20100046193A1 (en) * 2007-06-04 2010-02-25 Lg Electronics, Inc. Display apparatus
US7697272B2 (en) * 2007-06-04 2010-04-13 Lg Electronics Inc. Display apparatus
US7760491B2 (en) * 2007-06-04 2010-07-20 Lg Electronics Inc. Display apparatus
US7663870B2 (en) * 2007-06-04 2010-02-16 Lg Electronics Inc. Display apparatus
US7889484B2 (en) * 2007-06-04 2011-02-15 Lg Electronics Inc. Display apparatus
US20080298001A1 (en) * 2007-06-04 2008-12-04 Choi Man Yong Display apparatus
US7929280B2 (en) * 2007-06-04 2011-04-19 Lg Electronics Inc. Display apparatus
US20080297999A1 (en) * 2007-06-04 2008-12-04 Choi Man Yong Display apparatus
US7929287B2 (en) * 2007-07-05 2011-04-19 Sony Corporation Electronic apparatus
US20090225507A1 (en) * 2008-03-05 2009-09-10 Canon Kabushiki Kaisha Image display apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8098487B2 (en) * 2007-06-04 2012-01-17 Lg Electronics Inc. Display apparatus
US20100046193A1 (en) * 2007-06-04 2010-02-25 Lg Electronics, Inc. Display apparatus
US20100245280A1 (en) * 2007-06-04 2010-09-30 Lg Electronics Inc. Display apparatus
US20110037719A1 (en) * 2007-06-04 2011-02-17 Lg Electronics Inc. Display apparatus
US20110069005A1 (en) * 2007-06-04 2011-03-24 Lg Electronics Inc. Display apparatus
US7929280B2 (en) * 2007-06-04 2011-04-19 Lg Electronics Inc. Display apparatus
US8345415B2 (en) 2007-06-04 2013-01-01 Lg Electronics Inc. Display apparatus
US9395749B2 (en) 2007-06-04 2016-07-19 Lg Electronics Inc. Display apparatus
US20090141198A1 (en) * 2007-12-03 2009-06-04 Jin Hyuk Kim Display apparatus
US8144267B2 (en) 2007-12-03 2012-03-27 Lg Electronics Inc. Display apparatus
US9690129B1 (en) 2016-01-05 2017-06-27 Lg Electronics Inc. Display device
WO2017119685A1 (en) * 2016-01-05 2017-07-13 Lg Electronics Inc. Display device
US9804430B2 (en) 2016-01-05 2017-10-31 Lg Electronics Inc. Display device

Also Published As

Publication number Publication date
CN101731006A (en) 2010-06-09
EP2160894A1 (en) 2010-03-10
US20100046193A1 (en) 2010-02-25
EP2160894B1 (en) 2014-11-12
US20080298000A1 (en) 2008-12-04
US8345415B2 (en) 2013-01-01
CN101731006B (en) 2015-06-10
WO2008150053A1 (en) 2008-12-11
US7663870B2 (en) 2010-02-16
KR101335741B1 (en) 2013-12-02
KR20080106605A (en) 2008-12-09
EP2160894A4 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
US7889484B2 (en) Display apparatus
US7760491B2 (en) Display apparatus
US7697272B2 (en) Display apparatus
US7663870B2 (en) Display apparatus
US8786796B2 (en) Display device
US7974082B2 (en) Display apparatus
EP2965307B1 (en) Display device
CN215494445U (en) Display device
KR101753393B1 (en) Display apparatus
KR101018508B1 (en) Display apparatus
EP3879380A1 (en) Display apparatus
CN208848002U (en) Liquid crystal display device
CN111432147A (en) No frame TV backplate structure
KR20110012924A (en) A display apparatus

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION