US20100203862A1 - Method and a system for controlling and tracking radiation emitted from mobile phones - Google Patents

Method and a system for controlling and tracking radiation emitted from mobile phones Download PDF

Info

Publication number
US20100203862A1
US20100203862A1 US12/685,158 US68515810A US2010203862A1 US 20100203862 A1 US20100203862 A1 US 20100203862A1 US 68515810 A US68515810 A US 68515810A US 2010203862 A1 US2010203862 A1 US 2010203862A1
Authority
US
United States
Prior art keywords
absorbed radiation
handset
radiation
user
mobile handset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/685,158
Inventor
Gil FRIEDLANDER
Amit LUBOVSKY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qgt International Inc
TAWKON Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/685,158 priority Critical patent/US20100203862A1/en
Assigned to TAWKON LTD. reassignment TAWKON LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FRIEDLANDER, GIL, LUBOVSKY, AMIT
Publication of US20100203862A1 publication Critical patent/US20100203862A1/en
Priority to US13/795,029 priority patent/US8787996B2/en
Assigned to QGT INTERNATIONAL, INC. reassignment QGT INTERNATIONAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CELLWIZE WIRELESS TECHNOLOGIES LTD.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3833Hand-held transceivers
    • H04B1/3838Arrangements for reducing RF exposure to the user, e.g. by changing the shape of the transceiver while in use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/60Substation equipment, e.g. for use by subscribers including speech amplifiers
    • H04M1/6033Substation equipment, e.g. for use by subscribers including speech amplifiers for providing handsfree use or a loudspeaker mode in telephone sets
    • H04M1/6041Portable telephones adapted for handsfree use
    • H04M1/6058Portable telephones adapted for handsfree use involving the use of a headset accessory device connected to the portable telephone
    • H04M1/6066Portable telephones adapted for handsfree use involving the use of a headset accessory device connected to the portable telephone including a wireless connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/12Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • Cellular communication is based on transmission of RF signals between mobile phones or handsets and a cellular base station.
  • the user of the mobile phone is exposed to non ionizing radiation emitted from the mobile phone. Radiation is known to decease as a factor of square of the distance from the radiation source.
  • the emitted radiation which is the power transmitted from the mobile phone to the base station is not constant over time and is being adjusted constantly due to environmental conditions such as distance, obstructions surrounding buildings and terrain.
  • the absorbed radiation which is the amount of radiation absorbed by the human tissue, may be a function of the emitted radiation, the distance between the handset and the tissue the specific physiology of the user and other parameters.
  • SAR Specific Absorption Rate
  • a mobile handset comprising a RF unit to transmit and receive RF signals, and a core logic unit comprising at least one radiation estimation unit to provide an estimation of absorbed radiation in a user, and an action generation unit configured to perform an action in case said estimation absorbed radiation exceeds a threshold.
  • a method for tracking absorbed radiation from mobile handsets comprising estimating absorbed radiation to receive an estimation of said absorbed radiation and performing an action in case said estimation of said absorbed radiation exceeds a threshold.
  • said absorbed radiation is selectable from a list comprising: absorbed radiation rate per mass of tissue during a call, the amount of absorbed radiation per mass of tissue during a call, the amount of absorbed radiation per mass of tissue over time intervals, potential absorbed radiation rate during a call per mass of tissue and prediction of absorbed radiation rate per mass of tissue while the mobile handset is not engaged in a call.
  • said action is selectable from a list comprising: alert the user, disconnect said call, direct said call to a wired headset, direct said call to a wireless headset, direct said call to a speaker, inform exceeding of absorbed radiation to a user of a peer mobile handset, inform exceeding of radiation to a user of a monitoring mobile handset, give at least one recommendation to the user, and generate a radiation report.
  • said absorbed radiation is estimated by simulating real-life scenarios, recording a set of handset parameters levels to receive recorded handset parameters, measuring absorbed radiation to receive measured absorbed radiation, recording said measured absorbed radiation, and fitting an empirical formula relating said measured absorbed radiation to said set of recorded handset parameters in the laboratory, and uploading said empirical formula to said mobile handset, retrieving current levels of said set of handset parameters, and substituting said current levels of said set of handset parameters in said empirical formula to receive said estimation of absorbed radiation.
  • a cellular communication system comprising a cellular network and at least one mobile handset in active communication with said cellular network said mobile handset capable of estimating absorbed radiation in a user and capable of generating a radiation report.
  • FIG. 1 is a schematic illustration of a general architecture of a system according to embodiments of the invention.
  • FIG. 2 is a schematic illustration of a graphical representation of estimated absorbed radiation and estimated potential absorbed radiation according to embodiments of the invention
  • FIG. 3 is a schematic flowchart illustration of a method of controlling and tracking absorbed radiation from mobile handsets according to embodiments of the invention.
  • FIG. 4 is a schematic flowchart illustration of a method of estimation of absorbed radiation according to embodiments of the invention.
  • the radiation absorbed per mass of tissue of a user (hereafter “absorbed radiation”) is estimated.
  • the absorbed radiation may be presented to the user on the handset, to a user of peer handset which is a handset with which the conversation is being held, or to a user of a monitoring handset which is a handset defined and configured to supervise mobile handset.
  • the absorbed radiation data may be sent over the cellular network and a communication network such as the internet to a server or a personal computer (PC).
  • a user may be given various recommendations aiming at decreasing the amount of the absorbed radiation.
  • Various actions may be taken if the absorbed radiation exceeds a predefined threshold.
  • the conversation may be disconnected, an alarm may be activated, a massage may be sent to a peer or a monitoring handset, or other suitable actions may be taken.
  • Statistics of the absorbed radiation and potential absorbed radiation over time may be presented to the user on his hand set, on a user personal computer (PC) and the like.
  • decreasing the absorbed radiation may be achieved by decreasing the emitted radiation or by increasing the distance between the mobile handset and the user or both.
  • the absorbed radiation may be estimated during a call. Additionally or alternatively, a prediction of the absorbed radiation level (hereinafter “predicted absorbed radiation”) may be estimated and given to the user while the handset is not engaged in a call.
  • the predicted absorbed radiation is an estimation of the radiation that would have been absorbed by the user, had the user been engaged in a call in the time the prediction is being made.
  • given an estimation of the mass of the user head it is possible to calculate the radiation absorption for the head, by multiplying SAR the estimated mass of the head.
  • the value of the absorbed radiation may be estimated and presented to the user together with an estimation of the potential absorbed radiation.
  • the potential absorbed radiation is the level of radiation that would have been absorbed by the user, if the user was holding the handset close to his head or body while in a call. Moving the mobile handset away from the head and body of the user may result in a significant decease in the absorbed radiation levels. In this case the potential absorbed radiation may be higher than the absorbed radiation level.
  • Presenting to the user the potential absorbed radiation together with the absorbed radiation, or the differences between the potential absorbed radiation and the absorbed radiation, may give the user an estimation of the decrease in the amount of absorbed radiation caused solely by removing the mobile handset away from his head or body.
  • the estimated amount of absorbed radiation may be presented.
  • the amount of absorbed radiation for a specific call may be presented to the user.
  • SAR may be estimated and presented. SAR may be presented over different time units such as seconds, minutes, hours, days, months etc.
  • mobile handset 110 may be in active communication with cellular network 170 and may comprise a radio frequency (RF) unit 120 and an antenna 130 for the reception and transmission of RF signals, a core logic unit 142 comprising of a radiation estimation unit 140 , and action generation unit 150 , and handset extra modules unit 160 comprising functionality units such as Bluetooth unit 162 , proximity sensor 163 , vibrator 164 , encoders/decoders (CODECS) unit 165 , display 166 , location based services (LBS) unit 167 , speaker 168 , temperature sensor unit ( 169 ), accelerometer ( 171 ), and magnetometer ( 172 ).
  • RF radio frequency
  • a wired headset 173 may be connected to handset 110 , or alternatively, handset 110 may be in active communication with a wireless headset 174 .
  • handset 110 may be in active communication with a wireless headset 174 using Bluetooth protocol utilizing Bluetooth unit 162 .
  • Core Logic unit 142 may communicate over one or more communication mediums such as cellular network 170 or the Internet (not shown) with various entities such as one or more servers 180 connected to said handset via a network, such as cellular network 170 or the internet (not shown), a peer mobile handset 185 , which is a handset with which a conversation is being held, a monitoring mobile handset 190 which is a handset defined and configured to supervise mobile handset 110 , and a user PC 195 .
  • core logic unit 142 may communicate with these entities additionally or alternatively using other means of communication.
  • core logic unit 142 may communicate with user PC 195 using one or more protocols for exchanging data over short distances, such as Bluetooth wireless communication (not shown), a Universal Serial Bus (USB) (not shown) cable and the like.
  • Bluetooth wireless communication not shown
  • USB Universal Serial Bus
  • radiation estimation unit 140 may estimate the absorbed radiation.
  • Action generation unit 150 may receive absorbed radiation estimations from radiation estimation unit 140 .
  • Action generation unit 150 may be pre-configured or configured by a user of mobile handset 110 locally through input and output means of mobile handset 110 or remotely through user PC 195 , via monitoring handset 190 , or via server on the internet 180 , for example, via a service provider server on the internet (not shown).
  • User PC 195 can be used for modifying configurations of mobile handset 110 via a server or directly to a single or multiple handsets.
  • Action generation unit 150 may initiate one or more of various actions based on the absorbed radiation estimations and on the action generation unit 150 configuration.
  • radiation estimation unit 140 may estimate the SAR, the total amount of absorbed radiation during calls or over time. These estimations may relate to the actual absorbed radiation by the user. Additionally, radiation estimation unit 140 may estimate the potential absorbed radiation. In addition, radiation estimation unit 140 may give a prediction of the absorbed radiation while the handset is not engaged in a call.
  • a call should be expansively and broadly construed to include any applicable session or interaction carried over a cellular network.
  • a call may be a telephony session, an instant massaging session, a video session, a chat session, a web browsing session or any other applicable type of multi-media interaction.
  • action generation unit 150 may be configured to perform one or more of the actions listed below upon, or in response to the occurrence of one or more of the following events: when absorbed radiation exceeds a predefined threshold momentarily or over a predefined time duration, or if the accumulated absorbed radiation estimation reaches a predefined threshold:
  • the user may be alerted by an audio indication, a visual indication, by vibration of the handset (using vibrator 164 ) and the like, or any combination thereof.
  • Disconnect a call to prevent undesired exposure to RF radiation It is possible, however, that certain calls would not be disconnected if the peer mobile handset 185 is included in a predefined priority list.
  • the user of peer mobile handset 185 may be informed by a massage such as text massage using Short Message Service (SMS), an audio indication, a visual indication, by vibration of the handset and the like, or any combination thereof, as may be applicable.
  • SMS Short Message Service
  • the user of monitoring mobile handset 190 may be informed by a text massage (SMS), an audio indication, a visual indication, by vibration of the handset and the like, or any combination thereof, as may be applicable.
  • SMS text massage
  • These recommendations may be given as visual and/or audio indications.
  • a recommendation given to the user may include for example, a guidance indicator to direct the user towards a cellular base-station the user communicates with, in order to decrease the distance or align to a line of sight between the user and the cellular base-station.
  • a guidance indicator to direct the user towards a cellular base-station the user communicates with, in order to decrease the distance or align to a line of sight between the user and the cellular base-station.
  • Another recommendation may be, for example, to move to a better location where the mobile handset will radiate less power, or move to a previous location where the mobile handset radiated less, both may result in less absorbed radiation to the user.
  • action generation unit 150 may keep a record of estimated absorbed radiation values and their respective coordinates in various locations. Getting the location coordinates of handset 110 may be achieved by using, for example, LBS unit 167 .
  • Action generation unit 150 may base the recommendation to move to a previous location where the mobile handset radiated less on this record of estimated absorbed radiation values and their respective location coordinates. The user may be directed to a previous location where the mobile handset radiated less using the readings of magnetometer 172 .
  • Another recommendation may be, for example, “switch to vertical phone posture” or “switch to horizontal phone posture”.
  • Action generation unit 150 may get readings from an accelerometer of the handset, if available, and determine the posture of the handset based on these readings. Switching to an alternate phone posture may reduce emitted radiation, and therefore, absorbed radiation, since in many handsets the antenna is designed to have best reception and transmission characteristics in a specific position. If any of wired 173 or wireless headset 174 , is available, a recommendation to switch to wired 173 or wireless headset 174 may be given. Switching to wired 173 or wireless headset 174 and moving the mobile handset away from the user's head and body may decrease absorbed radiation levels. Additional recommendations may be, for example, use loudspeaker.
  • action generation unit 150 may compare and present to the user values of estimated or predicted absorbed radiation levels, while handset 110 communicates through several cellular networks of various service providers. In case the user may choose among various service providers, the user may consider the absorbed radiation levels while making his choice. Action generation unit 150 may recommend the user of the service provider with which the lowest emitted radiation and hence the lowest absorbed radiation levels were achieved.
  • a radiation report summarizing absorbed radiation values may be given to the user of handset 110 , the user of monitoring mobile handset 190 , or to any other predefined party.
  • the report may include tables, graphs or other forms of data representation that may indicate momentarily absorbed radiation levels, such as peak absorbed radiation levels and the like, accumulated absorbed radiation levels over various time intervals such as day, week, month and the like.
  • FIG. 2 is a schematic illustration of a graphical representation of estimated potential absorbed radiation 210 and estimated absorbed radiation level 220 according to embodiments of the invention.
  • various data items may be transmitted to server 180 , for example to a service provider server on the web.
  • These data items may include, for example but not limited to, received power per time, estimated absorbed radiation, peripherals used by the user (e.g. wireless headset 174 , wired headset 173 , and speaker 168 ) and location.
  • peripherals used by the user e.g. wireless headset 174 , wired headset 173 , and speaker 168
  • location e.g. wireless headset 174 , wired headset 173 , and speaker 168
  • These data items may be used by different entities for various purposes.
  • the service provider may use this accumulated data from handset users for different purposes, such as improvements/optimization of the network coverage, etc.
  • Network coverage refers to the geographical region within which the handset can reliably receive and transmit signals to and from the network.
  • a server application may use these data items to create regional maps of cellular network coverage and quality by accumulating multiple inputs from a plurality of individual mobile handsets.
  • the regional maps may be presented to the user on the mobile handset, or on the server 180 .
  • the regional maps may include, for example but not limited to, the following data: absorbed radiation estimation per location, received power per location, and accessories (wireless headset 174 , wired headset 173 , and speaker 168 etc.) used by different users per location.
  • a handset may be first configured (block 310 ) to present absorbed radiation estimations and to perform actions as desired by the user. While not engaged in a call, prediction of absorbed radiation may be presented to the user (block 315 ). The Prediction of absorbed radiation may be presented continuously, or per the user request. After a call starts (block 320 ), absorbed radiation may be estimated (block 330 ). Estimated data may be presented to the user (block 350 ) during the call and action may be performed (block 340 ) according to absorbed radiation levels and according to the handset configuration.
  • the levels of absorbed radiation may change following the action generated at block 340 .
  • the absorbed radiation may change if the conversation is disconnected, if the user moves to a different location, if the user begins to speak with a wired or wireless headset and moves the handset away from his head etc. Therefore, the process of estimating absorbed radiation (block 330 ), presenting data (block 350 ) and performing action (block 340 ) may be repeated as needed, continuously or intermittently providing feedback to the user. In case the user moves the handset away from his head the value of the potential absorbed radiation may be estimated and presented as well. After the call ends (block 360 ), a summary of absorbed radiation estimations and potential absorbed radiation may be presented to the user (block 370 ) according to the handset configuration.
  • phase 1 may be a preliminary phase performed in the laboratory, preferably for each of the handset models for which radiation estimation is intended to be done.
  • phase 1 various real-life scenarios may be simulated (block 410 ) using specialized equipment as known in the art.
  • the simulated testing real-life scenarios may include using the handset in urban areas, in rural areas, while moving in different speeds, including effects of multipath and fading as well as other testing scenarios.
  • absorbed radiation is measured and may further be recorded (block 414 ) together with various handset parameters (block 412 ), as will be explained in more details below.
  • the measured absorbed radiation recordings may be time synchronized with the handset parameters recordings.
  • an empirical formula associating the measured absorbed radiation with the recorded handset parameters may be fitted (block 416 ).
  • the empirical formula may be a combination of logarithms, polynomials and other mathematical expressions, taking into consideration the different cellular technologies of, for example, the second ( 2 G), third ( 3 G) or other generations, that may minimize the prediction error of absorbed radiation or get it below a desired threshold.
  • the empirical formula of block 416 may be used for estimating absorbed radiation while the handset is engaged in a call.
  • the absorbed radiation and SAR measurements setup used for estimation of absorbed radiation is known in the art and described, for example, in IEEE 1528, “Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices Measurement Techniques” or in Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), “Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions” (June 2001).
  • SAR Peak Spatial-Average Specific Absorption Rate
  • a combination of the following handset parameters may be used for the estimation of the absorbed radiation: received signal code power (RSCP), energy per chip/noise EC/IO, Downlink Frequency, Uplink Frequency, Max Transmit Power, Transmit Power, received signal strength indication (RSSI), Band, absolute radio frequency channel number (ARFCN), C1, C2, Cell ID, discontinuous reception (DRX) and discontinuous Transmission (DTX), received signal (Rx) quality, serving and neighbor cell information.
  • RSCP received signal code power
  • RSSI received signal strength indication
  • ARFCN absolute radio frequency channel number
  • C1, C2, Cell ID discontinuous reception (DRX) and discontinuous Transmission (DTX)
  • received signal (Rx) quality serving and neighbor cell information.
  • a subgroup of these parameters may be recorded. Additionally or alternatively, other suitable parameters may be recorded and used
  • Additional parameters that may be used are the readings of the accelerometer, magnetometer, the battery charging status and temperature sensor of the handset, if available.
  • the reading of the temperature sensor may indicate the temperature of the battery of the handset.
  • the temperature of the battery of the handset or the battery charging status may correlate with the transmission power.
  • the readings from the proximity sensor of the handset may be used to determine whether the handset is close to or far from the user, which may have an impact on the absorbed radiation estimation.
  • the potential absorbed radiation may be the outcome of the formula of block 416 of FIG. 4 , assuming that the reading from the proximity sensor of the handset indicates that the handset is in close proximity to the user's head.
  • the empirical formula, generated for the handset model is uploaded to a specific handset (block 418 ), the relevant parameters are retrieved (block 420 ) and substituted in the empirical formula to get an estimation of current absorbed radiation (block 422 ).
  • the method described in phase 2 of FIG. 4 may be preformed while the handset is engaged in a call to receive estimation of absorbed radiation.
  • the method described in phase 2 of FIG. 4 may be preformed while the handset is not engaged in a call for predicting absorbed radiation.
  • emitted radiation may be directly measured using dedicated hardware, and a formula relating emitted radiation to absorbed radiation may be generated.
  • Some embodiments of the present invention may be implemented in software for execution by a processor-based handset, for example, core logic unit 142 .
  • embodiments of the invention may be implemented in code and may be stored on a storage medium having stored thereon instructions which can be used to program a system to perform the instructions.
  • the storage medium may include, but is not limited to, any type of disk including floppy disks, optical disks, compact disk read-only memories (CD-ROMs), rewritable compact disk (CD-RW), and magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random access memories (RAMs), such as a dynamic RAM (DRAM), erasable programmable read-only memories (EPROMs), flash memories, electrically erasable programmable read-only memories (EEPROMs), magnetic or optical cards, or any type of media suitable for storing electronic instructions, including programmable storage devices.
  • Other implementations of embodiments of the invention may comprise dedicated, custom, custom made or off the shelf hardware, firmware or a combination thereof.
  • Embodiments of the present invention may be realized by a handset that may include components such as, but not limited to, a plurality of central processing units (CPU) or any other suitable multi-purpose or specific processors or controllers, a plurality of input units, a plurality of output units, a plurality of memory units, and a plurality of storage units. Such handset may additionally include other suitable hardware components and/or software components.
  • CPU central processing units
  • Such handset may additionally include other suitable hardware components and/or software components.

Abstract

A mobile handset configured to estimate the radiation absorbed per mass of tissue of a user, and to perform an action in case the absorbed radiation exceeds a predefined threshold. The absorbed radiation may be estimated during a call. Additionally or alternatively, a prediction of the absorbed radiation level may be estimated and given to the user while the handset is not engaged in a call. various data items such as received power per time, estimated absorbed radiation and location may be transmitted to a server. A server application may use these data items to create regional maps of a cellular network coverage and quality by accumulating multiple inputs from a plurality of individual mobile handsets.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application No. 61/150,802 filed on Feb. 9, 2009 and entitled Method and a system for controlling and tracking radiation emitted from mobile phones, which is incorporated in its entirety herein by reference.
  • BACKGROUND OF THE INVENTION
  • Cellular communication is based on transmission of RF signals between mobile phones or handsets and a cellular base station. The user of the mobile phone is exposed to non ionizing radiation emitted from the mobile phone. Radiation is known to decease as a factor of square of the distance from the radiation source.
  • During recent years increasing scientific evidence has indicated that long term exposure to non-ionizing radiation may cause potential damage to human tissues.
  • The emitted radiation, which is the power transmitted from the mobile phone to the base station is not constant over time and is being adjusted constantly due to environmental conditions such as distance, obstructions surrounding buildings and terrain. The absorbed radiation, which is the amount of radiation absorbed by the human tissue, may be a function of the emitted radiation, the distance between the handset and the tissue the specific physiology of the user and other parameters.
  • The rate of radiation absorption per mass of tissue, often referred to as Specific Absorption Rate (SAR) may be a factor of the emitted handset radiation, the distance between the mobile handset and the user, the physiology of the user and other parameters. Specifications of the maximum allowed SAR for a specific handset are found in, for example, the Federal Communication Commission, Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields, Supplement C (edition 01-01) to OET bulletin 65 (edition 97-01), FCC, 2001.
  • SUMMARY OF THE INVENTION
  • According to some embodiments of the invention, there is provided a mobile handset comprising a RF unit to transmit and receive RF signals, and a core logic unit comprising at least one radiation estimation unit to provide an estimation of absorbed radiation in a user, and an action generation unit configured to perform an action in case said estimation absorbed radiation exceeds a threshold.
  • According to some embodiments of the invention, there is provided a method for tracking absorbed radiation from mobile handsets, the method comprising estimating absorbed radiation to receive an estimation of said absorbed radiation and performing an action in case said estimation of said absorbed radiation exceeds a threshold.
  • According to embodiments of the invention said absorbed radiation is selectable from a list comprising: absorbed radiation rate per mass of tissue during a call, the amount of absorbed radiation per mass of tissue during a call, the amount of absorbed radiation per mass of tissue over time intervals, potential absorbed radiation rate during a call per mass of tissue and prediction of absorbed radiation rate per mass of tissue while the mobile handset is not engaged in a call.
  • According to embodiments of the invention said action is selectable from a list comprising: alert the user, disconnect said call, direct said call to a wired headset, direct said call to a wireless headset, direct said call to a speaker, inform exceeding of absorbed radiation to a user of a peer mobile handset, inform exceeding of radiation to a user of a monitoring mobile handset, give at least one recommendation to the user, and generate a radiation report.
  • According to embodiments of the invention said absorbed radiation is estimated by simulating real-life scenarios, recording a set of handset parameters levels to receive recorded handset parameters, measuring absorbed radiation to receive measured absorbed radiation, recording said measured absorbed radiation, and fitting an empirical formula relating said measured absorbed radiation to said set of recorded handset parameters in the laboratory, and uploading said empirical formula to said mobile handset, retrieving current levels of said set of handset parameters, and substituting said current levels of said set of handset parameters in said empirical formula to receive said estimation of absorbed radiation.
  • According to some embodiments of the invention, there is provided a cellular communication system comprising a cellular network and at least one mobile handset in active communication with said cellular network said mobile handset capable of estimating absorbed radiation in a user and capable of generating a radiation report.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings in which:
  • FIG. 1 is a schematic illustration of a general architecture of a system according to embodiments of the invention;
  • FIG. 2 is a schematic illustration of a graphical representation of estimated absorbed radiation and estimated potential absorbed radiation according to embodiments of the invention;
  • FIG. 3 is a schematic flowchart illustration of a method of controlling and tracking absorbed radiation from mobile handsets according to embodiments of the invention; and
  • FIG. 4 is a schematic flowchart illustration of a method of estimation of absorbed radiation according to embodiments of the invention.
  • It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
  • DETAILED DESCRIPTION OF EMBODIMENTS OF THE PRESENT INVENTION
  • In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the present invention.
  • The term “plurality” may be used throughout the specification to describe two or more components, devices, elements, parameters and the like.
  • According to embodiments of the invention, the radiation absorbed per mass of tissue of a user (hereafter “absorbed radiation”) is estimated. The absorbed radiation may be presented to the user on the handset, to a user of peer handset which is a handset with which the conversation is being held, or to a user of a monitoring handset which is a handset defined and configured to supervise mobile handset. The absorbed radiation data may be sent over the cellular network and a communication network such as the internet to a server or a personal computer (PC). In addition, a user may be given various recommendations aiming at decreasing the amount of the absorbed radiation. Various actions may be taken if the absorbed radiation exceeds a predefined threshold. For example, the conversation may be disconnected, an alarm may be activated, a massage may be sent to a peer or a monitoring handset, or other suitable actions may be taken. Statistics of the absorbed radiation and potential absorbed radiation over time may be presented to the user on his hand set, on a user personal computer (PC) and the like.
  • According to embodiments of the invention, decreasing the absorbed radiation may be achieved by decreasing the emitted radiation or by increasing the distance between the mobile handset and the user or both.
  • According to embodiments of the invention, the absorbed radiation may be estimated during a call. Additionally or alternatively, a prediction of the absorbed radiation level (hereinafter “predicted absorbed radiation”) may be estimated and given to the user while the handset is not engaged in a call. The predicted absorbed radiation is an estimation of the radiation that would have been absorbed by the user, had the user been engaged in a call in the time the prediction is being made. According to embodiments of the invention, given an estimation of the mass of the user head, it is possible to calculate the radiation absorption for the head, by multiplying SAR the estimated mass of the head.
  • According to embodiments of the invention, the value of the absorbed radiation may be estimated and presented to the user together with an estimation of the potential absorbed radiation. The potential absorbed radiation is the level of radiation that would have been absorbed by the user, if the user was holding the handset close to his head or body while in a call. Moving the mobile handset away from the head and body of the user may result in a significant decease in the absorbed radiation levels. In this case the potential absorbed radiation may be higher than the absorbed radiation level. Presenting to the user the potential absorbed radiation together with the absorbed radiation, or the differences between the potential absorbed radiation and the absorbed radiation, may give the user an estimation of the decrease in the amount of absorbed radiation caused solely by removing the mobile handset away from his head or body.
  • According to embodiments of the invention, the estimated amount of absorbed radiation may be presented. For example, the amount of absorbed radiation for a specific call may be presented to the user. SAR may be estimated and presented. SAR may be presented over different time units such as seconds, minutes, hours, days, months etc.
  • Reference is now made to FIG. 1 which is a schematic illustration of a general architecture of a system 10 according to embodiments of the invention. According to embodiments of the invention, mobile handset 110 may be in active communication with cellular network 170 and may comprise a radio frequency (RF) unit 120 and an antenna 130 for the reception and transmission of RF signals, a core logic unit 142 comprising of a radiation estimation unit 140, and action generation unit 150, and handset extra modules unit 160 comprising functionality units such as Bluetooth unit 162, proximity sensor 163, vibrator 164, encoders/decoders (CODECS) unit 165, display 166, location based services (LBS) unit 167, speaker 168, temperature sensor unit (169), accelerometer (171), and magnetometer (172). A wired headset 173 may be connected to handset 110, or alternatively, handset 110 may be in active communication with a wireless headset 174. For example, handset 110 may be in active communication with a wireless headset 174 using Bluetooth protocol utilizing Bluetooth unit 162. Core Logic unit 142 may communicate over one or more communication mediums such as cellular network 170 or the Internet (not shown) with various entities such as one or more servers 180 connected to said handset via a network, such as cellular network 170 or the internet (not shown), a peer mobile handset 185, which is a handset with which a conversation is being held, a monitoring mobile handset 190 which is a handset defined and configured to supervise mobile handset 110, and a user PC 195. According to embodiments of the invention, core logic unit 142 may communicate with these entities additionally or alternatively using other means of communication. For example, core logic unit 142 may communicate with user PC 195 using one or more protocols for exchanging data over short distances, such as Bluetooth wireless communication (not shown), a Universal Serial Bus (USB) (not shown) cable and the like.
  • According to embodiments of the invention, radiation estimation unit 140 may estimate the absorbed radiation. Action generation unit 150 may receive absorbed radiation estimations from radiation estimation unit 140. Action generation unit 150 may be pre-configured or configured by a user of mobile handset 110 locally through input and output means of mobile handset 110 or remotely through user PC 195, via monitoring handset 190, or via server on the internet 180, for example, via a service provider server on the internet (not shown). User PC 195 can be used for modifying configurations of mobile handset 110 via a server or directly to a single or multiple handsets. Action generation unit 150 may initiate one or more of various actions based on the absorbed radiation estimations and on the action generation unit 150 configuration.
  • According to embodiments of the invention, radiation estimation unit 140 may estimate the SAR, the total amount of absorbed radiation during calls or over time. These estimations may relate to the actual absorbed radiation by the user. Additionally, radiation estimation unit 140 may estimate the potential absorbed radiation. In addition, radiation estimation unit 140 may give a prediction of the absorbed radiation while the handset is not engaged in a call.
  • It will be noted that although a communication session enabling two or more humans or other entities (e.g., a human caller and a server) to communicate over a cellular network will typically be referred to hereinafter as a call, the term “call” should be expansively and broadly construed to include any applicable session or interaction carried over a cellular network. A call may be a telephony session, an instant massaging session, a video session, a chat session, a web browsing session or any other applicable type of multi-media interaction.
  • According to embodiments of the invention, action generation unit 150 may be configured to perform one or more of the actions listed below upon, or in response to the occurrence of one or more of the following events: when absorbed radiation exceeds a predefined threshold momentarily or over a predefined time duration, or if the accumulated absorbed radiation estimation reaches a predefined threshold:
  • Alert the user. The user may be alerted by an audio indication, a visual indication, by vibration of the handset (using vibrator 164) and the like, or any combination thereof.
  • Disconnect a call to prevent undesired exposure to RF radiation. It is possible, however, that certain calls would not be disconnected if the peer mobile handset 185 is included in a predefined priority list.
  • Direct a call to a wired headset 173 or wireless headset 174 if available, or else to speaker 168.
  • Inform the event to the user of peer mobile handset 185. The user of peer mobile handset 185 may be informed by a massage such as text massage using Short Message Service (SMS), an audio indication, a visual indication, by vibration of the handset and the like, or any combination thereof, as may be applicable.
  • Inform the event to the user of monitoring mobile handset 190. The user of monitoring mobile handset 190 may be informed by a text massage (SMS), an audio indication, a visual indication, by vibration of the handset and the like, or any combination thereof, as may be applicable.
  • Give various recommendations to the user aiming at decreasing the amount of the absorbed radiation. These recommendations may be given as visual and/or audio indications.
  • According to embodiments of the invention a recommendation given to the user may include for example, a guidance indicator to direct the user towards a cellular base-station the user communicates with, in order to decrease the distance or align to a line of sight between the user and the cellular base-station. As the radiation level decrease with the square of the distance from the radiating source, getting closer to the base-station may increase the received power proportional to the square of the distance, under various conditions, for example, in case there exists a line of sight between the handset and the base station. As the received power increases, the output emitted radiation of the handset decreases. Therefore, it is expected that getting nearer to the base-station in case there is a line of sight between the handset and the base station may result in decrease of handset 110 emitted radiation and, therefore, in a decrease in the absorbed radiation.
  • Another recommendation may be, for example, to move to a better location where the mobile handset will radiate less power, or move to a previous location where the mobile handset radiated less, both may result in less absorbed radiation to the user. According to embodiments of the invention action generation unit 150 may keep a record of estimated absorbed radiation values and their respective coordinates in various locations. Getting the location coordinates of handset 110 may be achieved by using, for example, LBS unit 167. Action generation unit 150 may base the recommendation to move to a previous location where the mobile handset radiated less on this record of estimated absorbed radiation values and their respective location coordinates. The user may be directed to a previous location where the mobile handset radiated less using the readings of magnetometer 172.
  • Another recommendation may be, for example, “switch to vertical phone posture” or “switch to horizontal phone posture”. Action generation unit 150 may get readings from an accelerometer of the handset, if available, and determine the posture of the handset based on these readings. Switching to an alternate phone posture may reduce emitted radiation, and therefore, absorbed radiation, since in many handsets the antenna is designed to have best reception and transmission characteristics in a specific position. If any of wired 173 or wireless headset 174, is available, a recommendation to switch to wired 173 or wireless headset 174 may be given. Switching to wired 173 or wireless headset 174 and moving the mobile handset away from the user's head and body may decrease absorbed radiation levels. Additional recommendations may be, for example, use loudspeaker.
  • According to embodiments of the invention, action generation unit 150 may compare and present to the user values of estimated or predicted absorbed radiation levels, while handset 110 communicates through several cellular networks of various service providers. In case the user may choose among various service providers, the user may consider the absorbed radiation levels while making his choice. Action generation unit 150 may recommend the user of the service provider with which the lowest emitted radiation and hence the lowest absorbed radiation levels were achieved.
  • According to embodiments of the invention a radiation report summarizing absorbed radiation values may be given to the user of handset 110, the user of monitoring mobile handset 190, or to any other predefined party. The report may include tables, graphs or other forms of data representation that may indicate momentarily absorbed radiation levels, such as peak absorbed radiation levels and the like, accumulated absorbed radiation levels over various time intervals such as day, week, month and the like.
  • Reference is now made to FIG. 2 which is a schematic illustration of a graphical representation of estimated potential absorbed radiation 210 and estimated absorbed radiation level 220 according to embodiments of the invention.
  • According to embodiments of the invention various data items may be transmitted to server 180, for example to a service provider server on the web. These data items may include, for example but not limited to, received power per time, estimated absorbed radiation, peripherals used by the user (e.g. wireless headset 174, wired headset 173, and speaker 168) and location. These data items may be used by different entities for various purposes. For example, the service provider may use this accumulated data from handset users for different purposes, such as improvements/optimization of the network coverage, etc. Network coverage refers to the geographical region within which the handset can reliably receive and transmit signals to and from the network.
  • According to embodiments of the invention, a server application may use these data items to create regional maps of cellular network coverage and quality by accumulating multiple inputs from a plurality of individual mobile handsets. The regional maps may be presented to the user on the mobile handset, or on the server 180. The regional maps may include, for example but not limited to, the following data: absorbed radiation estimation per location, received power per location, and accessories (wireless headset 174, wired headset 173, and speaker 168 etc.) used by different users per location.
  • Reference is now made to FIG. 3 which presents a schematic flowchart illustration of a method of controlling and tracking absorbed radiation from mobile handsets according to embodiments of the invention. According to embodiments of the invention, a handset may be first configured (block 310) to present absorbed radiation estimations and to perform actions as desired by the user. While not engaged in a call, prediction of absorbed radiation may be presented to the user (block 315). The Prediction of absorbed radiation may be presented continuously, or per the user request. After a call starts (block 320), absorbed radiation may be estimated (block 330). Estimated data may be presented to the user (block 350) during the call and action may be performed (block 340) according to absorbed radiation levels and according to the handset configuration. The levels of absorbed radiation may change following the action generated at block 340. For example the absorbed radiation may change if the conversation is disconnected, if the user moves to a different location, if the user begins to speak with a wired or wireless headset and moves the handset away from his head etc. Therefore, the process of estimating absorbed radiation (block 330), presenting data (block 350) and performing action (block 340) may be repeated as needed, continuously or intermittently providing feedback to the user. In case the user moves the handset away from his head the value of the potential absorbed radiation may be estimated and presented as well. After the call ends (block 360), a summary of absorbed radiation estimations and potential absorbed radiation may be presented to the user (block 370) according to the handset configuration.
  • Reference is now made to FIG. 4 which present schematic flowchart illustration of method of estimation of absorbed radiation according to embodiments of the invention. According to embodiments of the invention, estimation of absorbed radiation levels may be divided into two phases, as presented in FIG. 4. Phase 1 may be a preliminary phase performed in the laboratory, preferably for each of the handset models for which radiation estimation is intended to be done. In phase 1 various real-life scenarios may be simulated (block 410) using specialized equipment as known in the art. The simulated testing real-life scenarios may include using the handset in urban areas, in rural areas, while moving in different speeds, including effects of multipath and fading as well as other testing scenarios. During simulation, absorbed radiation is measured and may further be recorded (block 414) together with various handset parameters (block 412), as will be explained in more details below. The measured absorbed radiation recordings may be time synchronized with the handset parameters recordings. Then, an empirical formula associating the measured absorbed radiation with the recorded handset parameters may be fitted (block 416). The empirical formula may be a combination of logarithms, polynomials and other mathematical expressions, taking into consideration the different cellular technologies of, for example, the second (2G), third (3G) or other generations, that may minimize the prediction error of absorbed radiation or get it below a desired threshold. The empirical formula of block 416 may be used for estimating absorbed radiation while the handset is engaged in a call.
  • The absorbed radiation and SAR measurements setup used for estimation of absorbed radiation according to embodiments of the invention is known in the art and described, for example, in IEEE 1528, “Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices Measurement Techniques” or in Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), “Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions” (June 2001).
  • According to embodiments of the invention, a combination of the following handset parameters may be used for the estimation of the absorbed radiation: received signal code power (RSCP), energy per chip/noise EC/IO, Downlink Frequency, Uplink Frequency, Max Transmit Power, Transmit Power, received signal strength indication (RSSI), Band, absolute radio frequency channel number (ARFCN), C1, C2, Cell ID, discontinuous reception (DRX) and discontinuous Transmission (DTX), received signal (Rx) quality, serving and neighbor cell information. According to embodiments of the invention, a subgroup of these parameters may be recorded. Additionally or alternatively, other suitable parameters may be recorded and used
  • Additional parameters that may be used are the readings of the accelerometer, magnetometer, the battery charging status and temperature sensor of the handset, if available. The reading of the temperature sensor may indicate the temperature of the battery of the handset. The temperature of the battery of the handset or the battery charging status may correlate with the transmission power. The readings from the proximity sensor of the handset may be used to determine whether the handset is close to or far from the user, which may have an impact on the absorbed radiation estimation. Additionally, the potential absorbed radiation may be the outcome of the formula of block 416 of FIG. 4, assuming that the reading from the proximity sensor of the handset indicates that the handset is in close proximity to the user's head.
  • According to embodiments of the invention, in phase 2, the empirical formula, generated for the handset model, is uploaded to a specific handset (block 418), the relevant parameters are retrieved (block 420) and substituted in the empirical formula to get an estimation of current absorbed radiation (block 422). The method described in phase 2 of FIG. 4 may be preformed while the handset is engaged in a call to receive estimation of absorbed radiation. Alternatively, the method described in phase 2 of FIG. 4 may be preformed while the handset is not engaged in a call for predicting absorbed radiation.
  • It will be appreciated that other methods for getting emitted power and absorbed radiation values are possible. For example, emitted radiation may be directly measured using dedicated hardware, and a formula relating emitted radiation to absorbed radiation may be generated.
  • Some embodiments of the present invention may be implemented in software for execution by a processor-based handset, for example, core logic unit 142. For example, embodiments of the invention may be implemented in code and may be stored on a storage medium having stored thereon instructions which can be used to program a system to perform the instructions. The storage medium may include, but is not limited to, any type of disk including floppy disks, optical disks, compact disk read-only memories (CD-ROMs), rewritable compact disk (CD-RW), and magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random access memories (RAMs), such as a dynamic RAM (DRAM), erasable programmable read-only memories (EPROMs), flash memories, electrically erasable programmable read-only memories (EEPROMs), magnetic or optical cards, or any type of media suitable for storing electronic instructions, including programmable storage devices. Other implementations of embodiments of the invention may comprise dedicated, custom, custom made or off the shelf hardware, firmware or a combination thereof.
  • Embodiments of the present invention may be realized by a handset that may include components such as, but not limited to, a plurality of central processing units (CPU) or any other suitable multi-purpose or specific processors or controllers, a plurality of input units, a plurality of output units, a plurality of memory units, and a plurality of storage units. Such handset may additionally include other suitable hardware components and/or software components.
  • While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those of ordinary skill in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.

Claims (18)

1. A mobile handset comprising:
a RF unit to transmit and receive RF signals; and
a core logic unit comprising:
at least one radiation estimation unit to provide an estimation of absorbed radiation in a user; and
an action generation unit configured to perform an action in case said estimation absorbed radiation exceeds a threshold.
2. The mobile handset of claim 1, wherein said absorbed radiation is selectable from a list comprising: absorbed radiation rate per mass of tissue during a call, the amount of absorbed radiation per mass of tissue during a call, the amount of absorbed radiation per mass of tissue over time intervals, potential absorbed radiation rate during a call per mass of tissue and prediction of absorbed radiation rate per mass of tissue while the mobile handset is not engaged in a call.
3. The mobile handset of claim 1, wherein said action is selectable from a list comprising: alert the user, disconnect said call, direct said call to a wired headset, direct said call to a wireless headset, direct said call to a speaker, inform exceeding of absorbed radiation to a user of a peer mobile handset, inform exceeding of radiation to a user of a monitoring mobile handset, give at least one recommendation to the user, and generate a radiation report.
4. The mobile handset of claim 3, wherein said recommendation is selectable from a list comprising: guidance indicator to direct the user towards a cellular base-station the user communicates with, move to a location where the mobile handset will radiate less power, switch to vertical phone posture, switch to horizontal phone posture, connect wired headset, use wireless headset, and use loudspeaker.
5. The mobile handset of claim 1, wherein said absorbed radiation is estimated by:
in the laboratory:
simulating real-life scenarios;
recording a set of handset parameters levels to receive recorded handset parameters;
measuring absorbed radiation to receive measured absorbed radiation;
recording said measured absorbed radiation; and
fitting an empirical formula relating said measured absorbed radiation to said set of recorded handset parameters;
uploading said empirical formula to said mobile handset;
retrieving current levels of said set of handset parameters; and
substituting said current levels of said set of handset parameters in said empirical formula to receive said estimation of absorbed radiation.
6. A cellular communication system comprising:
cellular network; and
at least one mobile handset in active communication with said cellular network said mobile handset capable of estimating absorbed radiation in a user and capable of generating a radiation report.
7. The system of claim 6, further comprising a server adapted to communicate with said mobile handset over a communication medium, to configure said mobile handset and to receive data items selectable from a list comprising: said absorbed radiation estimation, received power level at the mobile handset, location information of the mobile handset, accessories used by users and said radiation report.
8. The system of claim 7, wherein said server is configured use said data items to create regional maps of mobile network coverage and quality.
9. The system of claim 8, wherein said regional maps may include data selectable from a list comprising: absorbed radiation estimation per location, received power per location, and accessories used by users per location.
10. The system of claim 6, wherein said peer mobile handset is adapted to receive a massage from said mobile handset in case said absorbed radiation exceeds a threshold.
11. The system of claim 6, further comprising a monitoring mobile handset to configure and supervise said mobile handset, to receive a massage from said mobile handset in case absorbed radiation exceeds a threshold and to get said radiation report of said mobile handset.
12. The system of claim 6, further comprising a user PC to configure said mobile handset and to get said radiation report of said mobile handset.
13. A method for tracking absorbed radiation from mobile handsets, the method comprising:
estimating absorbed radiation to receive an estimation of said absorbed radiation; and
performing an action in case said estimation of said absorbed radiation exceeds a threshold.
14. The method of claim 13, wherein said absorbed radiation is selectable from a list comprising: absorbed radiation rate per mass of tissue during a call, the amount of absorbed radiation per mass of tissue during a call, the amount of absorbed radiation per mass of tissue over time intervals, potential absorbed radiation rate during a call per mass of tissue and prediction of absorbed radiation rate per mass of tissue while the mobile handset is not engaged in a call.
15. The method of claim 13, wherein said action is selectable from a list comprising: alert the user, disconnect said call, direct said call to a wired headset, direct said call to a wireless headset, direct said call to a speaker, inform exceeding of absorbed radiation to a user of a peer mobile handset, inform exceeding of radiation to a user of a monitoring mobile handset, give at least one recommendation to the user, and generate a radiation report.
16. The method of claim 15, wherein said recommendation is selectable from a list comprising: guidance indicator to direct the user towards a cellular base-station the user communicates with, move to a location where the mobile handset will radiate less power, switch to vertical phone posture, switch to horizontal phone posture, connect wired headset, use wireless headset, and use loudspeaker.
17. The method of claim 13, wherein said radiation is estimated by:
in the laboratory:
simulating real-life scenarios;
recording a set of handset parameters levels to receive recorded handset parameters;
measuring absorbed radiation to receive measured absorbed radiation;
recording said measured absorbed radiation; and
fitting an empirical formula relating said measured absorbed radiation to said recorded handset parameters;
uploading said empirical formula to said mobile handset;
retrieving current levels of said set of handset parameters; and
substituting said current levels of said set of handset parameters in said empirical formula to receive said estimation of absorbed radiation.
18. An article comprising a computer-readable storage medium, having stored thereon instructions, that when executed on a processor of a handset, cause the handset to perform a method comprising:
uploading an empirical formula, said empirical formula relating absorbed radiation to a set handset parameters;
retrieving current levels of said set of handset parameters;
substituting said current levels of said set of handset parameters in said empirical formula to receive an estimation of absorbed radiation; and
performing an action in case said estimation of absorbed radiation exceeds a threshold.
US12/685,158 2009-02-09 2010-01-11 Method and a system for controlling and tracking radiation emitted from mobile phones Abandoned US20100203862A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/685,158 US20100203862A1 (en) 2009-02-09 2010-01-11 Method and a system for controlling and tracking radiation emitted from mobile phones
US13/795,029 US8787996B2 (en) 2009-02-09 2013-03-12 Method and a system for controlling and tracking radiation emitted from mobile phones

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15080209P 2009-02-09 2009-02-09
US12/685,158 US20100203862A1 (en) 2009-02-09 2010-01-11 Method and a system for controlling and tracking radiation emitted from mobile phones

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/795,029 Continuation US8787996B2 (en) 2009-02-09 2013-03-12 Method and a system for controlling and tracking radiation emitted from mobile phones

Publications (1)

Publication Number Publication Date
US20100203862A1 true US20100203862A1 (en) 2010-08-12

Family

ID=42540832

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/685,158 Abandoned US20100203862A1 (en) 2009-02-09 2010-01-11 Method and a system for controlling and tracking radiation emitted from mobile phones
US13/795,029 Expired - Fee Related US8787996B2 (en) 2009-02-09 2013-03-12 Method and a system for controlling and tracking radiation emitted from mobile phones

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/795,029 Expired - Fee Related US8787996B2 (en) 2009-02-09 2013-03-12 Method and a system for controlling and tracking radiation emitted from mobile phones

Country Status (1)

Country Link
US (2) US20100203862A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110301886A1 (en) * 2009-03-03 2011-12-08 Ntt Docomo, Inc. Absorbed power measuring method, local average absorbed power measuring method, local average absorbed power calculating apparatus, and local average absorbed power calculating program
US20120071195A1 (en) * 2010-09-21 2012-03-22 Broadcom Corporation Transmit Power Management for Specific Absorption Rates
US20120068914A1 (en) * 2010-09-20 2012-03-22 Kopin Corporation Miniature communications gateway for head mounted display
EP2549661A1 (en) * 2011-07-20 2013-01-23 Telekomunikacja Polska S.A. A system for continuous monitoring of electromagnetic radiation energy emitted by mobile telephone with automatic notification of any hazard arising for the health of its user
WO2013011352A1 (en) 2011-07-18 2013-01-24 Nokia Corporation Intelligent radio frequency power control
WO2013190410A1 (en) * 2012-06-21 2013-12-27 Koninklijke Philips N.V. Hybrid rf – optical link for mobile communication devices
EP2793401A1 (en) * 2013-04-17 2014-10-22 Fujitsu Laboratories of Europe Limited Tracking exposure to electomagnetic fields
US9008609B2 (en) 2011-08-12 2015-04-14 Empire Technology Development Llc Usage recommendation for mobile device
US9037164B2 (en) 2011-10-19 2015-05-19 Empire Technology Development Llc Changing the orientation of a user based at least in part on transmit power
WO2015124744A1 (en) * 2014-02-21 2015-08-27 Trust Battery Ireland Limited Recordal of potential harmful radiation
EP2950597A1 (en) * 2014-05-30 2015-12-02 Cellraid Ltd Determining and controlling radiation exposure
EP2950468A1 (en) * 2014-05-30 2015-12-02 Cellraid Ltd Determining radiation exposure
EP2950469A1 (en) * 2014-05-30 2015-12-02 Cellraid Ltd Determining and controlling radiation exposure
EP2996252A1 (en) * 2014-09-10 2016-03-16 Cellraid Ltd Determining and controlling radiation absorption
US9918170B2 (en) 2013-07-09 2018-03-13 Nokia Technologies Oy Hearing-aid compatible display apparatus
US10103763B2 (en) 2014-02-21 2018-10-16 Trust Technology World Dmcc Remedial signal generator
CN109861772A (en) * 2019-01-11 2019-06-07 上海莱雨信息科技有限公司 A kind of multiple terminals sharing method of radiation protection technology information
US20200091950A1 (en) * 2016-12-14 2020-03-19 Trust Technology World Dmcc Telephone handset containing a remedial device
WO2021225928A1 (en) * 2020-05-04 2021-11-11 Contech RF Devices, LLC System and method to reduce a mobile device user's radiation exposure and enhance battery life
US11324014B2 (en) * 2017-12-22 2022-05-03 Qualcomm Incorporated Exposure detection in millimeter wave systems
US11476881B1 (en) * 2020-04-20 2022-10-18 Riccardo Vieri System to reduce global cell phone radiation levels

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2539079B2 (en) 2013-12-24 2015-12-17 Televes, S.A. Method to control, limit and / or disable the radiation power of a mobile device
KR102055616B1 (en) * 2013-12-31 2019-12-13 한국전자통신연구원 Method for providing electromagnetic waves exposure information and user device
US10812125B1 (en) * 2019-05-31 2020-10-20 Intel Corporation Radiation exposure control for beamforming technologies

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011828A1 (en) * 2000-06-27 2002-01-31 Alon Wallach Electromagnetic radiation alerting device for use with a cellular telephone
US20020016155A1 (en) * 2000-05-17 2002-02-07 Philippe Charbonnier Mobile telephone and method for the parametrization of the telephone
US20020160717A1 (en) * 2001-01-16 2002-10-31 Anders Persson Chamber for and a method of processing electronic devices and the use of such a chamber
US20040121795A1 (en) * 2002-08-20 2004-06-24 Did-Min Shih Personal communication device with transmitted RF power strength indicator
US20040121799A1 (en) * 2002-12-24 2004-06-24 Tzeng-Chih Chiou Mobile phone for informing users of radiation power levels
US20060019668A1 (en) * 1999-06-23 2006-01-26 Besma Kraiem Calibration procedure for wireless networks with direct mode traffic
US7146139B2 (en) * 2001-09-28 2006-12-05 Siemens Communications, Inc. System and method for reducing SAR values
US20080159547A1 (en) * 2006-12-29 2008-07-03 Motorola, Inc. Method for autonomously monitoring and reporting sound pressure level (SPL) exposure for a user of a communication device
US7567530B2 (en) * 2004-12-06 2009-07-28 Pantech Co., Ltd. Method of converting communication channel in mobile communication terminal
US20100056210A1 (en) * 2008-09-03 2010-03-04 Modu Ltd. Low radiation wireless communicator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI963389A (en) * 1996-08-30 1998-03-01 Nokia Mobile Phones Ltd Instructional system for hand portable phone
DE10204877A1 (en) * 2002-02-06 2003-08-14 Siemens Ag Radio communication device and printed circuit board with at least one electrically conductive correction element
TWI249935B (en) * 2003-10-22 2006-02-21 Univ Nat Taiwan Science Tech Mobile phone with reduced specific absorption rate (SAR) of electromagnetic waves on human body
JP4177761B2 (en) * 2003-11-12 2008-11-05 株式会社エヌ・ティ・ティ・ドコモ Weight determination device and weight determination method
US20080261584A1 (en) * 2007-04-23 2008-10-23 Research In Motion Limited Method and system for conducting specific absorption rate testing of a mobile communication device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060019668A1 (en) * 1999-06-23 2006-01-26 Besma Kraiem Calibration procedure for wireless networks with direct mode traffic
US20020016155A1 (en) * 2000-05-17 2002-02-07 Philippe Charbonnier Mobile telephone and method for the parametrization of the telephone
US20020011828A1 (en) * 2000-06-27 2002-01-31 Alon Wallach Electromagnetic radiation alerting device for use with a cellular telephone
US20020160717A1 (en) * 2001-01-16 2002-10-31 Anders Persson Chamber for and a method of processing electronic devices and the use of such a chamber
US7146139B2 (en) * 2001-09-28 2006-12-05 Siemens Communications, Inc. System and method for reducing SAR values
US20040121795A1 (en) * 2002-08-20 2004-06-24 Did-Min Shih Personal communication device with transmitted RF power strength indicator
US20040121799A1 (en) * 2002-12-24 2004-06-24 Tzeng-Chih Chiou Mobile phone for informing users of radiation power levels
US7567530B2 (en) * 2004-12-06 2009-07-28 Pantech Co., Ltd. Method of converting communication channel in mobile communication terminal
US20080159547A1 (en) * 2006-12-29 2008-07-03 Motorola, Inc. Method for autonomously monitoring and reporting sound pressure level (SPL) exposure for a user of a communication device
US20100056210A1 (en) * 2008-09-03 2010-03-04 Modu Ltd. Low radiation wireless communicator

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110301886A1 (en) * 2009-03-03 2011-12-08 Ntt Docomo, Inc. Absorbed power measuring method, local average absorbed power measuring method, local average absorbed power calculating apparatus, and local average absorbed power calculating program
US8903666B2 (en) * 2009-03-03 2014-12-02 Ntt Docomo, Inc. Absorbed power measuring method, local average absorbed power measuring method, local average absorbed power calculating apparatus, and local average absorbed power calculating program
US8706170B2 (en) * 2010-09-20 2014-04-22 Kopin Corporation Miniature communications gateway for head mounted display
US20120068914A1 (en) * 2010-09-20 2012-03-22 Kopin Corporation Miniature communications gateway for head mounted display
US20120071195A1 (en) * 2010-09-21 2012-03-22 Broadcom Corporation Transmit Power Management for Specific Absorption Rates
US8825102B2 (en) * 2010-09-21 2014-09-02 Broadcom Corporation Transmit power management for specific absorption rates
CN103688575A (en) * 2011-07-18 2014-03-26 诺基亚公司 Intelligent radio frequency power control
WO2013011352A1 (en) 2011-07-18 2013-01-24 Nokia Corporation Intelligent radio frequency power control
EP2735198A4 (en) * 2011-07-18 2015-03-04 Nokia Corp Intelligent radio frequency power control
US9351261B2 (en) 2011-07-18 2016-05-24 Nokia Technologies Oy Intelligent radio frequency power control
EP2549661A1 (en) * 2011-07-20 2013-01-23 Telekomunikacja Polska S.A. A system for continuous monitoring of electromagnetic radiation energy emitted by mobile telephone with automatic notification of any hazard arising for the health of its user
US9008609B2 (en) 2011-08-12 2015-04-14 Empire Technology Development Llc Usage recommendation for mobile device
US9037164B2 (en) 2011-10-19 2015-05-19 Empire Technology Development Llc Changing the orientation of a user based at least in part on transmit power
WO2013190410A1 (en) * 2012-06-21 2013-12-27 Koninklijke Philips N.V. Hybrid rf – optical link for mobile communication devices
EP2793401A1 (en) * 2013-04-17 2014-10-22 Fujitsu Laboratories of Europe Limited Tracking exposure to electomagnetic fields
US20140313041A1 (en) * 2013-04-17 2014-10-23 Fujitsu Limited Tracking exposure to electromagnetic fields
US9330555B2 (en) * 2013-04-17 2016-05-03 Fujitsu Limited Tracking exposure to electromagnetic fields
US9918170B2 (en) 2013-07-09 2018-03-13 Nokia Technologies Oy Hearing-aid compatible display apparatus
WO2015124744A1 (en) * 2014-02-21 2015-08-27 Trust Battery Ireland Limited Recordal of potential harmful radiation
RU2697261C2 (en) * 2014-02-21 2019-08-13 Траст Текнолоджи Уорлд - Дмсс Registration record of potentially harmful radiation
US10382081B2 (en) 2014-02-21 2019-08-13 Trust Technology World Dmcc Recordal of potential harmful radiation
AU2019203238B2 (en) * 2014-02-21 2021-08-05 Trust Technology World - Dmcc Recordal of potential harmful radiation
GB2524720A (en) * 2014-02-21 2015-10-07 Trust Battery Ireland Ltd Recordal of potential harmful radiation
CN106134092A (en) * 2014-02-21 2016-11-16 托拉斯技术世界迪拜多种商品中心 The record of potentially harmful radiation
ES2620283R1 (en) * 2014-02-21 2018-02-20 Trust Technology World - Dmcc POTENTIAL HARMFUL RADIATION REGISTRATION
US10103763B2 (en) 2014-02-21 2018-10-16 Trust Technology World Dmcc Remedial signal generator
EP2950468A1 (en) * 2014-05-30 2015-12-02 Cellraid Ltd Determining radiation exposure
EP2950469A1 (en) * 2014-05-30 2015-12-02 Cellraid Ltd Determining and controlling radiation exposure
EP2950597A1 (en) * 2014-05-30 2015-12-02 Cellraid Ltd Determining and controlling radiation exposure
US10263657B2 (en) 2014-09-10 2019-04-16 Cellraid Ltd Determining and controlling radiation absorption in a user terminal
EP2996252A1 (en) * 2014-09-10 2016-03-16 Cellraid Ltd Determining and controlling radiation absorption
US20200091950A1 (en) * 2016-12-14 2020-03-19 Trust Technology World Dmcc Telephone handset containing a remedial device
US10998929B2 (en) * 2016-12-14 2021-05-04 Trust Technology World Dmcc Telephone handset containing a remedial device
US11324014B2 (en) * 2017-12-22 2022-05-03 Qualcomm Incorporated Exposure detection in millimeter wave systems
CN109861772A (en) * 2019-01-11 2019-06-07 上海莱雨信息科技有限公司 A kind of multiple terminals sharing method of radiation protection technology information
US11476881B1 (en) * 2020-04-20 2022-10-18 Riccardo Vieri System to reduce global cell phone radiation levels
WO2021225928A1 (en) * 2020-05-04 2021-11-11 Contech RF Devices, LLC System and method to reduce a mobile device user's radiation exposure and enhance battery life

Also Published As

Publication number Publication date
US20130196723A1 (en) 2013-08-01
US8787996B2 (en) 2014-07-22

Similar Documents

Publication Publication Date Title
US8787996B2 (en) Method and a system for controlling and tracking radiation emitted from mobile phones
EP3234628B1 (en) A method, an apparatus and a computer program product for positioning
US11695443B2 (en) Wireless device performance optimization using dynamic power control
US20130252658A1 (en) Radiation Power Level Control System and Method for a Wireless Communication Device Based on a Tracked Radiation History
US20140171141A1 (en) Intelligent radio frequency power control
EP2443886A1 (en) Telecommunications method and apparatus for facilitating positioning measurements
EP2627060A1 (en) A mobile device for wireless data communication and a method for communicating data by wireless data communication in a data communication network
WO2018103441A1 (en) Network positioning method and terminal device
WO2015099751A1 (en) Apparatus, system and method of bluetooth communication
CN104581602A (en) Recording data training method, multi-track audio surrounding method and recording data training device
WO2016195892A1 (en) Managing specific absorption rate distribution to maximize transmit power of a wireless device
CN106714277B (en) Network connection method and terminal
WO2022147805A1 (en) Positioning measurement method, terminal device, network device
CN108471627A (en) Network quality determination method and device
WO2021114699A1 (en) Signal strength reporting method and apparatus, storage medium and terminal device
CN108449499B (en) Voice call data processing method and device, storage medium and mobile terminal
JP5608750B2 (en) Communication terminal
KR101290748B1 (en) Power-efficient mobile terminal location measurement method and location data managing method
CN102291677A (en) Wireless network testing device and method
CN109194998A (en) Data transmission method, device, electronic equipment and computer-readable medium
AU2018202582A1 (en) Telecommunications method and apparatus for facilitating measurements
KR101833827B1 (en) Method of acquiring location information by a user quipment and method of providing location information to user quipment by a network node
KR20200002904A (en) Scheduling Request Transmission Control Method and Related Products
US20190174291A1 (en) Methods and apparatus for providing access to emergency service providers
CN107659976B (en) Network access method and related product

Legal Events

Date Code Title Description
AS Assignment

Owner name: TAWKON LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRIEDLANDER, GIL;LUBOVSKY, AMIT;REEL/FRAME:023770/0933

Effective date: 20100110

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: QGT INTERNATIONAL, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CELLWIZE WIRELESS TECHNOLOGIES LTD.;REEL/FRAME:064187/0172

Effective date: 20230606