US20100191961A1 - Method and system achieving individualized protected space in an operating system - Google Patents

Method and system achieving individualized protected space in an operating system Download PDF

Info

Publication number
US20100191961A1
US20100191961A1 US12/648,792 US64879209A US2010191961A1 US 20100191961 A1 US20100191961 A1 US 20100191961A1 US 64879209 A US64879209 A US 64879209A US 2010191961 A1 US2010191961 A1 US 2010191961A1
Authority
US
United States
Prior art keywords
hardware
programming
operating system
utilizing
ace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/648,792
Inventor
Paul L. Master
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QST Holdings Inc
Original Assignee
QST Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QST Holdings Inc filed Critical QST Holdings Inc
Priority to US12/648,792 priority Critical patent/US20100191961A1/en
Publication of US20100191961A1 publication Critical patent/US20100191961A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/52Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems during program execution, e.g. stack integrity ; Preventing unwanted data erasure; Buffer overflow
    • G06F21/53Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems during program execution, e.g. stack integrity ; Preventing unwanted data erasure; Buffer overflow by executing in a restricted environment, e.g. sandbox or secure virtual machine
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • G06F15/78Architectures of general purpose stored program computers comprising a single central processing unit
    • G06F15/7867Architectures of general purpose stored program computers comprising a single central processing unit with reconfigurable architecture
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/468Specific access rights for resources, e.g. using capability register

Definitions

  • the present invention relates to robust operating system protection.
  • an operating system acts as the layer between the hardware and the software providing several important functions.
  • the functionality of an O/S includes device management, process management, communication between processes, memory management, and file systems.
  • certain utilities are standard for operating systems that allow common tasks to be performed, such as file access and organization operations and process initiation and termination.
  • FIG. 1 illustrates an example diagram of a typical layered structure, such as for the Windows NT operating system.
  • the applications 10 lie above the O/S 20 , where each application typically resides in its own memory space.
  • the micro-kernel 30 interacts with a hardware abstraction layer 40 (e.g., with device drivers) associated with hardware layer 50 .
  • the line 60 represents a demarcation line indicating the separation between which normally is considered the user space of the applications, and the protected space of the operating system.
  • An approach to avoiding such vulnerability is to limit which software is trusted within an operating system and utilizing control mechanisms that check all other programming prior to processing. Relying on software to perform such checks reduces the ability to limit the amount of software that is trusted.
  • a hardware solution would be preferable, but, heretofore, has been prohibitive due to the level of instantaneous hardware machine generation that would be necessary.
  • aspects for achieving individualized protected space in an operating system include performing on demand hardware instantiation via an ACE (an adaptive computing engine), and utilizing the hardware for monitoring predetermined software programming to protect an operating system.
  • ACE an adaptive computing engine
  • FIG. 1 illustrates a diagram of operating system layers of the prior art.
  • FIG. 2 is a block diagram illustrating an adaptive computing engine.
  • FIG. 3 is a block diagram illustrating, in greater detail, a reconfigurable matrix of the adaptive computing engine.
  • FIG. 4 illustrates an overall block flow diagram illustrates a process for achieving individualized protected space in an operating system in accordance with the present invention.
  • the present invention relates to achieving individualized protected space in an operating system via an adaptive computing engine (ACE).
  • ACE adaptive computing engine
  • the processing core of an embedded system is achieved through an adaptive computing engine (ACE).
  • ACE adaptive computing engine
  • a more detailed discussion of the aspects of an ACE are provided in co-pending U.S. patent application Ser. No. 10/384,486, entitled ADAPTIVE INTEGRATED CIRCUITRY WITH HETEROGENEOUS AND RECONFIGURABLE MATRICES OF DIVERSE AND ADAPTIVE COMPUTATIONAL UNITS HAVING FIXED, APPLICATION SPECIFIC COMPUTATIONAL ELEMENTS, filed Mar. 7, 2003, assigned to the assignee of the present invention, and incorporated herein in its entirety.
  • the ACE provides a significant departure from the prior art for achieving processing in an embedded system, in that data, control and configuration information are transmitted between and among its elements, utilizing an interconnection network, which may be configured and reconfigured, in real-time, to provide any given connection between and among the elements.
  • an interconnection network which may be configured and reconfigured, in real-time, to provide any given connection between and among the elements.
  • FIG. 2 is a block diagram illustrating an adaptive computing engine (“ACE”) 106 that includes a controller 120 , one or more reconfigurable matrices 150 , such as matrices 150 A through 150 N as illustrated, a matrix interconnection network 110 , and preferably also includes a memory 140 .
  • ACE adaptive computing engine
  • the controller 120 is preferably implemented as a reduced instruction set (“RISC”) processor, controller or other device or IC capable of performing the two types of functionality discussed below.
  • RISC reduced instruction set
  • matrix controller (“MARC”) 130 is illustrated as matrix controller (“MARC”) 130 .
  • FIG. 3 is a block diagram illustrating, in greater detail, a reconfigurable matrix 150 with a plurality of computation units 200 (illustrated as computation units 200 A through 200 N), and a plurality of computational elements 250 (illustrated as computational elements 250 A through 250 Z), and provides additional illustration of the preferred types of computational elements 250 and a useful summary of aspects of the present invention.
  • any matrix 150 generally includes a matrix controller 230 , a plurality of computation (or computational) units 200 , and as logical or conceptual subsets or portions of the matrix interconnect network 110 , a data interconnect network 240 and a Boolean interconnect network 210 .
  • the Boolean interconnect network 210 provides the reconfigurable interconnection capability between and among the various computation units 200
  • the data interconnect network 240 provides the reconfigurable interconnection capability for data input and output between and among the various computation units 200 . It should be noted, however, that while conceptually divided into reconfiguration and data capabilities, any given physical portion of the matrix interconnection network 110 , at any given time, may be operating as either the Boolean interconnect network 210 , the data interconnect network 240 , the lowest level interconnect 220 (between and among the various computational elements 250 ), or other input, output, or connection functionality.
  • computational elements 250 included within a computation unit 200 are a plurality of computational elements 250 , illustrated as computational elements 250 A through 250 Z (collectively referred to as computational elements 250 ), and additional interconnect 220 .
  • the interconnect 220 provides the reconfigurable interconnection capability and input/output paths between and among the various computational elements 250 .
  • Each of the various computational elements 250 consist of dedicated, application specific hardware designed to perform a given task or range of tasks, resulting in a plurality of different, fixed computational elements 250 .
  • the fixed computational elements 250 may be reconfigurably connected together to execute an algorithm or other function, at any given time.
  • the various computational elements 250 are designed and grouped together, into the various reconfigurable computation units 200 .
  • computational elements 250 which are designed to execute a particular algorithm or function, such as multiplication
  • other types of computational elements 250 are also utilized in the preferred embodiment.
  • computational elements 250 A and 250 B implement memory, to provide local memory elements for any given calculation or processing function (compared to the more “remote” memory 140 ).
  • computational elements 250 I, 250 J, 250 K and 250 L are configured (using, for example, a plurality of flip-flops) to implement finite state machines, to provide local processing capability, especially suitable for complicated control processing.
  • a first category of computation units 200 includes computational elements 250 performing linear operations, such as multiplication, addition, finite impulse response filtering, and so on.
  • a second category of computation units 200 includes computational elements 250 performing non-linear operations, such as discrete cosine transformation, trigonometric calculations, and complex multiplications.
  • a third type of computation unit 200 implements a finite state machine, such as computation unit 200 C as illustrated in FIG. 3 , particularly useful for complicated control sequences, dynamic scheduling, and input/output management, while a fourth type may implement memory and memory management, such as computation unit 200 A as illustrated in FIG. 3 .
  • a fifth type of computation unit 200 may be included to perform bit-level manipulation, such as for encryption, decryption, channel coding, Viterbi decoding, and packet and protocol processing (such as Internet Protocol processing).
  • the ability to configure the elements of the ACE relies on a tight coupling (or interdigitation) of data and configuration (or other control) information, within one, effectively continuous stream of information.
  • the continuous stream of data can be characterized as including a first portion that provides adaptive instructions and configuration data and a second portion that provides data to be processed.
  • This coupling or comingling of data and configuration information referred to as a “silverware” module, helps to enable real-time reconfigurability of the ACE 106 , and in conjunction with the real-time reconfigurability of heterogeneous and fixed computational elements 250 , to form different and heterogenous computation units 200 and matrices 150 , enables the ACE 106 architecture to have multiple and different modes of operation.
  • the ACE 106 when included within a hand-held device, given a corresponding silverware module, the ACE 106 may have various and different operating modes as a cellular or other mobile telephone, a music player, a pager, a personal digital assistant, and other new or existing functionalities. In addition, these operating modes may change based upon the physical location of the device; for example, when configured as a CDMA mobile telephone for use in the United States, the ACE 106 may be reconfigured as a GSM mobile telephone for use in Europe.
  • a particular configuration of computational elements as the hardware to execute a corresponding algorithm, may be viewed or conceptualized as a hardware analog of “calling” a subroutine in software which may perform the same algorithm.
  • the data for use in the algorithm is immediately available as part of the silverware module.
  • the immediacy of the data, for use in the configured computational elements provides a one or two clock cycle hardware analog to the multiple and separate software steps of determining a memory address and fetching stored data from the addressed registers.
  • the functions of the KARC 125 may be explained with reference to a silverware module.
  • the ACE 100 may be configured or reconfigured to perform a new or additional function, such as an upgrade to a new technology standard or the addition of an entirely new function, such as the addition of a music function to a mobile communication device.
  • a silverware module may be stored in memory 140 , or may be input from an external (wired or wireless) source through, for example, matrix interconnection network 110 .
  • FIG. 4 an overall block flow diagram illustrates a process for achieving individualized protected space in an operating system in accordance with the present invention. As shown in FIG. 4 , the process initiates with on demand instantiation of hardware via the ACE in response to a processing call outside of the trusted space of operating system programming (step 1100 ).
  • a hardware “machine” is formed by appropriate computational elements.
  • one of the matrices 150 is configured to decrypt a module and verify its validity, for security purposes.
  • the machine monitors the operations of the processing (step 1200 ).
  • the controller 120 prior to any configuration or reconfiguration of existing ACE 100 resources, the controller 120 , through the KARC 125 , checks and verifies that the configuration or reconfiguration may occur without adversely affecting any pre-existing functionality.
  • the machine is configured to perform several checks to protect against invalid operations by the device driver.
  • the machine performs address checking, i.e., it ensures that the device driver interacts with a valid memory address range associated with that driver.
  • the machine may also monitor for resource restriction violations, i.e., it ensures that limits on transfer time are not violated.
  • the protocol for the processing is monitored, i.e., it ensures that the hardware interacted with is left in a good state through proper communication of ‘start’, ‘stop’, and ‘end’ signalling. Of course, other types of monitoring may be performed as needed for particular elements, as is well appreciated by those skilled in the art.
  • the system requirements for the configuration or reconfiguration are included within the silverware module for use by the KARC 125 in performing this evaluative function. If the configuration or reconfiguration may occur without adverse affects, the silverware module is allowed to load into memory 140 , with the KARC 125 setting up the DMA engines within the memory 140 . If the configuration or reconfiguration would or may have such adverse affects, the KARC 125 does not allow the new module to be incorporated within the ACE 100 .
  • DMA Direct Memory Addressing
  • a device driver can be “protected” by uniquely special hardware to protect the system from the device driver.
  • hardware will ensure that device driver performs correctly.
  • an exception is generated to the OS indicating the failure condition as well as the specific device driver that failed.
  • the OS then has the ability to either terminated the device driver, restart the device driver, resume the device driver from a check pointed (device driver may occasionally save state and thus has a copy of a known good configuration) copy of the device driver, pass the exception upwards to be handled at a higher system level, or even notify the user and request corrective action.
  • the ACE can:
  • DMA Direct Memory Addressing

Abstract

Aspects for achieving individualized protected space in an operating system are provided. The aspects include performing on demand hardware instantiation via an ACE (an adaptive computing engine), and utilizing the hardware for monitoring predetermined software programming to protect an operating system.

Description

    FIELD OF THE INVENTION
  • The present invention relates to robust operating system protection.
  • BACKGROUND OF THE INVENTION
  • As is generally understood in computing environments, an operating system (O/S) acts as the layer between the hardware and the software providing several important functions. For example, the functionality of an O/S includes device management, process management, communication between processes, memory management, and file systems. Further, certain utilities are standard for operating systems that allow common tasks to be performed, such as file access and organization operations and process initiation and termination.
  • Within the O/S, the kernel is responsible for all other operations and acts to control the operations following the initialization functions performed by the O/S upon boot-up. The traditional structure of a kernel is a layered system. Some operating systems use a micro-kernel to minimize a size of the kernel while maintaining a layered system, such as the Windows NT operating system. FIG. 1 illustrates an example diagram of a typical layered structure, such as for the Windows NT operating system. As shown, the applications 10 lie above the O/S 20, where each application typically resides in its own memory space. The micro-kernel 30 interacts with a hardware abstraction layer 40 (e.g., with device drivers) associated with hardware layer 50. The line 60 represents a demarcation line indicating the separation between which normally is considered the user space of the applications, and the protected space of the operating system.
  • While the typical structure provides a well-understood model for an operating system, some problems remain. One such problem is the potential for crashing the machine once access below the demarcation line 60 is achieved. For example, bugs in programs that are written for performing processes below the demarcation line, e.g., device drivers that interact with the hardware abstraction layer, protocol stacks between the kernel and the applications, etc., can bring the entire machine down. While some protection is provided in operating systems with the generation of exceptions in response to certain illegal actions, such as memory address violations or illegal instructions, which trigger the kernel and kill the application raising the exception, there exists an inability by operating systems to protect against the vulnerability to fatal access.
  • An approach to avoiding such vulnerability is to limit which software is trusted within an operating system and utilizing control mechanisms that check all other programming prior to processing. Relying on software to perform such checks reduces the ability to limit the amount of software that is trusted. A hardware solution would be preferable, but, heretofore, has been prohibitive due to the level of instantaneous hardware machine generation that would be necessary.
  • Accordingly, what is needed is an ability to achieve a protected operating system through on demand hardware monitoring. The present invention addresses such a need.
  • SUMMARY OF THE INVENTION
  • Aspects for achieving individualized protected space in an operating system are provided. The aspects include performing on demand hardware instantiation via an ACE (an adaptive computing engine), and utilizing the hardware for monitoring predetermined software programming to protect an operating system.
  • Through the present invention, all elements outside a system's own code for operating, e.g., all the stacks, abstraction layers, and device drivers, can be readily and reliably monitored. In this manner, the vulnerability present in most current operating systems due to unchecked access below the demarcation line is successfully overcome. Further, the reconfigurability of the ACE architecture allows the approach to adjust as desired with additions/changes to an operating system environment. These and other advantages will become readily apparent from the following detailed description and accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a diagram of operating system layers of the prior art.
  • FIG. 2 is a block diagram illustrating an adaptive computing engine.
  • FIG. 3 is a block diagram illustrating, in greater detail, a reconfigurable matrix of the adaptive computing engine.
  • FIG. 4 illustrates an overall block flow diagram illustrates a process for achieving individualized protected space in an operating system in accordance with the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to achieving individualized protected space in an operating system via an adaptive computing engine (ACE). The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment and the generic principles and features described herein will be readily apparent to those skilled in the art. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.
  • In a preferred embodiment, the processing core of an embedded system is achieved through an adaptive computing engine (ACE). A more detailed discussion of the aspects of an ACE are provided in co-pending U.S. patent application Ser. No. 10/384,486, entitled ADAPTIVE INTEGRATED CIRCUITRY WITH HETEROGENEOUS AND RECONFIGURABLE MATRICES OF DIVERSE AND ADAPTIVE COMPUTATIONAL UNITS HAVING FIXED, APPLICATION SPECIFIC COMPUTATIONAL ELEMENTS, filed Mar. 7, 2003, assigned to the assignee of the present invention, and incorporated herein in its entirety. Generally, the ACE provides a significant departure from the prior art for achieving processing in an embedded system, in that data, control and configuration information are transmitted between and among its elements, utilizing an interconnection network, which may be configured and reconfigured, in real-time, to provide any given connection between and among the elements. In order to more fully illustrate the aspects of the present invention, portions of the discussion of the ACE from the application incorporated by reference are included in the following.
  • FIG. 2 is a block diagram illustrating an adaptive computing engine (“ACE”) 106 that includes a controller 120, one or more reconfigurable matrices 150, such as matrices 150A through 150N as illustrated, a matrix interconnection network 110, and preferably also includes a memory 140.
  • The controller 120 is preferably implemented as a reduced instruction set (“RISC”) processor, controller or other device or IC capable of performing the two types of functionality discussed below. The first control functionality, referred to as “kernal” control, is illustrated as kernal controller (“KARC”) 125, and the second control functionality, referred to as “matrix” control, is illustrated as matrix controller (“MARC”) 130.
  • FIG. 3 is a block diagram illustrating, in greater detail, a reconfigurable matrix 150 with a plurality of computation units 200 (illustrated as computation units 200A through 200N), and a plurality of computational elements 250 (illustrated as computational elements 250A through 250Z), and provides additional illustration of the preferred types of computational elements 250 and a useful summary of aspects of the present invention. As illustrated in FIG. 3, any matrix 150 generally includes a matrix controller 230, a plurality of computation (or computational) units 200, and as logical or conceptual subsets or portions of the matrix interconnect network 110, a data interconnect network 240 and a Boolean interconnect network 210. The Boolean interconnect network 210 provides the reconfigurable interconnection capability between and among the various computation units 200, while the data interconnect network 240 provides the reconfigurable interconnection capability for data input and output between and among the various computation units 200. It should be noted, however, that while conceptually divided into reconfiguration and data capabilities, any given physical portion of the matrix interconnection network 110, at any given time, may be operating as either the Boolean interconnect network 210, the data interconnect network 240, the lowest level interconnect 220 (between and among the various computational elements 250), or other input, output, or connection functionality.
  • Continuing to refer to FIG. 3, included within a computation unit 200 are a plurality of computational elements 250, illustrated as computational elements 250A through 250Z (collectively referred to as computational elements 250), and additional interconnect 220. The interconnect 220 provides the reconfigurable interconnection capability and input/output paths between and among the various computational elements 250. Each of the various computational elements 250 consist of dedicated, application specific hardware designed to perform a given task or range of tasks, resulting in a plurality of different, fixed computational elements 250. Utilizing the interconnect 220, the fixed computational elements 250 may be reconfigurably connected together to execute an algorithm or other function, at any given time.
  • In a preferred embodiment, the various computational elements 250 are designed and grouped together, into the various reconfigurable computation units 200. In addition to computational elements 250 which are designed to execute a particular algorithm or function, such as multiplication, other types of computational elements 250 are also utilized in the preferred embodiment. As illustrated in FIG. 3, computational elements 250A and 250B implement memory, to provide local memory elements for any given calculation or processing function (compared to the more “remote” memory 140). In addition, computational elements 250I, 250J, 250K and 250L, are configured (using, for example, a plurality of flip-flops) to implement finite state machines, to provide local processing capability, especially suitable for complicated control processing.
  • With the various types of different computational elements 250 which may be available, depending upon the desired functionality of the ACE 106, the computation units 200 may be loosely categorized. A first category of computation units 200 includes computational elements 250 performing linear operations, such as multiplication, addition, finite impulse response filtering, and so on. A second category of computation units 200 includes computational elements 250 performing non-linear operations, such as discrete cosine transformation, trigonometric calculations, and complex multiplications. A third type of computation unit 200 implements a finite state machine, such as computation unit 200C as illustrated in FIG. 3, particularly useful for complicated control sequences, dynamic scheduling, and input/output management, while a fourth type may implement memory and memory management, such as computation unit 200A as illustrated in FIG. 3. Lastly, a fifth type of computation unit 200 may be included to perform bit-level manipulation, such as for encryption, decryption, channel coding, Viterbi decoding, and packet and protocol processing (such as Internet Protocol processing).
  • The ability to configure the elements of the ACE relies on a tight coupling (or interdigitation) of data and configuration (or other control) information, within one, effectively continuous stream of information. The continuous stream of data can be characterized as including a first portion that provides adaptive instructions and configuration data and a second portion that provides data to be processed. This coupling or comingling of data and configuration information, referred to as a “silverware” module, helps to enable real-time reconfigurability of the ACE 106, and in conjunction with the real-time reconfigurability of heterogeneous and fixed computational elements 250, to form different and heterogenous computation units 200 and matrices 150, enables the ACE 106 architecture to have multiple and different modes of operation. For example, when included within a hand-held device, given a corresponding silverware module, the ACE 106 may have various and different operating modes as a cellular or other mobile telephone, a music player, a pager, a personal digital assistant, and other new or existing functionalities. In addition, these operating modes may change based upon the physical location of the device; for example, when configured as a CDMA mobile telephone for use in the United States, the ACE 106 may be reconfigured as a GSM mobile telephone for use in Europe.
  • As an analogy, for the reconfiguration possible via the silverware modules, a particular configuration of computational elements, as the hardware to execute a corresponding algorithm, may be viewed or conceptualized as a hardware analog of “calling” a subroutine in software which may perform the same algorithm. As a consequence, once the configuration of the computational elements has occurred, as directed by the configuration information, the data for use in the algorithm is immediately available as part of the silverware module. The immediacy of the data, for use in the configured computational elements, provides a one or two clock cycle hardware analog to the multiple and separate software steps of determining a memory address and fetching stored data from the addressed registers.
  • Referring again to FIG. 2, the functions of the KARC 125 may be explained with reference to a silverware module. As indicated above, through a silverware module, the ACE 100 may be configured or reconfigured to perform a new or additional function, such as an upgrade to a new technology standard or the addition of an entirely new function, such as the addition of a music function to a mobile communication device. Such a silverware module may be stored in memory 140, or may be input from an external (wired or wireless) source through, for example, matrix interconnection network 110.
  • While the ability to configure and reconfigure computational elements in real-time is achieved through the ACE, the present invention applies that ability to provide a more robust operating system configuration. In accordance with the present invention, a core amount of programming, such as the kernel space, is the only so-called trusted space within the operating system. All other elements of the operating system that normally would fall within the protected space of the operating system model now receive individualized monitoring. Referring to FIG. 4, an overall block flow diagram illustrates a process for achieving individualized protected space in an operating system in accordance with the present invention. As shown in FIG. 4, the process initiates with on demand instantiation of hardware via the ACE in response to a processing call outside of the trusted space of operating system programming (step 1100). By way of example, when a device driver is input via a silverware module to perform a function on behalf of the operating system, such as a SCSI driver to perform a data transfer to memory, a hardware “machine” is formed by appropriate computational elements. Thus, in the preferred embodiment, one of the matrices 150 is configured to decrypt a module and verify its validity, for security purposes. Next, the machine then monitors the operations of the processing (step 1200). Thus prior to any configuration or reconfiguration of existing ACE 100 resources, the controller 120, through the KARC 125, checks and verifies that the configuration or reconfiguration may occur without adversely affecting any pre-existing functionality. In the SCSI driver example, the machine is configured to perform several checks to protect against invalid operations by the device driver. For example, the machine performs address checking, i.e., it ensures that the device driver interacts with a valid memory address range associated with that driver. The machine may also monitor for resource restriction violations, i.e., it ensures that limits on transfer time are not violated. Additionally, the protocol for the processing is monitored, i.e., it ensures that the hardware interacted with is left in a good state through proper communication of ‘start’, ‘stop’, and ‘end’ signalling. Of course, other types of monitoring may be performed as needed for particular elements, as is well appreciated by those skilled in the art.
  • In the preferred embodiment, the system requirements for the configuration or reconfiguration are included within the silverware module for use by the KARC 125 in performing this evaluative function. If the configuration or reconfiguration may occur without adverse affects, the silverware module is allowed to load into memory 140, with the KARC 125 setting up the DMA engines within the memory 140. If the configuration or reconfiguration would or may have such adverse affects, the KARC 125 does not allow the new module to be incorporated within the ACE 100.
  • Basic operations that device drivers perform can be broken down into:
  • Memory Reads and Writes
      • Reads and Writes to main memory address space to set, clear and check status of CSR (control status registers) of devices
      • Reads and Writes to Input/Output address space to set, clear and check status of CSR (control status registers) of devices
  • Hardware Interrupts
      • Setting up interrupt vectors to point to an interrupt service routine
      • Servicing interrupt
      • Disabling and enabling interrupts
      • Setting and Clearing an interrupt
  • Direct Memory Addressing (DMA)
      • Setting up a DMA transfer by Memory Reads and Writes to DMA CSRs or Memory Mapped CSRs
      • Setting Callback routine to be executed when DMA completes
      • Setting Interrupt level to be asserted when DMA completes
      • Setting up Memory Tables for scatter and gather operations by reads and writes
  • Computational Cycles
      • Execution of device driver code consumes clock cycles of some processor
  • Memory Utilization
      • Device driver code requires a certain amount of memory for temporary buffers, scratch pad working space, stacks, constants, data buffers, control sequences, etc. . . .
  • Bandwidth
      • Device driver code requires a certain amount of bandwidth, typically bus bandwidth, link bandwidth, bandwidth between computation units such as register files, memories, hardware units, as well as bandwidth between low level component building blocks required to construct larger structures such as multipliers, adders, shifters, etc. . . .
        Depending on the nature of the device driver, the physical characteristics of the hardware under control of the device driver some to all of the above operations are utilized. Device driver code which has defects (bugs) either intentionally (as in virus) or un-intentionally can effect the system the device driver is installed since device drivers run at the protected kernel level and can thus effect the integrity of the system leading to crashes, freezes, failure to perform as specified, as well as unintentional side effects of other software and hardware in the system.
  • In an ACE system, with the ability to construct specialized hardware from lower level building blocks a device driver can be “protected” by uniquely special hardware to protect the system from the device driver. Thus there is no need to trust that the device driver will perform as specified, hardware will ensure that device driver performs correctly. On failure an exception is generated to the OS indicating the failure condition as well as the specific device driver that failed. The OS then has the ability to either terminated the device driver, restart the device driver, resume the device driver from a check pointed (device driver may occasionally save state and thus has a copy of a known good configuration) copy of the device driver, pass the exception upwards to be handled at a higher system level, or even notify the user and request corrective action. Specifically for each of the above basic device operators the ACE can:
  • Memory Reads and Writes
      • Reads and Writes to main memory address space to set, clear and check status of CSR (control status registers) of devices
        • The ACE produces a hardware memory range checking hardware to insure that the address of the memory read/writes are allowed and do not touch any memory that is out of bounds or range. This can range from sophistication from a simple address range checker (ALU) to multiple addresses for scattered CSR addresses (sophisticated multiple ALUs to perform in parallel range checking as well as insuring either read or write protection) to a full Customized MMU (memory management unit for block based address checking). Multiple address checking allows very specific and customized protection above and beyond what traditional MMU systems can provide.
      • Reads and Writes to Input/Output address space to set, clear and check status of CSR (control status registers) of devices
        • The ACE produces a hardware memory range checking hardware to insure that the address of the Input/Output (I/O) read/writes are allowed and do not touch any memory that is out of bounds or range. This can range from sophistication from a simple address range checker (ALU) to multiple addresses for scattered CSR addresses (sophisticated multiple ALUs to perform in parallel range checking as well as insuring either read or write protection) to a full Customized MMU (memory management unit for block based address checking). Multiple address checking allows very specific and customized protection above and beyond what traditional MMU systems can provide.
  • Hardware Interrupts
      • Setting up interrupt vectors to point to an interrupt service routine
        • The ACE can adapt hardware to produce hardware protection checking to insure that only a specific vector or group of specific vectors may be read or written.
      • Servicing interrupt
        • The ACE can adapt hardware to produce hardware protection checking to insure that if the device driver does not service the interrupt that a hardware default device driver is executed.
      • Disabling and enabling interrupts
        • The ACE can adapt hardware to produce hardware protection checking to insure that if the device driver can only enable or disable the interrupt that it has permission for.
      • Setting and Clearing an interrupt
        • The ACE can adapt hardware to produce hardware protection checking to insure that only the specific CSR bits are read or written by the device driver. In addition, if required, a watchdog timer can be configured to insure that strict timing durations are met in terms of duration of interrupt allowed.
  • Direct Memory Addressing (DMA)
      • Setting up a DMA transfer by Memory Reads and Writes to DMA CSRs or Memory Mapped CSRs
        • The ACE can adapt hardware to produce hardware protection checking to insure that only the specific CSRs or portions of CSRs as well as read/write protection is allowed by the device driver.
      • Setting Callback routine to be executed when DMA completes
        • The ACE can adapt hardware to produce hardware protection checking to insure that no other code can change the callback routine address to insure that the specific device driver intended to be called back is.
      • Setting Interrupt level to be asserted when DMA completes
        • The ACE can adapt hardware to produce hardware watchdog timers to insure that the DMA completes.
      • Setting up Memory Tables for scatter and gather operations by reads and writes
        • The ACE can adapt hardware to produce hardware protection checking to insure that the specific addresses (either in memory or I/O space) are accessed thereby precluding the device driver from accessing memory that it does not have authorization for.
  • Computational Cycles
      • Execution of device driver code consumes clock cycles of some processor
        • The ACE can adapt hardware to produce hardware cycle count checking to insure that the device driver does not exceed the specified maximum number of cycles. This can be used to terminate run-away tasks, or operations that are taking too long and may begin to effect system operation.
  • Memory Utilization
      • Device driver code requires a certain amount of memory for temporary buffers, scratch pad working space, stacks, constants, data buffers, control sequences, etc. . . .
        • The ACE produces a hardware memory range checking hardware to insure that the address of the memory read/writes are allowed and do not touch any memory that is out of bounds or range. This can range from sophistication from a simple address range checker (ALU) to multiple addresses for scattered CSR addresses (sophisticated multiple ALUs to perform in parallel range checking as well as insuring either read or write protection) to a full Customized MMU (memory management unit for block based address checking). Multiple address checking allows very specific and customized protection above and beyond what traditional MMU systems can provide.
        • This may include if required hardware resource checking on the amount of memory space used to see if it will exceed a maximum specified limit (for example if the upper limit on stack space is exceeded)
  • Bandwidth
      • Device driver code requires a certain amount of bandwidth, typically bus bandwidth, link bandwidth, bandwidth between computation units such as register files, memories, hardware units, as well as bandwidth between low level component building blocks required to construct larger structures such as multipliers, adders, shifters, etc. . . .
        • The ACE produces a hardware bandwidth checker to insure that the specified amount of bandwidth used on the MIN is not exceeded. This can be as simple as a total number of bytes transferred limit, to an average rate not to exceed limit.
          The advantage here is that only the hardware protection that is required for a particular execution of the device driver needs to consume resources. For example, if no DMA is used then no ACE circuitry protecting the DMA is required. Even more resource efficient is if between to different calls to the device driver which use differing levels of operators then only the exact hardware protection is required—e.g. in a single execution no I/O read/writes are used and thus no hardware protection is required, in a second execution there is I/O read/writes and thus hardware protection is instantiated (hardware is configured and reconfigured from lower building block hardware to construct the exact hardware that is required). In a conventional hardware architecture without the ability to reconfigure the hardware the overhead for all this protection circuitry must be paid—by using only what is required during a particular time window (or execution) the ACE can provide exactly what is needed.
  • Thus, through the present invention, all elements outside a system's own code for operating, e.g., all the stacks, abstraction layers, and device drivers, can be readily and reliably monitored. In this manner, the vulnerability present in most current operating systems due to unchecked access below the demarcation line is successfully overcome. Further, the reconfigurability of the ACE architecture allows the approach to adjust as desired with additions/changes to an operating system environment.
  • From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the novel concept of the invention. Further, it is to be understood that no limitation with respect to the specific methods and apparatus illustrated herein is intended or should be inferred. It is, of course, intended to cover by the appended claims all such modifications as fall within the scope of the claims.

Claims (17)

1. A method for achieving individualized protected space in an operating system, the method comprising the steps of:
(a) instantiating hardware on demand via an an adaptive computing engine (ACE); and
(b) utilizing the hardware for monitoring predetermined software programming to protect an operating system.
2. The method of claim 1 wherein the utilizing step (b) further comprises the step of (b1), utilizing the hardware to perform memory address range checking.
3. The method of claim 1 wherein the utilizing step (b) further comprises the step of (b1) utilizing the hardware to perform resource restriction checking.
4. The method of claim 3 wherein the resource restriction further comprises a time duration restriction.
5. The method of claim 1 wherein the utilizing step (b) further comprises the step of (b1) monitoring protocol processing programming.
6. The method of claim 1 wherein the utilizing step (b) further comprises the step of (b1) monitoring device driver programming.
7. The method of claim 1 wherein the utilizing step (b) further comprises the step of (b1) monitoring hardware abstraction layer programming.
8. The method of claim 1 wherein step (b) further comprises the step of (b1), utilizing the hardware to monitor only of the portions of the software programming that is used from run to run.
9. A system for achieving individualized protected space in an operating system, the system comprising:
memory for storing trusted operating system programming; and
an adaptive computing engine (ACE) for providing on demand hardware instantiation to individually monitor predetermined software programming interacting with the trusted operating system programming.
10. The system of claim 9 wherein the trusted operating system programming further comprises a kernel level of programming.
11. The system of claim 9 wherein the predetermined software programming further comprises device drivers.
12. The system of claim 9 wherein the predetermined software programming further comprises abstraction layers.
13. The system of claim 9 wherein the predetermined software programming further comprises communication protocol stacks.
14. The system of claim 9 wherein the on-demand hardware instantiation performs memory address range checking.
15. The system of claim 9 wherein the on-demand hardware instantiation performs resource restriction checking.
16. The system of claim 15 wherein the resource restriction further comprises a time duration restriction.
17. A system for achieving individualized protected space in an operating system, the system comprising:
memory for storing trusted operating system programming, wherein the trusted operating system programming further comprises a kernel level of programming and a plurality of device drivers; and
an adaptive computing engine (ACE) for providing on demand hardware instantiation to individually monitor predetermined software programming interacting with the trusted operating system programming, wherein the predetermined software programming further comprises abstraction layers and communication protocol stacks wherein the on-demand hardware instantiation performs memory address range checking and resource restriction checking; and wherein the resource restriction further comprises a time duration restriction.
US12/648,792 2002-05-13 2009-12-29 Method and system achieving individualized protected space in an operating system Abandoned US20100191961A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/648,792 US20100191961A1 (en) 2002-05-13 2009-12-29 Method and system achieving individualized protected space in an operating system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US38087702P 2002-05-13 2002-05-13
US10/437,855 US7660984B1 (en) 2003-05-13 2003-05-13 Method and system for achieving individualized protected space in an operating system
US12/648,792 US20100191961A1 (en) 2002-05-13 2009-12-29 Method and system achieving individualized protected space in an operating system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/437,855 Continuation US7660984B1 (en) 2002-05-13 2003-05-13 Method and system for achieving individualized protected space in an operating system

Publications (1)

Publication Number Publication Date
US20100191961A1 true US20100191961A1 (en) 2010-07-29

Family

ID=41646548

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/437,855 Active 2026-05-01 US7660984B1 (en) 2002-05-13 2003-05-13 Method and system for achieving individualized protected space in an operating system
US12/648,792 Abandoned US20100191961A1 (en) 2002-05-13 2009-12-29 Method and system achieving individualized protected space in an operating system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/437,855 Active 2026-05-01 US7660984B1 (en) 2002-05-13 2003-05-13 Method and system for achieving individualized protected space in an operating system

Country Status (1)

Country Link
US (2) US7660984B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056997A1 (en) * 2016-09-23 2018-03-29 Intel Corporation Method and apparatus for implementing a programmable security unit for a computer system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8214296B2 (en) * 2006-02-14 2012-07-03 Microsoft Corporation Disaggregated secure execution environment
US7779099B2 (en) * 2006-03-16 2010-08-17 Us Beverage Net Inc. Distributed intelligent systems and methods therefor
US8755515B1 (en) 2008-09-29 2014-06-17 Wai Wu Parallel signal processing system and method

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3409175A (en) * 1966-11-10 1968-11-05 Thomas M. Byrne Liquid dispensing device
US3666143A (en) * 1970-06-22 1972-05-30 Murray Weston Automatic fluid dispensing apparatus with manual override
US3906298A (en) * 1974-01-28 1975-09-16 Teradyne Inc Protective apparatus for digital logic circuits
US3949903A (en) * 1973-11-07 1976-04-13 General Motors Corporation Water and beverage concentrate dispenser
US3995441A (en) * 1973-08-20 1976-12-07 The Cornelius Company Beverage dispensing system
US4143793A (en) * 1977-06-13 1979-03-13 The Cornelius Company Apparatus and method for dispensing a carbonated beverage
US4174872A (en) * 1978-04-10 1979-11-20 The Cornelius Company Beverage dispensing machine and cabinet therefor
US4181242A (en) * 1978-05-30 1980-01-01 The Cornelius Company Method and apparatus for dispensing a beverage
US4237536A (en) * 1978-10-12 1980-12-02 M.R.E. Enterprises, Inc. System for indicating and controlling dispensing of beverages
US4302775A (en) * 1978-12-15 1981-11-24 Compression Labs, Inc. Digital video compression system and methods utilizing scene adaptive coding with rate buffer feedback
US4377246A (en) * 1977-06-13 1983-03-22 The Cornelius Company Apparatus for dispensing a carbonated beverage
US4413752A (en) * 1979-01-04 1983-11-08 The Cornelius Company Apparatus for dispensing a carbonated beverage
US4549675A (en) * 1982-09-07 1985-10-29 The Cornelius Co. Beverage dispensing valve
US4577782A (en) * 1983-05-02 1986-03-25 The Cornelius Company Beverage dispensing station
US4633386A (en) * 1983-04-09 1986-12-30 Schlumberger Measurement & Control (U.K.) Ltd. Digital signal processor
US4658988A (en) * 1984-04-02 1987-04-21 The Cornelius Company Multiple flavor post-mix beverage dispensing apparatus
US4694416A (en) * 1985-02-25 1987-09-15 General Electric Company VLSI programmable digital signal processor
US4711374A (en) * 1985-09-13 1987-12-08 The Coca-Cola Company Low-cost post-mix beverage dispenser and syrup supply system therefor
US5396609A (en) * 1989-01-19 1995-03-07 Gesellschaft Fur Strahlen- Und Umweltforschung Mbh (Gsf) Method of protecting programs and data in a computer against unauthorized access and modification by monitoring address regions
US6199181B1 (en) * 1997-09-09 2001-03-06 Perfecto Technologies Ltd. Method and system for maintaining restricted operating environments for application programs or operating systems
US20040015970A1 (en) * 2002-03-06 2004-01-22 Scheuermann W. James Method and system for data flow control of execution nodes of an adaptive computing engine (ACE)

Family Cites Families (524)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE30301E (en) 1972-03-10 1980-06-10 The Cornelius Company Beverage mixing and dispensing apparatus
US3960298A (en) 1972-10-25 1976-06-01 The Cornelius Company Container assembly for use with a separator dispenser
US6556044B2 (en) 2001-09-18 2003-04-29 Altera Corporation Programmable logic device including multipliers and configurations thereof to reduce resource utilization
US3991911A (en) 1973-09-07 1976-11-16 American Beverage Control Automatic drink dispensing apparatus having programming means
US3938639A (en) 1973-11-28 1976-02-17 The Cornelius Company Portable dispenser for mixed beverages
US3967062A (en) 1975-03-05 1976-06-29 Ncr Corporation Method and apparatus for encoding data and clock information in a self-clocking data stream
US4076145A (en) 1976-08-09 1978-02-28 The Cornelius Company Method and apparatus for dispensing a beverage
US4252253A (en) 1978-02-21 1981-02-24 Mcneil Corporation Drink dispenser having central control of plural dispensing stations
US4172669A (en) 1978-07-27 1979-10-30 The Cornelius Company Mixing and dispensing machine
US4222972A (en) 1979-01-29 1980-09-16 Caldwell Michael C Method and means for carbonating liquids in situ
US4218014A (en) 1979-02-21 1980-08-19 The Cornelius Company Multiple flavor post-mix beverage dispensing head
GB2067800B (en) 1979-04-03 1983-10-12 Lewin G F Adding device
US4380046A (en) 1979-05-21 1983-04-12 Nasa Massively parallel processor computer
US4523697A (en) 1979-07-11 1985-06-18 Cadbury Schweppes Limited Liquid dispensing package
USRE32179E (en) 1979-10-12 1986-06-10 The Coca-Cola Company Post-mix beverage dispensing system syrup package, valving system, and carbonator therefor
US4333587A (en) 1980-01-31 1982-06-08 The Coca-Cola Company Beverage dispenser
US4354613A (en) 1980-05-15 1982-10-19 Trafalgar Industries, Inc. Microprocessor based vending apparatus
US4393468A (en) 1981-03-26 1983-07-12 Advanced Micro Devices, Inc. Bit slice microprogrammable processor for signal processing applications
US4560089A (en) 1981-05-11 1985-12-24 The Cornelius Company Apparatus for dispensing a carbonated beverage
JPS5916053A (en) 1982-07-16 1984-01-27 Nec Corp Pipeline arithmetic device
US4936488A (en) 1982-09-07 1990-06-26 The Cornelius Company Beverage dispensing valve
US5129549A (en) 1982-09-07 1992-07-14 Imi Cornelius Inc. Beverage dispensing valve
US4509690A (en) 1982-12-06 1985-04-09 The Cornelius Company Carbonated beverage mixing nozzle for a dispenser
US4475448A (en) 1983-02-22 1984-10-09 General Foods Corporation Reactant/gas separation means for beverage carbonation device
US4466342A (en) 1983-02-22 1984-08-21 General Foods Corporation Carbonation chamber with sparger for beverage carbonation
US4458584A (en) 1983-02-22 1984-07-10 General Foods Corporation Beverage carbonation device
US4578799A (en) 1983-10-05 1986-03-25 Codenoll Technology Corporation Method and apparatus for recovering data and clock information from a self-clocking data stream
US4553573A (en) 1983-10-20 1985-11-19 Pepsico Inc. Bulk syrup delivery system
US4824075A (en) 1984-02-14 1989-04-25 Walter Holzboog Tilt action dispensing valve assembly
US4870302A (en) 1984-03-12 1989-09-26 Xilinx, Inc. Configurable electrical circuit having configurable logic elements and configurable interconnects
DK279985A (en) 1984-06-25 1985-12-26 Isoworth Ltd METHOD AND APPARATUS FOR CARBONIZATION
US4706216A (en) 1985-02-27 1987-11-10 Xilinx, Inc. Configurable logic element
US4967340A (en) 1985-06-12 1990-10-30 E-Systems, Inc. Adaptive processing system having an array of individually configurable processing components
US4713755A (en) 1985-06-28 1987-12-15 Hewlett-Packard Company Cache memory consistency control with explicit software instructions
US4765513A (en) 1985-08-26 1988-08-23 The Cornelius Company Post-mix beverage dispenser with nozzle
US4993604A (en) 1985-09-13 1991-02-19 The Coca-Cola Company Low-cost post-mix beverage dispenser and syrup supply system therefor
US4747516A (en) 1985-12-23 1988-05-31 Liquid Motion Industries, Co. Soft drink maker
US4748585A (en) 1985-12-26 1988-05-31 Chiarulli Donald M Processor utilizing reconfigurable process segments to accomodate data word length
US4974643A (en) 1986-01-31 1990-12-04 The Cornelius Company Method of and apparatus for dispensing beverage into a tilted receptacle with automatic level responsive shut off
GB2186265B (en) 1986-02-10 1989-11-01 Isoworth Ltd Beverage dispensing apparatus
US4982876A (en) 1986-02-10 1991-01-08 Isoworth Limited Carbonation apparatus
US4960261A (en) 1986-03-17 1990-10-02 Isoworth Limited Gas cylinder connector
GB2218767A (en) 1988-05-17 1989-11-22 Isoworth Ltd Gas cylinder connector
US5021947A (en) 1986-03-31 1991-06-04 Hughes Aircraft Company Data-flow multiprocessor architecture with three dimensional multistage interconnection network for efficient signal and data processing
US4760525A (en) 1986-06-10 1988-07-26 The United States Of America As Represented By The Secretary Of The Air Force Complex arithmetic vector processor for performing control function, scalar operation, and set-up of vector signal processing instruction
US4760544A (en) 1986-06-20 1988-07-26 Plessey Overseas Limited Arithmetic logic and shift device
US4811214A (en) 1986-11-14 1989-03-07 Princeton University Multinode reconfigurable pipeline computer
US5165023A (en) 1986-12-17 1992-11-17 Massachusetts Institute Of Technology Parallel processing system with processor array and network communications system for transmitting messages of variable length
US4766548A (en) 1987-01-02 1988-08-23 Pepsico Inc. Telelink monitoring and reporting system
US4781309A (en) 1987-02-19 1988-11-01 The Cornelius Company Dispenser with improved carbonated water manifold
US4856684A (en) 1987-04-06 1989-08-15 William Gerstung Valve for a pressurized dispensing can containing flowable materials
US5381546A (en) 1987-04-13 1995-01-10 Gte Laboratories Incorporated Control process for allocating services in communications systems
US5818603A (en) 1996-03-29 1998-10-06 Ricoh Company, Ltd. Method and system for controlling and communicating with machines using multiple communication formats
US4800492A (en) 1987-05-13 1989-01-24 The Coca-Cola Company Data logger for a post-mix beverage dispensing system
US4827426A (en) 1987-05-18 1989-05-02 The Coca-Cola Company Data acquisition and processing system for post-mix beverage dispensers
US4850269A (en) 1987-06-26 1989-07-25 Aquatec, Inc. Low pressure, high efficiency carbonator and method
GB2210441B (en) 1987-10-01 1992-03-04 Isoworth Ltd Pressure vessel
JPH03501070A (en) 1987-11-05 1991-03-07 ザ、プレイカウント、カンパニー Video cassette rental system and method, and recording playback counting device therefor
US4921315A (en) 1987-12-21 1990-05-01 Whirlpool Corporation Refrigerator door structure
US5428754A (en) 1988-03-23 1995-06-27 3Dlabs Ltd Computer system with clock shared between processors executing separate instruction streams
US4905231A (en) 1988-05-03 1990-02-27 American Telephone And Telegraph Company, At&T Bell Laboratories Multi-media virtual circuit
US5572572A (en) 1988-05-05 1996-11-05 Transaction Technology, Inc. Computer and telephone apparatus with user friendly interface and enhanced integrity features
US4932564A (en) 1988-05-20 1990-06-12 The Cornelius Company Multiple flavor post-mix beverage dispensing head
JPH03500461A (en) 1988-07-22 1991-01-31 アメリカ合衆国 Data flow device for data-driven calculations
US4901887A (en) 1988-08-08 1990-02-20 Burton John W Beverage dispensing system
DE3829831A1 (en) 1988-09-02 1990-03-15 Hansa Metallwerke Ag DEVICE FOR TAPING A SELECTABLE QUANTITY OF LIQUID, IN PARTICULAR QUANTITY OF WATER
US4930666A (en) 1988-10-28 1990-06-05 The Coca-Cola Company Juice dispensing system for a refrigerator door
US6986142B1 (en) 1989-05-04 2006-01-10 Texas Instruments Incorporated Microphone/speaker system with context switching in processor
US5240144A (en) 1989-01-06 1993-08-31 Joseph Feldman Beverage dispensing apparatus
US5090015A (en) 1989-02-06 1992-02-18 Motorola, Inc. Programmable array logic self-checking system
DE69031233T2 (en) 1989-02-24 1997-12-04 At & T Corp Adaptive work sequence planning for multiple processing systems
US5007560A (en) 1989-03-01 1991-04-16 Sassak John J Beer dispensing and monitoring method and apparatus
JP3144686B2 (en) 1989-06-23 2001-03-12 アイソウォース リミテッド Beverage production or release equipment
US5261099A (en) 1989-08-24 1993-11-09 International Business Machines Corp. Synchronous communications scheduler allowing transient computing overloads using a request buffer
US5193151A (en) 1989-08-30 1993-03-09 Digital Equipment Corporation Delay-based congestion avoidance in computer networks
US5163131A (en) 1989-09-08 1992-11-10 Auspex Systems, Inc. Parallel i/o network file server architecture
US4961533A (en) 1989-09-27 1990-10-09 Viac Inc. Inventory control system
GB2236736A (en) 1989-09-27 1991-04-17 Isoworth Ltd Carbonation apparatus for dispensing drinks, with plural carbonation chambers
US5044171A (en) 1989-11-06 1991-09-03 Eli Farkas Counter with integral carbonated beverage dispenser
US5450557A (en) 1989-11-07 1995-09-12 Loral Aerospace Corp. Single-chip self-configurable parallel processor
GB2237908B (en) 1989-11-08 1993-06-16 British Aerospace Method and apparatus for parallel processing data
US5428793A (en) 1989-11-13 1995-06-27 Hewlett-Packard Company Method and apparatus for compiling computer programs with interproceduural register allocation
WO1991012991A1 (en) 1990-02-27 1991-09-05 The Coca-Cola Company Multiple fluid space dispenser and monitor
JP3210319B2 (en) 1990-03-01 2001-09-17 株式会社東芝 Neurochip and neurocomputer using the chip
US5099418A (en) 1990-06-14 1992-03-24 Hughes Aircraft Company Distributed data driven process
US5203474A (en) 1990-06-16 1993-04-20 Alco Standard Corporation Beverage dispensing nozzle
US5303846A (en) 1990-09-17 1994-04-19 Abcc/Techcorp. Method and apparatus for generating and dispensing flavoring syrup in a post mix system
US5274832A (en) 1990-10-04 1993-12-28 National Semiconductor Corporation Systolic array for multidimensional matrix computations
US5190189A (en) 1990-10-30 1993-03-02 Imi Cornelius Inc. Low height beverage dispensing apparatus
US5144166A (en) 1990-11-02 1992-09-01 Concurrent Logic, Inc. Programmable logic cell and array
US5245227A (en) 1990-11-02 1993-09-14 Atmel Corporation Versatile programmable logic cell for use in configurable logic arrays
US5218240A (en) 1990-11-02 1993-06-08 Concurrent Logic, Inc. Programmable logic cell and array with bus repeaters
US5156301A (en) 1990-12-17 1992-10-20 Imi Cornelius Inc. Constant ratio post-mix beverage dispensing valve
US5202993A (en) 1991-02-27 1993-04-13 Sun Microsystems, Inc. Method and apparatus for cost-based heuristic instruction scheduling
US5301100A (en) 1991-04-29 1994-04-05 Wagner Ferdinand H Method of and apparatus for constructing a control system and control system created thereby
US5156871A (en) 1991-05-01 1992-10-20 Imi Cornelius Inc. Low cost beverage carbonating apparatus and method
US5193718A (en) 1991-06-25 1993-03-16 Imi Cornelius Inc. Quick electronic disconnect for a beverage dispensing valve
US5440752A (en) 1991-07-08 1995-08-08 Seiko Epson Corporation Microprocessor architecture with a switch network for data transfer between cache, memory port, and IOU
US5317209A (en) 1991-08-29 1994-05-31 National Semiconductor Corporation Dynamic three-state bussing capability in a configurable logic array
US5339428A (en) 1991-09-04 1994-08-16 Digital Equipment Corporation Compiler allocating a register to a data item used between a use and store of another data item previously allocated to the register
WO1994009595A1 (en) 1991-09-20 1994-04-28 Shaw Venson M Method and apparatus including system architecture for multimedia communications
US5625669A (en) 1991-09-27 1997-04-29 Telemac Cellular Corporation Mobile phone with internal call accounting controls
JP3124074B2 (en) 1991-09-30 2001-01-15 富士通株式会社 Information vending machine
CA2073516A1 (en) 1991-11-27 1993-05-28 Peter Michael Kogge Dynamic multi-mode parallel processor array architecture computer system
US5278986A (en) 1991-12-13 1994-01-11 Thinking Machines Corporation System and method for compiling a source code supporting data parallel variables
WO1993013603A1 (en) 1991-12-23 1993-07-08 Intel Corporation Circuitry for decoding huffman codes
US5522070A (en) 1992-03-19 1996-05-28 Fujitsu Limited Computer resource distributing method and system for distributing a multiplicity of processes to a plurality of computers connected in a network
US5269442A (en) 1992-05-22 1993-12-14 The Cornelius Company Nozzle for a beverage dispensing valve
US5768561A (en) 1992-06-30 1998-06-16 Discovision Associates Tokens-based adaptive video processing arrangement
US5684980A (en) 1992-07-29 1997-11-04 Virtual Computer Corporation FPGA virtual computer for executing a sequence of program instructions by successively reconfiguring a group of FPGA in response to those instructions
US5802290A (en) 1992-07-29 1998-09-01 Virtual Computer Corporation Computer network of distributed virtual computers which are EAC reconfigurable in response to instruction to be executed
US5368198A (en) 1992-08-26 1994-11-29 Imi Cornelius Inc. Beverage dispenser
US5437395A (en) 1992-09-15 1995-08-01 Imi Cornelius Inc. Modular beverage dispenser
GB9222840D0 (en) 1992-10-31 1992-12-16 Smiths Industries Plc Electronic assemblies
US5603043A (en) 1992-11-05 1997-02-11 Giga Operations Corporation System for compiling algorithmic language source code for implementation in programmable hardware
US5263509A (en) 1992-11-12 1993-11-23 General Electric Company Refrigerator with door mounted dispenser supply mechanism
US5392960A (en) 1992-11-13 1995-02-28 Wilshire Partners Postmix beverage dispenser and a method for making a beverage dispenser
US6192255B1 (en) 1992-12-15 2001-02-20 Texas Instruments Incorporated Communication system and methods for enhanced information transfer
US5335276A (en) 1992-12-16 1994-08-02 Texas Instruments Incorporated Communication system and methods for enhanced information transfer
US5838894A (en) 1992-12-17 1998-11-17 Tandem Computers Incorporated Logical, fail-functional, dual central processor units formed from three processor units
US5452457A (en) 1993-01-29 1995-09-19 International Business Machines Corporation Program construct and methods/systems for optimizing assembled code for execution
US5297400A (en) 1993-02-17 1994-03-29 Maytag Corporation Liquid dispensing assembly for a refrigerator
US5280711A (en) 1993-02-25 1994-01-25 Imi Cornelius Inc. Low cost beverage dispensing apparatus
US5483658A (en) 1993-02-26 1996-01-09 Grube; Gary W. Detection of unauthorized use of software applications in processing devices
US5379343A (en) 1993-02-26 1995-01-03 Motorola, Inc. Detection of unauthorized use of software applications in communication units
DE59401478D1 (en) 1993-03-15 1997-02-13 Siemens Ag METHOD FOR THE MACHINE GENERATION OF SIDE-EDITABLE COMMAND GROUPS FROM A PROGRAM FOR SUPER-SCALAR MICROPROCESSORS
JP3499252B2 (en) 1993-03-19 2004-02-23 株式会社ルネサステクノロジ Compiling device and data processing device
US5870427A (en) 1993-04-14 1999-02-09 Qualcomm Incorporated Method for multi-mode handoff using preliminary time alignment of a mobile station operating in analog mode
US5388062A (en) 1993-05-06 1995-02-07 Thomson Consumer Electronics, Inc. Reconfigurable programmable digital filter architecture useful in communication receiver
FI932605A (en) 1993-06-07 1994-12-08 Nokia Telecommunications Oy Receiver device for base station
US5517667A (en) 1993-06-14 1996-05-14 Motorola, Inc. Neural network that does not require repetitive training
US5343716A (en) 1993-06-29 1994-09-06 Imi Cornelius Inc. Beverage dispenser with improved cold plate
JP3159345B2 (en) 1993-07-02 2001-04-23 日本電気株式会社 Pipeline arithmetic processing unit
JPH0728786A (en) 1993-07-15 1995-01-31 Hitachi Ltd Vector processor
US5507009A (en) 1993-08-13 1996-04-09 Motorola, Inc. Method for reprogramming a communication unit's access to a wireless communication system
US5701482A (en) 1993-09-03 1997-12-23 Hughes Aircraft Company Modular array processor architecture having a plurality of interconnected load-balanced parallel processing nodes
US5732563A (en) 1993-09-22 1998-03-31 Imi Cornelius Inc. Electronically controlled beverage dispenser
CA2126265A1 (en) 1993-09-27 1995-03-28 Michael Robert Cantone System for synthesizing field programmable gate array implementations from high level circuit descriptions
JP3594309B2 (en) 1993-09-28 2004-11-24 株式会社ナムコ Pipeline processing device, clipping processing device, three-dimensional simulator device, and pipeline processing method
US5862961A (en) 1993-10-26 1999-01-26 Imi Cornelius Inc. Connection device for dispensing fluid from a bottle
BR9304369A (en) 1993-10-26 1995-06-20 Imi Cornelius Brasil Ltda Liquid extractor assembly from a container
US6111935A (en) 1993-10-27 2000-08-29 Canon Kabushiki Kaisha Adaptive expansion table in a digital telephone receiver
US5490165A (en) 1993-10-28 1996-02-06 Qualcomm Incorporated Demodulation element assignment in a system capable of receiving multiple signals
US5721854A (en) 1993-11-02 1998-02-24 International Business Machines Corporation Method and apparatus for dynamic conversion of computer instructions
EP0950946B1 (en) 1993-11-05 2001-08-16 Intergraph Corporation Software scheduled superscaler computer architecture
KR960010668B1 (en) 1993-11-06 1996-08-07 엘지전자 주식회사 Refrigerator
US5530435A (en) 1993-12-09 1996-06-25 Steelcase Inc. Utility distribution system for modular furniture and the like
JP2655068B2 (en) 1993-12-30 1997-09-17 日本電気株式会社 Spread spectrum receiver
US5491823A (en) 1994-01-25 1996-02-13 Silicon Graphics, Inc. Loop scheduler
US5635940A (en) 1994-02-02 1997-06-03 Hickman; Paul L. Communication configurator and method for implementing same
US5519694A (en) 1994-02-04 1996-05-21 Massachusetts Institute Of Technology Construction of hierarchical networks through extension
GB9403030D0 (en) 1994-02-17 1994-04-06 Austin Kenneth Re-configurable application specific device
BR7400414U (en) 1994-03-04 1994-07-26 Spal Ind Brasileira De Bebidas Soft drink dispensing machine
US5729754A (en) 1994-03-28 1998-03-17 Estes; Mark D. Associative network method and apparatus
US5454406A (en) 1994-05-13 1995-10-03 Eaton Corporation Automatic beverage dispenser
US5694546A (en) 1994-05-31 1997-12-02 Reisman; Richard R. System for automatic unattended electronic information transport between a server and a client by a vendor provided transport software with a manifest list
GB2291567B (en) 1994-07-01 1999-02-24 Roke Manor Research Apparatus for use in equipment providing a digital radio link between a fixed and a mobile radio unit
US5701398A (en) 1994-07-01 1997-12-23 Nestor, Inc. Adaptive classifier having multiple subnetworks
FI943249A (en) 1994-07-07 1996-01-08 Nokia Mobile Phones Ltd Procedure for controlling recipients and recipients
US5745366A (en) 1994-07-14 1998-04-28 Omnicell Technologies, Inc. Pharmaceutical dispensing device and methods
US5655140A (en) 1994-07-22 1997-08-05 Network Peripherals Apparatus for translating frames of data transferred between heterogeneous local area networks
US5630206A (en) 1994-08-11 1997-05-13 Stanford Telecommunications, Inc. Position enhanced cellular telephone system
US5499758A (en) 1994-08-19 1996-03-19 Mccann's Engineering & Manufacturing Co. Liquid dispenser for use with containers
US6056194A (en) 1995-08-28 2000-05-02 Usa Technologies, Inc. System and method for networking and controlling vending machines
US5608643A (en) 1994-09-01 1997-03-04 General Programming Holdings, Inc. System for managing multiple dispensing units and method of operation
FR2724273B1 (en) 1994-09-05 1997-01-03 Sgs Thomson Microelectronics SIGNAL PROCESSING CIRCUIT FOR IMPLEMENTING A VITERBI ALGORITHM
JP3525353B2 (en) 1994-09-28 2004-05-10 株式会社リコー Digital electronic still camera
JPH08106375A (en) 1994-10-03 1996-04-23 Ricoh Co Ltd Signal processing computing element
US5600810A (en) 1994-12-09 1997-02-04 Mitsubishi Electric Information Technology Center America, Inc. Scaleable very long instruction word processor with parallelism matching
US5602833A (en) 1994-12-19 1997-02-11 Qualcomm Incorporated Method and apparatus for using Walsh shift keying in a spread spectrum communication system
US5636368A (en) 1994-12-23 1997-06-03 Xilinx, Inc. Method for programming complex PLD having more than one function block type
DE4446882B4 (en) 1994-12-27 2004-02-12 BSH Bosch und Siemens Hausgeräte GmbH Device for repeated, independent dosing of precisely metered amounts of a powdery cleaning agent in water-carrying cleaning machines, in particular household dishwashers and household washing machines
KR0146100B1 (en) 1995-01-07 1998-09-15 이헌조 Information acquisition and analysis device
US5706191A (en) 1995-01-19 1998-01-06 Gas Research Institute Appliance interface apparatus and automated residence management system
US5742180A (en) 1995-02-10 1998-04-21 Massachusetts Institute Of Technology Dynamically programmable gate array with multiple contexts
DE69637733D1 (en) 1995-02-13 2008-12-11 Intertrust Tech Corp SYSTEMS AND METHOD FOR SAFE TRANSMISSION
US5892900A (en) 1996-08-30 1999-04-06 Intertrust Technologies Corp. Systems and methods for secure transaction management and electronic rights protection
US5892961A (en) 1995-02-17 1999-04-06 Xilinx, Inc. Field programmable gate array having programming instructions in the configuration bitstream
US5696906A (en) 1995-03-09 1997-12-09 Continental Cablevision, Inc. Telecommunicaion user account management system and method
US5669001A (en) 1995-03-23 1997-09-16 International Business Machines Corporation Object code compatible representation of very long instruction word programs
US6085740A (en) 1996-02-21 2000-07-11 Aerogen, Inc. Liquid dispensing apparatus and methods
US5737631A (en) 1995-04-05 1998-04-07 Xilinx Inc Reprogrammable instruction set accelerator
US5835753A (en) 1995-04-12 1998-11-10 Advanced Micro Devices, Inc. Microprocessor with dynamically extendable pipeline stages and a classifying circuit
US5611867A (en) 1995-04-12 1997-03-18 Maytag Corporation Method of selecting a wash cycle for an appliance
US6021186A (en) 1995-04-17 2000-02-01 Ricoh Company Ltd. Automatic capture and processing of facsimile transmissions
US5794062A (en) 1995-04-17 1998-08-11 Ricoh Company Ltd. System and method for dynamically reconfigurable computing using a processing unit having changeable internal hardware organization
US5933642A (en) 1995-04-17 1999-08-03 Ricoh Corporation Compiling system and method for reconfigurable computing
WO1996033558A1 (en) 1995-04-18 1996-10-24 Advanced Micro Devices, Inc. Method and apparatus for hybrid vlc bitstream decoding
US5534796A (en) 1995-04-21 1996-07-09 Intergraph Corporation Self-clocking pipeline register
US5751295A (en) 1995-04-27 1998-05-12 Control Systems, Inc. Graphics accelerator chip and method
US5802278A (en) 1995-05-10 1998-09-01 3Com Corporation Bridge/router architecture for high performance scalable networking
US5704053A (en) 1995-05-18 1997-12-30 Hewlett-Packard Company Efficient explicit data prefetching analysis and code generation in a low-level optimizer for inserting prefetch instructions into loops of applications
US5646544A (en) 1995-06-05 1997-07-08 International Business Machines Corporation System and method for dynamically reconfiguring a programmable gate array
US5634190A (en) 1995-06-06 1997-05-27 Globalstar L.P. Low earth orbit communication satellite gateway-to-gateway relay system
US5787237A (en) 1995-06-06 1998-07-28 Apple Computer, Inc. Uniform interface for conducting communications in a heterogeneous computing network
US5613004A (en) 1995-06-07 1997-03-18 The Dice Company Steganographic method and device
US5553755A (en) 1995-06-09 1996-09-10 Summit Packaging Systems, Inc. Whipped cream dispenser
US5542265A (en) 1995-06-30 1996-08-06 Rutland; Michael D. External refrigerator-mounted liquid dispenser
FR2736787B1 (en) 1995-07-11 1997-08-08 Alcatel Business Systems COMMUNICATION SYSTEM AND CORRESPONDING EQUIPMENT FOR SUBSCRIBER INSTALLATION
US5768594A (en) 1995-07-14 1998-06-16 Lucent Technologies Inc. Methods and means for scheduling parallel processors
US5822308A (en) 1995-07-17 1998-10-13 National Semiconductor Corporation Multi-tasking sequencer for a TDMA burst mode controller
US5842004A (en) 1995-08-04 1998-11-24 Sun Microsystems, Inc. Method and apparatus for decompression of compressed geometric three-dimensional graphics data
US5646545A (en) 1995-08-18 1997-07-08 Xilinx, Inc. Time multiplexed programmable logic device
US5778439A (en) 1995-08-18 1998-07-07 Xilinx, Inc. Programmable logic device with hierarchical confiquration and state storage
US5784313A (en) 1995-08-18 1998-07-21 Xilinx, Inc. Programmable logic device including configuration data or user data memory slices
US5991308A (en) 1995-08-25 1999-11-23 Terayon Communication Systems, Inc. Lower overhead method for data transmission using ATM and SCDMA over hybrid fiber coax cable plant
US5623545A (en) 1995-08-31 1997-04-22 National Semiconductor Corporation Automatic data generation for self-test of cryptographic hash algorithms in personal security devices
DE19532422C1 (en) 1995-09-01 1997-01-23 Philips Patentverwaltung Local network operating according to the asynchronous transfer mode (ATM) with at least two ring systems
US5822360A (en) 1995-09-06 1998-10-13 Solana Technology Development Corporation Method and apparatus for transporting auxiliary data in audio signals
US5845815A (en) 1995-09-08 1998-12-08 Imi Cornelius Inc. Flow control for beverage dispensing valve
US5774737A (en) 1995-10-13 1998-06-30 Matsushita Electric Industrial Co., Ltd. Variable word length very long instruction word instruction processor with word length register or instruction number register
US5742821A (en) 1995-11-08 1998-04-21 Lucent Technologies Inc. Multiprocessor scheduling and execution
EP0778240A1 (en) 1995-12-08 1997-06-11 IMI Cornelius Inc. Electro-mechanical refrigeration system
US6473609B1 (en) 1995-12-11 2002-10-29 Openwave Systems Inc. Method and architecture for interactive two-way communication devices to interact with a network
US5734582A (en) 1995-12-12 1998-03-31 International Business Machines Corporation Method and system for layout and schematic generation for heterogeneous arrays
KR100187284B1 (en) 1995-12-19 1999-05-01 김광호 Water dispenser of a refrigerator
US5706976A (en) 1995-12-21 1998-01-13 Purkey; Jay Floyd Vending machine inventory control device
US6247036B1 (en) 1996-01-22 2001-06-12 Infinite Technology Corp. Processor with reconfigurable arithmetic data path
US6510510B1 (en) 1996-01-25 2003-01-21 Analog Devices, Inc. Digital signal processor having distributed register file
US5889816A (en) 1996-02-02 1999-03-30 Lucent Technologies, Inc. Wireless adapter architecture for mobile computing
US5791517A (en) 1996-02-21 1998-08-11 Menachem M. Deren Beverage dispenser device
US6237029B1 (en) 1996-02-26 2001-05-22 Argosystems, Inc. Method and apparatus for adaptable digital protocol processing
US5894473A (en) 1996-02-29 1999-04-13 Ericsson Inc. Multiple access communications system and method using code and time division
FR2745649B1 (en) 1996-03-01 1998-04-30 Bull Sa SYSTEM FOR CONFIGURING PRECONFIGURED SOFTWARE ON NETWORK OPEN SYSTEMS IN A DISTRIBUTED ENVIRONMENT AND METHOD IMPLEMENTED BY SUCH A SYSTEM
US6393046B1 (en) 1996-04-25 2002-05-21 Sirf Technology, Inc. Spread spectrum receiver with multi-bit correlator
US6055314A (en) 1996-03-22 2000-04-25 Microsoft Corporation System and method for secure purchase and delivery of video content programs
US6381293B1 (en) 1996-04-03 2002-04-30 United Microelectronics Corp. Apparatus and method for serial data communication between plurality of chips in a chip set
US6346824B1 (en) 1996-04-09 2002-02-12 Xilinx, Inc. Dedicated function fabric for use in field programmable gate arrays
US5956518A (en) 1996-04-11 1999-09-21 Massachusetts Institute Of Technology Intermediate-grain reconfigurable processing device
US5802055A (en) 1996-04-22 1998-09-01 Apple Computer, Inc. Method and apparatus for dynamic buffer allocation in a bus bridge for pipelined reads
US5903886A (en) 1996-04-30 1999-05-11 Smartlynx, Inc. Hierarchical adaptive state machine for emulating and augmenting software
US5626407A (en) 1996-05-10 1997-05-06 Emplast, Inc. Storage system for refrigerators
US6181981B1 (en) 1996-05-15 2001-01-30 Marconi Communications Limited Apparatus and method for improved vending machine inventory maintenance
US5771362A (en) 1996-05-17 1998-06-23 Advanced Micro Devices, Inc. Processor having a bus interconnect which is dynamically reconfigurable in response to an instruction field
US5822313A (en) 1996-05-24 1998-10-13 National Semiconductor Corporation Seamless handover in a cordless TDMA system
US5784699A (en) 1996-05-24 1998-07-21 Oracle Corporation Dynamic memory allocation in a computer using a bit map index
US5784636A (en) 1996-05-28 1998-07-21 National Semiconductor Corporation Reconfigurable computer architecture for use in signal processing applications
US5907580A (en) 1996-06-10 1999-05-25 Morphics Technology, Inc Method and apparatus for communicating information
US6175854B1 (en) 1996-06-11 2001-01-16 Ameritech Services, Inc. Computer system architecture and method for multi-user, real-time applications
US5887174A (en) 1996-06-18 1999-03-23 International Business Machines Corporation System, method, and program product for instruction scheduling in the presence of hardware lookahead accomplished by the rescheduling of idle slots
US6192388B1 (en) 1996-06-20 2001-02-20 Avid Technology, Inc. Detecting available computers to participate in computationally complex distributed processing problem
US6360256B1 (en) 1996-07-01 2002-03-19 Sun Microsystems, Inc. Name service for a redundant array of internet servers
US5867145A (en) 1996-07-01 1999-02-02 Sun Microsystems, Inc. Graphical image recasting
US6023742A (en) 1996-07-18 2000-02-08 University Of Washington Reconfigurable computing architecture for providing pipelined data paths
CA2210582C (en) 1996-07-24 2001-01-30 Ntt Mobile Communications Network Inc. Method and apparatus for receiving cdma radio communication
US5890014A (en) 1996-08-05 1999-03-30 Micronet Technology, Inc. System for transparently identifying and matching an input/output profile to optimal input/output device parameters
JP3123440B2 (en) 1996-08-14 2001-01-09 日本電気株式会社 Channel selection method for wireless communication system
US5838165A (en) 1996-08-21 1998-11-17 Chatter; Mukesh High performance self modifying on-the-fly alterable logic FPGA, architecture and method
US6226387B1 (en) 1996-08-30 2001-05-01 Regents Of The University Of Minnesota Method and apparatus for scene-based video watermarking
US6041970A (en) 1996-08-30 2000-03-28 Imi Cornelius Inc. Pre-mix beverage dispensing system and components thereof
US5828858A (en) 1996-09-16 1998-10-27 Virginia Tech Intellectual Properties, Inc. Worm-hole run-time reconfigurable processor field programmable gate array (FPGA)
US5790817A (en) 1996-09-25 1998-08-04 Advanced Micro Devices, Inc. Configurable digital wireless and wired communications system architecture for implementing baseband functionality
US5825202A (en) 1996-09-26 1998-10-20 Xilinx, Inc. Integrated circuit with field programmable and application specific logic areas
US6021492A (en) 1996-10-09 2000-02-01 Hewlett-Packard Company Software metering management of remote computing devices
US6016395A (en) 1996-10-18 2000-01-18 Samsung Electronics Co., Ltd. Programming a vector processor and parallel programming of an asymmetric dual multiprocessor comprised of a vector processor and a risc processor
US6005943A (en) 1996-10-29 1999-12-21 Lucent Technologies Inc. Electronic identifiers for network terminal devices
US5950131A (en) 1996-10-29 1999-09-07 Motorola, Inc. Method and apparatus for fast pilot channel acquisition using a matched filter in a CDMA radiotelephone
US5892962A (en) 1996-11-12 1999-04-06 Lucent Technologies Inc. FPGA-based processor
US5913172A (en) 1996-11-15 1999-06-15 Glenayre Electronics, Inc. Method and apparatus for reducing phase cancellation in a simulcast paging system
US7607147B1 (en) 1996-12-11 2009-10-20 The Nielsen Company (Us), Llc Interactive service device metering systems
US6246883B1 (en) 1996-12-24 2001-06-12 Lucent Technologies, Inc. Mobile base station
US5987611A (en) 1996-12-31 1999-11-16 Zone Labs, Inc. System and methodology for managing internet access on a per application basis for client computers connected to the internet
TW361051B (en) 1997-01-09 1999-06-11 Matsushita Electric Ind Co Ltd Motion vector detection apparatus
US5953322A (en) 1997-01-31 1999-09-14 Qualcomm Incorporated Cellular internet telephone
US5940438A (en) 1997-02-18 1999-08-17 Mitsubishi Electric Information Technology Center America, Inc (Ita) Universal modem for digital video, audio and data communications
US6289488B1 (en) 1997-02-24 2001-09-11 Lucent Technologies Inc. Hardware-software co-synthesis of hierarchical heterogeneous distributed embedded systems
US6289434B1 (en) * 1997-02-28 2001-09-11 Cognigine Corporation Apparatus and method of implementing systems on silicon using dynamic-adaptive run-time reconfigurable circuits for processing multiple, independent data and control streams of varying rates
US6061580A (en) 1997-02-28 2000-05-09 Randice-Lisa Altschul Disposable wireless telephone and method for call-out only
JP3340343B2 (en) 1997-03-13 2002-11-05 株式会社東芝 Processor and information processing device
US6059840A (en) 1997-03-17 2000-05-09 Motorola, Inc. Automatic scheduling of instructions to reduce code size
DE19711479C2 (en) 1997-03-19 2002-10-24 Bauer Maschinen Gmbh Method for operating a work module and device
US5912572A (en) 1997-03-28 1999-06-15 Cypress Semiconductor Corp. Synchronizing clock pulse generator for logic derived clock signals with synchronous clock suspension capability for a programmable device
US5991302A (en) 1997-04-10 1999-11-23 Cisco Technology, Inc. Technique for maintaining prioritization of data transferred among heterogeneous nodes of a computer network
US6115751A (en) 1997-04-10 2000-09-05 Cisco Technology, Inc. Technique for capturing information needed to implement transmission priority routing among heterogeneous nodes of a computer network
DE69835314T2 (en) 1997-04-15 2007-05-10 Hewlett-Packard Development Co., L.P., Houston Method and device for format-controlled interaction between devices
US6041322A (en) 1997-04-18 2000-03-21 Industrial Technology Research Institute Method and apparatus for processing data in a neural network
JP3555729B2 (en) 1997-04-22 2004-08-18 日本ビクター株式会社 Method and apparatus for processing variable-length encoded data
US5860021A (en) 1997-04-24 1999-01-12 Klingman; Edwin E. Single chip microcontroller having down-loadable memory organization supporting "shadow" personality, optimized for bi-directional data transfers over a communication channel
US6219697B1 (en) 1997-05-02 2001-04-17 3Com Corporation Method and apparatus for operating the internet protocol over a high-speed serial bus
US5886537A (en) 1997-05-05 1999-03-23 Macias; Nicholas J. Self-reconfigurable parallel processor made from regularly-connected self-dual code/data processing cells
US6047115A (en) 1997-05-29 2000-04-04 Xilinx, Inc. Method for configuring FPGA memory planes for virtual hardware computation
US5917852A (en) 1997-06-11 1999-06-29 L-3 Communications Corporation Data scrambling system and method and communications system incorporating same
US5949415A (en) 1997-06-16 1999-09-07 Intel Corporation Method and apparatus for tracking program usage in a computer system
FI105251B (en) 1997-06-18 2000-06-30 Nokia Mobile Phones Ltd A method for identifying base stations in a time division cellular network in a mobile station and a mobile station
US6292827B1 (en) 1997-06-20 2001-09-18 Shore Technologies (1999) Inc. Information transfer systems and method with dynamic distribution of data, control and management of information
US6628699B2 (en) 1997-06-23 2003-09-30 Schlumberger Resource Management Systems, Inc. Receiving a spread spectrum signal
EP0887989A3 (en) 1997-06-25 2001-02-28 FISHER & PAYKEL LIMITED Appliance communication system
US5970254A (en) 1997-06-27 1999-10-19 Cooke; Laurence H. Integrated processor and programmable data path chip for reconfigurable computing
US5966534A (en) 1997-06-27 1999-10-12 Cooke; Laurence H. Method for compiling high level programming languages into an integrated processor with reconfigurable logic
WO1999003776A1 (en) 1997-07-14 1999-01-28 Isoworth Uk Limited Temperature controlled beverage dispensing apparatus
ES2301896T3 (en) 1997-07-17 2008-07-01 Matsushita Electric Industrial Co., Ltd SYNCHRONIZATION PROCEDURE FOR A CDMA SYSTEM.
US6111893A (en) 1997-07-31 2000-08-29 Cisco Technology, Inc. Universal protocol conversion
US6760833B1 (en) 1997-08-01 2004-07-06 Micron Technology, Inc. Split embedded DRAM processor
US6292830B1 (en) 1997-08-08 2001-09-18 Iterations Llc System for optimizing interaction among agents acting on multiple levels
US6311149B1 (en) 1997-08-18 2001-10-30 National Instruments Corporation Reconfigurable test system
US6006249A (en) 1997-08-19 1999-12-21 The Chase Manhattan Bank Method and apparatus for concurrent data processing
US6078736A (en) 1997-08-28 2000-06-20 Xilinx, Inc. Method of designing FPGAs for dynamically reconfigurable computing
KR100246399B1 (en) 1997-09-23 2000-04-01 구자홍 Dispenser assembly for refrigerator and control method thereof
US6036166A (en) 1997-09-25 2000-03-14 Imi Cornelius Inc. Chamber valve
US6120551A (en) 1997-09-29 2000-09-19 Xilinx, Inc. Hardwire logic device emulating an FPGA
US6363411B1 (en) 1998-08-05 2002-03-26 Mci Worldcom, Inc. Intelligent network
US6590415B2 (en) 1997-10-09 2003-07-08 Lattice Semiconductor Corporation Methods for configuring FPGA's having variable grain components for providing time-shared access to interconnect resources
US6195788B1 (en) 1997-10-17 2001-02-27 Altera Corporation Mapping heterogeneous logic elements in a programmable logic device
WO1999021094A2 (en) 1997-10-20 1999-04-29 Quickflex, Inc. Reconfigurable secure hardware apparatus and method of operation
US5999734A (en) 1997-10-21 1999-12-07 Ftl Systems, Inc. Compiler-oriented apparatus for parallel compilation, simulation and execution of computer programs and hardware models
US5993739A (en) 1997-10-29 1999-11-30 Chaircare Continuous washing system
US5873045A (en) 1997-10-29 1999-02-16 International Business Machines Corporation Mobile client computer with radio frequency transceiver
US6122670A (en) 1997-10-30 2000-09-19 Tsi Telsys, Inc. Apparatus and method for constructing data for transmission within a reliable communication protocol by performing portions of the protocol suite concurrently
FR2770659A1 (en) 1997-10-31 1999-05-07 Sgs Thomson Microelectronics IMPROVED PROCESSING PROCESSOR
WO1999023761A1 (en) 1997-11-03 1999-05-14 Harris Corporation A field programmable radio frequency communications equipment including a configurable if circuit and method therefor
US6185418B1 (en) 1997-11-07 2001-02-06 Lucent Technologies Inc. Adaptive digital radio communication system
GB9724779D0 (en) 1997-11-24 1998-01-21 Rpc Containers Ltd Containers
US6119178A (en) 1997-11-25 2000-09-12 8×8 Inc. Communication interface between remote transmission of both compressed video and other data and data exchange with local peripherals
US6128307A (en) 1997-12-01 2000-10-03 Advanced Micro Devices, Inc. Programmable data flow processor for performing data transfers
US6173389B1 (en) 1997-12-04 2001-01-09 Billions Of Operations Per Second, Inc. Methods and apparatus for dynamic very long instruction word sub-instruction selection for execution time parallelism in an indirect very long instruction word processor
JP3985204B2 (en) 1997-12-09 2007-10-03 ソニー株式会社 Information broadcasting method, receiver, information center, and receiving method
US6091263A (en) 1997-12-12 2000-07-18 Xilinx, Inc. Rapidly reconfigurable FPGA having a multiple region architecture with reconfiguration caches useable as data RAM
US6018783A (en) 1997-12-12 2000-01-25 Advanced Micro Devices, Inc. Register access controller which prevents simultaneous coupling of more than one register to a bus interface
US6046603A (en) 1997-12-12 2000-04-04 Xilinx, Inc. Method and apparatus for controlling the partial reconfiguration of a field programmable gate array
DE69827589T2 (en) 1997-12-17 2005-11-03 Elixent Ltd. Configurable processing assembly and method of using this assembly to build a central processing unit
EP0926596B1 (en) 1997-12-23 2007-09-05 Texas Instruments Inc. Processor and method for reducing its power usage
JPH11184674A (en) 1997-12-24 1999-07-09 Fujitsu Ltd Register file
US6192070B1 (en) 1998-01-02 2001-02-20 Mitsubishi Electric Research Laboratories, Inc. Universal modem for digital video, audio and data communications
US5959811A (en) 1998-01-13 1999-09-28 Read-Rite Corporation Magnetoresistive transducer with four-lead contact
US6039219A (en) 1998-01-20 2000-03-21 Bach; Lanae E. Liquid dispensing system for a refrigerator
US6230307B1 (en) 1998-01-26 2001-05-08 Xilinx, Inc. System and method for programming the hardware of field programmable gate arrays (FPGAs) and related reconfiguration resources as if they were software by creating hardware objects
US6366999B1 (en) 1998-01-28 2002-04-02 Bops, Inc. Methods and apparatus to support conditional execution in a VLIW-based array processor with subword execution
US6134629A (en) 1998-01-29 2000-10-17 Hewlett-Packard Company Determining thresholds and wrap-around conditions in a first-in-first-out memory supporting a variety of read and write transaction sizes
US6378072B1 (en) 1998-02-03 2002-04-23 Compaq Computer Corporation Cryptographic system
US6094726A (en) 1998-02-05 2000-07-25 George S. Sheng Digital signal processor using a reconfigurable array of macrocells
US6076174A (en) 1998-02-19 2000-06-13 United States Of America Scheduling framework for a heterogeneous computer network
US6360263B1 (en) 1998-02-25 2002-03-19 International Business Machines Corporation Dynamic resource allocation for user management in multi-processor time shared computer systems
JPH11261440A (en) 1998-03-11 1999-09-24 Oki Electric Ind Co Ltd Receiver
US6691148B1 (en) 1998-03-13 2004-02-10 Verizon Corporate Services Group Inc. Framework for providing quality of service requirements in a distributed object-oriented computer system
US6073132A (en) 1998-03-27 2000-06-06 Lsi Logic Corporation Priority arbiter with shifting sequential priority scheme
US6134605A (en) 1998-04-15 2000-10-17 Diamond Multimedia Systems, Inc. Redefinable signal processing subsystem
US6202130B1 (en) 1998-04-17 2001-03-13 Motorola, Inc. Data processing system for processing vector data and method therefor
US6088043A (en) 1998-04-30 2000-07-11 3D Labs, Inc. Scalable graphics processor architecture
US6226735B1 (en) 1998-05-08 2001-05-01 Broadcom Method and apparatus for configuring arbitrary sized data paths comprising multiple context processing elements
US6292822B1 (en) 1998-05-13 2001-09-18 Microsoft Corporation Dynamic load balancing among processors in a parallel computer
US6223222B1 (en) 1998-05-14 2001-04-24 3Com Corporation Method and system for providing quality-of-service in a data-over-cable system using configuration protocol messaging
US6411612B1 (en) 1998-05-19 2002-06-25 Harris Communication Selective modification of antenna directivity pattern to adaptively cancel co-channel interference in TDMA cellular communication system
EP1082687A1 (en) 1998-06-05 2001-03-14 i2 TECHNOLOGIES, INC. Computer implemented scheduling system and process using abstract local search technique
US6272616B1 (en) 1998-06-17 2001-08-07 Agere Systems Guardian Corp. Method and apparatus for executing multiple instruction streams in a digital processor with multiple data paths
GB2338558A (en) 1998-06-17 1999-12-22 Isoworth Uk Ltd Drink dispenser, concentrate detector and concentrate container
US6305014B1 (en) 1998-06-18 2001-10-16 International Business Machines Corporation Lifetime-sensitive instruction scheduling mechanism and method
US6175892B1 (en) 1998-06-19 2001-01-16 Hitachi America. Ltd. Registers and methods for accessing registers for use in a single instruction multiple data system
US6282627B1 (en) 1998-06-29 2001-08-28 Chameleon Systems, Inc. Integrated processor and programmable data path chip for reconfigurable computing
KR100333724B1 (en) 1998-06-30 2002-09-17 주식회사 하이닉스반도체 Mehod for forming metal wire of semiconductor device by using TiAlN antireflection layer
US6356994B1 (en) 1998-07-09 2002-03-12 Bops, Incorporated Methods and apparatus for instruction addressing in indirect VLIW processors
US6604085B1 (en) 1998-07-20 2003-08-05 Usa Technologies, Inc. Universal interactive advertising and payment system network for public access electronic commerce and business related products and services
EP0974898A3 (en) 1998-07-24 2008-12-24 Interuniversitair Microelektronica Centrum Vzw A method for determining a storage-bandwidth optimized memory organization of an essentially digital device
US6587684B1 (en) 1998-07-28 2003-07-01 Bell Atlantic Nynex Mobile Digital wireless telephone system for downloading software to a digital telephone using wireless data link protocol
GB9818377D0 (en) 1998-08-21 1998-10-21 Sgs Thomson Microelectronics An integrated circuit with multiple processing cores
US6377983B1 (en) 1998-08-31 2002-04-23 International Business Machines Corporation Method and system for converting expertise based on document usage
US6442672B1 (en) 1998-09-30 2002-08-27 Conexant Systems, Inc. Method for dynamic allocation and efficient sharing of functional unit datapaths
US6381735B1 (en) 1998-10-02 2002-04-30 Microsoft Corporation Dynamic classification of sections of software
US6360259B1 (en) 1998-10-09 2002-03-19 United Technologies Corporation Method for optimizing communication speed between processors
US6301653B1 (en) 1998-10-14 2001-10-09 Conexant Systems, Inc. Processor containing data path units with forwarding paths between two data path units and a unique configuration or register blocks
US6467009B1 (en) 1998-10-14 2002-10-15 Triscend Corporation Configurable processor system unit
US6219780B1 (en) 1998-10-27 2001-04-17 International Business Machines Corporation Circuit arrangement and method of dispatching instructions to multiple execution units
US6289375B1 (en) 1998-10-30 2001-09-11 International Business Machines Corporation Method and apparatus for invoking network agent functions using a hash table
US6052600A (en) 1998-11-23 2000-04-18 Motorola, Inc. Software programmable radio and method for configuring
US6138693A (en) 1998-11-23 2000-10-31 Matz; Warren W. Automatic detergent dispenser
US6563891B1 (en) 1998-11-24 2003-05-13 Telefonaktiebolaget L M Ericsson (Publ) Automatic gain control for slotted mode operation
US6202189B1 (en) 1998-12-17 2001-03-13 Teledesic Llc Punctured serial concatenated convolutional coding system and method for low-earth-orbit satellite data communication
US6405214B1 (en) 1998-12-17 2002-06-11 Hewlett-Packard Company Method of gathering usage information and transmitting to a primary server and a third party server by a client program
US6385751B1 (en) 1998-12-30 2002-05-07 Texas Instruments Incorporated Programmable, reconfigurable DSP implementation of a Reed-Solomon encoder/decoder
US6618777B1 (en) 1999-01-21 2003-09-09 Analog Devices, Inc. Method and apparatus for communicating between multiple functional units in a computer environment
JP3444216B2 (en) 1999-01-28 2003-09-08 日本電気株式会社 Programmable device
WO2000049496A1 (en) 1999-02-15 2000-08-24 Koninklijke Philips Electronics N.V. Data processor with a configurable functional unit and method using such a data processor
US6718541B2 (en) 1999-02-17 2004-04-06 Elbrus International Limited Register economy heuristic for a cycle driven multiple issue instruction scheduler
US20020083423A1 (en) 1999-02-17 2002-06-27 Elbrus International List scheduling algorithm for a cycle-driven instruction scheduler
JP3033575B1 (en) 1999-02-17 2000-04-17 日本電気株式会社 Image processing device
US6980515B1 (en) 1999-02-23 2005-12-27 Alcatel Multi-service network switch with quality of access
US6150838A (en) 1999-02-25 2000-11-21 Xilinx, Inc. FPGA configurable logic block with multi-purpose logic/memory circuit
US6510138B1 (en) 1999-02-25 2003-01-21 Fairchild Semiconductor Corporation Network switch with head of line input buffer queue clearing
US6271679B1 (en) 1999-03-24 2001-08-07 Altera Corporation I/O cell configuration for multiple I/O standards
US6349394B1 (en) 1999-03-31 2002-02-19 International Business Machines Corporation Performance monitoring in a NUMA computer
US6141283A (en) 1999-04-01 2000-10-31 Intel Corporation Method and apparatus for dynamically placing portions of a memory in a reduced power consumption state
US6570877B1 (en) 1999-04-07 2003-05-27 Cisco Technology, Inc. Search engine for forwarding table content addressable memory
US6832250B1 (en) 1999-04-13 2004-12-14 Lexmark International, Inc. Usage-based billing and management system and method for printers and other assets
GB2349548A (en) 1999-04-27 2000-11-01 Roke Manor Research Downloading software to mobile telecommunication users
WO2000068784A1 (en) 1999-05-06 2000-11-16 Koninklijke Philips Electronics N.V. Data processing device, method for executing load or store instructions and method for compiling programs
US6263057B1 (en) 1999-05-07 2001-07-17 Lucent Technologies Inc. Automatic telecommunications provider selection system
US6433578B1 (en) 1999-05-07 2002-08-13 Morphics Technology, Inc. Heterogeneous programmable gate array
KR100450789B1 (en) 1999-05-25 2004-10-01 삼성전자주식회사 Apparatus for acquiring PN code and DS-CDMA receiver comprising it
JP4248703B2 (en) 1999-05-31 2009-04-02 パナソニック株式会社 Stream multiplexing device, data broadcasting device
JP2000353099A (en) 1999-06-01 2000-12-19 Tektronix Inc Flow control method in active pipeline
EP1061437A1 (en) 1999-06-16 2000-12-20 STMicroelectronics S.r.l. Improved control unit for electronic microcontrollers or microprocessors
US6347346B1 (en) 1999-06-30 2002-02-12 Chameleon Systems, Inc. Local memory unit system with global access for use on reconfigurable chips
US6901440B1 (en) 1999-07-02 2005-05-31 Agilent Technologies, Inc. System and method for universal service activation
KR100358427B1 (en) 1999-07-12 2002-10-25 한국전자통신연구원 Hardware-Efficient Demodulator for CDMA Adaptive Antenna Array Systems
US6359248B1 (en) 1999-08-02 2002-03-19 Xilinx, Inc. Method for marking packaged integrated circuits
WO2001011281A1 (en) 1999-08-09 2001-02-15 Imi Cornelius Brasil Ltda. Universal connector for interconnecting fluid carrying components of beverage dispensing devices
US6507947B1 (en) 1999-08-20 2003-01-14 Hewlett-Packard Company Programmatic synthesis of processor element arrays
US6349346B1 (en) 1999-09-23 2002-02-19 Chameleon Systems, Inc. Control fabric unit including associated configuration memory and PSOP state machine adapted to provide configuration address to reconfigurable functional unit
US6430624B1 (en) 1999-10-21 2002-08-06 Air2Web, Inc. Intelligent harvesting and navigation system and method
US6421372B1 (en) 1999-11-10 2002-07-16 Itt Manufacturing Enterprises, Inc. Sequential-acquisition, multi-band, multi-channel, matched filter
US6539467B1 (en) 1999-11-15 2003-03-25 Texas Instruments Incorporated Microprocessor with non-aligned memory access
EP1107512A1 (en) 1999-12-03 2001-06-13 Sony International (Europe) GmbH Communication device and software for operating multimedia applications
JP2001166947A (en) 1999-12-06 2001-06-22 Nec Corp Compile processing system
GB2357226B (en) 1999-12-08 2003-07-16 Hewlett Packard Co Security protocol
US6694380B1 (en) 1999-12-27 2004-02-17 Intel Corporation Mapping requests from a processing unit that uses memory-mapped input-output space
US6601158B1 (en) 1999-12-30 2003-07-29 Pmc-Sierra, Inc. Count/address generation circuitry
AU2915201A (en) 1999-12-30 2001-07-16 Morphics Technology, Inc. A fast initial acquisition and search device for a spread spectrum communicationsystem
WO2001050624A1 (en) 1999-12-30 2001-07-12 Morphics Technology, Inc. Method and apparatus to support multi standard, multi service base-stations for wireless voice and data networks
WO2001056199A1 (en) 2000-01-28 2001-08-02 Morphics Technology Inc. Method and apparatus for processing a secondary synchronization channel in a spread spectrum system
US6701431B2 (en) 2000-01-28 2004-03-02 Infineon Technologies Ag Method of generating a configuration for a configurable spread spectrum communication device
US6711617B1 (en) 2000-02-09 2004-03-23 International Business Machines Corporation Method and apparatus for providing automatic configuration of a computer system based on its physical location using an electronically read schedule
US6438737B1 (en) 2000-02-15 2002-08-20 Intel Corporation Reconfigurable logic for a computer
US6735621B1 (en) 2000-02-18 2004-05-11 Nortel Networks Limited Method and apparatus for messaging between disparate networks
US7509420B2 (en) 2000-02-18 2009-03-24 Emc Corporation System and method for intelligent, globally distributed network storage
US6778212B1 (en) 2000-02-22 2004-08-17 Pixim, Inc. Digital image sensor with on -chip programmable logic
US7082456B2 (en) 2000-03-17 2006-07-25 Filesx Ltd. Accelerating responses to requests made by users to an internet
US6326806B1 (en) 2000-03-29 2001-12-04 Xilinx, Inc. FPGA-based communications access point and system for reconfiguration
PL354956A1 (en) 2000-03-31 2004-03-22 General Dynamics Decision Systems, Inc. Scalable cryptographic engine
US6807590B1 (en) 2000-04-04 2004-10-19 Hewlett-Packard Development Company, L.P. Disconnecting a device on a cache line boundary in response to a write command
US6658048B1 (en) 2000-04-07 2003-12-02 Nokia Mobile Phones, Ltd. Global positioning system code phase detector with multipath compensation and method for reducing multipath components associated with a received signal
DE10019085A1 (en) 2000-04-10 2001-12-06 Francotyp Postalia Gmbh Arrangement and method for providing a message when loading service data for a terminal
US7181542B2 (en) 2000-04-12 2007-02-20 Corente, Inc. Method and system for managing and configuring virtual private networks
DE10018374A1 (en) 2000-04-13 2001-10-18 Siemens Ag Mobile terminal such as personal digital assistant or communications terminal
US6804357B1 (en) 2000-04-28 2004-10-12 Nokia Corporation Method and system for providing secure subscriber content data
US6611906B1 (en) 2000-04-30 2003-08-26 Hewlett-Packard Development Company, L.P. Self-organizing hardware processing entities that cooperate to execute requests
US6691143B2 (en) 2000-05-11 2004-02-10 Cyberguard Corporation Accelerated montgomery multiplication using plural multipliers
WO2001091028A1 (en) 2000-05-20 2001-11-29 Leem Young Hie On demand contents providing method and system
US6604189B1 (en) 2000-05-22 2003-08-05 Lsi Logic Corporation Master/slave processor memory inter accessability in an integrated embedded system
US20020010848A1 (en) 2000-05-29 2002-01-24 Shoichi Kamano Data processing system
US6601086B1 (en) 2000-06-06 2003-07-29 Emware, Inc. Service provider for providing data, applications and services to embedded devices and for facilitating control and monitoring of embedded devices
US6606529B1 (en) 2000-06-09 2003-08-12 Frontier Technologies, Inc. Complex scheduling method and device
US6675265B2 (en) 2000-06-10 2004-01-06 Hewlett-Packard Development Company, L.P. Multiprocessor cache coherence system and method in which processor nodes and input/output nodes are equal participants
US6469540B2 (en) 2000-06-15 2002-10-22 Nec Corporation Reconfigurable device having programmable interconnect network suitable for implementing data paths
US6684319B1 (en) 2000-06-30 2004-01-27 Conexant Systems, Inc. System for efficient operation of a very long instruction word digital signal processor
US6410941B1 (en) 2000-06-30 2002-06-25 Motorola, Inc. Reconfigurable systems using hybrid integrated circuits with optical ports
AU2001284701A1 (en) 2000-07-31 2002-02-13 Morphics Technology, Inc. Apparatus and method for configurable multi-dwell search engine for spread spectrum applications
WO2002011309A1 (en) 2000-07-31 2002-02-07 Morphics Technology, Inc. Generic finger architecture for spread spectrum applications
WO2002011396A2 (en) 2000-08-01 2002-02-07 Hrl Laboratories, Llc Apparatus and method for context-sensitive dynamic information service
US6754805B1 (en) 2000-08-07 2004-06-22 Transwitch Corporation Method and apparatus for configurable multi-cell digital signal processing employing global parallel configuration
US20020032551A1 (en) 2000-08-07 2002-03-14 Jabari Zakiya Systems and methods for implementing hash algorithms
GB0019341D0 (en) 2000-08-08 2000-09-27 Easics Nv System-on-chip solutions
FR2813409A1 (en) 2000-08-29 2002-03-01 Canon Res Ct France Sa Configuration of a peripheral for processing of electronic documents in a communication network, uses user data to access level of service available to that user on a network and prepares configuration from user data and service level data
JP3473695B2 (en) 2000-08-30 2003-12-08 Necエレクトロニクス株式会社 Cell search method and circuit in W-CDMA system
US6754470B2 (en) 2000-09-01 2004-06-22 Telephia, Inc. System and method for measuring wireless device and network usage and performance metrics
US6751723B1 (en) 2000-09-02 2004-06-15 Actel Corporation Field programmable gate array and microcontroller system-on-a-chip
KR100342483B1 (en) 2000-09-09 2002-06-28 윤종용 Apparatus and method for searching base station in umts
US6538470B1 (en) 2000-09-18 2003-03-25 Altera Corporation Devices and methods with programmable logic and digital signal processing regions
US6718182B1 (en) 2000-09-18 2004-04-06 Compal Electronics, Inc. Modularized functionality enhancement for a cellular telephone
US6771688B1 (en) 2000-09-19 2004-08-03 Lucent Technologies Inc. Segmented architecture for multiple sequence detection and identification in fading channels
WO2002033504A2 (en) 2000-10-02 2002-04-25 Altera Corporation Programmable logic integrated circuit devices including dedicated processor components
JP3933380B2 (en) 2000-10-05 2007-06-20 富士通株式会社 compiler
JPWO2002032029A1 (en) 2000-10-06 2004-02-26 株式会社鷹山 Receiver
US6941336B1 (en) 2000-10-26 2005-09-06 Cypress Semiconductor Corporation Programmable analog system architecture
US7035932B1 (en) 2000-10-27 2006-04-25 Eric Morgan Dowling Federated multiprotocol communication
US6748360B2 (en) 2000-11-03 2004-06-08 International Business Machines Corporation System for selling a product utilizing audio content identification
US20020107962A1 (en) 2000-11-07 2002-08-08 Richter Roger K. Single chassis network endpoint system with network processor for load balancing
JP3415579B2 (en) 2000-11-09 2003-06-09 松下電器産業株式会社 Matched filter and correlation detection calculation method
US6766165B2 (en) 2000-12-05 2004-07-20 Nortel Networks Limited Method and system for remote and local mobile network management
US6738744B2 (en) 2000-12-08 2004-05-18 Microsoft Corporation Watermark detection via cardinality-scaled correlation
US7844666B2 (en) 2000-12-12 2010-11-30 Microsoft Corporation Controls and displays for acquiring preferences, inspecting behavior, and guiding the learning and decision policies of an adaptive communications prioritization and routing system
US6865664B2 (en) 2000-12-13 2005-03-08 Conexant Systems, Inc. Methods, systems, and computer program products for compressing a computer program based on a compression criterion and executing the compressed program
US6823448B2 (en) 2000-12-15 2004-11-23 Intel Corporation Exception handling using an exception pipeline in a pipelined processor
US6842895B2 (en) 2000-12-21 2005-01-11 Freescale Semiconductor, Inc. Single instruction for multiple loops
US6483343B1 (en) 2000-12-29 2002-11-19 Quicklogic Corporation Configurable computational unit embedded in a programmable device
US6426649B1 (en) 2000-12-29 2002-07-30 Quicklogic Corporation Architecture for field programmable gate array
US20020087829A1 (en) 2000-12-29 2002-07-04 Snyder Walter L. Re-targetable communication system
EP1410513A4 (en) 2000-12-29 2005-06-29 Infineon Technologies Ag Channel codec processor configurable for multiple wireless communications standards
US7299355B2 (en) 2001-01-12 2007-11-20 Broadcom Corporation Fast SHA1 implementation
US6871236B2 (en) 2001-01-26 2005-03-22 Microsoft Corporation Caching transformed content in a mobile gateway
US7085310B2 (en) 2001-01-29 2006-08-01 Qualcomm, Incorporated Method and apparatus for managing finger resources in a communication system
US20020133688A1 (en) 2001-01-29 2002-09-19 Ming-Hau Lee SIMD/MIMD processing on a reconfigurable array
US6753873B2 (en) 2001-01-31 2004-06-22 General Electric Company Shared memory control between detector framing node and processor
US6925167B2 (en) 2001-02-01 2005-08-02 Estech Systems, Inc. Service observing in a voice over IP telephone system
US20020107905A1 (en) 2001-02-05 2002-08-08 Roe Colleen A. Scalable agent service system
EP1368726A4 (en) 2001-02-06 2005-04-06 En Garde Systems Apparatus and method for providing secure network communication
US6760587B2 (en) 2001-02-23 2004-07-06 Qualcomm Incorporated Forward-link scheduling in a wireless communication system during soft and softer handoff
US7433942B2 (en) 2001-02-27 2008-10-07 Intel Corporation Network management
US20020147845A1 (en) 2001-03-06 2002-10-10 Juan-Antonio Sanchez-Herrero Flexible user distribution between user's serving entities
US6674999B2 (en) 2001-03-16 2004-01-06 Skyworks Solutions, Inc Dynamically varying linearity system for an RF front-end of a communication device
US7325123B2 (en) 2001-03-22 2008-01-29 Qst Holdings, Llc Hierarchical interconnect for configuring separate interconnects for each group of fixed and diverse computational elements
US7653710B2 (en) 2002-06-25 2010-01-26 Qst Holdings, Llc. Hardware task manager
US6836839B2 (en) 2001-03-22 2004-12-28 Quicksilver Technology, Inc. Adaptive integrated circuitry with heterogeneous and reconfigurable matrices of diverse and adaptive computational units having fixed, application specific computational elements
US7249242B2 (en) 2002-10-28 2007-07-24 Nvidia Corporation Input pipeline registers for a node in an adaptive computing engine
US7225279B2 (en) 2002-06-25 2007-05-29 Nvidia Corporation Data distributor in a computation unit forwarding network data to select components in respective communication method type
US7061928B2 (en) 2001-03-26 2006-06-13 Azurn Networks, Inc. Unified XML voice and data media converging switch and application delivery system
JP4642264B2 (en) 2001-04-03 2011-03-02 株式会社日立国際電気 Correlation circuit for spread spectrum communication
EP1255368A1 (en) 2001-04-30 2002-11-06 Siemens Information and Communication Networks S.p.A. Method to perform link adaptation in enhanced cellular communication systems with several modulation and coding schemes
US6577678B2 (en) 2001-05-08 2003-06-10 Quicksilver Technology Method and system for reconfigurable channel coding
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
US20020184291A1 (en) 2001-05-31 2002-12-05 Hogenauer Eugene B. Method and system for scheduling in an adaptable computing engine
US6963890B2 (en) 2001-05-31 2005-11-08 Koninklijke Philips Electronics N.V. Reconfigurable digital filter having multiple filtering modes
US6618434B2 (en) 2001-05-31 2003-09-09 Quicksilver Technology, Inc. Adaptive, multimode rake receiver for dynamic search and multipath reception
US7032229B1 (en) 2001-06-04 2006-04-18 Palmsource, Inc. Automatic tracking of user progress in a software application
US6912515B2 (en) 2001-06-04 2005-06-28 Xerox Corporation Method and system for algorithm synthesis in problem solving
US6653859B2 (en) 2001-06-11 2003-11-25 Lsi Logic Corporation Heterogeneous integrated circuit with reconfigurable logic cores
US7266703B2 (en) 2001-06-13 2007-09-04 Itt Manufacturing Enterprises, Inc. Single-pass cryptographic processor and method
US7969431B2 (en) 2001-06-29 2011-06-28 National Instruments Corporation Graphical program node for generating a measurement program
US6883084B1 (en) 2001-07-25 2005-04-19 University Of New Mexico Reconfigurable data path processor
US20030023830A1 (en) 2001-07-25 2003-01-30 Hogenauer Eugene B. Method and system for encoding instructions for a VLIW that reduces instruction memory requirements
US6768768B2 (en) 2001-09-19 2004-07-27 Qualcomm Incorporated Method and apparatus for step two W-CDMA searching
US7257620B2 (en) 2001-09-24 2007-08-14 Siemens Energy & Automation, Inc. Method for providing engineering tool services
US20030061260A1 (en) 2001-09-25 2003-03-27 Timesys Corporation Resource reservation and priority management
US20030142818A1 (en) 2001-09-28 2003-07-31 Nec Usa, Inc. Techniques for efficient security processing
US20030074473A1 (en) 2001-10-12 2003-04-17 Duc Pham Scalable network gateway processor architecture
US7139263B2 (en) 2001-10-19 2006-11-21 Sentito Networks, Inc. Voice over IP architecture
US7146500B2 (en) 2001-11-14 2006-12-05 Compass Technology Management, Inc. System for obtaining signatures on a single authoritative copy of an electronic record
US7106787B2 (en) 2001-11-28 2006-09-12 Broadcom Corporation Acquisition matched filter for W-CDMA systems providing frequency offset robustness
US8412915B2 (en) 2001-11-30 2013-04-02 Altera Corporation Apparatus, system and method for configuration of adaptive integrated circuitry having heterogeneous computational elements
US6986021B2 (en) 2001-11-30 2006-01-10 Quick Silver Technology, Inc. Apparatus, method, system and executable module for configuration and operation of adaptive integrated circuitry having fixed, application specific computational elements
US20030131162A1 (en) 2002-01-10 2003-07-10 Stacey Secatch Non-destructive read FIFO
US7631196B2 (en) * 2002-02-25 2009-12-08 Intel Corporation Method and apparatus for loading a trustable operating system
US20030212684A1 (en) 2002-03-11 2003-11-13 Markus Meyer System and method for adapting preferences based on device location or network topology
US20040039801A9 (en) 2002-03-11 2004-02-26 Venkatachary Srinivasan System and method for delivering data in a network
US20030172175A1 (en) 2002-03-11 2003-09-11 Mccormack Jonathan I. System for standardizing updates of data on a plurality of electronic devices
US7200735B2 (en) 2002-04-10 2007-04-03 Tensilica, Inc. High-performance hybrid processor with configurable execution units
US6732354B2 (en) 2002-04-23 2004-05-04 Quicksilver Technology, Inc. Method, system and software for programming reconfigurable hardware
US6988139B1 (en) 2002-04-26 2006-01-17 Microsoft Corporation Distributed computing of a job corresponding to a plurality of predefined tasks
JP3860075B2 (en) 2002-05-30 2006-12-20 シャープ株式会社 Self-synchronous logic circuit having test circuit and method for testing self-synchronous logic circuit
US6907598B2 (en) 2002-06-05 2005-06-14 Microsoft Corporation Method and system for compressing program code and interpreting compressed program code
US6735747B2 (en) 2002-06-10 2004-05-11 Lsi Logic Corporation Pre-silicon verification path coverage
US20040062300A1 (en) 2002-10-01 2004-04-01 Mcdonough John G. System and method for detecting direct sequence spread spectrum signals using batch processing of independent parameters
US6859434B2 (en) 2002-10-01 2005-02-22 Comsys Communication & Signal Processing Ltd. Data transfer scheme in a communications system incorporating multiple processing elements
US6883074B2 (en) 2002-12-13 2005-04-19 Sun Microsystems, Inc. System and method for efficient write operations for repeated snapshots by copying-on-write to most recent snapshot
US7200837B2 (en) 2003-08-21 2007-04-03 Qst Holdings, Llc System, method and software for static and dynamic programming and configuration of an adaptive computing architecture
US7321979B2 (en) 2004-01-22 2008-01-22 International Business Machines Corporation Method and apparatus to change the operating frequency of system core logic to maximize system memory bandwidth

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3409175A (en) * 1966-11-10 1968-11-05 Thomas M. Byrne Liquid dispensing device
US3666143A (en) * 1970-06-22 1972-05-30 Murray Weston Automatic fluid dispensing apparatus with manual override
US3995441A (en) * 1973-08-20 1976-12-07 The Cornelius Company Beverage dispensing system
US3949903A (en) * 1973-11-07 1976-04-13 General Motors Corporation Water and beverage concentrate dispenser
US3906298A (en) * 1974-01-28 1975-09-16 Teradyne Inc Protective apparatus for digital logic circuits
US4377246A (en) * 1977-06-13 1983-03-22 The Cornelius Company Apparatus for dispensing a carbonated beverage
US4143793A (en) * 1977-06-13 1979-03-13 The Cornelius Company Apparatus and method for dispensing a carbonated beverage
US4174872A (en) * 1978-04-10 1979-11-20 The Cornelius Company Beverage dispensing machine and cabinet therefor
US4181242A (en) * 1978-05-30 1980-01-01 The Cornelius Company Method and apparatus for dispensing a beverage
US4237536A (en) * 1978-10-12 1980-12-02 M.R.E. Enterprises, Inc. System for indicating and controlling dispensing of beverages
US4302775A (en) * 1978-12-15 1981-11-24 Compression Labs, Inc. Digital video compression system and methods utilizing scene adaptive coding with rate buffer feedback
US4413752A (en) * 1979-01-04 1983-11-08 The Cornelius Company Apparatus for dispensing a carbonated beverage
US4549675A (en) * 1982-09-07 1985-10-29 The Cornelius Co. Beverage dispensing valve
US4633386A (en) * 1983-04-09 1986-12-30 Schlumberger Measurement & Control (U.K.) Ltd. Digital signal processor
US4577782A (en) * 1983-05-02 1986-03-25 The Cornelius Company Beverage dispensing station
US4658988A (en) * 1984-04-02 1987-04-21 The Cornelius Company Multiple flavor post-mix beverage dispensing apparatus
US4694416A (en) * 1985-02-25 1987-09-15 General Electric Company VLSI programmable digital signal processor
US4711374A (en) * 1985-09-13 1987-12-08 The Coca-Cola Company Low-cost post-mix beverage dispenser and syrup supply system therefor
US5396609A (en) * 1989-01-19 1995-03-07 Gesellschaft Fur Strahlen- Und Umweltforschung Mbh (Gsf) Method of protecting programs and data in a computer against unauthorized access and modification by monitoring address regions
US6199181B1 (en) * 1997-09-09 2001-03-06 Perfecto Technologies Ltd. Method and system for maintaining restricted operating environments for application programs or operating systems
US20040015970A1 (en) * 2002-03-06 2004-01-22 Scheuermann W. James Method and system for data flow control of execution nodes of an adaptive computing engine (ACE)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"MATRIX: A Reconfigurable Computing Architecture with Configurable Instruction Distribution and Deployable Resources", Mirsky et al., IEEE Symposium on FPGAs for Custom Computing Machines, April 17-19, 1996. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056997A1 (en) * 2016-09-23 2018-03-29 Intel Corporation Method and apparatus for implementing a programmable security unit for a computer system

Also Published As

Publication number Publication date
US7660984B1 (en) 2010-02-09

Similar Documents

Publication Publication Date Title
US11159651B2 (en) Methods and apparatus for memory allocation and reallocation in networking stack infrastructures
US8959311B2 (en) Methods and systems involving secure RAM
US7177967B2 (en) Chipset support for managing hardware interrupts in a virtual machine system
Lentz et al. Secloak: Arm trustzone-based mobile peripheral control
Williams et al. Device Driver Safety Through a Reference Validation Mechanism.
US20070226795A1 (en) Virtual cores and hardware-supported hypervisor integrated circuits, systems, methods and processes of manufacture
US6629157B1 (en) System and method for virtualizing the configuration space of PCI devices in a processing system
US5987495A (en) Method and apparatus for fully restoring a program context following an interrupt
GB2544452B (en) Data processing systems
US7197745B2 (en) User debugger for use on processes running in a high assurance kernel in an operating system
JP5153887B2 (en) Method and apparatus for transfer of secure operating mode access privileges from a processor to a peripheral device
US10095862B2 (en) System for executing code with blind hypervision mechanism
US20210097006A1 (en) Methods and apparatus for device driver operation in non-kernel space
US9740887B2 (en) Methods and systems to restrict usage of a DMA channel
CN106462508B (en) Access control and code scheduling
US20120054877A1 (en) Resource management and security system
Dodiu et al. Custom designed CPU architecture based on a hardware scheduler and independent pipeline registers—Concept and theory of operation
US20100191961A1 (en) Method and system achieving individualized protected space in an operating system
CN110334519A (en) The staticametric method of credible calculating platform based on dual Architecture
US20220164485A1 (en) Method and configurable hardware module for monitoring a hardware-application
EP4086802A1 (en) Dynamic memory protection device system and method
CN111783165B (en) Safe and trusted system chip architecture based on hardware isolation calling mode
EP1987430B1 (en) Virtual cores and hardware-supported hypervisor integrated circuits, systems, methods and processes of manufacture
Aliaj et al. GAROTA: generalized active root-of-trust architecture
Han et al. MyTEE: Own the Trusted Execution Environment on Embedded Devices.

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION