US20100212543A1 - Ink set, recording apparatus, and recording method - Google Patents

Ink set, recording apparatus, and recording method Download PDF

Info

Publication number
US20100212543A1
US20100212543A1 US12/708,611 US70861110A US2010212543A1 US 20100212543 A1 US20100212543 A1 US 20100212543A1 US 70861110 A US70861110 A US 70861110A US 2010212543 A1 US2010212543 A1 US 2010212543A1
Authority
US
United States
Prior art keywords
pigment
ink composition
ink
red
ink set
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/708,611
Other versions
US8277551B2 (en
Inventor
Shohei SHIONO
Tsuyoshi Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Assigned to SEIKO EPSON CORPORATION reassignment SEIKO EPSON CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SANO, TSUYOSHI, SHIONO, SHOHEI
Publication of US20100212543A1 publication Critical patent/US20100212543A1/en
Application granted granted Critical
Publication of US8277551B2 publication Critical patent/US8277551B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/40Ink-sets specially adapted for multi-colour inkjet printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks

Definitions

  • the present invention relates to an ink set with an extended color reproduction range (gamut), and particularly to an ink set having an extended color reproduction range in a blue region of a dark portion and excellent color reproducibility in other color regions. Also, the present invention relates to a recording apparatus and recording method using the ink set.
  • an extended color reproduction range gamut
  • the present invention relates to a recording apparatus and recording method using the ink set.
  • a CIE/L*a*b* color system is known as a color model. According to the CIE/L*a*b*, all colors (spectra) in a visible light region which can be observed by the human eye can be indicated by chromaticity coordinates.
  • L* represents luminance (brightness) and a* and b* represent chromaticity showing hue and saturation.
  • a* represents a position between red and green colors, and negative value and positive value indicate green and red, respectively.
  • b* represents a position between yellow and blue colors, and negative value and positive value indicate blue and yellow, respectively. Since the L*a*b* color model is tree-dimensional, a color space is expressed by a three-dimensional space in which luminance is represented on the vertical axis.
  • the L*a*b* color model is merely an index used for conceptually explaining a color space, and the color reproduction range is limited. Namely, for example, when an image is formed on a recording medium using a pigment-based ink or ink set, a color which cannot be reproduced by a color of the L*a*b* color model is present.
  • Japanese Unexamined Patent Application Publication No. 2006-282810 discloses that an ink having high color development and excellent ejection stability, storage stability, and ink reliability for clogging and the like is prepared using an ink composition containing a quinacridone solid solution pigment, a polyether-modified polydimethylsiloxane compound, and water.
  • Japanese Unexamined Patent Application Publication No. 2006-282810 discloses that an ink having high color development and excellent ejection stability, storage stability, and ink reliability for clogging and the like is prepared using an ink composition containing a quinacridone solid solution pigment, a polyether-modified polydimethylsiloxane compound, and water.
  • 2007-186641 discloses that an ink having excellent printability, ejection stability, storage stability, and ink reliability for clogging and the like is realized using an ink composition containing a surface-treated pigment (yellow, magenta, cyan) including hydrophilic dispersive groups bonded to the surfaces of a solid-solution pigment composed of two or more specified pigments, a water-insoluble vinyl polymer, and water.
  • a surface-treated pigment yellow, magenta, cyan
  • hydrophilic dispersive groups bonded to the surfaces of a solid-solution pigment composed of two or more specified pigments, a water-insoluble vinyl polymer, and water.
  • the inventors intensively studied in order to extend a color reproduction range in a blue region of a dark portion.
  • the inventors have proposed in Japanese Patent Application No. 2008-215056 as prior application that the color reproduction range in a blue region of a dark portion with a L* value of 20 or less can be extended by an ink set including a combination of a cyan ink composition containing C. I. Pigment Blue 15:6 or C. I. Pigment Blue 60 as a pigment and a magenta ink composition containing a quinacridone pigment.
  • a color with a L* value of 20 or less, an a* value of 30 or more, and a b value of ⁇ 75 or less can be realized by an ink set including a combination of a cyan ink composition containing C. I. Pigment Blue 15:6 as a pigment and a magenta ink composition containing a quinacridone solid solution pigment.
  • a blue region color is reproduced by mixing a cyan ink composition and a magenta ink composition
  • a red region color is reproduced by mixing a yellow ink composition and a magenta ink composition
  • a green region color is reproduced by mixing a yellow ink composition and a cyan ink composition. Therefore, when the color reproduction range in a blue region is extended, it is necessary to take account of color reproducibility in a green region which is reproduced by a cyan ink composition and a yellow ink composition and in a red region which is reproduced by a yellow ink composition and a magenta ink composition.
  • C. I. Pigment Blue 60 contained in a cyan ink composition is an effective pigment type for enlarging the reproduction range in the blue region of a dark portion, the pigment significantly decreases the color development in the green region. Therefore, it has been proposed in Japanese Patent Application No. 2008-232165 that reproducibility in both the blue region and the green region can be realized by an ink set including a combination of a cyan ink composition containing C. I. Pigment Blue 15:6 as a pigment, a magenta ink composition containing a quinacridone pigment selected from the group consisting of C. I. Pigment Violet 19, C. I.
  • C. I. Pigment Blue 15:6 contained as a pigment in a cyan ink composition has poor graininess for recoding an image in a high-brightness region.
  • An ink set is generally composed of a cyan ink composition, a magenta ink composition, a yellow ink composition, a light cyan ink composition, and a light magenta ink composition.
  • an ink composition (light ink composition) at a lower pigment concentration among the similar color ink compositions in the ink set is used for recording an image in a high-brightness region.
  • An advantage of some aspects of the invention is that the invention provides an ink set having an enlarged color reproduction range (gamut) and excellent graininess in a high-brightness region.
  • Another advantage of some aspects of the invention is that the invention provides a recording method and a recording apparatus using the ink set.
  • the present invention has been achieved on the basis of the above-described findings and is as follows.
  • An ink set including:
  • a cyan ink composition containing C. I. Pigment Blue 15:6 as a pigment
  • a yellow ink composition containing a pigment selected from the group consisting of C. I. Pigment Yellow 74, C. I. Pigment Yellow 213, and C. I. Pigment Yellow 185;
  • a light magenta ink composition containing a quinacridone pigment selected from the group consisting of C. I. Pigment Violet 19, C. I. Pigment Red 122, C. I. Pigment Red 202, and C. I. Pigment Red 209 or a quinacridone solid solution pigment composed of at least two selected from the group at a pigment concentration lower than that of the magenta ink composition; and
  • a light cyan ink composition containing C. I. Pigment Blue 15:3 as a pigment at a pigment concentration lower than that of the cyan ink composition.
  • a recording apparatus including the ink set described above in any one of the terms (1) to (8).
  • a ink set according to the present invention includes a light cyan ink composition used for recording images in a high-brightness region, the pigment type used in the light cyan ink composition being different from that in a cyan ink composition of a higher concentration than the light cyan ink composition.
  • the light cyan ink composition uses C. I. Pigment Blue 15:3 of a pigment type different from C. I. Pigment Blue 15:6 which is a pigment type of the cyan ink composition.
  • the configuration permits the formation of a high-quality image with excellent graininess in a high-brightness cyan region and green region where an image is recorded with a light cyan ink composition.
  • the ink set according to the present invention can reproduce a color in a dark portion blue region having an L* value of 20 or less, an a* value of 30 or more, and a b* value of ⁇ 75 or less according to CIE standards, which has so far been impossible to reproduce. Also, the ink set has excellent color reproducibility in a green region and can form a high-quality image with excellent graininess even in a high-brightness cyan region and green region.
  • FIG. 6 is a chart showing graininess in green regions of ink sets of Example 3 and Comparative Example 5.
  • FIG. 7 is a chart showing graininess in cyan regions of ink sets of Example 3 and Comparative Example 5.
  • a cyan ink composition, a magenta ink composition, a yellow ink composition, a light cyan ink composition, and a light magenta ink composition which constitute an ink set according to the present invention are described in detail below.
  • C. I. Pigment Blue 15:6 (hereinafter, abbreviated as “P. B. 15:6”) can be used in a cyan ink composition.
  • C. I. Pigment Violet 19 (hereinafter, abbreviated as “P. V. 19”)
  • C. I. Pigment Red 122 hereinafter, abbreviated as “P. R. 122”
  • C. I. Pigment Red 202 (hereinafter, abbreviated as “P. R. 202”)
  • C. I. Pigment Red 209 (hereinafter, abbreviated as “P. R. 209”)
  • P. R. 209 can be used as quinacridone pigments in a magenta ink composition and a light magenta ink composition.
  • a quinacridone solid solution pigment is composed of at least two selected from the group consisting of P. V. 19 (in a solid solution, ⁇ -type P. V. 19 is preferred from the viewpoint of color development), P. R. 122, P. R. 202, and P. R. 209.
  • a combination of two or more quinacridone compounds is not particularly limited.
  • a solid solution pigment including a combination of P. V. 19 and P. R. 209, a combination of P. V. 19 and P. R. 122, or a combination of P. V. 19 and P. R. 202 is preferred from the viewpoint of color development.
  • a solid solution pigment including a combination of P. V. 19 and P. R. 202 is preferred.
  • the mixing ratio of P. V. 19 and P. R. 209 in the solid solution pigment is preferably P. V. 19:P. R. 209 in a range of 10:90 to 90:10, more preferably in a range of 15:85 to 85:15, and particularly preferably in a range of 30:70 to 50:50.
  • P. V. 19:P. R. 122 is preferably in a range of 10:90 to 90:10, more preferably in a range of 15:85 to 85:15, and particularly preferably in a range of 30:70 to 50:50.
  • 202 is preferably in a range of 10:90 to 90:10, more preferably in a range of 15:85 to 85:15, and particularly preferably in a range of 30:70 to 50:50.
  • a quinacridone pigment is formed in the solid solution pigment, it is possible to form a magenta ink composition and a light magenta ink composition having excellent color reproducibility in a red region with high coloration and high brightness and excellent color reproducibility in a violet region.
  • a solid solution pigment including P. V. 19 and P. R. 202 in which the mass of P. V. 19 is larger than the mass of P. R. 202 is excellent in color reproducibility in a red region with high coloration and high brightness and excellent in color reproducibility in a violet region.
  • the method for producing the quinacridone solid solution pigment is not particularly limited, and a known production method can be used. Specifically, the methods disclosed in Japanese Unexamined Patent Application Publication Nos. 11-49998, 2000-319534, and 2003-253150 can be used.
  • the quinacridone solid solution pigment represents a pigment which is present as a mixed crystal (crystallized in a mixed state) of a plurality of quinacridone pigment molecules and is different from a simple mixture of two or more quinacridone pigments.
  • a solid solution pigment composed of two or more quinacridone pigments can be easily confirmed by X-ray diffraction analysis.
  • an X-ray diffraction pattern thereof corresponds to overlap of the X-ray diffraction patterns of respective pigments, and the peak intensity is proportional to the mixing ratio.
  • a quinacridone solid solution pigment is formed, a diffraction pattern peculiar to a newly formed crystal is observed.
  • the average particle diameter of the quinacridone solid solution pigment is preferably in a range of 10 nm to 200 nm and more preferably in a range of 50 nm to 150 nm.
  • the average particle diameter is less than 10 nm, weather resistance may be decreased, while when the average particle diameter exceeds 200 nm, precipitation may occur, thereby failing to stably eject the ink.
  • C. I. Pigment Yellow 74 (hereinafter, abbreviated as “P. Y. 74”), C. I. Pigment Yellow 213 (hereinafter, abbreviated as “P. Y. 213”), and C. I. Pigment Yellow 185 (hereinafter, abbreviated as “P. Y. 185”) can be used in a yellow ink composition.
  • P. B. 15:3 commercially available C. I. Pigment Blue 15:3 (hereinafter, abbreviated as “P. B. 15:3”) can be used in a light cyan ink composition.
  • the pigment content in each of the cyan ink composition, the magenta ink composition, and the yellow ink composition is preferably 0.1 to 15% by mass from the viewpoint of ejection stability, storage stability, ink reliability such as clogging, and the like.
  • each of the light cyan ink composition and the light magenta ink composition is an ink composition having a lower pigment concentration than that of the ink composition of a similar color and preferably has a pigment concentration of 2% by mass or less, more preferably 1.5 to 0.3% by mass, from the viewpoint of gradation and graininess.
  • components other than the pigment contained in each of the ink composition of the present invention are not particularly limited, the components below are preferably contained.
  • a dispersant is not particularly limited, and any dispersant which can be used for pigment inks can be used.
  • a cationic dispersant an anionic dispersant, a nonionic dispersant, a surfactant, and the like can be used.
  • anionic dispersant examples include polyacrylic acid, polymethacrylic acid, acrylic acid-acrylonitrile copolymers, vinyl acetate-acrylic acid ester copolymers, acrylic acid-acrylic acid alkyl ester copolymers, styrene-acrylic acid copolymers, styrene-methacrylic acid copolymers, styrene-acrylic acid-acrylic acid alkyl ester copolymers, styrene-methacrylic acid-acrylic acid alkyl ester copolymers, styrene- ⁇ -methylstyrene-acrylic acid copolymers, styrene- ⁇ -methylstyrene-acrylic acid-acrylic acid alkyl ester copolymers, styrene-maleic acid copolymers, vinylnaphthalene-maleic acid copolymers, vinyl acetate-ethylene copolymers, vinyl acetate-fatty acid vinyl ethylene copo
  • nonionic dispersant examples include polyvinyl pyrrolidone, polypropylene glycol, vinyl pyrrolidone-vinyl acetate copolymers, and the like.
  • surfactant serving as the dispersant include anionic surfactants such as sodium dodecylbenzenesulfonate, sodium laurate, ammonium salts of polyoxyethylene alkyl ether sulfate, and the like; and nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkyl esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene alkyl phenyl ethers, polyoxyethylene alkylamines, polyoxyethylene alkylamides, and the like.
  • styrene-(meth)acrylic acid copolymers are preferably used from the viewpoint of enhancing dispersion stability of pigments.
  • a water-insoluble vinyl polymer and the like which impart fixability and glossiness may be used as the dispersant.
  • each of the ink compositions preferably contains as a wetting agent at least one of polyhydric alcohols having, saccharides, and polyhydric alcohols having ethylene oxide chains.
  • wetting agent examples include polyhydric alcohols, such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, propylene glycol, butylene glycol, 1,2,6-hexanetriol, thioglycol, hexylene glycol, glycerin, trimethylolethane, trimethylolpropane, and the like; saccharides such as sugar alcohol and the like; polyhydric alcohols having ethylene oxide chains, such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether triethylene glycol monobutyl ether, and the like. At least one of these compounds is used.
  • polyhydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol,
  • each of the ink compositions preferably contains as a penetrant at least one of pyrrolidones, alkanediols, and glycol ethers.
  • a penetrant By adding the penetrant, wettability of a recording medium can be enhanced to improve penetrability of ink.
  • penetrant examples include pyrrolidones such as 2-pyrrolidone, N-methyl-2-pyrrolidone, and the like; alkanediols, such as 1,2-pentanediol, 1,2-hexanediol, and the like; and glycol ethers, such as ethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, and the like. At least one of these compounds is preferably used.
  • each of the ink compositions preferably contains as a surfactant at least one compound selected from the group consisting of acetylene glycols and polysiloxanes.
  • a surfactant By adding the surfactant, wettability of a recording medium can be enhanced to improve penetrability of ink.
  • each of the ink compositions may contain a low-boiling-point organic solvent from the viewpoint of shortening the ink drying time.
  • the low-boiling-point organic solvent include methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butanol, sec-butanol, tert-butanol, iso-butanol, n-pentanol, and the like, and at least one of these solvents is used.
  • a monohydric alcohol is preferred.
  • each of the ink compositions preferably contains the above-described pigment, dispersant, wetting agent, low-boiling-point organic solvent, penetrant, surfactant, and the like, and contains water as a balance.
  • water pure water or ultrapure water, such as ion exchanged water, ultrafiltered water, Milli-Q water, distilled water, or the like, is preferably used.
  • Such water which is sterilized by ultraviolet irradiation, adding hydrogen peroxide, or the like is preferred because the occurrence of mold or bacteria is prevented over a long period of time.
  • each of the ink compositions may contain additives, such as a fixing agent such as water-soluble rosin or the like, an anti-scattering agent/antiseptic agent such as sodium benzoate or the like, an antioxidant/ultraviolet absorber such as allophanate or the like, a chelating agent, an oxygen absorber, a pH adjuster, and the like, and at least one of these additives is used.
  • a fixing agent such as water-soluble rosin or the like
  • an anti-scattering agent/antiseptic agent such as sodium benzoate or the like
  • an antioxidant/ultraviolet absorber such as allophanate or the like
  • a chelating agent such as an oxygen absorber, a pH adjuster, and the like
  • the ink set of the present invention includes at least the yellow ink composition, the magenta ink composition, the cyan ink composition, the light cyan ink composition, the light magenta ink composition, and a black ink composition from the viewpoint of achieving color reproducibility in a wide range.
  • a colorant thereof is not particularly limited.
  • carbon black such as furnace black, lamp black, acetylene black, channel black, or the like
  • a metal compound such as copper oxide, iron oxide (C. I. Pigment Black 11), or the like, or an organic pigment such as aniline black (C. I. Pigment Black 1) or the like
  • carbon black which has relatively low specific gravity and little precipitates in water is preferred for ink jet. These may be used alone or as a mixture of two. Examples of carbon black as a pigment include No. 2300, No. 900, MCF88, No. 33, No.
  • the ink set of the present invention can be applied to various ink jet recording systems.
  • the ink jet recording systems include thermal jet-type ink jet, piezo ink jet, continuous ink jet, roller application, spray application, and the like.
  • the ink set of the present invention can be applied to a recording apparatus and the like using such a recording system.
  • glossy paper for ink jet recording is preferably used as a recording medium to which droplets of the ink set according to the present invention are adhered.
  • gloss paper represents plain paper in which an ink receiving layer having excellent surface glossiness is formed by special coating.
  • a recording medium using an electron beam-curable resin can be used as other polymer-coated glossy paper.
  • each of cyan ink compositions (C1, C2, C3), magenta ink compositions (M1, M2), a yellow ink composition (Y1), light cyan ink compositions (LC1, LC2), a light magenta ink compositions (LM1), and a black ink composition (K1) was prepared.
  • the amount of each composition added is shown by % by mass.
  • the dispersant used in Table 1 is a styrene-acrylic copolymer, and the surfactant is BYK-348 manufactured by BYK Chemie Japan.
  • a quinacridone solid solution pigment contained in the magenta ink composition M2 and the light magenta ink composition LM1 a solid solution pigment containing ⁇ -type P. V. 19 and P. R. 202 at a mass ratio of 70:30 was prepared.
  • the resulting solid solution pigment showed a magenta color hue, but an X-ray diffraction pattern was different from a diffraction pattern of a mixture of ⁇ -type P. V. 19 and P. R. 202.
  • Printing was performed using an ink jet printer (“PX-5500” manufactured by Seiko Epson Corporation).
  • a cyan ink cartridge (Model No. ICC37 manufactured by Seiko Epson Corporation), a magenta ink cartridge (Model No. ICM37 manufactured by Seiko Epson Corporation), a yellow ink cartridge (Model No. ICY37 manufactured by Seiko Epson Corporation), and a black ink cartridge (Model No. ICBK33 manufactured by Seiko Epson Corporation) were filled with respective ink compositions in each of the combinations shown in Table 2, and ink sets of examples and comparative examples were formed.
  • the thus-prepared ink cartridges were mounted on the printer, and a printing test was conducted on photographic glossy paper (“Photopaper ⁇ Luster>” manufactured by Seiko Epson Corporation). In printing, a mixed color solid pattern with a duty or 85% or less was printed.
  • the black ink was used for finely controlling brightness.
  • duty represents a value calculated according to the following equation.
  • Duty (%) Number of actual printing dots/(longitudinal resolution ⁇ lateral resolution) ⁇ 100
  • the number of actual printing dots is the number of actual printing dots per unit area, and longitudinal resolution and lateral resolution are each resolution per unit area. “100% duty” represents the maximum ink mass of a single color for a pixel.
  • the L*a*b* color system coordinates of the resulting prints based on the color difference display method defined in CIE were measured using a colorimeter (Spectrolino (manufactured by Gretag Macbeth Corp.) according to JIS Z8729.
  • “VM” represents the magenta ink M2.
  • FIG. 1 indicates that the color reproduction range in a blue region of a dark portion with a L* of 20 or less can be significantly enlarged by combining a cyan ink composition containing P. B. 15:6 or P. B. 60 as a pigment with a magenta ink composition containing a quinacridone pigment in comparison to use of a cyan ink composition containing P. B. 15:3 which has been used for various purposes.
  • FIG. 2 shows that a color with an L* value of 20 or less, an a* value of 30 or more, and a b* value of ⁇ 75 or less, which has been impossible to reproduce, can be realized by combining a cyan ink composition containing P. B. 15:6 as a pigment with a magenta ink composition containing a quinacridone solid solution pigment (VM) as a pigment.
  • VM quinacridone solid solution pigment
  • FIGS. 3 , 4 , and 5 show gamuts of ink sets of Example 2 and Comparative Examples 3 and 4.
  • a* indicates a position between red and green colors, and negative value and positive value represent green and red, respectively. Therefore, the more the negative a* value is, the wider the color reproduction range in a green region is.
  • a color in the green region is reproduced by a cyan ink composition and a yellow ink composition (Y1) containing P. Y. 74 as a pigment.
  • the gamut of the ink set of Comparative Example 4 (ink set including the cyan ink composition containing P. B. 60) is shown in white
  • the gamut of the ink set of Comparative Example 3 (ink set including the cyan ink composition containing P. B. 15:3) is shown in black
  • a common portion of both gamuts is shown by shading.
  • FIG. 3 indicates that in a blue region of a dark portion, color reproducibility of the ink set of Comparative Example 3 using P. B. 15:3 as a pigment is inferior to the ink set using P. B. 60 as a pigment (Comparative Example 4) (refer to FIGS. 1 and 2 ), while in a green region, the ink set of Comparative Example 3 shows good color reproducibility. For example, in a region with L* of 10 to 40, a black portion is wide within a region of negative a* values. Namely, it is shown that the ink set (Comparative Example 3) using P. B. 15:3 has wider color reproducibility in a green region as compared with the ink set (Comparative Example 4) using P. B. 60.
  • the gamut of the ink set of Example 2 (ink set including the cyan ink composition containing P. B. 15:6) is shown in white
  • the gamut of the ink set of Comparative Example 3 (ink set including the cyan ink composition containing P. B. 15:3) is shown in black
  • a common portion of both gamuts is shown by shading.
  • FIG. 4 indicates that in a blue region of a dark portion, the ink set of Example 2 using P. B. 15:6 as a pigment has excellent color reproducibility and, in a green region, the ink set of Example 2 has wide color reproducibility equivalent to the ink set of Comparative Example 3 using P. B. 15:3 as a pigment.
  • the gamut of the ink set of Example 2 (ink set including the cyan ink composition containing P. B. 15:6) is shown in white
  • the gamut of the ink set of Comparative Example 4 (ink set including the cyan ink composition containing P. B. 60) is shown in black
  • a common portion of both gamuts is shown by shading.
  • FIG. 5 indicates that in both the blue region and the green region, the ink set using P. B. 15:6 as a pigment has wider color reproducibility than that of the ink set using P. B. 60 as a pigment.
  • a cyan ink cartridge (Model No. ICC37 manufactured by Seiko Epson Corporation), a magenta ink cartridge (Model No. ICM37 manufactured by Seiko Epson Corporation), a yellow ink cartridge (Model No. ICY37 manufactured by Seiko Epson Corporation), a black ink cartridge (Model No. ICBK33 manufactured by Seiko Epson Corporation), a light cyan ink cartridge (Model No. ICLC37 manufactured by Seiko Epson Corporation), and a light magenta ink cartridge (Model No. ICLM37 manufactured by Seiko Epson Corporation) were filled with respective ink compositions in each of the combinations shown in Table 3, and ink sets of an example and a comparative example were formed.
  • the thus-prepared ink cartridges were mounted on the printer, and a gradation patch including 14 evaluation images with L* values of 50 to 95 of green and cyan colors was printed on photographic glossy paper (“Photopaper ⁇ Luster>” manufactured by Seiko Epson Corporation).
  • the resulting print was taken in as electron data by a scanner (“GT-X770” manufactured by Seiko Epson Corporation), and graininess index values were calculated with a dedicated software.
  • the scan resolution was 1200 dpi
  • an analysis region was 256 ⁇ 256 pixels.
  • FIG. 6 is a chart showing the results of evaluation of graininess of 14 types of evaluation images in the green region. Also, FIG. 7 is a chart showing the results of evaluation of graininess of 14 types of evaluation images in the cyan region.
  • u is a spatial frequency
  • WS(u) is a Wiener spectrum of an image
  • VTF(u) is visual sensitivity characteristic with respect to the spatial frequency
  • L is an observation distance (300 mm).
  • (L*+16/116) 0.8 is a factor for adjusting the index value to the human visual characteristics.
  • VTF ( u ) 5.05 exp( ⁇ 0.318 ⁇ Lu/ 180)[1 ⁇ exp( ⁇ 0.1 ⁇ Lu/ 180)]
  • WS(u) is considered to indicate the periodicity of an image. For example, considering an image in which a large filled circle pattern is repeatedly printed, large peaks appear, in a WS(u) spectrum of the image, at spatial frequency u 1 corresponding to the diameter of the filled circles and spatial frequency u 2 corresponding to the repetition period of the filled circles. Conversely, when peaks appear at spatial frequencies u 1 and u 2 in a WS(u) spectrum, it is considered that the image includes two periodic structures corresponding to the respective spatial frequencies.
  • the sensitivity of the human eye depends on the spatial frequency, and there is spatial frequency up at which the sensitivity is highest. Namely, the human eye has the characteristic that the sensitivity increases as the spatial frequency comes closer to the spatial frequency up, and the sensitivity decreases as the spatial frequency comes away from the spatial frequency up. Therefore, in an image including repeated filled circles, the filled circles become more noticeable as one of the spatial frequency u 1 corresponding to the diameter of the filled circles and the spatial frequency u 2 corresponding to the repetition period of the filled circles comes closer to the spatial frequency up. Conversely, the filled circles become less noticeable as the spatial frequency u 1 and the spatial frequency u 2 come away from the spatial frequency up. Also, the blackness of the filled circles influences noticeability.
  • a filled circuit of dark color formed with a dark ink such as K ink is more noticeable than a filled circle of light color formed with a light ink such as LK ink or LLK ink.
  • the influence of blackness of filled circles is reflected as the intensity of WS(u).
  • the WS(u) is calculated by two-dimensional fast Fourier transform (FFT) of a L* component image formed by color conversion of scan image data and then converting to a one-dimensional polar coordinate system.
  • the evaluation equation according to equation 1 quantifies graininess on the basis of the above-described human eye characteristics. Namely, noticeability of dots (graininess of image) is quantified as graininess index value GF by human-eye-weighting WS(u) showing periodicity of an image and integrating WS(u) with respect to spatial frequency (reference document: Makoto Fujino, The Imaging Society of Japan “Japan Hardcopy '99” P. 291-294).
  • FIGS. 6 and 7 indicate that as the L* value increases, the graininess index increases, and thus graininess deteriorates. It is found that particularly in a high-brightness region with an L* of 80 or more, deterioration of graininess can be significantly suppressed using P. B. 15:3.
  • the ink set according to the present invention can reproduce a color in a dark portion blue region having an L* value of 20 or less, an a* value of 30 or more, and a b* value of ⁇ 75 or less according to CIE standards, which has so far been impossible to reproduce. Also, the ink set has excellent color reproducibility in a green region and can form a high-quality image with excellent graininess even in a high-brightness cyan region and green region.

Abstract

An ink set includes a cyan ink composition containing C. I. Pigment Blue 15:6 as a pigment; a magenta ink composition containing a quinacridone pigment selected from the group consisting of C. I. Pigment Violet 19, C. I. Pigment Red 122, C. I. Pigment Red 202, and C. I. Pigment Red 209 or a quinacridone solid solution pigment composed of at least two selected from the group; a yellow ink composition containing a pigment selected from the group consisting of C. I. Pigment Yellow 74, C. I. Pigment Yellow 213, and C. I. Pigment Yellow 185; a light magenta ink composition containing a quinacridone pigment selected from the group consisting of C. I. Pigment Violet 19, C. I. Pigment Red 122, C. I. Pigment Red 202, and C. I. Pigment Red 209 or a quinacridone solid solution pigment composed of at least two selected from the group at a pigment concentration lower than that of the magenta ink composition; and a light cyan ink composition containing C. I. Pigment Blue 15:3 as a pigment at a pigment concentration lower than that of the cyan ink composition.

Description

    BACKGROUND
  • 1. Technical Field
  • The present invention relates to an ink set with an extended color reproduction range (gamut), and particularly to an ink set having an extended color reproduction range in a blue region of a dark portion and excellent color reproducibility in other color regions. Also, the present invention relates to a recording apparatus and recording method using the ink set.
  • 2. Related Art
  • A CIE/L*a*b* color system is known as a color model. According to the CIE/L*a*b*, all colors (spectra) in a visible light region which can be observed by the human eye can be indicated by chromaticity coordinates.
  • Among the three parameters (L*, a*, b*) of the CIE/L*a*b* color system, L* represents luminance (brightness) and a* and b* represent chromaticity showing hue and saturation. When L*=0, a black color is indicated, and when L*=100, a white color is indicated. In addition, a* represents a position between red and green colors, and negative value and positive value indicate green and red, respectively. Further, b* represents a position between yellow and blue colors, and negative value and positive value indicate blue and yellow, respectively. Since the L*a*b* color model is tree-dimensional, a color space is expressed by a three-dimensional space in which luminance is represented on the vertical axis.
  • However, the L*a*b* color model is merely an index used for conceptually explaining a color space, and the color reproduction range is limited. Namely, for example, when an image is formed on a recording medium using a pigment-based ink or ink set, a color which cannot be reproduced by a color of the L*a*b* color model is present.
  • On the other hand, ink compositions containing various pigments with high color development have been proposed. Japanese Unexamined Patent Application Publication No. 2006-282810 discloses that an ink having high color development and excellent ejection stability, storage stability, and ink reliability for clogging and the like is prepared using an ink composition containing a quinacridone solid solution pigment, a polyether-modified polydimethylsiloxane compound, and water. In addition, Japanese Unexamined Patent Application Publication No. 2007-186641 discloses that an ink having excellent printability, ejection stability, storage stability, and ink reliability for clogging and the like is realized using an ink composition containing a surface-treated pigment (yellow, magenta, cyan) including hydrophilic dispersive groups bonded to the surfaces of a solid-solution pigment composed of two or more specified pigments, a water-insoluble vinyl polymer, and water.
  • However, in particular, in a blue region of a dark portion having a L* value of 20 or less, color reproduction is limited. That is, when luminance is low, chromaticity and saturation are not easily expressed, and thus, for example, a color with an L* value of 20 or less, an a* value of 30 or more, and a b* value of −75 or less, such as (L*, a*, b*)=(19.4, 30.0, −72.6) or (L*, a*, b*)=(19.4, 37.6, −76.8) in the CIE/L*a*b* color system, cannot be reproduced on an image recording medium using droplets (ink). Therefore, the inventors intensively studied in order to extend a color reproduction range in a blue region of a dark portion. As a result, the inventors have proposed in Japanese Patent Application No. 2008-215056 as prior application that the color reproduction range in a blue region of a dark portion with a L* value of 20 or less can be extended by an ink set including a combination of a cyan ink composition containing C. I. Pigment Blue 15:6 or C. I. Pigment Blue 60 as a pigment and a magenta ink composition containing a quinacridone pigment. In particular, it has been proposed that a color with a L* value of 20 or less, an a* value of 30 or more, and a b value of −75 or less, which has so far been impossible to reproduce, can be realized by an ink set including a combination of a cyan ink composition containing C. I. Pigment Blue 15:6 as a pigment and a magenta ink composition containing a quinacridone solid solution pigment.
  • On the other hand, with respect to an ink set, generally, a blue region color is reproduced by mixing a cyan ink composition and a magenta ink composition, a red region color is reproduced by mixing a yellow ink composition and a magenta ink composition, and a green region color is reproduced by mixing a yellow ink composition and a cyan ink composition. Therefore, when the color reproduction range in a blue region is extended, it is necessary to take account of color reproducibility in a green region which is reproduced by a cyan ink composition and a yellow ink composition and in a red region which is reproduced by a yellow ink composition and a magenta ink composition. Namely, it is necessary to simultaneously satisfy the color reproduction ranges in the blue region and the other color regions. On the other hand, the inventors have found that although C. I. Pigment Blue 60 contained in a cyan ink composition is an effective pigment type for enlarging the reproduction range in the blue region of a dark portion, the pigment significantly decreases the color development in the green region. Therefore, it has been proposed in Japanese Patent Application No. 2008-232165 that reproducibility in both the blue region and the green region can be realized by an ink set including a combination of a cyan ink composition containing C. I. Pigment Blue 15:6 as a pigment, a magenta ink composition containing a quinacridone pigment selected from the group consisting of C. I. Pigment Violet 19, C. I. Pigment Red 122, C. I. Pigment Red 202, and C. I. Pigment Red 209 or a quinacridone solid solution pigment composed of at least two selected from the group, and a yellow ink composition containing a pigment selected from the group consisting of C. I. Pigment Yellow 74, C. I. Pigment Yellow 213, and C. I. Pigment Yellow 185.
  • However, the inventors have recently found that C. I. Pigment Blue 15:6 contained as a pigment in a cyan ink composition has poor graininess for recoding an image in a high-brightness region. An ink set is generally composed of a cyan ink composition, a magenta ink composition, a yellow ink composition, a light cyan ink composition, and a light magenta ink composition. In order to improve gradation and graininess, an ink composition (light ink composition) at a lower pigment concentration among the similar color ink compositions in the ink set is used for recording an image in a high-brightness region. However, it has been found that a problem with graininess, such as noticeable dots or the like, occurs in a high-brightness cyan region and green region in which an image is recorded using a light cyan composition containing C. I. Pigment Blue 15:6 as a pigment.
  • SUMMARY
  • An advantage of some aspects of the invention is that the invention provides an ink set having an enlarged color reproduction range (gamut) and excellent graininess in a high-brightness region.
  • Another advantage of some aspects of the invention is that the invention provides a recording method and a recording apparatus using the ink set.
  • The present invention has been achieved on the basis of the above-described findings and is as follows.
  • (1) An ink set including:
  • a cyan ink composition containing C. I. Pigment Blue 15:6 as a pigment;
  • a magenta ink composition containing a quinacridone pigment selected from the group consisting of C. I. Pigment Violet 19, C. I. Pigment Red 122, C. I. Pigment Red 202, and C. I. Pigment Red 209 or a quinacridone solid solution pigment composed of at least two selected from the group;
  • a yellow ink composition containing a pigment selected from the group consisting of C. I. Pigment Yellow 74, C. I. Pigment Yellow 213, and C. I. Pigment Yellow 185;
  • a light magenta ink composition containing a quinacridone pigment selected from the group consisting of C. I. Pigment Violet 19, C. I. Pigment Red 122, C. I. Pigment Red 202, and C. I. Pigment Red 209 or a quinacridone solid solution pigment composed of at least two selected from the group at a pigment concentration lower than that of the magenta ink composition; and
  • a light cyan ink composition containing C. I. Pigment Blue 15:3 as a pigment at a pigment concentration lower than that of the cyan ink composition.
  • (2) The ink set described above in (1), wherein the pigment contained in at least one of the magenta ink composition and the light magenta ink composition is a quinacridone solid solution pigment composed of at least two selected from the group consisting of C. I. Pigment Violet 19, C. I. Pigment Red 122, C. I. Pigment Red 202, and C. I. Pigment Red 209.
  • (3) The ink set described above in (2), wherein the pigment contained in at least any one of the magenta ink composition and the light magenta ink composition is a quinacridone solid solution pigment composed of C. I. Pigment Violet 19 and C. I. Pigment Red 202.
  • (4) The ink set described above in (3), wherein in the quinacridone solid solution pigment, the mass of C. I. Pigment Violet 19 is larger than the mass of C. I. Pigment Red 202.
  • (5) The ink set described above in (3) or (4), wherein in the quinacridone solid solution pigment, the mass ratio of C. I. Pigment Violet 19/C. I. Pigment Red 202 is 70/30 to 50/50.
  • (6) The ink set described above in any one of the terms (1) to (5), wherein C. I. Pigment Violet 19 contained in the quinacridone solid solution pigment is γ-type.
  • (7) The ink set described above in any one of the terms (1) to (6), wherein the pigment concentration of each of the light magenta ink composition and the light cyan ink composition is 2% by mass or less.
  • (8) The ink set described above in any one of the terms (1) to (7), including the cyan ink composition, the magenta ink composition, the yellow ink composition, the light magenta ink composition, the light cyan ink composition, and a black ink composition.
  • (9) A recording apparatus including the ink set described above in any one of the terms (1) to (8).
  • (10) A recording method using the ink set described above in any one of the terms (1) to (8).
  • A ink set according to the present invention includes a light cyan ink composition used for recording images in a high-brightness region, the pigment type used in the light cyan ink composition being different from that in a cyan ink composition of a higher concentration than the light cyan ink composition. Namely, the light cyan ink composition uses C. I. Pigment Blue 15:3 of a pigment type different from C. I. Pigment Blue 15:6 which is a pigment type of the cyan ink composition. The configuration permits the formation of a high-quality image with excellent graininess in a high-brightness cyan region and green region where an image is recorded with a light cyan ink composition.
  • Therefore, the ink set according to the present invention can reproduce a color in a dark portion blue region having an L* value of 20 or less, an a* value of 30 or more, and a b* value of −75 or less according to CIE standards, which has so far been impossible to reproduce. Also, the ink set has excellent color reproducibility in a green region and can form a high-quality image with excellent graininess even in a high-brightness cyan region and green region.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
  • FIG. 1 is a drawing showing gamuts at L*=20 of ink sets of Example 1 and Comparative Examples 1 and 2.
  • FIG. 2 is a drawing showing gamuts at L*=20 of ink sets of Example 2 and Comparative Examples 3 and 4.
  • FIG. 3 is a drawing showing gamuts at L*=10 to 90 of, ink sets of Comparative Examples 3 and 4.
  • FIG. 4 is a drawing showing gamuts at L*=10 to 90 of ink sets of Example 2 and Comparative Example 3.
  • FIG. 5 is a drawing showing gamuts at L*=10 to 90 of ink sets of Example 2 and Comparative Example 4.
  • FIG. 6 is a chart showing graininess in green regions of ink sets of Example 3 and Comparative Example 5.
  • FIG. 7 is a chart showing graininess in cyan regions of ink sets of Example 3 and Comparative Example 5.
  • DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • A cyan ink composition, a magenta ink composition, a yellow ink composition, a light cyan ink composition, and a light magenta ink composition which constitute an ink set according to the present invention are described in detail below.
  • 1. Pigment
  • In the present invention, commercially available C. I. Pigment Blue 15:6 (hereinafter, abbreviated as “P. B. 15:6”) can be used in a cyan ink composition.
  • Also, commercially available C. I. Pigment Violet 19 (hereinafter, abbreviated as “P. V. 19”), C. I. Pigment Red 122 (hereinafter, abbreviated as “P. R. 122”), C. I. Pigment Red 202 (hereinafter, abbreviated as “P. R. 202”), and C. I. Pigment Red 209 (hereinafter, abbreviated as “P. R. 209”) can be used as quinacridone pigments in a magenta ink composition and a light magenta ink composition.
  • In the present invention, a quinacridone solid solution pigment is composed of at least two selected from the group consisting of P. V. 19 (in a solid solution, γ-type P. V. 19 is preferred from the viewpoint of color development), P. R. 122, P. R. 202, and P. R. 209.
  • A combination of two or more quinacridone compounds is not particularly limited. However, in the present invention, a solid solution pigment including a combination of P. V. 19 and P. R. 209, a combination of P. V. 19 and P. R. 122, or a combination of P. V. 19 and P. R. 202 is preferred from the viewpoint of color development. In particular, a solid solution pigment including a combination of P. V. 19 and P. R. 202 is preferred.
  • The mixing ratio of P. V. 19 and P. R. 209 in the solid solution pigment is preferably P. V. 19:P. R. 209 in a range of 10:90 to 90:10, more preferably in a range of 15:85 to 85:15, and particularly preferably in a range of 30:70 to 50:50. In addition, P. V. 19:P. R. 122 is preferably in a range of 10:90 to 90:10, more preferably in a range of 15:85 to 85:15, and particularly preferably in a range of 30:70 to 50:50. Further, P. V. 19:P. R. 202 is preferably in a range of 10:90 to 90:10, more preferably in a range of 15:85 to 85:15, and particularly preferably in a range of 30:70 to 50:50. When a quinacridone pigment is formed in the solid solution pigment, it is possible to form a magenta ink composition and a light magenta ink composition having excellent color reproducibility in a red region with high coloration and high brightness and excellent color reproducibility in a violet region. In particular, a solid solution pigment including P. V. 19 and P. R. 202 in which the mass of P. V. 19 is larger than the mass of P. R. 202 is excellent in color reproducibility in a red region with high coloration and high brightness and excellent in color reproducibility in a violet region.
  • The method for producing the quinacridone solid solution pigment is not particularly limited, and a known production method can be used. Specifically, the methods disclosed in Japanese Unexamined Patent Application Publication Nos. 11-49998, 2000-319534, and 2003-253150 can be used. In addition, in the present invention, the quinacridone solid solution pigment represents a pigment which is present as a mixed crystal (crystallized in a mixed state) of a plurality of quinacridone pigment molecules and is different from a simple mixture of two or more quinacridone pigments.
  • In addition, whether or not a solid solution pigment composed of two or more quinacridone pigments can be easily confirmed by X-ray diffraction analysis. In case of a simple mixture of two types of quinacridone pigments, an X-ray diffraction pattern thereof corresponds to overlap of the X-ray diffraction patterns of respective pigments, and the peak intensity is proportional to the mixing ratio. On the other hand, when a quinacridone solid solution pigment is formed, a diffraction pattern peculiar to a newly formed crystal is observed.
  • In the present invention, the average particle diameter of the quinacridone solid solution pigment is preferably in a range of 10 nm to 200 nm and more preferably in a range of 50 nm to 150 nm. When the average particle diameter is less than 10 nm, weather resistance may be decreased, while when the average particle diameter exceeds 200 nm, precipitation may occur, thereby failing to stably eject the ink.
  • In addition, commercially available C. I. Pigment Yellow 74 (hereinafter, abbreviated as “P. Y. 74”), C. I. Pigment Yellow 213 (hereinafter, abbreviated as “P. Y. 213”), and C. I. Pigment Yellow 185 (hereinafter, abbreviated as “P. Y. 185”) can be used in a yellow ink composition.
  • Aldo, commercially available C. I. Pigment Blue 15:3 (hereinafter, abbreviated as “P. B. 15:3”) can be used in a light cyan ink composition.
  • In the present invention, the pigment content in each of the cyan ink composition, the magenta ink composition, and the yellow ink composition is preferably 0.1 to 15% by mass from the viewpoint of ejection stability, storage stability, ink reliability such as clogging, and the like.
  • In the present invention, each of the light cyan ink composition and the light magenta ink composition is an ink composition having a lower pigment concentration than that of the ink composition of a similar color and preferably has a pigment concentration of 2% by mass or less, more preferably 1.5 to 0.3% by mass, from the viewpoint of gradation and graininess.
  • 2. Components Other than Pigment
  • Although components other than the pigment contained in each of the ink composition of the present invention are not particularly limited, the components below are preferably contained.
  • A dispersant is not particularly limited, and any dispersant which can be used for pigment inks can be used. For example, a cationic dispersant, an anionic dispersant, a nonionic dispersant, a surfactant, and the like can be used.
  • Examples of the anionic dispersant include polyacrylic acid, polymethacrylic acid, acrylic acid-acrylonitrile copolymers, vinyl acetate-acrylic acid ester copolymers, acrylic acid-acrylic acid alkyl ester copolymers, styrene-acrylic acid copolymers, styrene-methacrylic acid copolymers, styrene-acrylic acid-acrylic acid alkyl ester copolymers, styrene-methacrylic acid-acrylic acid alkyl ester copolymers, styrene-α-methylstyrene-acrylic acid copolymers, styrene-α-methylstyrene-acrylic acid-acrylic acid alkyl ester copolymers, styrene-maleic acid copolymers, vinylnaphthalene-maleic acid copolymers, vinyl acetate-ethylene copolymers, vinyl acetate-fatty acid vinyl ethylene copolymers, vinyl acetate-maleic acid ester copolymers, vinyl acetate-crotonic acid copolymers, vinyl acetate-acrylic acid copolymers, and the like. Examples of the nonionic dispersant include polyvinyl pyrrolidone, polypropylene glycol, vinyl pyrrolidone-vinyl acetate copolymers, and the like. Examples of the surfactant serving as the dispersant include anionic surfactants such as sodium dodecylbenzenesulfonate, sodium laurate, ammonium salts of polyoxyethylene alkyl ether sulfate, and the like; and nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkyl esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene alkyl phenyl ethers, polyoxyethylene alkylamines, polyoxyethylene alkylamides, and the like. In particular, styrene-(meth)acrylic acid copolymers are preferably used from the viewpoint of enhancing dispersion stability of pigments. As described in Japanese Unexamined Patent Application Publication No. 2007-186641, a water-insoluble vinyl polymer and the like which impart fixability and glossiness may be used as the dispersant.
  • In the present invention, each of the ink compositions preferably contains as a wetting agent at least one of polyhydric alcohols having, saccharides, and polyhydric alcohols having ethylene oxide chains. By adding the wetting agent, an ink is prevented from being dried when used for ink jet recording, thereby suppressing clogging in a head of an ink jet printer.
  • Examples of the wetting agent include polyhydric alcohols, such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, propylene glycol, butylene glycol, 1,2,6-hexanetriol, thioglycol, hexylene glycol, glycerin, trimethylolethane, trimethylolpropane, and the like; saccharides such as sugar alcohol and the like; polyhydric alcohols having ethylene oxide chains, such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether triethylene glycol monobutyl ether, and the like. At least one of these compounds is used.
  • In the present invention, each of the ink compositions preferably contains as a penetrant at least one of pyrrolidones, alkanediols, and glycol ethers. By adding the penetrant, wettability of a recording medium can be enhanced to improve penetrability of ink. Examples of the penetrant include pyrrolidones such as 2-pyrrolidone, N-methyl-2-pyrrolidone, and the like; alkanediols, such as 1,2-pentanediol, 1,2-hexanediol, and the like; and glycol ethers, such as ethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, and the like. At least one of these compounds is preferably used.
  • In the present invention, each of the ink compositions preferably contains as a surfactant at least one compound selected from the group consisting of acetylene glycols and polysiloxanes. By adding the surfactant, wettability of a recording medium can be enhanced to improve penetrability of ink.
  • In the present invention, each of the ink compositions may contain a low-boiling-point organic solvent from the viewpoint of shortening the ink drying time. Examples of the low-boiling-point organic solvent include methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butanol, sec-butanol, tert-butanol, iso-butanol, n-pentanol, and the like, and at least one of these solvents is used. In particular, a monohydric alcohol is preferred.
  • In the present invention, each of the ink compositions preferably contains the above-described pigment, dispersant, wetting agent, low-boiling-point organic solvent, penetrant, surfactant, and the like, and contains water as a balance. As water, pure water or ultrapure water, such as ion exchanged water, ultrafiltered water, Milli-Q water, distilled water, or the like, is preferably used. Such water which is sterilized by ultraviolet irradiation, adding hydrogen peroxide, or the like is preferred because the occurrence of mold or bacteria is prevented over a long period of time.
  • In the present invention, according to demand, each of the ink compositions may contain additives, such as a fixing agent such as water-soluble rosin or the like, an anti-scattering agent/antiseptic agent such as sodium benzoate or the like, an antioxidant/ultraviolet absorber such as allophanate or the like, a chelating agent, an oxygen absorber, a pH adjuster, and the like, and at least one of these additives is used.
  • 3. Ink Set
  • The ink set of the present invention includes at least the yellow ink composition, the magenta ink composition, the cyan ink composition, the light cyan ink composition, the light magenta ink composition, and a black ink composition from the viewpoint of achieving color reproducibility in a wide range.
  • When the ink set of the present invention includes the black ink composition, a colorant thereof is not particularly limited. However, as the colorant contained in the black ink composition, carbon black (C. I. Pigment Black 7) such as furnace black, lamp black, acetylene black, channel black, or the like, a metal compound such as copper oxide, iron oxide (C. I. Pigment Black 11), or the like, or an organic pigment such as aniline black (C. I. Pigment Black 1) or the like can be used. However, carbon black which has relatively low specific gravity and little precipitates in water is preferred for ink jet. These may be used alone or as a mixture of two. Examples of carbon black as a pigment include No. 2300, No. 900, MCF88, No. 33, No. 40, No. 45, No. 52, MA7, MA8, MA100, No. 2200B, and the like which are manufactured by Mitsubishi Chemical Corporation; Raven 5750, 5250, 5000, 3500, 1255, and 700, and the like which are manufactured by Columbia Chemical Co.; Regal 400R, 330R, and 660R, Mogul L and 700, Monarch 800, 880, 900, 1000, 1100, 1300, and 1400, and the like which are manufactured by Cabot Corporation; Color Black FW1, FW2, FW2V, FW18, and FW200, Color Black 5150, 5160, and 5170, Printex 35, U, V, and 140U, Special Black 6, 5, 4A, and 4, and the like which are manufactured by Degussa Co. The components of the black ink composition can be controlled by the same method as for the above-described other ink compositions and the like.
  • 4. Recording Method and Recording Apparatus
  • Although application of the ink set of the present invention is not particularly limited, the ink set can be applied to various ink jet recording systems. Examples of the ink jet recording systems include thermal jet-type ink jet, piezo ink jet, continuous ink jet, roller application, spray application, and the like. Also, the ink set of the present invention can be applied to a recording apparatus and the like using such a recording system.
  • In the present invention, as a recording medium to which droplets of the ink set according to the present invention are adhered, glossy paper for ink jet recording is preferably used. Here, the term “glossy paper” represents plain paper in which an ink receiving layer having excellent surface glossiness is formed by special coating. In general, there are cast glossy paper in which an ink receiving layer is formed by a cast method to impart glossiness to a surface, and polymer-coated glossy paper in which an ink jet recording layer composed of a resin as a main component is formed. As other polymer-coated glossy paper, a recording medium using an electron beam-curable resin can be used.
  • Examples
  • Although the present invention is described in detail below with reference to examples, the present invention is not limited to these examples.
  • 1. Preparation of various ink compositions (C1, C2, C3, M1, M2, Y1, LC1, LC2, LM1, K1)
  • As shown in Table 1 below, each of cyan ink compositions (C1, C2, C3), magenta ink compositions (M1, M2), a yellow ink composition (Y1), light cyan ink compositions (LC1, LC2), a light magenta ink compositions (LM1), and a black ink composition (K1) was prepared. In Table 1, the amount of each composition added is shown by % by mass. In addition, the dispersant used in Table 1 is a styrene-acrylic copolymer, and the surfactant is BYK-348 manufactured by BYK Chemie Japan.
  • Further, as a quinacridone solid solution pigment contained in the magenta ink composition M2 and the light magenta ink composition LM1, a solid solution pigment containing γ-type P. V. 19 and P. R. 202 at a mass ratio of 70:30 was prepared. The resulting solid solution pigment showed a magenta color hue, but an X-ray diffraction pattern was different from a diffraction pattern of a mixture of γ-type P. V. 19 and P. R. 202.
  • TABLE 1
    C1 C2 C3 M1 M2
    Pigment P. B. 15:3 P. B. 60 P. B. 15:6 P. V. 19 Solid
    4.0% 4.0% 4.0% 5.0% solution
    (γ-P. V.
    19/P.
    R. 202)
    5.0%
    Dispersant 2.4% 2.4% 2.4% 2.7% 2.7%
    Glycerin 9.0% 9.0% 9.0% 9.7% 11.0% 
    1,2-hexanediol 5.0% 5.0% 5.0% 2.5% 2.5%
    Triethanolamine 0.9% 0.9% 0.9% 0.9% 0.9%
    Surfactant 0.5% 0.5% 0.5% 0.8% 0.8%
    Ultrapure water balance balance balance balance balance
    Total
    100%  100%  100%  100%  100% 
    Y1 LC2 LC2 LM1 K1
    Pigment P. B. 74 P. B. 15:3 P. B. 15:6 Solid Carbon
    3.5% 1.0% 1.0% solution black
    (γ-P. V. 2.0%
    19/P. R.
    202) 1.0%
    Dispersant 2.8% 2.0% 2.0% 2.5% 1.0%
    Glycerin 14.0%  20.0%  20.0%  20.0%  13.0% 
    1,2-hexanediol 5.0% 5.0% 5.0% 2.5% 8.0%
    Triethanolamine 0.9% 0.9% 0.9% 0.9% 0.9%
    Surfactant 0.5% 0.5% 0.5% 0.8% 0.3%
    Ultrapure water balance balance balance balance balance
    Total
    100%  100%  100%  100%  100% 
  • 2. Evaluation of Ink Set 2-1 Evaluation of Color Reproduction Range
  • Printing was performed using an ink jet printer (“PX-5500” manufactured by Seiko Epson Corporation). In the printer, a cyan ink cartridge (Model No. ICC37 manufactured by Seiko Epson Corporation), a magenta ink cartridge (Model No. ICM37 manufactured by Seiko Epson Corporation), a yellow ink cartridge (Model No. ICY37 manufactured by Seiko Epson Corporation), and a black ink cartridge (Model No. ICBK33 manufactured by Seiko Epson Corporation) were filled with respective ink compositions in each of the combinations shown in Table 2, and ink sets of examples and comparative examples were formed.
  • TABLE 2
    Ink set
    Cyan Magenta Yellow Black
    Comparative C1 M1 Y1 K1
    Example 1
    Comparative C2 M1 Y1 K1
    Example 2
    Example 1 C3 M1 Y1 K1
    Comparative C1 M2 Y1 K1
    Example 3
    Comparative C2 M2 Y1 K1
    Example 4
    Example 2 C3 M2 Y1 K1
  • The thus-prepared ink cartridges were mounted on the printer, and a printing test was conducted on photographic glossy paper (“Photopaper <Luster>” manufactured by Seiko Epson Corporation). In printing, a mixed color solid pattern with a duty or 85% or less was printed.
  • The black ink was used for finely controlling brightness.
  • In the specification, “duty” represents a value calculated according to the following equation.

  • Duty (%)=Number of actual printing dots/(longitudinal resolution×lateral resolution)×100
  • (In the equation, the number of actual printing dots is the number of actual printing dots per unit area, and longitudinal resolution and lateral resolution are each resolution per unit area. “100% duty” represents the maximum ink mass of a single color for a pixel.)
  • The L*a*b* color system coordinates of the resulting prints based on the color difference display method defined in CIE were measured using a colorimeter (Spectrolino (manufactured by Gretag Macbeth Corp.) according to JIS Z8729. FIG. 1 shows gamuts at L*=20 of Example 1 and Comparative Examples 1 and 2, and FIG. 2 shows gamuts at L*=20 of Example 2 and Comparative Examples 3 and 4. In FIG. 2, “VM” represents the magenta ink M2.
  • FIG. 1 indicates that the color reproduction range in a blue region of a dark portion with a L* of 20 or less can be significantly enlarged by combining a cyan ink composition containing P. B. 15:6 or P. B. 60 as a pigment with a magenta ink composition containing a quinacridone pigment in comparison to use of a cyan ink composition containing P. B. 15:3 which has been used for various purposes. In addition, FIG. 2 shows that a color with an L* value of 20 or less, an a* value of 30 or more, and a b* value of −75 or less, which has been impossible to reproduce, can be realized by combining a cyan ink composition containing P. B. 15:6 as a pigment with a magenta ink composition containing a quinacridone solid solution pigment (VM) as a pigment.
  • FIGS. 3, 4, and 5 show gamuts of ink sets of Example 2 and Comparative Examples 3 and 4. In FIGS. 3 to 5, a* indicates a position between red and green colors, and negative value and positive value represent green and red, respectively. Therefore, the more the negative a* value is, the wider the color reproduction range in a green region is. A color in the green region is reproduced by a cyan ink composition and a yellow ink composition (Y1) containing P. Y. 74 as a pigment.
  • In FIG. 3, the gamut of the ink set of Comparative Example 4 (ink set including the cyan ink composition containing P. B. 60) is shown in white, the gamut of the ink set of Comparative Example 3 (ink set including the cyan ink composition containing P. B. 15:3) is shown in black, and a common portion of both gamuts is shown by shading.
  • FIG. 3 indicates that in a blue region of a dark portion, color reproducibility of the ink set of Comparative Example 3 using P. B. 15:3 as a pigment is inferior to the ink set using P. B. 60 as a pigment (Comparative Example 4) (refer to FIGS. 1 and 2), while in a green region, the ink set of Comparative Example 3 shows good color reproducibility. For example, in a region with L* of 10 to 40, a black portion is wide within a region of negative a* values. Namely, it is shown that the ink set (Comparative Example 3) using P. B. 15:3 has wider color reproducibility in a green region as compared with the ink set (Comparative Example 4) using P. B. 60.
  • On the other hand, in FIG. 4, the gamut of the ink set of Example 2 (ink set including the cyan ink composition containing P. B. 15:6) is shown in white, the gamut of the ink set of Comparative Example 3 (ink set including the cyan ink composition containing P. B. 15:3) is shown in black, and a common portion of both gamuts is shown by shading.
  • FIG. 4 indicates that in a blue region of a dark portion, the ink set of Example 2 using P. B. 15:6 as a pigment has excellent color reproducibility and, in a green region, the ink set of Example 2 has wide color reproducibility equivalent to the ink set of Comparative Example 3 using P. B. 15:3 as a pigment.
  • In FIG. 5, the gamut of the ink set of Example 2 (ink set including the cyan ink composition containing P. B. 15:6) is shown in white, the gamut of the ink set of Comparative Example 4 (ink set including the cyan ink composition containing P. B. 60) is shown in black, and a common portion of both gamuts is shown by shading.
  • FIG. 5 indicates that in both the blue region and the green region, the ink set using P. B. 15:6 as a pigment has wider color reproducibility than that of the ink set using P. B. 60 as a pigment.
  • 2-2 Evaluation of Graininess in High-Brightness Region
  • Next, printing was performed using an ink jet printer (“PX-5500” manufactured by Seiko Epson Corporation). In the printer, a cyan ink cartridge (Model No. ICC37 manufactured by Seiko Epson Corporation), a magenta ink cartridge (Model No. ICM37 manufactured by Seiko Epson Corporation), a yellow ink cartridge (Model No. ICY37 manufactured by Seiko Epson Corporation), a black ink cartridge (Model No. ICBK33 manufactured by Seiko Epson Corporation), a light cyan ink cartridge (Model No. ICLC37 manufactured by Seiko Epson Corporation), and a light magenta ink cartridge (Model No. ICLM37 manufactured by Seiko Epson Corporation) were filled with respective ink compositions in each of the combinations shown in Table 3, and ink sets of an example and a comparative example were formed.
  • TABLE 3
    Ink set
    Light Light
    Cyan Magenta Yellow cyan magenta Black
    Comparative C3 M1 Y1 LC2 LM1 K1
    Example 5
    Example 3 C3 M1 Y1 LC1 LM1 K1
  • The thus-prepared ink cartridges were mounted on the printer, and a gradation patch including 14 evaluation images with L* values of 50 to 95 of green and cyan colors was printed on photographic glossy paper (“Photopaper <Luster>” manufactured by Seiko Epson Corporation). The resulting print was taken in as electron data by a scanner (“GT-X770” manufactured by Seiko Epson Corporation), and graininess index values were calculated with a dedicated software. In addition, the scan resolution was 1200 dpi, and an analysis region was 256×256 pixels.
  • FIG. 6 is a chart showing the results of evaluation of graininess of 14 types of evaluation images in the green region. Also, FIG. 7 is a chart showing the results of evaluation of graininess of 14 types of evaluation images in the cyan region.
  • The graininess was evaluated using the dedicated software on the basis of graininess index value GF shown by equation 1 below. In the equation, u is a spatial frequency, WS(u) is a Wiener spectrum of an image, VTF(u) is visual sensitivity characteristic with respect to the spatial frequency, and L is an observation distance (300 mm). In addition, (L*+16/116)0.8 is a factor for adjusting the index value to the human visual characteristics.

  • GF=(L*+16/116)0.8 ∫WS(u)0.5 ·VTF(u)du  Equation 1

  • wherein

  • VTF(u)=5.05 exp(−0.318πLu/180)[1−exp(−0.1πLu/180)]
  • Here, the meaning of equation 1 is briefly described. WS(u) is considered to indicate the periodicity of an image. For example, considering an image in which a large filled circle pattern is repeatedly printed, large peaks appear, in a WS(u) spectrum of the image, at spatial frequency u1 corresponding to the diameter of the filled circles and spatial frequency u2 corresponding to the repetition period of the filled circles. Conversely, when peaks appear at spatial frequencies u1 and u2 in a WS(u) spectrum, it is considered that the image includes two periodic structures corresponding to the respective spatial frequencies.
  • In addition, it has been found that the sensitivity of the human eye depends on the spatial frequency, and there is spatial frequency up at which the sensitivity is highest. Namely, the human eye has the characteristic that the sensitivity increases as the spatial frequency comes closer to the spatial frequency up, and the sensitivity decreases as the spatial frequency comes away from the spatial frequency up. Therefore, in an image including repeated filled circles, the filled circles become more noticeable as one of the spatial frequency u1 corresponding to the diameter of the filled circles and the spatial frequency u2 corresponding to the repetition period of the filled circles comes closer to the spatial frequency up. Conversely, the filled circles become less noticeable as the spatial frequency u1 and the spatial frequency u2 come away from the spatial frequency up. Also, the blackness of the filled circles influences noticeability. That is, it is said that if filled circles are the same size, a filled circuit of dark color formed with a dark ink such as K ink is more noticeable than a filled circle of light color formed with a light ink such as LK ink or LLK ink. The influence of blackness of filled circles is reflected as the intensity of WS(u). The WS(u) is calculated by two-dimensional fast Fourier transform (FFT) of a L* component image formed by color conversion of scan image data and then converting to a one-dimensional polar coordinate system.
  • The evaluation equation according to equation 1 quantifies graininess on the basis of the above-described human eye characteristics. Namely, noticeability of dots (graininess of image) is quantified as graininess index value GF by human-eye-weighting WS(u) showing periodicity of an image and integrating WS(u) with respect to spatial frequency (reference document: Makoto Fujino, The Imaging Society of Japan “Japan Hardcopy '99” P. 291-294).
  • FIGS. 6 and 7 indicate that as the L* value increases, the graininess index increases, and thus graininess deteriorates. It is found that particularly in a high-brightness region with an L* of 80 or more, deterioration of graininess can be significantly suppressed using P. B. 15:3.
  • As described above, the ink set according to the present invention can reproduce a color in a dark portion blue region having an L* value of 20 or less, an a* value of 30 or more, and a b* value of −75 or less according to CIE standards, which has so far been impossible to reproduce. Also, the ink set has excellent color reproducibility in a green region and can form a high-quality image with excellent graininess even in a high-brightness cyan region and green region.

Claims (10)

1. An ink set comprising:
a cyan ink composition containing C. I. Pigment Blue 15:6 as a pigment;
a magenta ink composition containing a quinacridone pigment selected from the group consisting of C. I. Pigment Violet 19, C. I. Pigment Red 122, C. I. Pigment Red 202, and C. I. Pigment Red 209 or a quinacridone solid solution pigment composed of at least two selected from the group;
a yellow ink composition containing a pigment selected from the group consisting of C. I. Pigment Yellow 74, C. I. Pigment Yellow 213, and C. I. Pigment Yellow 185;
a light magenta ink composition containing a quinacridone pigment selected from the group consisting of C. I. Pigment Violet 19, C. I. Pigment Red 122, C. I. Pigment Red 202, and C. I. Pigment Red 209 or a quinacridone solid solution pigment composed of at least two selected from the group at a pigment concentration lower than that of the magenta ink composition; and
a light cyan ink composition containing C. I. Pigment Blue 15:3 as a pigment at a pigment concentration lower than that of the cyan ink composition.
2. The ink set according to claim 1, wherein the pigment contained in at least one of the magenta ink composition and the light magenta ink composition is a quinacridone solid solution pigment composed of at least two selected from the group consisting of C. I. Pigment Violet 19, C. I. Pigment Red 122, C. I. Pigment Red 202, and C. I. Pigment Red 209.
3. The ink set according to claim 2, wherein the pigment contained in at least one of the magenta ink composition and the light magenta ink composition is a quinacridone solid solution pigment composed of C. I. Pigment Violet 19 and C. I. Pigment Red 202.
4. The ink set according to claim 3, wherein in the quinacridone solid solution pigment, the mass of C. I. Pigment Violet 19 is larger than the mass of C. I. Pigment Red 202.
5. The ink set according to claim 3, wherein in the quinacridone solid solution pigment, the mass ratio of C. I. Pigment Violet 19/C. I. Pigment Red 202 is 70/30 to 50/50.
6. The ink set according to claim 1, wherein C. I. Pigment Violet 19 contained in the quinacridone solid solution pigment is γ-type.
7. The ink set according to claim 1, wherein the pigment concentration in each of the light magenta ink composition and the light cyan ink composition is 2% by mass or less.
8. The ink set according to claim 1 comprising the cyan ink composition, the magenta ink composition, the yellow ink composition, the light magenta ink composition, the light cyan ink composition, and a black ink composition.
9. A recording apparatus comprising the ink set according to claim 1.
10. A recording method using the ink set according to claim 1.
US12/708,611 2009-02-23 2010-02-19 Ink set, recording apparatus, and recording method Expired - Fee Related US8277551B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-039369 2009-02-23
JP2009039369A JP5387037B2 (en) 2009-02-23 2009-02-23 Ink set, recording apparatus, and recording method

Publications (2)

Publication Number Publication Date
US20100212543A1 true US20100212543A1 (en) 2010-08-26
US8277551B2 US8277551B2 (en) 2012-10-02

Family

ID=42629793

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/708,611 Expired - Fee Related US8277551B2 (en) 2009-02-23 2010-02-19 Ink set, recording apparatus, and recording method

Country Status (2)

Country Link
US (1) US8277551B2 (en)
JP (1) JP5387037B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090030144A1 (en) * 2007-07-19 2009-01-29 Seiko Epson Corporation Ink set
US20090297790A1 (en) * 2005-11-16 2009-12-03 Hironori Sato Magenta Ink Composition, Ink Cartridge, and Recording System and Recorded Matter Using the Same
US20100062161A1 (en) * 2008-09-10 2010-03-11 Seiko Epson Corporation Ink set, recording method, and recording apparatus
US20110132228A1 (en) * 2009-12-04 2011-06-09 Seiko Epson Corporation Ink set, recording apparatus, and recording method
US8092583B2 (en) 2008-08-25 2012-01-10 Seiko Epson Corporation Ink set
US8277551B2 (en) 2009-02-23 2012-10-02 Seiko Epson Corporation Ink set, recording apparatus, and recording method
US20210340395A1 (en) * 2020-04-30 2021-11-04 Brother Kogyo Kabushiki Kaisha Water-based ink for ink-jet recording

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2374848B1 (en) * 2010-04-09 2013-01-16 Clariant Finance (BVI) Limited New magenta quinacridone pigments
JP5578004B2 (en) * 2010-10-01 2014-08-27 セイコーエプソン株式会社 Photocurable clear ink composition and recording method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958129A (en) * 1997-03-10 1999-09-28 Clariant Gmbh Pigment formulations and processes for their preparation
US6491748B2 (en) * 1999-04-14 2002-12-10 Seiko Epson Corporation Aqueous pigment ink sets for color inkjet recording, color inkjet recording method, and color inkjet recorded matter
US20030029355A1 (en) * 1999-12-16 2003-02-13 Toshiyuki Miyabayashi Ink set for ink-jet recording, process for producing same, method of image recording, and print
US20040246321A1 (en) * 2003-03-19 2004-12-09 Fuji Photo Film Co., Ltd. Ink-jet recording method
US6877851B2 (en) * 2002-03-19 2005-04-12 Seiko Epson Corporation Ink set for ink jet recording, ink jet recording process, and recorded matter
US7015259B2 (en) * 2002-03-13 2006-03-21 Seiko Epson Corporation Clear ink composition, ink set, and method for producing inkjet record
US7156910B2 (en) * 2004-04-28 2007-01-02 Seiko Epson Corporation Yellow ink composition, ink set, and recording method, recording system and recorded matter which use the ink composition and ink set
US20070266887A1 (en) * 2006-04-03 2007-11-22 Seiko Epson Corporation Ink set
US20080028980A1 (en) * 2006-04-03 2008-02-07 Seiko Epson Corporation Ink composition and ink jet recording method using the same
US20080047463A1 (en) * 2004-05-14 2008-02-28 Takeshi Tanoue Ink Set and Inkjet Recording Method Using the Same and Recorded Article
US20080233362A1 (en) * 2007-03-22 2008-09-25 Seiko Epson Corporation Yellow ink composition, inkset for inkjet, inkjet recording method, and recorded matter
US20090297712A1 (en) * 2005-06-20 2009-12-03 Nagatoshi Kasahara Ink Composition Containing Magenta Solid Solution Pigment and Ink jet Recording Method Using the Same
US20090297790A1 (en) * 2005-11-16 2009-12-03 Hironori Sato Magenta Ink Composition, Ink Cartridge, and Recording System and Recorded Matter Using the Same
US7871467B2 (en) * 2007-12-28 2011-01-18 Seiko Epson Corporation Ink set for ink jet recording and method for ink jet recording
US8092583B2 (en) * 2008-08-25 2012-01-10 Seiko Epson Corporation Ink set

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236498A (en) 1991-11-26 1993-08-17 Miles Inc. Quinacridone solid solutions having unique styling applications
JP3683946B2 (en) 1994-07-13 2005-08-17 キヤノン株式会社 Aqueous pigment ink set for ink jet, recording unit, ink cartridge, and ink jet recording apparatus
JP3120416B2 (en) 1994-10-22 2000-12-25 凸版印刷株式会社 Photosensitive coloring composition
EP0778321B2 (en) 1995-12-08 2012-10-10 Seiko Epson Corporation Ink set for ink jet recording and ink jet recording method using the same
EP0827039B2 (en) 1996-09-02 2009-02-25 Canon Kabushiki Kaisha Magenta toner for developing electrostatic images and process for production thereof
JP3382519B2 (en) 1996-09-02 2003-03-04 キヤノン株式会社 Magenta toner for developing electrostatic images and method of manufacturing the same
JP3581243B2 (en) 1996-12-20 2004-10-27 セイコーエプソン株式会社 Pigment lump, method for producing the same, aqueous pigment dispersion, and aqueous ink composition
GB9627075D0 (en) 1996-12-31 1997-02-19 Zeneca Ltd Printing method
JPH10219166A (en) 1997-02-05 1998-08-18 Dainippon Ink & Chem Inc Ink for jet printer
WO1999005230A1 (en) 1997-07-28 1999-02-04 Seiko Epson Corporation Ink composition
US6152999A (en) 1999-04-27 2000-11-28 Eastman Kodak Company Color pigmented ink jet set
JP2000319534A (en) 1999-05-06 2000-11-21 Dainippon Ink & Chem Inc Production of quinacridone solid solution
EP1669425B1 (en) 1999-06-09 2009-04-22 Seiko Epson Corporation Ink for ink jet recording with antifungal additive
US6153000A (en) 1999-07-12 2000-11-28 Eastman Kodak Company Color pigmented ink jet ink set
JP4839504B2 (en) 1999-08-05 2011-12-21 コニカミノルタホールディングス株式会社 Aqueous pigment ink for inkjet and inkjet recording method
EP1164173B1 (en) 1999-12-27 2005-12-07 Seiko Epson Corporation Ink set, method of recording with the same, and print
DE60125532T2 (en) 2000-06-07 2007-04-26 Seiko Epson Corp. INK SET FOR INK RADIATION RECORDING
DE10031558A1 (en) 2000-06-28 2002-01-10 Clariant Gmbh Process for conditioning organic pigments
JP2002100959A (en) 2000-09-25 2002-04-05 Toyo Commun Equip Co Ltd Surface acoustic wave device
WO2002066565A1 (en) 2001-02-16 2002-08-29 Macdermid Colorspan, Inc. Direct dye inks and a method of making direct dye inks
JP2007276482A (en) * 2001-04-24 2007-10-25 Seiko Epson Corp Ink jet recording method, ink set, and recorded matter using these
ATE511993T1 (en) 2001-04-24 2011-06-15 Seiko Epson Corp INKJET RECORDING METHOD, INK SET AND MATERIAL RECORDED THEREOF
JP4253840B2 (en) 2001-05-02 2009-04-15 セイコーエプソン株式会社 Ink set and ink jet recording method
JP2003012583A (en) 2001-06-28 2003-01-15 Seiko Epson Corp Branched 1,2-alkylene glycol, method for producing the same and water-based ink produced by using the compound
DE10132470A1 (en) 2001-07-04 2003-01-23 Ina Schaeffler Kg Radial ball bearing without play
US6824262B2 (en) 2001-08-10 2004-11-30 Seiko Epson Corporation Ink set and ink jet recording method
US6849110B2 (en) 2001-09-28 2005-02-01 Seiko Epson Corporation Ink composition, ink set, and recording method and recorded article using same
JP4053272B2 (en) 2001-10-12 2008-02-27 古河電池株式会社 Negative electrode for lead acid battery
US7600864B2 (en) 2002-11-01 2009-10-13 Seiko Epson Corporation Ink set, recording method using the ink set, recording device, recording system, and recorded object
JP4789388B2 (en) 2002-01-25 2011-10-12 株式会社リコー Ink jet ink, ink jet recording method, ink cartridge, ink jet recording apparatus, ink jet recorded matter
JP2003313480A (en) 2002-02-19 2003-11-06 Seiko Epson Corp Ink composition, ink set and recording method
JP4056260B2 (en) 2002-02-27 2008-03-05 株式会社リコー Aqueous recording liquid, and recording method, ink cartridge, and ink jet recording apparatus using the aqueous recording liquid
JP2003253150A (en) 2002-02-28 2003-09-10 Dainippon Ink & Chem Inc Fine quinacridone solid solution pigment and its manufacturing method
JP4096157B2 (en) 2002-03-15 2008-06-04 セイコーエプソン株式会社 Ink set and ink jet recording method using the same
JP2003292835A (en) 2002-03-29 2003-10-15 Seiko Epson Corp Ink set and method for producing inkjet recorded matter using the same
US7772298B2 (en) 2002-03-15 2010-08-10 Seiko Epson Corporation Clear ink composition, ink set, and ink jet recording method using the same
JP3876980B2 (en) 2002-03-19 2007-02-07 セイコーエプソン株式会社 Ink set for ink jet recording, ink jet recording method, and recorded matter
JP3873828B2 (en) 2002-06-27 2007-01-31 セイコーエプソン株式会社 Ink set containing black ink composition and recording method using the same
JP4154941B2 (en) 2002-07-23 2008-09-24 コニカミノルタホールディングス株式会社 Inkjet ink composition and image forming method
JP2004066558A (en) 2002-08-02 2004-03-04 Seiko Epson Corp Recording method, distinguishing method, ink set, record and recording device
WO2004039899A1 (en) 2002-11-01 2004-05-13 Seiko Epson Corporation Ink set, recording method, recording device, recording system, and recorded object
EP1441486B1 (en) 2003-01-22 2010-03-24 Nec Corporation Presence system
JP4168762B2 (en) 2003-01-28 2008-10-22 日本電気株式会社 Buddy list dynamic generation method, client, server, system, program
JP4228733B2 (en) 2003-03-14 2009-02-25 セイコーエプソン株式会社 Ink set
JP2004277585A (en) 2003-03-17 2004-10-07 Canon Inc Method for producing organic pigment dispersion, organic pigment dispersion, water-based coloring fluid, and inkjet recording fluid
JP2004314352A (en) 2003-04-14 2004-11-11 Seiko Epson Corp Inkjet type recording head and recording method using it
CA2532170A1 (en) 2003-07-18 2005-02-17 Ciba Specialty Chemicals Holding Inc. Quinacridone pigment compositions comprising unsymmetrically substituted components
JP4584552B2 (en) * 2003-07-22 2010-11-24 株式会社リコー Ink set for inkjet recording and inkjet color recording method
US6910298B2 (en) 2003-07-23 2005-06-28 Sterling International Inc. Insect trap
JP4510421B2 (en) 2003-10-20 2010-07-21 キヤノンファインテック株式会社 Ink jet recording ink, ink jet recording method, ink cartridge, and ink jet recording apparatus
JP4793619B2 (en) 2003-12-10 2011-10-12 セイコーエプソン株式会社 Glossy ink composition and glossy evaluation method
JP4597540B2 (en) 2004-02-12 2010-12-15 株式会社リコー Pigment dispersion system, pigment dispersion system container, image forming body, and image forming method
JP2005225958A (en) 2004-02-12 2005-08-25 Seiko Epson Corp Ink composition
US7163577B2 (en) 2004-03-01 2007-01-16 Hewlett-Packard Development Company, L.P. Black pigmented ink-jet inks with improved frequency response
JP2005255959A (en) 2004-03-15 2005-09-22 Seiko Epson Corp Ink composition, and ink cartridge, recording device, recording method and recorded matter
JP4981261B2 (en) 2004-03-16 2012-07-18 キヤノン株式会社 Ink jet ink, ink jet recording method, ink cartridge, and ink jet recording apparatus
JP4681844B2 (en) 2004-10-01 2011-05-11 キヤノン株式会社 Ink jet ink, ink tank, recording unit, ink jet recording apparatus, and ink jet recording method
WO2005087879A1 (en) 2004-03-16 2005-09-22 Canon Kabushiki Kaisha Ink-jet ink and method for inkjet recording
US7442244B2 (en) 2004-03-22 2008-10-28 Seiko Epson Corporation Water-base ink composition
US7404849B2 (en) 2004-04-21 2008-07-29 E. I. Du Pont De Nemours And Company Inkjet ink set for improved color reproduction
JP4655507B2 (en) 2004-04-28 2011-03-23 セイコーエプソン株式会社 Ink set and recording method, recording system and recorded matter using the same
US7399351B2 (en) 2004-06-25 2008-07-15 Ei Du Pont De Nemours And Company Pigmented inkjet ink and ink set
US7384465B2 (en) 2004-06-25 2008-06-10 E.I. Du Pont De Nemours & Co. Pigmented blue inkjet ink color reproduction
CN1969022B (en) 2004-06-30 2010-06-16 精工爱普生株式会社 Magenta ink composition, ink set, ink cartridge, and recording method using the same, recording system and recording product
US7244296B2 (en) 2004-10-20 2007-07-17 Brother Kogyo Kabushiki Kaisha Water based ink set for ink-jet recording and inkjet recording method
US7332023B2 (en) 2005-03-07 2008-02-19 Hewlett-Packard Development Company, L.P. Dye-based ink compositions
JP2006249335A (en) 2005-03-11 2006-09-21 Canon Inc Water-based ink, water-based ink set and ink-jet recording method, ink cartridge recording unit and recording device using the same
JP4918772B2 (en) 2005-03-30 2012-04-18 セイコーエプソン株式会社 Ink composition for inkjet recording
JP2006282802A (en) 2005-03-31 2006-10-19 Seiko Epson Corp Ink composition, printing method using the same, and printed matter
JP2006282810A (en) 2005-03-31 2006-10-19 Seiko Epson Corp Ink composition, printing method using the same, and printed matter
JP2006298978A (en) 2005-04-15 2006-11-02 Brother Ind Ltd Water-based ink set for inkjet recording and inkjet recording method
JP4793544B2 (en) 2005-05-24 2011-10-12 ブラザー工業株式会社 Water-based ink set for inkjet recording
JP2006336001A (en) 2005-06-06 2006-12-14 Canon Inc Pigment ink for inkjet recording and pigment ink set for inkjet recording
JP4883466B2 (en) 2005-09-01 2012-02-22 セイコーエプソン株式会社 Ink set and ink jet recording method and recorded matter using the same
JP4110184B2 (en) 2005-10-28 2008-07-02 キヤノン株式会社 Aqueous ink, ink jet recording method, ink cartridge, recording unit, and ink jet recording apparatus
DE602006011105D1 (en) 2005-10-28 2010-01-28 Canon Kk Aqueous ink, ink jet printing method, ink cartridge, recording unit, and ink jet recording apparatus
US7478903B2 (en) 2005-10-31 2009-01-20 Hewlett-Packard Development Company, L.P. Ink set for inkjet printing, inkjet printer including the ink set, and method of inkjet printing using the ink set
JP2007186641A (en) 2006-01-16 2007-07-26 Seiko Epson Corp Ink composition, recording method using the same, and recorded article
JP5120535B2 (en) 2006-04-03 2013-01-16 セイコーエプソン株式会社 Ink set
JP4613863B2 (en) 2006-04-04 2011-01-19 セイコーエプソン株式会社 Ink composition for ink jet recording, recording method, and recorded matter
JP4609768B2 (en) 2006-04-04 2011-01-12 セイコーエプソン株式会社 Ink composition for ink jet recording, recording method, and recorded matter
JP5459573B2 (en) 2007-05-14 2014-04-02 セイコーエプソン株式会社 Ink composition for inkjet recording
JP5386796B2 (en) 2007-05-24 2014-01-15 セイコーエプソン株式会社 Ink set for inkjet recording and inkjet recording method
JP5293987B2 (en) 2007-07-19 2013-09-18 セイコーエプソン株式会社 Ink set, inkjet recording method
JP5359018B2 (en) 2007-12-21 2013-12-04 セイコーエプソン株式会社 Ink composition for inkjet recording
JP2009209339A (en) 2007-12-21 2009-09-17 Seiko Epson Corp Ink composition for inkjet recording
JP2009167265A (en) 2008-01-15 2009-07-30 Seiko Epson Corp Yellow ink composition and ink set, and recording method and recorded material using the same
JP2009179722A (en) 2008-01-31 2009-08-13 Seiko Epson Corp Yellow ink composition, ink set, recording method using the same and recorded matter
JP2009286998A (en) 2008-05-01 2009-12-10 Seiko Epson Corp Ink composition for inkjet recording
JP2009299050A (en) 2008-05-14 2009-12-24 Seiko Epson Corp Ink set and recording method using this
JP2010007054A (en) 2008-05-27 2010-01-14 Seiko Epson Corp Ink composition and recording method using the same and ink cartridge
JP5332327B2 (en) 2008-06-10 2013-11-06 セイコーエプソン株式会社 Clear ink composition
JP5365111B2 (en) 2008-09-10 2013-12-11 セイコーエプソン株式会社 Ink set, recording method, and recording apparatus
JP5704423B2 (en) 2008-09-30 2015-04-22 セイコーエプソン株式会社 Ink composition for inkjet recording
JP2011063631A (en) 2008-09-30 2011-03-31 Seiko Epson Corp Ink composition for inkjet recording
JP5387037B2 (en) 2009-02-23 2014-01-15 セイコーエプソン株式会社 Ink set, recording apparatus, and recording method
JP2011116876A (en) 2009-12-04 2011-06-16 Seiko Epson Corp Ink set, recording device, and recording method

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958129A (en) * 1997-03-10 1999-09-28 Clariant Gmbh Pigment formulations and processes for their preparation
US6491748B2 (en) * 1999-04-14 2002-12-10 Seiko Epson Corporation Aqueous pigment ink sets for color inkjet recording, color inkjet recording method, and color inkjet recorded matter
US20030029355A1 (en) * 1999-12-16 2003-02-13 Toshiyuki Miyabayashi Ink set for ink-jet recording, process for producing same, method of image recording, and print
US7015259B2 (en) * 2002-03-13 2006-03-21 Seiko Epson Corporation Clear ink composition, ink set, and method for producing inkjet record
US6877851B2 (en) * 2002-03-19 2005-04-12 Seiko Epson Corporation Ink set for ink jet recording, ink jet recording process, and recorded matter
US20040246321A1 (en) * 2003-03-19 2004-12-09 Fuji Photo Film Co., Ltd. Ink-jet recording method
US7156910B2 (en) * 2004-04-28 2007-01-02 Seiko Epson Corporation Yellow ink composition, ink set, and recording method, recording system and recorded matter which use the ink composition and ink set
US20080047463A1 (en) * 2004-05-14 2008-02-28 Takeshi Tanoue Ink Set and Inkjet Recording Method Using the Same and Recorded Article
US20090297712A1 (en) * 2005-06-20 2009-12-03 Nagatoshi Kasahara Ink Composition Containing Magenta Solid Solution Pigment and Ink jet Recording Method Using the Same
US20090297790A1 (en) * 2005-11-16 2009-12-03 Hironori Sato Magenta Ink Composition, Ink Cartridge, and Recording System and Recorded Matter Using the Same
US8016930B2 (en) * 2005-11-16 2011-09-13 Seiko Epson Corporation Magenta ink composition, ink cartridge, and recording system and recorded matter using the same
US20110310165A1 (en) * 2005-11-16 2011-12-22 Seiko Epson Corporation Magenta ink composition, ink cartridge, and recording system and recorded matter using the same
US20080028980A1 (en) * 2006-04-03 2008-02-07 Seiko Epson Corporation Ink composition and ink jet recording method using the same
US20070266887A1 (en) * 2006-04-03 2007-11-22 Seiko Epson Corporation Ink set
US20080233362A1 (en) * 2007-03-22 2008-09-25 Seiko Epson Corporation Yellow ink composition, inkset for inkjet, inkjet recording method, and recorded matter
US7871467B2 (en) * 2007-12-28 2011-01-18 Seiko Epson Corporation Ink set for ink jet recording and method for ink jet recording
US8092583B2 (en) * 2008-08-25 2012-01-10 Seiko Epson Corporation Ink set
US8172933B2 (en) * 2008-08-25 2012-05-08 Seiko Epson Corporation Ink set

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090297790A1 (en) * 2005-11-16 2009-12-03 Hironori Sato Magenta Ink Composition, Ink Cartridge, and Recording System and Recorded Matter Using the Same
US8486186B2 (en) * 2005-11-16 2013-07-16 Seiko Epson Corporation Magenta ink composition, ink cartridge, and recording system and recorded matter using the same
US8016930B2 (en) 2005-11-16 2011-09-13 Seiko Epson Corporation Magenta ink composition, ink cartridge, and recording system and recorded matter using the same
US20110310165A1 (en) * 2005-11-16 2011-12-22 Seiko Epson Corporation Magenta ink composition, ink cartridge, and recording system and recorded matter using the same
US8016931B2 (en) 2007-07-19 2011-09-13 Seiko Epson Corporation Ink set
US20090030144A1 (en) * 2007-07-19 2009-01-29 Seiko Epson Corporation Ink set
US8092583B2 (en) 2008-08-25 2012-01-10 Seiko Epson Corporation Ink set
US8172933B2 (en) 2008-08-25 2012-05-08 Seiko Epson Corporation Ink set
US8038783B2 (en) * 2008-09-10 2011-10-18 Seiko Epson Corporation Ink set, recording method, and recording apparatus
US20100062161A1 (en) * 2008-09-10 2010-03-11 Seiko Epson Corporation Ink set, recording method, and recording apparatus
US8277551B2 (en) 2009-02-23 2012-10-02 Seiko Epson Corporation Ink set, recording apparatus, and recording method
US20110132228A1 (en) * 2009-12-04 2011-06-09 Seiko Epson Corporation Ink set, recording apparatus, and recording method
US8277552B2 (en) 2009-12-04 2012-10-02 Seiko Epson Corporation Ink set, recording apparatus, and recording method
US20210340395A1 (en) * 2020-04-30 2021-11-04 Brother Kogyo Kabushiki Kaisha Water-based ink for ink-jet recording

Also Published As

Publication number Publication date
JP2010195857A (en) 2010-09-09
JP5387037B2 (en) 2014-01-15
US8277551B2 (en) 2012-10-02

Similar Documents

Publication Publication Date Title
US8277551B2 (en) Ink set, recording apparatus, and recording method
JP4623384B2 (en) Ink set and ink jet recording method
JP5365095B2 (en) Ink set
JP5365111B2 (en) Ink set, recording method, and recording apparatus
US8277552B2 (en) Ink set, recording apparatus, and recording method
US7156910B2 (en) Yellow ink composition, ink set, and recording method, recording system and recorded matter which use the ink composition and ink set
JP4497272B2 (en) Ink set and recording method using the ink set
JP4655507B2 (en) Ink set and recording method, recording system and recorded matter using the same
JP4497273B2 (en) Ink set and recording method using the ink set
JP4497270B2 (en) Ink set and recording method using the ink set
JP4501148B2 (en) Ink set and recording method using the ink set
JP4497271B2 (en) Ink set and recording method using the ink set
JP4501100B2 (en) Ink set and recording method using the ink set
JP3656538B2 (en) Dark yellow ink composition and ink set comprising the same
JP2009144166A (en) Ink set, recording method using ink set, recording system, and recorded matter
JP2010196058A (en) Ink set and recording method using the ink set
JP2010168585A (en) Ink set and recording method using the same
JP2010189645A (en) Ink set and recording method using the same
JP2010168586A (en) Ink set and recording method using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEIKO EPSON CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHIONO, SHOHEI;SANO, TSUYOSHI;REEL/FRAME:023960/0464

Effective date: 20100126

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20201002