US20100171117A1 - Semiconductor device and method for manufacturing the same, and electric device - Google Patents

Semiconductor device and method for manufacturing the same, and electric device Download PDF

Info

Publication number
US20100171117A1
US20100171117A1 US12/729,298 US72929810A US2010171117A1 US 20100171117 A1 US20100171117 A1 US 20100171117A1 US 72929810 A US72929810 A US 72929810A US 2010171117 A1 US2010171117 A1 US 2010171117A1
Authority
US
United States
Prior art keywords
insulating film
semiconductor device
film
thin film
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/729,298
Inventor
Hideaki Kuwabara
Hiroko Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to US12/729,298 priority Critical patent/US20100171117A1/en
Publication of US20100171117A1 publication Critical patent/US20100171117A1/en
Priority to US13/365,498 priority patent/US20120126226A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76816Aspects relating to the layout of the pattern or to the size of vias or trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1292Multistep manufacturing methods using liquid deposition, e.g. printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49855Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers for flat-cards, e.g. credit cards
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED

Definitions

  • the present invention relates to a semiconductor device having a circuit including a thin film transistor (hereinafter, referred to as a TFT) and to a manufacturing method thereof.
  • the present invention relates to a semiconductor device having a circuit including a field effect transistor (hereinafter, referred to as an FET).
  • the present invention relates to an electronic device incorporating, as part thereof, a large-scale integrated circuit (LSI), an electro-optic device typified by a liquid crystal display panel, a light-emitting display device having an organic light-emitting element, a sensor device such as a line sensor, or a memory device such as an SRAM or a DRAM, for example.
  • LSI large-scale integrated circuit
  • an electro-optic device typified by a liquid crystal display panel
  • a light-emitting display device having an organic light-emitting element typified by a liquid crystal display panel
  • a sensor device such as a line sensor
  • a memory device such as an SRAM or
  • a semiconductor device in this specification means general devices and apparatuses that can function with the use of semiconductor characteristics; for example, an electro-optical device, a semiconductor circuit, and an electronic device are all included in a semiconductor device.
  • a wiring material is generally embedded in a wiring opening such as a wiring trench or a hole formed in an insulating film by a wiring formation technology called a damascene process.
  • a damascene process is a method in which a trench is first formed in an insulating film, the entire surface is covered with a metal material (filling the trench), and the entire surface is polished by a CMP (chemical mechanical polishing) method or the like to form a metal wiring.
  • the method further including a step of providing a hole below a metal wiring for contact with a metal wiring or a semiconductor region in a lower wiring is called a dual damascene process.
  • the dual damascene process includes a step in which, after forming a hole for a connection with a lower layer wiring and a wiring trench are formed, a wiring material is deposited, and the wiring material except the wiring portion is removed by a CMP method.
  • copper (Cu) by an electroplating method is commonly used.
  • a plating solution or the electric field to be applied is required to be controlled intricately so that copper (Cu) is completely embedded in the connection hole.
  • An electroplating method and a CMP method have had a problem of increase in manufacturing costs for forming a wiring.
  • a thin film transistor is widely applied to an electronic device such as an IC or an electro-optic device, and is particularly developed as switching elements for image display devices at a rapid rate.
  • a liquid crystal display device is generally well known as an image display device.
  • An active matrix liquid crystal display device has often been used because a high precision image can be obtained compared with a passive liquid crystal display device.
  • pixel electrodes arranged in matrix are driven to display an image pattern on the screen. Specifically, a voltage is applied to a selected pixel electrode and an opposite electrode corresponding to the pixel electrode, and thus, a liquid crystal layer between the pixel electrode and the opposite electrode is modulated optically. The optical modulation can be recognized as an image pattern by an observer.
  • a contact hole is formed in an interlayer insulating film between these wirings by using a photolithography method.
  • various steps such as forming a resist mask (coating, exposing, and developing a resist), etching selectively, or removing a resist mask are necessary.
  • dry etching and wet etching are known.
  • dry etching by gas plasma has an advantage in forming a pattern processed into a tapered shape or the like.
  • a dry-etching apparatus is disadvantageous in that an expensive large-scaled apparatus is needed and a manufacturing cost is increased.
  • wet etching which is inexpensive and superior in terms of mass production compared with dry etching uses a great deal of etchant once; therefore, waste fluid treatment is difficult, which has been one of causes of increase in a manufacturing cost.
  • wet etching is isotropic etching, it is difficult to form a contact hole having comparatively small diameter, which is disadvantageous in high integration of a circuit.
  • a laser-processing technique particularly a laser-processing method using YAG laser light (wavelength of 1.06 ⁇ m) is known.
  • YAG laser light wavelength of 1.06 ⁇ m
  • the beam is scanned into a processing direction to form an opening into a chain shape of continuous dots.
  • the present applicant uses laser light having a wavelength of 400 ⁇ m or less to irradiate a light-transmitting conductive film with a linear beam.
  • a method for processing a thin film for forming an opening is described in Reference 1: U.S. Pat. No. 4,861,964 Specification, Reference 2: U.S. Pat. No. 5,708,252 Specification, and Reference 3: U.S. Pat. No. 6,149,988 Specification.
  • the present invention provides a technique capable of realizing a plurality of contact holes different in depth in a simplified process.
  • a gang printing that is a manufacturing method of cutting out a plurality of devices from one mother glass substrate for mass production efficiently is employed without using a wafer substrate.
  • the size of a mother glass substrate is increased from 300 mm ⁇ 400 mm of the first generation in the early 1990s to 680 mm ⁇ 880 mm or 730 mm ⁇ 920 mm of the fourth generation in 2000.
  • the manufacturing technique has been developed so that a large number of devices, typically, display panels can be obtained from one substrate.
  • a target becomes expensive as the size is increased, which is disadvantageous for mass production.
  • a light-transmitting insulating film that is formed to cover a conductive layer is selectively irradiated with laser light to form a penetrating opening that reaches the conductive layer.
  • a step of forming a contact hole can be simplified by forming a penetrating opening in a light-transmitting insulating film by laser light.
  • a focal position of laser light is appropriately determined by a practitioner. Therefore, the depth of a penetrating opening or the size of a penetrating opening can be decided appropriately.
  • a plurality of contact holes different in depth can be realized in a simplified process.
  • the light-transmitting insulating film is not limited to a single layer, and a step of forming a contact hole can be simplified even in a stacked layer of two or more layers.
  • a fundamental wave is used without putting laser light into a non-linear optical element, and a penetrating opening is formed by irradiating a light-transmitting insulating film with pulsed laser light having high intensity and a high repetition rate.
  • the repetition rate of laser used in the present invention is set to be 10 MHz or more.
  • High intensity means a high peak output power per unit of time and per area and the peak output power of laser light according to the present invention ranges from 1 GW/cm 2 to 1 TW/cm 2 .
  • a fundamental wave with a wavelength of approximately 1 ⁇ m is not absorbed so much by a light-transmitting insulating film in irradiating the light-transmitting insulating film with the fundamental wave.
  • the fundamental wave has low absorption efficiency.
  • a fundamental wave emitted from a pulsed laser having a pulse width in the range of picosecond or in the range of femtosecond (10 ⁇ 15 seconds) can provide high intensity laser light.
  • a non-linear optical effect multi-photon absorption
  • the fundamental wave can be absorbed by light-transmitting insulating film to form a penetrating opening.
  • a shape of an opening in a plane perpendicular to a substrate can be determined appropriately by a practitioner appropriately determining a focal position of laser light. For example, an opening the opening area on a surface of a light-transmitting insulating film of which is smaller than an exposed area of a conductive layer can be formed.
  • a beam shape is circular and light intensity shows a Gaussian distribution; therefore, an opening shape in a plane perpendicular to a surface of an object to be processed has a shape in accordance with a Gaussian distribution.
  • a pulse width that is used in the conventional processing method using YAG laser light is 10 ⁇ 4 second to 10 ⁇ 2 second.
  • an opening is formed from the surface of the light-transmitting conductive film because the light-transmitting conductive film that absorbs laser light having a wavelength, of 400 ⁇ m or less is used.
  • a surface easily absorbs energy also in this processing method; thus, an opening diameter on the surface gets longer easily.
  • a processing method according to the present invention is not limited to forming an opening penetrating from a surface, and various formation methods are available. For example, when a light-transmitting insulating film is irradiated with laser light while moving a focal position of the laser light from a conductive layer side to a surface, an opening penetrating from the conductive layer side to a surface is formed in the light-transmitting insulating film. In addition, it is also possible to form an opening in an insulating film by being irradiated with laser light to penetrate through a light-transmitting substrate from a backside, that is, the substrate side.
  • an opening having a complicated shape can also be formed by freely moving a focal position of laser light.
  • an opening penetrating in a vertical direction is formed in a Z direction (depth direction) and then a hole in a lateral direction is formed in an X direction or a Y direction.
  • a printing technique such as a droplet discharging technique typified by a piezo type and a thermal jet type or a nanoimprint technique to form a wiring or an electrode in a position overlapped with an opening of an insulating film and to electrically connect to a conductive layer through the opening of the insulating film.
  • a conductive material where a material solution is adjusted and dropped can have fluidity; therefore, even an opening having a crooked complicated shape can be filled with the conductive material.
  • a hole where the side wall is in a reverse tapered shape can be filled with the conductive material.
  • a deep opening or an opening having a complicated shape can be filled with the conductive material by making the most of speed of a conductive material that is dropped using a droplet discharging technique.
  • it is also one feature of the present invention to provide an opening filled with the conductive material having fluidity is easily filled.
  • FIGS. 19A to 19C each shows a state in which a conventional contact hole is formed.
  • a base insulating film 3011 is provided over a substrate 3010
  • a conductive layer 3012 is provided over the base insulating film 3011 .
  • a wiring 3017 a as shown in FIG. 19B is formed.
  • the wiring 3017 a is a wiring in accordance with the shape of the contact hole and the wiring portion of the contact hole has a depression compared with other portions. Further, when baking is performed, the wiring 3017 a is transformed into a wiring 3017 b as shown in FIG. 19C because the wiring material has fluidity.
  • the wiring material moves to a material movement direction 3018 shown in an arrow in FIG. 19C and there is a fear that the thickness of the wiring in vicinity of the contact hole becomes thinner compared with other portions.
  • the material of a wiring tends to move to a lower place before baking, that is, just after forming the wiring.
  • a semiconductor device comprises a first conductive layer; a plurality of penetrating openings (also referred to as a plurality of openings); an insulating film covering the first conductive layer; and a second conductive layer in contact with the first conductive layer through the plurality of penetrating openings, wherein the second conductive layer contains conductive particles, and wherein a surface of the second conductive layer which is overlapped with the plurality of penetrating openings and a surface of the second conductive layer which is not overlapped with the plurality of penetrating openings are formed in one side.
  • the second conductive layer is leveled.
  • the width of the second conductive layer D and a diameter of each of the plurality of openings W satisfy 2D ⁇ W.
  • the second conductive layer has a plurality of crystals where the conductive particles are assembled and the crystals are overlapped.
  • a wiring is formed with a conductive material containing metal particles of 3 nm to 7 nm in size by a droplet discharging method or a printing method and is baked, the metal particles are dissolved and assembled to have an approximately 100 nm crystal, which is formed to irregularly overlap in three dimensions.
  • a diameter of a penetrating opening is longer than one conductive particle.
  • the opening has a diameter longer than a diameter of the metal particles to be used (3 nm to 7 nm) so that at least the metal particles enter the opening on the surface.
  • a diameter of a penetrating opening according to the present invention is 3 nm to 2000 nm.
  • a semiconductor device comprises a semiconductor layer, a plurality of penetrating openings; an insulating film covering the semiconductor layer; and a conductive layer in contact with the semiconductor layer through the plurality of penetrating openings, wherein the conductive layer contains conductive particles, and wherein a surface of the conductive layer which is overlapped with the plurality of penetrating openings and a surface of the conductive layer which is not overlapped with the plurality of penetrating openings are formed in one side.
  • a shape of the penetrating opening is not limited to a columnar shape having the same diameter, and a diameter of a cross section taken along a horizontal plane may be partially different.
  • a diameter of an opening in a bottom surface of a insulating film may be ten or more times as long as a diameter of an opening in a top surface of the insulating film, as long as the diameter of the opening in the top surface of the insulating film is longer than a metal particle.
  • a cross section taken along a horizontal plane of the penetrating opening is not limited to a circle and may also be elliptical or rectangular.
  • the length of a minor axis preferably ranges from 3 nm to 2000 nm.
  • the length of a narrow side preferably ranges from 3 nm to 2000 nm.
  • a diameter of an opening in a bottom surface of an insulating film may be the same or may be longer than a diameter of one crystal so that a crystal made of assembled metal particles is formed even in the opening.
  • a semiconductor device comprises a first conductive layer; a plurality of penetrating openings; an insulating film covering the first conductive layer, and a second conductive layer in contact with the first conductive layer through the plurality of penetrating openings, wherein the second conductive layer contains conductive particles, and wherein at least two penetrating openings among the plurality of penetrating openings are connected to each other in the insulating film.
  • an opening shape according to the present invention is not limited to a columnar shape extended to a direction of a film thickness (that is, a Z direction).
  • a semiconductor device comprises a first conductive layer; a plurality of penetrating openings; an insulating film covering the first conductive layer; and a second conductive layer in contact with the first conductive layer through the plurality of penetrating openings, wherein the second conductive, layer contains conductive particles, and wherein a cross-sectional shape of the plurality of penetrating openings is an L shape, a U shape, or a shape drawing an arc.
  • a penetrating opening refers to a passage leading to upper and lower layers sandwiching an insulating film and a passage extended to a horizontal direction in the insulating film.
  • a cross-sectional shape of the penetrating openings according to the present invention includes an L shape, a U shape, a shape drawing an arc, or the like. Even in the case of the openings having such a complicated cross-sectional shape, the opening having a complicated shape can be filled with a conductive material by adjusting viscosity of the discharging material as long as a droplet discharging method is used.
  • a plurality of minute openings can be connected to each other in a plane in contact with a conductive layer. Accordingly, a plurality of minute openings can be provided to a top surface of an insulating film and a contact area can be increased by connecting a plurality of openings with holes in a lateral direction (holes extended to an X direction or a Y direction) provided in vicinity of a bottom surface of the insulating film.
  • a plurality of vertical holes (holes extended to a Z direction) is connected to horizontal holes (holes extended to an X direction or a Y direction) taken along a bottom surface of the insulating film; therefore, an air escapeway can be provided in discharging droplets and thus air bubbles can be prevented from remaining in the openings.
  • the semiconductor device includes at least one of an antenna, a CPU (a central processing unit), and a memory.
  • an integrated circuit having a multilayer wiring formed through penetrating openings can be realized.
  • an integrated circuit having an antenna and a memory for identification and management of goods, merchandise, and people typically a wireless chip (also referred to as an ID tag, an IC tag, an IC chip, an RF (Radio Frequency) tag, a wireless tag, an electronic tag, or RFID (Radio Frequency Identification)) can be completed.
  • a wireless chip also referred to as an ID tag, an IC tag, an IC chip, an RF (Radio Frequency) tag, a wireless tag, an electronic tag, or RFID (Radio Frequency Identification)
  • the semiconductor device is a display device (an LCD panel or an EL panel), a video camera, a digital camera, a personal computer, or a portable information terminal.
  • a display device an LCD panel or an EL panel
  • a video camera a digital camera
  • a personal computer or a portable information terminal.
  • an integrated circuit having a multilayer wiring formed through penetrating openings can be manufactured in a simplified process; thus, an electronic device provided with the integrated circuit can be completed.
  • a method for manufacturing a semiconductor device comprises the steps of forming a first conductive layer; forming an insulating film over the first conductive layer, forming a plurality of penetrating openings in the insulating film by being selectively irradiated with laser light; and forming a second conductive layer in contact with the first conductive layer through the plurality of penetrating openings by a droplet discharging method or a printing method.
  • the step of forming the second conductive layer includes heat treatment in which a surface of the second conductive layer which is overlapped with the plurality of penetrating openings and a surface of the second conductive layer which is not overlapped with the plurality of penetrating openings are formed in one side.
  • a method for manufacturing a semiconductor device comprises the steps of forming a first conductive layer; forming an insulating film over the first conductive layer; forming a plurality of penetrating openings different in depth in the insulating film by being selectively irradiated with laser light; and forming a second conductive layer that fills the plurality of penetrating openings by a droplet discharging method or a printing method.
  • a method for manufacturing a semiconductor device comprises the steps of forming a first conductive layer; forming an insulating film over the first conductive layer; forming a plurality of penetrating openings different in depth in the insulating film by being selectively irradiated with laser light; and forming a second conductive layer by filling the plurality of penetrating openings with conductive particles after discharging a liquid material having the conductive particles into the plurality of penetrating openings by a droplet discharging method.
  • the plurality of penetrating openings is formed by moving a focal position of laser light to an X direction, a Y direction, or a Z direction.
  • a cross-sectional shape of the plurality of the penetrating openings is a columnar shape, an L shape, a U shape, or a shape drawing an arc.
  • penetrating openings may be formed by forming a closed pore (a pore extended to a Z direction) in a light-transmitting insulating film by laser light advance to subsequently remove a surface layer by etching or rubbing.
  • a method for manufacturing a semiconductor device comprises the steps of forming a first conductive layer; forming an insulating film over the first conductive layer; forming a closed pore in contact with the first conductive layer in the insulating film by being selectively irradiated with laser light; forming the closed pore into a penetrating opening simultaneously with performing thin film process to the insulating film; and forming a second conductive layer in contact with the first conductive layer through the plurality of penetrating openings by a droplet discharging method or a printing method.
  • a method for manufacturing a semiconductor device comprises the steps of forming a first conductive layer on a substrate; fanning an insulating film on the first conductive layer; forming a plurality of pores in the insulating film by being selectively irradiated with laser light; removing upper regions of the insulating film of the plurality of pores to form a plurality of openings; and forming a second conductive layer in contact with the first conductive layer though the plurality of openings by a droplet discharging method or a printing method.
  • a diameter of the penetrating openings is 3 nm to 2000 nm.
  • the method for manufacturing a semiconductor device having a transistor using a semiconductor substrate comprises the steps of forming a first insulating film over a semiconductor substrate; forming a second insulating film over the first insulating film; forming a first penetrating opening that reaches the first insulating film and a second penetrating opening that reaches the semiconductor substrate in the second insulating film by being selectively irradiated with laser light; and forming a gate electrode in contact with the first insulating film through the first penetrating opening and an electrode in contact with the semiconductor substrate through the second penetrating opening by a droplet discharging method.
  • the method for manufacturing a semiconductor device, having a thin film transistor comprises the steps of forming a semiconductor layer over a substrate having an insulating surface; forming a first insulating film covering the semiconductor layer in the second insulating film by being selectively irradiated with laser light; forming a second insulating film; forming a first penetrating opening that reaches the first insulating film and a second penetrating opening that reaches the semiconductor layer; and forming a gate electrode in contact with the first insulating film through the first penetrating opening and an electrode in contact with the semiconductor layer through the second penetrating opening by a droplet discharging method.
  • the first insulating film is a gate insulating film.
  • the second insulating film is an interlayer insulating film.
  • the method for manufacturing a semiconductor device, having a thin film transistor comprises the steps of forming a first insulating film over a substrate having an insulating surface; forming a semiconductor layer over the first insulating film; forming a second insulating film above the semiconductor layer; forming a first penetrating opening in the first insulating film and the second insulating film and a second penetrating opening that reaches the semiconductor layer in the second insulating film by being selectively irradiated with laser light; and forming a gate electrode through the first penetrating opening and an electrode in contact with the semiconductor layer through the second penetrating opening by a droplet discharging method, wherein part of the first penetrating opening is formed below the semiconductor layer, and wherein the first insulating film between the first penetrating opening and the semiconductor layer is a
  • a method for manufacturing a semiconductor device comprises the steps of forming a first insulating film on a substrate; forming a semiconductor layer on the first insulating film; forming a second insulating film on the semiconductor layer; forming a pore in the first insulating film and an opening that reaches the semiconductor layer in the second insulating film by being selectively irradiated with laser light; and forming a gate electrode through the pore and an electrode in contact with the semiconductor layer through the opening by a droplet discharging method or a printing method.
  • the first penetrating opening is formed by laser light irradiation from the side of the substrate having an insulating surface or by laser light irradiation from the side of the second insulating film.
  • the second insulating film is an interlayer insulating film.
  • the first penetrating opening is an opening in which an opening in a Z direction and an opening in an X direction or a Y direction are connected.
  • the second insulating film is formed first, and then, an opening like a tunnel is formed by laser light and the opening is filled with a conductive material to form a gate electrode. Since the position of the gate electrode in a depth direction can be set arbitrarily with the use of laser light, it is also possible to obtain a thin film of the gate insulating film. Moreover, the gate electrode can also be formed without damaging the gate insulating film.
  • a diameter of the first penetrating opening is 3 nm or more and 2000 nm or less.
  • the laser light oscillates when a pulse width of the laser light is 1 femtosecond or more and 10 picoseconds or less.
  • High intensity multiphoton absorption can occur can be obtained by having the pulse width in the range of 1 femtosecond or more and 10 picoseconds or less.
  • Multiphoton absorption does not occur when a laser beam has a pulse width of several tens picoseconds longer than 10 picoseconds.
  • the laser light has a fundamental wave emitted from a laser oscillator the laser repetition frequency of which is 10 MHz or more.
  • a semiconductor film containing silicon as its main component a semiconductor film containing an organic material as its main component, or a semiconductor film containing metal oxide as its main component can be used for a semiconductor layer.
  • the semiconductor film containing silicon as its main component an amorphous semiconductor film, a semiconductor film including a crystalline structure, a compound semiconductor film including an amorphous structure, or the like, specifically amorphous silicon, microcrystalline silicon, polycrystalline silicon, single crystal silicon, or the like can be used.
  • a semiconductor film containing as its main component a semiconductor film containing as its main component a material comprising carbon or allotropes (aside from a diamond) of carbon at a quantity, at least having a material which has charge carrier mobility of 10 ⁇ 3 cm 2 /V ⁇ s or more in room temperature (20° C.), can be used by being combined with other elements.
  • a material comprising carbon or allotropes (aside from a diamond) of carbon at a quantity, at least having a material which has charge carrier mobility of 10 ⁇ 3 cm 2 /V ⁇ s or more in room temperature (20° C.) can be used by being combined with other elements.
  • an aromatic of ⁇ electron conjugate system, a chain compound, an organic, or an organosilicon compound can be used.
  • pentacene, tetracene, thiophen oligomers, phenylenes, a phthalocyanine compound, poly acetylenes, polythiophenes, a cyanine dye, and the like are given as examples.
  • the semiconductor film containing metal oxide as its main component zinc oxide (ZnO); oxide of zinc, gallium, and indium (In—Ga—Zn—O); or the like can be used.
  • a semiconductor device may be provided with a protective circuit (for example, a protection diode) for preventing electrostatic discharge damage.
  • a protective circuit for example, a protection diode
  • the present invention can be applied and, for example, a top gate TFT, a bottom gate (reverse stagger) TFT, or a forward stagger TFT can be used.
  • a multi-gate transistor having a plurality of channel-forming regions for example, a double gate transistor may be used.
  • steps needed to process a wiring in forming a multilayer wiring can be simplified. Further, high integration of a circuit can also be realized.
  • a contact hole can be formed without damaging an element and a substrate because the fundamental wave is not absorbed by the element and substrate. Therefore, a semiconductor device can be manufactured by using an element that is easily affected by heat or an etching solution or a film substrate that is easily affected by heat or an etching solution.
  • FIGS. 1A to 1D are process cross-sectional views and a top view according to the present invention (Embodiment Mode 1);
  • FIGS. 2A and 2B are cross-sectional views explaining a manufacturing process of an opening according to the present invention (Embodiment Mode 1);
  • FIGS. 3A to 3C are cross-sectional views and a top view showing one example of an opening shape according to the present invention (Embodiment Mode 2);
  • FIGS. 4A to 4C are cross-sectional views explaining a manufacturing process of an opening according to the present invention (Embodiment Mode 3);
  • FIGS. 5A to 5C are cross-sectional views and a top view showing one example of an opening shape according to the present invention (Embodiment Mode 4);
  • FIGS. 6A to 6D are cross-sectional views showing a manufacturing process of a bottom gate TFT (Embodiment Mode 5);
  • FIGS. 7A to 7D are cross-sectional views showing a manufacturing process of a top gate TFT (Embodiment Mode 6);
  • FIG. 8 is a cross-sectional view showing a structure of an active matrix liquid crystal display device (Embodiment Mode 6);
  • FIG. 9 is a cross-sectional view showing a structure of an active matrix EL display device (Embodiment Mode 6);
  • FIG. 10 is a diagram explaining a laser beam direct writing system applicable to the present invention (Embodiment Mode 1);
  • FIG. 11 is a diagram explaining a droplet discharging device applicable to the present invention (Embodiment Mode 1);
  • FIGS. 12A to 12D are cross-sectional views showing a method for manufacturing a semiconductor device (Embodiment 1);
  • FIG. 13 is a perspective view of a semiconductor device (Embodiment 1);
  • FIG. 14 is a top view showing a module (Embodiment 2);
  • FIGS. 15A and 15B are a block diagram and a perspective view of a television device (Embodiment 4);
  • FIGS. 16A to 16E are views each showing one example of an electronic device (Embodiment 5);
  • FIG. 17 is one example of a cross-sectional view showing a structure according to the present invention (Embodiment 6);
  • FIGS. 18A to 18F are perspective views explaining application examples of a semiconductor device (Embodiment 6).
  • FIGS. 19A to 19C are cross-sectional views showing a conventional example.
  • FIGS. 1A to 1D a method for forming a contact hole in a first conductive layer and a method for forming a second conductive layer electrically connected to the first conductive layer through the contact hole will be explained with reference to FIGS. 1A to 1D , FIGS. 2A and 2B , FIG. 10 , and FIG. 11 .
  • a base insulating film 11 is formed over a substrate 10 having an insulating surface, and a first conductive layer 12 is formed over the base insulating film 11 .
  • an insulating film 13 covering the first conductive layer 12 is formed. A cross-sectional view of this stage is shown in FIG. 1A .
  • a glass substrate or quartz substrate having light transparency is preferably used as the substrate 10 having an insulating surface.
  • the base insulating film 11 a base film made of an insulating film such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride film is formed.
  • an insulating film such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride film is shown.
  • the insulating film may be a single layer film or may have a structure where two or more layers are stacked. Note that the base insulating film is not particularly necessary.
  • the first conductive layer 12 a conductive film 100 nm to 600 nm in thickness is formed by a sputtering method and then patterning is performed with the use of a photolithography technique.
  • the conductive film is formed of one or more elements of Ta, W, Ti, Mo, Al, Cu, and Si, or a single layer or a stacked layer of an alloy material or a compound material containing the element as its main component.
  • the first conductive layer 12 may be formed by droplet discharging method, a printing method, or electroless plating without being particularly limited. It is preferable for the first conductive layer 12 to use a material that reflects and hardly absorbs laser light used in the subsequent opening process.
  • the first conductive layer 12 may also be formed using a transparent conductive material such as ITO, IZO, or ITSO. It is preferable to use a material that transmits and hardly absorbs laser light used in the subsequent opening process.
  • the insulating film 13 is formed using an insulating material that transmits and hardly absorbs laser light used in the subsequent opening process, for example, an insulating film such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride film.
  • the insulating film 13 may be formed using an insulating film where a framework structure is formed by the bond between silicon (Si) and oxygen (O), which is obtained by a coating method.
  • the following can also be used: PSG (phosphosilicate glass) in which phosphorus is added to silicon dioxide; BPSG (borophosphosilicate glass) in which phosphorus and boron are added to silicon dioxide; SiOF in which fluorine is added to silicon dioxide; polyimide; aromatic ether typified by polyfluoroether in which polyallylether or fluorine is added; aromatic hydrocarbon; a cyclobutane derivative typified by BCB (Benzocyclobutene); or the like.
  • PSG phosphosilicate glass
  • BPSG borophosphosilicate glass
  • SiOF in which fluorine is added to silicon dioxide
  • polyimide aromatic ether typified by polyfluoroether in which polyallylether or fluorine is added
  • aromatic hydrocarbon a cyclobutane derivative typified by BCB (Benzocyclobutene); or the like.
  • an inorganic insulating film obtained by a CVD method or a sputtering method may be used without being particularly limited.
  • a plurality of openings can be formed using laser light according to the present invention even when the insulating film 13 does not have planarity.
  • the insulating film 13 is formed by performing drying and baking after coating or discharging the material with the use of a coating method or a droplet discharging method.
  • the insulating film 13 is irradiated with laser light to form a plurality of penetrating openings as shown in FIG. 1B .
  • laser light emitted from an ultrashort pulsed laser is used as the laser light.
  • an ultrashort pulsed laser is condensed in a light-transmitting material, multiphoton absorption can occur only at a condensed spot where the ultrashort pulsed laser is condensed, a closed pore can be formed, and one penetrating opening can be formed by moving the condensed spot.
  • the pulsed width of the laser light is 10 ⁇ 4 seconds to 10 ⁇ 2 seconds, the laser light not absorbed by the insulating film 13 .
  • the pulse width of which is extremely short (picoseconds (10 ⁇ 12 seconds) or femtoseconds (10 ⁇ 16 seconds)
  • the laser light can be absorbed by the insulating film 13 .
  • An ultrashort pulsed laser oscillator 101 is a laser oscillator with a pulse width of femtoseconds (10 ⁇ 15 seconds).
  • the ultrashort pulsed laser oscillator 101 may be a laser having a medium of a crystal of sapphire, YAG, ceramic YAG, ceramic Y 2 O 3 , KGW (potassium gadolinium tungsten), Mg 2 SiO 4 , YLF, YVO 4 , GdVO 4 , or the like, each of which is doped with one or a plurality of Nd, Yb, Cr, Ti, Ho, and Er.
  • FIG. 2A shows a cross-sectional view in the middle of forming an opening. A non-penetrating opening is shown in FIG. 2B as a pore 17 .
  • an ultrashort pulsed laser in this specification is a laser beam oscillated from a solid-state laser where a pulse width is 1 femtosecond or more and 10 picoseconds or less.
  • a peak power of laser light according to the present invention ranges from 1 GW/cm 2 to 1 TW/cm 2 .
  • the ultrashort pulsed laser allows processing to be performed only at the beam center with high energy density; therefore, fine processing, that is, a laser wavelength or less can be processed using the ultrashort pulsed laser having a laser wavelength or less that is not easily processed by a normal laser.
  • the insulating film 13 needs to be formed using a material that transmits light having the wavelength of the ultrashort pulsed laser, namely, a material in which light having the wavelength of the ultrashort pulsed laser is not absorbed, and more specifically, a material having a higher energy gap than the ultrashort pulsed laser.
  • a material that transmits light having the wavelength of the ultrashort pulsed laser namely, a material in which light having the wavelength of the ultrashort pulsed laser is not absorbed
  • a material having a higher energy gap than the ultrashort pulsed laser a material that transmits light
  • multiphoton absorption can occur only at a condensed spot where the ultrashort pulsed laser is condensed and a pore can be formed. Note that the multiphoton absorption is a process where two or more photons are absorbed concurrently to make a transition to an eigenstate that corresponds to the sum of energy of the photons.
  • a laser beam direct writing system 1001 has a personal computer (hereinafter referred to as a PC) 1002 for carrying out various controls in irradiation of a laser beam; a laser oscillator 1003 for outputting a laser beam; a power supply 1004 of the laser oscillator 1003 ; an optical system (ND filter) 1005 for attenuating a laser beam; an acousto-optic modulator (AOM) 1006 for modulating the intensity of a laser beam; an optical system 1007 constituted by a lens for magnifying or reducing the cross-sectional surface of a laser beam, a mirror for changing the optical path, and the like; a substrate moving mechanism 1009 having an X stage and a Y stage; a D/A converter portion 1010 for digital-analog converting the control data outputted from the PC; a driver 1011 for controlling the acousto-optic modulator 1006
  • the laser oscillator 1003 is a laser oscillator with a pulse width of femtoseconds (10 ⁇ 15 seconds).
  • the PC 1002 detects the position of a marker formed on the substrate by using a camera (not shown). Then, the PC 1002 generates movement data for moving the substrate moving mechanism 1009 in accordance with the detected positional data of the marker and the preprogrammed writing pattern data.
  • the PC 1002 controls the amount of light outputted from the acousto-optic modulator 1006 through the driver 1011 ; therefore, and a laser beam outputted from the laser oscillator 1003 is attenuated by the optical system 1005 and then controlled in quantity by the acousto-optic modulator 1006 to have a predetermined quantity of light.
  • the optical path and beam shape of the laser beam outputted from the acousto-optic modulator 1006 is changed by the optical system 1007 and the laser beam is condensed by the lens. Then, an insulating film over the substrate is irradiated with the laser beam to form a pore.
  • the substrate moving mechanism 1009 is controlled to move in the Z direction in accordance with the movement data generated by the PC 1002 . As a result, a predetermined area is irradiated with the laser beam, and the pore is connected to the Z direction to form an opening in the insulating film.
  • the substrate moving mechanism 1009 is controlled to move in the X direction and the Y direction, a pore is formed in the insulating film in a direction horizontal to the substrate plane.
  • a laser beam with a shorter wavelength can be condensed to have a shorter diameter of beam. Accordingly, an opening with small diameter can be formed by irradiation of a laser beam with a short wavelength.
  • the laser beam spot on the surface of the pattern can be processed by the optical system so as to have a dotted shape, a circular shape, an elliptical shape, a rectangular shape, or a linear shape (to be exact, elongated rectangular shape).
  • the substrate is selectively irradiated with the laser beam while being moved
  • the present invention is not limited to this and the substrate can be irradiated with the laser beam while scanning the laser beam in the Z direction, X direction, and Y direction.
  • a polygon mirror, a galvanometer mirror, or an acousto-optic deflector (AOD) is preferably used for the optical system 1007 .
  • a second conductive layer 19 is formed by discharging a composition containing conductive particles by a droplet discharging method so that a plurality of penetrating openings 16 is overlapped (see FIG. 1C ).
  • the second conductive layer 19 is formed using a droplet discharging means 18 .
  • the droplet discharging means 18 is a collective term of means for discharging a droplet, such as a nozzle having an outlet of a composition, and a head having one or more nozzles.
  • the droplet discharging means 18 has a nozzle with a diameter of 0.02 ⁇ m to 100 ⁇ m (preferably, 30 ⁇ m or less), and the discharge amount of a composition discharged from the nozzle is 0.001 pl to 100 pl (preferably, 10 pl or less). The discharge amount increases in proportion to the diameter of the nozzle.
  • the distance between an object and the outlet of the nozzle is preferably as short as possible, and reduced to approximately 0.1 mm to 3 mm (preferably, 1 mm or less) in order to discharge the composition onto a desired area.
  • the composition discharged from the outlet a solution where conductive particles are dissolved or dispersed in a solvent is used.
  • the conductive particles may be a metal such as Ag, Au, Cu, Ni, Pt, Pd, Ir, Rh, W, and Al; a metal sulfide such as Cd and Zn; an oxide such as Fe, Ti, Si, Ge, Zr, and Ba; fine particles such as silver halide particles; or dispersed nanoparticles.
  • the composition discharged from the outlet is preferably a solution where gold, silver, or copper is dissolved or dispersed in a solvent in view of the resistivity. More preferably, silver or copper that has low resistance is used.
  • a barrier film is preferably provided for preventing impurities from entering.
  • the solvent esters such as butyl acetate and ethyl acetate, alcohols such as isopropyl alcohol and ethyl alcohol, or an organic solvent such as methyl ethyl ketone and acetone may be used.
  • the viscosity of the composition is preferably 50 cp or less for preventing drying and for allowing the composition to be discharged smoothly from the outlet.
  • the surface tension of the composition is preferably 40 mN/m or less. However, the viscosity and the like of the composition may be set appropriately in accordance with the solvent or the application.
  • the diameter of the conductive particles is as small as possible in order to prevent each nozzle from clogging or to make fine patterns, and more preferably, each particle has a diameter of 0.1 ⁇ m or less, though it depends on the diameter of each nozzle or the desired pattern shape.
  • the composition is formed by a known method such as an electrolytic method, an atomization method, and wet reduction, and the particle size is generally approximately 0.01 ⁇ m to 10 ⁇ m.
  • nanoparticles protected with a dispersant are as fine as approximately 7 nm, and the nanoparticles are dispersed stably at room temperature and behave similarly to liquid without aggregation in a solvent when each of them is protected with a coating. Therefore, it is preferable to use a coating.
  • a droplet discharging device will be explained with reference to FIG. 11 .
  • the control means 1107 As the each heads 1105 and 1112 of the droplet discharging means is connected to control means 1107 and the control means 1107 is controlled by a computer 1110 , a pattern that has been programmed in advance can be plotted. The timing of plotting may be taken with reference to a marker 1111 faulted over a substrate 1100 , for example. Alternatively, a reference point may be fixed with an edge of the substrate 1100 as a reference.
  • the reference point is detected by an imaging means 1104 such as an image sensor using a charge coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS), and the computer 1110 recognizes a digital signal converted by an image processing means 1109 to generate a control signal, which is transmitted to a control means 1107 .
  • an imaging means 1104 such as an image sensor using a charge coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS)
  • CMOS complementary metal-oxide semiconductor
  • the computer 1110 recognizes a digital signal converted by an image processing means 1109 to generate a control signal, which is transmitted to a control means 1107 .
  • information of a pattern to be formed over the substrate 1100 is placed in a recording medium 1108 .
  • the control signal can be transmitted to the control means 1107 and each head 1105 and 1112 of the droplet discharging means 1103 can be controlled individually.
  • a material to be discharged is supplied to the heads 1105 and 1112 from material supply sources 1113 and 1114 through
  • the droplet discharging device can form a pattern over a large-sized substrate wider than the longitudinal length of the heads 1105 and 1112 by scanning the heads repeatedly.
  • the heads 1105 and 1112 can be scanned freely over the substrate in directions denoted by arrows so that a region to be written can be freely set. Accordingly, a plurality of same patterns can be written over a substrate.
  • any one or a plurality of reaction of fusing, sintering, and welding of conductive particles is performed.
  • FIG. 1D shows one example of a top view showing after forming the second conductive layer 19 .
  • FIG. 1C corresponds to a cross-sectional view taken along a broken line A-B in FIG. 1D .
  • a number of penetrating openings (herein, 10 penetrating openings) are provided, and the second conductive layer 19 is electrically connected to the first conductive layer 12 through the openings.
  • the number of the openings is not limited to ten, of course, and disposition of the openings is not particularly limited.
  • an insulator between the minute penetrating openings 16 serves as a spacer, which prevents a surface of the second conductive layer from generating a depression.
  • the second conductive layer 19 can have a uniform wiring width. A width of the second conductive layer D and a diameter of each of the plurality of penetrating openings W satisfy 2D ⁇ W ( FIG. 1D ).
  • FIGS. 3A to 3C an example of an opening the cross-sectional shape of which differs from Embodiment Mode 1 will be shown with reference to FIGS. 3A to 3C . Portions different from Embodiment Mode 1 will be explained in detail and portions identical with FIGS. 1A to 1D in FIGS. 3A to 3C are denoted by the same reference numerals.
  • FIGS. 1A to 1D a cross-sectional shape of an opening in FIGS. 1A to 1D is shown in a columnar shape; however, the present invention is not limited thereto and an opening the shape of which has a structure in which a plurality of openings is connected to each other in an insulating film as shown in FIG. 3 may be employed.
  • a base insulating film 11 and a first conductive layer 12 are formed over a substrate 10 having an insulating surface.
  • an insulating film 23 having a penetrating opening 26 is obtained by irradiation of ultrashort pulsed laser light.
  • an ultrashort pulsed laser is condensed in an insulating film, multiphoton absorption can occur only at a condensed spot where the ultrashort pulsed laser is condensed, a closed pore can be formed, and one penetrating opening can be formed by moving the condensed spot.
  • the pulsed width of the laser light is 10 ⁇ 4 seconds to 10 ⁇ 2 seconds, the laser light is not absorbed by the insulating film 23 .
  • the pulse width of which is extremely short picoseconds or femtoseconds
  • the opening 26 having a complicated cross-sectional shape as shown in FIG. 3A can be formed by moving a focal position of laser light to a Z direction, an X direction or a Y direction during laser light irradiation.
  • a second conductive layer 29 is formed by discharging a composition containing conductive particles so as to overlap with the opening 26 with the use of a droplet discharging method (see FIG. 3B ).
  • the second conductive layer 29 is formed by using a droplet discharging means 28 .
  • baking is performed by heat treatment or laser light irradiation and removal is also performed, and any one or a plural reaction of fusing, sintering, and welding of the conductive particles is performed.
  • the interior of an opening having a complicated shape may be filled with the conductive particles without leaving a bubble after pushing the bubble to the outside air out of a plurality of openings.
  • FIG. 3C shows one example of a top view in a state after forming the second conductive layer 29 .
  • FIG. 3B corresponds to a cross-sectional view taken along a broken line A-B in FIG. 3C .
  • the number of openings is six as shown in FIG. 3C , the three openings are each connected in the insulating film, which can be referred to as total two openings having a complicated shape. As compared with Embodiment Mode 1, a few openings are provided on an insulating surface; however, a contact area between the first conductive layer and the second conductive layer is larger in this embodiment mode. Needless to say that the number of openings is not limited to two and disposition of an opening is not limited particularly.
  • an insulator between the minute penetrating openings 26 serves as a spacer that holds a surface position of the second conductive layer, which prevents the surface of the second conductive layer from generating a depression.
  • a wiring width of the second conductive layer 29 can be made uniform.
  • this embodiment mode can be arbitrarily combined with Embodiment Mode 1.
  • FIGS. 4A to 4C an example of forming a plurality of openings with the combination of laser light and etching will be explained with reference to FIGS. 4A to 4C .
  • Portions different from Embodiment Mode 1 will be explained in detail, and portions identical with FIGS. 1A to 1D are denoted by the same reference numerals in FIGS. 4A to 4C .
  • an insulating film 33 having a closed pore 37 is obtained by irradiation of ultrashort pulsed laser light.
  • an ultrashort pulsed laser is condensed in the insulating film, multiphoton absorption can occur only at a condensed spot where the ultrashort pulsed laser is condensed, a closed pore can be formed, and one penetrating opening can be formed by moving the condensed spot.
  • the pulsed width of the laser light is 10 ⁇ 4 seconds to 10 ⁇ 2 seconds, the laser light is not absorbed by the insulating film 33 .
  • the pulse width of which is extremely short picoseconds or femtoseconds
  • a focus of laser light is formed by an optical system 15 , which is formed by moving a focal position during laser light irradiation.
  • the closed pore 37 is formed by forming a focus of laser light with the use of an optical system 15 and by moving a focal position during the laser light irradiation
  • a surface of the insulating film is etched to obtain a thin film.
  • the insulating film above the closed pore 37 is removed by this etching so that an opening 36 penetrating through the closed pore 37 can be formed.
  • An insulating film 34 having a plurality of the penetrating openings 36 is obtained at this stage. Note that a dotted line shown in FIG. 4B shows a surface of the insulating film before etching.
  • a thin film of the insulating film may be obtained by polishing (such as CMP) instead of etching.
  • a second conductive layer 39 is formed by discharging a composition containing conductive particles so as to overlap with a plurality of the penetrating openings 36 with the use of a droplet discharging method (see FIG. 4C ).
  • the second conductive layer 39 is formed by using a droplet discharging means 38 .
  • baking is performed by heat treatment or laser light irradiation and removal is also performed, and any one or a plural reaction of fusing, sintering, and welding of the conductive particles is performed.
  • the penetrating opening having a comparatively shallow depth can be formed in the insulating film.
  • this embodiment mode can be arbitrarily combined with Embodiment Mode 1 or Embodiment Mode 2.
  • FIGS. 5A to 5C an example different from Embodiment Mode 1 in a cross-sectional shape will be shown in FIGS. 5A to 5C .
  • Portions different from Embodiment Mode 1 will be explained in detail, and portions identical with FIGS. 1A to 1D are denoted by the same reference numerals in FIGS. 5A to 5C .
  • a base insulating film 11 and a first conductive layer 12 are formed over a substrate 10 having an insulating surface.
  • an insulating film 43 having a penetrating opening 46 is obtained by irradiation of ultrashort pulsed laser light.
  • the pulsed width of the laser light is 10 ⁇ 4 seconds to 10 ⁇ 2 seconds, the laser light is not absorbed by the insulating film 43 .
  • the pulse width of which is extremely short is extremely short (picoseconds or femtoseconds)
  • the laser light can be absorbed by the insulating film 43 .
  • the opening 46 having a curved cross-sectional shape as shown in FIG. 5A can be formed by moving a focal position to an X direction or a Y direction during laser light irradiation and then moving to a Z direction and repeatedly moving again to the X direction or Y direction.
  • a second conductive layer 49 is formed by discharging a composition containing conductive particles so as to overlap with a plurality of the penetrating openings 46 with the use of a droplet discharging method (see FIG. 5B ).
  • the second conductive layer 49 is formed by using a droplet discharging means 48 .
  • a cross-sectional shape of the opening is curved; therefore, the interior of the opening can be filled smoothly with the composition containing conductive particles.
  • baking is performed by heat treatment or laser light irradiation and removal is also performed, and any one or a plural reaction of fusing, sintering, and welding of the conductive particles is performed.
  • FIG. 5C shows one example of a top view in a state after forming the second conductive layer 49 .
  • FIG. 5B corresponds to a cross-sectional view taken along a broken line A-B in FIG. 5C .
  • FIG. 5C shows an example in which two kinds of openings in an elliptical shape and a circular shape are formed. In other words, three elliptical openings and one circular opening, that is, total four openings are formed.
  • a variety of openings can be formed by adjusting a focal position of laser light arbitrarily.
  • a cross-sectional shape of the penetrating opening 46 is curved so that the opening can be conducted electrically with the second conductive layer 49 on the side surface of the first conductive layer 12 . Therefore, the first conductive layer 12 and the second conductive layer 49 are disposed so as not to overlap with each other. Parasitic capacitance formed between the first conductive layer 12 and the second conductive layer 49 can be reduced by having such a disposition.
  • this embodiment mode can be arbitrarily combined with Embodiment Mode 1, Embodiment Mode 2, or Embodiment Mode 3.
  • FIGS. 6A to 6D an example of forming a TFT with the use of an opening formed by using laser light according to the present invention is shown with reference to FIGS. 6A to 6D .
  • a base insulating film 201 is formed over a substrate 200 having an insulating surface.
  • a light-transmitting substrate for example, a glass substrate, a crystalline glass substrate, or a plastic substrate can be used.
  • a plastic film substrate for example, a plastic substrate of poly(ethylene terephthalate) (PET), poly(ether sulfone) (PES), poly(ethylene naphthalate) (PEN), polycarbonate (PC), nylon, polytheretherketone (PEEK), polysulfone (PSF), poly(ether imide) (PEI), polyarylate (PAR), polybutylene terephthalate) (PBT), or the like is preferable.
  • a plastic substrate having heat resistance for example, a plastic substrate in which a material where inorganic particles of several nm diameters are dispersed in an organic polymer matrix is processed in a sheet may also be used.
  • an insulating film such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride (SiO x N y ) film is used.
  • a silicon nitride film (SiN film) or a silicon oxynitride film (SiN x O y film (X>Y)) the film thickness of which is 10 nm or less is preferably used as one layer of the base insulating film 201 .
  • a three-layer structure in which a silicon nitride oxide film, a silicon oxynitride film, and a silicon nitride film are sequentially stacked may also be employed.
  • An example of forming the base insulating film 201 is shown here; however, the base insulating film 201 is not necessarily provided if not necessary.
  • a first insulating film 202 serving as a gate insulating film is formed.
  • the first insulating film 202 it is preferable to use a material that transmits and hardly absorbs a fundamental wave of laser light used in the following opening process.
  • an insulating film such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride film is used.
  • a film that is obtained by coating and baking a solution containing polysilazane or a siloxane polymer, a photo-curing organic resin film, a thermosetting organic resin film, or the like may also be used.
  • the semiconductor film is formed with an amorphous semiconductor film or a microcrystalline semiconductor film that is manufactured by a vapor-phase growth method, a sputtering method, or a thermal CVD method with the use of a semiconductor material gas typified by silane and germanium.
  • a semiconductor material gas typified by silane and germanium.
  • an example of using an amorphous silicon film as the semiconductor film is shown.
  • ZnO or oxide of zinc gallium indium manufactured by a sputtering method or a PLD (Pulsed Laser Deposition) method may also be used; however, in that case, the gate insulating film is preferably an oxide containing aluminum or titanium.
  • an organic material such as pentacene, tetracene, thiophen oligomers, phenylenes, a phthalocyanine compound, poly acetylenes, polythiophenes, or a cyanine dye, manufactured by a coating method, a droplet discharging method, or a vapor deposition method, may also be used.
  • a conductive semiconductor film is formed.
  • a semiconductor film exhibiting n-type or p-type conductivity in which n-type or p-type impurities are added is used.
  • the n-type semiconductor film may be formed by a PCVD method with the use of a silane gas and a phosphine gas.
  • a silicon film containing phosphorus is shown as the conductive semiconductor film.
  • a charge-transporting layer is preferably used instead of the conductive semiconductor film and, for example, triphenyldiamine serving as a hole-transporting layer or oxadiazole sewing as an electron-transporting layer is preferably used.
  • an island-shape semiconductor layer 207 and a conductive semiconductor layer 206 are obtained by patterning with the use of a known photolithography technique.
  • a mask may be formed using a droplet discharging method or a printing method (relief printing, lithography, copperplate printing, screen printing, or the like) to perform etching selectively, instead of the known photolithography technique.
  • wirings 203 , 204 , and 209 are formed by selectively discharging a composition containing a conductive material (Ag (silver), Au (gold), Cu (copper), W (tungsten), Al (aluminum), or the like) by a droplet discharging method.
  • FIG. 6A shows a state in which the composition containing a conductive material is discharged from an ink-jet head 208 .
  • the wirings 203 , 204 , and 209 are not limited to be formed by a droplet discharging method and, for example, the wirings may be formed by forming a metal film with the use of a sputtering method, forming a mask, and performing etching selectively.
  • the conductive semiconductor layer and an upper portion of the semiconductor layer are etched with the use of the wirings 203 , 204 , and 209 as each a mask to expose part of the semiconductor layer.
  • the exposed portion of the semiconductor layer is a portion serving as a channel-forming region of a TFT.
  • an interlayer insulating film 211 including a protective film is formed to prevent the channel-forming region from being contaminated with impurities.
  • the protective film silicon nitride obtained by a sputtering method or a PCVD method or a material containing silicon nitride oxide as its main component is used. Hydrogenation treatment is performed in this embodiment mode after forming the protective film.
  • a resin material such as epoxy resin, acrylic resin, phenol resin, novolac resin, melamine resin, or urethane resin is used.
  • an organic material such as benzocyclobutene, parylene, fluorinated-arylene-ether, or polyimide having transmissivity; a compound material made by polymerization of a siloxane-based polymer or the like; a composition material containing a water-soluble homopolymer and a water-soluble copolymer; or the like can be used.
  • a plurality of first openings 210 is formed by irradiating the interlayer insulating film 211 including the protective film with ultrashort pulsed laser light.
  • a plurality of second openings 212 is also formed by irradiating the backside of the substrate as well with ultrashort pulsed laser light.
  • FIG. 6B shows a cross-sectional view in which the second openings 212 are formed by ultrashort pulsed laser light that passes through an optical system 205 .
  • the laser light When the pulsed width of the laser light is 10 ⁇ 4 seconds to 10 ⁇ 2 seconds, the laser light is not absorbed by the interlayer insulating film 211 including the protective film. However, when multiphoton absorption occurs by irradiating the interlayer insulating film 211 including the protective film with laser light the pulse width of which is extremely short (picoseconds or femtoseconds), the laser light can be absorbed by the interlayer insulating film 211 including the protective film.
  • the first insulating film 202 between the second opening 212 and the semiconductor layer 207 serves as a gate insulating film. Therefore, the film thickness of the gate insulating film can be determined arbitrarily by the formation of the second opening 212 .
  • a composition containing conductive particles is discharged with the use of a droplet discharging method to fill each opening with the conductive particles so as to overlap with a plurality of the penetrating first openings and second openings.
  • the conductive particles are fused and aggregated to have a crystal of approximately 100 nm when baking is performed; thus, a gate electrode, gate wirings 214 and 215 , and a connection wiring 213 are formed (see FIG. 6C ).
  • the gate electrode and gate wirings disposed in different layers can be formed simultaneously and with the same material.
  • a channel etch TFT is completed at this stage.
  • a significant feature of this embodiment mode is the process order in which the gate electrode is formed after forming the interlayer insulating film.
  • FIG. 6D shows one example of a top view of a TFT at the stage of FIG. 6C .
  • a cross section taken along a broken line A-B corresponds to a cross-sectional view of FIG. 6C . Note that corresponding portions are denoted by the same reference numerals.
  • FIG. 6D shows a double-gate TFT having two channel-forming regions.
  • the gate wirings 214 and 215 are electrically connected through a third opening 216 formed in a Z direction (a direction perpendicular to the substrate) and the second opening 212 formed in a Y direction. Note that the third opening 216 is formed using laser light in the same manner as the first opening or the second opening.
  • the second opening 212 and the third opening 216 are connected in the interlayer insulating film. Moreover, the third opening 216 differs from the first openings 210 in depth. Further, the connection wiring 213 is electrically connected to a wiring 209 through the first openings 210 .
  • the formation order of the first opening and the second opening is not particularly limited and the second opening may be formed first.
  • the third opening may be formed by continuously moving a focal position of laser light in forming the second opening.
  • an active matrix liquid crystal display device can be manufactured with the use of the connection wiring 213 as a pixel electrode.
  • an active matrix light-emitting display device can also be manufactured by forming a first electrode overlapping the connection wiring 213 and a partition covering a first end and stacking a layer containing an organic compound and a second electrode over the first electrode.
  • a semiconductor layer 207 can be formed over a flat insulating surface; thus, an opening for forming the gate electrode can be formed without causing damage to the semiconductor layer. Therefore, the semiconductor layer can be formed by a coating method, which is effective in using an organic material for the semiconductor layer.
  • the opening is formed by laser light, the comparatively low number of manufacturing processes of a TFT can be realized.
  • this embodiment mode can be arbitrarily combined with Embodiment Mode 1, Embodiment Mode 2, Embodiment Mode 3, or Embodiment Mode 4.
  • Embodiment Mode 5 an example of forming a TFT different from that of Embodiment Mode 5 is shown with reference to FIGS. 7A to 7D .
  • a base insulating film 301 is formed over a substrate 300 having an insulating surface.
  • a substrate 300 having an insulating surface a light-transmitting substrate, for example, a glass substrate, a crystalline glass substrate, or a plastic substrate can be used.
  • a semiconductor substrate, a metal substrate, or the like can be used.
  • an insulating film such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride (SiO x N y ) film is used.
  • a semiconductor layer is formed over the base insulating film 301 .
  • the semiconductor layer is formed by depositing a semiconductor film having an amorphous structure by a known means (a sputtering method, an LPCVD method, a plasma CVD method, or the like), then forming a resist film over a crystalline semiconductor film obtained by performing known crystallization treatment (a laser crystallization method, a thermal crystallization method, a thermal crystallization method using a catalyst such as nickel, or the like), and then pattering it into a desired shape with the use of a first resist mask which is exposed by scanning laser light.
  • This semiconductor layer is formed to have a thickness of 25 nm to 80 nm (preferably, 30 nm to 70 nm).
  • a material of the crystalline semiconductor film is not limited; however, silicon or a silicon germanium (SiGe) alloy is preferably used to form the crystalline semiconductor film.
  • a gate insulating film 303 covering the semiconductor layer is formed after removing the first resist mask.
  • the gate insulating film 303 is formed to have a thickness of 1 nm to 200 nm with the use of a plasma CVD method, a sputtering method, or a thermal oxidation method.
  • a film formed of an insulating film such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride film is formed.
  • a second resist mask to which light exposure is performed by scanning laser light is formed after forming a resist film over the gate insulating film 303 .
  • an impurity element imparting p-type or n-type conductivity is selectively added to the semiconductor layer by using an ion doping method or an ion implantation method. Accordingly, regions where the impurity element is added serve as impurity regions 304 , 306 , and 307 .
  • a region 302 covered with the second resist mask where the impurity element is not added serves as a channel-forming region of a TFT.
  • the second resist mask is removed and the impurity element added to the semiconductor layer is activated and hydrogenated.
  • an interlayer insulating film 319 having planarity is formed.
  • a light-transmitting inorganic material silicon oxide, silicon nitride, silicon oxynitride, or the like
  • a photosensitive or non-photosensitive organic material polyimide, acrylic, polyamide, polyimide amide, resist, or benzocyclobutene
  • a stack of these materials, or the like is used.
  • an insulating film formed of an SiO x film containing an alkyl group obtained by a coating method, for example, an insulating film formed using silica glass, an alkyl siloxane polymer, an alkyl silsesquioxane polymer, a hydrogenated silsesquioxane polymer, a hydrogenated alkyl silsesquioxane polymer, or the like can be used.
  • a coating material for an insulating film such as #PSB-K1 and #PSB-K31 manufactured by Toray Industries, Inc., and a coating material for an insulating film such as #ZRS-5PH manufactured by Catalysts & Chemicals Industries Co., Ltd. can be given.
  • a plurality of first openings 309 are formed in the interlayer insulating film 319 and the gate insulating film 303 with the use of laser light.
  • the plurality of first openings 309 is formed to reach the impurity regions 304 and 307 .
  • a plurality of second openings 310 and 311 is formed in the interlayer insulating film 319 with the use of laser light.
  • the plurality of second openings 310 and 311 is formed so as to overlap with the position of the regions 302 where the impurity element is not added.
  • FIG. 7B shows a cross-sectional view where a focal position of ultrashort pulsed laser light is moved after forming the second opening 310 to form the first opening 309 by the ultrashort pulsed laser light that passes through an optical system 305 .
  • the laser light When the pulsed width of the laser light is 10 ⁇ 4 seconds to 10 ⁇ 2 seconds, the laser light is not absorbed by the interlayer insulating film 319 including the protective film. However, when multiphoton absorption occurs by irradiating the interlayer insulating film 319 including the protective film with laser light the pulse width of which is extremely short (picoseconds or femtoseconds), the laser light can be absorbed by the interlayer insulating film 319 including the protective film.
  • a composition containing conductive particles of 3 nm to 7 nm is discharged with the use of a droplet discharging method to fill each opening with the conductive particles so as to overlap with a plurality of the penetrating first openings and second openings.
  • the conductive particles are fused and aggregated to have a crystal of approximately 100 nm when baking is performed; thus, gate electrodes 313 and 314 , and source or drain electrodes 312 and 315 are formed (see FIG. 7C ).
  • a gate electrode and a source electrode disposed in different layers can be formed with the same material.
  • FIG. 7C shows a state in which a composition containing a conductive material is discharged from the ink jet head 308 .
  • FIG. 7C shows a double gate TFT having two channel-forming regions.
  • a significant feature of this embodiment mode is process order in which the gate electrode is formed after forming the interlayer insulating film.
  • FIG. 7D shows one example of a TFT taken along in a different cross section from FIG. 7C .
  • a cross-sectional view taken along in a cross section including a broken line C-D corresponds to FIG. 7D .
  • corresponding portions are denoted by the same reference numerals.
  • the second opening 310 is extended inside the interlayer insulating film 319 , and the bottom of the second opening 310 is in contact with the gate insulating film 303 .
  • the gate electrodes 313 and 314 are in one wiring over the interlayer insulating film 319 .
  • an active matrix liquid crystal display device can be manufactured with the use of the TFT shown in this embodiment mode as a switching element.
  • An insulating film 316 is formed after forming the source or drain electrode 315 ( FIG. 8 ). Then, a contact hole is formed in the insulating film 316 to form a pixel electrode 317 with ITO or the like. In addition, a terminal electrode is formed with ITO or the like over the insulating film 316 .
  • an alignment film 320 is formed so as to cover the pixel electrode 317 .
  • the alignment film 320 is preferably formed using a droplet discharging method, a screen printing method, or an offset printing method. Thereafter, rubbing treatment is performed to the surface of the alignment film 320 .
  • an opposite substrate 323 is provided with an opposite electrode 324 formed with a transparent electrode and an alignment film 322 thereover.
  • a sealant (not shown) with a closed pattern is then formed by a droplet discharge method so as to surround a region overlapped with a pixel portion.
  • a dip coating method prumping up method
  • capillary phenomenon may be used after providing a seal pattern having an opening and attaching the TFT substrate and an opposite substrate.
  • a liquid crystal is dropped under reduced pressure so as to prevent bubbles from entering, and the both substrates are attached together.
  • a liquid crystal is dropped once or several times in the closed-loop seal pattern.
  • a twisted nematic (TN) mode is mostly used as an alignment mode of a liquid crystal. In this TN mode, the alignment direction of liquid crystal molecules is twisted at 90° according to the polarization of light from its entrance to the exit. In the case of manufacturing a liquid crystal display device of TN mode, the substrates are attached together so that the rubbing directions are crossed each other.
  • the space between the pair of substrates may be maintained by spraying a spherical spacer, forming a columnar spacer comprising resin, or mixing a filler into the sealant.
  • the above columnar spacer is formed of an organic resin material mainly containing at least one material of acrylic, polyimide, polyimide amide, and epoxy; any one material of silicon oxide, silicon nitride, and silicon oxynitride; or an inorganic material composed of a film stack of these materials.
  • each panel is separated off.
  • the separation step can be skipped by attaching an opposite substrate which is cut in advance.
  • an FPC is attached to the terminal electrode with an anisotropic conductive layer therebetween by a known method.
  • a liquid crystal module is completed according to the foregoing processes ( FIG. 8 ).
  • an optical film such as a color filter is attached, if necessary.
  • polarization plates are respectively attached to both an active matrix substrate and an opposite substrate.
  • an active matrix light-emitting device can be manufactured with the use of the TFT shown in this embodiment mode.
  • An insulating film 316 is formed after forming a source or drain electrode 315 . Then, a contact hole is formed in the insulating film 316 to form a first electrode 318 .
  • the first electrode 318 serves as a cathode.
  • the first electrode 318 is formed by forming a predetermined pattern made from a composition containing indium tin oxide (ITO), indium tin oxide containing silicon oxide (ITSO), zinc oxide (ZnO), tin oxide (SnO 2 ), or the like.
  • the first electrode 318 is formed by forming a predetermined pattern made from a composition containing metal particles as its main component such as Ag (silver), Au (gold), Cu (copper), W (tungsten), or Al (aluminum).
  • the partition 331 for covering the periphery of the first electrode 318 is formed.
  • the partition 331 (also referred to as a bank) is formed using a material containing silicon, an organic material, and a compound material. Further, a porous film can also be used for the partition 331 .
  • the partition 331 is preferably formed by a photosensitive or a non-photosensitive material such as acrylic or polyimide, because the partition 331 is formed to have a curved edge portion having a radius of curvature varying continuously, and an upper thin film of the partition 331 can be formed without step cut.
  • a layer serving as an electroluminescent layer that is, a layer containing an organic compound 330 is formed.
  • the layer containing an organic compound 330 has a layered structure in which each layer is formed by a vapor deposition method or a coating method. For example, an electron-transporting layer (electron-injecting layer), a light-emitting layer, a hole-transporting layer, and a hole-injecting layer are sequentially stacked over a cathode.
  • plasma treatment in the presence of oxygen or heat treatment in vacuum atmosphere is preferably performed.
  • an organic compound is vaporized by resistance heating in advance, and scattered toward a substrate by opening a shutter in depositing the organic compound.
  • the vaporized organic compound is scattered upward and deposited over a substrate through an opening portion provided to a metal mask.
  • alignment of a mask is preferably performed per emission color (R, G, and B).
  • full color display can be obtained by using a material exhibiting a monochromatic emission as the layer containing an organic compound 330 , and combining a color filter or color conversion layer without being coated separately.
  • a second electrode 332 is formed.
  • the second electrode 332 sewing as an anode of the light-emitting element is formed using a transparent conductive film, which can transmit a light, for example, by ITO, ITSO, or mixture of indium oxide mixed with zinc oxide (ZnO).
  • the light-emitting element has the structure in which the layer containing an organic compound 330 is interposed between the first electrode and the second electrode.
  • a material for the first electrode and the second electrode should be selected in consideration of a work function. Either the first electrode or the second electrode is capable of being an anode or a cathode according to a pixel structure.
  • a protective layer for protecting the second electrode 332 may be formed.
  • a sealing substrate 334 is attached by a sealant (not shown) to seal the light-emitting element.
  • a sealant (not shown) to seal the light-emitting element.
  • the region surrounded by the sealant is filled with a transparent filler 333 .
  • the filler 333 is not particularly limited. Any material can be used as long as it a light-transmitting material, and typically, ultraviolet curable or thermosetting epoxy resin is used.
  • the FPC is attached to the terminal electrode by an anisotropic conductive film in accordance with a known method.
  • an active matrix light-emitting device as shown in FIG. 9 can be manufactured.
  • this embodiment mode can be arbitrarily combined with Embodiment Mode 1, Embodiment Mode 2, Embodiment Mode 3, Embodiment Mode 4, or Embodiment Mode 5.
  • the semiconductor substrate 500 is a single crystal silicon substrate or a compound semiconductor substrate, and typically, an N-type or a P-type single crystal silicon substrate, a GaAs substrate, an InP substrate, a GaN substrate, an SIC substrate, a sapphire substrate, or a ZnSe substrate.
  • an n-well is selectively formed in a first element-forming region in a main surface (also referred to as an element-forming surface or a circuit-forming surface) of the silicon substrate and a p-well is selectively formed in a second element-forming region in the same surface, respectively.
  • field oxide films 503 , 504 , and 505 to be element-isolating regions for partitioning the first element-forming region and the second element-forming region are formed.
  • the field oxide films 503 , 504 , and 505 are thick thermal oxide films and may be formed by a known LOCOS method.
  • the element-isolating method is not limited to the LOCOS method.
  • the element-isolating region may have a trench structure by using a trench-isolating method, or the LOCOS structure and the trench structure may be combined.
  • a gate insulating film is formed by, for example, thermally oxidizing the surface of the silicon substrate.
  • the gate insulating film may also be formed using a CVD method.
  • a silicon oxynitride film, a silicon oxide film, a silicon nitride film, or a stack thereof may be used.
  • a film stack of a silicon oxide film with a thickness of 5 nm which is obtained by thermal oxidation and a silicon oxynitride film with a thickness of 10 nm to 15 nm which is obtained by a CVD method is formed.
  • a film stack of a polysilicon layer and a silicide layer are formed over the entire surface, and the film stack is patterned by a lithography technique and a dry etching technique so as to form a gate electrode 506 having a polycide structure over the gate insulating film.
  • the polysilicon layer may be doped with phosphorus (P) at a concentration of approximately 10 21 /cm 3 in advance in order to reduce the resistance.
  • P phosphorus
  • high concentration n-type impurities may be diffused after forming the polysilicon layer.
  • the silicide layer is preferably formed of a material such as molybdenum silicide (MoSi x ), tungsten silicide (WSi x ), tantalum silicide (TaSi x ), or titanium silicide (TiSi x ) using a known method.
  • MoSi x molybdenum silicide
  • WSi x tungsten silicide
  • TaSi x tantalum silicide
  • TiSi x titanium silicide
  • the gate insulating film is selectively removed. Accordingly, a gate insulating film 508 having a width of the gate electrode is formed.
  • sidewalk 510 to 513 are formed on the side walls of the gate electrode.
  • an insulating material layer formed of silicon oxide may be deposited over the entire surface by a CVD method and the insulating material layer is preferably etched back to form the sidewalls.
  • an ion implantation is performed into the exposed silicon substrate to form a source region and a drain region. Since this is the case of manufacturing a CMOS, the first element-forming region for forming a p-channel FET is coated with a resist material, and arsenic (As) or phosphorus (P) which is an n-type impurity is injected into the silicon substrate to form a source region 514 and a drain region 515 . At the same time, low-concentration impurity regions 518 and 519 added with an n-type impurity by passing through the sidewalls are formed.
  • As arsenic
  • P phosphorus
  • the second element-forming region for forming an n-channel FET is coated with a resist material, and boron (B) which is a p-type impurity is injected into the silicon substrate to form a source region 516 and a drain region 517 .
  • B boron
  • low-concentration impurity regions 520 and 521 added with a p-type impurity by passing through the sidewalls are formed.
  • activation treatment is performed using a GRTA method, an LRTA method, or the like in order to activate the ion-implanted impurities and to reduce crystal defects in the silicon substrate, which is generated by the ion implantation (see FIG. 12A ).
  • a first interlayer insulating film 545 is formed.
  • the first interlayer insulating film 545 is formed in a thickness of 100 nm to 2000 nm with a silicon oxide film, a silicon oxynitride film, or the like by a plasma CVD method or a low-pressure CVD method.
  • an interlayer insulating film formed of phosphosilicate glass (PSG), borosilicate glass (BSG), or borophosphosilicate glass (PBSG) may be stacked thereover.
  • penetrating openings 541 to 544 are formed by irradiation of laser light emitted from an ultrashort pulsed laser. This is a method for forming an opening according to the present invention shown in Embodiment Mode 1.
  • conductive films 551 to 554 are formed by discharging and baking a composition containing conductive particles to the openings by a droplet discharging method.
  • a depression is not generated in portions overlapping with the openings; thus, top surfaces of the conductive films 551 to 554 are almost in one plane.
  • a second interlayer insulating film 561 is formed. Then, openings and conductive films 562 to 565 are formed in the same manner, and multilayer wirings can be formed as shown in FIG. 12D . Since the top surfaces of the conductive films 551 to 554 are almost in one plane, the depth of each of the openings penetrating through the second interlayer insulating film 561 can be kept uniform.
  • an SOI substrate is used as the semiconductor substrate 500 and treatment in which a circuit having a MOS transistor can be peeled at an interface with an oxidized insulating film or in the layer thereof or at an interface between the oxidized insulating film and a silicon substrate or at an interface between the oxidized insulating film and the circuit is performed. Therefore, the circuit having a MOS transistor can be peeled. In addition, a thinner film of a semiconductor device can be obtained by attaching the peeled circuit having a MOS transistor to a flexible substrate.
  • the semiconductor device shown in this embodiment is applicable to various semiconductor devices such as a bipolar transistor as well as a MOS transistor.
  • the semiconductor device is also applicable to an electric circuit such as a memory circuit or a logic circuit.
  • An IC chip in which an FET manufactured according to this embodiment is integrated can be used as a thin film integrated circuit or a non-contact thin film integrated circuit device (also referred to as a wireless IC tag or RFID (Radio Frequency Identification)).
  • a non-contact thin film integrated circuit device also referred to as a wireless IC tag or RFID (Radio Frequency Identification)
  • FIG. 13 shows an example of an ID card in which an IC chip 1516 according to the present invention is attached to a card-like substrate 1518 provided with a conductive layer 1517 serving as an antenna.
  • the conductive layer 1517 serving as an antenna can also be formed by a droplet discharging method.
  • a contact hole with a connection electrode connected to the conductive layer 1517 serving as an antenna may be formed using a technique for forming an opening by using laser light.
  • the IC chip 1516 according to the present invention is small, thin, and lightweight, so that diverse uses can be realized and the design of an article is not spoiled even when the IC chip is attached to the article.
  • the IC chip 1516 is not limited to the case of being attached to the card-like substrate 1518 , and can be attached to an article having a curved surface or various shapes.
  • the IC chips can be used in bill, money, coin, securities, bearer bonds, certificates (such as a driver's license, or a resident's card, packing cases (such as a wrapper or a bottle), memory media (such as a DVD, a video tape), vehicles (such as a bicycle), belongings (such as a bag, or glasses), food, clothing, commodities, and the like.
  • Embodiment Mode 1 Embodiment Mode 2
  • Embodiment Mode 3 Embodiment Mode 4
  • Embodiment Mode 5 Embodiment Mode 6
  • FIG. 14 shows a module including a display panel 9501 and a circuit board 9502 .
  • a control circuit 9504 a signal division circuit 9505 , and the like are mounted on the circuit board 9502 .
  • the display panel 9501 is connected to the circuit board 9502 through a connecting wire 9503 .
  • the liquid crystal panel or the light-emitting display panel shown in Embodiment Mode 5 or Embodiment Mode 6 may be arbitrarily used.
  • the display panel 9501 has a pixel portion 9506 where a light-emitting element is provided in each pixel, a scanning-line driver circuit 9507 , and a signal-line driver circuit 9508 that supplies a video signal to a selected pixel.
  • the pixel portion 9506 has the same structure as that shown in Embodiment Mode 5 or Embodiment Mode 6.
  • IC chips are mounted on the substrate by a known mounting method such as a method using an anisotropic conductive adhesive or an anisotropic conductive film, a COG method, a wire bonding method, reflow treatment using a solder bump, or the like.
  • This embodiment allows a display module to be formed at low cost.
  • Embodiment Mode 1 Embodiment Mode 2
  • Embodiment Mode 3 Embodiment Mode 4
  • Embodiment Mode 5 Embodiment Mode 6, or Embodiment 1.
  • a liquid crystal display module and a light-emitting display module are shown as an example of the display module in the above embodiment, the present invention is not limited thereto.
  • the present invention can be appropriately applied in forming an opening and wiring of a display module such as a DMD (Digital Micro mirror Device), a PDP (Plasma Display Panel), an FED (Field Emission Display), an electrophoretic display device (electronic paper), or an electro deposition image display device.
  • a display module such as a DMD (Digital Micro mirror Device), a PDP (Plasma Display Panel), an FED (Field Emission Display), an electrophoretic display device (electronic paper), or an electro deposition image display device.
  • Embodiment Mode 1 Embodiment Mode 2
  • Embodiment Mode 3 Embodiment Mode 4
  • Embodiment Mode 5 Embodiment Mode 6
  • the semiconductor device shown in the above embodiment modes and embodiments may be applied to electronic apparatuses such as a television set (also simply referred to as a television or a television receiver).
  • a television set also simply referred to as a television or a television receiver.
  • FIGS. 15A and 15B a specific example of a television set will be explained with reference to FIGS. 15A and 15B .
  • FIG. 15A shows a block diagram of a television set
  • FIG. 15B shows a perspective view of a television set.
  • a liquid crystal television set and an EL television set can be completed by using the liquid crystal module and the EL module that are shown in the above embodiments.
  • FIG. 15A is a block diagram showing main components of a television set.
  • a tuner 9511 receives a video signal and an audio signal.
  • the video signal is processed by an image detection circuit 9512 , a video signal processing circuit 9513 that converts a signal outputted from the image detection circuit into a color signal corresponding to each of red, green, and blue, and a control circuit 9514 that converts the video signal in accordance with input specifications of a driver IC.
  • the control circuit 9514 outputs a signal to a scanning-line driver circuit 9516 and a signal-line driver circuit 9517 of a display panel 9515 .
  • a signal division circuit 9518 may be provided on the signal line side, so that an inputted digital signal is divided into m signals to be supplied.
  • an audio signal is transmitted to a sound detection circuit 9521 , and an output thereof is supplied to a speaker 9523 through an audio signal processing circuit 9522 .
  • a control circuit 9524 receives control information of a receiving station (received frequency) and a sound volume from an input portion 9525 , and transmits signals to the tuner 9511 and the audio signal processing circuit 9522 .
  • a television set can be completed by incorporating a module in a housing 9531 .
  • a display screen 9532 is formed using a module typified by a liquid crystal module and an EL module.
  • the television set also includes a speaker 9533 , operating switches 9534 , and the like.
  • this television set includes the display panel 9515 , cost reduction thereof can be achieved.
  • the television set with high definition can be provided.
  • the application of the present invention is not limited to the television receiver, and various applications are possible, such as a monitor for a personal computer as well as, in particular, a display medium with a large area such as an information display panel at stations or airports, and an advertisement display panel on the street.
  • Embodiment Mode 1 Embodiment Mode 2
  • Embodiment Mode 3 Embodiment Mode 4
  • Embodiment Mode 5 Embodiment Mode 6
  • a semiconductor device and an electronic device include a camera such as a video camera or a digital camera, a goggle type display (head mounted display), a navigation system, an audio player (a car audio, an audio component, and the like), a personal computer, a game machine, a portable information terminal (a mobile computer, a cellular phone, a portable game machine, an electronic book, and the like), an image reproducing device provided with a recording medium (specifically a device capable of reproducing the content of a recording medium such as a Digital Versatile Disc (DVD) and that has a display device capable of displaying the image), and the like.
  • a camera such as a video camera or a digital camera, a goggle type display (head mounted display), a navigation system, an audio player (a car audio, an audio component, and the like), a personal computer, a game machine, a portable information terminal (a mobile computer, a cellular phone, a portable game machine, an electronic book, and the like), an image reproducing device provided with
  • FIG. 16A is a digital camera, which includes a main body 2101 , a display portion 2102 , an imaging portion, operation keys 2104 , a shutter 2106 , and the like. Note that FIG. 16A is viewed from the side of the display portion 2102 and the imaging portion is not shown. According to the present invention, the digital camera can be obtained through a process where the manufacturing cost is reduced.
  • FIG. 16B is a personal computer, which includes a main body 2201 , a housing 2202 , a display portion 2203 , a keyboard 2204 , an external connection port 2205 , a pointing mouse 2206 , and the like. According to the present invention, the personal computer can be obtained through a process where the manufacturing cost is reduced.
  • FIG. 16C is a mobile image reproducing device provided with a recording medium (specifically, a DVD player), which includes a main body 2401 , a housing 2402 , a display portion A 2403 , a display portion B 2404 , a recording medium (DVD or the like) reading portion 2405 , operation keys 2406 , a speaker portion 2407 , and the like.
  • the display portion A 2403 is used mainly for displaying image information
  • the display portion B 2404 is used mainly for displaying text information.
  • the image reproducing device provided with a recording medium also includes a home-use game machine or the like. According to the present invention, the image reproducing device can be obtained through a process where the manufacturing cost is reduced.
  • FIG. 16D is a perspective view of a portable information terminal
  • FIG. 16E is a perspective view showing a state of using it as a folding cellular phone.
  • users operate operation keys 2706 a with their right fingers and operate operation keys 2706 b with their left fingers when they are used as a keyboard.
  • the portable information terminal can be obtained through a process where a manufacturing cost is reduced.
  • users in folding a cellular phone, have a main body 2701 and a housing 2702 in one hand and use an audio input portion 2704 , an audio output portion 2705 , operation keys 2706 c , an antenna 2708 , and the like.
  • the portable information terminals shown in FIGS. 16D and 16E each includes a high-definition display portion 2703 a which horizontally displays images and characters mainly and a display portion 2703 b which vertically displays.
  • a semiconductor device serving as a wireless chip (also called a wireless processor, a wireless memory, or a wireless tag) can be manufactured.
  • Embodiment 1 An example of mounting a chip obtained by cutting a semiconductor substrate on a card having an antenna is shown in Embodiment 1; however, a wireless chip can also be formed using a TFT.
  • a structure of a wireless chip according to the present invention will be explained with reference to FIG. 17 .
  • a wireless chip is constituted by a thin film integrated circuit 9303 and an antenna 9304 connected thereto.
  • the thin film integrated circuit 9303 and the antenna 9304 are sandwiched between cover materials 9301 and 9302 .
  • the thin film integrated circuit 9303 may be attached to the cover materials with an adhesive.
  • one surface of the thin film integrated circuit 9303 is attached to the cover material 9301 with an adhesive 9305 .
  • the thin film integrated circuit 9303 is formed using a TFT shown in Embodiment Mode 5 or Embodiment Mode 6, then peeled off by a known peeling step and attached to a cover material.
  • the semiconductor element used for the thin film integrated circuit 9303 is not limited thereto, and in addition to the TFT, a memory element, a diode, a photoelectric converter, a resistor, a coil, a capacitor, an inductor, or the like may be used.
  • an interlayer insulating film 9311 is formed over the of the thin film integrated circuit 9303 , and the antenna 9304 is connected to the TFT through the interlayer insulating film 9311 .
  • a barrier film 9312 made of silicon nitride or the like is formed over the interlayer insulating film 9311 and the antenna 9304 .
  • the antenna 9304 is formed by discharging a droplet containing a conductor such as gold, silver and copper by a droplet discharging method, then baking and drying it.
  • a droplet discharging method When the antenna is formed by a droplet discharging method, reduction in the number of steps can be realized; leading to cost reduction.
  • Each of the cover materials 9301 and 9302 preferably uses a film (made of polypropylene, polyester, vinyl, polyvinyl fluoride, vinyl chloride, or the like), paper of a fibrous material, a film where a base film (polyester, polyamide, an inorganic vapor deposition film, papers, or the like), and an adhesive synthetic resin film (an acrylic based synthetic resin, an epoxy based synthetic resin, or the like) are stacked, or the like.
  • the film is obtained by performing sealing treatment to the subject by thermocompression. In the sealing treatment, an adhesive layer formed on the upper most surface of the film or a layer (not an adhesive layer) formed on the outermost layer is melted by heat treatment to adhere by applying pressure.
  • the cover materials use a flammable pollution-free material such as paper, fiber and carbon graphite
  • the used wireless chip can be burned or cut out.
  • the wireless chip using such a material is pollution free because it does not generate poison gas even if being burned.
  • the wireless chip is attached to the cover material 9301 with the adhesive 9305 in FIG. 17
  • the wireless chip may be attached to the object instead of the cover material 9301 .
  • the wireless chip 9210 may be mounted on various objects and one example is shown in FIG. 18A to 18 , for example, such as bills, coins, securities, bearer bonds, certificates (licenses, resident cards and the like, see FIG. 18A ), containers for wrapping objects (wrapping papers, bottles and the like, see FIG. 18C ), recording media (DVDs, video tapes and the like, see FIG. 18B ), vehicles (bicycles and the like, see FIG. 18D ), belongings (bags, glasses and the like), foods, plants, animals, human body, clothes, living ware, and electronic apparatuses, or shipping tags of objects (see FIGS. 18E and 18F ).
  • the electronic apparatuses include liquid crystal display devices, EL display devices, television sets (also simply called televisions or television receivers), cellular phones, and the like.
  • a wireless chip is attached to the surface of the object or incorporated in the object to be fixed.
  • a wireless chip is preferably incorporated in a paper of a book, or an organic resin of a package.
  • a wireless chip is incorporated in bills, coins, securities, bearer bonds, certificates, and the like, forgery thereof can be prevented.
  • a wireless chip is incorporated in containers for wrapping objects, recording media, belongings, foods, clothes, livingware, electronic apparatuses, and the like, test systems, rental systems, and the like can be performed more efficiently.
  • a wireless chip according to the present invention is obtained in such a manner that a thin film integrated circuit formed over a substrate is peeled off by a known peeling step and then attached to a cover material; therefore, the wireless chip can be reduced in size, thickness and weight and can be mounted on an object while keeping the attractive design.
  • the wireless chip can be attached to an object having a curved surface, such as bottles and pipes.
  • a wireless chip according to the present invention When a wireless chip according to the present invention is applied to product management and distribution system, high performance system can be achieved. For example, when information stored in a wireless chip mounted on a shipping tag is read by a reader/writer provided beside a conveyor belt, information such as distribution process and delivery address is read to easily inspect and distribute the object.
  • Embodiment Mode 1 Embodiment Mode 2
  • Embodiment Mode 3 Embodiment Mode 4
  • Embodiment Mode 5 Embodiment Mode 6, or Embodiment 1.
  • the present invention since the number of etching steps accompanying a photolithography method can be reduced, the loss and effluent amount of a material solution can be reduced.
  • the present invention can realize a manufacturing process with the use of a droplet discharging method suitable for manufacturing a large-sized substrate in mass production.

Abstract

It is an object of the present invention to simplify steps needed to process a wiring in forming a multilayer wiring. In addition, when a droplet discharging technique or a nanoimprint technique is used to form a wiring in a contact hole having a comparatively long diameter, the wiring in accordance with the shape of the contact hole is formed, and the wiring portion of the contact hole is likely to have a depression compared with other portions. A penetrating opening is formed by irradiating a light-transmitting insulating film with laser light having high intensity and a pulse high in repetition frequency. A plurality of openings having a minute contact area is provided instead of forming one penetrating opening having a large contact area to have an even thickness of a wiring by reducing a partial depression and also to ensure contact resistance.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a semiconductor device having a circuit including a thin film transistor (hereinafter, referred to as a TFT) and to a manufacturing method thereof. Specifically, the present invention relates to a semiconductor device having a circuit including a field effect transistor (hereinafter, referred to as an FET). For example, the present invention relates to an electronic device incorporating, as part thereof, a large-scale integrated circuit (LSI), an electro-optic device typified by a liquid crystal display panel, a light-emitting display device having an organic light-emitting element, a sensor device such as a line sensor, or a memory device such as an SRAM or a DRAM, for example.
  • 2. Description of the Related Art
  • Note that a semiconductor device in this specification means general devices and apparatuses that can function with the use of semiconductor characteristics; for example, an electro-optical device, a semiconductor circuit, and an electronic device are all included in a semiconductor device.
  • In recent years, in the case of forming a multilayer wiring in a semiconductor element, irregularities are more significant in upper layers, and the wirings are difficult to be processed. Correspondingly, a wiring material is generally embedded in a wiring opening such as a wiring trench or a hole formed in an insulating film by a wiring formation technology called a damascene process.
  • A damascene process is a method in which a trench is first formed in an insulating film, the entire surface is covered with a metal material (filling the trench), and the entire surface is polished by a CMP (chemical mechanical polishing) method or the like to form a metal wiring. The method further including a step of providing a hole below a metal wiring for contact with a metal wiring or a semiconductor region in a lower wiring is called a dual damascene process. The dual damascene process includes a step in which, after forming a hole for a connection with a lower layer wiring and a wiring trench are formed, a wiring material is deposited, and the wiring material except the wiring portion is removed by a CMP method.
  • For a metal wiring using a dual damascene process, copper (Cu) by an electroplating method is commonly used. In the electroplating method, a plating solution or the electric field to be applied is required to be controlled intricately so that copper (Cu) is completely embedded in the connection hole. In addition, it is difficult to process copper (Cu) by an etching process using an etchant or an etching gas; therefore, a special CMP method is required for polishing for copper (Cu) processing.
  • An electroplating method and a CMP method have had a problem of increase in manufacturing costs for forming a wiring.
  • In addition, not only in a manufacturing process of a semiconductor device using a semiconductor substrate but also in a manufacturing process of an active matrix substrate using a thin film transistor (TFT), it is difficult to process a wiring in forming a multilayer wiring. In recent years, a thin film transistor is widely applied to an electronic device such as an IC or an electro-optic device, and is particularly developed as switching elements for image display devices at a rapid rate. Note that a liquid crystal display device is generally well known as an image display device.
  • An active matrix liquid crystal display device has often been used because a high precision image can be obtained compared with a passive liquid crystal display device. In the active matrix liquid crystal display device, pixel electrodes arranged in matrix are driven to display an image pattern on the screen. Specifically, a voltage is applied to a selected pixel electrode and an opposite electrode corresponding to the pixel electrode, and thus, a liquid crystal layer between the pixel electrode and the opposite electrode is modulated optically. The optical modulation can be recognized as an image pattern by an observer.
  • Application range of such an active matrix liquid crystal display device is expanding, and demands for the improvement of productivity and cost reduction are increasing, as a display size gets larger.
  • Conventionally, in the case of forming a multilayer wiring, in order to connect the upper wiring and the lower wiring, a contact hole is formed in an interlayer insulating film between these wirings by using a photolithography method. In the case of forming a contact hole by using a photolithography method, various steps such as forming a resist mask (coating, exposing, and developing a resist), etching selectively, or removing a resist mask are necessary. In other words, it is necessary to form a contact hole to have a multilayer structure so that the plurality of wirings cross to each other, which has been one of causes of increase in the number of manufacturing processes.
  • In addition, in the case of using a photolithography method, a photomask is also necessary for each exposure pattern; therefore, a cost for manufacturing the photomask is increased, which has been one of causes of increase in a manufacturing cost.
  • Moreover, in the case of using a photolithography method, large quantities of resist materials and developing solutions are used in order to improve uniformity; thus, a great deal of surplus materials is consumed.
  • As for a method for etching an interlayer insulating film selectively, dry etching and wet etching are known. Generally, dry etching by gas plasma has an advantage in forming a pattern processed into a tapered shape or the like. However, a dry-etching apparatus is disadvantageous in that an expensive large-scaled apparatus is needed and a manufacturing cost is increased. In addition, there is a fear that a semiconductor element is damaged due to gas plasma. Therefore, it is desirable that dry etching is performed as less as possible.
  • In addition, wet etching which is inexpensive and superior in terms of mass production compared with dry etching uses a great deal of etchant once; therefore, waste fluid treatment is difficult, which has been one of causes of increase in a manufacturing cost. In addition, since wet etching is isotropic etching, it is difficult to form a contact hole having comparatively small diameter, which is disadvantageous in high integration of a circuit.
  • As for a method without using a photoresist in processing a thin film by patterning, a laser-processing technique, particularly a laser-processing method using YAG laser light (wavelength of 1.06 μm) is known. In the laser-processing method with the use of YAG laser light, as well as an object to be processed is irradiated with a spot-like beam, the beam is scanned into a processing direction to form an opening into a chain shape of continuous dots.
  • In addition, the present applicant uses laser light having a wavelength of 400 μm or less to irradiate a light-transmitting conductive film with a linear beam. A method for processing a thin film for forming an opening is described in Reference 1: U.S. Pat. No. 4,861,964 Specification, Reference 2: U.S. Pat. No. 5,708,252 Specification, and Reference 3: U.S. Pat. No. 6,149,988 Specification.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to simplify steps needed to process a wiring in forming a multilayer wiring. Further, it is an object of the present invention to provide a technique to realize high integration of a circuit.
  • In addition, in the case of forming a plurality of contact holes different in depth, a process tends to be complicated. Consequently, the present invention provides a technique capable of realizing a plurality of contact holes different in depth in a simplified process.
  • Moreover, in manufacturing an electronic device having a semiconductor circuit, a gang printing that is a manufacturing method of cutting out a plurality of devices from one mother glass substrate for mass production efficiently is employed without using a wafer substrate. The size of a mother glass substrate is increased from 300 mm×400 mm of the first generation in the early 1990s to 680 mm×880 mm or 730 mm×920 mm of the fourth generation in 2000. Further, the manufacturing technique has been developed so that a large number of devices, typically, display panels can be obtained from one substrate.
  • In forming a metal film to be a wiring by a deposition method with the use of a sputtering method when the substrate size is further increased hereafter, a target becomes expensive as the size is increased, which is disadvantageous for mass production.
  • In addition, in consideration of mass production, it is also an object of the present invention to provide a technique to form a wiring appropriate for a large-sized substrate.
  • According to the present invention, a light-transmitting insulating film that is formed to cover a conductive layer is selectively irradiated with laser light to form a penetrating opening that reaches the conductive layer. A step of forming a contact hole can be simplified by forming a penetrating opening in a light-transmitting insulating film by laser light.
  • In addition, a focal position of laser light is appropriately determined by a practitioner. Therefore, the depth of a penetrating opening or the size of a penetrating opening can be decided appropriately. Thus, according to the present invention, a plurality of contact holes different in depth can be realized in a simplified process. Moreover, the light-transmitting insulating film is not limited to a single layer, and a step of forming a contact hole can be simplified even in a stacked layer of two or more layers.
  • According to laser light of the present invention, a fundamental wave is used without putting laser light into a non-linear optical element, and a penetrating opening is formed by irradiating a light-transmitting insulating film with pulsed laser light having high intensity and a high repetition rate. One feature of the present invention is that the repetition rate of laser used in the present invention is set to be 10 MHz or more.
  • High intensity means a high peak output power per unit of time and per area and the peak output power of laser light according to the present invention ranges from 1 GW/cm2 to 1 TW/cm2.
  • A fundamental wave with a wavelength of approximately 1 μm is not absorbed so much by a light-transmitting insulating film in irradiating the light-transmitting insulating film with the fundamental wave. Thus, the fundamental wave has low absorption efficiency. A fundamental wave emitted from a pulsed laser having a pulse width in the range of picosecond or in the range of femtosecond (10−15 seconds) can provide high intensity laser light. Thus, a non-linear optical effect (multi-photon absorption) is generated and the fundamental wave can be absorbed by light-transmitting insulating film to form a penetrating opening.
  • Additionally, a shape of an opening in a plane perpendicular to a substrate can be determined appropriately by a practitioner appropriately determining a focal position of laser light. For example, an opening the opening area on a surface of a light-transmitting insulating film of which is smaller than an exposed area of a conductive layer can be formed.
  • In a conventional processing method using YAG laser light, a beam shape is circular and light intensity shows a Gaussian distribution; therefore, an opening shape in a plane perpendicular to a surface of an object to be processed has a shape in accordance with a Gaussian distribution. Thus, in the conventional processing method using YAG laser light, an opening on a surface is likely to increase in size, and it is difficult to form a deep contact hole having a minute opening size. In addition, a pulse width that is used in the conventional processing method using YAG laser light is 10−4 second to 10−2 second.
  • In addition, in a conventional processing method, where a light-transmitting conductive film is irradiated with a linear beam to form an opening with the use of laser light having a wavelength of 400 μm or less, an opening is formed from the surface of the light-transmitting conductive film because the light-transmitting conductive film that absorbs laser light having a wavelength, of 400 μm or less is used. A surface easily absorbs energy also in this processing method; thus, an opening diameter on the surface gets longer easily.
  • Compared with the conventional processing method, a processing method according to the present invention is not limited to forming an opening penetrating from a surface, and various formation methods are available. For example, when a light-transmitting insulating film is irradiated with laser light while moving a focal position of the laser light from a conductive layer side to a surface, an opening penetrating from the conductive layer side to a surface is formed in the light-transmitting insulating film. In addition, it is also possible to form an opening in an insulating film by being irradiated with laser light to penetrate through a light-transmitting substrate from a backside, that is, the substrate side.
  • In addition, according to the present invention, an opening having a complicated shape can also be formed by freely moving a focal position of laser light. For example, an opening penetrating in a vertical direction is formed in a Z direction (depth direction) and then a hole in a lateral direction is formed in an X direction or a Y direction.
  • Further, it is also one feature of the present invention to use a printing technique such as a droplet discharging technique typified by a piezo type and a thermal jet type or a nanoimprint technique to form a wiring or an electrode in a position overlapped with an opening of an insulating film and to electrically connect to a conductive layer through the opening of the insulating film.
  • For example, in the case of using a droplet discharging technique, a conductive material where a material solution is adjusted and dropped can have fluidity; therefore, even an opening having a crooked complicated shape can be filled with the conductive material. For example, even a hole where the side wall is in a reverse tapered shape can be filled with the conductive material. In addition, a deep opening or an opening having a complicated shape can be filled with the conductive material by making the most of speed of a conductive material that is dropped using a droplet discharging technique. Moreover, it is also one feature of the present invention to provide an opening filled with the conductive material having fluidity is easily filled.
  • In addition, in the case of using a printing technique such as a nanoimprint technique, it is also possible to fill an opening having a complicated shape by giving fluidity to the conductive material with a conductive material in performing heat treatment for baking.
  • Moreover, when a wiring is formed with the use of a droplet discharging technique or a nanoimprint technique in a contact hole having a comparatively long diameter, for example, a diameter longer than 2 μm, the wiring in accordance with the shape of the contact hole is formed, and the wiring portion of the contact hole is likely to have a depression compared with other portions. FIGS. 19A to 19C each shows a state in which a conventional contact hole is formed. A base insulating film 3011 is provided over a substrate 3010, and a conductive layer 3012 is provided over the base insulating film 3011. In FIG. 19A, an insulating film is formed over the conductive layer 3012, a resist mask 3014 is formed by a photolithography technique, and an opening 3016 is formed by etching. Then, by removing the resist mask 3014 and forming a wiring with the use of a droplet discharging technique or a nanoimprint technique, a wiring 3017 a as shown in FIG. 19B is formed. As shown in FIG. 19B, the wiring 3017 a is a wiring in accordance with the shape of the contact hole and the wiring portion of the contact hole has a depression compared with other portions. Further, when baking is performed, the wiring 3017 a is transformed into a wiring 3017 b as shown in FIG. 19C because the wiring material has fluidity. Thus, the wiring material moves to a material movement direction 3018 shown in an arrow in FIG. 19C and there is a fear that the thickness of the wiring in vicinity of the contact hole becomes thinner compared with other portions. In addition, in the case of using a material having low viscosity and fluidity in a droplet discharging technique, the material of a wiring tends to move to a lower place before baking, that is, just after forming the wiring.
  • Thus, it is also one feature of the present invention to provide a plurality of openings having a minute contact area the diameter of which is 2 μm or less, preferably approximately 3 nm to 200 nm, instead of forming one penetrating opening having a large contact area to have an even thickness of a wiring by reducing a partial depression and also to ensure contact resistance.
  • According to one feature of the present invention disclosed in this specification, the example of which is shown in FIG. 1C, a semiconductor device comprises a first conductive layer; a plurality of penetrating openings (also referred to as a plurality of openings); an insulating film covering the first conductive layer; and a second conductive layer in contact with the first conductive layer through the plurality of penetrating openings, wherein the second conductive layer contains conductive particles, and wherein a surface of the second conductive layer which is overlapped with the plurality of penetrating openings and a surface of the second conductive layer which is not overlapped with the plurality of penetrating openings are formed in one side. In other words, the second conductive layer is leveled. The width of the second conductive layer D and a diameter of each of the plurality of openings W satisfy 2D<W.
  • In addition, according to the above feature, the second conductive layer has a plurality of crystals where the conductive particles are assembled and the crystals are overlapped. When a wiring is formed with a conductive material containing metal particles of 3 nm to 7 nm in size by a droplet discharging method or a printing method and is baked, the metal particles are dissolved and assembled to have an approximately 100 nm crystal, which is formed to irregularly overlap in three dimensions.
  • According to another feature of the present invention, a diameter of a penetrating opening is longer than one conductive particle. The opening has a diameter longer than a diameter of the metal particles to be used (3 nm to 7 nm) so that at least the metal particles enter the opening on the surface. Specifically, a diameter of a penetrating opening according to the present invention is 3 nm to 2000 nm.
  • In addition, the present invention is not limited to the opening in contact with the lower conductive layer. According to another feature of the present invention, a semiconductor device comprises a semiconductor layer, a plurality of penetrating openings; an insulating film covering the semiconductor layer; and a conductive layer in contact with the semiconductor layer through the plurality of penetrating openings, wherein the conductive layer contains conductive particles, and wherein a surface of the conductive layer which is overlapped with the plurality of penetrating openings and a surface of the conductive layer which is not overlapped with the plurality of penetrating openings are formed in one side.
  • In addition, according to the present invention, a shape of the penetrating opening is not limited to a columnar shape having the same diameter, and a diameter of a cross section taken along a horizontal plane may be partially different. For example, a diameter of an opening in a bottom surface of a insulating film may be ten or more times as long as a diameter of an opening in a top surface of the insulating film, as long as the diameter of the opening in the top surface of the insulating film is longer than a metal particle. In addition, a cross section taken along a horizontal plane of the penetrating opening is not limited to a circle and may also be elliptical or rectangular. When a cross section taken along a horizontal plane of the penetrating opening is elliptical, the length of a minor axis preferably ranges from 3 nm to 2000 nm. When a cross section taken along a horizontal plane of the penetrating opening is rectangular, the length of a narrow side preferably ranges from 3 nm to 2000 nm.
  • In addition, in order to lower electric resistance, a diameter of an opening in a bottom surface of an insulating film may be the same or may be longer than a diameter of one crystal so that a crystal made of assembled metal particles is formed even in the opening.
  • Since an opening shape according to the present invention is formed by laser light, the shape can be complicated. According to another feature of the present invention, a semiconductor device comprises a first conductive layer; a plurality of penetrating openings; an insulating film covering the first conductive layer, and a second conductive layer in contact with the first conductive layer through the plurality of penetrating openings, wherein the second conductive layer contains conductive particles, and wherein at least two penetrating openings among the plurality of penetrating openings are connected to each other in the insulating film.
  • In addition, an opening shape according to the present invention is not limited to a columnar shape extended to a direction of a film thickness (that is, a Z direction). According to the other feature of the present invention, a semiconductor device comprises a first conductive layer; a plurality of penetrating openings; an insulating film covering the first conductive layer; and a second conductive layer in contact with the first conductive layer through the plurality of penetrating openings, wherein the second conductive, layer contains conductive particles, and wherein a cross-sectional shape of the plurality of penetrating openings is an L shape, a U shape, or a shape drawing an arc.
  • In addition, according to the present invention, a penetrating opening refers to a passage leading to upper and lower layers sandwiching an insulating film and a passage extended to a horizontal direction in the insulating film. For example, a cross-sectional shape of the penetrating openings according to the present invention includes an L shape, a U shape, a shape drawing an arc, or the like. Even in the case of the openings having such a complicated cross-sectional shape, the opening having a complicated shape can be filled with a conductive material by adjusting viscosity of the discharging material as long as a droplet discharging method is used.
  • For example, according to the present invention, a plurality of minute openings can be connected to each other in a plane in contact with a conductive layer. Accordingly, a plurality of minute openings can be provided to a top surface of an insulating film and a contact area can be increased by connecting a plurality of openings with holes in a lateral direction (holes extended to an X direction or a Y direction) provided in vicinity of a bottom surface of the insulating film. In addition, a plurality of vertical holes (holes extended to a Z direction) is connected to horizontal holes (holes extended to an X direction or a Y direction) taken along a bottom surface of the insulating film; therefore, an air escapeway can be provided in discharging droplets and thus air bubbles can be prevented from remaining in the openings.
  • In addition, according to the above each feature, the semiconductor device includes at least one of an antenna, a CPU (a central processing unit), and a memory. For example, according to the present invention, high integration of an integrated circuit having a multilayer wiring formed through penetrating openings can be realized. Specifically, an integrated circuit having an antenna and a memory for identification and management of goods, merchandise, and people, typically a wireless chip (also referred to as an ID tag, an IC tag, an IC chip, an RF (Radio Frequency) tag, a wireless tag, an electronic tag, or RFID (Radio Frequency Identification)) can be completed.
  • In addition, according to the above each feature, the semiconductor device is a display device (an LCD panel or an EL panel), a video camera, a digital camera, a personal computer, or a portable information terminal. For example, according to the present invention, an integrated circuit having a multilayer wiring formed through penetrating openings can be manufactured in a simplified process; thus, an electronic device provided with the integrated circuit can be completed.
  • In addition, according to one feature of a manufacturing method of the present invention to realize the above each feature, a method for manufacturing a semiconductor device comprises the steps of forming a first conductive layer; forming an insulating film over the first conductive layer, forming a plurality of penetrating openings in the insulating film by being selectively irradiated with laser light; and forming a second conductive layer in contact with the first conductive layer through the plurality of penetrating openings by a droplet discharging method or a printing method.
  • In addition, according to the above feature of the manufacturing method, the step of forming the second conductive layer includes heat treatment in which a surface of the second conductive layer which is overlapped with the plurality of penetrating openings and a surface of the second conductive layer which is not overlapped with the plurality of penetrating openings are formed in one side.
  • In addition, according to another feature of a manufacturing method of the present invention, a method for manufacturing a semiconductor device comprises the steps of forming a first conductive layer; forming an insulating film over the first conductive layer; forming a plurality of penetrating openings different in depth in the insulating film by being selectively irradiated with laser light; and forming a second conductive layer that fills the plurality of penetrating openings by a droplet discharging method or a printing method.
  • In addition, according to another feature of a manufacturing method of the present invention, a method for manufacturing a semiconductor device comprises the steps of forming a first conductive layer; forming an insulating film over the first conductive layer; forming a plurality of penetrating openings different in depth in the insulating film by being selectively irradiated with laser light; and forming a second conductive layer by filling the plurality of penetrating openings with conductive particles after discharging a liquid material having the conductive particles into the plurality of penetrating openings by a droplet discharging method.
  • In addition, according to each feature of the above manufacturing methods, the plurality of penetrating openings is formed by moving a focal position of laser light to an X direction, a Y direction, or a Z direction.
  • Since the plurality of penetrating openings is formed by moving a focal position of laser light, various openings can be formed. According to each feature of the above manufacturing methods, a cross-sectional shape of the plurality of the penetrating openings is a columnar shape, an L shape, a U shape, or a shape drawing an arc.
  • In addition, penetrating openings may be formed by forming a closed pore (a pore extended to a Z direction) in a light-transmitting insulating film by laser light advance to subsequently remove a surface layer by etching or rubbing.
  • According to another feature of a manufacturing method of the present invention, a method for manufacturing a semiconductor device comprises the steps of forming a first conductive layer; forming an insulating film over the first conductive layer; forming a closed pore in contact with the first conductive layer in the insulating film by being selectively irradiated with laser light; forming the closed pore into a penetrating opening simultaneously with performing thin film process to the insulating film; and forming a second conductive layer in contact with the first conductive layer through the plurality of penetrating openings by a droplet discharging method or a printing method. In other words, a manufacturing method of the present invention, a method for manufacturing a semiconductor device comprises the steps of forming a first conductive layer on a substrate; fanning an insulating film on the first conductive layer; forming a plurality of pores in the insulating film by being selectively irradiated with laser light; removing upper regions of the insulating film of the plurality of pores to form a plurality of openings; and forming a second conductive layer in contact with the first conductive layer though the plurality of openings by a droplet discharging method or a printing method.
  • In addition, according to each feature of the above manufacturing methods, a diameter of the penetrating openings is 3 nm to 2000 nm.
  • In addition, a method for manufacturing a semiconductor device having a transistor using a semiconductor substrate is also one feature of the present invention. According to the feature, the method for manufacturing a semiconductor device having a transistor comprises the steps of forming a first insulating film over a semiconductor substrate; forming a second insulating film over the first insulating film; forming a first penetrating opening that reaches the first insulating film and a second penetrating opening that reaches the semiconductor substrate in the second insulating film by being selectively irradiated with laser light; and forming a gate electrode in contact with the first insulating film through the first penetrating opening and an electrode in contact with the semiconductor substrate through the second penetrating opening by a droplet discharging method.
  • In addition, a method for manufacturing a top gate thin film transistor (TFT) formed over a substrate having an insulating surface is also one feature of the present invention. According to the feature, the method for manufacturing a semiconductor device, having a thin film transistor, comprises the steps of forming a semiconductor layer over a substrate having an insulating surface; forming a first insulating film covering the semiconductor layer in the second insulating film by being selectively irradiated with laser light; forming a second insulating film; forming a first penetrating opening that reaches the first insulating film and a second penetrating opening that reaches the semiconductor layer; and forming a gate electrode in contact with the first insulating film through the first penetrating opening and an electrode in contact with the semiconductor layer through the second penetrating opening by a droplet discharging method.
  • Note that the first insulating film is a gate insulating film. In addition, the second insulating film is an interlayer insulating film.
  • In addition, a method for manufacturing a bottom gate thin film transistor (TFT) formed over a substrate having an insulating surface is also one feature of the present invention. According to the feature, the method for manufacturing a semiconductor device, having a thin film transistor, comprises the steps of forming a first insulating film over a substrate having an insulating surface; forming a semiconductor layer over the first insulating film; forming a second insulating film above the semiconductor layer; forming a first penetrating opening in the first insulating film and the second insulating film and a second penetrating opening that reaches the semiconductor layer in the second insulating film by being selectively irradiated with laser light; and forming a gate electrode through the first penetrating opening and an electrode in contact with the semiconductor layer through the second penetrating opening by a droplet discharging method, wherein part of the first penetrating opening is formed below the semiconductor layer, and wherein the first insulating film between the first penetrating opening and the semiconductor layer is a gate insulating film. In other words, a method for manufacturing a semiconductor device comprises the steps of forming a first insulating film on a substrate; forming a semiconductor layer on the first insulating film; forming a second insulating film on the semiconductor layer; forming a pore in the first insulating film and an opening that reaches the semiconductor layer in the second insulating film by being selectively irradiated with laser light; and forming a gate electrode through the pore and an electrode in contact with the semiconductor layer through the opening by a droplet discharging method or a printing method.
  • According to the above feature of the manufacturing method, the first penetrating opening is formed by laser light irradiation from the side of the substrate having an insulating surface or by laser light irradiation from the side of the second insulating film.
  • In addition, according to the above feature of the manufacturing method, the second insulating film is an interlayer insulating film.
  • In addition, according to the above feature of the manufacturing method, the first penetrating opening is an opening in which an opening in a Z direction and an opening in an X direction or a Y direction are connected. According to the above manufacturing method of the present invention, the second insulating film is formed first, and then, an opening like a tunnel is formed by laser light and the opening is filled with a conductive material to form a gate electrode. Since the position of the gate electrode in a depth direction can be set arbitrarily with the use of laser light, it is also possible to obtain a thin film of the gate insulating film. Moreover, the gate electrode can also be formed without damaging the gate insulating film.
  • In addition, according to the above feature of the manufacturing method, a diameter of the first penetrating opening is 3 nm or more and 2000 nm or less.
  • In addition, according to each feature of the manufacturing method, the laser light oscillates when a pulse width of the laser light is 1 femtosecond or more and 10 picoseconds or less. High intensity multiphoton absorption can occur can be obtained by having the pulse width in the range of 1 femtosecond or more and 10 picoseconds or less. Multiphoton absorption does not occur when a laser beam has a pulse width of several tens picoseconds longer than 10 picoseconds. Moreover, the laser light has a fundamental wave emitted from a laser oscillator the laser repetition frequency of which is 10 MHz or more.
  • In addition, according to the present invention, a semiconductor film containing silicon as its main component, a semiconductor film containing an organic material as its main component, or a semiconductor film containing metal oxide as its main component can be used for a semiconductor layer. As for the semiconductor film containing silicon as its main component, an amorphous semiconductor film, a semiconductor film including a crystalline structure, a compound semiconductor film including an amorphous structure, or the like, specifically amorphous silicon, microcrystalline silicon, polycrystalline silicon, single crystal silicon, or the like can be used. As for the semiconductor film containing an organic material as its main component, a semiconductor film containing as its main component a material comprising carbon or allotropes (aside from a diamond) of carbon at a quantity, at least having a material which has charge carrier mobility of 10−3 cm2/V·s or more in room temperature (20° C.), can be used by being combined with other elements. For example, an aromatic of π electron conjugate system, a chain compound, an organic, or an organosilicon compound can be used. Specifically, pentacene, tetracene, thiophen oligomers, phenylenes, a phthalocyanine compound, poly acetylenes, polythiophenes, a cyanine dye, and the like are given as examples. As for the semiconductor film containing metal oxide as its main component, zinc oxide (ZnO); oxide of zinc, gallium, and indium (In—Ga—Zn—O); or the like can be used.
  • In addition, a semiconductor device according to the present invention may be provided with a protective circuit (for example, a protection diode) for preventing electrostatic discharge damage.
  • In addition, regardless of a TFT structure and a transistor structure, the present invention can be applied and, for example, a top gate TFT, a bottom gate (reverse stagger) TFT, or a forward stagger TFT can be used. Moreover, not limiting to a transistor having a single gate structure, a multi-gate transistor having a plurality of channel-forming regions, for example, a double gate transistor may be used.
  • According to the present invention, steps needed to process a wiring in forming a multilayer wiring can be simplified. Further, high integration of a circuit can also be realized.
  • In addition, a plurality of contact holes different in depth can be realized in a simplified process.
  • In addition, since a fundamental wave the wavelength of which is approximately 1 μm is used according to the present invention, a contact hole can be formed without damaging an element and a substrate because the fundamental wave is not absorbed by the element and substrate. Therefore, a semiconductor device can be manufactured by using an element that is easily affected by heat or an etching solution or a film substrate that is easily affected by heat or an etching solution.
  • These and other objects, features and advantages of the present invention will become more apparent upon reading of the following detailed description along with the accompanied drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the accompanying drawings:
  • FIGS. 1A to 1D are process cross-sectional views and a top view according to the present invention (Embodiment Mode 1);
  • FIGS. 2A and 2B are cross-sectional views explaining a manufacturing process of an opening according to the present invention (Embodiment Mode 1);
  • FIGS. 3A to 3C are cross-sectional views and a top view showing one example of an opening shape according to the present invention (Embodiment Mode 2);
  • FIGS. 4A to 4C are cross-sectional views explaining a manufacturing process of an opening according to the present invention (Embodiment Mode 3);
  • FIGS. 5A to 5C are cross-sectional views and a top view showing one example of an opening shape according to the present invention (Embodiment Mode 4);
  • FIGS. 6A to 6D are cross-sectional views showing a manufacturing process of a bottom gate TFT (Embodiment Mode 5);
  • FIGS. 7A to 7D are cross-sectional views showing a manufacturing process of a top gate TFT (Embodiment Mode 6);
  • FIG. 8 is a cross-sectional view showing a structure of an active matrix liquid crystal display device (Embodiment Mode 6);
  • FIG. 9 is a cross-sectional view showing a structure of an active matrix EL display device (Embodiment Mode 6);
  • FIG. 10 is a diagram explaining a laser beam direct writing system applicable to the present invention (Embodiment Mode 1);
  • FIG. 11 is a diagram explaining a droplet discharging device applicable to the present invention (Embodiment Mode 1);
  • FIGS. 12A to 12D are cross-sectional views showing a method for manufacturing a semiconductor device (Embodiment 1);
  • FIG. 13 is a perspective view of a semiconductor device (Embodiment 1);
  • FIG. 14 is a top view showing a module (Embodiment 2);
  • FIGS. 15A and 15B are a block diagram and a perspective view of a television device (Embodiment 4);
  • FIGS. 16A to 16E are views each showing one example of an electronic device (Embodiment 5);
  • FIG. 17 is one example of a cross-sectional view showing a structure according to the present invention (Embodiment 6);
  • FIGS. 18A to 18F are perspective views explaining application examples of a semiconductor device (Embodiment 6); and
  • FIGS. 19A to 19C are cross-sectional views showing a conventional example.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Embodiment Mode of the present invention will be described below with reference to the accompanying drawings. However, it is to be easily understood that various changes and modifications will be apparent to those skilled in the art. Therefore, unless such changes and modifications depart from the invention, they should be construed as being included therein. Note that reference numerals denoting the identical portions are the same in all figures.
  • Embodiment Mode 1
  • In this embodiment mode, a method for forming a contact hole in a first conductive layer and a method for forming a second conductive layer electrically connected to the first conductive layer through the contact hole will be explained with reference to FIGS. 1A to 1D, FIGS. 2A and 2B, FIG. 10, and FIG. 11.
  • First, a base insulating film 11 is formed over a substrate 10 having an insulating surface, and a first conductive layer 12 is formed over the base insulating film 11. Next, an insulating film 13 covering the first conductive layer 12 is formed. A cross-sectional view of this stage is shown in FIG. 1A.
  • Note that a glass substrate or quartz substrate having light transparency is preferably used as the substrate 10 having an insulating surface.
  • In addition, as for the base insulating film 11, a base film made of an insulating film such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride film is formed. Herein, an example where a two-layer structure is used as a base film is shown; however, the insulating film may be a single layer film or may have a structure where two or more layers are stacked. Note that the base insulating film is not particularly necessary.
  • In addition, as for the first conductive layer 12, a conductive film 100 nm to 600 nm in thickness is formed by a sputtering method and then patterning is performed with the use of a photolithography technique. Note that the conductive film is formed of one or more elements of Ta, W, Ti, Mo, Al, Cu, and Si, or a single layer or a stacked layer of an alloy material or a compound material containing the element as its main component. Herein, an example where the first conductive layer is formed with the use of a photolithography technique is shown; however, the first conductive layer 12 may be formed by droplet discharging method, a printing method, or electroless plating without being particularly limited. It is preferable for the first conductive layer 12 to use a material that reflects and hardly absorbs laser light used in the subsequent opening process.
  • Moreover, the first conductive layer 12 may also be formed using a transparent conductive material such as ITO, IZO, or ITSO. It is preferable to use a material that transmits and hardly absorbs laser light used in the subsequent opening process.
  • In addition, the insulating film 13 is formed using an insulating material that transmits and hardly absorbs laser light used in the subsequent opening process, for example, an insulating film such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride film. Moreover, the insulating film 13 may be formed using an insulating film where a framework structure is formed by the bond between silicon (Si) and oxygen (O), which is obtained by a coating method. Further, as for the insulating film 13, the following can also be used: PSG (phosphosilicate glass) in which phosphorus is added to silicon dioxide; BPSG (borophosphosilicate glass) in which phosphorus and boron are added to silicon dioxide; SiOF in which fluorine is added to silicon dioxide; polyimide; aromatic ether typified by polyfluoroether in which polyallylether or fluorine is added; aromatic hydrocarbon; a cyclobutane derivative typified by BCB (Benzocyclobutene); or the like.
  • Although a planar insulating film is shown as the insulating film 13 in FIG. 1A, an inorganic insulating film obtained by a CVD method or a sputtering method may be used without being particularly limited. A plurality of openings can be formed using laser light according to the present invention even when the insulating film 13 does not have planarity.
  • In this embodiment mode, the insulating film 13 is formed by performing drying and baking after coating or discharging the material with the use of a coating method or a droplet discharging method.
  • Next, the insulating film 13 is irradiated with laser light to form a plurality of penetrating openings as shown in FIG. 1B. Herein, laser light emitted from an ultrashort pulsed laser is used as the laser light. When an ultrashort pulsed laser is condensed in a light-transmitting material, multiphoton absorption can occur only at a condensed spot where the ultrashort pulsed laser is condensed, a closed pore can be formed, and one penetrating opening can be formed by moving the condensed spot. When the pulsed width of the laser light is 10−4 seconds to 10−2 seconds, the laser light not absorbed by the insulating film 13. However, when multiphoton absorption occurs by irradiating the insulating film 13 with laser light the pulse width of which is extremely short (picoseconds (10−12 seconds) or femtoseconds (10−16 seconds)), the laser light can be absorbed by the insulating film 13.
  • An ultrashort pulsed laser oscillator 101 is a laser oscillator with a pulse width of femtoseconds (10−15 seconds). The ultrashort pulsed laser oscillator 101 may be a laser having a medium of a crystal of sapphire, YAG, ceramic YAG, ceramic Y2O3, KGW (potassium gadolinium tungsten), Mg2SiO4, YLF, YVO4, GdVO4, or the like, each of which is doped with one or a plurality of Nd, Yb, Cr, Ti, Ho, and Er. Laser light emitted from the ultrashort pulsed laser oscillator 101 is reflected by a minor 102, and then condensed in a sample 104, herein the insulating film 13 provided over the substrate, by an objective lens 15 with a high numerical aperture (see FIG. 2A). As a result, a pore can be formed in the vicinity of a condensed spot in the insulating film. A desired opening is formed in the insulating film 13 by moving the condensed spot with the use of an XYZ stage 105. FIG. 2B shows a cross-sectional view in the middle of forming an opening. A non-penetrating opening is shown in FIG. 2B as a pore 17.
  • Note that an ultrashort pulsed laser in this specification is a laser beam oscillated from a solid-state laser where a pulse width is 1 femtosecond or more and 10 picoseconds or less. Note that a peak power of laser light according to the present invention ranges from 1 GW/cm2 to 1 TW/cm2.
  • The ultrashort pulsed laser allows processing to be performed only at the beam center with high energy density; therefore, fine processing, that is, a laser wavelength or less can be processed using the ultrashort pulsed laser having a laser wavelength or less that is not easily processed by a normal laser.
  • The insulating film 13 needs to be formed using a material that transmits light having the wavelength of the ultrashort pulsed laser, namely, a material in which light having the wavelength of the ultrashort pulsed laser is not absorbed, and more specifically, a material having a higher energy gap than the ultrashort pulsed laser. When the ultrashort pulsed laser is condensed in the material that transmits light, multiphoton absorption can occur only at a condensed spot where the ultrashort pulsed laser is condensed and a pore can be formed. Note that the multiphoton absorption is a process where two or more photons are absorbed concurrently to make a transition to an eigenstate that corresponds to the sum of energy of the photons. This transition allows light in a wavelength range that is not absorbed to be absorbed; therefore, a pore can be formed in a condensed spot having a sufficiently high light energy density. Note that the term “concurrently” herein referred means that two phenomena occur within 10−14 seconds.
  • A laser beam direct writing system is described with reference to FIG. 10. As shown in FIG. 10, a laser beam direct writing system 1001 has a personal computer (hereinafter referred to as a PC) 1002 for carrying out various controls in irradiation of a laser beam; a laser oscillator 1003 for outputting a laser beam; a power supply 1004 of the laser oscillator 1003; an optical system (ND filter) 1005 for attenuating a laser beam; an acousto-optic modulator (AOM) 1006 for modulating the intensity of a laser beam; an optical system 1007 constituted by a lens for magnifying or reducing the cross-sectional surface of a laser beam, a mirror for changing the optical path, and the like; a substrate moving mechanism 1009 having an X stage and a Y stage; a D/A converter portion 1010 for digital-analog converting the control data outputted from the PC; a driver 1011 for controlling the acousto-optic modulator 1006 in accordance with an analog voltage outputted from the D/A converter portion; and a driver 1012 for outputting a driving signal for driving the substrate moving mechanism 1009.
  • The laser oscillator 1003 is a laser oscillator with a pulse width of femtoseconds (10−15 seconds).
  • Next, a method for irradiating a laser beam using the laser beam direct writing system will be explained. When a substrate 1008 is placed on the substrate moving mechanism 1009, the PC 1002 detects the position of a marker formed on the substrate by using a camera (not shown). Then, the PC 1002 generates movement data for moving the substrate moving mechanism 1009 in accordance with the detected positional data of the marker and the preprogrammed writing pattern data. Subsequently, the PC 1002 controls the amount of light outputted from the acousto-optic modulator 1006 through the driver 1011; therefore, and a laser beam outputted from the laser oscillator 1003 is attenuated by the optical system 1005 and then controlled in quantity by the acousto-optic modulator 1006 to have a predetermined quantity of light.
  • Meanwhile, the optical path and beam shape of the laser beam outputted from the acousto-optic modulator 1006 is changed by the optical system 1007 and the laser beam is condensed by the lens. Then, an insulating film over the substrate is irradiated with the laser beam to form a pore. At this time, the substrate moving mechanism 1009 is controlled to move in the Z direction in accordance with the movement data generated by the PC 1002. As a result, a predetermined area is irradiated with the laser beam, and the pore is connected to the Z direction to form an opening in the insulating film. When the substrate moving mechanism 1009 is controlled to move in the X direction and the Y direction, a pore is formed in the insulating film in a direction horizontal to the substrate plane.
  • A laser beam with a shorter wavelength can be condensed to have a shorter diameter of beam. Accordingly, an opening with small diameter can be formed by irradiation of a laser beam with a short wavelength.
  • The laser beam spot on the surface of the pattern can be processed by the optical system so as to have a dotted shape, a circular shape, an elliptical shape, a rectangular shape, or a linear shape (to be exact, elongated rectangular shape).
  • Although, herein, the substrate is selectively irradiated with the laser beam while being moved, the present invention is not limited to this and the substrate can be irradiated with the laser beam while scanning the laser beam in the Z direction, X direction, and Y direction. In this case, a polygon mirror, a galvanometer mirror, or an acousto-optic deflector (AOD) is preferably used for the optical system 1007.
  • Subsequently, a second conductive layer 19 is formed by discharging a composition containing conductive particles by a droplet discharging method so that a plurality of penetrating openings 16 is overlapped (see FIG. 1C). The second conductive layer 19 is formed using a droplet discharging means 18. The droplet discharging means 18 is a collective term of means for discharging a droplet, such as a nozzle having an outlet of a composition, and a head having one or more nozzles. The droplet discharging means 18 has a nozzle with a diameter of 0.02 μm to 100 μm (preferably, 30 μm or less), and the discharge amount of a composition discharged from the nozzle is 0.001 pl to 100 pl (preferably, 10 pl or less). The discharge amount increases in proportion to the diameter of the nozzle. The distance between an object and the outlet of the nozzle is preferably as short as possible, and reduced to approximately 0.1 mm to 3 mm (preferably, 1 mm or less) in order to discharge the composition onto a desired area.
  • As for the composition discharged from the outlet, a solution where conductive particles are dissolved or dispersed in a solvent is used. The conductive particles may be a metal such as Ag, Au, Cu, Ni, Pt, Pd, Ir, Rh, W, and Al; a metal sulfide such as Cd and Zn; an oxide such as Fe, Ti, Si, Ge, Zr, and Ba; fine particles such as silver halide particles; or dispersed nanoparticles. However, the composition discharged from the outlet is preferably a solution where gold, silver, or copper is dissolved or dispersed in a solvent in view of the resistivity. More preferably, silver or copper that has low resistance is used. Note that if silver or copper is used, a barrier film is preferably provided for preventing impurities from entering. As for the solvent, esters such as butyl acetate and ethyl acetate, alcohols such as isopropyl alcohol and ethyl alcohol, or an organic solvent such as methyl ethyl ketone and acetone may be used. The viscosity of the composition is preferably 50 cp or less for preventing drying and for allowing the composition to be discharged smoothly from the outlet. The surface tension of the composition is preferably 40 mN/m or less. However, the viscosity and the like of the composition may be set appropriately in accordance with the solvent or the application.
  • It is preferable that the diameter of the conductive particles is as small as possible in order to prevent each nozzle from clogging or to make fine patterns, and more preferably, each particle has a diameter of 0.1 μm or less, though it depends on the diameter of each nozzle or the desired pattern shape. The composition is formed by a known method such as an electrolytic method, an atomization method, and wet reduction, and the particle size is generally approximately 0.01 μm to 10 μm. Note that if the composition is formed by a gas evaporation method, nanoparticles protected with a dispersant are as fine as approximately 7 nm, and the nanoparticles are dispersed stably at room temperature and behave similarly to liquid without aggregation in a solvent when each of them is protected with a coating. Therefore, it is preferable to use a coating.
  • Here, a droplet discharging device will be explained with reference to FIG. 11. As the each heads 1105 and 1112 of the droplet discharging means is connected to control means 1107 and the control means 1107 is controlled by a computer 1110, a pattern that has been programmed in advance can be plotted. The timing of plotting may be taken with reference to a marker 1111 faulted over a substrate 1100, for example. Alternatively, a reference point may be fixed with an edge of the substrate 1100 as a reference. The reference point is detected by an imaging means 1104 such as an image sensor using a charge coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS), and the computer 1110 recognizes a digital signal converted by an image processing means 1109 to generate a control signal, which is transmitted to a control means 1107. Of course, information of a pattern to be formed over the substrate 1100 is placed in a recording medium 1108. Based on this information, the control signal can be transmitted to the control means 1107 and each head 1105 and 1112 of the droplet discharging means 1103 can be controlled individually. A material to be discharged is supplied to the heads 1105 and 1112 from material supply sources 1113 and 1114 through a piping. Although the longitudinal length of the heads 1105 and 1112 arranged in parallel of the droplet discharging means 1103 corresponds to the width of the substrate in FIG. 11, the droplet discharging device can form a pattern over a large-sized substrate wider than the longitudinal length of the heads 1105 and 1112 by scanning the heads repeatedly. In that case, the heads 1105 and 1112 can be scanned freely over the substrate in directions denoted by arrows so that a region to be written can be freely set. Accordingly, a plurality of same patterns can be written over a substrate.
  • Next, as well as baking and removing the wiring material by being irradiated with laser light or by heat treatment, any one or a plurality of reaction of fusing, sintering, and welding of conductive particles is performed.
  • In addition, FIG. 1D shows one example of a top view showing after forming the second conductive layer 19. Note that FIG. 1C corresponds to a cross-sectional view taken along a broken line A-B in FIG. 1D.
  • As shown in FIG. 1D, a number of penetrating openings (herein, 10 penetrating openings) are provided, and the second conductive layer 19 is electrically connected to the first conductive layer 12 through the openings. Note that the number of the openings is not limited to ten, of course, and disposition of the openings is not particularly limited.
  • In addition, an insulator between the minute penetrating openings 16 serves as a spacer, which prevents a surface of the second conductive layer from generating a depression. The second conductive layer 19 can have a uniform wiring width. A width of the second conductive layer D and a diameter of each of the plurality of penetrating openings W satisfy 2D<W (FIG. 1D).
  • Embodiment Mode 2
  • In this embodiment mode, an example of an opening the cross-sectional shape of which differs from Embodiment Mode 1 will be shown with reference to FIGS. 3A to 3C. Portions different from Embodiment Mode 1 will be explained in detail and portions identical with FIGS. 1A to 1D in FIGS. 3A to 3C are denoted by the same reference numerals.
  • Note that a cross-sectional shape of an opening in FIGS. 1A to 1D is shown in a columnar shape; however, the present invention is not limited thereto and an opening the shape of which has a structure in which a plurality of openings is connected to each other in an insulating film as shown in FIG. 3 may be employed.
  • First, as well as in Embodiment Mode 1, a base insulating film 11 and a first conductive layer 12 are formed over a substrate 10 having an insulating surface.
  • Next, after forming an insulating film made of a material that is light transmitting to laser light having a pulse width of 10−4 seconds to 10−2 seconds, an insulating film 23 having a penetrating opening 26 is obtained by irradiation of ultrashort pulsed laser light. When an ultrashort pulsed laser is condensed in an insulating film, multiphoton absorption can occur only at a condensed spot where the ultrashort pulsed laser is condensed, a closed pore can be formed, and one penetrating opening can be formed by moving the condensed spot. When the pulsed width of the laser light is 10−4 seconds to 10−2 seconds, the laser light is not absorbed by the insulating film 23. However, when multiphoton absorption occurs by irradiating the insulating film 23 with laser light the pulse width of which is extremely short (picoseconds or femtoseconds), the laser light can be absorbed by the insulating film 23.
  • Note that forming an opening by using laser light is explained in detail in Embodiment Mode 1; therefore, only brief explanation is given here.
  • The opening 26 having a complicated cross-sectional shape as shown in FIG. 3A can be formed by moving a focal position of laser light to a Z direction, an X direction or a Y direction during laser light irradiation.
  • Next, a second conductive layer 29 is formed by discharging a composition containing conductive particles so as to overlap with the opening 26 with the use of a droplet discharging method (see FIG. 3B). The second conductive layer 29 is formed by using a droplet discharging means 28.
  • When a composition is discharged into one opening in the insulating film 23 in forming the second conductive layer 29, air inside the opening is pushed out of the other openings. With such a structure where a plurality of openings is connected in an insulating film, the interior of an opening having a complicated shape can be filled with the conductive particles without leaving a bubble.
  • Next, baking is performed by heat treatment or laser light irradiation and removal is also performed, and any one or a plural reaction of fusing, sintering, and welding of the conductive particles is performed.
  • In performing heat treatment, the interior of an opening having a complicated shape may be filled with the conductive particles without leaving a bubble after pushing the bubble to the outside air out of a plurality of openings.
  • In addition, FIG. 3C shows one example of a top view in a state after forming the second conductive layer 29. Note that FIG. 3B corresponds to a cross-sectional view taken along a broken line A-B in FIG. 3C.
  • Although the number of openings is six as shown in FIG. 3C, the three openings are each connected in the insulating film, which can be referred to as total two openings having a complicated shape. As compared with Embodiment Mode 1, a few openings are provided on an insulating surface; however, a contact area between the first conductive layer and the second conductive layer is larger in this embodiment mode. Needless to say that the number of openings is not limited to two and disposition of an opening is not limited particularly.
  • In addition, an insulator between the minute penetrating openings 26 serves as a spacer that holds a surface position of the second conductive layer, which prevents the surface of the second conductive layer from generating a depression. Moreover, a wiring width of the second conductive layer 29 can be made uniform.
  • In addition, this embodiment mode can be arbitrarily combined with Embodiment Mode 1.
  • Embodiment Mode 3
  • In this embodiment mode, an example of forming a plurality of openings with the combination of laser light and etching will be explained with reference to FIGS. 4A to 4C. Portions different from Embodiment Mode 1 will be explained in detail, and portions identical with FIGS. 1A to 1D are denoted by the same reference numerals in FIGS. 4A to 4C.
  • After forming an insulating film made of a material that is light transmitting to laser light having a pulse width of 10−4 seconds to 10−2 seconds, an insulating film 33 having a closed pore 37 is obtained by irradiation of ultrashort pulsed laser light. When an ultrashort pulsed laser is condensed in the insulating film, multiphoton absorption can occur only at a condensed spot where the ultrashort pulsed laser is condensed, a closed pore can be formed, and one penetrating opening can be formed by moving the condensed spot. When the pulsed width of the laser light is 10−4 seconds to 10−2 seconds, the laser light is not absorbed by the insulating film 33. However, when multiphoton absorption occurs by irradiating the insulating film 33 with laser light the pulse width of which is extremely short (picoseconds or femtoseconds), the laser light can be absorbed by the insulating film 33.
  • Note that forming an opening by using laser light is explained in detail in Embodiment Mode 1; therefore, only brief explanation is given here.
  • As shown in FIG. 4A, a focus of laser light is formed by an optical system 15, which is formed by moving a focal position during laser light irradiation. The closed pore 37 is formed by forming a focus of laser light with the use of an optical system 15 and by moving a focal position during the laser light irradiation
  • Next, as shown in FIG. 4B, a surface of the insulating film is etched to obtain a thin film. The insulating film above the closed pore 37 is removed by this etching so that an opening 36 penetrating through the closed pore 37 can be formed. An insulating film 34 having a plurality of the penetrating openings 36 is obtained at this stage. Note that a dotted line shown in FIG. 4B shows a surface of the insulating film before etching.
  • In addition, a thin film of the insulating film may be obtained by polishing (such as CMP) instead of etching.
  • Next, a second conductive layer 39 is formed by discharging a composition containing conductive particles so as to overlap with a plurality of the penetrating openings 36 with the use of a droplet discharging method (see FIG. 4C). The second conductive layer 39 is formed by using a droplet discharging means 38.
  • Then, baking is performed by heat treatment or laser light irradiation and removal is also performed, and any one or a plural reaction of fusing, sintering, and welding of the conductive particles is performed.
  • According to this embodiment mode, the penetrating opening having a comparatively shallow depth can be formed in the insulating film.
  • In addition, this embodiment mode can be arbitrarily combined with Embodiment Mode 1 or Embodiment Mode 2.
  • Embodiment Mode 4
  • In this embodiment mode, an example different from Embodiment Mode 1 in a cross-sectional shape will be shown in FIGS. 5A to 5C. Portions different from Embodiment Mode 1 will be explained in detail, and portions identical with FIGS. 1A to 1D are denoted by the same reference numerals in FIGS. 5A to 5C.
  • In this embodiment mode, an example in which a cross-sectional shape of an opening is curved is shown.
  • First, as well as in Embodiment Mode 1, a base insulating film 11 and a first conductive layer 12 are formed over a substrate 10 having an insulating surface.
  • Next, after forming an insulating film made of a material that is light transmitting to laser light, an insulating film 43 having a penetrating opening 46 is obtained by irradiation of ultrashort pulsed laser light. When the pulsed width of the laser light is 10−4 seconds to 10−2 seconds, the laser light is not absorbed by the insulating film 43. However, when multiphoton absorption occurs by irradiating the insulating film 43 with laser light the pulse width of which is extremely short (picoseconds or femtoseconds), the laser light can be absorbed by the insulating film 43.
  • Note that forming an opening by using laser light is explained in detail in Embodiment Mode 1; therefore, only brief explanation is given here.
  • The opening 46 having a curved cross-sectional shape as shown in FIG. 5A can be formed by moving a focal position to an X direction or a Y direction during laser light irradiation and then moving to a Z direction and repeatedly moving again to the X direction or Y direction.
  • Note that a side of the first conductive layer 12 of the opening 46 having a curved cross-sectional shape is exposed.
  • Next, a second conductive layer 49 is formed by discharging a composition containing conductive particles so as to overlap with a plurality of the penetrating openings 46 with the use of a droplet discharging method (see FIG. 5B). The second conductive layer 49 is formed by using a droplet discharging means 48. In this embodiment mode, a cross-sectional shape of the opening is curved; therefore, the interior of the opening can be filled smoothly with the composition containing conductive particles.
  • Then, baking is performed by heat treatment or laser light irradiation and removal is also performed, and any one or a plural reaction of fusing, sintering, and welding of the conductive particles is performed.
  • In addition, FIG. 5C shows one example of a top view in a state after forming the second conductive layer 49. Note that FIG. 5B corresponds to a cross-sectional view taken along a broken line A-B in FIG. 5C. Moreover, FIG. 5C shows an example in which two kinds of openings in an elliptical shape and a circular shape are formed. In other words, three elliptical openings and one circular opening, that is, total four openings are formed. Thus, according to the present invention, a variety of openings can be formed by adjusting a focal position of laser light arbitrarily.
  • According to this embodiment mode, a cross-sectional shape of the penetrating opening 46 is curved so that the opening can be conducted electrically with the second conductive layer 49 on the side surface of the first conductive layer 12. Therefore, the first conductive layer 12 and the second conductive layer 49 are disposed so as not to overlap with each other. Parasitic capacitance formed between the first conductive layer 12 and the second conductive layer 49 can be reduced by having such a disposition.
  • In addition, this embodiment mode can be arbitrarily combined with Embodiment Mode 1, Embodiment Mode 2, or Embodiment Mode 3.
  • Embodiment Mode 5
  • In this embodiment mode, an example of forming a TFT with the use of an opening formed by using laser light according to the present invention is shown with reference to FIGS. 6A to 6D.
  • First, a base insulating film 201 is formed over a substrate 200 having an insulating surface. As for the substrate 200 having an insulating surface, a light-transmitting substrate, for example, a glass substrate, a crystalline glass substrate, or a plastic substrate can be used. As for the plastic substrate, a plastic film substrate, for example, a plastic substrate of poly(ethylene terephthalate) (PET), poly(ether sulfone) (PES), poly(ethylene naphthalate) (PEN), polycarbonate (PC), nylon, polytheretherketone (PEEK), polysulfone (PSF), poly(ether imide) (PEI), polyarylate (PAR), polybutylene terephthalate) (PBT), or the like is preferable. In addition, a plastic substrate having heat resistance, for example, a plastic substrate in which a material where inorganic particles of several nm diameters are dispersed in an organic polymer matrix is processed in a sheet may also be used.
  • As for the base insulating film 201, an insulating film such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride (SiOxNy) film is used. As a typical example of the base insulating film 11, a two-layer structure in which a silicon nitride oxide film 50 nm to 100 nm in thickness, deposited with the use of SiH4, NH3, and N2O as a reactive gas, and silicon oxynitride film 100 nm to 150 nm in thickness, deposited with the use of SiH4 and N2O as a reactive gas, are stacked is employed. In addition, a silicon nitride film (SiN film) or a silicon oxynitride film (SiNxOy film (X>Y)) the film thickness of which is 10 nm or less is preferably used as one layer of the base insulating film 201. Moreover, a three-layer structure in which a silicon nitride oxide film, a silicon oxynitride film, and a silicon nitride film are sequentially stacked may also be employed. An example of forming the base insulating film 201 is shown here; however, the base insulating film 201 is not necessarily provided if not necessary.
  • Next, a first insulating film 202 serving as a gate insulating film is formed. As for the first insulating film 202, it is preferable to use a material that transmits and hardly absorbs a fundamental wave of laser light used in the following opening process. As for the first insulating film 202, an insulating film such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride film is used. In addition, as for the first insulating film 202, a film that is obtained by coating and baking a solution containing polysilazane or a siloxane polymer, a photo-curing organic resin film, a thermosetting organic resin film, or the like may also be used.
  • Then, a semiconductor film is formed. The semiconductor film is formed with an amorphous semiconductor film or a microcrystalline semiconductor film that is manufactured by a vapor-phase growth method, a sputtering method, or a thermal CVD method with the use of a semiconductor material gas typified by silane and germanium. In this embodiment mode, an example of using an amorphous silicon film as the semiconductor film is shown. In addition, as for the semiconductor film, ZnO or oxide of zinc gallium indium manufactured by a sputtering method or a PLD (Pulsed Laser Deposition) method may also be used; however, in that case, the gate insulating film is preferably an oxide containing aluminum or titanium. Moreover, as for the semiconductor film, an organic material such as pentacene, tetracene, thiophen oligomers, phenylenes, a phthalocyanine compound, poly acetylenes, polythiophenes, or a cyanine dye, manufactured by a coating method, a droplet discharging method, or a vapor deposition method, may also be used.
  • Subsequently, a conductive semiconductor film is formed. As for the conductive semiconductor film, a semiconductor film exhibiting n-type or p-type conductivity in which n-type or p-type impurities are added is used. The n-type semiconductor film may be formed by a PCVD method with the use of a silane gas and a phosphine gas. In this embodiment mode, an example of using a silicon film containing phosphorus is shown as the conductive semiconductor film. Note that, in the case of using an organic material such as pentacene as the semiconductor film, a charge-transporting layer is preferably used instead of the conductive semiconductor film and, for example, triphenyldiamine serving as a hole-transporting layer or oxadiazole sewing as an electron-transporting layer is preferably used.
  • Next, an island-shape semiconductor layer 207 and a conductive semiconductor layer 206 are obtained by patterning with the use of a known photolithography technique. Note that a mask may be formed using a droplet discharging method or a printing method (relief printing, lithography, copperplate printing, screen printing, or the like) to perform etching selectively, instead of the known photolithography technique.
  • Then, wirings 203, 204, and 209 are formed by selectively discharging a composition containing a conductive material (Ag (silver), Au (gold), Cu (copper), W (tungsten), Al (aluminum), or the like) by a droplet discharging method. FIG. 6A shows a state in which the composition containing a conductive material is discharged from an ink-jet head 208. Note that the wirings 203, 204, and 209 are not limited to be formed by a droplet discharging method and, for example, the wirings may be formed by forming a metal film with the use of a sputtering method, forming a mask, and performing etching selectively.
  • Subsequently, the conductive semiconductor layer and an upper portion of the semiconductor layer are etched with the use of the wirings 203, 204, and 209 as each a mask to expose part of the semiconductor layer. The exposed portion of the semiconductor layer is a portion serving as a channel-forming region of a TFT.
  • Next, an interlayer insulating film 211 including a protective film is formed to prevent the channel-forming region from being contaminated with impurities. As for the protective film, silicon nitride obtained by a sputtering method or a PCVD method or a material containing silicon nitride oxide as its main component is used. Hydrogenation treatment is performed in this embodiment mode after forming the protective film. In addition, as for the interlayer insulating film, a resin material such as epoxy resin, acrylic resin, phenol resin, novolac resin, melamine resin, or urethane resin is used. Moreover, an organic material such as benzocyclobutene, parylene, fluorinated-arylene-ether, or polyimide having transmissivity; a compound material made by polymerization of a siloxane-based polymer or the like; a composition material containing a water-soluble homopolymer and a water-soluble copolymer; or the like can be used.
  • Then, a plurality of first openings 210 is formed by irradiating the interlayer insulating film 211 including the protective film with ultrashort pulsed laser light. In addition, in order to prevent the channel-forming region from being irradiated with laser light, a plurality of second openings 212 is also formed by irradiating the backside of the substrate as well with ultrashort pulsed laser light. FIG. 6B shows a cross-sectional view in which the second openings 212 are formed by ultrashort pulsed laser light that passes through an optical system 205.
  • When the pulsed width of the laser light is 10−4 seconds to 10−2 seconds, the laser light is not absorbed by the interlayer insulating film 211 including the protective film. However, when multiphoton absorption occurs by irradiating the interlayer insulating film 211 including the protective film with laser light the pulse width of which is extremely short (picoseconds or femtoseconds), the laser light can be absorbed by the interlayer insulating film 211 including the protective film.
  • Note that forming an opening by using laser light is explained in detail in Embodiment Mode 1; therefore, only brief explanation is given here.
  • In this embodiment mode, the first insulating film 202 between the second opening 212 and the semiconductor layer 207 serves as a gate insulating film. Therefore, the film thickness of the gate insulating film can be determined arbitrarily by the formation of the second opening 212.
  • Subsequently, a composition containing conductive particles is discharged with the use of a droplet discharging method to fill each opening with the conductive particles so as to overlap with a plurality of the penetrating first openings and second openings. Then, the conductive particles are fused and aggregated to have a crystal of approximately 100 nm when baking is performed; thus, a gate electrode, gate wirings 214 and 215, and a connection wiring 213 are formed (see FIG. 6C). In this embodiment mode, the gate electrode and gate wirings disposed in different layers can be formed simultaneously and with the same material.
  • A channel etch TFT is completed at this stage. A significant feature of this embodiment mode is the process order in which the gate electrode is formed after forming the interlayer insulating film.
  • FIG. 6D shows one example of a top view of a TFT at the stage of FIG. 6C. In FIG. 6D, a cross section taken along a broken line A-B corresponds to a cross-sectional view of FIG. 6C. Note that corresponding portions are denoted by the same reference numerals.
  • FIG. 6D shows a double-gate TFT having two channel-forming regions. The gate wirings 214 and 215 are electrically connected through a third opening 216 formed in a Z direction (a direction perpendicular to the substrate) and the second opening 212 formed in a Y direction. Note that the third opening 216 is formed using laser light in the same manner as the first opening or the second opening.
  • In addition, the second opening 212 and the third opening 216 are connected in the interlayer insulating film. Moreover, the third opening 216 differs from the first openings 210 in depth. Further, the connection wiring 213 is electrically connected to a wiring 209 through the first openings 210.
  • In addition, in this embodiment mode, the formation order of the first opening and the second opening is not particularly limited and the second opening may be formed first. Moreover, the third opening may be formed by continuously moving a focal position of laser light in forming the second opening.
  • In addition, an active matrix liquid crystal display device can be manufactured with the use of the connection wiring 213 as a pixel electrode. Moreover, an active matrix light-emitting display device can also be manufactured by forming a first electrode overlapping the connection wiring 213 and a partition covering a first end and stacking a layer containing an organic compound and a second electrode over the first electrode.
  • According to this embodiment mode, since a gate electrode is formed subsequently, a semiconductor layer 207 can be formed over a flat insulating surface; thus, an opening for forming the gate electrode can be formed without causing damage to the semiconductor layer. Therefore, the semiconductor layer can be formed by a coating method, which is effective in using an organic material for the semiconductor layer.
  • In addition, according to this embodiment mode, since the opening is formed by laser light, the comparatively low number of manufacturing processes of a TFT can be realized.
  • In addition, this embodiment mode can be arbitrarily combined with Embodiment Mode 1, Embodiment Mode 2, Embodiment Mode 3, or Embodiment Mode 4.
  • Embodiment Mode 6
  • In this embodiment mode, an example of forming a TFT different from that of Embodiment Mode 5 is shown with reference to FIGS. 7A to 7D.
  • First, a base insulating film 301 is formed over a substrate 300 having an insulating surface. As for the substrate 300 having an insulating surface, a light-transmitting substrate, for example, a glass substrate, a crystalline glass substrate, or a plastic substrate can be used. When an opening is formed without laser light passing through the substrate in the following process, a semiconductor substrate, a metal substrate, or the like can be used.
  • As for the base insulating film 301, an insulating film such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride (SiOxNy) film is used.
  • Next, a semiconductor layer is formed over the base insulating film 301. The semiconductor layer is formed by depositing a semiconductor film having an amorphous structure by a known means (a sputtering method, an LPCVD method, a plasma CVD method, or the like), then forming a resist film over a crystalline semiconductor film obtained by performing known crystallization treatment (a laser crystallization method, a thermal crystallization method, a thermal crystallization method using a catalyst such as nickel, or the like), and then pattering it into a desired shape with the use of a first resist mask which is exposed by scanning laser light. This semiconductor layer is formed to have a thickness of 25 nm to 80 nm (preferably, 30 nm to 70 nm). A material of the crystalline semiconductor film is not limited; however, silicon or a silicon germanium (SiGe) alloy is preferably used to form the crystalline semiconductor film.
  • Then, a gate insulating film 303 covering the semiconductor layer is formed after removing the first resist mask. The gate insulating film 303 is formed to have a thickness of 1 nm to 200 nm with the use of a plasma CVD method, a sputtering method, or a thermal oxidation method. As for the gate insulating film 303, a film formed of an insulating film such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride film is formed.
  • Subsequently, a second resist mask to which light exposure is performed by scanning laser light is formed after forming a resist film over the gate insulating film 303. As for the second resist mask, an impurity element imparting p-type or n-type conductivity is selectively added to the semiconductor layer by using an ion doping method or an ion implantation method. Accordingly, regions where the impurity element is added serve as impurity regions 304, 306, and 307. In addition, a region 302 covered with the second resist mask where the impurity element is not added serves as a channel-forming region of a TFT.
  • Thereafter, the second resist mask is removed and the impurity element added to the semiconductor layer is activated and hydrogenated.
  • Next, as shown in FIG. 7A, an interlayer insulating film 319 having planarity is formed. As for the interlayer insulating film 319, a light-transmitting inorganic material (silicon oxide, silicon nitride, silicon oxynitride, or the like), a photosensitive or non-photosensitive organic material (polyimide, acrylic, polyamide, polyimide amide, resist, or benzocyclobutene), a stack of these materials, or the like is used. Moreover, as for another light-transmitting film used for the interlayer insulating film 319, an insulating film formed of an SiOx film containing an alkyl group, obtained by a coating method, for example, an insulating film formed using silica glass, an alkyl siloxane polymer, an alkyl silsesquioxane polymer, a hydrogenated silsesquioxane polymer, a hydrogenated alkyl silsesquioxane polymer, or the like can be used. As one example of a siloxane-based polymer, a coating material for an insulating film such as #PSB-K1 and #PSB-K31 manufactured by Toray Industries, Inc., and a coating material for an insulating film such as #ZRS-5PH manufactured by Catalysts & Chemicals Industries Co., Ltd. can be given.
  • Then, a plurality of first openings 309 are formed in the interlayer insulating film 319 and the gate insulating film 303 with the use of laser light. The plurality of first openings 309 is formed to reach the impurity regions 304 and 307. In addition, a plurality of second openings 310 and 311 is formed in the interlayer insulating film 319 with the use of laser light. The plurality of second openings 310 and 311 is formed so as to overlap with the position of the regions 302 where the impurity element is not added. FIG. 7B shows a cross-sectional view where a focal position of ultrashort pulsed laser light is moved after forming the second opening 310 to form the first opening 309 by the ultrashort pulsed laser light that passes through an optical system 305.
  • When the pulsed width of the laser light is 10−4 seconds to 10−2 seconds, the laser light is not absorbed by the interlayer insulating film 319 including the protective film. However, when multiphoton absorption occurs by irradiating the interlayer insulating film 319 including the protective film with laser light the pulse width of which is extremely short (picoseconds or femtoseconds), the laser light can be absorbed by the interlayer insulating film 319 including the protective film.
  • Note that forming an opening by using laser light is explained in detail in Embodiment Mode 1; therefore, only brief explanation is given here.
  • Subsequently, a composition containing conductive particles of 3 nm to 7 nm is discharged with the use of a droplet discharging method to fill each opening with the conductive particles so as to overlap with a plurality of the penetrating first openings and second openings. Then, the conductive particles are fused and aggregated to have a crystal of approximately 100 nm when baking is performed; thus, gate electrodes 313 and 314, and source or drain electrodes 312 and 315 are formed (see FIG. 7C). In this embodiment mode, a gate electrode and a source electrode disposed in different layers can be formed with the same material. FIG. 7C shows a state in which a composition containing a conductive material is discharged from the ink jet head 308.
  • A top gate TFT is completed at this stage. FIG. 7C shows a double gate TFT having two channel-forming regions. A significant feature of this embodiment mode is process order in which the gate electrode is formed after forming the interlayer insulating film.
  • FIG. 7D shows one example of a TFT taken along in a different cross section from FIG. 7C. In FIG. 7C, a cross-sectional view taken along in a cross section including a broken line C-D corresponds to FIG. 7D. Note that corresponding portions are denoted by the same reference numerals.
  • As shown in FIG. 7D, the second opening 310 is extended inside the interlayer insulating film 319, and the bottom of the second opening 310 is in contact with the gate insulating film 303.
  • In addition, although not shown here, the gate electrodes 313 and 314 are in one wiring over the interlayer insulating film 319.
  • In addition, an active matrix liquid crystal display device can be manufactured with the use of the TFT shown in this embodiment mode as a switching element.
  • Hereinafter, a method for manufacturing a liquid crystal display device with the use of the TFT shown in this embodiment mode as a switching element is shown.
  • An insulating film 316 is formed after forming the source or drain electrode 315 (FIG. 8). Then, a contact hole is formed in the insulating film 316 to form a pixel electrode 317 with ITO or the like. In addition, a terminal electrode is formed with ITO or the like over the insulating film 316.
  • Next, an alignment film 320 is formed so as to cover the pixel electrode 317. Note that the alignment film 320 is preferably formed using a droplet discharging method, a screen printing method, or an offset printing method. Thereafter, rubbing treatment is performed to the surface of the alignment film 320.
  • In addition, an opposite substrate 323 is provided with an opposite electrode 324 formed with a transparent electrode and an alignment film 322 thereover. A sealant (not shown) with a closed pattern is then formed by a droplet discharge method so as to surround a region overlapped with a pixel portion. Here, an example of drawing a sealant with a closed pattern is shown in order to drop a liquid crystal. A dip coating method (pumping up method) by which a liquid crystal is injected by using capillary phenomenon may be used after providing a seal pattern having an opening and attaching the TFT substrate and an opposite substrate.
  • Then, a liquid crystal is dropped under reduced pressure so as to prevent bubbles from entering, and the both substrates are attached together. A liquid crystal is dropped once or several times in the closed-loop seal pattern. A twisted nematic (TN) mode is mostly used as an alignment mode of a liquid crystal. In this TN mode, the alignment direction of liquid crystal molecules is twisted at 90° according to the polarization of light from its entrance to the exit. In the case of manufacturing a liquid crystal display device of TN mode, the substrates are attached together so that the rubbing directions are crossed each other.
  • Note that the space between the pair of substrates may be maintained by spraying a spherical spacer, forming a columnar spacer comprising resin, or mixing a filler into the sealant. The above columnar spacer is formed of an organic resin material mainly containing at least one material of acrylic, polyimide, polyimide amide, and epoxy; any one material of silicon oxide, silicon nitride, and silicon oxynitride; or an inorganic material composed of a film stack of these materials.
  • Subsequently, an unnecessary substrate is divided. In the case of obtaining a plurality of panels from one substrate, each panel is separated off. In the case of obtaining one panel from one substrate, the separation step can be skipped by attaching an opposite substrate which is cut in advance.
  • Then, an FPC is attached to the terminal electrode with an anisotropic conductive layer therebetween by a known method. A liquid crystal module is completed according to the foregoing processes (FIG. 8). In addition, an optical film such as a color filter is attached, if necessary. In the case of a transmissive liquid crystal display device, polarization plates are respectively attached to both an active matrix substrate and an opposite substrate.
  • In addition, an active matrix light-emitting device can be manufactured with the use of the TFT shown in this embodiment mode.
  • Hereinafter, a method for manufacturing an active matrix light-emitting display device with the use of the TFT shown in this embodiment mode is shown. Herein, an example where the TFT is an n-channel is shown.
  • An insulating film 316 is formed after forming a source or drain electrode 315. Then, a contact hole is formed in the insulating film 316 to form a first electrode 318.
  • It is preferable that the first electrode 318 serves as a cathode. In the case of passing light through the first electrode 318, the first electrode 318 is formed by forming a predetermined pattern made from a composition containing indium tin oxide (ITO), indium tin oxide containing silicon oxide (ITSO), zinc oxide (ZnO), tin oxide (SnO2), or the like. In addition, in the case of reflecting light by the first electrode 318, the first electrode 318 is formed by forming a predetermined pattern made from a composition containing metal particles as its main component such as Ag (silver), Au (gold), Cu (copper), W (tungsten), or Al (aluminum).
  • Next, a partition 331 for covering the periphery of the first electrode 318 is formed. The partition 331 (also referred to as a bank) is formed using a material containing silicon, an organic material, and a compound material. Further, a porous film can also be used for the partition 331. The partition 331 is preferably formed by a photosensitive or a non-photosensitive material such as acrylic or polyimide, because the partition 331 is formed to have a curved edge portion having a radius of curvature varying continuously, and an upper thin film of the partition 331 can be formed without step cut.
  • Then, a layer serving as an electroluminescent layer, that is, a layer containing an organic compound 330 is formed. The layer containing an organic compound 330 has a layered structure in which each layer is formed by a vapor deposition method or a coating method. For example, an electron-transporting layer (electron-injecting layer), a light-emitting layer, a hole-transporting layer, and a hole-injecting layer are sequentially stacked over a cathode.
  • Before forming the layer containing an organic compound 330, plasma treatment in the presence of oxygen or heat treatment in vacuum atmosphere is preferably performed. In the case of using a vapor deposition method, an organic compound is vaporized by resistance heating in advance, and scattered toward a substrate by opening a shutter in depositing the organic compound. The vaporized organic compound is scattered upward and deposited over a substrate through an opening portion provided to a metal mask. In order to obtain full color display, alignment of a mask is preferably performed per emission color (R, G, and B).
  • Alternatively, full color display can be obtained by using a material exhibiting a monochromatic emission as the layer containing an organic compound 330, and combining a color filter or color conversion layer without being coated separately.
  • Subsequently, a second electrode 332 is formed. The second electrode 332 sewing as an anode of the light-emitting element is formed using a transparent conductive film, which can transmit a light, for example, by ITO, ITSO, or mixture of indium oxide mixed with zinc oxide (ZnO). The light-emitting element has the structure in which the layer containing an organic compound 330 is interposed between the first electrode and the second electrode. Note that a material for the first electrode and the second electrode should be selected in consideration of a work function. Either the first electrode or the second electrode is capable of being an anode or a cathode according to a pixel structure.
  • In addition, a protective layer for protecting the second electrode 332 may be formed.
  • Next, a sealing substrate 334 is attached by a sealant (not shown) to seal the light-emitting element. Note that the region surrounded by the sealant is filled with a transparent filler 333. The filler 333 is not particularly limited. Any material can be used as long as it a light-transmitting material, and typically, ultraviolet curable or thermosetting epoxy resin is used.
  • Lastly, the FPC is attached to the terminal electrode by an anisotropic conductive film in accordance with a known method.
  • According to the foregoing processes, an active matrix light-emitting device as shown in FIG. 9 can be manufactured.
  • In addition, this embodiment mode can be arbitrarily combined with Embodiment Mode 1, Embodiment Mode 2, Embodiment Mode 3, Embodiment Mode 4, or Embodiment Mode 5.
  • Embodiments of the present invention composed of the foregoing aspects are described in further detail below.
  • Embodiment 1
  • In this embodiment, a step of forming a multilayer wiring over a semiconductor substrate will be explained with reference to FIGS. 12A to 12D.
  • First, a semiconductor substrate 500 made of single crystal silicon is prepared (FIG. 12A). The semiconductor substrate 500 is a single crystal silicon substrate or a compound semiconductor substrate, and typically, an N-type or a P-type single crystal silicon substrate, a GaAs substrate, an InP substrate, a GaN substrate, an SIC substrate, a sapphire substrate, or a ZnSe substrate.
  • Next, an n-well is selectively formed in a first element-forming region in a main surface (also referred to as an element-forming surface or a circuit-forming surface) of the silicon substrate and a p-well is selectively formed in a second element-forming region in the same surface, respectively.
  • Then, field oxide films 503, 504, and 505 to be element-isolating regions for partitioning the first element-forming region and the second element-forming region are formed. The field oxide films 503, 504, and 505 are thick thermal oxide films and may be formed by a known LOCOS method. Note that the element-isolating method is not limited to the LOCOS method. For example, the element-isolating region may have a trench structure by using a trench-isolating method, or the LOCOS structure and the trench structure may be combined.
  • Subsequently, a gate insulating film is formed by, for example, thermally oxidizing the surface of the silicon substrate. The gate insulating film may also be formed using a CVD method. A silicon oxynitride film, a silicon oxide film, a silicon nitride film, or a stack thereof may be used. For example, a film stack of a silicon oxide film with a thickness of 5 nm which is obtained by thermal oxidation and a silicon oxynitride film with a thickness of 10 nm to 15 nm which is obtained by a CVD method is formed.
  • Next, a film stack of a polysilicon layer and a silicide layer are formed over the entire surface, and the film stack is patterned by a lithography technique and a dry etching technique so as to form a gate electrode 506 having a polycide structure over the gate insulating film. The polysilicon layer may be doped with phosphorus (P) at a concentration of approximately 1021/cm3 in advance in order to reduce the resistance. Alternatively, high concentration n-type impurities may be diffused after forming the polysilicon layer. Further, the silicide layer is preferably formed of a material such as molybdenum silicide (MoSix), tungsten silicide (WSix), tantalum silicide (TaSix), or titanium silicide (TiSix) using a known method.
  • Then, the gate insulating film is selectively removed. Accordingly, a gate insulating film 508 having a width of the gate electrode is formed.
  • Subsequently, sidewalk 510 to 513 are formed on the side walls of the gate electrode. For example, an insulating material layer formed of silicon oxide may be deposited over the entire surface by a CVD method and the insulating material layer is preferably etched back to form the sidewalls.
  • Next, an ion implantation is performed into the exposed silicon substrate to form a source region and a drain region. Since this is the case of manufacturing a CMOS, the first element-forming region for forming a p-channel FET is coated with a resist material, and arsenic (As) or phosphorus (P) which is an n-type impurity is injected into the silicon substrate to form a source region 514 and a drain region 515. At the same time, low- concentration impurity regions 518 and 519 added with an n-type impurity by passing through the sidewalls are formed. In addition, the second element-forming region for forming an n-channel FET is coated with a resist material, and boron (B) which is a p-type impurity is injected into the silicon substrate to form a source region 516 and a drain region 517. At the same time, low- concentration impurity regions 520 and 521 added with a p-type impurity by passing through the sidewalls are formed.
  • Then, activation treatment is performed using a GRTA method, an LRTA method, or the like in order to activate the ion-implanted impurities and to reduce crystal defects in the silicon substrate, which is generated by the ion implantation (see FIG. 12A).
  • Subsequently, as shown in FIG. 12B, a first interlayer insulating film 545 is formed. The first interlayer insulating film 545 is formed in a thickness of 100 nm to 2000 nm with a silicon oxide film, a silicon oxynitride film, or the like by a plasma CVD method or a low-pressure CVD method. Further, an interlayer insulating film formed of phosphosilicate glass (PSG), borosilicate glass (BSG), or borophosphosilicate glass (PBSG) may be stacked thereover.
  • Next, as shown in FIG. 12B, penetrating openings 541 to 544 are formed by irradiation of laser light emitted from an ultrashort pulsed laser. This is a method for forming an opening according to the present invention shown in Embodiment Mode 1.
  • Then, as shown in FIG. 12C, conductive films 551 to 554 are formed by discharging and baking a composition containing conductive particles to the openings by a droplet discharging method. According to the present invention, a depression is not generated in portions overlapping with the openings; thus, top surfaces of the conductive films 551 to 554 are almost in one plane.
  • Thereafter, a second interlayer insulating film 561 is formed. Then, openings and conductive films 562 to 565 are formed in the same manner, and multilayer wirings can be formed as shown in FIG. 12D. Since the top surfaces of the conductive films 551 to 554 are almost in one plane, the depth of each of the openings penetrating through the second interlayer insulating film 561 can be kept uniform.
  • In addition, an SOI substrate is used as the semiconductor substrate 500 and treatment in which a circuit having a MOS transistor can be peeled at an interface with an oxidized insulating film or in the layer thereof or at an interface between the oxidized insulating film and a silicon substrate or at an interface between the oxidized insulating film and the circuit is performed. Therefore, the circuit having a MOS transistor can be peeled. In addition, a thinner film of a semiconductor device can be obtained by attaching the peeled circuit having a MOS transistor to a flexible substrate.
  • In addition, the semiconductor device shown in this embodiment is applicable to various semiconductor devices such as a bipolar transistor as well as a MOS transistor. Moreover, the semiconductor device is also applicable to an electric circuit such as a memory circuit or a logic circuit.
  • An IC chip in which an FET manufactured according to this embodiment is integrated can be used as a thin film integrated circuit or a non-contact thin film integrated circuit device (also referred to as a wireless IC tag or RFID (Radio Frequency Identification)).
  • FIG. 13 shows an example of an ID card in which an IC chip 1516 according to the present invention is attached to a card-like substrate 1518 provided with a conductive layer 1517 serving as an antenna. The conductive layer 1517 serving as an antenna can also be formed by a droplet discharging method. In addition, a contact hole with a connection electrode connected to the conductive layer 1517 serving as an antenna may be formed using a technique for forming an opening by using laser light. Thus, the IC chip 1516 according to the present invention is small, thin, and lightweight, so that diverse uses can be realized and the design of an article is not spoiled even when the IC chip is attached to the article.
  • Note that the IC chip 1516 according to the present invention is not limited to the case of being attached to the card-like substrate 1518, and can be attached to an article having a curved surface or various shapes. For example, the IC chips can be used in bill, money, coin, securities, bearer bonds, certificates (such as a driver's license, or a resident's card, packing cases (such as a wrapper or a bottle), memory media (such as a DVD, a video tape), vehicles (such as a bicycle), belongings (such as a bag, or glasses), food, clothing, commodities, and the like.
  • In addition, this embodiment can be arbitrarily combined with Embodiment Mode 1, Embodiment Mode 2, Embodiment Mode 3, Embodiment Mode 4, Embodiment Mode 5, or Embodiment Mode 6.
  • Embodiment 2
  • In this embodiment, a module having the display panel shown in the above Embodiment Mode 5 or Embodiment Mode 6 will be explained with reference to FIG. 14. FIG. 14 shows a module including a display panel 9501 and a circuit board 9502. For example, a control circuit 9504, a signal division circuit 9505, and the like are mounted on the circuit board 9502. In addition, the display panel 9501 is connected to the circuit board 9502 through a connecting wire 9503. As for the display panel 9501, the liquid crystal panel or the light-emitting display panel shown in Embodiment Mode 5 or Embodiment Mode 6 may be arbitrarily used.
  • The display panel 9501 has a pixel portion 9506 where a light-emitting element is provided in each pixel, a scanning-line driver circuit 9507, and a signal-line driver circuit 9508 that supplies a video signal to a selected pixel. The pixel portion 9506 has the same structure as that shown in Embodiment Mode 5 or Embodiment Mode 6. As for the scanning-line driver circuit 9507 and the signal-line driver circuit 9508, IC chips are mounted on the substrate by a known mounting method such as a method using an anisotropic conductive adhesive or an anisotropic conductive film, a COG method, a wire bonding method, reflow treatment using a solder bump, or the like.
  • This embodiment allows a display module to be formed at low cost.
  • In addition, this embodiment can be arbitrarily combined with Embodiment Mode 1, Embodiment Mode 2, Embodiment Mode 3, Embodiment Mode 4, Embodiment Mode 5, Embodiment Mode 6, or Embodiment 1.
  • Embodiment 3
  • Although a liquid crystal display module and a light-emitting display module are shown as an example of the display module in the above embodiment, the present invention is not limited thereto. The present invention can be appropriately applied in forming an opening and wiring of a display module such as a DMD (Digital Micro mirror Device), a PDP (Plasma Display Panel), an FED (Field Emission Display), an electrophoretic display device (electronic paper), or an electro deposition image display device.
  • In addition, this embodiment can be arbitrarily combined with Embodiment Mode 1, Embodiment Mode 2, Embodiment Mode 3, Embodiment Mode 4, Embodiment Mode 5, or Embodiment Mode 6.
  • Embodiment 4
  • The semiconductor device shown in the above embodiment modes and embodiments may be applied to electronic apparatuses such as a television set (also simply referred to as a television or a television receiver). Here, a specific example of a television set will be explained with reference to FIGS. 15A and 15B.
  • FIG. 15A shows a block diagram of a television set, while FIG. 15B shows a perspective view of a television set. A liquid crystal television set and an EL television set can be completed by using the liquid crystal module and the EL module that are shown in the above embodiments.
  • FIG. 15A is a block diagram showing main components of a television set. A tuner 9511 receives a video signal and an audio signal. The video signal is processed by an image detection circuit 9512, a video signal processing circuit 9513 that converts a signal outputted from the image detection circuit into a color signal corresponding to each of red, green, and blue, and a control circuit 9514 that converts the video signal in accordance with input specifications of a driver IC. The control circuit 9514 outputs a signal to a scanning-line driver circuit 9516 and a signal-line driver circuit 9517 of a display panel 9515. In the case of digital driving, a signal division circuit 9518 may be provided on the signal line side, so that an inputted digital signal is divided into m signals to be supplied.
  • Among signals received by the tuner 9511, an audio signal is transmitted to a sound detection circuit 9521, and an output thereof is supplied to a speaker 9523 through an audio signal processing circuit 9522. A control circuit 9524 receives control information of a receiving station (received frequency) and a sound volume from an input portion 9525, and transmits signals to the tuner 9511 and the audio signal processing circuit 9522.
  • As shown in FIG. 15B, a television set can be completed by incorporating a module in a housing 9531. A display screen 9532 is formed using a module typified by a liquid crystal module and an EL module. In addition, the television set also includes a speaker 9533, operating switches 9534, and the like.
  • Since this television set includes the display panel 9515, cost reduction thereof can be achieved. In addition, the television set with high definition can be provided.
  • The application of the present invention is not limited to the television receiver, and various applications are possible, such as a monitor for a personal computer as well as, in particular, a display medium with a large area such as an information display panel at stations or airports, and an advertisement display panel on the street.
  • In addition, this embodiment can be arbitrarily combined with Embodiment Mode 1, Embodiment Mode 2, Embodiment Mode 3, Embodiment Mode 4, Embodiment Mode 5, or Embodiment Mode 6.
  • Embodiment 5
  • A semiconductor device and an electronic device according to the present invention include a camera such as a video camera or a digital camera, a goggle type display (head mounted display), a navigation system, an audio player (a car audio, an audio component, and the like), a personal computer, a game machine, a portable information terminal (a mobile computer, a cellular phone, a portable game machine, an electronic book, and the like), an image reproducing device provided with a recording medium (specifically a device capable of reproducing the content of a recording medium such as a Digital Versatile Disc (DVD) and that has a display device capable of displaying the image), and the like. Specific examples of the electronic devices are shown in FIGS. 16A to 16E.
  • FIG. 16A is a digital camera, which includes a main body 2101, a display portion 2102, an imaging portion, operation keys 2104, a shutter 2106, and the like. Note that FIG. 16A is viewed from the side of the display portion 2102 and the imaging portion is not shown. According to the present invention, the digital camera can be obtained through a process where the manufacturing cost is reduced.
  • FIG. 16B is a personal computer, which includes a main body 2201, a housing 2202, a display portion 2203, a keyboard 2204, an external connection port 2205, a pointing mouse 2206, and the like. According to the present invention, the personal computer can be obtained through a process where the manufacturing cost is reduced.
  • FIG. 16C is a mobile image reproducing device provided with a recording medium (specifically, a DVD player), which includes a main body 2401, a housing 2402, a display portion A 2403, a display portion B 2404, a recording medium (DVD or the like) reading portion 2405, operation keys 2406, a speaker portion 2407, and the like. The display portion A 2403 is used mainly for displaying image information, whereas the display portion B 2404 is used mainly for displaying text information. Note that the image reproducing device provided with a recording medium also includes a home-use game machine or the like. According to the present invention, the image reproducing device can be obtained through a process where the manufacturing cost is reduced.
  • In addition, FIG. 16D is a perspective view of a portable information terminal, and FIG. 16E is a perspective view showing a state of using it as a folding cellular phone. In FIG. 16D, users operate operation keys 2706 a with their right fingers and operate operation keys 2706 b with their left fingers when they are used as a keyboard. According to the present invention, the portable information terminal can be obtained through a process where a manufacturing cost is reduced.
  • As shown in FIG. 16E, in folding a cellular phone, users have a main body 2701 and a housing 2702 in one hand and use an audio input portion 2704, an audio output portion 2705, operation keys 2706 c, an antenna 2708, and the like.
  • The portable information terminals shown in FIGS. 16D and 16E each includes a high-definition display portion 2703 a which horizontally displays images and characters mainly and a display portion 2703 b which vertically displays.
  • As described above, various electronic devices can be completed by employing a manufacturing method or a structure according to the present invention, that is, any one of Embodiment Modes 1, Embodiment Mode 2, Embodiment Mode 3, Embodiment Mode 4, Embodiment Mode 5, Embodiment Mode 6, and Embodiments 1 to 4.
  • Embodiment 6
  • According to the present invention, a semiconductor device serving as a wireless chip (also called a wireless processor, a wireless memory, or a wireless tag) can be manufactured.
  • An example of mounting a chip obtained by cutting a semiconductor substrate on a card having an antenna is shown in Embodiment 1; however, a wireless chip can also be formed using a TFT.
  • A structure of a wireless chip according to the present invention will be explained with reference to FIG. 17. A wireless chip is constituted by a thin film integrated circuit 9303 and an antenna 9304 connected thereto. The thin film integrated circuit 9303 and the antenna 9304 are sandwiched between cover materials 9301 and 9302. The thin film integrated circuit 9303 may be attached to the cover materials with an adhesive. In FIG. 17, one surface of the thin film integrated circuit 9303 is attached to the cover material 9301 with an adhesive 9305.
  • The thin film integrated circuit 9303 is formed using a TFT shown in Embodiment Mode 5 or Embodiment Mode 6, then peeled off by a known peeling step and attached to a cover material. In addition, the semiconductor element used for the thin film integrated circuit 9303 is not limited thereto, and in addition to the TFT, a memory element, a diode, a photoelectric converter, a resistor, a coil, a capacitor, an inductor, or the like may be used.
  • As shown in FIG. 17, an interlayer insulating film 9311 is formed over the of the thin film integrated circuit 9303, and the antenna 9304 is connected to the TFT through the interlayer insulating film 9311. In addition, a barrier film 9312 made of silicon nitride or the like is formed over the interlayer insulating film 9311 and the antenna 9304.
  • The antenna 9304 is formed by discharging a droplet containing a conductor such as gold, silver and copper by a droplet discharging method, then baking and drying it. When the antenna is formed by a droplet discharging method, reduction in the number of steps can be realized; leading to cost reduction.
  • Each of the cover materials 9301 and 9302 preferably uses a film (made of polypropylene, polyester, vinyl, polyvinyl fluoride, vinyl chloride, or the like), paper of a fibrous material, a film where a base film (polyester, polyamide, an inorganic vapor deposition film, papers, or the like), and an adhesive synthetic resin film (an acrylic based synthetic resin, an epoxy based synthetic resin, or the like) are stacked, or the like. The film is obtained by performing sealing treatment to the subject by thermocompression. In the sealing treatment, an adhesive layer formed on the upper most surface of the film or a layer (not an adhesive layer) formed on the outermost layer is melted by heat treatment to adhere by applying pressure.
  • When the cover materials use a flammable pollution-free material such as paper, fiber and carbon graphite, the used wireless chip can be burned or cut out. In addition, the wireless chip using such a material is pollution free because it does not generate poison gas even if being burned.
  • Although the wireless chip is attached to the cover material 9301 with the adhesive 9305 in FIG. 17, the wireless chip may be attached to the object instead of the cover material 9301.
  • The wireless chip 9210 may be mounted on various objects and one example is shown in FIG. 18A to 18, for example, such as bills, coins, securities, bearer bonds, certificates (licenses, resident cards and the like, see FIG. 18A), containers for wrapping objects (wrapping papers, bottles and the like, see FIG. 18C), recording media (DVDs, video tapes and the like, see FIG. 18B), vehicles (bicycles and the like, see FIG. 18D), belongings (bags, glasses and the like), foods, plants, animals, human body, clothes, living ware, and electronic apparatuses, or shipping tags of objects (see FIGS. 18E and 18F). The electronic apparatuses include liquid crystal display devices, EL display devices, television sets (also simply called televisions or television receivers), cellular phones, and the like.
  • A wireless chip is attached to the surface of the object or incorporated in the object to be fixed. For example, a wireless chip is preferably incorporated in a paper of a book, or an organic resin of a package. When a wireless chip is incorporated in bills, coins, securities, bearer bonds, certificates, and the like, forgery thereof can be prevented. In addition, when a wireless chip is incorporated in containers for wrapping objects, recording media, belongings, foods, clothes, livingware, electronic apparatuses, and the like, test systems, rental systems, and the like can be performed more efficiently. A wireless chip according to the present invention is obtained in such a manner that a thin film integrated circuit formed over a substrate is peeled off by a known peeling step and then attached to a cover material; therefore, the wireless chip can be reduced in size, thickness and weight and can be mounted on an object while keeping the attractive design. In addition, since such a wireless chip has flexibility, the wireless chip can be attached to an object having a curved surface, such as bottles and pipes.
  • When a wireless chip according to the present invention is applied to product management and distribution system, high performance system can be achieved. For example, when information stored in a wireless chip mounted on a shipping tag is read by a reader/writer provided beside a conveyor belt, information such as distribution process and delivery address is read to easily inspect and distribute the object.
  • In addition, this embodiment can be arbitrarily combined with Embodiment Mode 1, Embodiment Mode 2, Embodiment Mode 3, Embodiment Mode 4, Embodiment Mode 5, Embodiment Mode 6, or Embodiment 1.
  • According to the present invention, since the number of etching steps accompanying a photolithography method can be reduced, the loss and effluent amount of a material solution can be reduced. In addition, the present invention can realize a manufacturing process with the use of a droplet discharging method suitable for manufacturing a large-sized substrate in mass production.
  • The present application is based on Japanese Patent Application serial No. 2005-014756 filed on Jan. 21, 2005 in Japanese Patent Office, the contents of which are hereby incorporated by reference.

Claims (36)

1. A semiconductor device comprising:
a thin film integrated circuit including a thin film transistor, the thin film transistor comprising a gate electrode, a gate insulating film, and a semiconductor film having a channel-forming region, the semiconductor film including a metal oxide wherein the metal includes indium; and
an antenna electrically connected to the thin film integrated circuit.
2. The semiconductor device according to claim 1, wherein the thin film transistor is any one of a top gate transistor, a bottom gate transistor and a forward stagger transistor.
3. The semiconductor device according to claim 1, wherein the thin film integrated circuit further comprises an element selected from the group consisting of a memory element, a diode, a photoelectric converter, a resistor, a coil, a capacitor, and an inductor.
4. The semiconductor device according to claim 1, further comprising a first cover material and a second cover material,
wherein the thin film integrated circuit and the antenna are sandwiched between the first cover material and the second cover material.
5. The semiconductor device according to claim 4, further comprising an adhesive, wherein one side of the thin film integrated circuit is attached to the first cover material with the adhesive.
6. The semiconductor device according to claim 1, further comprising an insulating film including at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film,
wherein the thin film transistor is interposed between the insulating film and the antenna.
7. The semiconductor device according to claim 1, wherein the gate insulating film includes an oxide containing aluminum.
8. The semiconductor device according to claim 1, wherein the gate insulating film includes an oxide containing titanium.
9. The semiconductor device according to claim 1, wherein the antenna is formed from a solvent including a conductor by droplet discharging method.
10. A semiconductor device comprising:
a thin film integrated circuit including a thin film transistor, the thin film transistor comprising a gate electrode, a gate insulating film, and a semiconductor film having a channel-forming region, the semiconductor film including an In—Ga—Zn—O; and
an antenna electrically connected to the thin integrated circuit.
11. The semiconductor device according to claim 10, wherein the thin film transistor is any one of a top gate transistor, a bottom gate transistor and a forward stagger transistor.
12. The semiconductor device according to claim 10, wherein the thin film integrated circuit further comprises an element selected from the group consisting of a memory element, a diode, a photoelectric converter, a resistor, a coil, a capacitor, and an inductor.
13. The semiconductor device according to claim 10, further comprising a first cover material and a second cover material,
wherein the thin film integrated circuit and the antenna are sandwiched between the first cover material and the second cover material.
14. The semiconductor device according to claim 13, further comprising an adhesive, wherein one side of the thin film integrated circuit is attached to the first cover material with the adhesive.
15. The semiconductor device according to claim 10, further comprising an insulating film including at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film,
wherein the thin film transistor is interposed between the insulating film and the antenna.
16. The semiconductor device according to claim 10, wherein the gate insulating film includes an oxide containing aluminum.
17. The semiconductor device according to claim 10, wherein the gate insulating film includes an oxide containing titanium.
18. The semiconductor device according to claim 10, wherein the antenna is formed from a solvent including a conductor by droplet discharging method.
19. A semiconductor device comprising:
a thin film integrated circuit including a thin film transistor, the thin film transistor comprising a gate electrode, a gate insulating film, and a semiconductor film having a channel-forming region, the semiconductor film including a metal oxide wherein the metal includes indium;
an interlayer insulating film formed over the thin film transistor; and
an antenna over the interlayer insulating film, the antenna being electrically connected to the thin film integrated circuit.
20. The semiconductor device according to claim 19, wherein the thin film transistor is any one of a top gate transistor, a bottom gate transistor and a forward stagger transistor.
21. The semiconductor device according to claim 19, wherein the thin film integrated circuit further comprises an element selected from the group consisting of a memory element, a diode, a photoelectric converter, a resistor, a coil, a capacitor, and an inductor.
22. The semiconductor device according to claim 19, further comprising a first cover material and a second cover material,
wherein the thin film integrated circuit and the antenna are sandwiched between the first cover material and the second cover material.
23. The semiconductor device according to claim 22, further comprising an adhesive, wherein one side of the thin film integrated circuit is attached to the first cover material with the adhesive.
24. The semiconductor device according to claim 19, further comprising an insulating film including at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film,
wherein the thin film transistor is interposed between the insulating film and the antenna.
25. The semiconductor device according to claim 19, wherein the gate insulating film includes an oxide containing aluminum.
26. The semiconductor device according to claim 19, wherein the gate insulating film includes an oxide containing titanium.
27. The semiconductor device according to claim 19, wherein the antenna is formed from a solvent including a conductor by droplet discharging method.
28. A semiconductor device comprising:
a thin film integrated circuit including a thin film transistor, the thin film transistor comprising a gate electrode, a gate insulating film, and a semiconductor film having a channel-forming region, the semiconductor film including an In—Ga—Zn—O;
an interlayer insulating film formed over the thin film transistor; and
an antenna over the interlayer insulating film, the antenna being electrically connected to the thin film integrated circuit.
29. The semiconductor device according to claim 28, wherein the thin film transistor is any one of a top gate transistor, a bottom gate transistor and a forward stagger transistor.
30. The semiconductor device according to claim 28, wherein the thin film integrated circuit further comprises an element selected from the group consisting of a memory element, a diode, a photoelectric converter, a resistor, a coil, a capacitor, and an inductor.
31. The semiconductor device according to claim 28, further comprising a first cover material and a second cover material,
wherein the thin film integrated circuit and the antenna are sandwiched between the first cover material and the second cover material.
32. The semiconductor device according to claim 31, further comprising an adhesive, wherein one side of the thin film integrated circuit is attached to the first cover material with the adhesive.
33. The semiconductor device according to claim 28, further comprising an insulating film including at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film,
wherein the thin film transistor is interposed between the insulating film and the antenna.
34. The semiconductor device according to claim 28, wherein the gate insulating film includes an oxide containing aluminum.
35. The semiconductor device according to claim 28, wherein the gate insulating film includes an oxide containing titanium.
36. The semiconductor device according to claim 28, wherein the antenna is formed from a solvent including a conductor by droplet discharging method.
US12/729,298 2005-01-21 2010-03-23 Semiconductor device and method for manufacturing the same, and electric device Abandoned US20100171117A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/729,298 US20100171117A1 (en) 2005-01-21 2010-03-23 Semiconductor device and method for manufacturing the same, and electric device
US13/365,498 US20120126226A1 (en) 2005-01-21 2012-02-03 Semiconductor device and method for manufacturing the same, and electric device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005014756 2005-01-21
JP2005-014756 2005-01-21
US11/329,095 US7579224B2 (en) 2005-01-21 2006-01-11 Method for manufacturing a thin film semiconductor device
US12/268,558 US20090073325A1 (en) 2005-01-21 2008-11-11 Semiconductor device and method for manufacturing the same, and electric device
US12/729,298 US20100171117A1 (en) 2005-01-21 2010-03-23 Semiconductor device and method for manufacturing the same, and electric device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/268,558 Continuation US20090073325A1 (en) 2005-01-21 2008-11-11 Semiconductor device and method for manufacturing the same, and electric device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/365,498 Continuation US20120126226A1 (en) 2005-01-21 2012-02-03 Semiconductor device and method for manufacturing the same, and electric device

Publications (1)

Publication Number Publication Date
US20100171117A1 true US20100171117A1 (en) 2010-07-08

Family

ID=36695934

Family Applications (5)

Application Number Title Priority Date Filing Date
US11/329,095 Expired - Fee Related US7579224B2 (en) 2005-01-21 2006-01-11 Method for manufacturing a thin film semiconductor device
US12/268,558 Abandoned US20090073325A1 (en) 2005-01-21 2008-11-11 Semiconductor device and method for manufacturing the same, and electric device
US12/348,681 Abandoned US20090153762A1 (en) 2005-01-21 2009-01-05 Semiconductor device and method for manufacturing the same, and electric device
US12/729,298 Abandoned US20100171117A1 (en) 2005-01-21 2010-03-23 Semiconductor device and method for manufacturing the same, and electric device
US13/365,498 Abandoned US20120126226A1 (en) 2005-01-21 2012-02-03 Semiconductor device and method for manufacturing the same, and electric device

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US11/329,095 Expired - Fee Related US7579224B2 (en) 2005-01-21 2006-01-11 Method for manufacturing a thin film semiconductor device
US12/268,558 Abandoned US20090073325A1 (en) 2005-01-21 2008-11-11 Semiconductor device and method for manufacturing the same, and electric device
US12/348,681 Abandoned US20090153762A1 (en) 2005-01-21 2009-01-05 Semiconductor device and method for manufacturing the same, and electric device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/365,498 Abandoned US20120126226A1 (en) 2005-01-21 2012-02-03 Semiconductor device and method for manufacturing the same, and electric device

Country Status (3)

Country Link
US (5) US7579224B2 (en)
JP (2) JP2010166069A (en)
CN (3) CN100502040C (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080150475A1 (en) * 2006-12-26 2008-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device
US20090073325A1 (en) * 2005-01-21 2009-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same, and electric device
US20100253478A1 (en) * 2009-04-06 2010-10-07 Semiconductor Energy Laboratory Co., Ltd. Data processing device, ic card and communication system
US20110053322A1 (en) * 2009-06-30 2011-03-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20120228624A1 (en) * 2011-03-09 2012-09-13 Hitachi Displays, Ltd. Image display device
US8623698B2 (en) 2009-06-30 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8697488B2 (en) 2009-06-30 2014-04-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8906756B2 (en) 2010-05-21 2014-12-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9093262B2 (en) 2009-11-20 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9489830B2 (en) 2011-06-08 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Communication method and communication system
US9537012B2 (en) 2009-09-04 2017-01-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide semiconductor layer

Families Citing this family (1829)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10260149A1 (en) 2002-12-20 2004-07-01 BSH Bosch und Siemens Hausgeräte GmbH Device for determining the conductivity of laundry, clothes dryer and method for preventing layer formation on electrodes
TWI569441B (en) 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 Semiconductor device, electronic device, and method of manufacturing semiconductor device
TWI562380B (en) * 2005-01-28 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) * 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7928938B2 (en) 2005-04-19 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including memory circuit, display device and electronic apparatus
US8629819B2 (en) 2005-07-14 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
EP1758072A3 (en) * 2005-08-24 2007-05-02 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof
EP1995787A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method therof
KR101397571B1 (en) * 2005-11-15 2014-05-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
EP1843194A1 (en) 2006-04-06 2007-10-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
US7943287B2 (en) * 2006-07-28 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
US7994021B2 (en) 2006-07-28 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
JP4969177B2 (en) * 2006-08-18 2012-07-04 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US8563431B2 (en) * 2006-08-25 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8148259B2 (en) * 2006-08-30 2012-04-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP4919738B2 (en) * 2006-08-31 2012-04-18 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP5116277B2 (en) 2006-09-29 2013-01-09 株式会社半導体エネルギー研究所 Semiconductor device, display device, liquid crystal display device, display module, and electronic apparatus
EP2076923B1 (en) 2006-10-24 2012-08-15 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device including storage device and method for driving the same
US7646015B2 (en) * 2006-10-31 2010-01-12 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device and semiconductor device
JP2008130866A (en) * 2006-11-22 2008-06-05 Seiko Epson Corp Surface reforming method and pattern formation method
JP2008176009A (en) * 2007-01-18 2008-07-31 Seiko Epson Corp Pattern formation method
JP5542296B2 (en) 2007-05-17 2014-07-09 株式会社半導体エネルギー研究所 Liquid crystal display device, display module, and electronic device
JP5542297B2 (en) 2007-05-17 2014-07-09 株式会社半導体エネルギー研究所 Liquid crystal display device, display module, and electronic device
US10231344B2 (en) 2007-05-18 2019-03-12 Applied Nanotech Holdings, Inc. Metallic ink
JP4989309B2 (en) 2007-05-18 2012-08-01 株式会社半導体エネルギー研究所 Liquid crystal display
US7897482B2 (en) * 2007-05-31 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2008311585A (en) * 2007-06-18 2008-12-25 Elpida Memory Inc Wiring structure, semiconductor device, and their manufacturing methods
US8354674B2 (en) * 2007-06-29 2013-01-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device wherein a property of a first semiconductor layer is different from a property of a second semiconductor layer
WO2009014155A1 (en) 2007-07-25 2009-01-29 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and electronic device having the same
KR20090028413A (en) * 2007-09-13 2009-03-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of light emitting device, and evaporation donor substrate
TWI366059B (en) * 2008-01-21 2012-06-11 Prime View Int Co Ltd Flexible electrophoretic display and method for manufacturing the same
NO332409B1 (en) * 2008-01-24 2012-09-17 Well Technology As Apparatus and method for isolating a section of a wellbore
WO2009107548A1 (en) * 2008-02-29 2009-09-03 Semiconductor Energy Laboratory Co., Ltd. Deposition method and manufacturing method of light-emitting device
KR20090095206A (en) * 2008-03-05 2009-09-09 삼성전자주식회사 Thin film transistor and display device using the same and methods of manufacturing for the same
US8182863B2 (en) * 2008-03-17 2012-05-22 Semiconductor Energy Laboratory Co., Ltd. Deposition method and manufacturing method of light-emitting device
US9730333B2 (en) 2008-05-15 2017-08-08 Applied Nanotech Holdings, Inc. Photo-curing process for metallic inks
US9041202B2 (en) 2008-05-16 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US8314765B2 (en) 2008-06-17 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device, and electronic device
KR101656843B1 (en) 2008-07-10 2016-09-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and electronic device using the same
TWI500159B (en) 2008-07-31 2015-09-11 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
JP5616038B2 (en) 2008-07-31 2014-10-29 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
TWI495108B (en) 2008-07-31 2015-08-01 Semiconductor Energy Lab Method for manufacturing semiconductor devices
US8945981B2 (en) 2008-07-31 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI626744B (en) 2008-07-31 2018-06-11 半導體能源研究所股份有限公司 Semiconductor device and method of manufacturing semiconductor device
JP5608347B2 (en) 2008-08-08 2014-10-15 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
JP5525778B2 (en) 2008-08-08 2014-06-18 株式会社半導体エネルギー研究所 Semiconductor device
JP5480554B2 (en) 2008-08-08 2014-04-23 株式会社半導体エネルギー研究所 Semiconductor device
TWI508282B (en) 2008-08-08 2015-11-11 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
TWI424506B (en) 2008-08-08 2014-01-21 Semiconductor Energy Lab Method for manufacturing semiconductor device
JP5627071B2 (en) 2008-09-01 2014-11-19 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9082857B2 (en) * 2008-09-01 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an oxide semiconductor layer
TWI511299B (en) 2008-09-01 2015-12-01 Semiconductor Energy Lab Method for manufacturing semiconductor device
KR101767864B1 (en) * 2008-09-12 2017-08-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
CN102150191B (en) 2008-09-12 2013-07-24 株式会社半导体能源研究所 Display device
KR101829673B1 (en) 2008-09-12 2018-02-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR20160063402A (en) 2008-09-12 2016-06-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR101681483B1 (en) 2008-09-12 2016-12-02 삼성디스플레이 주식회사 Thin film transistor array substrate and method of manufacturing the same
WO2010032619A1 (en) 2008-09-19 2010-03-25 Semiconductor Energy Laboratory Co., Ltd. Display device
KR101831167B1 (en) * 2008-09-19 2018-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101803264B1 (en) 2008-09-19 2017-12-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101609557B1 (en) * 2008-09-19 2016-04-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101874327B1 (en) * 2008-09-19 2018-07-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
WO2010038599A1 (en) 2008-10-01 2010-04-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
EP2172804B1 (en) 2008-10-03 2016-05-11 Semiconductor Energy Laboratory Co, Ltd. Display device
KR101761108B1 (en) 2008-10-03 2017-07-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
EP2172977A1 (en) 2008-10-03 2010-04-07 Semiconductor Energy Laboratory Co., Ltd. Display device
WO2010038820A1 (en) 2008-10-03 2010-04-08 Semiconductor Energy Laboratory Co., Ltd. Display device
WO2010038596A1 (en) * 2008-10-03 2010-04-08 Semiconductor Energy Laboratory Co., Ltd. Modulation circuit and semiconductor device including the same
CN101714546B (en) * 2008-10-03 2014-05-14 株式会社半导体能源研究所 Display device and method for producing same
CN101719493B (en) 2008-10-08 2014-05-14 株式会社半导体能源研究所 Display device
JP5484853B2 (en) 2008-10-10 2014-05-07 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
EP2178133B1 (en) 2008-10-16 2019-09-18 Semiconductor Energy Laboratory Co., Ltd. Flexible Light-Emitting Device, Electronic Device, and Method for Manufacturing Flexible-Light Emitting Device
WO2010044478A1 (en) * 2008-10-16 2010-04-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting display device
JP5361651B2 (en) 2008-10-22 2013-12-04 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
EP2180518B1 (en) 2008-10-24 2018-04-25 Semiconductor Energy Laboratory Co, Ltd. Method for manufacturing semiconductor device
WO2010047288A1 (en) * 2008-10-24 2010-04-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductordevice
JP5442234B2 (en) 2008-10-24 2014-03-12 株式会社半導体エネルギー研究所 Semiconductor device and display device
JP5616012B2 (en) 2008-10-24 2014-10-29 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US8106400B2 (en) 2008-10-24 2012-01-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8741702B2 (en) 2008-10-24 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101667909B1 (en) 2008-10-24 2016-10-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
CN102386236B (en) 2008-10-24 2016-02-10 株式会社半导体能源研究所 Semiconductor device and the method for the manufacture of this semiconductor device
TWI496295B (en) 2008-10-31 2015-08-11 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
KR101634411B1 (en) * 2008-10-31 2016-06-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Driver circuit, display device and electronic device
KR101631454B1 (en) 2008-10-31 2016-06-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Logic circuit
KR101603303B1 (en) 2008-10-31 2016-03-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Conductive oxynitride and method for manufacturing conductive oxynitride film
EP2184783B1 (en) 2008-11-07 2012-10-03 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and method for manufacturing the same
TW201921700A (en) 2008-11-07 2019-06-01 日商半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
KR102149626B1 (en) * 2008-11-07 2020-08-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method of manufacturing a semiconductor device
TWI487104B (en) 2008-11-07 2015-06-01 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
CN101740631B (en) * 2008-11-07 2014-07-16 株式会社半导体能源研究所 Semiconductor device and method for manufacturing the semiconductor device
TWI467663B (en) 2008-11-07 2015-01-01 Semiconductor Energy Lab Semiconductor device and method for manufacturing the semiconductor device
KR101432764B1 (en) 2008-11-13 2014-08-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
TWI656645B (en) 2008-11-13 2019-04-11 日商半導體能源研究所股份有限公司 Semiconductor device and method of manufacturing same
US8232947B2 (en) 2008-11-14 2012-07-31 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP2010153802A (en) 2008-11-20 2010-07-08 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
KR101914404B1 (en) 2008-11-21 2018-11-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI571684B (en) 2008-11-28 2017-02-21 半導體能源研究所股份有限公司 Liquid crystal display device
TWI529949B (en) 2008-11-28 2016-04-11 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
TWI585955B (en) * 2008-11-28 2017-06-01 半導體能源研究所股份有限公司 Photosensor and display device
KR101472771B1 (en) * 2008-12-01 2014-12-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
JP2010156960A (en) 2008-12-03 2010-07-15 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JP5491833B2 (en) 2008-12-05 2014-05-14 株式会社半導体エネルギー研究所 Semiconductor device
WO2010071183A1 (en) * 2008-12-19 2010-06-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101751661B1 (en) 2008-12-19 2017-06-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing transistor
EP2515337B1 (en) 2008-12-24 2016-02-24 Semiconductor Energy Laboratory Co., Ltd. Driver circuit and semiconductor device
KR101719350B1 (en) * 2008-12-25 2017-03-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US8114720B2 (en) 2008-12-25 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8441007B2 (en) 2008-12-25 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
TWI476915B (en) * 2008-12-25 2015-03-11 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
TWI596676B (en) * 2008-12-26 2017-08-21 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
US8330156B2 (en) * 2008-12-26 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with a plurality of oxide clusters over the gate insulating layer
KR101648927B1 (en) * 2009-01-16 2016-08-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US8492756B2 (en) 2009-01-23 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8436350B2 (en) * 2009-01-30 2013-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device using an oxide semiconductor with a plurality of metal clusters
US8367486B2 (en) 2009-02-05 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Transistor and method for manufacturing the transistor
US8174021B2 (en) 2009-02-06 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the semiconductor device
US8749930B2 (en) * 2009-02-09 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Protection circuit, semiconductor device, photoelectric conversion device, and electronic device
CN101840936B (en) 2009-02-13 2014-10-08 株式会社半导体能源研究所 Semiconductor device including a transistor, and manufacturing method of the semiconductor device
US8247812B2 (en) * 2009-02-13 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device including the transistor, and manufacturing method of the transistor and the semiconductor device
US8278657B2 (en) 2009-02-13 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device including the transistor, and manufacturing method of the transistor and the semiconductor device
US8247276B2 (en) * 2009-02-20 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, method for manufacturing the same, and semiconductor device
US8841661B2 (en) * 2009-02-25 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Staggered oxide semiconductor TFT semiconductor device and manufacturing method thereof
US8704216B2 (en) 2009-02-27 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8461582B2 (en) 2009-03-05 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20100224878A1 (en) 2009-03-05 2010-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20100224880A1 (en) * 2009-03-05 2010-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5504008B2 (en) 2009-03-06 2014-05-28 株式会社半導体エネルギー研究所 Semiconductor device
KR102195170B1 (en) * 2009-03-12 2020-12-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI556323B (en) * 2009-03-13 2016-11-01 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the semiconductor device
US8450144B2 (en) * 2009-03-26 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI617029B (en) 2009-03-27 2018-03-01 半導體能源研究所股份有限公司 Semiconductor device
JP5740389B2 (en) 2009-03-27 2015-06-24 アプライド・ナノテック・ホールディングス・インコーポレーテッド Buffer layer to enhance photosintering and / or laser sintering
KR101681884B1 (en) 2009-03-27 2016-12-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, display device, and electronic appliance
KR101752640B1 (en) 2009-03-27 2017-06-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8927981B2 (en) * 2009-03-30 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI489628B (en) 2009-04-02 2015-06-21 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
US8338226B2 (en) * 2009-04-02 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5615018B2 (en) 2009-04-10 2014-10-29 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
TWI535023B (en) 2009-04-16 2016-05-21 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
WO2010125986A1 (en) * 2009-05-01 2010-11-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5751762B2 (en) 2009-05-21 2015-07-22 株式会社半導体エネルギー研究所 Semiconductor device
EP2256795B1 (en) 2009-05-29 2014-11-19 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for oxide semiconductor device
EP2256814B1 (en) * 2009-05-29 2019-01-16 Semiconductor Energy Laboratory Co, Ltd. Oxide semiconductor device and method for manufacturing the same
JP5564331B2 (en) * 2009-05-29 2014-07-30 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US8456586B2 (en) * 2009-06-11 2013-06-04 Apple Inc. Portable computer display structures
KR101968855B1 (en) 2009-06-30 2019-04-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
US20110000175A1 (en) * 2009-07-01 2011-01-06 Husqvarna Consumer Outdoor Products N.A. Inc. Variable speed controller
WO2011001822A1 (en) 2009-07-03 2011-01-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101476817B1 (en) * 2009-07-03 2014-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device including transistor and manufacturing method thereof
JP5663214B2 (en) * 2009-07-03 2015-02-04 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR20190002745A (en) * 2009-07-10 2019-01-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
KR20220100086A (en) 2009-07-10 2022-07-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
WO2011004723A1 (en) 2009-07-10 2011-01-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method the same
WO2011007677A1 (en) 2009-07-17 2011-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101739154B1 (en) * 2009-07-17 2017-05-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
WO2011007682A1 (en) 2009-07-17 2011-01-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
CN105070749B (en) 2009-07-18 2019-08-09 株式会社半导体能源研究所 Semiconductor device and the method for manufacturing semiconductor device
WO2011010545A1 (en) 2009-07-18 2011-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101414926B1 (en) 2009-07-18 2014-07-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
KR101782176B1 (en) 2009-07-18 2017-09-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
WO2011010542A1 (en) * 2009-07-23 2011-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011010546A1 (en) * 2009-07-24 2011-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102153841B1 (en) 2009-07-31 2020-09-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
WO2011013523A1 (en) 2009-07-31 2011-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20120051727A (en) 2009-07-31 2012-05-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR102362616B1 (en) * 2009-07-31 2022-02-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
WO2011013502A1 (en) * 2009-07-31 2011-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI528527B (en) 2009-08-07 2016-04-01 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing semiconductor device
EP2284891B1 (en) 2009-08-07 2019-07-24 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and manufacturing method thereof
TWI700810B (en) 2009-08-07 2020-08-01 日商半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
JP5663231B2 (en) * 2009-08-07 2015-02-04 株式会社半導体エネルギー研究所 Light emitting device
TWI634642B (en) 2009-08-07 2018-09-01 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
TWI596741B (en) * 2009-08-07 2017-08-21 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
JP5642447B2 (en) 2009-08-07 2014-12-17 株式会社半導体エネルギー研究所 Semiconductor device
US8115883B2 (en) 2009-08-27 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
WO2011027649A1 (en) * 2009-09-02 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a transistor, and manufacturing method of semiconductor device
KR101745341B1 (en) * 2009-09-04 2017-06-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and method for manufacturing the same
WO2011027702A1 (en) * 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
WO2011027676A1 (en) 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN102484140B (en) * 2009-09-04 2015-04-22 株式会社半导体能源研究所 Manufacturing method of semiconductor device
WO2011027664A1 (en) * 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
WO2011027656A1 (en) 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
WO2011027701A1 (en) 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US9805641B2 (en) * 2009-09-04 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
KR101746198B1 (en) 2009-09-04 2017-06-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device
KR102293198B1 (en) * 2009-09-16 2021-08-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
WO2011034012A1 (en) * 2009-09-16 2011-03-24 Semiconductor Energy Laboratory Co., Ltd. Logic circuit, light emitting device, semiconductor device, and electronic device
WO2011033914A1 (en) 2009-09-16 2011-03-24 Semiconductor Energy Laboratory Co., Ltd. Driving method of display device and display device
CN105428424A (en) * 2009-09-16 2016-03-23 株式会社半导体能源研究所 Transistor and display device
US9715845B2 (en) 2009-09-16 2017-07-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
KR101979327B1 (en) 2009-09-16 2019-05-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and manufacturing method thereof
WO2011033909A1 (en) * 2009-09-16 2011-03-24 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device including the driver circuit, and electronic device including the display device
KR102246529B1 (en) * 2009-09-16 2021-04-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101693544B1 (en) 2009-09-24 2017-01-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor film and semiconductor device
KR101713356B1 (en) 2009-09-24 2017-03-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Driver circuit, display device including the driver circuit, and electronic appliance including the display device
CN102549758B (en) 2009-09-24 2015-11-25 株式会社半导体能源研究所 Semiconductor device and manufacture method thereof
TWI512997B (en) * 2009-09-24 2015-12-11 Semiconductor Energy Lab Semiconductor device, power circuit, and manufacturing method of semiconductor device
KR101707260B1 (en) 2009-09-24 2017-02-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011037008A1 (en) 2009-09-24 2011-03-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor film and method for manufacturing semiconductor device
KR101740943B1 (en) * 2009-09-24 2017-06-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR20220122778A (en) 2009-09-24 2022-09-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device
WO2011037010A1 (en) 2009-09-24 2011-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and method for manufacturing the same
WO2011040349A1 (en) * 2009-09-30 2011-04-07 Semiconductor Energy Laboratory Co., Ltd. Redox capacitor and manufacturing method thereof
WO2011040213A1 (en) * 2009-10-01 2011-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20120084751A (en) 2009-10-05 2012-07-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
WO2011043182A1 (en) 2009-10-05 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Method for removing electricity and method for manufacturing semiconductor device
SG178056A1 (en) 2009-10-08 2012-03-29 Semiconductor Energy Lab Oxide semiconductor layer and semiconductor device
CN105185837B (en) 2009-10-08 2018-08-03 株式会社半导体能源研究所 Semiconductor devices, display device and electronic apparatus
CN102598278B (en) 2009-10-09 2015-04-08 株式会社半导体能源研究所 Semiconductor device
CN103984176B (en) * 2009-10-09 2016-01-20 株式会社半导体能源研究所 Liquid crystal indicator and comprise the electronic equipment of this liquid crystal indicator
KR101959693B1 (en) * 2009-10-09 2019-03-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
WO2011043164A1 (en) * 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
CN102687204A (en) 2009-10-09 2012-09-19 株式会社半导体能源研究所 Shift register and display device and driving method thereof
WO2011043162A1 (en) * 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
WO2011043194A1 (en) 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011043206A1 (en) 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN102549638B (en) 2009-10-09 2015-04-01 株式会社半导体能源研究所 Light-emitting display device and electronic device including the same
KR101949670B1 (en) 2009-10-09 2019-02-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011043451A1 (en) 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Shift register and display device
KR101832698B1 (en) * 2009-10-14 2018-02-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR101426723B1 (en) 2009-10-16 2014-08-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR102462145B1 (en) 2009-10-16 2022-11-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device and electronic apparatus having the same
KR101903918B1 (en) * 2009-10-16 2018-10-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Logic circuit and semiconductor device
KR101772639B1 (en) 2009-10-16 2017-08-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102005736B1 (en) 2009-10-16 2019-07-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of semiconductor device
KR101812683B1 (en) 2009-10-21 2017-12-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
WO2011048959A1 (en) 2009-10-21 2011-04-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN102723364B (en) 2009-10-21 2015-02-25 株式会社半导体能源研究所 Semiconductor device
JP5730529B2 (en) 2009-10-21 2015-06-10 株式会社半導体エネルギー研究所 Semiconductor device
KR101893128B1 (en) 2009-10-21 2018-08-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Analog circuit and semiconductor device
WO2011048923A1 (en) 2009-10-21 2011-04-28 Semiconductor Energy Laboratory Co., Ltd. E-book reader
CN107731931B (en) 2009-10-21 2021-03-23 株式会社半导体能源研究所 Display device and electronic apparatus including the same
CN105702688B (en) 2009-10-21 2020-09-08 株式会社半导体能源研究所 Liquid crystal display device and electronic apparatus including the same
CN102598247B (en) * 2009-10-29 2015-05-06 株式会社半导体能源研究所 Semiconductor device
KR102213595B1 (en) 2009-10-29 2021-02-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011052437A1 (en) 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Non-linear element, display device including non-linear element, and electronic device including display device
CN106057819B (en) 2009-10-30 2019-03-15 株式会社半导体能源研究所 Semiconductor device
KR101835155B1 (en) * 2009-10-30 2018-03-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device, driving method of the same, and electronic appliance including the same
KR20120099657A (en) * 2009-10-30 2012-09-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Transistor
KR101752348B1 (en) * 2009-10-30 2017-06-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011052385A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011052411A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Transistor
WO2011052366A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Voltage regulator circuit
KR101740684B1 (en) * 2009-10-30 2017-05-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power diode, rectifier, and semiconductor device including the same
WO2011052382A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011052384A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101788521B1 (en) 2009-10-30 2017-10-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
CN102484471B (en) * 2009-10-30 2015-04-01 株式会社半导体能源研究所 Driver circuit, display device including the driver circuit, and electronic device including the display device
KR101796909B1 (en) 2009-10-30 2017-12-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Non-linear element, display device, and electronic device
US8408780B2 (en) * 2009-11-03 2013-04-02 Apple Inc. Portable computer housing with integral display
KR101727469B1 (en) * 2009-11-06 2017-04-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
CN104465318B (en) 2009-11-06 2018-04-24 株式会社半导体能源研究所 The method for manufacturing semiconductor devices
WO2011055644A1 (en) 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
CN102598279B (en) * 2009-11-06 2015-10-07 株式会社半导体能源研究所 Semiconductor device
JP5539846B2 (en) 2009-11-06 2014-07-02 株式会社半導体エネルギー研究所 Evaluation method, manufacturing method of semiconductor device
KR101810254B1 (en) 2009-11-06 2017-12-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and operating method thereof
KR20120093952A (en) * 2009-11-06 2012-08-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor element and semiconductor device, and deposition apparatus
EP2497111B1 (en) * 2009-11-06 2016-03-30 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device
KR102220606B1 (en) 2009-11-06 2021-03-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR101824854B1 (en) 2009-11-06 2018-02-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011055660A1 (en) 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102128972B1 (en) 2009-11-06 2020-07-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US8743309B2 (en) 2009-11-10 2014-06-03 Apple Inc. Methods for fabricating display structures
KR101975741B1 (en) 2009-11-13 2019-05-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for packaging target material and method for mounting target
KR20120106950A (en) * 2009-11-13 2012-09-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Sputtering target and method for manufacturing the same, and transistor
WO2011058934A1 (en) 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
KR102248564B1 (en) 2009-11-13 2021-05-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device including the same
KR101799265B1 (en) * 2009-11-13 2017-11-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
WO2011058913A1 (en) 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011058882A1 (en) * 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and manufacturing method thereof, and transistor
KR101738996B1 (en) * 2009-11-13 2017-05-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Device including nonvolatile memory element
WO2011058852A1 (en) * 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101751560B1 (en) * 2009-11-13 2017-06-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011062029A1 (en) 2009-11-18 2011-05-26 Semiconductor Energy Laboratory Co., Ltd. Memory device
KR101800854B1 (en) * 2009-11-20 2017-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Transistor
WO2011062067A1 (en) * 2009-11-20 2011-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
MY166309A (en) 2009-11-20 2018-06-25 Semiconductor Energy Lab Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
JP5762723B2 (en) 2009-11-20 2015-08-12 株式会社半導体エネルギー研究所 Modulation circuit and semiconductor device having the same
CN102668063B (en) * 2009-11-20 2015-02-18 株式会社半导体能源研究所 Semiconductor device
KR20220041239A (en) 2009-11-20 2022-03-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Transistor
WO2011062057A1 (en) 2009-11-20 2011-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011062058A1 (en) 2009-11-20 2011-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101693914B1 (en) 2009-11-20 2017-01-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101662359B1 (en) * 2009-11-24 2016-10-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device including memory cell
KR101911382B1 (en) * 2009-11-27 2018-10-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011065208A1 (en) 2009-11-27 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN102640293B (en) 2009-11-27 2015-07-22 株式会社半导体能源研究所 Semiconductor device
WO2011065209A1 (en) * 2009-11-27 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Non-linear element, display device including non-linear element, and electronic device including display device
KR101520024B1 (en) 2009-11-28 2015-05-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
CN105206514B (en) 2009-11-28 2018-04-10 株式会社半导体能源研究所 Oxide material, semiconductor devices and the method for manufacturing the semiconductor devices of stacking
WO2011065210A1 (en) * 2009-11-28 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
KR102426613B1 (en) * 2009-11-28 2022-07-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
CN105739209B (en) 2009-11-30 2022-05-27 株式会社半导体能源研究所 Liquid crystal display device, method for driving the same
WO2011068025A1 (en) 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Dc converter circuit and power supply circuit
JP2011139052A (en) 2009-12-04 2011-07-14 Semiconductor Energy Lab Co Ltd Semiconductor memory device
KR102153034B1 (en) 2009-12-04 2020-09-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102450889B1 (en) 2009-12-04 2022-10-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011068032A1 (en) 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Display device
KR101291485B1 (en) 2009-12-04 2013-07-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of semiconductor device
KR102117506B1 (en) 2009-12-04 2020-06-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR101501420B1 (en) * 2009-12-04 2015-03-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR101840623B1 (en) * 2009-12-04 2018-03-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device including the same
KR20120107107A (en) 2009-12-04 2012-09-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011068028A1 (en) * 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, semiconductor device, and method for manufacturing the same
JP5584103B2 (en) 2009-12-04 2014-09-03 株式会社半導体エネルギー研究所 Semiconductor device
KR20120103676A (en) * 2009-12-04 2012-09-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20120106786A (en) 2009-12-08 2012-09-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
WO2011070900A1 (en) 2009-12-08 2011-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN102763154B (en) 2009-12-10 2015-05-20 株式会社半导体能源研究所 Display device and driving method thereof
WO2011070901A1 (en) 2009-12-11 2011-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN104658598B (en) 2009-12-11 2017-08-11 株式会社半导体能源研究所 Semiconductor devices, logic circuit and CPU
JP5727204B2 (en) 2009-12-11 2015-06-03 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR102046308B1 (en) * 2009-12-11 2019-11-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011070887A1 (en) * 2009-12-11 2011-06-16 Semiconductor Energy Laboratory Co., Ltd. Field effect transistor
WO2011070929A1 (en) 2009-12-11 2011-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP5185357B2 (en) 2009-12-17 2013-04-17 株式会社半導体エネルギー研究所 Semiconductor device
CN103219390B (en) * 2009-12-18 2014-11-12 株式会社半导体能源研究所 Liquid crystal display device and electronic device
CN107886916B (en) * 2009-12-18 2021-09-21 株式会社半导体能源研究所 Liquid crystal display device and driving method thereof
WO2011074392A1 (en) 2009-12-18 2011-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN104700890B (en) 2009-12-18 2017-10-17 株式会社半导体能源研究所 Non-volatile latch circuit and logic circuit and use their semiconductor devices
KR101887837B1 (en) 2009-12-18 2018-08-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device including optical sensor and driving method thereof
WO2011074407A1 (en) 2009-12-18 2011-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9057758B2 (en) 2009-12-18 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Method for measuring current, method for inspecting semiconductor device, semiconductor device, and test element group
CN105957481B (en) 2009-12-18 2019-12-31 株式会社半导体能源研究所 Display device
WO2011074409A1 (en) 2009-12-18 2011-06-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
CN102652396B (en) 2009-12-23 2015-12-16 株式会社半导体能源研究所 Semiconductor device
WO2011077916A1 (en) 2009-12-24 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Display device
KR20120101716A (en) 2009-12-24 2012-09-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device
KR101971851B1 (en) * 2009-12-25 2019-04-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Memory device, semiconductor device, and electronic device
KR101613701B1 (en) * 2009-12-25 2016-04-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for driving liquid crystal display device
CN102656690B (en) * 2009-12-25 2016-04-20 株式会社半导体能源研究所 Semiconductor device
US8441009B2 (en) * 2009-12-25 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101301463B1 (en) 2009-12-25 2013-08-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
KR101870119B1 (en) 2009-12-25 2018-06-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011077978A1 (en) 2009-12-25 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
KR101762316B1 (en) 2009-12-28 2017-07-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101872678B1 (en) 2009-12-28 2018-07-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device and electronic device
KR102063214B1 (en) 2009-12-28 2020-01-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Memory device and semiconductor device
KR101436120B1 (en) 2009-12-28 2014-09-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
WO2011080999A1 (en) * 2009-12-28 2011-07-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011081041A1 (en) * 2009-12-28 2011-07-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
WO2011086871A1 (en) * 2010-01-15 2011-07-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8780629B2 (en) 2010-01-15 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
WO2011086846A1 (en) * 2010-01-15 2011-07-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN102696109B (en) 2010-01-15 2015-08-19 株式会社半导体能源研究所 The driving method of semiconductor device and semiconductor device
CN102696064B (en) 2010-01-15 2015-11-25 株式会社半导体能源研究所 Semiconductor device and electronic installation
WO2011086847A1 (en) 2010-01-15 2011-07-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101698537B1 (en) 2010-01-15 2017-01-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102395345B1 (en) 2010-01-20 2022-05-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Electronic device
WO2011089847A1 (en) 2010-01-20 2011-07-28 Semiconductor Energy Laboratory Co., Ltd. Signal processing circuit and method for driving the same
KR101747421B1 (en) * 2010-01-20 2017-06-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Driving method of liquid crystal display device
WO2011089848A1 (en) * 2010-01-20 2011-07-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device and electronic system
KR102253973B1 (en) 2010-01-20 2021-05-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
WO2011090087A1 (en) * 2010-01-20 2011-07-28 Semiconductor Energy Laboratory Co., Ltd. Display method of display device
KR101750126B1 (en) 2010-01-20 2017-06-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for driving display device and liquid crystal display device
US8415731B2 (en) * 2010-01-20 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor storage device with integrated capacitor and having transistor overlapping sections
KR101842860B1 (en) * 2010-01-20 2018-03-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for driving display device
KR101883629B1 (en) 2010-01-20 2018-07-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9984617B2 (en) 2010-01-20 2018-05-29 Semiconductor Energy Laboratory Co., Ltd. Display device including light emitting element
WO2011089841A1 (en) 2010-01-22 2011-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011089846A1 (en) * 2010-01-22 2011-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101855060B1 (en) 2010-01-22 2018-05-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor memory device and driving method thereof
KR20190093706A (en) 2010-01-24 2019-08-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and manufacturing method thereof
KR101873730B1 (en) 2010-01-24 2018-07-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
TWI525377B (en) 2010-01-24 2016-03-11 半導體能源研究所股份有限公司 Display device
KR101893904B1 (en) * 2010-01-29 2018-08-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor memory device
WO2011093150A1 (en) 2010-01-29 2011-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011093151A1 (en) * 2010-01-29 2011-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device including the same
WO2011096286A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Field effect transistor and semiconductor device
CN109560140A (en) * 2010-02-05 2019-04-02 株式会社半导体能源研究所 Semiconductor device
KR102628681B1 (en) 2010-02-05 2024-01-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
KR20190038687A (en) 2010-02-05 2019-04-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US9391209B2 (en) 2010-02-05 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101862823B1 (en) * 2010-02-05 2018-05-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method of driving semiconductor device
WO2011096264A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
WO2011096153A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Display device
US8436403B2 (en) 2010-02-05 2013-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor provided with sidewall and electronic appliance
KR101926336B1 (en) * 2010-02-05 2019-03-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
CN102725842B (en) 2010-02-05 2014-12-03 株式会社半导体能源研究所 Semiconductor device
KR101810261B1 (en) 2010-02-10 2017-12-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Field effect transistor
US8947337B2 (en) 2010-02-11 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Display device
KR101817054B1 (en) * 2010-02-12 2018-01-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and display device including the same
US8617920B2 (en) * 2010-02-12 2013-12-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011099389A1 (en) * 2010-02-12 2011-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of the same
KR20130023203A (en) 2010-02-12 2013-03-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and driving method
KR101814222B1 (en) * 2010-02-12 2018-01-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device and electronic device
WO2011099335A1 (en) 2010-02-12 2011-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101830196B1 (en) 2010-02-12 2018-02-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and driving method thereof
KR101924318B1 (en) 2010-02-12 2018-12-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and driving method thereof
KR101775180B1 (en) 2010-02-12 2017-09-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for driving the same
WO2011102227A1 (en) 2010-02-18 2011-08-25 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP5740169B2 (en) * 2010-02-19 2015-06-24 株式会社半導体エネルギー研究所 Method for manufacturing transistor
KR101889285B1 (en) * 2010-02-19 2018-08-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor memory device, driving method thereof, and method for manufacturing semiconductor device
CN105826363B (en) * 2010-02-19 2020-01-14 株式会社半导体能源研究所 Semiconductor device and method for manufacturing the same
KR101848684B1 (en) * 2010-02-19 2018-04-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device and electronic device
KR20180110212A (en) 2010-02-19 2018-10-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Transistor and display device using the same
KR101832119B1 (en) 2010-02-19 2018-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011102205A1 (en) 2010-02-19 2011-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN102754163B (en) * 2010-02-19 2015-11-25 株式会社半导体能源研究所 Semiconductor devices
KR101780748B1 (en) 2010-02-19 2017-09-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Demodulation circuit and rfid tag including the demodulatiion circuit
CN102812421B (en) 2010-02-19 2016-05-18 株式会社半导体能源研究所 Display device and driving method thereof
CN102754162B (en) 2010-02-19 2015-12-09 株式会社半导体能源研究所 The driving method of semiconductor devices and semiconductor devices
KR101772246B1 (en) 2010-02-23 2017-08-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device, semiconductor device, and driving method thereof
WO2011105198A1 (en) 2010-02-26 2011-09-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011105268A1 (en) 2010-02-26 2011-09-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2011105310A1 (en) * 2010-02-26 2011-09-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9000438B2 (en) 2010-02-26 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101803552B1 (en) * 2010-02-26 2017-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and e-book reader provided therewith
KR101862811B1 (en) * 2010-02-26 2018-05-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and driving method thereof
KR102261505B1 (en) 2010-02-26 2021-06-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device
KR20130009978A (en) * 2010-02-26 2013-01-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor element and deposition apparatus
KR102219398B1 (en) 2010-02-26 2021-02-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101838628B1 (en) * 2010-03-02 2018-03-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Pulse signal output circuit and shift register
KR101767037B1 (en) 2010-03-02 2017-08-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Boosting circuit and rfid tag including boosting circuit
CN105245218B (en) 2010-03-02 2019-01-22 株式会社半导体能源研究所 Output of pulse signal circuit and shift register
DE112011106101B3 (en) * 2010-03-02 2022-03-24 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
KR101932909B1 (en) * 2010-03-04 2018-12-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor memory device and semiconductor device
KR20130008037A (en) * 2010-03-05 2013-01-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
WO2011108381A1 (en) * 2010-03-05 2011-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101878206B1 (en) * 2010-03-05 2018-07-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of oxide semiconductor film and manufacturing method of transistor
WO2011108374A1 (en) * 2010-03-05 2011-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
WO2011111490A1 (en) * 2010-03-08 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
CN102782822B (en) 2010-03-08 2016-06-01 株式会社半导体能源研究所 The manufacture method of semiconductor device and semiconductor device
TWI594173B (en) * 2010-03-08 2017-08-01 半導體能源研究所股份有限公司 Electronic device and electronic system
KR20130007597A (en) 2010-03-08 2013-01-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
KR101791253B1 (en) 2010-03-08 2017-11-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Electronic device and electronic system
WO2011111549A1 (en) 2010-03-08 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101812467B1 (en) * 2010-03-08 2017-12-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101769970B1 (en) 2010-03-12 2017-08-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101840185B1 (en) 2010-03-12 2018-03-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for driving circuit and method for driving display device
KR101761558B1 (en) * 2010-03-12 2017-07-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for driving input circuit and method for driving input-output device
DE112011100886T5 (en) * 2010-03-12 2012-12-27 Semiconductor Energy Laboratory Co., Ltd. Driving method for display device
US8900362B2 (en) * 2010-03-12 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of gallium oxide single crystal
WO2011111507A1 (en) * 2010-03-12 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011114866A1 (en) 2010-03-17 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
WO2011114868A1 (en) 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011114867A1 (en) * 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of semiconductor device
WO2011114905A1 (en) 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US20110227082A1 (en) 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011114919A1 (en) 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011118351A1 (en) * 2010-03-25 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102112065B1 (en) * 2010-03-26 2020-06-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP5731244B2 (en) * 2010-03-26 2015-06-10 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
WO2011118741A1 (en) 2010-03-26 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101799757B1 (en) 2010-03-26 2017-11-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
KR101862539B1 (en) * 2010-03-26 2018-05-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011122299A1 (en) 2010-03-31 2011-10-06 Semiconductor Energy Laboratory Co., Ltd. Driving method of liquid crystal display device
WO2011122271A1 (en) 2010-03-31 2011-10-06 Semiconductor Energy Laboratory Co., Ltd. Field-sequential display device
WO2011122280A1 (en) 2010-03-31 2011-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
WO2011122514A1 (en) 2010-03-31 2011-10-06 Semiconductor Energy Laboratory Co., Ltd. Power supply device and driving method thereof
DE112011101152T5 (en) 2010-03-31 2013-01-10 Semiconductor Energy Laboratory Co.,Ltd. Liquid crystal display device and method for its control
US9147768B2 (en) 2010-04-02 2015-09-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor and a metal oxide film
KR102141064B1 (en) 2010-04-02 2020-08-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
CN102834922B (en) 2010-04-02 2016-04-13 株式会社半导体能源研究所 Semiconductor device
US9196739B2 (en) 2010-04-02 2015-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor film and metal oxide film
US9190522B2 (en) 2010-04-02 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor
US8884282B2 (en) 2010-04-02 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101884031B1 (en) 2010-04-07 2018-07-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor memory device
WO2011125453A1 (en) 2010-04-07 2011-10-13 Semiconductor Energy Laboratory Co., Ltd. Transistor
US8207025B2 (en) 2010-04-09 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8653514B2 (en) 2010-04-09 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101748901B1 (en) 2010-04-09 2017-06-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device and method for driving the same
KR101803730B1 (en) 2010-04-09 2017-12-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20130036739A (en) 2010-04-09 2013-04-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor memory device
WO2011125806A1 (en) 2010-04-09 2011-10-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
WO2011125456A1 (en) 2010-04-09 2011-10-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5744366B2 (en) 2010-04-12 2015-07-08 株式会社半導体エネルギー研究所 Liquid crystal display
US8854583B2 (en) 2010-04-12 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and liquid crystal display device
WO2011129209A1 (en) 2010-04-16 2011-10-20 Semiconductor Energy Laboratory Co., Ltd. Power source circuit
JP2011237418A (en) 2010-04-16 2011-11-24 Semiconductor Energy Lab Co Ltd Current measurement method, semiconductor device inspection method, semiconductor device and characteristic evaluation circuit
KR101881729B1 (en) 2010-04-16 2018-07-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Deposition method and method for manufacturing semiconductor device
WO2011129233A1 (en) 2010-04-16 2011-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8692243B2 (en) 2010-04-20 2014-04-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9537043B2 (en) 2010-04-23 2017-01-03 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
KR101877377B1 (en) 2010-04-23 2018-07-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of semiconductor device
CN102870219B (en) 2010-04-23 2016-04-27 株式会社半导体能源研究所 The manufacture method of semiconductor device
KR101324760B1 (en) 2010-04-23 2013-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
CN103500709B (en) 2010-04-23 2015-09-23 株式会社半导体能源研究所 The manufacture method of semiconductor device
WO2011132548A1 (en) 2010-04-23 2011-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011132591A1 (en) 2010-04-23 2011-10-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
DE112011101396T5 (en) 2010-04-23 2013-03-21 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method for the same
WO2011135999A1 (en) 2010-04-27 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US9697788B2 (en) 2010-04-28 2017-07-04 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
WO2011135987A1 (en) 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9349325B2 (en) 2010-04-28 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
WO2011136018A1 (en) 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic appliance
US8890555B2 (en) 2010-04-28 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Method for measuring transistor
KR20220005640A (en) 2010-04-28 2022-01-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
US9064473B2 (en) 2010-05-12 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Electro-optical display device and display method thereof
US9478185B2 (en) 2010-05-12 2016-10-25 Semiconductor Energy Laboratory Co., Ltd. Electro-optical display device and display method thereof
JP5797449B2 (en) 2010-05-13 2015-10-21 株式会社半導体エネルギー研究所 Semiconductor device evaluation method
WO2011142371A1 (en) 2010-05-14 2011-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101806271B1 (en) 2010-05-14 2017-12-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
US8664658B2 (en) 2010-05-14 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI511236B (en) 2010-05-14 2015-12-01 Semiconductor Energy Lab Semiconductor device
US8624239B2 (en) 2010-05-20 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8588000B2 (en) 2010-05-20 2013-11-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device having a reading transistor with a back-gate electrode
US8416622B2 (en) 2010-05-20 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Driving method of a semiconductor device with an inverted period having a negative potential applied to a gate of an oxide semiconductor transistor
US9490368B2 (en) 2010-05-20 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US9496405B2 (en) 2010-05-20 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device including step of adding cation to oxide semiconductor layer
JP5766012B2 (en) 2010-05-21 2015-08-19 株式会社半導体エネルギー研究所 Liquid crystal display
WO2011145484A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20130082091A (en) 2010-05-21 2013-07-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US8629438B2 (en) 2010-05-21 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011145537A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP5714973B2 (en) 2010-05-21 2015-05-07 株式会社半導体エネルギー研究所 Semiconductor device
CN102906882B (en) 2010-05-21 2015-11-25 株式会社半导体能源研究所 Semiconductor device and manufacture method thereof
WO2011145468A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
WO2011145634A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5852793B2 (en) 2010-05-21 2016-02-03 株式会社半導体エネルギー研究所 Method for manufacturing liquid crystal display device
WO2011145707A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
WO2011145633A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011145706A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
KR101872927B1 (en) 2010-05-21 2018-06-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP5749975B2 (en) 2010-05-28 2015-07-15 株式会社半導体エネルギー研究所 Photodetector and touch panel
US8895375B2 (en) 2010-06-01 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Field effect transistor and method for manufacturing the same
WO2011152286A1 (en) 2010-06-04 2011-12-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101894897B1 (en) 2010-06-04 2018-09-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8779433B2 (en) 2010-06-04 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011152254A1 (en) 2010-06-04 2011-12-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011155295A1 (en) 2010-06-10 2011-12-15 Semiconductor Energy Laboratory Co., Ltd. Dc/dc converter, power supply circuit, and semiconductor device
US8610180B2 (en) 2010-06-11 2013-12-17 Semiconductor Energy Laboratory Co., Ltd. Gas sensor and method for manufacturing the gas sensor
WO2011155302A1 (en) 2010-06-11 2011-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011155502A1 (en) 2010-06-11 2011-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5797471B2 (en) 2010-06-16 2015-10-21 株式会社半導体エネルギー研究所 I / O device
JP5823740B2 (en) 2010-06-16 2015-11-25 株式会社半導体エネルギー研究所 I / O device
US9209314B2 (en) 2010-06-16 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Field effect transistor
US8552425B2 (en) 2010-06-18 2013-10-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8637802B2 (en) 2010-06-18 2014-01-28 Semiconductor Energy Laboratory Co., Ltd. Photosensor, semiconductor device including photosensor, and light measurement method using photosensor
WO2011158704A1 (en) 2010-06-18 2011-12-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2011158703A1 (en) 2010-06-18 2011-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011162147A1 (en) 2010-06-23 2011-12-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20120000499A (en) 2010-06-25 2012-01-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Transistor and semiconductor device
US8912016B2 (en) 2010-06-25 2014-12-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method and test method of semiconductor device
WO2011162104A1 (en) 2010-06-25 2011-12-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
US9437454B2 (en) 2010-06-29 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Wiring board, semiconductor device, and manufacturing methods thereof
WO2012002104A1 (en) 2010-06-30 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8441010B2 (en) 2010-07-01 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2012002040A1 (en) 2010-07-01 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Driving method of liquid crystal display device
JP5771079B2 (en) 2010-07-01 2015-08-26 株式会社半導体エネルギー研究所 Imaging device
US8642380B2 (en) 2010-07-02 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8605059B2 (en) 2010-07-02 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Input/output device and driving method thereof
TWI541782B (en) 2010-07-02 2016-07-11 半導體能源研究所股份有限公司 Liquid crystal display device
WO2012002197A1 (en) 2010-07-02 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9336739B2 (en) 2010-07-02 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
CN102959713B (en) 2010-07-02 2017-05-10 株式会社半导体能源研究所 Semiconductor device
WO2012002186A1 (en) 2010-07-02 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5792524B2 (en) 2010-07-02 2015-10-14 株式会社半導体エネルギー研究所 apparatus
KR20230003647A (en) 2010-07-02 2023-01-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
CN103003934B (en) 2010-07-16 2015-07-01 株式会社半导体能源研究所 Semiconductor device
KR101859361B1 (en) 2010-07-16 2018-05-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8785241B2 (en) 2010-07-16 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2012008390A1 (en) 2010-07-16 2012-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8519387B2 (en) 2010-07-26 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing
WO2012014952A1 (en) 2010-07-27 2012-02-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
KR101853516B1 (en) 2010-07-27 2018-04-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI565001B (en) 2010-07-28 2017-01-01 半導體能源研究所股份有限公司 Semiconductor device and method for driving the same
KR101394540B1 (en) * 2010-07-29 2014-05-14 삼성디스플레이 주식회사 Display device and organic light emitting diode display
JP5846789B2 (en) 2010-07-29 2016-01-20 株式会社半導体エネルギー研究所 Semiconductor device
WO2012014786A1 (en) 2010-07-30 2012-02-02 Semiconductor Energy Laboratory Co., Ltd. Semicondcutor device and manufacturing method thereof
US8537600B2 (en) 2010-08-04 2013-09-17 Semiconductor Energy Laboratory Co., Ltd. Low off-state leakage current semiconductor memory device
KR101842181B1 (en) 2010-08-04 2018-03-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8928466B2 (en) 2010-08-04 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5739257B2 (en) 2010-08-05 2015-06-24 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
TWI524347B (en) 2010-08-06 2016-03-01 半導體能源研究所股份有限公司 Semiconductor device and method for driving semiconductor device
US8467232B2 (en) 2010-08-06 2013-06-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8792284B2 (en) 2010-08-06 2014-07-29 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor memory device
TWI688047B (en) 2010-08-06 2020-03-11 半導體能源研究所股份有限公司 Semiconductor device
US8803164B2 (en) 2010-08-06 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Solid-state image sensing device and semiconductor display device
JP5832181B2 (en) 2010-08-06 2015-12-16 株式会社半導体エネルギー研究所 Liquid crystal display
DE112011102644B4 (en) 2010-08-06 2019-12-05 Semiconductor Energy Laboratory Co., Ltd. Integrated semiconductor circuit
TWI545587B (en) 2010-08-06 2016-08-11 半導體能源研究所股份有限公司 Semiconductor device and method for driving semiconductor device
US8467231B2 (en) 2010-08-06 2013-06-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
CN103026416B (en) 2010-08-06 2016-04-27 株式会社半导体能源研究所 Semiconductor device
US8422272B2 (en) 2010-08-06 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
JP5671418B2 (en) 2010-08-06 2015-02-18 株式会社半導体エネルギー研究所 Driving method of semiconductor device
TWI555128B (en) 2010-08-06 2016-10-21 半導體能源研究所股份有限公司 Semiconductor device and driving method thereof
JP5848912B2 (en) 2010-08-16 2016-01-27 株式会社半導体エネルギー研究所 Control circuit for liquid crystal display device, liquid crystal display device, and electronic apparatus including the liquid crystal display device
US9129703B2 (en) 2010-08-16 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor memory device
TWI559409B (en) 2010-08-16 2016-11-21 半導體能源研究所股份有限公司 Manufacturing method of semiconductor device
US9343480B2 (en) 2010-08-16 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI508294B (en) 2010-08-19 2015-11-11 Semiconductor Energy Lab Semiconductor device
US8759820B2 (en) 2010-08-20 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8883555B2 (en) 2010-08-25 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Electronic device, manufacturing method of electronic device, and sputtering target
US8508276B2 (en) 2010-08-25 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including latch circuit
US8685787B2 (en) 2010-08-25 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP2013009285A (en) 2010-08-26 2013-01-10 Semiconductor Energy Lab Co Ltd Signal processing circuit and method of driving the same
JP5727892B2 (en) 2010-08-26 2015-06-03 株式会社半導体エネルギー研究所 Semiconductor device
US9058047B2 (en) 2010-08-26 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8450123B2 (en) 2010-08-27 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Oxygen diffusion evaluation method of oxide film stacked body
JP5864163B2 (en) 2010-08-27 2016-02-17 株式会社半導体エネルギー研究所 Semiconductor device design method
US8603841B2 (en) 2010-08-27 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Manufacturing methods of semiconductor device and light-emitting display device
JP5806043B2 (en) 2010-08-27 2015-11-10 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP5763474B2 (en) 2010-08-27 2015-08-12 株式会社半導体エネルギー研究所 Optical sensor
KR102334169B1 (en) 2010-08-27 2021-12-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Memory device and semiconductor device
JP5674594B2 (en) 2010-08-27 2015-02-25 株式会社半導体エネルギー研究所 Semiconductor device and driving method of semiconductor device
US8593858B2 (en) 2010-08-31 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Driving method of semiconductor device
US8575610B2 (en) 2010-09-02 2013-11-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
US8634228B2 (en) 2010-09-02 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. Driving method of semiconductor device
WO2012029638A1 (en) 2010-09-03 2012-03-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2012029596A1 (en) 2010-09-03 2012-03-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR20130102581A (en) 2010-09-03 2013-09-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Field effect transistor and method for manufacturing semiconductor device
WO2012029612A1 (en) 2010-09-03 2012-03-08 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing semiconductor device
US8520426B2 (en) 2010-09-08 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor device
US8487844B2 (en) 2010-09-08 2013-07-16 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device including the same
JP2012256819A (en) 2010-09-08 2012-12-27 Semiconductor Energy Lab Co Ltd Semiconductor device
US8766253B2 (en) 2010-09-10 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9142568B2 (en) 2010-09-10 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting display device
KR20120026970A (en) 2010-09-10 2012-03-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and light-emitting device
KR101824125B1 (en) 2010-09-10 2018-02-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
US8797487B2 (en) 2010-09-10 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Transistor, liquid crystal display device, and manufacturing method thereof
TWI608486B (en) 2010-09-13 2017-12-11 半導體能源研究所股份有限公司 Semiconductor device
US8664097B2 (en) 2010-09-13 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8647919B2 (en) 2010-09-13 2014-02-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting display device and method for manufacturing the same
KR101952235B1 (en) 2010-09-13 2019-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
US8871565B2 (en) 2010-09-13 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101932576B1 (en) 2010-09-13 2018-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US8592879B2 (en) 2010-09-13 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8835917B2 (en) 2010-09-13 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
JP5815337B2 (en) 2010-09-13 2015-11-17 株式会社半導体エネルギー研究所 Semiconductor device
US9546416B2 (en) 2010-09-13 2017-01-17 Semiconductor Energy Laboratory Co., Ltd. Method of forming crystalline oxide semiconductor film
KR101872926B1 (en) 2010-09-13 2018-06-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP5827520B2 (en) 2010-09-13 2015-12-02 株式会社半導体エネルギー研究所 Semiconductor memory device
US9496743B2 (en) 2010-09-13 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Power receiving device and wireless power feed system
US8546161B2 (en) 2010-09-13 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of thin film transistor and liquid crystal display device
US8558960B2 (en) 2010-09-13 2013-10-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
JP2012256821A (en) 2010-09-13 2012-12-27 Semiconductor Energy Lab Co Ltd Memory device
TWI539453B (en) 2010-09-14 2016-06-21 半導體能源研究所股份有限公司 Memory device and semiconductor device
KR20180124158A (en) 2010-09-15 2018-11-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device and manufacturing method thereof
WO2012035984A1 (en) 2010-09-15 2012-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
JP2012256012A (en) 2010-09-15 2012-12-27 Semiconductor Energy Lab Co Ltd Display device
US9230994B2 (en) 2010-09-15 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
KR101856722B1 (en) 2010-09-22 2018-05-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power-insulated-gate field-effect transistor
US8767443B2 (en) 2010-09-22 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device and method for inspecting the same
US8792260B2 (en) 2010-09-27 2014-07-29 Semiconductor Energy Laboratory Co., Ltd. Rectifier circuit and semiconductor device using the same
TWI574259B (en) 2010-09-29 2017-03-11 半導體能源研究所股份有限公司 Semiconductor memory device and method for driving the same
TWI664631B (en) 2010-10-05 2019-07-01 日商半導體能源研究所股份有限公司 Semiconductor memory device and driving method thereof
TWI556317B (en) 2010-10-07 2016-11-01 半導體能源研究所股份有限公司 Thin film element, semiconductor device, and method for manufacturing the same
US8716646B2 (en) 2010-10-08 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method for operating the same
US8679986B2 (en) 2010-10-14 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
US8803143B2 (en) 2010-10-20 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor including buffer layers with high resistivity
US8546892B2 (en) 2010-10-20 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
TWI543158B (en) 2010-10-25 2016-07-21 半導體能源研究所股份有限公司 Semiconductor memory device and driving method thereof
US8467177B2 (en) 2010-10-29 2013-06-18 Apple Inc. Displays with polarizer windows and opaque masking layers for electronic devices
KR101952456B1 (en) 2010-10-29 2019-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Storage device
US9143668B2 (en) 2010-10-29 2015-09-22 Apple Inc. Camera lens structures and display structures for electronic devices
KR101924231B1 (en) 2010-10-29 2018-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor memory device
JP5771505B2 (en) 2010-10-29 2015-09-02 株式会社半導体エネルギー研究所 Receiver circuit
EP2636674B1 (en) 2010-11-02 2016-04-06 Ube Industries, Ltd. (amide amino alkane) metal compound and method of producing metal-containing thin film using said metal compound
US8916866B2 (en) 2010-11-03 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2012060202A1 (en) 2010-11-05 2012-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8569754B2 (en) 2010-11-05 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP6010291B2 (en) 2010-11-05 2016-10-19 株式会社半導体エネルギー研究所 Driving method of display device
US8957468B2 (en) 2010-11-05 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Variable capacitor and liquid crystal display device
TWI555205B (en) 2010-11-05 2016-10-21 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
US9087744B2 (en) 2010-11-05 2015-07-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving transistor
WO2012060253A1 (en) 2010-11-05 2012-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8902637B2 (en) 2010-11-08 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device comprising inverting amplifier circuit and driving method thereof
TWI654764B (en) 2010-11-11 2019-03-21 日商半導體能源研究所股份有限公司 Semiconductor device and method of manufacturing same
JP5770068B2 (en) 2010-11-12 2015-08-26 株式会社半導体エネルギー研究所 Semiconductor device
US8854865B2 (en) 2010-11-24 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US8936965B2 (en) 2010-11-26 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI525818B (en) 2010-11-30 2016-03-11 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing semiconductor device
US8816425B2 (en) 2010-11-30 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8629496B2 (en) 2010-11-30 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8823092B2 (en) 2010-11-30 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9103724B2 (en) 2010-11-30 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising photosensor comprising oxide semiconductor, method for driving the semiconductor device, method for driving the photosensor, and electronic device
US8809852B2 (en) 2010-11-30 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, semiconductor element, semiconductor device, and method for manufacturing the same
US9034233B2 (en) * 2010-11-30 2015-05-19 Infineon Technologies Ag Method of processing a substrate
US8461630B2 (en) 2010-12-01 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP5908263B2 (en) 2010-12-03 2016-04-26 株式会社半導体エネルギー研究所 DC-DC converter
TWI632551B (en) 2010-12-03 2018-08-11 半導體能源研究所股份有限公司 Integrated circuit, method for driving the same, and semiconductor device
CN103339715B (en) 2010-12-03 2016-01-13 株式会社半导体能源研究所 Oxide semiconductor film and semiconductor device
JP5856827B2 (en) 2010-12-09 2016-02-10 株式会社半導体エネルギー研究所 Semiconductor device
TWI534905B (en) 2010-12-10 2016-05-21 半導體能源研究所股份有限公司 Display device and method for manufacturing the same
JP2012256020A (en) 2010-12-15 2012-12-27 Semiconductor Energy Lab Co Ltd Semiconductor device and driving method for the same
US8730416B2 (en) 2010-12-17 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8894825B2 (en) 2010-12-17 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing the same, manufacturing semiconductor device
JP2012142562A (en) 2010-12-17 2012-07-26 Semiconductor Energy Lab Co Ltd Semiconductor memory device
US9202822B2 (en) 2010-12-17 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9024317B2 (en) 2010-12-24 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit, method for driving the same, storage device, register circuit, display device, and electronic device
US9443984B2 (en) 2010-12-28 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP5973165B2 (en) 2010-12-28 2016-08-23 株式会社半導体エネルギー研究所 Semiconductor device
JP6030298B2 (en) 2010-12-28 2016-11-24 株式会社半導体エネルギー研究所 Buffer storage device and signal processing circuit
JP5852874B2 (en) 2010-12-28 2016-02-03 株式会社半導体エネルギー研究所 Semiconductor device
WO2012090799A1 (en) 2010-12-28 2012-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2012090973A1 (en) 2010-12-28 2012-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8941112B2 (en) 2010-12-28 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5731369B2 (en) 2010-12-28 2015-06-10 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP5975635B2 (en) 2010-12-28 2016-08-23 株式会社半導体エネルギー研究所 Semiconductor device
US9048142B2 (en) 2010-12-28 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5864054B2 (en) 2010-12-28 2016-02-17 株式会社半導体エネルギー研究所 Semiconductor device
JP2012151453A (en) 2010-12-28 2012-08-09 Semiconductor Energy Lab Co Ltd Semiconductor device and driving method of the same
JP5993141B2 (en) 2010-12-28 2016-09-14 株式会社半導体エネルギー研究所 Storage device
TWI562142B (en) 2011-01-05 2016-12-11 Semiconductor Energy Lab Co Ltd Storage element, storage device, and signal processing circuit
US8536571B2 (en) 2011-01-12 2013-09-17 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP5982125B2 (en) 2011-01-12 2016-08-31 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US8921948B2 (en) 2011-01-12 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI535032B (en) 2011-01-12 2016-05-21 半導體能源研究所股份有限公司 Method for manufacturing semiconductor device
TWI570809B (en) 2011-01-12 2017-02-11 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
US8575678B2 (en) 2011-01-13 2013-11-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device with floating gate
US8421071B2 (en) 2011-01-13 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Memory device
TWI572009B (en) 2011-01-14 2017-02-21 半導體能源研究所股份有限公司 Semiconductor memory device
KR102026718B1 (en) 2011-01-14 2019-09-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Memory device, semiconductor device, and detecting method
JP5859839B2 (en) 2011-01-14 2016-02-16 株式会社半導体エネルギー研究所 Storage element driving method and storage element
KR101942701B1 (en) 2011-01-20 2019-01-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor element and semiconductor device
TWI602303B (en) 2011-01-26 2017-10-11 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
TWI570920B (en) 2011-01-26 2017-02-11 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
WO2012102182A1 (en) 2011-01-26 2012-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5798933B2 (en) 2011-01-26 2015-10-21 株式会社半導体エネルギー研究所 Signal processing circuit
TWI564890B (en) 2011-01-26 2017-01-01 半導體能源研究所股份有限公司 Memory device and semiconductor device
TWI620328B (en) 2011-01-26 2018-04-01 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
WO2012102183A1 (en) 2011-01-26 2012-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR20130140824A (en) 2011-01-27 2013-12-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI525619B (en) 2011-01-27 2016-03-11 半導體能源研究所股份有限公司 Memory circuit
KR101899375B1 (en) 2011-01-28 2018-09-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102233959B1 (en) 2011-01-28 2021-03-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device and semiconductor device
US8634230B2 (en) 2011-01-28 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
US9494829B2 (en) 2011-01-28 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and liquid crystal display device containing the same
CN102169552A (en) * 2011-01-28 2011-08-31 上海集成电路研发中心有限公司 Radio frequency identification tag and manufacturing method thereof
US8513773B2 (en) 2011-02-02 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Capacitor and semiconductor device including dielectric and N-type semiconductor
US9799773B2 (en) 2011-02-02 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device
JP6000560B2 (en) 2011-02-02 2016-09-28 株式会社半導体エネルギー研究所 Semiconductor memory device
TWI520273B (en) 2011-02-02 2016-02-01 半導體能源研究所股份有限公司 Semiconductor memory device
US9431400B2 (en) 2011-02-08 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device and method for manufacturing the same
US8787083B2 (en) 2011-02-10 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Memory circuit
TWI569041B (en) 2011-02-14 2017-02-01 半導體能源研究所股份有限公司 Display device
KR101899880B1 (en) 2011-02-17 2018-09-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Programmable lsi
US8975680B2 (en) 2011-02-17 2015-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device and method manufacturing semiconductor memory device
US8643007B2 (en) 2011-02-23 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8709920B2 (en) 2011-02-24 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9443455B2 (en) 2011-02-25 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Display device having a plurality of pixels
US9691772B2 (en) 2011-03-03 2017-06-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device including memory cell which includes transistor and capacitor
JP5898527B2 (en) 2011-03-04 2016-04-06 株式会社半導体エネルギー研究所 Semiconductor device
US9023684B2 (en) 2011-03-04 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8841664B2 (en) 2011-03-04 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8785933B2 (en) 2011-03-04 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8659015B2 (en) 2011-03-04 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9646829B2 (en) 2011-03-04 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8659957B2 (en) 2011-03-07 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
US8625085B2 (en) 2011-03-08 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Defect evaluation method for semiconductor
US9099437B2 (en) 2011-03-08 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5827145B2 (en) 2011-03-08 2015-12-02 株式会社半導体エネルギー研究所 Signal processing circuit
US8772849B2 (en) 2011-03-10 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US8541781B2 (en) 2011-03-10 2013-09-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2012121265A1 (en) 2011-03-10 2012-09-13 Semiconductor Energy Laboratory Co., Ltd. Memory device and method for manufacturing the same
US8760903B2 (en) 2011-03-11 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Storage circuit
TWI521612B (en) 2011-03-11 2016-02-11 半導體能源研究所股份有限公司 Method of manufacturing semiconductor device
TWI602249B (en) 2011-03-11 2017-10-11 半導體能源研究所股份有限公司 Method of manufacturing semiconductor device
JP2012209543A (en) 2011-03-11 2012-10-25 Semiconductor Energy Lab Co Ltd Semiconductor device
JP5933300B2 (en) 2011-03-16 2016-06-08 株式会社半導体エネルギー研究所 Semiconductor device
JP5933897B2 (en) 2011-03-18 2016-06-15 株式会社半導体エネルギー研究所 Semiconductor device
KR101900525B1 (en) 2011-03-18 2018-09-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor film, semiconductor device, and manufacturing method of semiconductor device
US8859330B2 (en) 2011-03-23 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5839474B2 (en) 2011-03-24 2016-01-06 株式会社半導体エネルギー研究所 Signal processing circuit
TWI538215B (en) 2011-03-25 2016-06-11 半導體能源研究所股份有限公司 Field-effect transistor, and memory and semiconductor circuit including the same
US9219159B2 (en) 2011-03-25 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Method for forming oxide semiconductor film and method for manufacturing semiconductor device
US8987728B2 (en) 2011-03-25 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US9012904B2 (en) 2011-03-25 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI545652B (en) 2011-03-25 2016-08-11 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
US8686416B2 (en) 2011-03-25 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US8956944B2 (en) 2011-03-25 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6053098B2 (en) 2011-03-28 2016-12-27 株式会社半導体エネルギー研究所 Semiconductor device
US8927329B2 (en) 2011-03-30 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor device with improved electronic properties
JP5879165B2 (en) 2011-03-30 2016-03-08 株式会社半導体エネルギー研究所 Semiconductor device
TWI567735B (en) 2011-03-31 2017-01-21 半導體能源研究所股份有限公司 Memory circuit, memory unit, and signal processing circuit
US8686486B2 (en) 2011-03-31 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Memory device
US9082860B2 (en) 2011-03-31 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5982147B2 (en) 2011-04-01 2016-08-31 株式会社半導体エネルギー研究所 Light emitting device
US8541266B2 (en) 2011-04-01 2013-09-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9960278B2 (en) 2011-04-06 2018-05-01 Yuhei Sato Manufacturing method of semiconductor device
TWI567736B (en) 2011-04-08 2017-01-21 半導體能源研究所股份有限公司 Memory element and signal processing circuit
US8743590B2 (en) 2011-04-08 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device using the same
US9093538B2 (en) 2011-04-08 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9012905B2 (en) 2011-04-08 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor comprising oxide semiconductor and method for manufacturing the same
JP5883699B2 (en) 2011-04-13 2016-03-15 株式会社半導体エネルギー研究所 Programmable LSI
US9478668B2 (en) 2011-04-13 2016-10-25 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US8854867B2 (en) 2011-04-13 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Memory device and driving method of the memory device
US9070776B2 (en) 2011-04-15 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US8878174B2 (en) 2011-04-15 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, memory circuit, integrated circuit, and driving method of the integrated circuit
US8779488B2 (en) 2011-04-15 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US8878270B2 (en) 2011-04-15 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
JP6001900B2 (en) 2011-04-21 2016-10-05 株式会社半導体エネルギー研究所 Signal processing circuit
US8916868B2 (en) 2011-04-22 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9006803B2 (en) 2011-04-22 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing thereof
US9331206B2 (en) 2011-04-22 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
TWI548057B (en) 2011-04-22 2016-09-01 半導體能源研究所股份有限公司 Semiconductor device
US8932913B2 (en) 2011-04-22 2015-01-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US10079053B2 (en) 2011-04-22 2018-09-18 Semiconductor Energy Laboratory Co., Ltd. Memory element and memory device
US8809854B2 (en) 2011-04-22 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8797788B2 (en) 2011-04-22 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8878288B2 (en) 2011-04-22 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN105931967B (en) 2011-04-27 2019-05-03 株式会社半导体能源研究所 The manufacturing method of semiconductor device
US9935622B2 (en) 2011-04-28 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Comparator and semiconductor device including comparator
KR101919056B1 (en) 2011-04-28 2018-11-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor circuit
US8681533B2 (en) 2011-04-28 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Memory circuit, signal processing circuit, and electronic device
US8729545B2 (en) 2011-04-28 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US9111795B2 (en) 2011-04-29 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with capacitor connected to memory element through oxide semiconductor film
US8446171B2 (en) 2011-04-29 2013-05-21 Semiconductor Energy Laboratory Co., Ltd. Signal processing unit
KR101963457B1 (en) 2011-04-29 2019-03-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and driving method thereof
TWI525615B (en) 2011-04-29 2016-03-11 半導體能源研究所股份有限公司 Semiconductor storage device
US8476927B2 (en) 2011-04-29 2013-07-02 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
US9614094B2 (en) 2011-04-29 2017-04-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor layer and method for driving the same
US8848464B2 (en) 2011-04-29 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
US8785923B2 (en) 2011-04-29 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TW202230814A (en) 2011-05-05 2022-08-01 日商半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
US9117701B2 (en) 2011-05-06 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8809928B2 (en) 2011-05-06 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, memory device, and method for manufacturing the semiconductor device
US8709922B2 (en) 2011-05-06 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2012153697A1 (en) 2011-05-06 2012-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
TWI568181B (en) 2011-05-06 2017-01-21 半導體能源研究所股份有限公司 Logic circuit and semiconductor device
WO2012153473A1 (en) 2011-05-06 2012-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9443844B2 (en) 2011-05-10 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Gain cell semiconductor memory device and driving method thereof
TWI541978B (en) 2011-05-11 2016-07-11 半導體能源研究所股份有限公司 Semiconductor device and method for driving semiconductor device
US8946066B2 (en) 2011-05-11 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
TWI557711B (en) 2011-05-12 2016-11-11 半導體能源研究所股份有限公司 Method for driving display device
US8847233B2 (en) 2011-05-12 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a trenched insulating layer coated with an oxide semiconductor film
WO2012157533A1 (en) 2011-05-13 2012-11-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9093539B2 (en) 2011-05-13 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2012157472A1 (en) 2011-05-13 2012-11-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5886128B2 (en) 2011-05-13 2016-03-16 株式会社半導体エネルギー研究所 Semiconductor device
US9466618B2 (en) 2011-05-13 2016-10-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including two thin film transistors and method of manufacturing the same
KR101921772B1 (en) 2011-05-13 2018-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9397222B2 (en) 2011-05-13 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP6013773B2 (en) 2011-05-13 2016-10-25 株式会社半導体エネルギー研究所 Semiconductor device
US9105749B2 (en) 2011-05-13 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI536502B (en) 2011-05-13 2016-06-01 半導體能源研究所股份有限公司 Memory circuit and electronic device
US9048788B2 (en) 2011-05-13 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a photoelectric conversion portion
US9954110B2 (en) 2011-05-13 2018-04-24 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device
KR101946360B1 (en) 2011-05-16 2019-02-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Programmable logic device
TWI570891B (en) 2011-05-17 2017-02-11 半導體能源研究所股份有限公司 Semiconductor device
TWI571058B (en) 2011-05-18 2017-02-11 半導體能源研究所股份有限公司 Semiconductor device and method of driving semiconductor device
TWI552150B (en) 2011-05-18 2016-10-01 半導體能源研究所股份有限公司 Semiconductor storage device
KR102081792B1 (en) 2011-05-19 2020-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Arithmetic circuit and method of driving the same
KR102093909B1 (en) 2011-05-19 2020-03-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Circuit and method of driving the same
KR101991735B1 (en) 2011-05-19 2019-06-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor integrated circuit
US8779799B2 (en) 2011-05-19 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Logic circuit
US8709889B2 (en) 2011-05-19 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device and manufacturing method thereof
US8837203B2 (en) 2011-05-19 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6006975B2 (en) 2011-05-19 2016-10-12 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US8581625B2 (en) 2011-05-19 2013-11-12 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
JP6013682B2 (en) 2011-05-20 2016-10-25 株式会社半導体エネルギー研究所 Driving method of semiconductor device
JP5820335B2 (en) 2011-05-20 2015-11-24 株式会社半導体エネルギー研究所 Semiconductor device
US9336845B2 (en) 2011-05-20 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Register circuit including a volatile memory and a nonvolatile memory
TWI614995B (en) 2011-05-20 2018-02-11 半導體能源研究所股份有限公司 Phase locked loop and semiconductor device using the same
US8508256B2 (en) 2011-05-20 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit
JP6013680B2 (en) 2011-05-20 2016-10-25 株式会社半導体エネルギー研究所 Semiconductor device
JP5947099B2 (en) 2011-05-20 2016-07-06 株式会社半導体エネルギー研究所 Semiconductor device
TWI570719B (en) 2011-05-20 2017-02-11 半導體能源研究所股份有限公司 Memory device and signal processing circuit
KR101922397B1 (en) 2011-05-20 2018-11-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2012161059A1 (en) 2011-05-20 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
JP6082189B2 (en) 2011-05-20 2017-02-15 株式会社半導体エネルギー研究所 Storage device and signal processing circuit
TWI559683B (en) 2011-05-20 2016-11-21 半導體能源研究所股份有限公司 Semiconductor integrated circuit
CN102789808B (en) 2011-05-20 2018-03-06 株式会社半导体能源研究所 Storage arrangement and the method for driving storage arrangement
JP5892852B2 (en) 2011-05-20 2016-03-23 株式会社半導体エネルギー研究所 Programmable logic device
JP5886496B2 (en) 2011-05-20 2016-03-16 株式会社半導体エネルギー研究所 Semiconductor device
JP5820336B2 (en) 2011-05-20 2015-11-24 株式会社半導体エネルギー研究所 Semiconductor device
JP5951351B2 (en) 2011-05-20 2016-07-13 株式会社半導体エネルギー研究所 Adder and full adder
TWI557739B (en) 2011-05-20 2016-11-11 半導體能源研究所股份有限公司 Semiconductor integrated circuit
JP5936908B2 (en) 2011-05-20 2016-06-22 株式会社半導体エネルギー研究所 Parity bit output circuit and parity check circuit
JP6030334B2 (en) 2011-05-20 2016-11-24 株式会社半導体エネルギー研究所 Storage device
JP6091083B2 (en) 2011-05-20 2017-03-08 株式会社半導体エネルギー研究所 Storage device
US20120298998A1 (en) 2011-05-25 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Method for forming oxide semiconductor film, semiconductor device, and method for manufacturing semiconductor device
WO2012161003A1 (en) 2011-05-26 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Divider circuit and semiconductor device using the same
US9171840B2 (en) 2011-05-26 2015-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8610482B2 (en) 2011-05-27 2013-12-17 Semiconductor Energy Laboratory Co., Ltd. Trimming circuit and method for driving trimming circuit
US9467047B2 (en) 2011-05-31 2016-10-11 Semiconductor Energy Laboratory Co., Ltd. DC-DC converter, power source circuit, and semiconductor device
JP5912844B2 (en) 2011-05-31 2016-04-27 株式会社半導体エネルギー研究所 Programmable logic device
US8669781B2 (en) 2011-05-31 2014-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20140007495A (en) 2011-06-08 2014-01-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Sputtering target, method for manufacturing sputtering target, and method for forming thin film
JP2013016243A (en) 2011-06-09 2013-01-24 Semiconductor Energy Lab Co Ltd Memory device
JP6104522B2 (en) 2011-06-10 2017-03-29 株式会社半導体エネルギー研究所 Semiconductor device
JP6005401B2 (en) 2011-06-10 2016-10-12 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US8891285B2 (en) 2011-06-10 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US8958263B2 (en) 2011-06-10 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9112036B2 (en) 2011-06-10 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8804405B2 (en) 2011-06-16 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
TWI557910B (en) 2011-06-16 2016-11-11 半導體能源研究所股份有限公司 Semiconductor device and a method for manufacturing the same
US9299852B2 (en) 2011-06-16 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20130007426A (en) 2011-06-17 2013-01-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US8901554B2 (en) 2011-06-17 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including channel formation region including oxide semiconductor
SG10201505586UA (en) 2011-06-17 2015-08-28 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
US9166055B2 (en) 2011-06-17 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9099885B2 (en) 2011-06-17 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Wireless power feeding system
US8673426B2 (en) 2011-06-29 2014-03-18 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, method of manufacturing the driver circuit, and display device including the driver circuit
US8878589B2 (en) 2011-06-30 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US9130044B2 (en) 2011-07-01 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8952377B2 (en) 2011-07-08 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9496138B2 (en) 2011-07-08 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor film, method for manufacturing semiconductor device, and semiconductor device
US9490241B2 (en) 2011-07-08 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a first inverter and a second inverter
US9214474B2 (en) 2011-07-08 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9385238B2 (en) 2011-07-08 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Transistor using oxide semiconductor
KR102014876B1 (en) 2011-07-08 2019-08-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US8748886B2 (en) 2011-07-08 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
TWI565067B (en) 2011-07-08 2017-01-01 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
JP2013042117A (en) 2011-07-15 2013-02-28 Semiconductor Energy Lab Co Ltd Semiconductor device
US8836626B2 (en) 2011-07-15 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
US8847220B2 (en) 2011-07-15 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9200952B2 (en) 2011-07-15 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a photodetector and an analog arithmetic circuit
US8946812B2 (en) 2011-07-21 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102168439B1 (en) 2011-07-22 2020-10-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device
US8643008B2 (en) 2011-07-22 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9012993B2 (en) 2011-07-22 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8716073B2 (en) 2011-07-22 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Method for processing oxide semiconductor film and method for manufacturing semiconductor device
JP6013685B2 (en) 2011-07-22 2016-10-25 株式会社半導体エネルギー研究所 Semiconductor device
US8994019B2 (en) 2011-08-05 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8718224B2 (en) 2011-08-05 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
JP6006572B2 (en) 2011-08-18 2016-10-12 株式会社半導体エネルギー研究所 Semiconductor device
TWI575494B (en) 2011-08-19 2017-03-21 半導體能源研究所股份有限公司 Method for driving semiconductor device
JP6128775B2 (en) 2011-08-19 2017-05-17 株式会社半導体エネルギー研究所 Semiconductor device
JP6116149B2 (en) 2011-08-24 2017-04-19 株式会社半導体エネルギー研究所 Semiconductor device
TWI703708B (en) 2011-08-29 2020-09-01 日商半導體能源研究所股份有限公司 Semiconductor device
US9252279B2 (en) 2011-08-31 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9660092B2 (en) 2011-08-31 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor thin film transistor including oxygen release layer
JP6016532B2 (en) 2011-09-07 2016-10-26 株式会社半導体エネルギー研究所 Semiconductor device
JP6050054B2 (en) 2011-09-09 2016-12-21 株式会社半導体エネルギー研究所 Semiconductor device
US8802493B2 (en) 2011-09-13 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of oxide semiconductor device
JP5825744B2 (en) 2011-09-15 2015-12-02 株式会社半導体エネルギー研究所 Power insulated gate field effect transistor
WO2013039126A1 (en) 2011-09-16 2013-03-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8952379B2 (en) 2011-09-16 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5832399B2 (en) 2011-09-16 2015-12-16 株式会社半導体エネルギー研究所 Light emitting device
US9082663B2 (en) 2011-09-16 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN103022012B (en) 2011-09-21 2017-03-01 株式会社半导体能源研究所 Semiconductor storage
KR101976228B1 (en) 2011-09-22 2019-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Photodetector and method for driving photodetector
WO2013042562A1 (en) 2011-09-22 2013-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9431545B2 (en) 2011-09-23 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8841675B2 (en) 2011-09-23 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Minute transistor
KR102108572B1 (en) 2011-09-26 2020-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
JP2013084333A (en) 2011-09-28 2013-05-09 Semiconductor Energy Lab Co Ltd Shift register circuit
SG11201505099TA (en) 2011-09-29 2015-08-28 Semiconductor Energy Lab Semiconductor device
KR102504604B1 (en) 2011-09-29 2023-02-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8716708B2 (en) 2011-09-29 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101506303B1 (en) 2011-09-29 2015-03-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
JP5806905B2 (en) 2011-09-30 2015-11-10 株式会社半導体エネルギー研究所 Semiconductor device
US8982607B2 (en) 2011-09-30 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Memory element and signal processing circuit
US20130087784A1 (en) 2011-10-05 2013-04-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2013093565A (en) 2011-10-07 2013-05-16 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2013093561A (en) 2011-10-07 2013-05-16 Semiconductor Energy Lab Co Ltd Oxide semiconductor film and semiconductor device
JP6022880B2 (en) 2011-10-07 2016-11-09 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
US9117916B2 (en) 2011-10-13 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor film
JP5912394B2 (en) 2011-10-13 2016-04-27 株式会社半導体エネルギー研究所 Semiconductor device
JP6026839B2 (en) 2011-10-13 2016-11-16 株式会社半導体エネルギー研究所 Semiconductor device
US8637864B2 (en) 2011-10-13 2014-01-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US9287405B2 (en) 2011-10-13 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor
US9018629B2 (en) 2011-10-13 2015-04-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
KR20130040706A (en) 2011-10-14 2013-04-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method of manufacturing semiconductor device
CN107068765B (en) 2011-10-14 2021-03-09 株式会社半导体能源研究所 Semiconductor device with a plurality of semiconductor chips
KR20130043063A (en) 2011-10-19 2013-04-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
TWI567985B (en) 2011-10-21 2017-01-21 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
KR101976212B1 (en) 2011-10-24 2019-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
JP6045285B2 (en) 2011-10-24 2016-12-14 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP6226518B2 (en) 2011-10-24 2017-11-08 株式会社半導体エネルギー研究所 Semiconductor device
JP6082562B2 (en) 2011-10-27 2017-02-15 株式会社半導体エネルギー研究所 Semiconductor device
KR20130046357A (en) 2011-10-27 2013-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2013061895A1 (en) 2011-10-28 2013-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8604472B2 (en) 2011-11-09 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5933895B2 (en) 2011-11-10 2016-06-15 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
US8796682B2 (en) 2011-11-11 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
JP6122275B2 (en) 2011-11-11 2017-04-26 株式会社半導体エネルギー研究所 Display device
JP6076038B2 (en) 2011-11-11 2017-02-08 株式会社半導体エネルギー研究所 Method for manufacturing display device
US8878177B2 (en) 2011-11-11 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
CN103918025B (en) 2011-11-11 2016-12-21 株式会社半导体能源研究所 Signal-line driving circuit and liquid crystal indicator
US9082861B2 (en) 2011-11-11 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Transistor with oxide semiconductor channel having protective layer
US8969130B2 (en) 2011-11-18 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Insulating film, formation method thereof, semiconductor device, and manufacturing method thereof
US10026847B2 (en) 2011-11-18 2018-07-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, method for manufacturing semiconductor element, and semiconductor device including semiconductor element
US8962386B2 (en) 2011-11-25 2015-02-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8829528B2 (en) 2011-11-25 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including groove portion extending beyond pixel electrode
JP6099368B2 (en) 2011-11-25 2017-03-22 株式会社半導体エネルギー研究所 Storage device
US8951899B2 (en) 2011-11-25 2015-02-10 Semiconductor Energy Laboratory Method for manufacturing semiconductor device
US8772094B2 (en) 2011-11-25 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9057126B2 (en) 2011-11-29 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target and method for manufacturing semiconductor device
CN103137701B (en) 2011-11-30 2018-01-19 株式会社半导体能源研究所 Transistor and semiconductor device
KR102072244B1 (en) 2011-11-30 2020-01-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
TWI588910B (en) 2011-11-30 2017-06-21 半導體能源研究所股份有限公司 Method for manufacturing semiconductor device
US9076871B2 (en) 2011-11-30 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20130137232A1 (en) 2011-11-30 2013-05-30 Semiconductor Energy Laboratory Co., Ltd. Method for forming oxide semiconductor film and method for manufacturing semiconductor device
TWI639150B (en) 2011-11-30 2018-10-21 日商半導體能源研究所股份有限公司 Semiconductor display device
US8981367B2 (en) 2011-12-01 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI621185B (en) 2011-12-01 2018-04-11 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
JP2013137853A (en) 2011-12-02 2013-07-11 Semiconductor Energy Lab Co Ltd Storage device and driving method thereof
JP6050662B2 (en) 2011-12-02 2016-12-21 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
KR20140101817A (en) 2011-12-02 2014-08-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US9257422B2 (en) 2011-12-06 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Signal processing circuit and method for driving signal processing circuit
JP6081171B2 (en) 2011-12-09 2017-02-15 株式会社半導体エネルギー研究所 Storage device
US10002968B2 (en) 2011-12-14 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the same
JP6105266B2 (en) 2011-12-15 2017-03-29 株式会社半導体エネルギー研究所 Storage device
WO2013089115A1 (en) 2011-12-15 2013-06-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5409759B2 (en) * 2011-12-20 2014-02-05 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2013149953A (en) 2011-12-20 2013-08-01 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing semiconductor device
US8785258B2 (en) 2011-12-20 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2013130802A (en) 2011-12-22 2013-07-04 Semiconductor Energy Lab Co Ltd Semiconductor device, image display device, storage device, and electronic apparatus
US8748240B2 (en) 2011-12-22 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8907392B2 (en) 2011-12-22 2014-12-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device including stacked sub memory cells
JP6033071B2 (en) 2011-12-23 2016-11-30 株式会社半導体エネルギー研究所 Semiconductor device
US8704221B2 (en) 2011-12-23 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6053490B2 (en) 2011-12-23 2016-12-27 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
TWI569446B (en) 2011-12-23 2017-02-01 半導體能源研究所股份有限公司 Semiconductor element, method for manufacturing the semiconductor element, and semiconductor device including the semiconductor element
TWI580189B (en) 2011-12-23 2017-04-21 半導體能源研究所股份有限公司 Level-shift circuit and semiconductor integrated circuit
WO2013094547A1 (en) 2011-12-23 2013-06-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8796683B2 (en) 2011-12-23 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6012450B2 (en) 2011-12-23 2016-10-25 株式会社半導体エネルギー研究所 Driving method of semiconductor device
WO2013099537A1 (en) 2011-12-26 2013-07-04 Semiconductor Energy Laboratory Co., Ltd. Motion recognition device
TWI584383B (en) 2011-12-27 2017-05-21 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
KR102100425B1 (en) 2011-12-27 2020-04-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
KR102103913B1 (en) 2012-01-10 2020-04-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
US8969867B2 (en) 2012-01-18 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2013168926A (en) 2012-01-18 2013-08-29 Semiconductor Energy Lab Co Ltd Circuit, sensor circuit, and semiconductor device using the sensor circuit
US9040981B2 (en) 2012-01-20 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9099560B2 (en) 2012-01-20 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102296696B1 (en) 2012-01-23 2021-09-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9653614B2 (en) 2012-01-23 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20220088814A (en) 2012-01-25 2022-06-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
US8956912B2 (en) 2012-01-26 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9006733B2 (en) 2012-01-26 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing thereof
TWI642193B (en) 2012-01-26 2018-11-21 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
JP6091905B2 (en) 2012-01-26 2017-03-08 株式会社半導体エネルギー研究所 Semiconductor device
US9419146B2 (en) 2012-01-26 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI561951B (en) 2012-01-30 2016-12-11 Semiconductor Energy Lab Co Ltd Power supply circuit
TWI604609B (en) 2012-02-02 2017-11-01 半導體能源研究所股份有限公司 Semiconductor device
KR102101167B1 (en) 2012-02-03 2020-04-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9196741B2 (en) 2012-02-03 2015-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9362417B2 (en) 2012-02-03 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8916424B2 (en) 2012-02-07 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9859114B2 (en) 2012-02-08 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device with an oxygen-controlling insulating layer
US20130207111A1 (en) 2012-02-09 2013-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including semiconductor device, electronic device including semiconductor device, and method for manufacturing semiconductor device
JP5981157B2 (en) 2012-02-09 2016-08-31 株式会社半導体エネルギー研究所 Semiconductor device
JP6175244B2 (en) * 2012-02-09 2017-08-02 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
US9112037B2 (en) 2012-02-09 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6125850B2 (en) 2012-02-09 2017-05-10 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
US8817516B2 (en) 2012-02-17 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Memory circuit and semiconductor device
JP2014063557A (en) 2012-02-24 2014-04-10 Semiconductor Energy Lab Co Ltd Storage element and semiconductor element
US20130221345A1 (en) 2012-02-28 2013-08-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8988152B2 (en) 2012-02-29 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9312257B2 (en) 2012-02-29 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6151530B2 (en) 2012-02-29 2017-06-21 株式会社半導体エネルギー研究所 Image sensor, camera, and surveillance system
US9553200B2 (en) 2012-02-29 2017-01-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2013183001A (en) 2012-03-01 2013-09-12 Semiconductor Energy Lab Co Ltd Semiconductor device
US8975917B2 (en) 2012-03-01 2015-03-10 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
JP6046514B2 (en) 2012-03-01 2016-12-14 株式会社半導体エネルギー研究所 Semiconductor device
US9735280B2 (en) 2012-03-02 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing semiconductor device, and method for forming oxide film
US9287370B2 (en) 2012-03-02 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Memory device comprising a transistor including an oxide semiconductor and semiconductor device including the same
US9176571B2 (en) 2012-03-02 2015-11-03 Semiconductor Energy Laboratories Co., Ltd. Microprocessor and method for driving microprocessor
US8754693B2 (en) 2012-03-05 2014-06-17 Semiconductor Energy Laboratory Co., Ltd. Latch circuit and semiconductor device
JP6100559B2 (en) 2012-03-05 2017-03-22 株式会社半導体エネルギー研究所 Semiconductor memory device
US8995218B2 (en) 2012-03-07 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8994152B2 (en) * 2012-03-08 2015-03-31 Polar Semiconductor, Llc Metal shield for integrated circuits
US8981370B2 (en) 2012-03-08 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2013133143A1 (en) 2012-03-09 2013-09-12 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor device
KR20210078571A (en) 2012-03-13 2021-06-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and method for driving the same
US9058892B2 (en) 2012-03-14 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and shift register
JP6168795B2 (en) 2012-03-14 2017-07-26 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9117409B2 (en) 2012-03-14 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting display device with transistor and capacitor discharging gate of driving electrode and oxide semiconductor layer
KR102108248B1 (en) 2012-03-14 2020-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor film, transistor, and semiconductor device
US9541386B2 (en) 2012-03-21 2017-01-10 Semiconductor Energy Laboratory Co., Ltd. Distance measurement device and distance measurement system
US9324449B2 (en) 2012-03-28 2016-04-26 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, signal processing unit having the driver circuit, method for manufacturing the signal processing unit, and display device
US9349849B2 (en) 2012-03-28 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device including the semiconductor device
JP6169376B2 (en) 2012-03-28 2017-07-26 株式会社半導体エネルギー研究所 Battery management unit, protection circuit, power storage device
KR102044725B1 (en) 2012-03-29 2019-11-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power supply control device
JP6139187B2 (en) 2012-03-29 2017-05-31 株式会社半導体エネルギー研究所 Semiconductor device
JP2013229013A (en) 2012-03-29 2013-11-07 Semiconductor Energy Lab Co Ltd Array controller and storage system
US9786793B2 (en) 2012-03-29 2017-10-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor layer including regions with different concentrations of resistance-reducing elements
US8941113B2 (en) 2012-03-30 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, semiconductor device, and manufacturing method of semiconductor element
US8999773B2 (en) 2012-04-05 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Processing method of stacked-layer film and manufacturing method of semiconductor device
US9793444B2 (en) 2012-04-06 2017-10-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US8947155B2 (en) 2012-04-06 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Solid-state relay
US9711110B2 (en) 2012-04-06 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Display device comprising grayscale conversion portion and display portion
US8901556B2 (en) 2012-04-06 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Insulating film, method for manufacturing semiconductor device, and semiconductor device
JP5975907B2 (en) 2012-04-11 2016-08-23 株式会社半導体エネルギー研究所 Semiconductor device
US9276121B2 (en) 2012-04-12 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9208849B2 (en) 2012-04-12 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving semiconductor device, and electronic device
JP6059566B2 (en) 2012-04-13 2017-01-11 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9030232B2 (en) 2012-04-13 2015-05-12 Semiconductor Energy Laboratory Co., Ltd. Isolator circuit and semiconductor device
JP6128906B2 (en) 2012-04-13 2017-05-17 株式会社半導体エネルギー研究所 Semiconductor device
KR102330543B1 (en) 2012-04-13 2021-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP6143423B2 (en) 2012-04-16 2017-06-07 株式会社半導体エネルギー研究所 Manufacturing method of semiconductor device
JP6076612B2 (en) 2012-04-17 2017-02-08 株式会社半導体エネルギー研究所 Semiconductor device
JP6001308B2 (en) 2012-04-17 2016-10-05 株式会社半導体エネルギー研究所 Semiconductor device
US9219164B2 (en) 2012-04-20 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide semiconductor channel
US9029863B2 (en) 2012-04-20 2015-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9006024B2 (en) 2012-04-25 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9236408B2 (en) 2012-04-25 2016-01-12 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device including photodiode
US9230683B2 (en) 2012-04-25 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
JP6199583B2 (en) 2012-04-27 2017-09-20 株式会社半導体エネルギー研究所 Semiconductor device
US9285848B2 (en) 2012-04-27 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Power reception control device, power reception device, power transmission and reception system, and electronic device
US8860022B2 (en) 2012-04-27 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US9331689B2 (en) 2012-04-27 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Power supply circuit and semiconductor device including the same
US9048323B2 (en) 2012-04-30 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6228381B2 (en) 2012-04-30 2017-11-08 株式会社半導体エネルギー研究所 Semiconductor device
JP6100071B2 (en) 2012-04-30 2017-03-22 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP6035195B2 (en) 2012-05-01 2016-11-30 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9703704B2 (en) 2012-05-01 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9007090B2 (en) 2012-05-01 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Method of driving semiconductor device
DE112013002281T5 (en) 2012-05-02 2015-03-05 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
JP6243136B2 (en) 2012-05-02 2017-12-06 株式会社半導体エネルギー研究所 Switching converter
US8866510B2 (en) 2012-05-02 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6100076B2 (en) 2012-05-02 2017-03-22 株式会社半導体エネルギー研究所 Processor
KR102025722B1 (en) 2012-05-02 2019-09-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Temperature sensor circuit and semiconductor device including temperature sensor circuit
US9261943B2 (en) 2012-05-02 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
JP6227890B2 (en) 2012-05-02 2017-11-08 株式会社半導体エネルギー研究所 Signal processing circuit and control circuit
KR20130125717A (en) 2012-05-09 2013-11-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for driving the same
KR102069158B1 (en) 2012-05-10 2020-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for forming wiring, semiconductor device, and method for manufacturing semiconductor device
KR102173074B1 (en) 2012-05-10 2020-11-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102295737B1 (en) 2012-05-10 2021-09-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
DE102013207324A1 (en) 2012-05-11 2013-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
KR102087443B1 (en) 2012-05-11 2020-03-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and driving method of semiconductor device
US8994891B2 (en) 2012-05-16 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and touch panel
US8929128B2 (en) 2012-05-17 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Storage device and writing method of the same
US9817032B2 (en) 2012-05-23 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Measurement device
JP6050721B2 (en) 2012-05-25 2016-12-21 株式会社半導体エネルギー研究所 Semiconductor device
JP6250955B2 (en) 2012-05-25 2017-12-20 株式会社半導体エネルギー研究所 Driving method of semiconductor device
JP2014003594A (en) 2012-05-25 2014-01-09 Semiconductor Energy Lab Co Ltd Semiconductor device and method of driving the same
KR102164990B1 (en) 2012-05-25 2020-10-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for driving memory element
WO2013176199A1 (en) 2012-05-25 2013-11-28 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device and semiconductor device
US9147706B2 (en) 2012-05-29 2015-09-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having sensor circuit having amplifier circuit
JP6377317B2 (en) 2012-05-30 2018-08-22 株式会社半導体エネルギー研究所 Programmable logic device
KR102316107B1 (en) 2012-05-31 2021-10-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP6158588B2 (en) 2012-05-31 2017-07-05 株式会社半導体エネルギー研究所 Light emitting device
US9048265B2 (en) 2012-05-31 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device comprising oxide semiconductor layer
KR102119914B1 (en) 2012-05-31 2020-06-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US8995607B2 (en) 2012-05-31 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
JP6208469B2 (en) 2012-05-31 2017-10-04 株式会社半導体エネルギー研究所 Semiconductor device
KR20150023547A (en) 2012-06-01 2015-03-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and alarm device
US9343120B2 (en) 2012-06-01 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. High speed processing unit with non-volatile register
US9135182B2 (en) 2012-06-01 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Central processing unit and driving method thereof
US9916793B2 (en) 2012-06-01 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving the same
US8872174B2 (en) 2012-06-01 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US8901557B2 (en) 2012-06-15 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102113160B1 (en) 2012-06-15 2020-05-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9059219B2 (en) 2012-06-27 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9742378B2 (en) 2012-06-29 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Pulse output circuit and semiconductor device
TWI596778B (en) 2012-06-29 2017-08-21 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing semiconductor device
US8873308B2 (en) 2012-06-29 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Signal processing circuit
KR20200019269A (en) 2012-06-29 2020-02-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102082794B1 (en) 2012-06-29 2020-02-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method of driving display device, and display device
KR102161077B1 (en) 2012-06-29 2020-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9190525B2 (en) 2012-07-06 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor layer
US9083327B2 (en) 2012-07-06 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
US9054678B2 (en) 2012-07-06 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
TW201419315A (en) 2012-07-09 2014-05-16 Applied Nanotech Holdings Inc Photosintering of micron-sized copper particles
KR102099262B1 (en) 2012-07-11 2020-04-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device and method for driving the same
JP2014032399A (en) 2012-07-13 2014-02-20 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JP6006558B2 (en) 2012-07-17 2016-10-12 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
WO2014014039A1 (en) 2012-07-20 2014-01-23 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the display device
WO2014013958A1 (en) 2012-07-20 2014-01-23 Semiconductor Energy Laboratory Co., Ltd. Display device
KR20230003262A (en) 2012-07-20 2023-01-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device
JP6185311B2 (en) 2012-07-20 2017-08-23 株式会社半導体エネルギー研究所 Power supply control circuit and signal processing circuit
KR20140013931A (en) 2012-07-26 2014-02-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device
JP2014042004A (en) 2012-07-26 2014-03-06 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method of the same
JP6224931B2 (en) 2012-07-27 2017-11-01 株式会社半導体エネルギー研究所 Semiconductor device
KR102014169B1 (en) * 2012-07-30 2019-08-27 삼성디스플레이 주식회사 Organic light emitting display apparatus and method of manufacturing the same
JP2014045175A (en) 2012-08-02 2014-03-13 Semiconductor Energy Lab Co Ltd Semiconductor device
JP6134598B2 (en) 2012-08-02 2017-05-24 株式会社半導体エネルギー研究所 Semiconductor device
DE112013003841T5 (en) 2012-08-03 2015-04-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2014021442A1 (en) 2012-08-03 2014-02-06 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor stacked film and semiconductor device
US9885108B2 (en) 2012-08-07 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming sputtering target
US10557192B2 (en) 2012-08-07 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Method for using sputtering target and method for forming oxide film
JP6211843B2 (en) 2012-08-10 2017-10-11 株式会社半導体エネルギー研究所 Semiconductor device
KR102171650B1 (en) 2012-08-10 2020-10-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US8937307B2 (en) 2012-08-10 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9245958B2 (en) 2012-08-10 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI581404B (en) 2012-08-10 2017-05-01 半導體能源研究所股份有限公司 Semiconductor device and method for driving semiconductor device
CN104584229B (en) 2012-08-10 2018-05-15 株式会社半导体能源研究所 Semiconductor device and its manufacture method
JP2014057298A (en) 2012-08-10 2014-03-27 Semiconductor Energy Lab Co Ltd Semiconductor device driving method
JP2014199899A (en) 2012-08-10 2014-10-23 株式会社半導体エネルギー研究所 Semiconductor device
JP6220597B2 (en) 2012-08-10 2017-10-25 株式会社半導体エネルギー研究所 Semiconductor device
JP2014057296A (en) 2012-08-10 2014-03-27 Semiconductor Energy Lab Co Ltd Semiconductor device driving method
US9929276B2 (en) 2012-08-10 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8872120B2 (en) 2012-08-23 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Imaging device and method for driving the same
KR102069683B1 (en) 2012-08-24 2020-01-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Radiation detection panel, radiation imaging device, and diagnostic imaging device
US9625764B2 (en) 2012-08-28 2017-04-18 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
KR102161078B1 (en) 2012-08-28 2020-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and manufacturing method thereof
DE102013216824A1 (en) 2012-08-28 2014-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20140029202A (en) 2012-08-28 2014-03-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
TWI657539B (en) 2012-08-31 2019-04-21 日商半導體能源研究所股份有限公司 Semiconductor device
SG11201504939RA (en) 2012-09-03 2015-07-30 Semiconductor Energy Lab Microcontroller
US8947158B2 (en) 2012-09-03 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
DE102013217278B4 (en) 2012-09-12 2017-03-30 Semiconductor Energy Laboratory Co., Ltd. A photodetector circuit, an imaging device, and a method of driving a photodetector circuit
US9018624B2 (en) 2012-09-13 2015-04-28 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic appliance
US8981372B2 (en) 2012-09-13 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic appliance
KR20240001283A (en) 2012-09-13 2024-01-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
TWI644437B (en) 2012-09-14 2018-12-11 半導體能源研究所股份有限公司 Semiconductor device and method for fabricating the same
US8927985B2 (en) 2012-09-20 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2014046222A1 (en) 2012-09-24 2014-03-27 Semiconductor Energy Laboratory Co., Ltd. Display device
TWI671910B (en) 2012-09-24 2019-09-11 日商半導體能源研究所股份有限公司 Semiconductor device
JP6290576B2 (en) 2012-10-12 2018-03-07 株式会社半導体エネルギー研究所 Liquid crystal display device and driving method thereof
KR102226090B1 (en) 2012-10-12 2021-03-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device and manufacturing apparatus of semiconductor device
TWI681233B (en) 2012-10-12 2020-01-01 日商半導體能源研究所股份有限公司 Liquid crystal display device, touch panel and method for manufacturing liquid crystal display device
JP6351947B2 (en) 2012-10-12 2018-07-04 株式会社半導体エネルギー研究所 Method for manufacturing liquid crystal display device
JP2014082388A (en) 2012-10-17 2014-05-08 Semiconductor Energy Lab Co Ltd Semiconductor device
KR102168987B1 (en) 2012-10-17 2020-10-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Microcontroller and method for manufacturing the same
JP6059501B2 (en) 2012-10-17 2017-01-11 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
TWI591966B (en) 2012-10-17 2017-07-11 半導體能源研究所股份有限公司 Programmable logic device and method for driving programmable logic device
US9166021B2 (en) 2012-10-17 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2014061567A1 (en) 2012-10-17 2014-04-24 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
WO2014061535A1 (en) 2012-10-17 2014-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6283191B2 (en) 2012-10-17 2018-02-21 株式会社半導体エネルギー研究所 Semiconductor device
WO2014061762A1 (en) 2012-10-17 2014-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5951442B2 (en) 2012-10-17 2016-07-13 株式会社半導体エネルギー研究所 Semiconductor device
JP6021586B2 (en) 2012-10-17 2016-11-09 株式会社半導体エネルギー研究所 Semiconductor device
KR102220279B1 (en) 2012-10-19 2021-02-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for forming multilayer film including oxide semiconductor film and method for manufacturing semiconductor device
JP6204145B2 (en) 2012-10-23 2017-09-27 株式会社半導体エネルギー研究所 Semiconductor device
WO2014065301A1 (en) 2012-10-24 2014-05-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9287411B2 (en) 2012-10-24 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102279459B1 (en) 2012-10-24 2021-07-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
WO2014065343A1 (en) 2012-10-24 2014-05-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI637517B (en) 2012-10-24 2018-10-01 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
WO2014065389A1 (en) 2012-10-25 2014-05-01 Semiconductor Energy Laboratory Co., Ltd. Central control system
JP6219562B2 (en) 2012-10-30 2017-10-25 株式会社半導体エネルギー研究所 Display device and electronic device
WO2014073374A1 (en) 2012-11-06 2014-05-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
KR101710316B1 (en) 2012-11-08 2017-02-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for forming metal oxide film
JP6220641B2 (en) 2012-11-15 2017-10-25 株式会社半導体エネルギー研究所 Semiconductor device
TWI605593B (en) 2012-11-15 2017-11-11 半導體能源研究所股份有限公司 Semiconductor device
TWI608616B (en) 2012-11-15 2017-12-11 半導體能源研究所股份有限公司 Semiconductor device
JP6285150B2 (en) 2012-11-16 2018-02-28 株式会社半導体エネルギー研究所 Semiconductor device
TWI600157B (en) 2012-11-16 2017-09-21 半導體能源研究所股份有限公司 Semiconductor device
TWI620323B (en) 2012-11-16 2018-04-01 半導體能源研究所股份有限公司 Semiconductor device
JP6317059B2 (en) 2012-11-16 2018-04-25 株式会社半導体エネルギー研究所 Semiconductor device and display device
US9412764B2 (en) 2012-11-28 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic device
TWI757837B (en) 2012-11-28 2022-03-11 日商半導體能源研究所股份有限公司 Display device
US9263531B2 (en) 2012-11-28 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film, film formation method thereof, and semiconductor device
TWI627483B (en) 2012-11-28 2018-06-21 半導體能源研究所股份有限公司 Display device and television receiver
WO2014084153A1 (en) 2012-11-28 2014-06-05 Semiconductor Energy Laboratory Co., Ltd. Display device
TWI624949B (en) 2012-11-30 2018-05-21 半導體能源研究所股份有限公司 Semiconductor device
JP2014130336A (en) 2012-11-30 2014-07-10 Semiconductor Energy Lab Co Ltd Display device
KR102248765B1 (en) 2012-11-30 2021-05-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9594281B2 (en) 2012-11-30 2017-03-14 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9246011B2 (en) 2012-11-30 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9153649B2 (en) * 2012-11-30 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for evaluating semiconductor device
US9349593B2 (en) 2012-12-03 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR102207028B1 (en) 2012-12-03 2021-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9406810B2 (en) 2012-12-03 2016-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102112364B1 (en) 2012-12-06 2020-05-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9577446B2 (en) 2012-12-13 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Power storage system and power storage device storing data for the identifying power storage device
TWI611419B (en) 2012-12-24 2018-01-11 半導體能源研究所股份有限公司 Programmable logic device and semiconductor device
DE112013006219T5 (en) 2012-12-25 2015-09-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US9905585B2 (en) 2012-12-25 2018-02-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising capacitor
CN104885230B (en) 2012-12-25 2018-02-23 株式会社半导体能源研究所 Semiconductor device
KR102241249B1 (en) 2012-12-25 2021-04-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Resistor, display device, and electronic device
JP2014142986A (en) 2012-12-26 2014-08-07 Semiconductor Energy Lab Co Ltd Semiconductor device
TWI607510B (en) 2012-12-28 2017-12-01 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method of the same
JP6329762B2 (en) 2012-12-28 2018-05-23 株式会社半導体エネルギー研究所 Semiconductor device
WO2014104267A1 (en) 2012-12-28 2014-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2014143410A (en) 2012-12-28 2014-08-07 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method of the same
US9316695B2 (en) 2012-12-28 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN104904018B (en) 2012-12-28 2019-04-09 株式会社半导体能源研究所 The manufacturing method of semiconductor device and semiconductor device
US9391096B2 (en) 2013-01-18 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI614813B (en) 2013-01-21 2018-02-11 半導體能源研究所股份有限公司 Method for manufacturing semiconductor device
TWI619010B (en) 2013-01-24 2018-03-21 半導體能源研究所股份有限公司 Semiconductor device
JP6223198B2 (en) 2013-01-24 2017-11-01 株式会社半導体エネルギー研究所 Semiconductor device
US9466725B2 (en) 2013-01-24 2016-10-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5807076B2 (en) 2013-01-24 2015-11-10 株式会社半導体エネルギー研究所 Semiconductor device
US9190172B2 (en) 2013-01-24 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8981374B2 (en) 2013-01-30 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9105658B2 (en) 2013-01-30 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Method for processing oxide semiconductor layer
US9076825B2 (en) 2013-01-30 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
KR102112367B1 (en) 2013-02-12 2020-05-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI618252B (en) 2013-02-12 2018-03-11 半導體能源研究所股份有限公司 Semiconductor device
US9190527B2 (en) 2013-02-13 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
US8952723B2 (en) 2013-02-13 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device and semiconductor device
US9231111B2 (en) 2013-02-13 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2014125979A1 (en) 2013-02-13 2014-08-21 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device and semiconductor device
US9318484B2 (en) 2013-02-20 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI611566B (en) 2013-02-25 2018-01-11 半導體能源研究所股份有限公司 Display device and electronic device
US9293544B2 (en) 2013-02-26 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having buried channel structure
US9373711B2 (en) 2013-02-27 2016-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI651839B (en) 2013-02-27 2019-02-21 半導體能源研究所股份有限公司 Semiconductor device, drive circuit and display device
TWI612321B (en) 2013-02-27 2018-01-21 半導體能源研究所股份有限公司 Imaging device
JP6141777B2 (en) 2013-02-28 2017-06-07 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2014195243A (en) 2013-02-28 2014-10-09 Semiconductor Energy Lab Co Ltd Semiconductor device
KR102238682B1 (en) 2013-02-28 2021-04-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
JP2014195241A (en) 2013-02-28 2014-10-09 Semiconductor Energy Lab Co Ltd Semiconductor device
US9276125B2 (en) 2013-03-01 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9647152B2 (en) 2013-03-01 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Sensor circuit and semiconductor device including sensor circuit
KR102153110B1 (en) 2013-03-06 2020-09-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor film and semiconductor device
US9269315B2 (en) 2013-03-08 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Driving method of semiconductor device
US8947121B2 (en) 2013-03-12 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
TWI644433B (en) 2013-03-13 2018-12-11 半導體能源研究所股份有限公司 Semiconductor device
US9294075B2 (en) 2013-03-14 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2014142043A1 (en) 2013-03-14 2014-09-18 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor device and semiconductor device
KR20150128823A (en) 2013-03-14 2015-11-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for driving semiconductor device and semiconductor device
KR102290247B1 (en) 2013-03-14 2021-08-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
JP6283237B2 (en) 2013-03-14 2018-02-21 株式会社半導体エネルギー研究所 Semiconductor device
JP2014199709A (en) 2013-03-14 2014-10-23 株式会社半導体エネルギー研究所 Memory device and semiconductor device
JP6298662B2 (en) 2013-03-14 2018-03-20 株式会社半導体エネルギー研究所 Semiconductor device
TWI677193B (en) 2013-03-15 2019-11-11 日商半導體能源研究所股份有限公司 Semiconductor device
US9786350B2 (en) 2013-03-18 2017-10-10 Semiconductor Energy Laboratory Co., Ltd. Memory device
US9577107B2 (en) 2013-03-19 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and method for forming oxide semiconductor film
US9153650B2 (en) 2013-03-19 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor
JP6093726B2 (en) 2013-03-22 2017-03-08 株式会社半導体エネルギー研究所 Semiconductor device
US9007092B2 (en) 2013-03-22 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6355374B2 (en) 2013-03-22 2018-07-11 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US10347769B2 (en) 2013-03-25 2019-07-09 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with multi-layer source/drain electrodes
WO2014157019A1 (en) 2013-03-25 2014-10-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6272713B2 (en) 2013-03-25 2018-01-31 株式会社半導体エネルギー研究所 Programmable logic device and semiconductor device
JP6376788B2 (en) 2013-03-26 2018-08-22 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
JP6316630B2 (en) 2013-03-26 2018-04-25 株式会社半導体エネルギー研究所 Semiconductor device
US9608122B2 (en) 2013-03-27 2017-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2014209209A (en) 2013-03-28 2014-11-06 株式会社半導体エネルギー研究所 Display device
US9368636B2 (en) 2013-04-01 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device comprising a plurality of oxide semiconductor layers
JP6300589B2 (en) 2013-04-04 2018-03-28 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9112460B2 (en) 2013-04-05 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Signal processing device
JP6198434B2 (en) 2013-04-11 2017-09-20 株式会社半導体エネルギー研究所 Display device and electronic device
JP6224338B2 (en) 2013-04-11 2017-11-01 株式会社半導体エネルギー研究所 Semiconductor device, display device, and method for manufacturing semiconductor device
TWI620324B (en) 2013-04-12 2018-04-01 半導體能源研究所股份有限公司 Semiconductor device
JP6280794B2 (en) 2013-04-12 2018-02-14 株式会社半導体エネルギー研究所 Semiconductor device and driving method thereof
US10304859B2 (en) 2013-04-12 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide film on an oxide semiconductor film
JP6333028B2 (en) 2013-04-19 2018-05-30 株式会社半導体エネルギー研究所 Memory device and semiconductor device
US9915848B2 (en) 2013-04-19 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP6456598B2 (en) 2013-04-19 2019-01-23 株式会社半導体エネルギー研究所 Display device
US9893192B2 (en) 2013-04-24 2018-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI647559B (en) 2013-04-24 2019-01-11 日商半導體能源研究所股份有限公司 Display device
JP6401483B2 (en) 2013-04-26 2018-10-10 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP6396671B2 (en) 2013-04-26 2018-09-26 株式会社半導体エネルギー研究所 Semiconductor device
TWI644434B (en) 2013-04-29 2018-12-11 日商半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
TWI631711B (en) 2013-05-01 2018-08-01 半導體能源研究所股份有限公司 Semiconductor device
KR102222344B1 (en) 2013-05-02 2021-03-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9231002B2 (en) 2013-05-03 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US9882058B2 (en) 2013-05-03 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2014181785A1 (en) 2013-05-09 2014-11-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9704894B2 (en) 2013-05-10 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Display device including pixel electrode including oxide
US9246476B2 (en) 2013-05-10 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Driver circuit
TWI621337B (en) 2013-05-14 2018-04-11 半導體能源研究所股份有限公司 Signal processing device
TWI627751B (en) 2013-05-16 2018-06-21 半導體能源研究所股份有限公司 Semiconductor device
TWI679772B (en) 2013-05-16 2019-12-11 日商半導體能源研究所股份有限公司 Semiconductor device
TWI618058B (en) 2013-05-16 2018-03-11 半導體能源研究所股份有限公司 Semiconductor device
US9312392B2 (en) 2013-05-16 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI638519B (en) 2013-05-17 2018-10-11 半導體能源研究所股份有限公司 Programmable logic device and semiconductor device
US9454923B2 (en) 2013-05-17 2016-09-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9209795B2 (en) 2013-05-17 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Signal processing device and measuring method
US10032872B2 (en) 2013-05-17 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, and apparatus for manufacturing semiconductor device
US9754971B2 (en) 2013-05-18 2017-09-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9343579B2 (en) 2013-05-20 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
DE102014208859B4 (en) 2013-05-20 2021-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9293599B2 (en) 2013-05-20 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN105264668B (en) 2013-05-20 2019-04-02 株式会社半导体能源研究所 Semiconductor device
KR20230074834A (en) 2013-05-20 2023-05-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI664731B (en) 2013-05-20 2019-07-01 半導體能源研究所股份有限公司 Semiconductor device
US9647125B2 (en) 2013-05-20 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10416504B2 (en) 2013-05-21 2019-09-17 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
WO2014188983A1 (en) 2013-05-21 2014-11-27 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and formation method thereof
JP6400336B2 (en) 2013-06-05 2018-10-03 株式会社半導体エネルギー研究所 Semiconductor device
US9806198B2 (en) 2013-06-05 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6475424B2 (en) 2013-06-05 2019-02-27 株式会社半導体エネルギー研究所 Semiconductor device
TWI649606B (en) 2013-06-05 2019-02-01 日商半導體能源研究所股份有限公司 Display device and electronic device
JP2015195327A (en) 2013-06-05 2015-11-05 株式会社半導体エネルギー研究所 semiconductor device
TWI624936B (en) 2013-06-05 2018-05-21 半導體能源研究所股份有限公司 Display device
US9773915B2 (en) 2013-06-11 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI641112B (en) 2013-06-13 2018-11-11 半導體能源研究所股份有限公司 Semiconductor device
JP6368155B2 (en) 2013-06-18 2018-08-01 株式会社半導体エネルギー研究所 Programmable logic device
US9035301B2 (en) 2013-06-19 2015-05-19 Semiconductor Energy Laboratory Co., Ltd. Imaging device
TWI652822B (en) 2013-06-19 2019-03-01 日商半導體能源研究所股份有限公司 Oxide semiconductor film and formation method thereof
KR102257058B1 (en) 2013-06-21 2021-05-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP6357363B2 (en) 2013-06-26 2018-07-11 株式会社半導体エネルギー研究所 Storage device
KR102269460B1 (en) 2013-06-27 2021-06-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TW201513128A (en) 2013-07-05 2015-04-01 Semiconductor Energy Lab Semiconductor device
US20150008428A1 (en) 2013-07-08 2015-01-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9666697B2 (en) 2013-07-08 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device including an electron trap layer
US9312349B2 (en) 2013-07-08 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9424950B2 (en) 2013-07-10 2016-08-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9293480B2 (en) 2013-07-10 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
JP6018607B2 (en) 2013-07-12 2016-11-02 株式会社半導体エネルギー研究所 Semiconductor device
JP6400961B2 (en) 2013-07-12 2018-10-03 株式会社半導体エネルギー研究所 Display device
JP6322503B2 (en) 2013-07-16 2018-05-09 株式会社半導体エネルギー研究所 Semiconductor device
JP6516978B2 (en) 2013-07-17 2019-05-22 株式会社半導体エネルギー研究所 Semiconductor device
TWI621130B (en) 2013-07-18 2018-04-11 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing semiconductor device
US9379138B2 (en) 2013-07-19 2016-06-28 Semiconductor Energy Laboratory Co., Ltd. Imaging device with drive voltage dependent on external light intensity
TWI608523B (en) 2013-07-19 2017-12-11 半導體能源研究所股份有限公司 Oxide semiconductor film, method of manufacturing oxide semiconductor film, and semiconductor device
US9395070B2 (en) 2013-07-19 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Support of flexible component and light-emitting device
US10529740B2 (en) 2013-07-25 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including semiconductor layer and conductive layer
TWI636309B (en) 2013-07-25 2018-09-21 日商半導體能源研究所股份有限公司 Liquid crystal display device and electronic device
TWI632688B (en) 2013-07-25 2018-08-11 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing semiconductor device
TWI641208B (en) 2013-07-26 2018-11-11 日商半導體能源研究所股份有限公司 Dcdc converter
US9343288B2 (en) 2013-07-31 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6460592B2 (en) 2013-07-31 2019-01-30 株式会社半導体エネルギー研究所 DC-DC converter and semiconductor device
JP6410496B2 (en) 2013-07-31 2018-10-24 株式会社半導体エネルギー研究所 Multi-gate transistor
TWI635750B (en) 2013-08-02 2018-09-11 半導體能源研究所股份有限公司 Imaging device and operation method thereof
US9496330B2 (en) 2013-08-02 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
JP2015053477A (en) 2013-08-05 2015-03-19 株式会社半導体エネルギー研究所 Semiconductor device and method for manufacturing the same
JP6345023B2 (en) 2013-08-07 2018-06-20 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
US9299855B2 (en) 2013-08-09 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having dual gate insulating layers
US9601591B2 (en) 2013-08-09 2017-03-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP6329843B2 (en) 2013-08-19 2018-05-23 株式会社半導体エネルギー研究所 Semiconductor device
US9374048B2 (en) 2013-08-20 2016-06-21 Semiconductor Energy Laboratory Co., Ltd. Signal processing device, and driving method and program thereof
TWI643435B (en) 2013-08-21 2018-12-01 日商半導體能源研究所股份有限公司 Charge pump circuit and semiconductor device including the same
KR102232133B1 (en) 2013-08-22 2021-03-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102244553B1 (en) 2013-08-23 2021-04-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Capacitor and semiconductor device
US9443987B2 (en) 2013-08-23 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI803081B (en) 2013-08-28 2023-05-21 日商半導體能源研究所股份有限公司 Display device
US9360564B2 (en) 2013-08-30 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Imaging device
US9552767B2 (en) 2013-08-30 2017-01-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
WO2015030150A1 (en) 2013-08-30 2015-03-05 Semiconductor Energy Laboratory Co., Ltd. Storage circuit and semiconductor device
US9590109B2 (en) 2013-08-30 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6426402B2 (en) 2013-08-30 2018-11-21 株式会社半導体エネルギー研究所 Display device
US9449853B2 (en) 2013-09-04 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device comprising electron trap layer
JP6406926B2 (en) 2013-09-04 2018-10-17 株式会社半導体エネルギー研究所 Semiconductor device
US9607991B2 (en) 2013-09-05 2017-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6345544B2 (en) 2013-09-05 2018-06-20 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US10008513B2 (en) 2013-09-05 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6401977B2 (en) 2013-09-06 2018-10-10 株式会社半導体エネルギー研究所 Semiconductor device
KR102294507B1 (en) 2013-09-06 2021-08-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9590110B2 (en) 2013-09-10 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Ultraviolet light sensor circuit
TWI640014B (en) 2013-09-11 2018-11-01 半導體能源研究所股份有限公司 Memory device, semiconductor device, and electronic device
US9893194B2 (en) 2013-09-12 2018-02-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9269822B2 (en) 2013-09-12 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
CN110806663A (en) 2013-09-13 2020-02-18 株式会社半导体能源研究所 Display device
JP6429540B2 (en) 2013-09-13 2018-11-28 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2015079946A (en) 2013-09-13 2015-04-23 株式会社半導体エネルギー研究所 Semiconductor device manufacturing method
TWI646690B (en) 2013-09-13 2019-01-01 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
US9461126B2 (en) 2013-09-13 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Transistor, clocked inverter circuit, sequential circuit, and semiconductor device including sequential circuit
JP6467171B2 (en) 2013-09-17 2019-02-06 株式会社半導体エネルギー研究所 Semiconductor device
JP6347704B2 (en) 2013-09-18 2018-06-27 株式会社半導体エネルギー研究所 Semiconductor device
US9269915B2 (en) 2013-09-18 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Display device
TWI677989B (en) 2013-09-19 2019-11-21 日商半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
US9397153B2 (en) 2013-09-23 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9425217B2 (en) 2013-09-23 2016-08-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2015084418A (en) 2013-09-23 2015-04-30 株式会社半導体エネルギー研究所 Semiconductor device
JP6570817B2 (en) 2013-09-23 2019-09-04 株式会社半導体エネルギー研究所 Semiconductor device
JP6383616B2 (en) 2013-09-25 2018-08-29 株式会社半導体エネルギー研究所 Semiconductor device
KR102213515B1 (en) 2013-09-26 2021-02-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Switch circuit, semiconductor device, and system
JP6392603B2 (en) 2013-09-27 2018-09-19 株式会社半導体エネルギー研究所 Semiconductor device
JP6581765B2 (en) 2013-10-02 2019-09-25 株式会社半導体エネルギー研究所 Bootstrap circuit and semiconductor device having bootstrap circuit
JP6386323B2 (en) 2013-10-04 2018-09-05 株式会社半導体エネルギー研究所 Semiconductor device
TWI688102B (en) 2013-10-10 2020-03-11 日商半導體能源研究所股份有限公司 Semiconductor device
JP6438727B2 (en) 2013-10-11 2018-12-19 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
JP6591739B2 (en) 2013-10-16 2019-10-16 株式会社半導体エネルギー研究所 Driving method of arithmetic processing unit
TWI621127B (en) 2013-10-18 2018-04-11 半導體能源研究所股份有限公司 Arithmetic processing unit and driving method thereof
TWI642170B (en) 2013-10-18 2018-11-21 半導體能源研究所股份有限公司 Display device and electronic device
US9455349B2 (en) 2013-10-22 2016-09-27 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor thin film transistor with reduced impurity diffusion
CN105659369B (en) 2013-10-22 2019-10-22 株式会社半导体能源研究所 The manufacturing method of semiconductor device and semiconductor device
WO2015060133A1 (en) 2013-10-22 2015-04-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
DE102014220672A1 (en) 2013-10-22 2015-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2015179247A (en) 2013-10-22 2015-10-08 株式会社半導体エネルギー研究所 display device
US9276128B2 (en) 2013-10-22 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, and etchant used for the same
CN105659370A (en) 2013-10-22 2016-06-08 株式会社半导体能源研究所 Display device
US9583516B2 (en) 2013-10-25 2017-02-28 Semiconductor Energy Laboratory Co., Ltd. Display device
JP6457239B2 (en) 2013-10-31 2019-01-23 株式会社半導体エネルギー研究所 Semiconductor device
US9590111B2 (en) 2013-11-06 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
JP6440457B2 (en) 2013-11-07 2018-12-19 株式会社半導体エネルギー研究所 Semiconductor device
JP6478562B2 (en) 2013-11-07 2019-03-06 株式会社半導体エネルギー研究所 Semiconductor device
US9385054B2 (en) 2013-11-08 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Data processing device and manufacturing method thereof
JP2015118724A (en) 2013-11-13 2015-06-25 株式会社半導体エネルギー研究所 Semiconductor device and method for driving the semiconductor device
JP6393590B2 (en) 2013-11-22 2018-09-19 株式会社半導体エネルギー研究所 Semiconductor device
JP6426437B2 (en) 2013-11-22 2018-11-21 株式会社半導体エネルギー研究所 Semiconductor device
JP6486660B2 (en) 2013-11-27 2019-03-20 株式会社半導体エネルギー研究所 Display device
JP2016001712A (en) 2013-11-29 2016-01-07 株式会社半導体エネルギー研究所 Method of manufacturing semiconductor device
US20150155313A1 (en) 2013-11-29 2015-06-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9882014B2 (en) 2013-11-29 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20220047897A (en) 2013-12-02 2022-04-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR20180132181A (en) 2013-12-02 2018-12-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and method for manufacturing the same
JP6496132B2 (en) 2013-12-02 2019-04-03 株式会社半導体エネルギー研究所 Semiconductor device
US9991392B2 (en) 2013-12-03 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2016027597A (en) 2013-12-06 2016-02-18 株式会社半導体エネルギー研究所 Semiconductor device
US9349751B2 (en) 2013-12-12 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6537264B2 (en) 2013-12-12 2019-07-03 株式会社半導体エネルギー研究所 Semiconductor device
TWI642186B (en) 2013-12-18 2018-11-21 日商半導體能源研究所股份有限公司 Semiconductor device
TWI721409B (en) 2013-12-19 2021-03-11 日商半導體能源研究所股份有限公司 Semiconductor device
JP6444714B2 (en) 2013-12-20 2018-12-26 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9379192B2 (en) 2013-12-20 2016-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2015097586A1 (en) 2013-12-25 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2015097596A1 (en) 2013-12-26 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI637484B (en) 2013-12-26 2018-10-01 日商半導體能源研究所股份有限公司 Semiconductor device
JP6402017B2 (en) 2013-12-26 2018-10-10 株式会社半導体エネルギー研究所 Semiconductor device
US9960280B2 (en) 2013-12-26 2018-05-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
SG11201604650SA (en) 2013-12-26 2016-07-28 Semiconductor Energy Lab Semiconductor device
JP6506545B2 (en) 2013-12-27 2019-04-24 株式会社半導体エネルギー研究所 Semiconductor device
US9577110B2 (en) 2013-12-27 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including an oxide semiconductor and the display device including the semiconductor device
US9397149B2 (en) 2013-12-27 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9349418B2 (en) 2013-12-27 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
KR102320576B1 (en) 2013-12-27 2021-11-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9318618B2 (en) 2013-12-27 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6506961B2 (en) 2013-12-27 2019-04-24 株式会社半導体エネルギー研究所 Liquid crystal display
CN105849796B (en) 2013-12-27 2020-02-07 株式会社半导体能源研究所 Light emitting device
JP6488124B2 (en) 2013-12-27 2019-03-20 株式会社半導体エネルギー研究所 Semiconductor device
JP6444723B2 (en) 2014-01-09 2018-12-26 株式会社半導体エネルギー研究所 apparatus
US9300292B2 (en) 2014-01-10 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Circuit including transistor
US9401432B2 (en) 2014-01-16 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9379713B2 (en) 2014-01-17 2016-06-28 Semiconductor Energy Laboratory Co., Ltd. Data processing device and driving method thereof
KR102306200B1 (en) 2014-01-24 2021-09-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2015114476A1 (en) 2014-01-28 2015-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9929044B2 (en) 2014-01-30 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US9443876B2 (en) 2014-02-05 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic device including the semiconductor device, the display device, and the display module
US9929279B2 (en) 2014-02-05 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9653487B2 (en) 2014-02-05 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, module, and electronic device
TWI665778B (en) 2014-02-05 2019-07-11 日商半導體能源研究所股份有限公司 Semiconductor device, module, and electronic device
JP6473626B2 (en) 2014-02-06 2019-02-20 株式会社半導体エネルギー研究所 Semiconductor device
JP6420165B2 (en) 2014-02-07 2018-11-07 株式会社半導体エネルギー研究所 Semiconductor device
JP2015165226A (en) 2014-02-07 2015-09-17 株式会社半導体エネルギー研究所 Device
CN105960633B (en) 2014-02-07 2020-06-19 株式会社半导体能源研究所 Semiconductor device, device and electronic apparatus
TWI685116B (en) 2014-02-07 2020-02-11 日商半導體能源研究所股份有限公司 Semiconductor device
JP6545970B2 (en) 2014-02-07 2019-07-17 株式会社半導体エネルギー研究所 apparatus
JP6534530B2 (en) 2014-02-07 2019-06-26 株式会社半導体エネルギー研究所 Semiconductor device
TWI698844B (en) 2014-02-11 2020-07-11 日商半導體能源研究所股份有限公司 Display device and electronic device
KR102317297B1 (en) 2014-02-19 2021-10-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide, semiconductor device, module, and electronic device
JP6506566B2 (en) 2014-02-21 2019-04-24 株式会社半導体エネルギー研究所 Current measurement method
JP6629509B2 (en) 2014-02-21 2020-01-15 株式会社半導体エネルギー研究所 Oxide semiconductor film
JP2015172991A (en) 2014-02-21 2015-10-01 株式会社半導体エネルギー研究所 Semiconductor device, electronic component, and electronic device
US9564535B2 (en) 2014-02-28 2017-02-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic appliance including the semiconductor device, the display device, and the display module
JP6542542B2 (en) 2014-02-28 2019-07-10 株式会社半導体エネルギー研究所 Semiconductor device
DE112015001024T5 (en) 2014-02-28 2016-12-22 Semiconductor Energy Laboratory Co., Ltd. A semiconductor device, a display device that includes the semiconductor device, a display module that includes the display device, and an electronic device that includes the semiconductor device, the display device, or the display module
US10074576B2 (en) 2014-02-28 2018-09-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US9294096B2 (en) 2014-02-28 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6474280B2 (en) 2014-03-05 2019-02-27 株式会社半導体エネルギー研究所 Semiconductor device
KR20150104518A (en) 2014-03-05 2015-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Level shifter circuit
US10096489B2 (en) 2014-03-06 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP6625328B2 (en) 2014-03-06 2019-12-25 株式会社半導体エネルギー研究所 Method for driving semiconductor device
US9397637B2 (en) 2014-03-06 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Voltage controlled oscillator, semiconductor device, and electronic device
US9537478B2 (en) 2014-03-06 2017-01-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2015132694A1 (en) 2014-03-07 2015-09-11 Semiconductor Energy Laboratory Co., Ltd. Touch sensor, touch panel, and manufacturing method of touch panel
KR102267237B1 (en) 2014-03-07 2021-06-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and electronic device
US9711536B2 (en) 2014-03-07 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic component, and electronic device
US9419622B2 (en) 2014-03-07 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6585354B2 (en) 2014-03-07 2019-10-02 株式会社半導体エネルギー研究所 Semiconductor device
JP6442321B2 (en) 2014-03-07 2018-12-19 株式会社半導体エネルギー研究所 Semiconductor device, driving method thereof, and electronic apparatus
WO2015132697A1 (en) 2014-03-07 2015-09-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6545976B2 (en) 2014-03-07 2019-07-17 株式会社半導体エネルギー研究所 Semiconductor device
US9653611B2 (en) 2014-03-07 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20160132405A (en) 2014-03-12 2016-11-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP6560508B2 (en) 2014-03-13 2019-08-14 株式会社半導体エネルギー研究所 Semiconductor device
KR20230062676A (en) 2014-03-13 2023-05-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging device
JP6541376B2 (en) 2014-03-13 2019-07-10 株式会社半導体エネルギー研究所 Method of operating programmable logic device
US9640669B2 (en) 2014-03-13 2017-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic appliance including the semiconductor device, the display device, and the display module
JP6677449B2 (en) 2014-03-13 2020-04-08 株式会社半導体エネルギー研究所 Driving method of semiconductor device
US9324747B2 (en) 2014-03-13 2016-04-26 Semiconductor Energy Laboratory Co., Ltd. Imaging device
JP6525421B2 (en) 2014-03-13 2019-06-05 株式会社半導体エネルギー研究所 Semiconductor device
US9299848B2 (en) 2014-03-14 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, RF tag, and electronic device
US10361290B2 (en) 2014-03-14 2019-07-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device comprising adding oxygen to buffer film and insulating film
JP2015188071A (en) 2014-03-14 2015-10-29 株式会社半導体エネルギー研究所 semiconductor device
US9887212B2 (en) 2014-03-14 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
WO2015136412A1 (en) 2014-03-14 2015-09-17 Semiconductor Energy Laboratory Co., Ltd. Circuit system
JP6509596B2 (en) 2014-03-18 2019-05-08 株式会社半導体エネルギー研究所 Semiconductor device
SG11201606536XA (en) 2014-03-18 2016-09-29 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof
US9842842B2 (en) 2014-03-19 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device and semiconductor device and electronic device having the same
US9887291B2 (en) 2014-03-19 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic device including the semiconductor device, the display device, or the display module
JP6495698B2 (en) 2014-03-20 2019-04-03 株式会社半導体エネルギー研究所 Semiconductor device, electronic component, and electronic device
TWI657488B (en) 2014-03-20 2019-04-21 日商半導體能源研究所股份有限公司 Semiconductor device, display device including semiconductor device, display module including display device, and electronic device including semiconductor device, display device, and display module
US9564408B2 (en) * 2014-03-28 2017-02-07 Intel Corporation Space transformer
WO2015145292A1 (en) 2014-03-28 2015-10-01 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device
JP6487738B2 (en) 2014-03-31 2019-03-20 株式会社半導体エネルギー研究所 Semiconductor devices, electronic components
TWI695375B (en) 2014-04-10 2020-06-01 日商半導體能源研究所股份有限公司 Memory device and semiconductor device
TWI646782B (en) 2014-04-11 2019-01-01 日商半導體能源研究所股份有限公司 Holding circuit, driving method of holding circuit, and semiconductor device including holding circuit
JP6541398B2 (en) 2014-04-11 2019-07-10 株式会社半導体エネルギー研究所 Semiconductor device
JP6635670B2 (en) 2014-04-11 2020-01-29 株式会社半導体エネルギー研究所 Semiconductor device
US9674470B2 (en) 2014-04-11 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for driving semiconductor device, and method for driving electronic device
KR102511325B1 (en) 2014-04-18 2023-03-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and operation method thereof
US9768315B2 (en) 2014-04-18 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device having the same
WO2015159179A1 (en) 2014-04-18 2015-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP6613044B2 (en) 2014-04-22 2019-11-27 株式会社半導体エネルギー研究所 Display device, display module, and electronic device
KR102380829B1 (en) 2014-04-23 2022-03-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging device
KR102330412B1 (en) 2014-04-25 2021-11-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, electronic component, and electronic device
JP6468686B2 (en) 2014-04-25 2019-02-13 株式会社半導体エネルギー研究所 I / O device
TWI643457B (en) 2014-04-25 2018-12-01 日商半導體能源研究所股份有限公司 Semiconductor device
US9780226B2 (en) 2014-04-25 2017-10-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10043913B2 (en) 2014-04-30 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, semiconductor device, display device, module, and electronic device
TWI679624B (en) 2014-05-02 2019-12-11 日商半導體能源研究所股份有限公司 Semiconductor device
US10656799B2 (en) 2014-05-02 2020-05-19 Semiconductor Energy Laboratory Co., Ltd. Display device and operation method thereof
JP6537341B2 (en) 2014-05-07 2019-07-03 株式会社半導体エネルギー研究所 Semiconductor device
JP6653997B2 (en) 2014-05-09 2020-02-26 株式会社半導体エネルギー研究所 Display correction circuit and display device
KR102333604B1 (en) 2014-05-15 2021-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and display device including the same
JP2015233130A (en) 2014-05-16 2015-12-24 株式会社半導体エネルギー研究所 Semiconductor substrate and semiconductor device manufacturing method
JP6612056B2 (en) 2014-05-16 2019-11-27 株式会社半導体エネルギー研究所 Imaging device and monitoring device
JP6580863B2 (en) 2014-05-22 2019-09-25 株式会社半導体エネルギー研究所 Semiconductor devices, health management systems
JP6616102B2 (en) 2014-05-23 2019-12-04 株式会社半導体エネルギー研究所 Storage device and electronic device
TWI672804B (en) 2014-05-23 2019-09-21 日商半導體能源研究所股份有限公司 Manufacturing method of semiconductor device
US10020403B2 (en) 2014-05-27 2018-07-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9874775B2 (en) 2014-05-28 2018-01-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
KR102354008B1 (en) 2014-05-29 2022-01-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, method for manufacturing semiconductor device, and electronic device
JP6653129B2 (en) 2014-05-29 2020-02-26 株式会社半導体エネルギー研究所 Storage device
KR102418666B1 (en) 2014-05-29 2022-07-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging element, electronic appliance, method for driving imaging device, and method for driving electronic appliance
KR20150138026A (en) 2014-05-29 2015-12-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP6525722B2 (en) 2014-05-29 2019-06-05 株式会社半導体エネルギー研究所 Memory device, electronic component, and electronic device
TWI646658B (en) 2014-05-30 2019-01-01 日商半導體能源研究所股份有限公司 Semiconductor device
KR102398950B1 (en) 2014-05-30 2022-05-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, manufacturing method thereof, and electronic device
JP6537892B2 (en) 2014-05-30 2019-07-03 株式会社半導体エネルギー研究所 Semiconductor device and electronic device
TWI663726B (en) 2014-05-30 2019-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, module, and electronic device
US9831238B2 (en) 2014-05-30 2017-11-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including insulating film having opening portion and conductive film in the opening portion
JP6538426B2 (en) 2014-05-30 2019-07-03 株式会社半導体エネルギー研究所 Semiconductor device and electronic device
SG10201912585TA (en) 2014-05-30 2020-02-27 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
JP2016015475A (en) 2014-06-13 2016-01-28 株式会社半導体エネルギー研究所 Semiconductor device and electronic apparatus
KR102344782B1 (en) 2014-06-13 2021-12-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Input device and input/output device
WO2015189731A1 (en) 2014-06-13 2015-12-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device including the semiconductor device
TWI663733B (en) 2014-06-18 2019-06-21 日商半導體能源研究所股份有限公司 Transistor and semiconductor device
TWI666776B (en) 2014-06-20 2019-07-21 日商半導體能源研究所股份有限公司 Semiconductor device and display device having the same
KR20150146409A (en) 2014-06-20 2015-12-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, display device, input/output device, and electronic device
US9722090B2 (en) 2014-06-23 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including first gate oxide semiconductor film, and second gate
JP6545541B2 (en) 2014-06-25 2019-07-17 株式会社半導体エネルギー研究所 Imaging device, monitoring device, and electronic device
CN104078759A (en) * 2014-06-27 2014-10-01 南通富士通微电子股份有限公司 Radio frequency identification antenna forming method
US10002971B2 (en) 2014-07-03 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
US9647129B2 (en) 2014-07-04 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9461179B2 (en) 2014-07-11 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor device (TFT) comprising stacked oxide semiconductor layers and having a surrounded channel structure
US9729809B2 (en) 2014-07-11 2017-08-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of semiconductor device or electronic device
CN106537604B (en) 2014-07-15 2020-09-11 株式会社半导体能源研究所 Semiconductor device, method of manufacturing the same, and display device including the same
JP6581825B2 (en) 2014-07-18 2019-09-25 株式会社半導体エネルギー研究所 Display system
KR102422059B1 (en) 2014-07-18 2022-07-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, imaging device, and electronic device
WO2016012893A1 (en) 2014-07-25 2016-01-28 Semiconductor Energy Laboratory Co., Ltd. Oscillator circuit and semiconductor device including the same
US9312280B2 (en) 2014-07-25 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10115830B2 (en) 2014-07-29 2018-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and electronic device
CN112349211B (en) 2014-07-31 2023-04-18 株式会社半导体能源研究所 Display device and electronic apparatus
JP6555956B2 (en) 2014-07-31 2019-08-07 株式会社半導体エネルギー研究所 Imaging device, monitoring device, and electronic device
US9705004B2 (en) 2014-08-01 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9373070B2 (en) * 2014-08-04 2016-06-21 Avery Dennison Corporation Use of RFID chip as assembly facilitator
JP6553444B2 (en) 2014-08-08 2019-07-31 株式会社半導体エネルギー研究所 Semiconductor device
JP6652342B2 (en) 2014-08-08 2020-02-19 株式会社半導体エネルギー研究所 Semiconductor device
US9595955B2 (en) 2014-08-08 2017-03-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including power storage elements and switches
US10147747B2 (en) 2014-08-21 2018-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and electronic device
US10032888B2 (en) 2014-08-22 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing semiconductor device, and electronic appliance having semiconductor device
US10559667B2 (en) 2014-08-25 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for measuring current of semiconductor device
KR102388997B1 (en) 2014-08-29 2022-04-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging device and electronic device
KR102441803B1 (en) 2014-09-02 2022-09-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging device and electronic device
KR102329498B1 (en) 2014-09-04 2021-11-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP2016066065A (en) 2014-09-05 2016-04-28 株式会社半導体エネルギー研究所 Display device and electronic device
US9766517B2 (en) 2014-09-05 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Display device and display module
US9722091B2 (en) 2014-09-12 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP6676316B2 (en) 2014-09-12 2020-04-08 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2016066788A (en) 2014-09-19 2016-04-28 株式会社半導体エネルギー研究所 Method of evaluating semiconductor film, and method of manufacturing semiconductor device
US9401364B2 (en) 2014-09-19 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic component, and electronic device
WO2016042433A1 (en) 2014-09-19 2016-03-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR20160034200A (en) 2014-09-19 2016-03-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
US10071904B2 (en) 2014-09-25 2018-09-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display module, and electronic device
WO2016046685A1 (en) 2014-09-26 2016-03-31 Semiconductor Energy Laboratory Co., Ltd. Imaging device
US10170055B2 (en) 2014-09-26 2019-01-01 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof
JP2016111677A (en) 2014-09-26 2016-06-20 株式会社半導体エネルギー研究所 Semiconductor device, wireless sensor and electronic device
US10141342B2 (en) 2014-09-26 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
US9450581B2 (en) 2014-09-30 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Logic circuit, semiconductor device, electronic component, and electronic device
WO2016055894A1 (en) 2014-10-06 2016-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9698170B2 (en) 2014-10-07 2017-07-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display module, and electronic device
KR20170069207A (en) 2014-10-10 2017-06-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, circuit board, and electronic device
KR20220119177A (en) 2014-10-10 2022-08-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Logic circuit, processing unit, electronic component, and electronic device
US9991393B2 (en) 2014-10-16 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, module, and electronic device
JP6645793B2 (en) 2014-10-17 2020-02-14 株式会社半導体エネルギー研究所 Semiconductor device
WO2016063159A1 (en) 2014-10-20 2016-04-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof, module, and electronic device
US10068927B2 (en) 2014-10-23 2018-09-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display module, and electronic device
JP6615565B2 (en) 2014-10-24 2019-12-04 株式会社半導体エネルギー研究所 Semiconductor device
TWI652362B (en) 2014-10-28 2019-03-01 日商半導體能源研究所股份有限公司 Oxide and manufacturing method thereof
US9704704B2 (en) 2014-10-28 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the same
WO2016067144A1 (en) 2014-10-28 2016-05-06 Semiconductor Energy Laboratory Co., Ltd. Display device, manufacturing method of display device, and electronic device
JP6780927B2 (en) 2014-10-31 2020-11-04 株式会社半導体エネルギー研究所 Semiconductor device
US10680017B2 (en) 2014-11-07 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element including EL layer, electrode which has high reflectance and a high work function, display device, electronic device, and lighting device
US9548327B2 (en) 2014-11-10 2017-01-17 Semiconductor Energy Laboratory Co., Ltd. Imaging device having a selenium containing photoelectric conversion layer
US9584707B2 (en) 2014-11-10 2017-02-28 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
TW202236688A (en) 2014-11-21 2022-09-16 日商半導體能源研究所股份有限公司 Semiconductor device
US9438234B2 (en) 2014-11-21 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device including logic circuit
JP6563313B2 (en) 2014-11-21 2019-08-21 株式会社半導体エネルギー研究所 Semiconductor device and electronic device
TWI711165B (en) 2014-11-21 2020-11-21 日商半導體能源研究所股份有限公司 Semiconductor device and electronic device
KR20210039507A (en) 2014-11-28 2021-04-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, module, and electronic device
JP6647841B2 (en) 2014-12-01 2020-02-14 株式会社半導体エネルギー研究所 Preparation method of oxide
JP6647846B2 (en) 2014-12-08 2020-02-14 株式会社半導体エネルギー研究所 Semiconductor device
JP6667267B2 (en) 2014-12-08 2020-03-18 株式会社半導体エネルギー研究所 Semiconductor device
JP6689062B2 (en) 2014-12-10 2020-04-28 株式会社半導体エネルギー研究所 Semiconductor device
CN107004722A (en) 2014-12-10 2017-08-01 株式会社半导体能源研究所 Semiconductor device and its manufacture method
US9773832B2 (en) 2014-12-10 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP6833315B2 (en) 2014-12-10 2021-02-24 株式会社半導体エネルギー研究所 Semiconductor devices and electronic devices
WO2016092416A1 (en) 2014-12-11 2016-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, memory device, and electronic device
JP2016116220A (en) 2014-12-16 2016-06-23 株式会社半導体エネルギー研究所 Semiconductor device and electronic device
JP6676354B2 (en) 2014-12-16 2020-04-08 株式会社半導体エネルギー研究所 Semiconductor device
TWI791952B (en) 2014-12-18 2023-02-11 日商半導體能源研究所股份有限公司 Semiconductor device, sensor device, and electronic device
KR20170101233A (en) 2014-12-26 2017-09-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for producing sputtering target
TWI686874B (en) 2014-12-26 2020-03-01 日商半導體能源研究所股份有限公司 Semiconductor device, display device, display module, electronic evice, oxide, and manufacturing method of oxide
US10396210B2 (en) 2014-12-26 2019-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with stacked metal oxide and oxide semiconductor layers and display device including the semiconductor device
CN107111985B (en) 2014-12-29 2020-09-18 株式会社半导体能源研究所 Semiconductor device and display device including the same
US10522693B2 (en) 2015-01-16 2019-12-31 Semiconductor Energy Laboratory Co., Ltd. Memory device and electronic device
US9954112B2 (en) 2015-01-26 2018-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9443564B2 (en) 2015-01-26 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic component, and electronic device
US9812587B2 (en) 2015-01-26 2017-11-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102320382B1 (en) * 2015-01-28 2021-11-02 삼성디스플레이 주식회사 Electronic device
KR101636453B1 (en) * 2015-01-29 2016-07-05 한림대학교 산학협력단 Organic thin film transistor and manufacturing method thereof
TWI710124B (en) 2015-01-30 2020-11-11 日商半導體能源研究所股份有限公司 Imaging device and electronic device
US9647132B2 (en) 2015-01-30 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and memory device
KR20170109231A (en) 2015-02-02 2017-09-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxides and methods for making them
CN107210226B (en) 2015-02-04 2020-12-22 株式会社半导体能源研究所 Method for manufacturing semiconductor device
TWI732383B (en) 2015-02-06 2021-07-01 日商半導體能源研究所股份有限公司 Device, manufacturing method thereof, and electronic device
US9660100B2 (en) 2015-02-06 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6717604B2 (en) 2015-02-09 2020-07-01 株式会社半導体エネルギー研究所 Semiconductor device, central processing unit and electronic equipment
JP6674269B2 (en) 2015-02-09 2020-04-01 株式会社半導体エネルギー研究所 Semiconductor device and method for manufacturing semiconductor device
WO2016128859A1 (en) 2015-02-11 2016-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10439068B2 (en) 2015-02-12 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US9818880B2 (en) 2015-02-12 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
JP2016154225A (en) 2015-02-12 2016-08-25 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of the same
US10249644B2 (en) 2015-02-13 2019-04-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US9489988B2 (en) 2015-02-20 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Memory device
US10403646B2 (en) 2015-02-20 2019-09-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9991394B2 (en) 2015-02-20 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US9722092B2 (en) 2015-02-25 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a stacked metal oxide
JP6739185B2 (en) 2015-02-26 2020-08-12 株式会社半導体エネルギー研究所 Storage system and storage control circuit
US9653613B2 (en) 2015-02-27 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP6744108B2 (en) 2015-03-02 2020-08-19 株式会社半導体エネルギー研究所 Transistor, method for manufacturing transistor, semiconductor device, and electronic device
CN107406966B (en) 2015-03-03 2020-11-20 株式会社半导体能源研究所 Oxide semiconductor film, semiconductor device including the same, and display device including the semiconductor device
TWI718125B (en) 2015-03-03 2021-02-11 日商半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
KR20230036170A (en) 2015-03-03 2023-03-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, method for manufacturing the same, or display device including the same
US9905700B2 (en) 2015-03-13 2018-02-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device or memory device and driving method thereof
US9964799B2 (en) 2015-03-17 2018-05-08 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
US10008609B2 (en) 2015-03-17 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, or display device including the same
US9882061B2 (en) 2015-03-17 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN107430461B (en) 2015-03-17 2022-01-28 株式会社半导体能源研究所 Touch screen
JP2016177280A (en) 2015-03-18 2016-10-06 株式会社半導体エネルギー研究所 Display device, electronic device, and driving method of display device
KR102582523B1 (en) 2015-03-19 2023-09-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and electronic device
JP6662665B2 (en) 2015-03-19 2020-03-11 株式会社半導体エネルギー研究所 Liquid crystal display device and electronic equipment using the liquid crystal display device
US10147823B2 (en) 2015-03-19 2018-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6688116B2 (en) 2015-03-24 2020-04-28 株式会社半導体エネルギー研究所 Imaging device and electronic device
KR20160114511A (en) 2015-03-24 2016-10-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
US9842938B2 (en) 2015-03-24 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including semiconductor device
US10429704B2 (en) 2015-03-26 2019-10-01 Semiconductor Energy Laboratory Co., Ltd. Display device, display module including the display device, and electronic device including the display device or the display module
US10096715B2 (en) 2015-03-26 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, and electronic device
US9806200B2 (en) 2015-03-27 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI695513B (en) 2015-03-27 2020-06-01 日商半導體能源研究所股份有限公司 Semiconductor device and electronic device
JP6736321B2 (en) 2015-03-27 2020-08-05 株式会社半導体エネルギー研究所 Method of manufacturing semiconductor device
TWI695415B (en) 2015-03-30 2020-06-01 日商半導體能源研究所股份有限公司 Method for manufacturing semiconductor device
US9716852B2 (en) 2015-04-03 2017-07-25 Semiconductor Energy Laboratory Co., Ltd. Broadcast system
US10389961B2 (en) 2015-04-09 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US10372274B2 (en) 2015-04-13 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and touch panel
KR102546189B1 (en) 2015-04-13 2023-06-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US10460984B2 (en) 2015-04-15 2019-10-29 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating electrode and semiconductor device
US10056497B2 (en) 2015-04-15 2018-08-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2016206659A (en) 2015-04-16 2016-12-08 株式会社半導体エネルギー研究所 Display device, electronic device, and method for driving display device
US10192995B2 (en) 2015-04-28 2019-01-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10002970B2 (en) 2015-04-30 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method of the same, or display device including the same
US10671204B2 (en) 2015-05-04 2020-06-02 Semiconductor Energy Laboratory Co., Ltd. Touch panel and data processor
KR102549926B1 (en) 2015-05-04 2023-06-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, method for manufacturing the same, and electronic device
JP6681780B2 (en) 2015-05-07 2020-04-15 株式会社半導体エネルギー研究所 Display systems and electronic devices
DE102016207737A1 (en) 2015-05-11 2016-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the semiconductor device, tire and moving object
TWI693719B (en) 2015-05-11 2020-05-11 日商半導體能源研究所股份有限公司 Manufacturing method of semiconductor device
US11728356B2 (en) 2015-05-14 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion element and imaging device
JP6935171B2 (en) 2015-05-14 2021-09-15 株式会社半導体エネルギー研究所 Semiconductor device
US9627034B2 (en) 2015-05-15 2017-04-18 Semiconductor Energy Laboratory Co., Ltd. Electronic device
WO2016189414A1 (en) 2015-05-22 2016-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
US9837547B2 (en) 2015-05-22 2017-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide conductor and display device including the semiconductor device
JP6773453B2 (en) 2015-05-26 2020-10-21 株式会社半導体エネルギー研究所 Storage devices and electronic devices
US10139663B2 (en) 2015-05-29 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Input/output device and electronic device
KR102553553B1 (en) 2015-06-12 2023-07-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging device, method for operating the same, and electronic device
DE112016002769T5 (en) 2015-06-19 2018-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and electronic device
US9860465B2 (en) 2015-06-23 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US9935633B2 (en) 2015-06-30 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Logic circuit, semiconductor device, electronic component, and electronic device
US10290573B2 (en) 2015-07-02 2019-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9917209B2 (en) 2015-07-03 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device including step of forming trench over semiconductor
KR102548001B1 (en) 2015-07-08 2023-06-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
JP2017022377A (en) 2015-07-14 2017-01-26 株式会社半導体エネルギー研究所 Semiconductor device
US10501003B2 (en) 2015-07-17 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, lighting device, and vehicle
US10985278B2 (en) 2015-07-21 2021-04-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US11024725B2 (en) 2015-07-24 2021-06-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including metal oxide film
US11189736B2 (en) 2015-07-24 2021-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10978489B2 (en) 2015-07-24 2021-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display panel, method for manufacturing semiconductor device, method for manufacturing display panel, and information processing device
US10424671B2 (en) 2015-07-29 2019-09-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, circuit board, and electronic device
CN106409919A (en) 2015-07-30 2017-02-15 株式会社半导体能源研究所 Semiconductor device and display device including the semiconductor device
US10019025B2 (en) 2015-07-30 2018-07-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US10585506B2 (en) 2015-07-30 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Display device with high visibility regardless of illuminance of external light
US9825177B2 (en) 2015-07-30 2017-11-21 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of a semiconductor device using multiple etching mask
US9876946B2 (en) 2015-08-03 2018-01-23 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US9911861B2 (en) 2015-08-03 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method of the same, and electronic device
JP6791661B2 (en) 2015-08-07 2020-11-25 株式会社半導体エネルギー研究所 Display panel
US9893202B2 (en) 2015-08-19 2018-02-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9666606B2 (en) 2015-08-21 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP2017041877A (en) 2015-08-21 2017-02-23 株式会社半導体エネルギー研究所 Semiconductor device, electronic component, and electronic apparatus
US9773919B2 (en) 2015-08-26 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2017037564A1 (en) 2015-08-28 2017-03-09 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor, transistor, and semiconductor device
JP2017050537A (en) 2015-08-31 2017-03-09 株式会社半導体エネルギー研究所 Semiconductor device
US9911756B2 (en) 2015-08-31 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor and electronic device surrounded by layer having assigned band gap to prevent electrostatic discharge damage
JP6807683B2 (en) 2015-09-11 2021-01-06 株式会社半導体エネルギー研究所 Input / output panel
SG10201607278TA (en) 2015-09-18 2017-04-27 Semiconductor Energy Lab Co Ltd Semiconductor device and electronic device
JP2017063420A (en) 2015-09-25 2017-03-30 株式会社半導体エネルギー研究所 Semiconductor device
WO2017055967A1 (en) 2015-09-30 2017-04-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
WO2017064590A1 (en) 2015-10-12 2017-04-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2017064587A1 (en) 2015-10-12 2017-04-20 Semiconductor Energy Laboratory Co., Ltd. Display panel, input/output device, data processor, and method for manufacturing display panel
US9852926B2 (en) 2015-10-20 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for semiconductor device
KR102477518B1 (en) 2015-10-23 2022-12-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and electronic device
JP2017102904A (en) 2015-10-23 2017-06-08 株式会社半導体エネルギー研究所 Semiconductor device and electronic device
US10007161B2 (en) 2015-10-26 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Display device
SG10201608814YA (en) 2015-10-29 2017-05-30 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the semiconductor device
US9773787B2 (en) 2015-11-03 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, memory device, electronic device, or method for driving the semiconductor device
US9741400B2 (en) 2015-11-05 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, memory device, electronic device, and method for operating the semiconductor device
JP6796461B2 (en) 2015-11-18 2020-12-09 株式会社半導体エネルギー研究所 Semiconductor devices, computers and electronic devices
US10868045B2 (en) 2015-12-11 2020-12-15 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device, and electronic device
JP2018032839A (en) 2015-12-11 2018-03-01 株式会社半導体エネルギー研究所 Transistor, circuit, semiconductor device, display device, and electronic apparatus
JP2017112374A (en) 2015-12-16 2017-06-22 株式会社半導体エネルギー研究所 Transistor, semiconductor device, and electronic apparatus
CN108475491B (en) 2015-12-18 2021-04-20 株式会社半导体能源研究所 Semiconductor device and display device including the same
US10177142B2 (en) 2015-12-25 2019-01-08 Semiconductor Energy Laboratory Co., Ltd. Circuit, logic circuit, processor, electronic component, and electronic device
CN108475699B (en) 2015-12-28 2021-11-16 株式会社半导体能源研究所 Semiconductor device and display device including the same
JP6851814B2 (en) 2015-12-29 2021-03-31 株式会社半導体エネルギー研究所 Transistor
JP2017135698A (en) 2015-12-29 2017-08-03 株式会社半導体エネルギー研究所 Semiconductor device, computer, and electronic device
KR20180099725A (en) 2015-12-29 2018-09-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Metal oxide films and semiconductor devices
TWI619937B (en) * 2016-01-15 2018-04-01 奇美視像科技股份有限公司 Method for inspecting an article and apparatus for measuring the article by multi-photon excitation technique
JP6827328B2 (en) 2016-01-15 2021-02-10 株式会社半導体エネルギー研究所 Semiconductor devices and electronic devices
CN113224171A (en) 2016-01-18 2021-08-06 株式会社半导体能源研究所 Metal oxide film, semiconductor device, and display device
JP6839986B2 (en) 2016-01-20 2021-03-10 株式会社半導体エネルギー研究所 Manufacturing method of semiconductor device
JP6822853B2 (en) 2016-01-21 2021-01-27 株式会社半導体エネルギー研究所 Storage device and driving method of storage device
US10411013B2 (en) 2016-01-22 2019-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and memory device
US10700212B2 (en) 2016-01-28 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, semiconductor wafer, module, electronic device, and manufacturing method thereof
US10115741B2 (en) 2016-02-05 2018-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US10250247B2 (en) 2016-02-10 2019-04-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic component, and electronic device
CN109121438B (en) 2016-02-12 2022-02-18 株式会社半导体能源研究所 Semiconductor device and display device including the same
JP6970511B2 (en) 2016-02-12 2021-11-24 株式会社半導体エネルギー研究所 Transistor
US9954003B2 (en) 2016-02-17 2018-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
KR20180124874A (en) 2016-03-04 2018-11-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, method of manufacturing the same, and display device including the semiconductor device
WO2017149413A1 (en) 2016-03-04 2017-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10263114B2 (en) 2016-03-04 2019-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, or display device including the same
JP6904730B2 (en) 2016-03-08 2021-07-21 株式会社半導体エネルギー研究所 Imaging device
US9882064B2 (en) 2016-03-10 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Transistor and electronic device
US10096720B2 (en) 2016-03-25 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device, and electronic device
WO2017168283A1 (en) 2016-04-01 2017-10-05 株式会社半導体エネルギー研究所 Composite oxide semiconductor, semiconductor device using said composite oxide semiconductor, and display device having said semiconductor device
CN109074296B (en) 2016-04-15 2023-09-12 株式会社半导体能源研究所 Semiconductor device, electronic component, and electronic apparatus
US10236875B2 (en) 2016-04-15 2019-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for operating the semiconductor device
KR102492209B1 (en) 2016-05-19 2023-01-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Composite oxide semiconductor and transistor
JP6266040B2 (en) * 2016-05-19 2018-01-24 株式会社ソディック Additive manufacturing equipment
CN109196656B (en) 2016-06-03 2022-04-19 株式会社半导体能源研究所 Metal oxide and field effect transistor
KR102330605B1 (en) 2016-06-22 2021-11-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
CN106200180A (en) * 2016-09-09 2016-12-07 武汉华星光电技术有限公司 A kind of array base palte Electro-static Driven Comb preventer and method
US10411003B2 (en) 2016-10-14 2019-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
EP3673324B1 (en) * 2017-08-22 2022-06-29 Rockley Photonics Limited Optical modulator and method of fabricating an optical modulator
JP6782211B2 (en) * 2017-09-08 2020-11-11 株式会社東芝 Transparent electrodes, devices using them, and methods for manufacturing devices
WO2019145803A1 (en) 2018-01-24 2019-08-01 株式会社半導体エネルギー研究所 Semiconductor device, electronic component, and electronic apparatus
US11209877B2 (en) 2018-03-16 2021-12-28 Semiconductor Energy Laboratory Co., Ltd. Electrical module, display panel, display device, input/output device, data processing device, and method of manufacturing electrical module
US10748934B2 (en) * 2018-08-28 2020-08-18 Qualcomm Incorporated Silicon on insulator with multiple semiconductor thicknesses using layer transfer
CN111106134B (en) * 2018-10-29 2023-08-08 夏普株式会社 Active matrix substrate and X-ray imaging panel provided with same
US11342256B2 (en) 2019-01-24 2022-05-24 Applied Materials, Inc. Method of fine redistribution interconnect formation for advanced packaging applications
US20220208245A1 (en) * 2019-04-26 2022-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
IT201900006736A1 (en) 2019-05-10 2020-11-10 Applied Materials Inc PACKAGE MANUFACTURING PROCEDURES
IT201900006740A1 (en) 2019-05-10 2020-11-10 Applied Materials Inc SUBSTRATE STRUCTURING PROCEDURES
JP6864875B2 (en) 2019-08-30 2021-04-28 日亜化学工業株式会社 Light emitting module and its manufacturing method
CN112648937B (en) * 2019-10-13 2023-01-06 中北大学 Hole detection device with anti-rotation mechanism and detection method
US11862546B2 (en) 2019-11-27 2024-01-02 Applied Materials, Inc. Package core assembly and fabrication methods
US11632448B2 (en) 2019-12-03 2023-04-18 Apple Inc. Handheld electronic device
US11637919B2 (en) 2019-12-03 2023-04-25 Apple Inc. Handheld electronic device
US11257790B2 (en) 2020-03-10 2022-02-22 Applied Materials, Inc. High connectivity device stacking
US11454884B2 (en) 2020-04-15 2022-09-27 Applied Materials, Inc. Fluoropolymer stamp fabrication method
US11400545B2 (en) 2020-05-11 2022-08-02 Applied Materials, Inc. Laser ablation for package fabrication
US11232951B1 (en) 2020-07-14 2022-01-25 Applied Materials, Inc. Method and apparatus for laser drilling blind vias
US11676832B2 (en) 2020-07-24 2023-06-13 Applied Materials, Inc. Laser ablation system for package fabrication
US11521937B2 (en) 2020-11-16 2022-12-06 Applied Materials, Inc. Package structures with built-in EMI shielding
US11404318B2 (en) 2020-11-20 2022-08-02 Applied Materials, Inc. Methods of forming through-silicon vias in substrates for advanced packaging
US11705365B2 (en) 2021-05-18 2023-07-18 Applied Materials, Inc. Methods of micro-via formation for advanced packaging

Citations (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861964A (en) * 1986-09-26 1989-08-29 Semiconductor Energy Laboratory Co., Ltd. Laser scribing system and method
US4970368A (en) * 1984-06-08 1990-11-13 Semiconductor Energy Laboratory Co. Ltd. Laser scribing method
US5708252A (en) * 1986-09-26 1998-01-13 Semiconductor Energy Laboratory Co., Ltd. Excimer laser scanning system
US5808321A (en) * 1993-06-12 1998-09-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with recrystallized active area
US5946567A (en) * 1998-03-20 1999-08-31 Taiwan Semiconductor Manufacturing Company, Ltd. Method for making metal capacitors for deep submicrometer processes for semiconductor integrated circuits
US6067134A (en) * 1997-03-19 2000-05-23 Kabushiki Kaisha Toshiba Stacked cell liquid crystal display device with connectors piercing though upper cells
US6149988A (en) * 1986-09-26 2000-11-21 Semiconductor Energy Laboratory Co., Ltd. Method and system of laser processing
US6294274B1 (en) * 1998-11-16 2001-09-25 Tdk Corporation Oxide thin film
US6309957B1 (en) * 2000-04-03 2001-10-30 Taiwan Semiconductor Maufacturing Company Method of low-K/copper dual damascene
US20010038127A1 (en) * 2000-02-28 2001-11-08 Shunpei Yamazaki Semiconductor device and a method of manufacturing the same
US20010048489A1 (en) * 2000-06-02 2001-12-06 Yoshihiro Izumi Active matrix substrate, display device, and image sensing device
US20010052889A1 (en) * 2000-05-31 2001-12-20 Ichiro Fukunishi Liquid crystal display device and deficiency correcting method thereof
US6376353B1 (en) * 2000-07-03 2002-04-23 Chartered Semiconductor Manufacturing Ltd. Aluminum and copper bimetallic bond pad scheme for copper damascene interconnects
US20020063844A1 (en) * 2000-11-28 2002-05-30 Yoshiaki Matsuura Method for darkening pixel
US6399486B1 (en) * 1999-11-22 2002-06-04 Taiwan Semiconductor Manufacturing Company Method of improved copper gap fill
US20020130386A1 (en) * 2001-03-14 2002-09-19 International Business Machines Corporation Integrated coil inductors for IC devices
US6492118B1 (en) * 1999-08-27 2002-12-10 Matrix Technologies Corporation Methods of immobilizing ligands on solid supports
US6514855B1 (en) * 2000-02-07 2003-02-04 Canon Sales Co., Inc. Semiconductor device manufacturing method having a porous insulating film
US6580405B1 (en) * 1998-02-09 2003-06-17 Semiconductor Energy Laboratory Co., Ltd. Information processing device
US20030160283A1 (en) * 2002-02-26 2003-08-28 Hitachi, Ltd. Thin film transistor and display apparatus with the same
US20030173890A1 (en) * 2002-03-14 2003-09-18 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the same
US20040096593A1 (en) * 2002-11-14 2004-05-20 Lukas Aaron Scott Non-thermal process for forming porous low dielectric constant films
US6753249B1 (en) * 2001-01-16 2004-06-22 Taiwan Semiconductor Manufacturing Company Multilayer interface in copper CMP for low K dielectric
US20040129450A1 (en) * 2002-12-27 2004-07-08 Semiconductor Energy Laboratory Co., Ltd. IC card and booking account system using the IC card
US20040137241A1 (en) * 2003-01-08 2004-07-15 International Business Machines Corporation Patternable low dielectric constsnt materials and their use in ULSI interconnection
US20040164302A1 (en) * 2003-02-24 2004-08-26 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit device IC label, container comprising the thin film integrated circuit, manufacturing method of the thin film integrated circuit device, manufacturing method of the container, and management method of product having the container
US6852998B2 (en) * 1999-03-16 2005-02-08 Lg Philips Lcd Co., Ltd. Thin-film transistor substrate and liquid crystal display
US6897433B2 (en) * 2000-05-18 2005-05-24 Japan Science And Technology Corporation Method for rewriting data in three-dimensional optical memory device fabricated in glass by ultra-short light pulse
US20050127035A1 (en) * 2003-02-28 2005-06-16 Ling Xinsheng S. Addressable nanopores and micropores including methods for making and using same
US20050191847A1 (en) * 2004-02-26 2005-09-01 Semiconductor Leading Edge Technologies, Inc. Method for manufacturing semiconductor device
US20050199880A1 (en) * 2004-03-12 2005-09-15 Hoffman Randy L. Semiconductor device
US20050199959A1 (en) * 2004-03-12 2005-09-15 Chiang Hai Q. Semiconductor device
US6946381B2 (en) * 2003-07-18 2005-09-20 Hynix Semiconductor Inc. Method of forming insulating film in semiconductor device
US7009204B2 (en) * 2003-09-15 2006-03-07 Toppoly Optoelectronics Corp. Thin film transistor with self-aligned intra-gate electrode
US7049190B2 (en) * 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
US20060108636A1 (en) * 2004-11-10 2006-05-25 Canon Kabushiki Kaisha Amorphous oxide and field effect transistor
US20060110867A1 (en) * 2004-11-10 2006-05-25 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US20060113539A1 (en) * 2004-11-10 2006-06-01 Canon Kabushiki Kaisha Field effect transistor
US20060113549A1 (en) * 2004-11-10 2006-06-01 Canon Kabushiki Kaisha Light-emitting device
US20060113536A1 (en) * 2004-11-10 2006-06-01 Canon Kabushiki Kaisha Display
US20060115983A1 (en) * 2004-11-30 2006-06-01 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US20060116000A1 (en) * 2004-11-30 2006-06-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of insulating film and semiconductor device
US20060113671A1 (en) * 2004-11-30 2006-06-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20060113565A1 (en) * 2004-11-10 2006-06-01 Canon Kabushiki Kaisha Electric elements and circuits utilizing amorphous oxides
US7061014B2 (en) * 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
US20060163743A1 (en) * 2005-01-21 2006-07-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same, and electric device
US20060170067A1 (en) * 2005-02-03 2006-08-03 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7105868B2 (en) * 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US20060208977A1 (en) * 2005-03-18 2006-09-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US20060231882A1 (en) * 2005-03-28 2006-10-19 Il-Doo Kim Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US20060238138A1 (en) * 2005-04-21 2006-10-26 Energy Conservation Technologies, Inc. Control circuit for maintaining constant power in power factor corrected electronic ballasts and power supplies
US20070024187A1 (en) * 2005-07-28 2007-02-01 Shin Hyun S Organic light emitting display (OLED) and its method of fabrication
US7176069B2 (en) * 2003-02-05 2007-02-13 Semiconductor Energy Laboratory Co., Ltd. Manufacture method of display device
US20070046191A1 (en) * 2005-08-23 2007-03-01 Canon Kabushiki Kaisha Organic electroluminescent display device and manufacturing method thereof
US20070052025A1 (en) * 2005-09-06 2007-03-08 Canon Kabushiki Kaisha Oxide semiconductor thin film transistor and method of manufacturing the same
US20070072439A1 (en) * 2005-09-29 2007-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7208764B2 (en) * 2002-04-22 2007-04-24 Seiko Epson Corporation Liquid crystal display device having partition walls
US20070090365A1 (en) * 2005-10-20 2007-04-26 Canon Kabushiki Kaisha Field-effect transistor including transparent oxide and light-shielding member, and display utilizing the transistor
US20070108446A1 (en) * 2005-11-15 2007-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20070158652A1 (en) * 2005-12-28 2007-07-12 Je-Hun Lee Display substrate, method of manufacturing the same and display panel having the same
US20070172591A1 (en) * 2006-01-21 2007-07-26 Samsung Electronics Co., Ltd. METHOD OF FABRICATING ZnO FILM AND THIN FILM TRANSISTOR ADOPTING THE ZnO FILM
US20070178672A1 (en) * 2004-10-20 2007-08-02 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus and method for manufacturing semiconductor device
US20070187760A1 (en) * 2006-02-02 2007-08-16 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US20070187678A1 (en) * 2006-02-15 2007-08-16 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
US20070194379A1 (en) * 2004-03-12 2007-08-23 Japan Science And Technology Agency Amorphous Oxide And Thin Film Transistor
US20070252928A1 (en) * 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
US7297977B2 (en) * 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US20070272922A1 (en) * 2006-04-11 2007-11-29 Samsung Electronics Co. Ltd. ZnO thin film transistor and method of forming the same
US7323356B2 (en) * 2002-02-21 2008-01-29 Japan Science And Technology Agency LnCuO(S,Se,Te)monocrystalline thin film, its manufacturing method, and optical device or electronic device using the monocrystalline thin film
US20080038882A1 (en) * 2006-08-09 2008-02-14 Kazushige Takechi Thin-film device and method of fabricating the same
US20080038929A1 (en) * 2006-08-09 2008-02-14 Canon Kabushiki Kaisha Method of dry etching oxide semiconductor film
US20080050595A1 (en) * 2006-01-11 2008-02-28 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
US20080073653A1 (en) * 2006-09-27 2008-03-27 Canon Kabushiki Kaisha Semiconductor apparatus and method of manufacturing the same
US20080083950A1 (en) * 2006-10-10 2008-04-10 Alfred I-Tsung Pan Fused nanocrystal thin film semiconductor and method
US7356921B2 (en) * 2002-04-15 2008-04-15 Seiko Epson Corporation Method for forming a conductive layer pattern
US20080106191A1 (en) * 2006-09-27 2008-05-08 Seiko Epson Corporation Electronic device, organic electroluminescence device, and organic thin film semiconductor device
US7371286B2 (en) * 2003-09-24 2008-05-13 Laserfront Technologies, Inc. Wiring repair apparatus
US20080128689A1 (en) * 2006-11-29 2008-06-05 Je-Hun Lee Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
US20080129195A1 (en) * 2006-12-04 2008-06-05 Toppan Printing Co., Ltd. Color el display and method for producing the same
US20080166834A1 (en) * 2007-01-05 2008-07-10 Samsung Electronics Co., Ltd. Thin film etching method
US7402506B2 (en) * 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US20080182358A1 (en) * 2007-01-26 2008-07-31 Cowdery-Corvan Peter J Process for atomic layer deposition
US7411209B2 (en) * 2006-09-15 2008-08-12 Canon Kabushiki Kaisha Field-effect transistor and method for manufacturing the same
US20080224133A1 (en) * 2007-03-14 2008-09-18 Jin-Seong Park Thin film transistor and organic light-emitting display device having the thin film transistor
US20080258141A1 (en) * 2007-04-19 2008-10-23 Samsung Electronics Co., Ltd. Thin film transistor, method of manufacturing the same, and flat panel display having the same
US20080258139A1 (en) * 2007-04-17 2008-10-23 Toppan Printing Co., Ltd. Structure with transistor
US20080258143A1 (en) * 2007-04-18 2008-10-23 Samsung Electronics Co., Ltd. Thin film transitor substrate and method of manufacturing the same
US20080258140A1 (en) * 2007-04-20 2008-10-23 Samsung Electronics Co., Ltd. Thin film transistor including selectively crystallized channel layer and method of manufacturing the thin film transistor
US7453065B2 (en) * 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7453087B2 (en) * 2005-09-06 2008-11-18 Canon Kabushiki Kaisha Thin-film transistor and thin-film diode having amorphous-oxide semiconductor layer
US20090114910A1 (en) * 2005-09-06 2009-05-07 Canon Kabushiki Kaisha Semiconductor device
US7561052B2 (en) * 2004-02-04 2009-07-14 Semiconductor Energy Laboratory Co., Ltd. ID label, ID tag, and ID card

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169154A (en) 1983-03-16 1984-09-25 Fujitsu Ltd Semiconductor device
EP0296707A1 (en) * 1987-06-12 1988-12-28 Hewlett-Packard Company Incorporation of dielectric layers in a semiconductor
JP2616040B2 (en) * 1989-08-31 1997-06-04 松下電器産業株式会社 Method for manufacturing thick film circuit board
JPH05160271A (en) * 1991-12-03 1993-06-25 Mitsubishi Electric Corp Semiconductor device
JP3893645B2 (en) * 1996-03-18 2007-03-14 ソニー株式会社 Thin film semiconductor device and IC card manufacturing method
JP2004206134A (en) * 1996-10-22 2004-07-22 Seiko Epson Corp Substrate for liquid crystal panel, liquid crystal panel, and electronic appliance and projection display apparatus using the same
US6310300B1 (en) * 1996-11-08 2001-10-30 International Business Machines Corporation Fluorine-free barrier layer between conductor and insulator for degradation prevention
JPH1148661A (en) * 1997-08-05 1999-02-23 Hitachi Maxell Ltd Non-contact ic card and its manufacture
US6046381A (en) * 1998-04-30 2000-04-04 The Regents Of The University Of California Apolipoprotein E transgenic mice and assay methods
JP2000081638A (en) * 1998-09-04 2000-03-21 Matsushita Electric Ind Co Ltd Liquid crystal display device and its manufacture
GB9821311D0 (en) * 1998-10-02 1998-11-25 Koninkl Philips Electronics Nv Reflective liquid crystal display device
JP2002083691A (en) * 2000-09-06 2002-03-22 Sharp Corp Active matrix driven organic led display unit and its manufacturing method
US6429118B1 (en) 2000-09-18 2002-08-06 Taiwan Semiconductor Manufacturing Company Elimination of electrochemical deposition copper line damage for damascene processing
US6495437B1 (en) * 2001-02-09 2002-12-17 Advanced Micro Devices, Inc. Low temperature process to locally form high-k gate dielectrics
JP4090716B2 (en) * 2001-09-10 2008-05-28 雅司 川崎 Thin film transistor and matrix display device
JP3749884B2 (en) * 2002-08-28 2006-03-01 株式会社東芝 Digital watermark embedding device, digital watermark analysis device, digital watermark embedding method, digital watermark analysis method, and program
US7067843B2 (en) * 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4566578B2 (en) * 2003-02-24 2010-10-20 株式会社半導体エネルギー研究所 Method for manufacturing thin film integrated circuit
JP2004305990A (en) 2003-04-10 2004-11-04 Seiko Epson Corp Pattern forming method, pattern forming apparatus, conductive film wiring, production method for device, electro-optical device and electronic equipment
JP2005327898A (en) * 2004-05-14 2005-11-24 Fujitsu Ltd Semiconductor device and its manufacturing method
US8300031B2 (en) * 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970368A (en) * 1984-06-08 1990-11-13 Semiconductor Energy Laboratory Co. Ltd. Laser scribing method
US5708252A (en) * 1986-09-26 1998-01-13 Semiconductor Energy Laboratory Co., Ltd. Excimer laser scanning system
US4861964A (en) * 1986-09-26 1989-08-29 Semiconductor Energy Laboratory Co., Ltd. Laser scribing system and method
US6149988A (en) * 1986-09-26 2000-11-21 Semiconductor Energy Laboratory Co., Ltd. Method and system of laser processing
US6376860B1 (en) * 1993-06-12 2002-04-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US5808321A (en) * 1993-06-12 1998-09-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with recrystallized active area
US5923997A (en) * 1993-06-12 1999-07-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6067134A (en) * 1997-03-19 2000-05-23 Kabushiki Kaisha Toshiba Stacked cell liquid crystal display device with connectors piercing though upper cells
US6580405B1 (en) * 1998-02-09 2003-06-17 Semiconductor Energy Laboratory Co., Ltd. Information processing device
US5946567A (en) * 1998-03-20 1999-08-31 Taiwan Semiconductor Manufacturing Company, Ltd. Method for making metal capacitors for deep submicrometer processes for semiconductor integrated circuits
US6294274B1 (en) * 1998-11-16 2001-09-25 Tdk Corporation Oxide thin film
US6852998B2 (en) * 1999-03-16 2005-02-08 Lg Philips Lcd Co., Ltd. Thin-film transistor substrate and liquid crystal display
US6492118B1 (en) * 1999-08-27 2002-12-10 Matrix Technologies Corporation Methods of immobilizing ligands on solid supports
US6399486B1 (en) * 1999-11-22 2002-06-04 Taiwan Semiconductor Manufacturing Company Method of improved copper gap fill
US6514855B1 (en) * 2000-02-07 2003-02-04 Canon Sales Co., Inc. Semiconductor device manufacturing method having a porous insulating film
US20010038127A1 (en) * 2000-02-28 2001-11-08 Shunpei Yamazaki Semiconductor device and a method of manufacturing the same
US6309957B1 (en) * 2000-04-03 2001-10-30 Taiwan Semiconductor Maufacturing Company Method of low-K/copper dual damascene
US6897433B2 (en) * 2000-05-18 2005-05-24 Japan Science And Technology Corporation Method for rewriting data in three-dimensional optical memory device fabricated in glass by ultra-short light pulse
US20010052889A1 (en) * 2000-05-31 2001-12-20 Ichiro Fukunishi Liquid crystal display device and deficiency correcting method thereof
US20010048489A1 (en) * 2000-06-02 2001-12-06 Yoshihiro Izumi Active matrix substrate, display device, and image sensing device
US6376353B1 (en) * 2000-07-03 2002-04-23 Chartered Semiconductor Manufacturing Ltd. Aluminum and copper bimetallic bond pad scheme for copper damascene interconnects
US20020063844A1 (en) * 2000-11-28 2002-05-30 Yoshiaki Matsuura Method for darkening pixel
US6753249B1 (en) * 2001-01-16 2004-06-22 Taiwan Semiconductor Manufacturing Company Multilayer interface in copper CMP for low K dielectric
US6492708B2 (en) * 2001-03-14 2002-12-10 International Business Machines Corporation Integrated coil inductors for IC devices
US20020130386A1 (en) * 2001-03-14 2002-09-19 International Business Machines Corporation Integrated coil inductors for IC devices
US6720230B2 (en) * 2001-03-14 2004-04-13 International Business Machines Corporation Method of fabricating integrated coil inductors for IC devices
US7061014B2 (en) * 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
US7323356B2 (en) * 2002-02-21 2008-01-29 Japan Science And Technology Agency LnCuO(S,Se,Te)monocrystalline thin film, its manufacturing method, and optical device or electronic device using the monocrystalline thin film
US20030160283A1 (en) * 2002-02-26 2003-08-28 Hitachi, Ltd. Thin film transistor and display apparatus with the same
US6885146B2 (en) * 2002-03-14 2005-04-26 Semiconductor Energy Laboratory Co., Ltd. Display device comprising substrates, contrast medium and barrier layers between contrast medium and each of substrates
US20030173890A1 (en) * 2002-03-14 2003-09-18 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the same
US7049190B2 (en) * 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
US7356921B2 (en) * 2002-04-15 2008-04-15 Seiko Epson Corporation Method for forming a conductive layer pattern
US7208764B2 (en) * 2002-04-22 2007-04-24 Seiko Epson Corporation Liquid crystal display device having partition walls
US7105868B2 (en) * 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7404990B2 (en) * 2002-11-14 2008-07-29 Air Products And Chemicals, Inc. Non-thermal process for forming porous low dielectric constant films
US20040096593A1 (en) * 2002-11-14 2004-05-20 Lukas Aaron Scott Non-thermal process for forming porous low dielectric constant films
US20040129450A1 (en) * 2002-12-27 2004-07-08 Semiconductor Energy Laboratory Co., Ltd. IC card and booking account system using the IC card
US20040137241A1 (en) * 2003-01-08 2004-07-15 International Business Machines Corporation Patternable low dielectric constsnt materials and their use in ULSI interconnection
US7176069B2 (en) * 2003-02-05 2007-02-13 Semiconductor Energy Laboratory Co., Ltd. Manufacture method of display device
US20040164302A1 (en) * 2003-02-24 2004-08-26 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit device IC label, container comprising the thin film integrated circuit, manufacturing method of the thin film integrated circuit device, manufacturing method of the container, and management method of product having the container
US20050127035A1 (en) * 2003-02-28 2005-06-16 Ling Xinsheng S. Addressable nanopores and micropores including methods for making and using same
US6946381B2 (en) * 2003-07-18 2005-09-20 Hynix Semiconductor Inc. Method of forming insulating film in semiconductor device
US7009204B2 (en) * 2003-09-15 2006-03-07 Toppoly Optoelectronics Corp. Thin film transistor with self-aligned intra-gate electrode
US7371286B2 (en) * 2003-09-24 2008-05-13 Laserfront Technologies, Inc. Wiring repair apparatus
US7561052B2 (en) * 2004-02-04 2009-07-14 Semiconductor Energy Laboratory Co., Ltd. ID label, ID tag, and ID card
US20050191847A1 (en) * 2004-02-26 2005-09-01 Semiconductor Leading Edge Technologies, Inc. Method for manufacturing semiconductor device
US7297977B2 (en) * 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US20070194379A1 (en) * 2004-03-12 2007-08-23 Japan Science And Technology Agency Amorphous Oxide And Thin Film Transistor
US20050199959A1 (en) * 2004-03-12 2005-09-15 Chiang Hai Q. Semiconductor device
US20050199880A1 (en) * 2004-03-12 2005-09-15 Hoffman Randy L. Semiconductor device
US20070178672A1 (en) * 2004-10-20 2007-08-02 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus and method for manufacturing semiconductor device
US20060110867A1 (en) * 2004-11-10 2006-05-25 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US20060113549A1 (en) * 2004-11-10 2006-06-01 Canon Kabushiki Kaisha Light-emitting device
US20060113539A1 (en) * 2004-11-10 2006-06-01 Canon Kabushiki Kaisha Field effect transistor
US20060108636A1 (en) * 2004-11-10 2006-05-25 Canon Kabushiki Kaisha Amorphous oxide and field effect transistor
US20060113565A1 (en) * 2004-11-10 2006-06-01 Canon Kabushiki Kaisha Electric elements and circuits utilizing amorphous oxides
US20060113536A1 (en) * 2004-11-10 2006-06-01 Canon Kabushiki Kaisha Display
US7453065B2 (en) * 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US20060116000A1 (en) * 2004-11-30 2006-06-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of insulating film and semiconductor device
US20060115983A1 (en) * 2004-11-30 2006-06-01 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US20060113671A1 (en) * 2004-11-30 2006-06-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20060163743A1 (en) * 2005-01-21 2006-07-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same, and electric device
US20060170067A1 (en) * 2005-02-03 2006-08-03 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US20060208977A1 (en) * 2005-03-18 2006-09-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US20060231882A1 (en) * 2005-03-28 2006-10-19 Il-Doo Kim Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US20060238138A1 (en) * 2005-04-21 2006-10-26 Energy Conservation Technologies, Inc. Control circuit for maintaining constant power in power factor corrected electronic ballasts and power supplies
US7402506B2 (en) * 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US20070024187A1 (en) * 2005-07-28 2007-02-01 Shin Hyun S Organic light emitting display (OLED) and its method of fabrication
US20070046191A1 (en) * 2005-08-23 2007-03-01 Canon Kabushiki Kaisha Organic electroluminescent display device and manufacturing method thereof
US20070052025A1 (en) * 2005-09-06 2007-03-08 Canon Kabushiki Kaisha Oxide semiconductor thin film transistor and method of manufacturing the same
US7453087B2 (en) * 2005-09-06 2008-11-18 Canon Kabushiki Kaisha Thin-film transistor and thin-film diode having amorphous-oxide semiconductor layer
US20090114910A1 (en) * 2005-09-06 2009-05-07 Canon Kabushiki Kaisha Semiconductor device
US20090008639A1 (en) * 2005-09-29 2009-01-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device and Manufacturing Method Thereof
US20070072439A1 (en) * 2005-09-29 2007-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20070090365A1 (en) * 2005-10-20 2007-04-26 Canon Kabushiki Kaisha Field-effect transistor including transparent oxide and light-shielding member, and display utilizing the transistor
US20070108446A1 (en) * 2005-11-15 2007-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20070158652A1 (en) * 2005-12-28 2007-07-12 Je-Hun Lee Display substrate, method of manufacturing the same and display panel having the same
US20080050595A1 (en) * 2006-01-11 2008-02-28 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
US20070172591A1 (en) * 2006-01-21 2007-07-26 Samsung Electronics Co., Ltd. METHOD OF FABRICATING ZnO FILM AND THIN FILM TRANSISTOR ADOPTING THE ZnO FILM
US20070187760A1 (en) * 2006-02-02 2007-08-16 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US20070187678A1 (en) * 2006-02-15 2007-08-16 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
US20070272922A1 (en) * 2006-04-11 2007-11-29 Samsung Electronics Co. Ltd. ZnO thin film transistor and method of forming the same
US20070252928A1 (en) * 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
US20080038929A1 (en) * 2006-08-09 2008-02-14 Canon Kabushiki Kaisha Method of dry etching oxide semiconductor film
US20080038882A1 (en) * 2006-08-09 2008-02-14 Kazushige Takechi Thin-film device and method of fabricating the same
US7411209B2 (en) * 2006-09-15 2008-08-12 Canon Kabushiki Kaisha Field-effect transistor and method for manufacturing the same
US20080106191A1 (en) * 2006-09-27 2008-05-08 Seiko Epson Corporation Electronic device, organic electroluminescence device, and organic thin film semiconductor device
US20080073653A1 (en) * 2006-09-27 2008-03-27 Canon Kabushiki Kaisha Semiconductor apparatus and method of manufacturing the same
US20080083950A1 (en) * 2006-10-10 2008-04-10 Alfred I-Tsung Pan Fused nanocrystal thin film semiconductor and method
US20080128689A1 (en) * 2006-11-29 2008-06-05 Je-Hun Lee Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
US20080129195A1 (en) * 2006-12-04 2008-06-05 Toppan Printing Co., Ltd. Color el display and method for producing the same
US20080166834A1 (en) * 2007-01-05 2008-07-10 Samsung Electronics Co., Ltd. Thin film etching method
US20080182358A1 (en) * 2007-01-26 2008-07-31 Cowdery-Corvan Peter J Process for atomic layer deposition
US20080224133A1 (en) * 2007-03-14 2008-09-18 Jin-Seong Park Thin film transistor and organic light-emitting display device having the thin film transistor
US20080258139A1 (en) * 2007-04-17 2008-10-23 Toppan Printing Co., Ltd. Structure with transistor
US20080258143A1 (en) * 2007-04-18 2008-10-23 Samsung Electronics Co., Ltd. Thin film transitor substrate and method of manufacturing the same
US20080258141A1 (en) * 2007-04-19 2008-10-23 Samsung Electronics Co., Ltd. Thin film transistor, method of manufacturing the same, and flat panel display having the same
US20080258140A1 (en) * 2007-04-20 2008-10-23 Samsung Electronics Co., Ltd. Thin film transistor including selectively crystallized channel layer and method of manufacturing the thin film transistor

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090073325A1 (en) * 2005-01-21 2009-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same, and electric device
US8482261B2 (en) 2006-12-26 2013-07-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20080150475A1 (en) * 2006-12-26 2008-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device
US8159193B2 (en) 2006-12-26 2012-04-17 Semiconductor Energy Laboratory Co., Ltd. Wireless communication device
US20100253478A1 (en) * 2009-04-06 2010-10-07 Semiconductor Energy Laboratory Co., Ltd. Data processing device, ic card and communication system
US8797142B2 (en) * 2009-04-06 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Data processing device, IC card and communication system
US9831101B2 (en) 2009-06-30 2017-11-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9293566B2 (en) 2009-06-30 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8623698B2 (en) 2009-06-30 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8697488B2 (en) 2009-06-30 2014-04-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US11417754B2 (en) 2009-06-30 2022-08-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8846460B2 (en) 2009-06-30 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10796908B2 (en) 2009-06-30 2020-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9054137B2 (en) 2009-06-30 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8557641B2 (en) 2009-06-30 2013-10-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9136115B2 (en) 2009-06-30 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10790383B2 (en) 2009-06-30 2020-09-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20180233589A1 (en) 2009-06-30 2018-08-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9299807B2 (en) 2009-06-30 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9412768B2 (en) 2009-06-30 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10418467B2 (en) 2009-06-30 2019-09-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10090171B2 (en) 2009-06-30 2018-10-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9985118B2 (en) 2009-06-30 2018-05-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9576795B2 (en) 2009-06-30 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20110053322A1 (en) * 2009-06-30 2011-03-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10062570B2 (en) 2009-06-30 2018-08-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9537012B2 (en) 2009-09-04 2017-01-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide semiconductor layer
US9093262B2 (en) 2009-11-20 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10186619B2 (en) 2009-11-20 2019-01-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9461181B2 (en) 2009-11-20 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9275875B2 (en) 2010-05-21 2016-03-01 Semiconductor Energy Laboratory Co., Ltd Method for manufacturing semiconductor device
US8906756B2 (en) 2010-05-21 2014-12-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20120228624A1 (en) * 2011-03-09 2012-09-13 Hitachi Displays, Ltd. Image display device
US9875381B2 (en) 2011-06-08 2018-01-23 Semiconductor Energy Laboratory Co., Ltd. Communication method and communication system
US9489830B2 (en) 2011-06-08 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Communication method and communication system

Also Published As

Publication number Publication date
US7579224B2 (en) 2009-08-25
US20060163743A1 (en) 2006-07-27
CN101436600B (en) 2011-11-09
JP2010166069A (en) 2010-07-29
US20120126226A1 (en) 2012-05-24
CN101436600A (en) 2009-05-20
JP5463382B2 (en) 2014-04-09
CN100502040C (en) 2009-06-17
US20090153762A1 (en) 2009-06-18
CN1819268A (en) 2006-08-16
JP2012212888A (en) 2012-11-01
CN101442057A (en) 2009-05-27
CN101442057B (en) 2012-09-05
US20090073325A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
US7579224B2 (en) Method for manufacturing a thin film semiconductor device
JP5094019B2 (en) Method for manufacturing semiconductor device
US8207533B2 (en) Electronic device, semiconductor device and manufacturing method thereof
US9356152B2 (en) Semiconductor device, electronic device, and method of manufacturing semiconductor device
JP5238132B2 (en) Semiconductor device, module, and electronic device
JP2007116119A (en) Method for producing semiconductor device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION