Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS20100119818 A1
Type de publicationDemande
Numéro de demandeUS 12/638,407
Date de publication13 mai 2010
Date de dépôt15 déc. 2009
Date de priorité13 mai 2004
Autre référence de publicationEP1756500A2, EP1756500A4, US8603576, US8974854, US9266251, US20050265893, US20110236707, US20140193634, US20150140326, US20160325458, WO2005114078A2, WO2005114078A3
Numéro de publication12638407, 638407, US 2010/0119818 A1, US 2010/119818 A1, US 20100119818 A1, US 20100119818A1, US 2010119818 A1, US 2010119818A1, US-A1-20100119818, US-A1-2010119818, US2010/0119818A1, US2010/119818A1, US20100119818 A1, US20100119818A1, US2010119818 A1, US2010119818A1
InventeursRobert M. Leach, Jun Zhang
Cessionnaire d'origineLeach Robert M, Jun Zhang
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Compositions and methods for treating cellulose-based materials with micronized additives
US 20100119818 A1
Résumé
A composition for treating cellulosic materials is provided. The composition comprises a dispersion of micronized additives. The dispersion comprises additive particles with diameters in the range of 0.001 to 25 microns. Also provided is a method for the application of the additive-containing composition to wood, as well as wood products which have been treated with the composition.
Images(3)
Previous page
Next page
Revendications(20)
1. A wood preservative composition comprising one or more particulate additives, wherein greater than 80 weight percent of the additive particles have diameters in the range of 0.001 microns to 25 microns.
2. A wood preservative composition as in claim 1, wherein at least one of the additives is selected from the group consisting of inorganic pigments, organic pigments, water repellants, anti-weathering agents, dimensional stabilization agents, and fire retardants and mixtures thereof.
3. A wood preservative composition as in claim 1, wherein fewer than 20 weight percent of the additive particles have a diameter of greater than 25 microns.
4. A wood preservative composition as in claim 1, wherein fewer than 20 weight percent of the additive particles have a diameter of less than 0.001 microns.
5. A wood preservative composition as in claim 1, wherein greater than 50 weight percent of the additive particles have diameters in the range of 0.01 microns to 10 microns.
6. A wood preservative composition as in claim 3, wherein greater than 80 weight percent of the additive particles have diameters which are less than 1 micron.
7. A wood preservative composition as in claim 1, wherein greater than 85, 90, 95 or 99 weight percent of the additive particles have diameters in the range of 0.001 microns to 25 microns.
8. A wood preservative composition of claim 1, wherein the particulate additive is selected from the group consisting of iron oxides, titanium dioxide paraffin wax, acrylic polymer, and zinc borate.
9. A process for preserving wood, said process comprising: a) providing a wood preservative composition comprised of one or more particulate additives comprised of particles having diameters in the range of 0.001 to 25 microns; b) applying said composition to wood such that at least some of the particles penetrate the surface of the wood.
10. A process as in claim 9, wherein the additive is selected from the group consisting of inorganic pigments, organic pigments, water repellants, anti-weathering agents, dimensional stabilization agents, fire retardants and mixtures thereof.
11. A process as in claim 9 wherein fewer than 20 weight percent of the particles have a diameter of greater than 25 microns.
12. A process as in claim 9 wherein fewer than 20 weight percent of the particles have a diameter of less than 0.005 microns.
13. A process as in claim 9 wherein at least 50 weight percent of the particles have diameters in the range of 0.01 microns to 1 micron.
14. A process as in claim 9 wherein greater than 80 weight percent of the particles have diameters which are less than 1 micron.
15. A process as in claim 9, wherein greater than 85, 90, 95 or 99 weight percent of the additive particles have diameters in the range of 0.001 microns to 25 microns
16. A process as in claim 9, wherein the additive is selected from the group consisting of iron oxides, carbon black, titanium dioxide paraffin wax, acrylic polymer, and zinc borate.
17. A process as in claim 9, further comprising performing a) by grinding said additive into miconized form.
18. Wood comprising a wood preservative composition which comprises a particulate additive which is inside the wood, wherein at least some of the particles of said additive have diameters in the range of from 0.001 to 25 microns.
19. Wood as in claim 18, wherein the additive is selected from the group consisting of inorganic pigments, organic pigments, water repellants, anti-weathering agents, dimensional stabilization agents, and fire retardants.
20. Wood as in claim 18 wherein the additive is selected from the group consisting of iron oxides, carbon black, titanium dioxide paraffin wax, acrylic polymer, and zinc borate.
Description
    CROSS REFERENCE TO RELATED APPLICATION
  • [0001]
    Applicant hereby claims priority to U.S. Provisional Application No. 60/570,659, filed on May 13, 2004, which is incorporated herein by reference.
  • BACKGROUND
  • [0002]
    Wood and wood-based substrates, such as paper, particleboard, wood composites, plastic lumbers, rope, etc., are often treated in order to impart desired characteristics to or enhance existing characteristics of the substrate. Non-limiting examples of performance characteristics which can be imparted or enhanced by treatment of a substrate with additives are durability, fire resistance and water resistance. Non-limiting examples of such appearance characteristics are color and texture. Non-limiting examples of additives which can be applied are colorants, pigments, polymers, water repellants, dimensional stabilizing agents, UV inhibitors, UV absorbers, UV blockers, antioxidants, fire retardants and biocides, such as, for example, insecticides, fungicides, moldicides, algaecides and bactericides.
  • [0003]
    Many, if not most such additives have little or no water solubility and are thus difficult to apply to wood as a water-based solution. Generally, such additives have been dissolved in organic carriers prior to use, often with the additional step of emulsification in water by the use of various surfactants if a water-based application is desired.
  • [0004]
    Solubilizing agents or surfactants such as emulsifying agents, wetting agents, etc. are added in order to give a product that can be applied as a water-based composition to wood or cellulosic substrates. However, solubilizing agents or surfactants, etc. are costly and the use of these products may also result in enhanced leaching of additive upon exposure of treated wood to moisture. It is thought that the enhanced leaching is due to the fact that solubilizing agents, surfactants, emulsifying agents, wetting agents, etc. remain in the wood after treatment. Upon exposure to moisture, the additives are solubilized or otherwise mobilized, and leach from the wood.
  • [0005]
    Despite the efforts of many inventors, there remains a need for organic preservative systems which do not require organic solubilizing agents, which are suitable for use in the treatment wood and cellulose-based materials, and have only low levels of leaching, if any, upon exposure of treated materials to the environment. This need is satisfied by the compositions disclosed herein
  • SUMMARY OF THE INVENTION
  • [0006]
    Disclosed herein are compositions which comprise micronized additives. Also disclosed is a method for the use of the compositions to treat cellulosic materials, particularly wood.
  • [0007]
    Current technology typically requires the addition of organic solvents, emulsifying agents, etc. Disadvantages of the typical approach used in the art include increased cost, residue bleeding, environmental damage and harmful exposure to leached additive.
  • [0008]
    With the inventive compositions disclosed herein, organic solvents and emulsifiers are not required, thus reducing cost. Furthermore, leaching of additives from treated materials is reduced relative to non-micronized or solubilized compositions currently used in the art, thus reducing environmental and exposure risks.
  • [0009]
    Also provided is a method for the treatment of wood or wood product with the compositions of the present invention. In one embodiment, the method comprises the steps of 1) providing a mixture comprising micronized additive particles in an aqueous carrier, such as in the form of a dispersion, emulsion, suspension, or other particle/carrier combination, and 2) applying the particles to a wood or wood product. In a further embodiment, the particulate additives have been prepared by the grinding of the additive, optionally in non-micronized particulate form, in wetting agents and/or dispersants such that the additive is reduced to the form of micronized particles. When such a composition is used for preservation of wood, there is minimal leaching of the additive from wood as described herein.
  • BRIEF DESCRIPTION OF THE FIGURES
  • [0010]
    FIG. 1 depicts the anatomy of coniferous wood. A: Resin canal; B: Earlywood tracheids; C: Latewood tracheids; D: Bordered pits.
  • [0011]
    FIG. 2 depicts the border pit structure for coniferous woods.
  • [0012]
    RIGHT: Microscopic view of the cross section of a bordered pit.
  • [0013]
    LEFT: Torus in top view. The torus is supported by a net of radial fibril membrane, also called the margo. The flow of fluids between two tracheids through such a membrane is restricted by the size of the membrane openings. A: Pit aperture; B: Torus; C: Margo (microfibrils); D: Pit border
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0014]
    Unless stated otherwise, such as in the examples, all amounts and numbers used in this specification are intended to be interpreted as modified by the term “about.” Likewise, elements or compounds identified in this specification, unless stated otherwise, are intended to be non-limiting and representative of other elements or compounds generally considered by those skilled in the art as being within the same family of elements or compounds. Also, the term “additive” refers to water repellants, coloring agents, UV stabilizers, UV absorbers, UV blockers, antioxidants, dimensional stabilizing agents, fire retardants or other organic or inorganic compounds which enhance appearance or performance characteristics of the wood.
  • [0015]
    Disclosed herein is a micronized additive composition and method for use thereof in treatment of cellulosic material, and in a preferred embodiment, wood. Unlike wood which has been treated with additives solubilized in organic solvents or other solubilizing agents, wood treated with compositions of the present invention have little or no emission of organic solvent. Furthermore, upon exposure to moisture, the leaching of the additive from treated wood is generally significantly less than that associated with solubilized compositions.
  • [0016]
    Non-limiting examples of additives which can be used are inorganic or organic additives, such as organic pigments, inorganic pigments, waxes, polymers, anti-weathering agents (such as, for example, UV absorbers, UV blockers, UV inhibitors, antioxidants), fire retardants and mixtures thereof. Non-limiting examples of additive chemical types to which this strategy has been applied are azoles, carbamates, isothiazolinones, thiocyanates, sulfenamides, quaternary phosphonium compounds, quaternary ammonium compounds, nitriles, pyridines, etc. and mixtures thereof.
  • [0017]
    Inorganic or organic pigments, water repellants, anti-weathering agents, dimensional stabilization agents, and fire retardants, etc. and mixtures or synergistic mixtures thereof having relatively low solubility can be used with the system and are well known to those skilled in the art and include those listed in the tables below. In general, it is preferable for the additive to comprise particles of sizes in the range of 0.001 microns to 25 microns and a relatively low solubility in water. A water solubility which is less than 0.5 g of biocide per 100 grams of water at 25° C. is preferred. Such additives are referred to hereafter as “suitably insoluble.”
  • [0018]
    In general, an “additive” is defined to be a component which is applied to wood as part of a solution. In an embodiment of the present invention, the additive is in addition to a component which has biocidal activity. An additive can, itself, have biocidal ability, and be a co-biocide. An additive may instead be a non-biocidal compound included to enhance the performance or appearance characteristics of the wood to which it is to be applied. An additive may also be a component which does both, i.e., has biocidal activity and also improves an appearance characteristic of the wood. Those of skill in the art will recognize that many compounds have both characteristics.
  • [0019]
    Non-limiting examples of suitably insoluble inorganic pigments include: iron oxides, including red iron oxides, yellow iron oxides, black iron oxides and brown iron oxides; carbon black, iron hydroxide, graphite, black micaceous iron oxide; aluminum flake pigments, pearlescent pigments; calcium carbonate; calcium phosphate; calcium oxide; calcium hydroxide; bismuth oxide; bismuth hydroxide; bismuth carbonate; copper carbonate; copper hydroxide; basic copper carbonate; silicon oxide; zinc carbonate; barium carbonate; barium hydroxide; strontium carbonate; zinc oxide; zinc phosphate; zinc chromate; barium chromate; chrome oxide; titanium dioxide; zinc sulfide and antimony oxide.
  • [0020]
    Non-limiting examples of organic pigments include Monoazo (arylide) pigments such as PY3, PY65, PY73, PY74, PY97 and PY98; Disazo (diarylide); Disazo condensation; Benzimidazolone; Beta Naphthol; Naphthol; metal-organic complexes; Isoindoline and Isoindolinone; Quinacridone; perylene; perinone; anthraquinone; diketo-pyrrolo pyrrole; dioxazine; triacrylcarbonium; the phthalocyanine pigments, such as cobalt phthalocyanine, copper phthalocyanine, copper semichloro- or monochlorophthalocyanine, copper phthalocyanine, metal-free phthalocyanine, copper polychlorophthalocyanine, etc.; organic azo compounds; organic nitro compounds; polycyclic compounds, such as phthalocyanine pigments, quinacridone pigments, perylene and perinone pigments; diketopyrrolo-pyrrole(DPP) pigments; thioindigo pigments; dioxazine pigments; quinophthalone pigments; triacrylcarbonium pigments, and Diaryl pyrrolopyroles, such as PR254.
  • [0021]
    Non-limiting examples of suitably insoluble organic pigments, grouped according to the color they produce (e.g. blues, blacks, greens, yellow, reds and browns), based on their color index include: Pigment Yellows 11, 3, 12, 13, 14, 17, 81, 83, 65, 73, 74, 75, 97, 111, 120, 151, 154, 175, 181, 194, 93, 94, 95, 128, 166, 129, 153, 109, 110, 173, 139, 185, 138, 108, 24; Pigment Oranges 5, 36, 60, 62, 65, 68, 61, 38, 69, 31, 13, 34, 43, 51, 71, 73; Pigment Reds 3, 4, 171, 175, 176, 185, 208, 2, 5, 12, 23, 112, 146, 170, 48, 57, 60, 68, 144, 166, 214, 220, 221, 242, 122, 192, 202, 207, 209, 123, 149, 178, 179, 190, 224, 177, 168, 216, 226, 254, 255, 264, 270, 272; Pigment Violets 32, 19, 29, 23, 37; Pigment
  • [0022]
    Browns 25, 23; Pigment Blacks 1, 31, 32, 20; Pigment Blues 15, 15:1, 15:2, 15:3, 15:4, 15:6, 16, 60; and Pigment Greens 7, 36.
  • [0023]
    Non-limiting examples of suitably insoluble water repellents include paraffin wax, olefin wax, petroleum wax, carnauba wax, polyethylene wax, silicone wax, polypropylene wax, PTFE wax and synthetic wax.
  • [0024]
    Non-limiting examples of suitably insoluble anti-weathering agents include pigments such as zinc oxide, zinc sulfide, iron oxide, carbon black, titanium dioxide; UV absorbers such as hydroxyl-substituted benzophenones, hydroxyphenyl benzotriazides, substituted acrylonitriles; UV stabilizers such as hindered amine light stabilizers (HALS); and anti-oxidants such as amines, imidiazoles or complex hindered phenolics.
  • [0025]
    Non-limiting examples of suitably insoluble dimensional stabilization agents include waxes such as paraffin wax, olefin wax, petroleum wax, carnauba wax, polyethylene wax, silicone wax, polypropylene wax, PTFE wax and synthetic wax, and polymers such as polystyrene, polyethylene, polypropylene, polyvinyl chloride, polyacrylonitrile, polyvinyl acetate, polyester, acrylic polymers, polyamide, polyurethane, phenolic novolacs, phenolic resoles, urea formaldehyde resins, melamine formaldehyde resins, epoxy resins, natural resins such as rosin and rosin esters, hydrocarbon resins, ketone resins, terpene resins, alkyd resins, silicone resins and silicate resins, and other water insoluble polymers.
  • [0026]
    Non-limiting examples of suitably insoluble fire retardants are: metal hydroxides such as aluminum trihydroxide and magnesium hydroxide; antimony compounds such as antimony trioxide, antimony pentoxide and calcium antimonite; zinc compounds such as zinc stannate, zinc hydroxyl-stannate, zinc borate, zinc silicate, zinc phosphate, zinc oxide and zinc hydroxide; phosphorous based compounds such as phosphate esters red phosphorus melamine phosphate, zinc phosphate, calcium phosphate, magnesium phosphate and ethylenediamine phosphate; silicate compounds such as calcium silicate, silica, magnesium silicate and zinc silicate; halogenated compounds such as tetra bromo bisphenol A; nitrogen based compounds such as melamine and its salts, melamine borate and polyamides.
  • [0027]
    Inorganic metal compounds, many having a degree of biocidal activity, can be used as additives in the compositions of the present invention. Non-limiting examples of such additives are suitably insoluble compounds of, for example, copper, tin, silver, nickel. For example, non-limiting examples of specific suitably insoluble metal compounds include cuprous oxide, cupric oxide, copper hydroxide, copper carbonate, basic copper carbonate, copper oxychloride, copper 8-hydroxyquinolate, copper dimethyldithiocarbamate, copper omadine, and copper borate.
  • [0028]
    The micronized additive can be obtained by grinding the additive, optionally wetted or present as a dispersion, to the desired particle size using a grinding mill Other particulating methods known in the art can also be used, such as high speed, high shear mixing or agitation. The resulting particulate additive can be mixed with water or other aqueous liquid carrier to form a solution of dispersed additive particles. Optionally, the solution can comprise a thickener, such as, for example, a cellulose derivative, as is known in the art. The solution can, optionally, additionally comprise other biocides, organic or inorganic, micronized if desired, to produce a formulation suitable for the preservation of wood and other cellulose-based materials.
  • [0029]
    The particles are preferably dispersed in a dispersant, such as acrylic copolymers, aqueous solution of copolymers with pigment affinity groups, modified polyacrylate, acrylic polymer emulsions, modified lignin and the like. If desired, a stabilizer as is known in the art can be used.
  • [0030]
    The penetration of the dispersion formulation into the cellular structure of wood or other cellulose-based material is dependent upon particle size considerations. If the inorganic/organic additive source used in formulating the dispersion formulation disclosed herein has a particle size in excess of 30 microns, the particles may be filtered by the surface of the wood and thus may not be uniformly distributed within the cell and cell wall. As shown in FIG. 1, the primary entry and movement of fluids through wood tissue occurs primarily through the tracheids and border pits. Tracheids have a diameter of about thirty microns. Fluids are transferred between wood cells by means of border pits.
  • [0031]
    Without desiring to be bound by theory, penetration of the micronized dispersion formulation into wood takes place because particles migrate into or are taken up by tracheids in the wood. FIG. 1 shows the physiological structure of wood. As shown in FIG. 1, the primary entry and movement of fluids through wood tissue occurs primarily through the tracheids and border pits. Fluids are transferred between wood cells by means of border pits. Wood tracheids generally have diameters of around 30 microns, and thus good penetration can be achieved by the use of particles having long axis dimensions (“particle size” which are less than the tracheid diameters of the wood or wood product to be treated. Particles having diameters which are larger than the average diameter of the tracheids will generally not penetrate the wood (i.e., they will be “filtered” by the wood) and may block, or “clog” tracheids from taking in additional particles.
  • [0032]
    The diameter of the tracheids depends upon many factors, including the identity of the wood. As a general rule, if the additives disclosed herein have a particle size in excess of 25 microns, the particles may be filtered by the surface of the wood and thus may not be uniformly distributed within the cell and cell wall.
  • [0033]
    Studies by Mercury-Porosimetry technique indicated that the overall diameter of the border pit chambers typically varies from a several microns up to thirty microns while, the diameter of the pit openings (via the microfibrils) typically varies from several hundredths of a micron to several microns. FIG. 2 depicts the border pit structure for coniferous woods. Thus, in order to increase penetration and improve the uniformity of distribution of the particulate additive, the particle size should be such that it can travel through the pit openings.
  • [0034]
    In one embodiment particle size of the micronized particles used in the dispersion formulation disclosed herein can be micronized, i.e., with a long axis dimension between 0.001-25 microns. In another embodiment, the particle size is between 0.001-10 microns. In another embodiment, the particle size is between 0.01 to 10 microns. If superior uniformity of penetration is desired, particle size of the additive used in the dispersion formulation disclosed herein should be between 0.01-1 microns.
  • [0035]
    In addition to a recommended upper limit of 25 microns, Particles which are too small can leach out of the wood over time. It is thus generally recommended that the particulate additive comprise particles which have diameters which are not less than 0.001 microns.
  • [0036]
    Particles which are too large can clog the wood, preventing it from taking in other particles and particles which are too small can leach from the wood. Thus particle size distributional parameters can affect the uniformity of particle distribution in the wood, as well as the leaching properties of treated wood. It is thus preferable to use particle size distributions which contain relatively few particle sizes outside the range of 0.001 to 25 microns. It is preferred that no more than 20 weight percent of the particles have diameters which are greater than 25 microns. Because smaller particles have an increased chance of leaching from the wood, it is also preferred that no more than 20 wt % of the particles have diameters under 0.001 microns. Regardless of the foregoing recommendations, it is generally preferred that greater than 80 wt % of the particles have a diameter in the range of 0.001 to 25 microns. In more preferred embodiments, greater than 85, 90, 95 or 99 wt percent particles are in the range of 0.001 to 25 microns.
  • [0037]
    For increased degree of penetration and uniformity of distribution, at least 50 wt % of the particles should have diameters which are less than 10 microns. More preferred are particle distributions which have at least 65 wt % of the particles with sizes of less than 10 microns. In an additional embodiment, less than 20 wt % of the particles have diameters of less than 1 micron.
  • [0038]
    The present invention also provides a method for preservation of wood. In one embodiment, the method comprises the steps of treating wood with a composition (treating fluid) comprising a dispersion of additive particles. In another embodiment, wood is treated with a composition comprising a dispersion comprised of particles of multiple additives, at least two of said additives having different average particle sizes.
  • [0039]
    The size of the micronized particles of the additives is between 0.001 to 25 microns, preferably between 0.001 to 10 microns, more preferably between 0.01 to 10 microns and most preferably between 0.01 to 1 microns. In another embodiment, the wood is treated with a composition comprising soluble compounds and micronized additives.
  • [0040]
    The treating fluid may be applied to wood by dipping, soaking, spraying, brushing, or any other means well known in the art. In a preferred embodiment, vacuum and/or pressure techniques are used to impregnate the wood in accord with this invention including the standard processes, such as the “Empty Cell” process, the “Modified Full Cell” process and the “Full Cell” process, and any other vacuum and/or pressure processes which are well known to those skilled in the art.
  • [0041]
    The standard processes are defined as described in AWPA Standard C1-03 “All Timber Products—Preservative Treatment by Pressure Processes”. In the “Empty Cell” process, prior to the introduction of preservative, materials are subjected to atmospheric air pressure (Lowry) or to higher air pressures (Rueping) of the necessary intensity and duration. In the “Modified Full Cell”, prior to introduction of preservative, materials are subjected to a vacuum of less than 77 kPa (22 inch Hg) (sea level equivalent). A final vacuum of not less than 77 kPa (22 inch Hg) (sea level equivalent) should be used. In the “Full Cell Process”, prior to introduction of preservative or during any period of condition prior to treatment, materials are subjected to a vacuum of not less than 77 kPa (22 inch Hg). A final vacuum of not less than 77 kPa (22 inch Hg) is used.
  • [0042]
    The following examples are provided to further describe certain embodiment of the disclosure but are in no way limiting to the scope of disclosure.
  • EXAMPLE 1
  • [0043]
    Six hundred grams of red iron oxide, 400 g yellow iron oxide and 10 g carbon black are added to a container containing 2850.0 g of water and 150 g of a commercially available dispersant. The mixture is mechanically stirred for about 20 minutes and then added to a grinding mill. The sample is ground for about 1 hour and a stable dispersion is obtained. The particle size of the dispersed product can be analyzed by Horiba LA-910 Particle Size Distribution Analyzer (PSDA). The average particle size is preferably 0.3 microns with a distribution range of 0.04 um to 1.5 um.
  • [0044]
    The resulting brown iron oxide dispersion can be diluted with water to make a treating fluid containing 1.0% iron oxide. The treating fluid can be used to treat southern pine samples using a full cell process. The treated samples can be oven dried and tested to check uniform distribution of iron oxide throughout the cross sections and for the presence of a uniform brown color.
  • EXAMPLE 2
  • [0045]
    Nine hundred grams of red iron oxide and 100 g yellow iron oxide are added to a container containing 1550 g of water and 150 g of a commercially available dispersant. The mixture is mechanically stirred for about 20 minutes and then added to a grinding mill. The sample is ground for about 1 hour and a stable dispersion is obtained. The particle size of the dispersed product can be analyzed by Horiba LA-910 Particle Size Distribution Analyzer (PSDA). The average particle size is preferably 0.3 microns with a distribution range of 0.005 um to 1.5 um.
  • [0046]
    The resulting dispersion can be diluted with water to make a treating fluid containing 0.5% total iron oxides. The treating fluid can be used to treat southern pine samples using a full cell process. The treated samples can be oven dried and tested to check uniform distribution of iron oxide throughout the cross sections and for the presence of a uniform color.
  • EXAMPLE 3
  • [0047]
    Seven hundred grams of red iron oxide, 200 g yellow iron oxide and 5 g black iron oxide are added to a container containing 2050 g of water and 180 g of a commercially available dispersant. The mixture is mechanically stirred for about 20 minutes and then added to a grinding mill. The sample is ground for about 1 hour and a stable dispersion is obtained. The particle size of the dispersed product can be analyzed by Horiba LA-910 Particle Size Distribution Analyzer (PSDA). The average particle size is preferably 0.35 microns with a distribution range of 0.005 um to 2.0 um.
  • [0048]
    The resulting dispersion can be diluted with water to make a treating fluid containing 0.5% total iron oxides. The treating fluid can be used to treat southern pine samples using a full cell process. The treated samples can be oven dried and tested to check uniform distribution of iron oxide throughout the cross sections and for the presence of a uniform color.
  • EXAMPLE 4
  • [0049]
    Eight hundred grams of yellow iron oxide, 100 g red iron oxide and 15 g organic pigment blue PB 15 are added to a container containing 3000 g of water and 200 g of a commercially available dispersant. The mixture is mechanically stirred for about 20 minutes and then added to a grinding mill. The sample is ground for about 1 hour and a stable dispersion is obtained. The particle size of the dispersed product can be analyzed by Horiba LA-910 Particle Size Distribution Analyzer (PSDA). The average particle size is preferably 0.30 microns with a distribution range of 0.005 um to 2.0 um.
  • [0050]
    The resulting dispersion can be diluted with water to make a treating fluid containing 0.5% total iron oxides. The treating fluid can be used to treat southern pine samples using a full cell process. The treated samples can be oven dried and tested to check uniform distribution of iron oxide throughout the cross sections and for the presence of a uniform color.
  • EXAMPLE 5
  • [0051]
    Five hundred grams of organic pigment yellow PY65, 600 g of organic pigments red PR23 and 15 g organic pigment blue PB 15 are added to a container containing 3000 g of water and 450 g of a commercially available dispersant. The mixture is mechanically stirred for about 20 minutes and then added to a grinding mill. The sample is ground for about 1 hour and a stable dispersion is obtained. The particle size of the dispersed product can be analyzed by Horiba LA-910 Particle Size Distribution Analyzer (PSDA). The average particle size is preferably 0.20 microns with a distribution range of 0.001 um to 2.0 um.
  • [0052]
    The resulting dispersion can be diluted with water to make a treating fluid containing 0.25% total iron oxides. The treating fluid can be used to treat southern pine samples using a full cell process. The treated samples can be oven dried and tested to check uniform distribution of iron oxide throughout the cross sections and for the presence of a uniform color.
  • EXAMPLE 6
  • [0053]
    Eight hundred grams of organic pigment yellow PY 13 and 100 g of organic pigments red PR254 are added to a container containing 4000 g of water and 500 g of a commercially available dispersant. The mixture is mechanically stirred for about 20 minutes and then added to a grinding mill. The sample is ground for about 1 hour and a stable dispersion is obtained. The particle size of the dispersed product can be analyzed by Horiba LA-910 Particle Size Distribution Analyzer (PSDA). The average particle size is preferably 0.23 microns with a distribution range of 0.001 um to 2.0 um.
  • [0054]
    The resulting dispersion can be diluted with water to make a treating fluid containing 0.25% total iron oxides. The treating fluid can be used to treat southern pine samples using a full cell process. The treated samples can be oven dried and tested to check uniform distribution of iron oxide throughout the cross sections and for the presence of a uniform color.
  • EXAMPLE 7
  • [0055]
    Five hundred grams of titanium dioxide is mixed with 450 grams of water and 50 grams of commercially available wetting agents/dispersants. The mixture is mechanically stirred for 5 minutes. The mixture is then placed in a grinding mill and ground for about 30 minutes. A stable dispersion is preferably obtained with an average particle size of 0.29 microns.
  • [0056]
    Forty grams of the above obtained titanium dioxide dispersion is mixed with 960 g of water and the resulting composition can be used to treat southern pine stakes. The stakes can be tested for effectiveness against UV degradation and discoloration and compared to untreated samples.
  • EXAMPLE 8
  • [0057]
    Three hundred grams of paraffin wax is mixed with 1855 grams of water and 150 grams of dispersants. The mixture is mechanically mixed for about 5 minutes and placed in a grinding mill. The mixture is ground for about 90 minutes and a stable dispersion obtained with an average particle size of 0.282 microns. After grinding, 2000 g of water is added to the dispersion and the final formulation is used to treat wood. The treated samples can be subjected to water repellency test following the procedure described in American Wood Preservers' Association Standard E-4 “Standard Method of Testing Water Repellency of Pressure Treated Wood”.
  • EXAMPLE 9
  • [0058]
    One thousand grams of a commercially available acrylic polymer is mixed with 3780 grams of water and 400 grams of wetting agents/dispersants. The mixture is mechanically stirred for about 20 minutes. The mixture is then placed in a grinding mill and ground for about 120 minutes. A stable dispersion is preferably obtained with an average particle size of 0.20 microns.
  • [0059]
    A treating fluid can be prepared by mixing the above acrylic polymer dispersion with water and used to treat southern pine stakes. The treated stakes can be tested for water repellency.
  • EXAMPLE 10
  • [0060]
    One thousand grams of zinc borate is mixed with 3000 g of water and 200 grams of commercially available wetting agents/dispersants. The mixture is mechanically stirred for 20 minutes. The mixture is then placed in a grinding mill and ground for about 40 minutes. A stable dispersion is preferably obtained with an average particle size of 0.399 microns.
  • [0061]
    A 3.0% zinc borate treating fluid can be prepared by diluting the above prepared zinc borate dispersion with water. Wood samples can be treated with the 3.0% zinc borate fluid and the treated samples can be oven dried. The samples can be tested for uniform distribution of zinc borate throughout the cross sections. Thermal Gravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) tests can be carried out to demonstrate superior fire retardancy to untreated wood samples.
Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US1388513 *9 août 192023 août 1921Asa C ChandlerProcess of treating wood
US1999458 *12 févr. 193430 avr. 1935Willoughby F HollisterTreating method, means, and composition for trees and the like
US2194827 *29 juin 193626 mars 1940Gordon AaronImpregnating material for preserving wood
US2573253 *21 juin 195030 oct. 1951Timber Engineering CoProcess for producing cupric ammonium borate solutions
US3007844 *13 avr. 19597 nov. 1961Allg Holzimpragnierung Dr WolmWood-preserving agent
US3535423 *12 août 196520 oct. 1970Velsicol Chemical CorpWettable powder pesticide concentrate
US3816307 *28 avr. 197211 juin 1974Woods WFire retardant resins
US3945835 *21 mai 197323 mars 1976Canadian Patents And Development LimitedHeavy duty aqueous wood preservative
US3968276 *12 juil. 19746 juil. 1976Diversified Wood Products, Inc.Process for the preservation of wood
US4058607 *30 mars 197615 nov. 1977Airwick Industries, Inc.Insecticide evaporator comprising a stabilizer
US4062991 *13 août 197413 déc. 1977Fosroc A.G.Treatment of wood
US4142009 *24 mai 197727 févr. 1979Fosroc International LimitedMethod of treating timber with composition having a colloidal pigment
US4310590 *26 déc. 197912 janv. 1982Rohm And Haas Company3-Isothiazolones as biocides
US4313976 *13 juin 19802 févr. 1982Osmose Wood Preserving Co. Of America, Inc.Composition and process for coloring and preserving wood
US4622248 *22 mai 198511 nov. 1986Osmose Wood Preserving Co. Of America, Inc.Preservative composition for wood
US4649065 *8 juil. 198510 mars 1987Mooney Chemicals, Inc.Process for preserving wood
US4663364 *28 août 19855 mai 1987Kao CorporationBiocidal fine powder, its manufacturing method and a suspension for agricultural use containing the above powder
US4741971 *23 mai 19863 mai 1988The Dow Chemical CompanyMethod for imparting flame resistance to wood surfaces
US4897427 *14 janv. 198830 janv. 1990Sandoz Ltd.Method of combatting pruning wound diseases
US4923894 *9 avr. 19868 mai 1990Nippon Paint Co., Ltd.Polymeric microparticles having pesticidal activity
US4935457 *22 oct. 198719 juin 1990Deutsche-Solvay Werke GmbhFiberboard method and composition
US5098472 *13 sept. 199024 mars 1992Commonwealth Scientific & Industrial Research OrganizationPreservative composition
US5196407 *22 mai 199123 mars 1993Desowag Materialschutz GmbhComposition for preserving wood and wood materials
US5207823 *1 avr. 19914 mai 1993Kabushiki Kaisha Koshii PreservingWood preservative composition and process for treating wood with the same
US5277979 *13 mai 199211 janv. 1994Rohm And Haas CompanyProcess for microencapsulation
US5304376 *23 janv. 199019 avr. 1994Shell Internationale Research Maatschappij B.V.Fungicidal composition
US5342438 *24 janv. 199430 août 1994West Michael HRemedial wood preservative
US5424077 *13 juil. 199313 juin 1995Church & Dwight Co., Inc.Co-micronized bicarbonate salt compositions
US5426121 *4 oct. 199420 juin 1995Akzo Nobel N.V.Wood preservation formulation comprising complex of a copper cation and alkoxylated diamine
US5438034 *9 juin 19931 août 1995Lonza, Inc.Quaternary ammonium carbonate compositions and preparation thereof
US5462589 *22 févr. 199431 oct. 1995Mississippi Forest Products LaboratorySynergistic wood preservative compositions
US5484934 *28 déc. 199316 janv. 1996Nihon Nohyaku Co., Ltd.Isothiazole derivatives, a process for production thereof and uses thereof
US5527384 *3 août 199218 juin 1996Hickson International, PlcPreservatives for wood and other cellulosic materials
US5536305 *8 juin 199416 juil. 1996Yu; BingLow leaching compositions for wood
US5552378 *29 juin 19943 sept. 1996The Procter & Gamble CompanySolid consumer product compositions containing small particle cyclodextrin complexes
US5635217 *24 oct. 19943 juin 1997Dr. Wolman GmbhWood preservatives
US5667795 *15 juil. 199616 sept. 1997Isk Biosciences CorporationPesticidal micronutrient compositions containing zinc oxide
US5714507 *31 mai 19953 févr. 1998Janssen Pharmaceutica, N.V.Synergistic compositions containing metconazole and another triazole
US5763364 *19 sept. 19959 juin 1998Hoechst Schering Agrevo GmbhThixotropic aqueous plant protection agent suspensions
US5833741 *16 janv. 199710 nov. 1998Lonza Inc.Waterproofing and preservative compositons for wood
US5874025 *1 avr. 199623 févr. 1999Bayer AktiengesellschaftTimber preservative containing a copper compound
US5874476 *14 juil. 199723 févr. 1999Rohm And Haas CompanyDihaloformaldoxime carbamates as antimicrobial agents
US5879025 *8 août 19969 mars 1999Trw Vehicle Safety Systems Inc.Inflator for an inflatable vehicle occupant protection device
US5972266 *26 févr. 199826 oct. 1999Trus Joist Macmillan A Limited PartnershipComposite products
US5990043 *8 déc. 199423 nov. 1999Bayer AktiengesellschaftAnti-fouling compositions
US6110263 *28 févr. 199729 août 2000Dr. Wolman GmbhTimber preserving agent for maintenance purposes
US6123756 *30 sept. 199626 sept. 2000Remmers Bauchemine GmbhWood-protecting agent
US6214512 *14 janv. 199810 avr. 2001Fuji Xerox Co., Ltd.Image forming method
US6274199 *19 janv. 199914 août 2001Chemical Specialties, Inc.Wood treatment process
US6306202 *30 juin 200023 oct. 2001Michael Howard WestWater soluble fixed copper-borax wood preservative composition
US6352583 *23 févr. 19985 mars 2002Dr. Wolman GmbhWood preservative for subsequent application
US6482814 *18 mai 199919 nov. 2002Avecia LimitedBiocidal composition and its use
US6485790 *5 oct. 200126 nov. 2002Lonza Inc.Methods for enhancing penetration of wood preservatives
US6503306 *22 mars 19997 janv. 2003Monash University Act 1958Composition for impregnating porous materials, preparation and use thereof
US6521288 *31 mai 200118 févr. 2003Board Of Control Of Michigan Technological UniversityCompositions and methods for wood preservation
US6541038 *22 oct. 19981 avr. 2003Sds Biotech K.K.Method for treating wood with a metal-containing treating agent and wood treated thereby
US6558685 *14 juil. 19996 mai 2003Dr. Wolman GmbhMethod for treating wood against the attack of harmful fungi
US6576661 *27 oct. 200010 juin 2003Bayer AktiengesellschaftActive ingredient combination having insecticidal and acaricidal characteristics
US6585989 *21 sept. 20011 juil. 2003Ciba Specialty Chemicals CorporationMixtures of phenolic and inorganic materials with antimicrobial activity
US6753035 *21 janv. 200322 juin 2004Board Of Control Of Michigan Technological UniversityCompositions and methods for wood preservation
US6849276 *24 août 19991 févr. 2005Action PinLiquid composition with fungicide, bactericidal and bacteriostatic activity
US6896908 *14 nov. 200124 mai 2005U.S. Borax Inc.Wood preservative concentrate
US6905531 *12 sept. 200314 juin 2005Phibro Tech, Inc.Process for the dissolution of copper metal
US6905532 *10 nov. 200314 juin 2005Phibro-Tech, Inc.Process for the dissolution of copper metal
US7316738 *12 oct. 20048 janv. 2008Phibro-Tech, Inc.Milled submicron chlorothalonil with narrow particle size distribution, and uses thereof
US7408003 *8 déc. 20035 août 2008Rohm And Haas CompanyPigmented polymer composition
US7449130 *16 juil. 200111 nov. 2008U.S. Borax Inc.Mixed solubility borate preservative
US7674481 *9 avr. 20049 mars 2010Osmose, Inc.Micronized wood preservative formulations
US20020051892 *31 mai 20012 mai 2002Board Of Control Of Michigan Technological UniversityCompositions and methods for wood preservation
US20020128367 *4 janv. 200212 sept. 2002Daisey George IrwinAqueous composition for wood stain
US20040258767 *9 avr. 200423 déc. 2004Leach Robert M.Micronized wood preservative formulations
US20040258768 *17 juin 200423 déc. 2004Richardson H. WayneParticulate wood preservative and method for producing same
US20040258838 *17 juin 200423 déc. 2004Richardson H. WayneMethod for preserving wood materials using precipitated copper compounds
US20050013939 *14 juin 200220 janv. 2005Peter VindenBoron-based wood preservatives and treatment of wood with boron-based preservatives
US20050107467 *18 oct. 200419 mai 2005Richardson H. W.Methods for producing and using a Cu(I)-based wood preservative
US20050118280 *21 oct. 20042 juin 2005Leach Robert M.Micronized wood preservative formulations
US20050130866 *1 févr. 200516 juin 2005Richardson Hugh W.Process for the dissolution of copper metal
US20050152994 *8 déc. 200414 juil. 2005Leach Robert M.Composition and process for coloring and preserving wood
US20050182152 *6 juin 200318 août 2005Ralph NonningerAntimicrobial polymeric coating composition
US20050249812 *27 avr. 200510 nov. 2005Leach Robert MMicronized organic preservative formulations
US20050252408 *12 oct. 200417 nov. 2005Richardson H WParticulate wood preservative and method for producing same
US20050255251 *17 mai 200517 nov. 2005Hodge Robert LComposition, method of making, and treatment of wood with an injectable wood preservative slurry having biocidal particles
US20050256026 *9 févr. 200517 nov. 2005Hodge Robert LCompatibilizing surfactant useful with slurries of copper particles
US20050265893 *11 mai 20051 déc. 2005Leach Robert MCompositions and methods for treating cellulose-based materials with micronized additives
US20060062926 *13 déc. 200423 mars 2006Richardson H WUse of sub-micron copper salt particles in wood preservation
US20060075921 *12 oct. 200413 avr. 2006Richardson Hugh WMilled submicron chlorothalonil with narrow particle size distribution, and uses thereof
US20060075923 *12 oct. 200413 avr. 2006Richardson H WMethod of manufacture and treatment of wood with injectable particulate iron oxide
US20060078686 *8 oct. 200413 avr. 2006Hodge Robert LPenetration of copper-ethanolamine complex in wood
US20060086284 *14 oct. 200527 avr. 2006Jun ZhangNon-alkaline micronized wood preservative formulations
US20060086841 *12 oct. 200427 avr. 2006Richardson H WMilled submicron organic biocides with narrow particle size distribution, and uses thereof
US20060112850 *5 oct. 20051 juin 2006Jun ZhangMicronized wood preservative formulations in organic carriers
US20060147632 *12 déc. 20056 juil. 2006Jun ZhangComposition and process for coloring and preserving wood
US20060217447 *2 mars 200628 sept. 2006Derek BlowWood preservative formulations comprising dichlorophen
US20060257578 *15 févr. 200616 nov. 2006Jun ZhangMicronized wood preservative formulations comprising boron compounds
US20060276468 *12 mai 20067 déc. 2006Blow Derek PWood preservative formulations comprising Imazalil
USRE32329 *13 juil. 198413 janv. 1987 Method of adhering mineral deposit in wood fragment surfaces
Citations hors brevets
Référence
1 *Wikipedia entry for "tributyltin oxide" (2011).
Classifications
Classification aux États-Unis428/327, 427/180, 428/323, 428/402
Classification internationaleA01N25/12, B32B5/16, B05D1/12, B27K3/52, F26B7/00, B27K3/34, B27K3/16, C09D5/14
Classification coopérativeB27K2240/30, B27K2240/90, B27K2240/20, B27K5/02, B27K3/15, B27K3/005, B27K3/36, B27K3/32, Y10T428/254, Y10T428/256, Y10T428/31895, Y10T428/25, Y10T428/268, Y10T428/31989, Y10T428/2982, Y10T428/662, B27K3/08, B27K3/52, C09D5/14, A01N25/12, B27K3/16, B27K3/34, B27K3/22, B27K3/26
Classification européenneA01N25/12, C09D5/14
Événements juridiques
DateCodeÉvénementDescription
16 juil. 2010ASAssignment
Owner name: OSMOSE, INC., NEW YORK
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OSMOSE HOLDINGS, INC.;REEL/FRAME:024696/0209
Effective date: 20100715
4 mai 2012ASAssignment
Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLAT
Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:OSMOSE, INC. (FORMERLY OSMOSE WOOD PRESERVING, INC.);REEL/FRAME:028158/0611
Effective date: 20120504
26 nov. 2012ASAssignment
Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLAT
Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:OSMOSE, INC.;REEL/FRAME:029351/0791
Effective date: 20121126
27 août 2014ASAssignment
Owner name: OSMOSE, INC., NEW YORK
Free format text: RELEASE OF SECURITY INTERST IN INTELLECTUAL PROPERTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT;REEL/FRAME:033645/0778
Effective date: 20140815
Owner name: OSMOSE, INC. (FORMERLY OSMOSE WOOD PRESERVING, INC
Free format text: RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAND ISLANDS BRANCH, AS COLLATERAL AGENT;REEL/FRAME:033645/0796
Effective date: 20140815