US20100171200A1 - Semiconductor chip package - Google Patents

Semiconductor chip package Download PDF

Info

Publication number
US20100171200A1
US20100171200A1 US12/727,067 US72706710A US2010171200A1 US 20100171200 A1 US20100171200 A1 US 20100171200A1 US 72706710 A US72706710 A US 72706710A US 2010171200 A1 US2010171200 A1 US 2010171200A1
Authority
US
United States
Prior art keywords
ceramic substrate
shielding layer
chip
main board
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/727,067
Inventor
Tae Soo Lee
Yun Hwi Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Priority to US12/727,067 priority Critical patent/US20100171200A1/en
Publication of US20100171200A1 publication Critical patent/US20100171200A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48235Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/15321Connection portion the connection portion being formed on the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates to a semiconductor chip package for packaging a semiconductor chip.
  • FIG. 1A is a cross-sectional view illustrating an example of a related art semiconductor chip package.
  • a related art semiconductor chip package 10 includes at least one chip 12 flip-chip bonded onto a substrate 11 by using a plurality of bump balls 13 , and a metal can 15 formed of a metallic material on the substrate 11 .
  • the metal can 15 protects the chip 12 and a passive component from the external environment. Also, the metal can 15 prevents high-frequency signals generating during chip operation from affecting an adjacent package, or blocks external harmful electromagnetic waves.
  • FIG. 1B is a cross-sectional view illustrating another example of a related art semiconductor chip package.
  • a related art semiconductor chip package 20 includes at least one chip 22 wire-bonded onto a substrate 21 by using a plurality of metal wires 23 , and a metal can 25 formed of a metallic material on the substrate 21 .
  • the metal can 25 protects the chip 22 and a passive component 24 from the external environment. Also, the metal can 25 prevents high-frequency signals generating during chip operation from affecting an adjacent package, or blocks external harmful electromagnetic waves.
  • Undescribed reference numerals 16 and 26 in FIGS. 1A and 1B indicate main boards on which the semiconductor chip packages 10 and 20 are mounted, respectively.
  • the passive components 14 and 24 such as a resistor, a capacitor and a coil are mounted on the substrates 11 and 21 besides the chips 12 and 22 , and the metal cans 15 and 25 are also mounted on the substrates 11 and 21 to shield the chips 11 and 22 and the passive component 14 and 24 from the external environment.
  • the related art semiconductor chip packages 10 and 20 have limitations in that assembly processes of the semiconductor chips 10 and 20 are complicated and take long time to complete, lowering operational productivity. Also, miniaturization of the semiconductor chip packages 10 and 20 is limited because of the metal cans 15 and 25 .
  • the substrates 11 and 21 must include separate ground lines (not shown) electrically connected with ground terminals of the chips 12 and 22 , and separate ground lines (not shown) electrically connected with the metal cans 15 and 25 mounted thereon.
  • the substrate structure is complicated, increasing manufacturing costs.
  • An aspect of the present invention provides a semiconductor chip package, which can simplify a package manufacturing process, reduce the number of components to lower the manufacturing costs, reduce a package volume to contribute miniaturization of a package, and improve ground performance.
  • a semiconductor chip package including: a main board; a ceramic substrate having a cavity within which at least one chip is electrically mounted, the cavity being placed at a lower portion of the ceramic substrate facing the main board; and a conductive shielding layer provided with a predetermined thickness on the outside of the ceramic substrate, wherein the ceramic substrate includes: at least one first ground line electrically connecting the conductive shielding layer with the main board; at least one second ground line electrically connecting the conductive shielding layer with the chip; and at least one signal line electrically connecting the chip with the main board.
  • the conductive shielding layer may cover a top surface and outer side surfaces of the ceramic substrate.
  • the conductive shielding layer may include bar-shaped patterns alternately disposed on a top surface of the ceramic substrate.
  • the conductive shielding layer may include a helical pattern on a top surface of the ceramic substrate.
  • the first ground line may include a first conductive via penetrating the ceramic substrate and electrically connecting the conductive shielding layer with a ground terminal of the main board.
  • the second ground line may include a second conductive via penetrating the ceramic substrate and electrically connecting the conductive shielding layer with a ground terminal of the chip.
  • the signal line may include: an inner pattern provided in the ceramic substrate and electrically connected with a signal terminal of the chip; and a signal via formed in the ceramic substrate and electrically connecting the inner pattern with a signal terminal of the main board.
  • the cavity may be filled with a resin filler covering and protecting the chip.
  • the chip may be mounted to the ceramic substrate by flip-chip bonding.
  • the chip may be mounted to the ceramic substrate by wire-bonding.
  • a semiconductor chip package including: a main board; a ceramic substrate having a cavity within which at least one chip is electrically mounted, the cavity being placed at a lower portion of the ceramic substrate facing the main board; and a shielding substrate stacked on the ceramic substrate and including a shielding layer, wherein the ceramic substrate includes: at least one third ground line electrically connecting the shielding layer of the shielding substrate with the main board; at least one fourth ground line electrically connecting the shielding layer of the shielding substrate with the chip; and at least one signal line electrically connecting the chip with the main board.
  • the shielding layer may include: an upper conductive shielding layer provided at an upper portion of the shielding substrate; a lower conductive shielding layer provided at a lower portion of the shielding substrate; and an intermediate conductive shielding layer disposed between the upper conductive shielding layer and the lower conductive shielding layer.
  • the upper conductive shielding layer and the intermediate conductive shielding layer may be connected through a conductive via, and the upper conductive shielding layer and the lower conductive shielding layer may be connected through another conductive via.
  • the upper conductive shielding layer may cover the ceramic substrate.
  • the upper conductive shielding layer may include bar-shaped patterns alternately disposed on the ceramic substrate.
  • the upper conductive shielding layer may include a helical pattern disposed on the ceramic substrate.
  • the third ground line may include a third conductive via penetrating the ceramic substrate and electrically connecting the shielding layer with a ground terminal of the main board.
  • the fourth ground line may include a fourth conductive via penetrating the ceramic substrate and electrically connecting the shielding layer with a ground terminal of the chip.
  • the signal line may include: an inner pattern provided in the ceramic substrate and electrically connected with a signal terminal of the chip; and a signal via formed in the ceramic substrate and electrically connecting the inner pattern with a signal terminal of the main board.
  • the cavity may be filled with a resin filler covering and protecting the chip.
  • the chip may be mounted to the ceramic substrate by flip-chip bonding.
  • the chip may be mounted to the ceramic substrate by wire-bonding.
  • FIGS. 1A and 1B are cross-sectional views of related art semiconductor chip packages, respectively illustrating a semiconductor chip package including a chip mounted by a flip-chip method, and a semiconductor chip package including a chip mounted by a wire-bonding method;
  • FIGS. 2A and 2B are cross-sectional views of semiconductor chip packages according to an embodiment of the present invention, respectively illustrating a semiconductor chip package including a chip mounted by a flip-chip method and a semiconductor chip package including a chip mounted by a wire-bonding method;
  • FIGS. 3A and 3B are views of conductive shielding layers used in the semiconductor chip packages of FIGS. 2A and 2B , respectively provided in the form of bar-shaped patterns and a helical pattern.
  • FIGS. 4A and 4B are cross-sectional views of semiconductor chip packages according to another embodiment of the present invention, respectively illustrating a semiconductor chip package including a chip mounted by a flip-chip method and a semiconductor chip package including a chip mounted by a wire-bonding method;
  • FIG. 5 is a cross-sectional view of a shielding substrate used in the semiconductor chip packages of FIGS. 4A and 4B .
  • FIGS. 2A and 2B are cross-sectional views of semiconductor chip packages according to an embodiment of the present invention.
  • FIG. 2A illustrates a semiconductor chip package in which a chip is mounted by a flip-chip method
  • FIG. 2B illustrates a semiconductor chip package in which a chip is mounted by a wire-bonding method.
  • the semiconductor chip package 100 includes a main board 101 , a ceramic substrate 110 and a conductive shielding layer 120 .
  • the main board 101 is a main substrate on which the ceramic substrate 110 is mounted by a land grid array (LGA) method or a ball grid array (BGA) method using a plurality of solder balls as a medium, and a plurality of passive components 105 are mounted.
  • LGA land grid array
  • BGA ball grid array
  • the ceramic substrate 110 has a cavity 111 with a predetermined size, which is open at one side facing the main board 101 .
  • the ceramic substrate 110 may have a stack structure of ceramic sheets that are stacked forming the cavity 111 therein.
  • At least one chip 112 is electrically mounted within the cavity 111 .
  • the chip 112 is mounted within the cavity 111 by a flip-chip bonding method such that a plurality of terminals provided on an active surface of the chip 112 are electrically connected with a plurality of pads 113 provided on a closed side of the cavity 111 by using bump balls 114 placed on the pads 113 .
  • the chip 112 is mounted by a wire-bonding method such that the plurality of terminals provided on the active surface of the chip 112 are electrically connected to the plurality of pads 113 provided on the closed side of the cavity 111 by using a plurality of metal wires 114 a.
  • the chip 112 may be one of a memory chip such as a static random access memory (SRAM) and a dynamic random access memory (DRAM), a digital integrated circuit chip, a radio frequency (RF) integrated circuit chip, and a baseband chip.
  • a memory chip such as a static random access memory (SRAM) and a dynamic random access memory (DRAM), a digital integrated circuit chip, a radio frequency (RF) integrated circuit chip, and a baseband chip.
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RF radio frequency
  • the cavity 111 is filled with a resin filler 116 to protect the chip 112 mounted by the flip-chip bonding method or the wire bonding method from the external environment.
  • the chip 112 mounted within the cavity 111 is disposed in a closed space formed between the main board 101 and the ceramic substrate 110 , thereby minimizing signal propagation from the chip 112 to the outside.
  • the ceramic substrate 110 may be a low temperature co-fired ceramic (LTCC) substrate provided by an LTCC technique.
  • LTCC low temperature co-fired ceramic
  • passive components for realizing a given circuit such as resistors, inductors, capacitors, filters, baluns and couplers are realized in a plurality of glass-ceramic-based green sheets by using a photo patterning process and a screen printing process using a highly conductive material such as Ag and Cu, then the green sheets are stacked, and a stack structure thereof is co-fired below 1000° C.
  • the conductive shielding layer 120 is a shielding member of a highly conductive metal, which is provided with a predetermine thickness on the outside of the ceramic substrate 110 .
  • the conductive shielding layer 120 may cover the entire top surface and outer side surfaces of the ceramic substrate 110 as illustrated in FIGS. 2A and 2B .
  • the present invention is not limited thereto.
  • the conductive shielding layer 120 may be implemented in the form of bar-shaped patterns 120 a alternately disposed on the top surface of the ceramic substrate 110 , or in the form of a helical pattern 120 b provided on the top surface of the ceramic substrate 110 .
  • the ceramic substrate 110 includes at least one first ground line 121 electrically connecting the conductive shielding layer 120 with the main board 101 .
  • the first ground line 121 may also be referred to as a first conductive via.
  • the first ground line 121 i.e., the first conductive via, includes a first via hole 121 a vertically penetrating the ceramic substrate 110 , and a conductive material 121 b provided in the first via hole 121 a and electrically connecting the conductive shielding layer 120 with a ground terminal among a plurality of terminals provided on a top surface of the main board 101 .
  • the ceramic substrate 110 includes at least one second ground line 122 to electrically connect the conductive shielding layer 120 with the chip 112 .
  • the second ground line 122 may also be referred to as a second conductive via.
  • the second ground line 122 i.e., the second conductive via, includes a second via hole 122 a vertically penetrating the ceramic substrate 110 corresponding to the cavity 111 within which the chip 112 is mounted, and a conductive material 122 b provided in the second via hole 122 a and electrically connecting the conductive shielding layer 120 with a ground terminal among the plurality of terminals provided on the active surface of the chip 112 .
  • the ceramic substrate 110 includes at least one signal line 129 electrically connecting the chip 112 with the main board 101 .
  • the signal line 129 includes an inner pattern 129 a and a signal via 129 b .
  • the inner pattern 129 a is provided in the ceramic substrate 110 and electrically connected with a signal terminal among the plurality of terminals provided on the active surface of the chip 112 .
  • the signal via 129 b includes a signal via hole vertically penetrating the ceramic substrate 110 , and a conductive material filled in the signal via hole and electrically connecting the inner pattern 129 a with a signal terminal among the plurality of terminals provided on the main board 101 .
  • FIGS. 4A and 4B are cross-sectional views of semiconductor chip packages according to another embodiment of the present invention.
  • FIG. 4A illustrates a semiconductor chip package in which a chip is mounted by a flip-chip method
  • FIG. 4B illustrates a semiconductor chip package in which a chip is mounted by a wire-bonding method.
  • a semiconductor chip package 200 includes a main board 201 , a ceramic substrate 210 and a shielding substrate 220 .
  • the main board 201 is a main substrate on which the ceramic substrate 210 is mounted by a BGA or LGA method.
  • the ceramic substrate 210 has a cavity 211 which has a predetermined size and is open at one side facing the main board 201 .
  • the ceramic substrate 210 is a substrate member having a stack structure of ceramic sheets that are stacked forming the cavity 211 .
  • At least one chip 212 is mounted within the cavity 211 .
  • the chip 212 is mounted within the cavity 211 by a flip-chip bonding method such that a plurality of terminals provided on an active surface of the chip 212 are electrically connected with a plurality of pads 213 provided on a closed side of the cavity 211 by using bump balls 214 placed on the pads 213 .
  • the chip 212 is mounted within the cavity 211 by a wire-bonding method such that the plurality of terminals provided on the active surface of the chip 212 are electrically connected with the plurality of pads 213 on the closed side of the cavity 211 by using a plurality of metal wires 214 a.
  • the cavity 211 is filled with a resin filler 216 to protect the chip 212 mounted by the flip-chip bonding method or the wire-bonding method.
  • the chip 212 mounted within the cavity 211 is disposed in a closed space between the main board 201 and the ceramic substrate 210 . Thus, signal propagation from the chip 212 to the outside is minimized.
  • the shielding substrate 220 may be a substrate member integrally stacked on a top surface of the ceramic substrate 210 .
  • the shielding substrate 220 is a ceramic substrate having a stack structure of a plurality of ceramic sheets and including a shielding part 221 .
  • the shielding part 221 of the shielding substrate 220 includes an upper conductive shielding layer 221 c , a lower conductive shielding layer 221 a , and an intermediate conductive shielding layer 221 b .
  • the upper conductive shielding layer 221 c includes an electrode formed by printing an electrode pattern on the uppermost ceramic sheet, and is disposed at an upper portion of the shielding substrate 220 .
  • the lower conductive shielding layer 221 a includes an electrode formed by printing an electrode pattern on the lowermost ceramic sheet, and is disposed at a lower portion of the shielding substrate 220 .
  • the intermediate conductive shielding layer 221 b includes an electrode formed by printing an electrode pattern on an intermediate ceramic sheet therebetween.
  • the upper conductive shielding layer 221 c is connected with the intermediate conductive shielding layer 221 b through at least one conductive via 222 a .
  • the upper conductive shielding layer 221 c is connected with the lower conductive shielding layer 221 a through another conductive via 222 b.
  • the upper conductive shielding layer 221 c provided at the upper portion of the shielding substrate 220 may cover the entire top surface of the shielding substrate 220 .
  • the present invention is not limited thereto.
  • the upper conductive shielding layer 221 c may be realized as bar-shaped patterns alternately disposed on the top surface of the shielding substrate 220 , or as a helical pattern on the top surface of the shielding substrate 220 .
  • the ceramic substrate 210 on which the shielding substrate 220 is stacked includes at least one third ground line 223 electrically connecting the shielding part 221 with the main board 201 .
  • the third ground line 223 may also be referred to as a third conductive via.
  • the third ground line 223 i.e., the third conductive via, includes a third via hole 223 a vertically penetrating the ceramic substrate 210 and a conductive material 223 b provided in the third via hole 223 a and electrically connecting a ground terminal among a plurality of terminals provided on a top surface of the main board 201 with the lower conductive shielding layer 221 a of the shielding part 221 .
  • the ceramic substrate 210 includes at least one fourth ground line 224 to electrically connect the shielding part 221 with the chip 212 .
  • the fourth ground line 224 may also be referred to as a fourth conductive via.
  • the fourth ground line 224 i.e., the fourth conductive via, includes a fourth via hole 224 a vertically penetrating the ceramic substrate 212 corresponding to the cavity 211 within which the chip 212 is mounted, and a conductive material 224 b provided in the fourth via hole 224 a and electrically connecting the lower conductive shielding layer 221 a of the shielding part 221 with a ground terminal among the plurality of terminals provided on the active surface of the chip 212 .
  • the ceramic substrate 210 includes at least one signal line 229 electrically connecting the chip 212 with the main board 201 .
  • the signal line 229 includes an inner pattern 229 a and a signal via 229 b .
  • the inner pattern 229 a is provided in the ceramic substrate 210 to be electrically connected with a signal terminal among the plurality of terminals provided on the active surface of the chip 212 .
  • the signal via 229 b includes a signal via and a conductive material filling the signal via, and electrically connects the inner pattern 229 a with a signal terminal of a plurality of terminal provided on the main board 201 .
  • the ceramic substrate 210 and the shielding substrate 220 may be a low temperature co-fired ceramic (LTCC) substrate provided by an LTCC technique.
  • LTCC low temperature co-fired ceramic
  • passive components for realizing a given circuit such as resistors, inductors, capacitors, filters, baluns and couplers are realized in a plurality of glass-ceramic-based green sheets by using a photo patterning process and a screen printing process using a highly conductive material such as Ag and Cu, then the green sheets are stacked, and a stack structure thereof is co-fired below 1000° C.
  • the passive components to be mounted on the main board 101 can be mounted in the form of patterns in the ceramic substrate 210 and the shielding substrate 220 .
  • Electromagnetic signals are generated from the chips 112 and 212 provided in the semiconductor chip packages 100 and 200 .
  • the electromagnetic signals are transmitted to the ground terminal of the main board 101 through the first and second ground lines 121 and 122 provided in the ceramic substrate 110 .
  • the electromagnetic signals are transmitted to the ground terminal of the main board 201 through the third and fourth ground lines 223 and 224 provided in the ceramic substrate 210 according to the embodiment of FIGS. 4A and 4B .
  • the chip 112 of FIGS. 2A and 2B is disposed in a closed space between the ceramic substrate 110 and the main board 101 , and the chip 212 of FIGS. 4A and 4B is also disposed in a closed space between the ceramic substrate 210 and the main board 201 , thereby minimizing the influence of harmful electromagnetic waves to adjacent electronic components.
  • the harmful electromagnetic signals generated from the chips 112 and 212 are prevented from undesirably affecting other adjacent electronic components and thus causing deterioration of a circuit function and defective operations of a device.
  • harmful electromagnetic signals generated from the outside are transmitted into the ground terminal of the main boards 101 through the conductive shielding layer 120 provided on the ceramic substrate 110 , and the first ground line 121 provided in the ceramic substrate 110 .
  • the harmful electromagnetic signals generated from the outside are transmitted to the ground terminal of the main board 201 through the shielding part 221 on the ceramic substrate 210 , and the third ground line 223 in the ceramic substrate 210 .
  • the external harmful electromagnetic signals are prevented from undesirably affecting the chips 112 and 212 respectively mounted within the cavities 111 and 221 of the packages 100 and 200 and thus causing deterioration of circuit functions and defective operations of a device.
  • the conductive shielding layer 120 when the ceramic substrate 110 on which the conductive shielding layer 120 is provided is electrically mounted on the main board 101 , the conductive shielding layer 120 conveniently forms a circuit with the ground terminal of the main board 101 .
  • the shielding substrate 220 when the ceramic substrate 210 on which the shielding substrate 220 is stacked is electrically mounted on the main board 201 , the shielding substrate 220 conveniently forms a circuit with the ground terminal of the main board 201 .
  • a chip is disposed within a cavity of a ceramic substrate mounted on a main board. Then, a conductive shielding layer is provided on the outside of the ceramic substrate, or a shielding substrate is integrally stacked on the ceramic substrate. Also, first and second ground lines electrically connected with the main board are provided in the ceramic substrate. Accordingly, electromagnetic signals generated during chip operation are prevented from undesirably affecting adjacent electronic components, or external harmful electromagnetic waves are blocked. Thus, defective operations of a device can be prevented, reliability of the package can be improved, and stable electrical characteristics can be achieved.
  • a package manufacturing process is simplified by conveniently performing the following processes: a process of mounting a metal can for chip protection on the ceramic substrate, a shielding process for protecting the chip from the external environment without using the metal can, and a ground process of connecting the chip with the ground terminal of the main board. Also, manufacturing costs are lowered because of the reduced number of components being used, miniaturization in device design can be achieved because of the small volume of the package, and the ground performance can be improved.

Abstract

A semiconductor chip package includes a main board; a ceramic substrate having a cavity within which at least one chip is electrically mounted, the cavity being placed at a lower portion of the ceramic substrate facing the main board; and a conductive shielding layer provided with a predetermined thickness on the outside of the ceramic substrate. The ceramic substrate includes: at least one first ground line electrically connecting the conductive shielding layer with the main board; at least one second ground line electrically connecting the conductive shielding layer with the chip; and at least one signal line electrically connecting the chip with the main board. Thus, manufacturing costs are lowered because of the reduced number of components being used, miniaturization in device design can be achieved because of the small volume of the package, and the ground performance can be improved.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the priority of Korean Patent Application No. 2007-56852 filed on Jun. 11, 2007, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a semiconductor chip package for packaging a semiconductor chip.
  • 2. Description of the Related Art
  • In the electronics market, demands for portable systems are drastically increasing. To meet such increasing demands, slim and lightweight components must be mounted in those systems.
  • To realize such slim and lightweight components, there are needs for a technique for reducing a size of individual devices, a system-on-chip (SOC) technique for integrating a plurality of individual devices into one chip, and a system-in-package (SIP) technique for integrating a plurality of devices into one package.
  • FIG. 1A is a cross-sectional view illustrating an example of a related art semiconductor chip package. Referring to FIG. 1A, a related art semiconductor chip package 10 includes at least one chip 12 flip-chip bonded onto a substrate 11 by using a plurality of bump balls 13, and a metal can 15 formed of a metallic material on the substrate 11. The metal can 15 protects the chip 12 and a passive component from the external environment. Also, the metal can 15 prevents high-frequency signals generating during chip operation from affecting an adjacent package, or blocks external harmful electromagnetic waves.
  • FIG. 1B is a cross-sectional view illustrating another example of a related art semiconductor chip package. Referring to FIG. 1B, a related art semiconductor chip package 20 includes at least one chip 22 wire-bonded onto a substrate 21 by using a plurality of metal wires 23, and a metal can 25 formed of a metallic material on the substrate 21. The metal can 25 protects the chip 22 and a passive component 24 from the external environment. Also, the metal can 25 prevents high-frequency signals generating during chip operation from affecting an adjacent package, or blocks external harmful electromagnetic waves.
  • Undescribed reference numerals 16 and 26 in FIGS. 1A and 1B indicate main boards on which the semiconductor chip packages 10 and 20 are mounted, respectively.
  • In the related art semiconductor chip packages 10 and 20, the passive components 14 and 24 such as a resistor, a capacitor and a coil are mounted on the substrates 11 and 21 besides the chips 12 and 22, and the metal cans 15 and 25 are also mounted on the substrates 11 and 21 to shield the chips 11 and 22 and the passive component 14 and 24 from the external environment. For this reason, the related art semiconductor chip packages 10 and 20 have limitations in that assembly processes of the semiconductor chips 10 and 20 are complicated and take long time to complete, lowering operational productivity. Also, miniaturization of the semiconductor chip packages 10 and 20 is limited because of the metal cans 15 and 25.
  • Also, the substrates 11 and 21 must include separate ground lines (not shown) electrically connected with ground terminals of the chips 12 and 22, and separate ground lines (not shown) electrically connected with the metal cans 15 and 25 mounted thereon. Hence, the substrate structure is complicated, increasing manufacturing costs.
  • SUMMARY OF THE INVENTION
  • An aspect of the present invention provides a semiconductor chip package, which can simplify a package manufacturing process, reduce the number of components to lower the manufacturing costs, reduce a package volume to contribute miniaturization of a package, and improve ground performance.
  • According to an aspect of the present invention, there is provided a semiconductor chip package including: a main board; a ceramic substrate having a cavity within which at least one chip is electrically mounted, the cavity being placed at a lower portion of the ceramic substrate facing the main board; and a conductive shielding layer provided with a predetermined thickness on the outside of the ceramic substrate, wherein the ceramic substrate includes: at least one first ground line electrically connecting the conductive shielding layer with the main board; at least one second ground line electrically connecting the conductive shielding layer with the chip; and at least one signal line electrically connecting the chip with the main board.
  • The conductive shielding layer may cover a top surface and outer side surfaces of the ceramic substrate.
  • The conductive shielding layer may include bar-shaped patterns alternately disposed on a top surface of the ceramic substrate.
  • The conductive shielding layer may include a helical pattern on a top surface of the ceramic substrate.
  • The first ground line may include a first conductive via penetrating the ceramic substrate and electrically connecting the conductive shielding layer with a ground terminal of the main board.
  • The second ground line may include a second conductive via penetrating the ceramic substrate and electrically connecting the conductive shielding layer with a ground terminal of the chip.
  • The signal line may include: an inner pattern provided in the ceramic substrate and electrically connected with a signal terminal of the chip; and a signal via formed in the ceramic substrate and electrically connecting the inner pattern with a signal terminal of the main board.
  • The cavity may be filled with a resin filler covering and protecting the chip.
  • The chip may be mounted to the ceramic substrate by flip-chip bonding.
  • The chip may be mounted to the ceramic substrate by wire-bonding.
  • According to another aspect of the present invention, there is provided a semiconductor chip package including: a main board; a ceramic substrate having a cavity within which at least one chip is electrically mounted, the cavity being placed at a lower portion of the ceramic substrate facing the main board; and a shielding substrate stacked on the ceramic substrate and including a shielding layer, wherein the ceramic substrate includes: at least one third ground line electrically connecting the shielding layer of the shielding substrate with the main board; at least one fourth ground line electrically connecting the shielding layer of the shielding substrate with the chip; and at least one signal line electrically connecting the chip with the main board.
  • The shielding layer may include: an upper conductive shielding layer provided at an upper portion of the shielding substrate; a lower conductive shielding layer provided at a lower portion of the shielding substrate; and an intermediate conductive shielding layer disposed between the upper conductive shielding layer and the lower conductive shielding layer.
  • The upper conductive shielding layer and the intermediate conductive shielding layer may be connected through a conductive via, and the upper conductive shielding layer and the lower conductive shielding layer may be connected through another conductive via.
  • The upper conductive shielding layer may cover the ceramic substrate.
  • The upper conductive shielding layer may include bar-shaped patterns alternately disposed on the ceramic substrate.
  • The upper conductive shielding layer may include a helical pattern disposed on the ceramic substrate.
  • The third ground line may include a third conductive via penetrating the ceramic substrate and electrically connecting the shielding layer with a ground terminal of the main board.
  • The fourth ground line may include a fourth conductive via penetrating the ceramic substrate and electrically connecting the shielding layer with a ground terminal of the chip.
  • The signal line may include: an inner pattern provided in the ceramic substrate and electrically connected with a signal terminal of the chip; and a signal via formed in the ceramic substrate and electrically connecting the inner pattern with a signal terminal of the main board.
  • The cavity may be filled with a resin filler covering and protecting the chip.
  • The chip may be mounted to the ceramic substrate by flip-chip bonding.
  • The chip may be mounted to the ceramic substrate by wire-bonding.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other aspects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIGS. 1A and 1B are cross-sectional views of related art semiconductor chip packages, respectively illustrating a semiconductor chip package including a chip mounted by a flip-chip method, and a semiconductor chip package including a chip mounted by a wire-bonding method;
  • FIGS. 2A and 2B are cross-sectional views of semiconductor chip packages according to an embodiment of the present invention, respectively illustrating a semiconductor chip package including a chip mounted by a flip-chip method and a semiconductor chip package including a chip mounted by a wire-bonding method;
  • FIGS. 3A and 3B are views of conductive shielding layers used in the semiconductor chip packages of FIGS. 2A and 2B, respectively provided in the form of bar-shaped patterns and a helical pattern.
  • FIGS. 4A and 4B are cross-sectional views of semiconductor chip packages according to another embodiment of the present invention, respectively illustrating a semiconductor chip package including a chip mounted by a flip-chip method and a semiconductor chip package including a chip mounted by a wire-bonding method; and
  • FIG. 5 is a cross-sectional view of a shielding substrate used in the semiconductor chip packages of FIGS. 4A and 4B.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Exemplary embodiments of the present invention will now be described in detail with reference to the accompanying drawings.
  • FIGS. 2A and 2B are cross-sectional views of semiconductor chip packages according to an embodiment of the present invention. FIG. 2A illustrates a semiconductor chip package in which a chip is mounted by a flip-chip method, and FIG. 2B illustrates a semiconductor chip package in which a chip is mounted by a wire-bonding method.
  • The semiconductor chip package 100 according to the embodiment of the present invention includes a main board 101, a ceramic substrate 110 and a conductive shielding layer 120.
  • The main board 101 is a main substrate on which the ceramic substrate 110 is mounted by a land grid array (LGA) method or a ball grid array (BGA) method using a plurality of solder balls as a medium, and a plurality of passive components 105 are mounted.
  • The ceramic substrate 110 has a cavity 111 with a predetermined size, which is open at one side facing the main board 101. The ceramic substrate 110 may have a stack structure of ceramic sheets that are stacked forming the cavity 111 therein.
  • At least one chip 112 is electrically mounted within the cavity 111. Referring to FIG. 2A, the chip 112 is mounted within the cavity 111 by a flip-chip bonding method such that a plurality of terminals provided on an active surface of the chip 112 are electrically connected with a plurality of pads 113 provided on a closed side of the cavity 111 by using bump balls 114 placed on the pads 113. Referring to FIG. 2B, the chip 112 is mounted by a wire-bonding method such that the plurality of terminals provided on the active surface of the chip 112 are electrically connected to the plurality of pads 113 provided on the closed side of the cavity 111 by using a plurality of metal wires 114 a.
  • According to a set device employing the semiconductor chip package 100, the chip 112 may be one of a memory chip such as a static random access memory (SRAM) and a dynamic random access memory (DRAM), a digital integrated circuit chip, a radio frequency (RF) integrated circuit chip, and a baseband chip.
  • The cavity 111 is filled with a resin filler 116 to protect the chip 112 mounted by the flip-chip bonding method or the wire bonding method from the external environment.
  • The chip 112 mounted within the cavity 111 is disposed in a closed space formed between the main board 101 and the ceramic substrate 110, thereby minimizing signal propagation from the chip 112 to the outside.
  • The ceramic substrate 110 may be a low temperature co-fired ceramic (LTCC) substrate provided by an LTCC technique. In the LTCC technique, passive components for realizing a given circuit, such as resistors, inductors, capacitors, filters, baluns and couplers are realized in a plurality of glass-ceramic-based green sheets by using a photo patterning process and a screen printing process using a highly conductive material such as Ag and Cu, then the green sheets are stacked, and a stack structure thereof is co-fired below 1000° C.
  • Also, the conductive shielding layer 120 is a shielding member of a highly conductive metal, which is provided with a predetermine thickness on the outside of the ceramic substrate 110.
  • The conductive shielding layer 120 may cover the entire top surface and outer side surfaces of the ceramic substrate 110 as illustrated in FIGS. 2A and 2B. However, the present invention is not limited thereto. As shown in FIGS. 3A and 3B, the conductive shielding layer 120 may be implemented in the form of bar-shaped patterns 120 a alternately disposed on the top surface of the ceramic substrate 110, or in the form of a helical pattern 120 b provided on the top surface of the ceramic substrate 110.
  • The ceramic substrate 110 includes at least one first ground line 121 electrically connecting the conductive shielding layer 120 with the main board 101. The first ground line 121 may also be referred to as a first conductive via. The first ground line 121, i.e., the first conductive via, includes a first via hole 121 a vertically penetrating the ceramic substrate 110, and a conductive material 121 b provided in the first via hole 121 a and electrically connecting the conductive shielding layer 120 with a ground terminal among a plurality of terminals provided on a top surface of the main board 101.
  • The ceramic substrate 110 includes at least one second ground line 122 to electrically connect the conductive shielding layer 120 with the chip 112. The second ground line 122 may also be referred to as a second conductive via. The second ground line 122, i.e., the second conductive via, includes a second via hole 122 a vertically penetrating the ceramic substrate 110 corresponding to the cavity 111 within which the chip 112 is mounted, and a conductive material 122 b provided in the second via hole 122 a and electrically connecting the conductive shielding layer 120 with a ground terminal among the plurality of terminals provided on the active surface of the chip 112.
  • The ceramic substrate 110 includes at least one signal line 129 electrically connecting the chip 112 with the main board 101. The signal line 129 includes an inner pattern 129 a and a signal via 129 b. The inner pattern 129 a is provided in the ceramic substrate 110 and electrically connected with a signal terminal among the plurality of terminals provided on the active surface of the chip 112. The signal via 129 b includes a signal via hole vertically penetrating the ceramic substrate 110, and a conductive material filled in the signal via hole and electrically connecting the inner pattern 129 a with a signal terminal among the plurality of terminals provided on the main board 101.
  • FIGS. 4A and 4B are cross-sectional views of semiconductor chip packages according to another embodiment of the present invention. FIG. 4A illustrates a semiconductor chip package in which a chip is mounted by a flip-chip method, and FIG. 4B illustrates a semiconductor chip package in which a chip is mounted by a wire-bonding method.
  • A semiconductor chip package 200 according to another embodiment of the present invention includes a main board 201, a ceramic substrate 210 and a shielding substrate 220.
  • As in the embodiment of FIGS. 2A and 2B, the main board 201 according to the current embodiment is a main substrate on which the ceramic substrate 210 is mounted by a BGA or LGA method.
  • As in the embodiment of FIGS. 2A and 2B, the ceramic substrate 210 has a cavity 211 which has a predetermined size and is open at one side facing the main board 201. The ceramic substrate 210 is a substrate member having a stack structure of ceramic sheets that are stacked forming the cavity 211.
  • At least one chip 212 is mounted within the cavity 211. Referring to FIG. 4A, the chip 212 is mounted within the cavity 211 by a flip-chip bonding method such that a plurality of terminals provided on an active surface of the chip 212 are electrically connected with a plurality of pads 213 provided on a closed side of the cavity 211 by using bump balls 214 placed on the pads 213. Referring to FIG. 4B, the chip 212 is mounted within the cavity 211 by a wire-bonding method such that the plurality of terminals provided on the active surface of the chip 212 are electrically connected with the plurality of pads 213 on the closed side of the cavity 211 by using a plurality of metal wires 214 a.
  • The cavity 211 is filled with a resin filler 216 to protect the chip 212 mounted by the flip-chip bonding method or the wire-bonding method.
  • The chip 212 mounted within the cavity 211 is disposed in a closed space between the main board 201 and the ceramic substrate 210. Thus, signal propagation from the chip 212 to the outside is minimized.
  • The shielding substrate 220 may be a substrate member integrally stacked on a top surface of the ceramic substrate 210.
  • As illustrated in FIG. 5, the shielding substrate 220 is a ceramic substrate having a stack structure of a plurality of ceramic sheets and including a shielding part 221. The shielding part 221 of the shielding substrate 220 includes an upper conductive shielding layer 221 c, a lower conductive shielding layer 221 a, and an intermediate conductive shielding layer 221 b. The upper conductive shielding layer 221 c includes an electrode formed by printing an electrode pattern on the uppermost ceramic sheet, and is disposed at an upper portion of the shielding substrate 220. The lower conductive shielding layer 221 a includes an electrode formed by printing an electrode pattern on the lowermost ceramic sheet, and is disposed at a lower portion of the shielding substrate 220. The intermediate conductive shielding layer 221 b includes an electrode formed by printing an electrode pattern on an intermediate ceramic sheet therebetween.
  • The upper conductive shielding layer 221 c is connected with the intermediate conductive shielding layer 221 b through at least one conductive via 222 a. The upper conductive shielding layer 221 c is connected with the lower conductive shielding layer 221 a through another conductive via 222 b.
  • The upper conductive shielding layer 221 c provided at the upper portion of the shielding substrate 220 may cover the entire top surface of the shielding substrate 220. However, the present invention is not limited thereto. Like the conductive shielding layer 120 of FIGS. 3A and 3B, the upper conductive shielding layer 221 c may be realized as bar-shaped patterns alternately disposed on the top surface of the shielding substrate 220, or as a helical pattern on the top surface of the shielding substrate 220.
  • The ceramic substrate 210 on which the shielding substrate 220 is stacked includes at least one third ground line 223 electrically connecting the shielding part 221 with the main board 201. The third ground line 223 may also be referred to as a third conductive via. The third ground line 223, i.e., the third conductive via, includes a third via hole 223 a vertically penetrating the ceramic substrate 210 and a conductive material 223 b provided in the third via hole 223 a and electrically connecting a ground terminal among a plurality of terminals provided on a top surface of the main board 201 with the lower conductive shielding layer 221 a of the shielding part 221.
  • The ceramic substrate 210 includes at least one fourth ground line 224 to electrically connect the shielding part 221 with the chip 212. The fourth ground line 224 may also be referred to as a fourth conductive via. The fourth ground line 224, i.e., the fourth conductive via, includes a fourth via hole 224 a vertically penetrating the ceramic substrate 212 corresponding to the cavity 211 within which the chip 212 is mounted, and a conductive material 224 b provided in the fourth via hole 224 a and electrically connecting the lower conductive shielding layer 221 a of the shielding part 221 with a ground terminal among the plurality of terminals provided on the active surface of the chip 212.
  • The ceramic substrate 210 includes at least one signal line 229 electrically connecting the chip 212 with the main board 201. The signal line 229 includes an inner pattern 229 a and a signal via 229 b. The inner pattern 229 a is provided in the ceramic substrate 210 to be electrically connected with a signal terminal among the plurality of terminals provided on the active surface of the chip 212. The signal via 229 b includes a signal via and a conductive material filling the signal via, and electrically connects the inner pattern 229 a with a signal terminal of a plurality of terminal provided on the main board 201.
  • The ceramic substrate 210 and the shielding substrate 220 may be a low temperature co-fired ceramic (LTCC) substrate provided by an LTCC technique. In the LTCC technique, passive components for realizing a given circuit, such as resistors, inductors, capacitors, filters, baluns and couplers are realized in a plurality of glass-ceramic-based green sheets by using a photo patterning process and a screen printing process using a highly conductive material such as Ag and Cu, then the green sheets are stacked, and a stack structure thereof is co-fired below 1000° C.
  • Accordingly, the passive components to be mounted on the main board 101, such as the capacitors, the resistors and the inductors, can be mounted in the form of patterns in the ceramic substrate 210 and the shielding substrate 220.
  • Electromagnetic signals are generated from the chips 112 and 212 provided in the semiconductor chip packages 100 and 200. However, according to the embodiment of FIGS. 2A and 2B, the electromagnetic signals are transmitted to the ground terminal of the main board 101 through the first and second ground lines 121 and 122 provided in the ceramic substrate 110. Also, according to the embodiment of FIGS. 4A and 4B, the electromagnetic signals are transmitted to the ground terminal of the main board 201 through the third and fourth ground lines 223 and 224 provided in the ceramic substrate 210 according to the embodiment of FIGS. 4A and 4B.
  • The chip 112 of FIGS. 2A and 2B is disposed in a closed space between the ceramic substrate 110 and the main board 101, and the chip 212 of FIGS. 4A and 4B is also disposed in a closed space between the ceramic substrate 210 and the main board 201, thereby minimizing the influence of harmful electromagnetic waves to adjacent electronic components.
  • Accordingly, the harmful electromagnetic signals generated from the chips 112 and 212 are prevented from undesirably affecting other adjacent electronic components and thus causing deterioration of a circuit function and defective operations of a device.
  • According to the embodiment of FIGS. 2A and 2B, harmful electromagnetic signals generated from the outside are transmitted into the ground terminal of the main boards 101 through the conductive shielding layer 120 provided on the ceramic substrate 110, and the first ground line 121 provided in the ceramic substrate 110. According to the embodiment of the FIGS. 4A and 4B, the harmful electromagnetic signals generated from the outside are transmitted to the ground terminal of the main board 201 through the shielding part 221 on the ceramic substrate 210, and the third ground line 223 in the ceramic substrate 210.
  • Therefore, the external harmful electromagnetic signals are prevented from undesirably affecting the chips 112 and 212 respectively mounted within the cavities 111 and 221 of the packages 100 and 200 and thus causing deterioration of circuit functions and defective operations of a device.
  • According to the embodiment of FIGS. 2A and 2 b, when the ceramic substrate 110 on which the conductive shielding layer 120 is provided is electrically mounted on the main board 101, the conductive shielding layer 120 conveniently forms a circuit with the ground terminal of the main board 101. Likewise, according to the embodiment of FIGS. 4A and 4B, when the ceramic substrate 210 on which the shielding substrate 220 is stacked is electrically mounted on the main board 201, the shielding substrate 220 conveniently forms a circuit with the ground terminal of the main board 201.
  • According to the present invention, a chip is disposed within a cavity of a ceramic substrate mounted on a main board. Then, a conductive shielding layer is provided on the outside of the ceramic substrate, or a shielding substrate is integrally stacked on the ceramic substrate. Also, first and second ground lines electrically connected with the main board are provided in the ceramic substrate. Accordingly, electromagnetic signals generated during chip operation are prevented from undesirably affecting adjacent electronic components, or external harmful electromagnetic waves are blocked. Thus, defective operations of a device can be prevented, reliability of the package can be improved, and stable electrical characteristics can be achieved.
  • A package manufacturing process is simplified by conveniently performing the following processes: a process of mounting a metal can for chip protection on the ceramic substrate, a shielding process for protecting the chip from the external environment without using the metal can, and a ground process of connecting the chip with the ground terminal of the main board. Also, manufacturing costs are lowered because of the reduced number of components being used, miniaturization in device design can be achieved because of the small volume of the package, and the ground performance can be improved.
  • While the present invention has been shown and described in connection with the exemplary embodiments, it will be apparent to those skilled in the art that modifications and variations can be made without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (14)

1-9. (canceled)
10. A semiconductor chip package comprising:
a main board;
a ceramic substrate having a cavity within which at least one chip is electrically mounted, the cavity being placed at a lower portion of the ceramic substrate facing the main board; and
a conductive shielding layer provided with a predetermined thickness on the outside of the ceramic substrate,
wherein the ceramic substrate comprises:
at least one first ground line electrically connecting the conductive shielding layer with the main board;
at least one second ground line electrically connecting the conductive shielding layer with the chip; and
at least one signal line electrically connecting the chip with the main board,
wherein the chip is mounted to the ceramic substrate by wire-bonding.
11. A semiconductor chip package comprising:
a main board;
a ceramic substrate having a cavity within which at least one chip is electrically mounted, the cavity being placed at a lower portion of the ceramic substrate facing the main board; and
a shielding substrate stacked on the ceramic substrate and comprising a shielding layer,
wherein the ceramic substrate comprises:
at least one third ground line electrically connecting the shielding layer of the shielding substrate with the main board;
at least one fourth ground line electrically connecting the shielding layer of the shielding substrate with the chip; and
at least one signal line electrically connecting the chip with the main board.
12. The semiconductor chip package of claim 11, wherein the shielding layer comprises:
an upper conductive shielding layer provided at an upper portion of the shielding substrate;
a lower conductive shielding layer provided at a lower portion of the shielding substrate; and
an intermediate conductive shielding layer disposed between the upper conductive shielding layer and the lower conductive shielding layer.
13. The semiconductor chip package of claim 12, wherein the upper conductive shielding layer and the intermediate conductive shielding layer are connected through a conductive via, and the upper conductive shielding layer and the lower conductive shielding layer are connected through another conductive via.
14. The semiconductor chip package of claim 12, wherein the upper conductive shielding layer covers the ceramic substrate.
15. The semiconductor chip package of claim 12, wherein the upper conductive shielding layer comprises bar-shaped patterns alternately disposed on the ceramic substrate.
16. The semiconductor chip package of claim 12, wherein the upper conductive shielding layer comprises a helical pattern disposed on the ceramic substrate.
17. The semiconductor chip package of claim 11, wherein the third ground line comprises a third conductive via penetrating the ceramic substrate and electrically connecting the shielding layer with a ground terminal of the main board.
18. The semiconductor chip package of claim 11, wherein the fourth ground line comprises a fourth conductive via penetrating the ceramic substrate and electrically connecting the shielding layer with a ground terminal of the chip.
19. The semiconductor chip package of claim 11, wherein the signal line comprises:
an inner pattern provided in the ceramic substrate and electrically connected with a signal terminal of the chip; and
a signal via provided in the ceramic substrate and electrically connecting the inner pattern with a signal terminal of the main board.
20. The semiconductor chip package of claim 11, wherein the cavity is filled with a resin filler covering and protecting the chip.
21. The semiconductor chip package of claim 11, wherein the chip is mounted to the ceramic substrate by flip-chip bonding.
22. The semiconductor chip package of claim 11, wherein the chip is mounted to the ceramic substrate by wire-bonding.
US12/727,067 2007-06-11 2010-03-18 Semiconductor chip package Abandoned US20100171200A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/727,067 US20100171200A1 (en) 2007-06-11 2010-03-18 Semiconductor chip package

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20070056852A KR100835061B1 (en) 2007-06-11 2007-06-11 A semiconductor chip package
KR10-2007-0056852 2007-06-11
US12/155,867 US7745911B2 (en) 2007-06-11 2008-06-11 Semiconductor chip package
US12/727,067 US20100171200A1 (en) 2007-06-11 2010-03-18 Semiconductor chip package

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/155,867 Division US7745911B2 (en) 2007-06-11 2008-06-11 Semiconductor chip package

Publications (1)

Publication Number Publication Date
US20100171200A1 true US20100171200A1 (en) 2010-07-08

Family

ID=39769990

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/155,867 Expired - Fee Related US7745911B2 (en) 2007-06-11 2008-06-11 Semiconductor chip package
US12/727,067 Abandoned US20100171200A1 (en) 2007-06-11 2010-03-18 Semiconductor chip package

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/155,867 Expired - Fee Related US7745911B2 (en) 2007-06-11 2008-06-11 Semiconductor chip package

Country Status (2)

Country Link
US (2) US7745911B2 (en)
KR (1) KR100835061B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100216410A1 (en) * 2009-02-20 2010-08-26 Aiconn Technology Corporation Radio transceiver module
US20140002223A1 (en) * 2012-06-28 2014-01-02 Miguel Camarena Sainz Semiconductor package with air core inductor (aci) having a metal-density layer unit of fractal geometry
US20140247565A1 (en) * 2013-03-01 2014-09-04 Seiko Epson Corporation Module, electronic apparatus and moving object
US10971455B2 (en) * 2019-05-01 2021-04-06 Qualcomm Incorporated Ground shield plane for ball grid array (BGA) package

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2937796A1 (en) * 2008-10-29 2010-04-30 St Microelectronics Grenoble SEMICONDUCTOR DEVICE WITH PROTECTION SCREEN
KR101215303B1 (en) 2009-07-21 2012-12-26 한국전자통신연구원 Electronic device comprising ltcc inductor
US8749056B2 (en) 2011-05-26 2014-06-10 Infineon Technologies Ag Module and method of manufacturing a module
US8927345B2 (en) * 2012-07-09 2015-01-06 Freescale Semiconductor, Inc. Device package with rigid interconnect structure connecting die and substrate and method thereof
US11257771B2 (en) 2019-01-02 2022-02-22 Keysight Technologies, Inc. High-performance integrated circuit packaging platform compatible with surface mount assembly
US11605583B2 (en) 2019-01-02 2023-03-14 Keysight Technologies, Inc. High-performance integrated circuit packaging platform compatible with surface mount assembly
EP3840542A1 (en) 2019-12-18 2021-06-23 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Compact laminated component carrier with front end chip and impedance matching circuitry for antenna communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786738A (en) * 1995-05-31 1998-07-28 Fujitsu Limited Surface acoustic wave filter duplexer comprising a multi-layer package and phase matching patterns
US20010052645A1 (en) * 2000-02-18 2001-12-20 Op't Eynde Frank Nico Lieven Packaged integrated circuit
US6404052B1 (en) * 1999-07-12 2002-06-11 Sony Chemicals Corp. Multi-layer flexible printed wiring board
US6952049B1 (en) * 1999-03-30 2005-10-04 Ngk Spark Plug Co., Ltd. Capacitor-built-in type printed wiring substrate, printed wiring substrate, and capacitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3859424B2 (en) 2000-05-02 2006-12-20 富士通株式会社 Integrated circuit package
KR100348136B1 (en) * 2000-06-21 2002-08-13 주식회사 지엔유텍 Method of anti-static molding for circuit board of semiconductor package and metal mold thereof
KR20060100169A (en) 2005-03-16 2006-09-20 엘지이노텍 주식회사 Structure and method for mounting circuit board surface
KR100703090B1 (en) * 2005-08-30 2007-04-06 삼성전기주식회사 A Back Side Ground Type Flip Chip Semiconductor Package

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786738A (en) * 1995-05-31 1998-07-28 Fujitsu Limited Surface acoustic wave filter duplexer comprising a multi-layer package and phase matching patterns
US6952049B1 (en) * 1999-03-30 2005-10-04 Ngk Spark Plug Co., Ltd. Capacitor-built-in type printed wiring substrate, printed wiring substrate, and capacitor
US6404052B1 (en) * 1999-07-12 2002-06-11 Sony Chemicals Corp. Multi-layer flexible printed wiring board
US20010052645A1 (en) * 2000-02-18 2001-12-20 Op't Eynde Frank Nico Lieven Packaged integrated circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100216410A1 (en) * 2009-02-20 2010-08-26 Aiconn Technology Corporation Radio transceiver module
US20140002223A1 (en) * 2012-06-28 2014-01-02 Miguel Camarena Sainz Semiconductor package with air core inductor (aci) having a metal-density layer unit of fractal geometry
US8907756B2 (en) * 2012-06-28 2014-12-09 Intel Corporation Semiconductor package with air core inductor (ACI) having a metal-density layer unit of fractal geometry
US9142347B2 (en) 2012-06-28 2015-09-22 Intel Corporation Semiconductor package with air core inductor (ACI) having a metal-density layer unit of fractal geometry
US20140247565A1 (en) * 2013-03-01 2014-09-04 Seiko Epson Corporation Module, electronic apparatus and moving object
US9426892B2 (en) * 2013-03-01 2016-08-23 Seiko Epson Corporation Module, electronic apparatus and moving object
US10971455B2 (en) * 2019-05-01 2021-04-06 Qualcomm Incorporated Ground shield plane for ball grid array (BGA) package

Also Published As

Publication number Publication date
US20080303120A1 (en) 2008-12-11
US7745911B2 (en) 2010-06-29
KR100835061B1 (en) 2008-06-03

Similar Documents

Publication Publication Date Title
US7745911B2 (en) Semiconductor chip package
US10593652B2 (en) Stacked semiconductor packages
KR100665217B1 (en) A semiconductor multi-chip package
US6731009B1 (en) Multi-die assembly
US8110902B2 (en) Chip package and manufacturing method thereof
KR100627099B1 (en) Stacked-type semiconductor device
US6683795B1 (en) Shield cap and semiconductor package including shield cap
US7541278B2 (en) Interconnect substrate, semiconductor device, methods of manufacturing the same, circuit board, and electronic equipment
US7539022B2 (en) Chip embedded packaging structure
JP4606849B2 (en) Semiconductor chip package having decoupling capacitor and manufacturing method thereof
US20100102430A1 (en) Semiconductor multi-chip package
US20140124907A1 (en) Semiconductor packages
KR100818088B1 (en) Semiconductor package and method of fabricating the same
US20090134528A1 (en) Semiconductor package, electronic device including the semiconductor package, and method of manufacturing the semiconductor package
KR20140057982A (en) Semiconductor package and method of manufacturing the semiconductor package
US20060091517A1 (en) Stacked semiconductor multi-chip package
US8310062B2 (en) Stacked semiconductor package
KR101653563B1 (en) Stack type semiconductor package and method for manufacturing the same
JP4190111B2 (en) High frequency module
US6430059B1 (en) Integrated circuit package substrate integrating with decoupling capacitor
US20070176284A1 (en) Multi stack package with package lid
US20080088005A1 (en) SIP package with small dimension
JP2007221133A (en) Integrated circuit package
JP2007110108A (en) Stacked integrated circuit chip and package
KR20010058584A (en) Semiconductor package

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION