US20100141189A1 - Power supply with two series inverters for a polyphase electromechanical actuator - Google Patents

Power supply with two series inverters for a polyphase electromechanical actuator Download PDF

Info

Publication number
US20100141189A1
US20100141189A1 US12/519,065 US51906507A US2010141189A1 US 20100141189 A1 US20100141189 A1 US 20100141189A1 US 51906507 A US51906507 A US 51906507A US 2010141189 A1 US2010141189 A1 US 2010141189A1
Authority
US
United States
Prior art keywords
arms
windings
switches
inverter
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/519,065
Other versions
US8294408B2 (en
Inventor
Daniel Matt
Julien Jac
Nicolas Ziegler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Landing Systems SAS
Original Assignee
Messier Dowty SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messier Dowty SA filed Critical Messier Dowty SA
Assigned to MESSIER-DOWTY SA reassignment MESSIER-DOWTY SA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JAC, JULIEN, MATT, DANIEL, ZIEGLER, NICOLAS
Publication of US20100141189A1 publication Critical patent/US20100141189A1/en
Assigned to MESSIER-BUGATTI-DOWTY reassignment MESSIER-BUGATTI-DOWTY MERGER (SEE DOCUMENT FOR DETAILS). Assignors: MESSIER-DOWTY SA
Application granted granted Critical
Publication of US8294408B2 publication Critical patent/US8294408B2/en
Assigned to SAFRAN LANDING SYSTEMS reassignment SAFRAN LANDING SYSTEMS CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MESSIER-BUGATTI-DOWTY
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions

Definitions

  • the invention relates to a power supply having two inverters in series for a polyphase electromechanical actuator.
  • each inverter has a voltage source with its terminals connected to as many arms as there are windings for powering on the machine.
  • Each arm comprises an upstream controlled switch and a downstream controlled switch connected in series.
  • Each winding has a first end connected to one of the arms of one of the inverters, at a point that is situated between the controlled switches of said arm, and a second end connected to one of the arms of the other inverter, likewise at a point situated between the controlled switches of said arm.
  • one of the controlled switches in one of the arms of one of the inverters fails, so as to remain permanently open or closed, it is known to close certain switches of the inverter in question and to open its other switches so as to create a common point between the ends of the windings connected to said inverter, which common point is connected to one of the terminals of the voltage source. Since the two voltage sources are connected to grounds that are distinct, the common point is neutral from the point of view of the other inverter, and it therefore becomes possible to control the machine solely from the other inverter, thereby continuing to ensure operation of the rotary machine with torque that is substantially constant.
  • Such an architecture is thus capable of withstanding the failure of one of the controlled switches. Nevertheless, such an architecture does not make it possible to continue operating the rotary machine correctly if the end of one of the windings becomes disconnected from the corresponding arm. For example, on a three-phase rotary machine having one of its windings disconnected, there still remain two phases that can be controlled. If the switches of the inverters continue to be controlled as though one of the windings had not become disconnected, then the machine would be subjected to torque with a high degree of ripple, which can be very harmful in certain applications, for example actuating high-lift devices of an aircraft, or actuating landing gear.
  • An object of the invention is to improve power supply from two inverters in series in a manner that makes it possible to continue operating the actuator acceptably in the event of one of the switches failing, and also under other fault circumstances.
  • the invention provides a power supply having two inverters in series for powering an electromechanical actuator having an electric motor including a plurality of windings forming phases, each inverter being connected to its own ground and having a voltage source having as many arms connected thereacross as there are windings to be powered, each arm including two controlled switches connected in series, with a point therebetween being provided for connection to one end of one of the windings.
  • each inverter includes an additional arm having two controlled switches, the two additional arms being interconnected by a bridge that is connected to each of the additional arms at a point that is situated between the switches.
  • the controlled switches of the additional arms are kept open so that the additional arms and the bridge have no incidence on the operation of the actuator.
  • the power supply can be reconfigured to handle the failure of a switch in the conventional manner.
  • FIG. 1 is a diagrammatic view of a power supply with two inverters in series for an actuator that is fitted with a three-phase electric motor, and constituting a particular embodiment of the invention
  • FIG. 2 is a view analogous to FIG. 1 , illustrating a fault situation in which one of the switches is blocked in the closed position;
  • FIG. 3 is a diagram equivalent to that of FIG. 2 , but showing only those arms that are functional;
  • FIG. 4 is a view analogous to FIG. 1 showing a fault situation in which one of the motor windings is disconnected from one of the arms;
  • FIG. 5 is a view analogous to FIG. 4 showing a second manner of managing a disconnected phase
  • FIG. 6 is a diagram equivalent to that of FIG. 5 , but showing only the arms that are functional.
  • the power supply architecture is shown here in application to an electromechanical actuator provided with a three-phase electric motor or rotary machine 1 , represented by three windings R 1 , R 2 , and R 3 , each symbolized conventionally as a resistor, an inductor, and a back electromotive force (back e.m.f.) connected in series.
  • Each of the windings forms one of the phases of the rotary machine, and each is offset spatially by 2 ⁇ /3 relative to other windings.
  • the power supply of the invention shown here comprises a first converter or inverter A and a second converter or inverter B.
  • the inverter A comprises a first voltage source U 1 having one of its terminals connected to a first ground 50 . Across the terminals of the first voltage source U 1 , there extend three arms A 1 , A 2 , and A 3 , each comprising an upstream controlled switch 5 and a downstream controlled switch 6 that are connected in series along the arm.
  • the controlled switches 5 and 6 forming parts of the inverters A and B are constituted by bipolar junction transistors, by metal oxide semiconductor field effect transistors (MOSFETs), by gate turn-off thyristors, or indeed by isolated grid transistors.
  • Each winding R 1 , R 2 , or R 3 has a first end connected of the corresponding arm A 1 , A 2 , or A 3 at a point situated between the corresponding controlled switches 5 and 6 .
  • the inverter B has a second voltage source U 2 with one terminal connected to a second ground 51 that is independent of the first ground 50 .
  • the terminals of the second voltage source U 2 have three arms B 1 , B 2 , and B 3 connected thereto, each arm having an upstream controlled switch 5 and a downstream controlled switch 6 connected in series in the arm.
  • Each winding R 1 , R 2 , and R 3 has a respective second end connected to the respective arm B 1 , B 2 , or B 3 at a point situated between the corresponding controlled switches 5 and 6 .
  • each of the windings R 1 , R 2 , and R 3 is connected in series with one of the arms of the first inverter A and with one of the arms of the second inverter B.
  • the switches 5 and 6 are controlled so as to cause currents that are phase offset by 2 ⁇ /3 to flow through the windings R 1 , R 2 , and R 3 (the sum of the currents being constantly zero).
  • the rotary machine is thus constrained to operate at constant torque.
  • the machine may be controlled either with the help of the first inverter A, or with the help of the second inverter B, or with the help of both inverters operating simultaneously and synchronously.
  • This type of power supply can be found on board an aircraft that has two totally independent power supply circuits, with distinct grounds.
  • SMPS isolated switch mode power supply
  • the first inverter A also has an additional arm A 4 , entirely similar to the arms A 1 , A 2 , and A 3 .
  • the second inverter B has an additional arm B 4 , entirely similar to the arms B 1 , B 2 , and B 3 .
  • the additional arms A 4 and B 4 are interconnected by a bridge 7 that is connected to each of the additional arms A 4 and B 4 at a respective point situated between its controlled switches 5 and 6 . In normal operation, the controlled switches 5 and 6 of the additional arms A 4 and B 4 are kept open, such that neither the additional arms nor the bridge 7 disturbs the operation of the rotary machine.
  • switches that are blocked in a closed position or that are voluntarily held in a closed position are represented by an electrical connection.
  • Switches that are blocked in an open position or that are voluntarily held in the open state are represented by a portion of open circuit.
  • a first fault mode it can happen that one of the switches 5 or 6 of one of the arms A 1 , A 2 , or A 3 of the first inverter A fails.
  • the downstream switch 6 in the arm A 1 remains blocked in the closed position as the result of a failure.
  • All three phases can then continue to be controlled by using the controlled switches 5 and 6 of the second inverter B to cause currents that are mutually phase offset by 2 ⁇ /3 to flow through the windings R 1 , R 2 , and R 3 .
  • the first inverter A is completely neutralized, and can no longer influence the control of the rotary machine by the second inverter B.
  • the potential of the common point N does indeed depend on the potential imposed by the voltage source U 1 , and cannot be imposed by the voltage source U 2 . From the point of view of the second inverter B, the common point N therefore has a potential that is floating. That makes it possible to power each of the phases with currents that are phase offset by 2 ⁇ /3 so that the sum of the currents is constantly zero.
  • the torque from the rotary machine as powered in this way remains constant and equal to the nominal torque before the failure of a switch.
  • the speed as generated in this way is halved. To return to the initial speed, it is necessary to increase the voltage U 2 accordingly.
  • the switches of the additional arms A 4 and B 4 are kept open, such that the additional arms are not used for handling such faults.
  • one of the windings may become disconnected from one of the arms.
  • the fault is one in which the winding R 1 is disconnected from the arm A 1 of the first inverter A, as is shown symbolically. It is then no longer possible to power the corresponding phase. The above strategies can therefore not be applied.
  • the switches of the arms A 2 , A 3 , B 2 , and B 3 and of the additional arms A 4 and B 4 are controlled so as to cause currents i 2 and i 3 to flow through the good windings R 2 and R 3 , with the currents i 2 and i 3 being phase offset by ⁇ /3.
  • the sum of the currents i 2 and i 3 is not constantly zero.
  • Such operation gives rise to torque that is constant.
  • the speed of rotation of the actuator is equal to the nominal speed of rotation.
  • a common point N is created between the good phases and the bridge 7 .
  • the downstream switches 6 of the remaining arms A 2 and A 3 are kept closed, as is the downstream switch 6 of the additional arm A 4 .
  • the upstream switches 5 of the arms A 1 , A 2 , and A 3 and also the upstream switch 5 of the additional arm A 4 are kept open. This creates a common point N between the ends of the windings R 2 and R 3 , and the bridge 7 .
  • the first inverter A is thus neutralized.
  • the bridge 7 and the two good windings R 2 and R 3 now have one end in common.
  • the switches of the arms B 2 and B 3 and of the additional arm B 4 of the second inverter B are controlled so as to cause currents i 2 and i 3 to flow through the good windings R 2 and R 3 , the current i 2 and i 3 being at a phase offset ⁇ /3.
  • the sum of the currents i 2 and i 3 is not constantly zero.
  • the torque developed is constant and is equal to 57% of the nominal torque.
  • the speed of rotation is halved. In order to return to the nominal speed of rotation, it is appropriate to increase the voltage U 2 accordingly.
  • the power supply architecture shown is thus capable of withstanding the failure of one of the switches in the inverter arms, and is also capable of withstanding the disconnection one of the windings of the rotary machine.
  • the invention is not limited to powering an electromechanical actuator that includes a three-phase rotary machine, but it applies to a polyphase machine that may have more than three phases.

Abstract

The invention relates to a power supply having two inverters (A, B) in series for powering an electromechanical actuator having an electric motor including a plurality of windings (R1, R2, R3) forming phases, each inverter being connected to its own ground (50; 51) and having a voltage source (U1; U2) having as many arms (A1, A2, A3; B1, B2, B3) as there are windings to be powered, each arm including two controlled switches (5, 6) connected in series, with a point therebetween being provided for connection to one end of one of the windings. According to the invention, each inverter includes an additional arm (A4; B4) having two controlled switches, the two additional arms being interconnected by a bridge (7) that is connected to each of the additional arms at a point that is situated between the switches.

Description

  • The invention relates to a power supply having two inverters in series for a polyphase electromechanical actuator.
  • BACKGROUND OF THE INVENTION
  • In order to power an electromechanical actuator having a polyphase motor including windings that form phases, it is known to use power supplies comprising two inverters connected in series. Each inverter has a voltage source with its terminals connected to as many arms as there are windings for powering on the machine. Each arm comprises an upstream controlled switch and a downstream controlled switch connected in series. Each winding has a first end connected to one of the arms of one of the inverters, at a point that is situated between the controlled switches of said arm, and a second end connected to one of the arms of the other inverter, likewise at a point situated between the controlled switches of said arm.
  • If one of the controlled switches in one of the arms of one of the inverters fails, so as to remain permanently open or closed, it is known to close certain switches of the inverter in question and to open its other switches so as to create a common point between the ends of the windings connected to said inverter, which common point is connected to one of the terminals of the voltage source. Since the two voltage sources are connected to grounds that are distinct, the common point is neutral from the point of view of the other inverter, and it therefore becomes possible to control the machine solely from the other inverter, thereby continuing to ensure operation of the rotary machine with torque that is substantially constant.
  • Such an architecture is thus capable of withstanding the failure of one of the controlled switches. Nevertheless, such an architecture does not make it possible to continue operating the rotary machine correctly if the end of one of the windings becomes disconnected from the corresponding arm. For example, on a three-phase rotary machine having one of its windings disconnected, there still remain two phases that can be controlled. If the switches of the inverters continue to be controlled as though one of the windings had not become disconnected, then the machine would be subjected to torque with a high degree of ripple, which can be very harmful in certain applications, for example actuating high-lift devices of an aircraft, or actuating landing gear.
  • As described above, it is possible to seek to create a common point between the two good phases by opening and closing the switches one of the inverters appropriately. Nevertheless, the two phases as interconnected in this way via a common point can be controlled only by using currents that present a sum that is zero, which currents therefore need to be phase offset at an angle π, which, in combination with the phases being spatially offset by 2π/3, likewise leads to torque with a high level of ripple.
  • OBJECT OF THE INVENTION
  • An object of the invention is to improve power supply from two inverters in series in a manner that makes it possible to continue operating the actuator acceptably in the event of one of the switches failing, and also under other fault circumstances.
  • BRIEF SUMMARY OF THE INVENTION
  • To achieve this object, the invention provides a power supply having two inverters in series for powering an electromechanical actuator having an electric motor including a plurality of windings forming phases, each inverter being connected to its own ground and having a voltage source having as many arms connected thereacross as there are windings to be powered, each arm including two controlled switches connected in series, with a point therebetween being provided for connection to one end of one of the windings. According to the invention, each inverter includes an additional arm having two controlled switches, the two additional arms being interconnected by a bridge that is connected to each of the additional arms at a point that is situated between the switches.
  • Thus, under normal circumstances, the controlled switches of the additional arms are kept open so that the additional arms and the bridge have no incidence on the operation of the actuator. The power supply can be reconfigured to handle the failure of a switch in the conventional manner.
  • If one of the windings becomes disconnected from one of the arms, such that the corresponding phase can no longer be controlled, it is possible to power the good phases with currents presenting a sum that is not constantly zero so as to enable the motor to turn with constant torque. The residual current coming from the non-zero sum of the currents in the good phases is drained via the bridge so as to be returned to the inverter that is generating such currents. The presence of the bridge and of the additional arms thus enables the actuator to be operated at constant torque.
  • In particular, with a three-phase motor having one of its phases disconnected, it is possible by suitably controlling the switches to create a common point between the two good phases and the bridge, thereby enabling the actuator to operate at constant torque in a two-phase mode: by providing power supply currents that are phase-shifted by π/3, while the phases are themselves spatially phase offset by an angle equal to 2π/3, constant torque is obtained. This enables operation to continue at constant torque, even in the event of one of the phases being disconnected.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention can be better understood in the light of the following description given with reference to the figures of the accompanying drawings, in which:
  • FIG. 1 is a diagrammatic view of a power supply with two inverters in series for an actuator that is fitted with a three-phase electric motor, and constituting a particular embodiment of the invention;
  • FIG. 2 is a view analogous to FIG. 1, illustrating a fault situation in which one of the switches is blocked in the closed position;
  • FIG. 3 is a diagram equivalent to that of FIG. 2, but showing only those arms that are functional;
  • FIG. 4 is a view analogous to FIG. 1 showing a fault situation in which one of the motor windings is disconnected from one of the arms;
  • FIG. 5 is a view analogous to FIG. 4 showing a second manner of managing a disconnected phase; and
  • FIG. 6 is a diagram equivalent to that of FIG. 5, but showing only the arms that are functional.
  • DETAILED DESCRIPTION OF THE INVENTION
  • With reference to FIG. 1, the power supply architecture is shown here in application to an electromechanical actuator provided with a three-phase electric motor or rotary machine 1, represented by three windings R1, R2, and R3, each symbolized conventionally as a resistor, an inductor, and a back electromotive force (back e.m.f.) connected in series. Each of the windings forms one of the phases of the rotary machine, and each is offset spatially by 2π/3 relative to other windings. The power supply of the invention shown here comprises a first converter or inverter A and a second converter or inverter B.
  • The inverter A comprises a first voltage source U1 having one of its terminals connected to a first ground 50. Across the terminals of the first voltage source U1, there extend three arms A1, A2, and A3, each comprising an upstream controlled switch 5 and a downstream controlled switch 6 that are connected in series along the arm. By way of example, the controlled switches 5 and 6 forming parts of the inverters A and B are constituted by bipolar junction transistors, by metal oxide semiconductor field effect transistors (MOSFETs), by gate turn-off thyristors, or indeed by isolated grid transistors.
  • Each winding R1, R2, or R3 has a first end connected of the corresponding arm A1, A2, or A3 at a point situated between the corresponding controlled switches 5 and 6.
  • Similarly, the inverter B has a second voltage source U2 with one terminal connected to a second ground 51 that is independent of the first ground 50. The terminals of the second voltage source U2 have three arms B1, B2, and B3 connected thereto, each arm having an upstream controlled switch 5 and a downstream controlled switch 6 connected in series in the arm.
  • Each winding R1, R2, and R3 has a respective second end connected to the respective arm B1, B2, or B3 at a point situated between the corresponding controlled switches 5 and 6.
  • Thus, each of the windings R1, R2, and R3 is connected in series with one of the arms of the first inverter A and with one of the arms of the second inverter B. In known manner, the switches 5 and 6 are controlled so as to cause currents that are phase offset by 2π/3 to flow through the windings R1, R2, and R3 (the sum of the currents being constantly zero). The rotary machine is thus constrained to operate at constant torque. The machine may be controlled either with the help of the first inverter A, or with the help of the second inverter B, or with the help of both inverters operating simultaneously and synchronously.
  • This type of power supply can be found on board an aircraft that has two totally independent power supply circuits, with distinct grounds. Alternatively, and in known manner, it is possible to create a second power supply circuit from a first power supply circuit by means of an isolating transformer, or indeed an isolated switch mode power supply (SMPS).
  • According to the invention, the first inverter A also has an additional arm A4, entirely similar to the arms A1, A2, and A3. Similarly, the second inverter B has an additional arm B4, entirely similar to the arms B1, B2, and B3. The additional arms A4 and B4 are interconnected by a bridge 7 that is connected to each of the additional arms A4 and B4 at a respective point situated between its controlled switches 5 and 6. In normal operation, the controlled switches 5 and 6 of the additional arms A4 and B4 are kept open, such that neither the additional arms nor the bridge 7 disturbs the operation of the rotary machine.
  • In the following figures, there can be seen various fault modes and the ways in which they are handled. In these figures, switches that are blocked in a closed position or that are voluntarily held in a closed position are represented by an electrical connection. Switches that are blocked in an open position or that are voluntarily held in the open state are represented by a portion of open circuit.
  • In a first fault mode, it can happen that one of the switches 5 or 6 of one of the arms A1, A2, or A3 of the first inverter A fails. For example, and as shown in FIG. 2, it is assumed that the downstream switch 6 in the arm A1 remains blocked in the closed position as the result of a failure.
  • Naturally, it might be thought that the corresponding phase could be neutralized by not powering it. However it is possible to consider using all three phases by applying the following method: it suffices to keep the downstream switches 6 of the arms A2 and A3 closed, and to open the upstream switches 5 of the arms A1, A2, and A3. This creates a common point N between the ends of the windings R1, R2, and R3 beside the inverter A. Connections passing via this common point N are drawn bold. Operation then takes place as though the power supply architecture were as shown in FIG. 3.
  • All three phases can then continue to be controlled by using the controlled switches 5 and 6 of the second inverter B to cause currents that are mutually phase offset by 2π/3 to flow through the windings R1, R2, and R3. The first inverter A is completely neutralized, and can no longer influence the control of the rotary machine by the second inverter B. In particular, the potential of the common point N does indeed depend on the potential imposed by the voltage source U1, and cannot be imposed by the voltage source U2. From the point of view of the second inverter B, the common point N therefore has a potential that is floating. That makes it possible to power each of the phases with currents that are phase offset by 2π/3 so that the sum of the currents is constantly zero. Combined with the spatial phase offset by 2π/3, the torque from the rotary machine as powered in this way remains constant and equal to the nominal torque before the failure of a switch. Naturally, at constant voltage U2, the speed as generated in this way is halved. To return to the initial speed, it is necessary to increase the voltage U2 accordingly.
  • If one of the downstream switches 6 in one of the arms A1, A2, and A3 of the first inverter A were to be blocked in the open position, then it would suffice to keep the other downstream switches 6 in said arms open and to keep the upstream switches 5 of said arms closed. That would operate in the same manner to recreate a common point between the phases, so that the rotary machine remains perfectly under control.
  • The same remedies apply when one of the upstream switches 6 of the arms A1, A2, and A3 of the first inverter A remains blocked in the open position or in the closed position. In the same manner, the same remedies apply if one of the switches 5, 6 of the arms B1, B2, and B3 of the second inverter B remains blocked.
  • With the above faults, the switches of the additional arms A4 and B4 are kept open, such that the additional arms are not used for handling such faults.
  • In another fault configuration, one of the windings may become disconnected from one of the arms. As can be seen in FIG. 4, it is assumed that the fault is one in which the winding R1 is disconnected from the arm A1 of the first inverter A, as is shown symbolically. It is then no longer possible to power the corresponding phase. The above strategies can therefore not be applied.
  • For reasons of safety, it is appropriate firstly to isolate the disconnected winding R1 by opening the switches 5 and 6 in the arms Al and B1 that are associated with the winding so as to avoid any risk of a short circuit between the inverters via the faulty winding.
  • In a first strategy, the switches of the arms A2, A3, B2, and B3 and of the additional arms A4 and B4 are controlled so as to cause currents i2 and i3 to flow through the good windings R2 and R3, with the currents i2 and i3 being phase offset by π/3. Under such circumstances, the sum of the currents i2 and i3 is not constantly zero. Nevertheless, the current residue I=i2+i3 is collected by the bridge 7 and passes therethrough to return to the inverter that generated the currents i2 and i3. Such operation gives rise to torque that is constant. FIG. 4 shows the currents i2 and i3 powering the good phases (windings R2 and R3) and also the current I drained by the bridge 7. It can be shown that, when powered in this way, the rotary machine develops constant torque, but that the torque is equal to 57% of the torque that it would have been possible to develop if one of the windings were not disconnected.
  • If it is desired to recover nominal torque, it is then appropriate to increase the power supply current accordingly. In this mode of operation, the speed of rotation of the actuator is equal to the nominal speed of rotation.
  • In a second strategy shown in FIGS. 5 and 6, a common point N is created between the good phases and the bridge 7. For this purpose, the downstream switches 6 of the remaining arms A2 and A3 are kept closed, as is the downstream switch 6 of the additional arm A4. The upstream switches 5 of the arms A1, A2, and A3 and also the upstream switch 5 of the additional arm A4 are kept open. This creates a common point N between the ends of the windings R2 and R3, and the bridge 7. The first inverter A is thus neutralized.
  • As shown in FIG. 5, the bridge 7 and the two good windings R2 and R3 now have one end in common. The switches of the arms B2 and B3 and of the additional arm B4 of the second inverter B are controlled so as to cause currents i2 and i3 to flow through the good windings R2 and R3, the current i2 and i3 being at a phase offset π/3. Under such circumstances, the sum of the currents i2 and i3 is not constantly zero. Nevertheless, the current residue I=i2+i3 is collected at the common point N and can pass via the bridge 7 to return to the second inverter B. This enables the rotary machine of the actuator to be controlled with the help of a single inverter. Here likewise, the torque developed is constant and is equal to 57% of the nominal torque. However, at constant voltage U2, the speed of rotation is halved. In order to return to the nominal speed of rotation, it is appropriate to increase the voltage U2 accordingly.
  • Without the additional arms A4 and B4, and without the bridge 7, it would not be possible to power the good windings R2 and R3 with currents at a phase offset of π/3. It would be necessary to ensure that the sum of the currents i2 and i3 is zero since there would be no way of passing the current residue. It would therefore be necessary to power the windings with currents i2 and i3 at a phase offset of n, thereby leading to torque with a high degree of ripple, which can be harmful in certain applications.
  • The presence of the additional arms A4 and B4 connected together by a bridge thus makes fault mode operation possible at constant torque, even in the event of one of the windings becoming disconnected.
  • The power supply architecture shown is thus capable of withstanding the failure of one of the switches in the inverter arms, and is also capable of withstanding the disconnection one of the windings of the rotary machine.
  • The invention is not limited to the above description, but on the contrary covers any variant coming within the ambit defined by the claims.
  • In particular, the invention is not limited to powering an electromechanical actuator that includes a three-phase rotary machine, but it applies to a polyphase machine that may have more than three phases.
  • In addition, although the invention is described with reference to an electromechanical actuator fitted with a rotary electric motor, also referred to as a rotary machine, the invention also applies to powering actuators that have linear motors.

Claims (3)

1. A power supply having two inverters (A, B) in series for powering an electromechanical actuator having an electric motor including a plurality of windings (R1, R2, R3) forming phases, each inverter being connected to its own ground (50; 51) and having a voltage source (U1; U2) having as many arms (A1, A2, A3; B1, B2, B3) connected thereacross as there are windings to be powered, each arm including two controlled switches (5, 6) connected in series, with a point therebetween being provided for connection to one end of one of the windings, wherein each inverter includes an additional arm (A4; B4) having two controlled switches, the two additional arms being interconnected by a bridge (7) that is connected to each of the additional arms at a point that is situated between the switches.
2. An assembly comprising the power supply of claim 1 together with the rotary machine to which the power supply is connected.
3. A method of using the power supply according to claim 1, and including the step of controlling the switches of one of the inverters in such a manner as to create a common point (N) between the bridge (7) and at least two windings (R1; R2) in one of the inverters.
US12/519,065 2006-12-13 2007-12-07 Power supply with two series inverters for a polyphase electromechanical actuator Active 2029-04-15 US8294408B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0610862A FR2910197B1 (en) 2006-12-13 2006-12-13 POWER SUPPLY WITH TWO INVERTERS IN SERIES FOR ELECTROMECHANICAL ACTUATOR POLYPHASE
FR0610862 2006-12-13
PCT/FR2007/002013 WO2008087270A2 (en) 2006-12-13 2007-12-07 Power supply with two series inverters for a polyphase electromechanical actuator

Publications (2)

Publication Number Publication Date
US20100141189A1 true US20100141189A1 (en) 2010-06-10
US8294408B2 US8294408B2 (en) 2012-10-23

Family

ID=38292646

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/519,065 Active 2029-04-15 US8294408B2 (en) 2006-12-13 2007-12-07 Power supply with two series inverters for a polyphase electromechanical actuator

Country Status (13)

Country Link
US (1) US8294408B2 (en)
EP (1) EP2089963B1 (en)
JP (1) JP4933632B2 (en)
CN (1) CN101589542B (en)
AT (1) ATE498241T1 (en)
BR (1) BRPI0720199A2 (en)
CA (1) CA2671467C (en)
DE (1) DE602007012465D1 (en)
ES (1) ES2360683T3 (en)
FR (1) FR2910197B1 (en)
IL (1) IL198812A0 (en)
RU (1) RU2402852C1 (en)
WO (1) WO2008087270A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140077745A1 (en) * 2012-09-20 2014-03-20 Shinichi Kinouchi Drive control device and drive control method
US20170250623A1 (en) * 2016-02-26 2017-08-31 Deere & Company Parallel inverter scheme for separating conduction and switching losses
CN109104887A (en) * 2016-03-04 2018-12-28 日本电产株式会社 Power inverter, motor drive unit and electric power steering apparatus
US20200052630A1 (en) * 2017-01-20 2020-02-13 Moteurs Leroy-Somer Electronic device, in particular an alternator regulator, and method for regulating such a device
US11211889B2 (en) * 2018-03-22 2021-12-28 Denso Corporation Motor system

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102859861B (en) 2009-07-31 2016-01-20 阿尔斯通技术有限公司 Configurable hybrid converter circuit
US9130458B2 (en) 2010-03-15 2015-09-08 Alstom Technology Ltd. Static VAR compensator with multilevel converter
FR2961361B1 (en) * 2010-06-14 2013-07-12 Hispano Suiza Sa VOLTAGE INVERTER AND METHOD FOR CONTROLLING SUCH AS INVERTER
FR2961479B1 (en) * 2010-06-18 2014-01-17 Sagem Defense Securite AIRCRAFT COMPRISING A PLURALITY OF ELECTRIC ACTUATORS, DEVICE FOR SUPPLYING AND CONTROLLING SUCH ACTUATORS AND CORRESPONDING ACTUATING ASSEMBLY
DE102010060380B3 (en) * 2010-11-05 2012-02-02 Lti Drives Gmbh Emergency-operated pitch motor drive circuit
US9350250B2 (en) 2011-06-08 2016-05-24 Alstom Technology Ltd. High voltage DC/DC converter with cascaded resonant tanks
EP2740204B1 (en) 2011-08-01 2020-09-30 General Electric Technology GmbH A dc to dc converter assembly
CA2848325C (en) 2011-11-07 2018-03-27 Alstom Technology Ltd Control circuit
CN103959634B (en) * 2011-11-17 2017-09-01 通用电气技术有限公司 The mixing AC/DC converters applied for HVDC
KR102005104B1 (en) 2012-03-01 2019-07-30 제네럴 일렉트릭 테크놀러지 게엠베하 Control circuit
JP2014192950A (en) * 2013-03-26 2014-10-06 Denso Corp Power converter
CN103488103B (en) * 2013-09-30 2015-11-04 哈尔滨工业大学 A kind of electromagnetic drive control system
KR20160004764A (en) * 2014-07-04 2016-01-13 삼성전자주식회사 System for controlling fault tolerance
JP6401090B2 (en) * 2015-03-23 2018-10-03 株式会社Soken Power converter
JP6367744B2 (en) * 2015-03-23 2018-08-01 株式会社Soken Power converter
JP2016181949A (en) * 2015-03-23 2016-10-13 株式会社日本自動車部品総合研究所 Power converter
US9876456B2 (en) * 2016-06-01 2018-01-23 Abb Schweiz Ag Brushless electrical machine
CN108023524B (en) * 2017-12-08 2020-05-12 合肥工业大学 Winding open type permanent magnet synchronous motor driving system and winding switching strategy
KR20230119440A (en) * 2022-02-07 2023-08-16 현대자동차주식회사 Motor driving apparatus and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729096A (en) * 1996-07-24 1998-03-17 Motorola Inc. Inverter protection method and protection circuit for fluorescent lamp preheat ballasts
US6178103B1 (en) * 2000-05-10 2001-01-23 Ford Global Technologies, Inc. Method and circuit for synchronizing parallel voltage source inverters
US20080258661A1 (en) * 2007-04-23 2008-10-23 Nagashima James M Inverter topology for an electric motor
US20080303349A1 (en) * 2007-06-08 2008-12-11 Gabriel Gallegos-Lopez Two-source inverter
US20090026895A1 (en) * 2007-07-27 2009-01-29 Sibaprasad Chakrabarti Electric motor systems

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316091B2 (en) * 1971-04-30 1978-05-30
DE3508261A1 (en) * 1985-03-08 1986-09-18 BM-Elektronik Humbert Münzing, 7433 Dettingen Intermediate-circuit converter circuit
JPS62244278A (en) * 1986-04-16 1987-10-24 Toshiba Corp Inverter device
JPH077957A (en) * 1993-06-14 1995-01-10 Toshiba Corp Power converter
JP3352182B2 (en) * 1993-11-09 2002-12-03 三菱電機株式会社 Inverter device
FR2865868A1 (en) * 2004-01-29 2005-08-05 Renault Sas Three phase actuator e.g. three-phase synchronous motor, supplying device for motor vehicle, has control devices controlling arms of inverters, to cut-off single-phase direct voltage signal with phase difference of half-cycle of cut-off

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729096A (en) * 1996-07-24 1998-03-17 Motorola Inc. Inverter protection method and protection circuit for fluorescent lamp preheat ballasts
US6178103B1 (en) * 2000-05-10 2001-01-23 Ford Global Technologies, Inc. Method and circuit for synchronizing parallel voltage source inverters
US20080258661A1 (en) * 2007-04-23 2008-10-23 Nagashima James M Inverter topology for an electric motor
US20080303349A1 (en) * 2007-06-08 2008-12-11 Gabriel Gallegos-Lopez Two-source inverter
US20090026895A1 (en) * 2007-07-27 2009-01-29 Sibaprasad Chakrabarti Electric motor systems

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140077745A1 (en) * 2012-09-20 2014-03-20 Shinichi Kinouchi Drive control device and drive control method
US9024564B2 (en) * 2012-09-20 2015-05-05 Mitsubishi Electric Corporation Drive control device and drive control method
US20170250623A1 (en) * 2016-02-26 2017-08-31 Deere & Company Parallel inverter scheme for separating conduction and switching losses
US9853570B2 (en) * 2016-02-26 2017-12-26 Deere & Company Parallel inverter scheme for separating conduction and switching losses
CN109104887A (en) * 2016-03-04 2018-12-28 日本电产株式会社 Power inverter, motor drive unit and electric power steering apparatus
US11431238B2 (en) * 2016-03-04 2022-08-30 Nidec Corporation Power conversion device, motor drive unit, and electric power steering device
US20200052630A1 (en) * 2017-01-20 2020-02-13 Moteurs Leroy-Somer Electronic device, in particular an alternator regulator, and method for regulating such a device
US11171590B2 (en) * 2017-01-20 2021-11-09 Moteurs Leroy-Somer Electronic device, in particular an alternator regulator, and method for regulating such a device
US11211889B2 (en) * 2018-03-22 2021-12-28 Denso Corporation Motor system

Also Published As

Publication number Publication date
CA2671467C (en) 2011-08-02
EP2089963A2 (en) 2009-08-19
FR2910197A1 (en) 2008-06-20
DE602007012465D1 (en) 2011-03-24
IL198812A0 (en) 2010-02-17
BRPI0720199A2 (en) 2013-12-31
ES2360683T3 (en) 2011-06-08
FR2910197B1 (en) 2009-02-06
CN101589542A (en) 2009-11-25
JP4933632B2 (en) 2012-05-16
RU2402852C1 (en) 2010-10-27
US8294408B2 (en) 2012-10-23
JP2010514390A (en) 2010-04-30
EP2089963B1 (en) 2011-02-09
ATE498241T1 (en) 2011-02-15
CN101589542B (en) 2012-07-04
WO2008087270A2 (en) 2008-07-24
CA2671467A1 (en) 2008-07-24
WO2008087270A3 (en) 2008-10-02

Similar Documents

Publication Publication Date Title
US8294408B2 (en) Power supply with two series inverters for a polyphase electromechanical actuator
US8604733B2 (en) Electric actuator including two current-controlled voltage inverters powering an electrical machine, and reconfigurable in the presence of a defect
JP5797751B2 (en) Voltage inverter and method for controlling such an inverter
WO2017150640A1 (en) Power conversion device, motor drive unit, and electric power steering device
JP6150757B2 (en) Load drive device
JP2013529055A5 (en)
CN108352802B (en) Power conversion device and electric power steering device
JP6291899B2 (en) Rotating electrical machine control device
US9705442B2 (en) Asymmetrical multi-lane multi-phase motor drives
JPWO2018163591A1 (en) Power conversion device, motor drive unit and electric power steering device
JPWO2016038683A1 (en) Inverter device for driving multiphase AC motor
JP2016019385A (en) Motor device
CN107968612B (en) Motor driving circuit
US10978975B2 (en) Fault-tolerant electrical drive
US8427092B2 (en) High voltage DC electric power generating system with permanent magnet generator protection
US10622859B2 (en) Method and device for operating an electric machine having external or hybrid excitation
US9093945B2 (en) Fail-safe interface
US10978982B2 (en) Method and device for operating an electronically commutated electrical machine in the event of a fault
JP4690937B2 (en) Permanent magnet motor drive device
JP2009136098A (en) High-pressure direct inverter device
CN111264024B (en) Inverter device, control circuit thereof, and motor drive system
EP3255779B1 (en) Reconfigurable multi-permanent magnet generator based power generating system
US20230095327A1 (en) Fault tolerant converter topology
US20240128911A1 (en) Motor winding neutral switching
JP5310882B2 (en) Inverter device, air conditioner, and control method for inverter device

Legal Events

Date Code Title Description
AS Assignment

Owner name: MESSIER-DOWTY SA,FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATT, DANIEL;JAC, JULIEN;ZIEGLER, NICOLAS;REEL/FRAME:023014/0544

Effective date: 20090608

Owner name: MESSIER-DOWTY SA, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATT, DANIEL;JAC, JULIEN;ZIEGLER, NICOLAS;REEL/FRAME:023014/0544

Effective date: 20090608

AS Assignment

Owner name: MESSIER-BUGATTI-DOWTY, FRANCE

Free format text: MERGER;ASSIGNOR:MESSIER-DOWTY SA;REEL/FRAME:027014/0341

Effective date: 20110430

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: SAFRAN LANDING SYSTEMS, FRANCE

Free format text: CHANGE OF NAME;ASSIGNOR:MESSIER-BUGATTI-DOWTY;REEL/FRAME:040851/0908

Effective date: 20160628

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12