US20100220199A1 - Method of Processing and Printing Digital Images - Google Patents

Method of Processing and Printing Digital Images Download PDF

Info

Publication number
US20100220199A1
US20100220199A1 US12/778,885 US77888510A US2010220199A1 US 20100220199 A1 US20100220199 A1 US 20100220199A1 US 77888510 A US77888510 A US 77888510A US 2010220199 A1 US2010220199 A1 US 2010220199A1
Authority
US
United States
Prior art keywords
ink
actuator
nozzle
print
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/778,885
Inventor
Kia Silverbrook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zamtec Ltd
Original Assignee
Silverbrook Research Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPO7991A external-priority patent/AUPO799197A0/en
Priority claimed from AUPO7998A external-priority patent/AUPO799897A0/en
Application filed by Silverbrook Research Pty Ltd filed Critical Silverbrook Research Pty Ltd
Priority to US12/778,885 priority Critical patent/US20100220199A1/en
Assigned to SILVERBROOK RESEARCH PTY LTD reassignment SILVERBROOK RESEARCH PTY LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SILVERBROOK, KIA
Publication of US20100220199A1 publication Critical patent/US20100220199A1/en
Assigned to ZAMTEC LIMITED reassignment ZAMTEC LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SILVERBROOK RESEARCH PTY. LIMITED AND CLAMATE PTY LIMITED
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17513Inner structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/2628Alteration of picture size, shape, position or orientation, e.g. zooming, rotation, rolling, perspective, translation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/165Preventing or detecting of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
    • B41J2/16585Preventing or detecting of nozzle clogging, e.g. cleaning, capping or moistening for nozzles for paper-width or non-reciprocating print heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17596Ink pumps, ink valves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2101/00Still video cameras

Definitions

  • the present invention relates to an image processing method and apparatus and, in particular, discloses a process for correcting for flash induced distortions in a Digital Image Camera.
  • the present invention further relates to the field of digital image processing and in particular, the field of processing of images taken via a digital camera.
  • a method of processing an image captured utilising a digital camera and a flash comprising the steps of:
  • a digital camera having reduced flash distortion effects on captured images comprising;
  • FIG. 1 illustrates the process of capturing and outputting an image
  • FIG. 2 illustrates the process of red-eye removal.
  • the preferred embodiment is preferably implemented through suitable programming of a hand held camera device such as that described in Patent Application having applicant's reference (ART01) U.S. Ser. No. 09/113,060 filed concurrently herewith by the present applicant the content of which is hereby specifically incorporated by cross reference.
  • the aforementioned patent specification discloses a camera system, hereinafter known as an “Artcam” type camera, wherein sensed images can be directly printed out by an Artcam portable camera unit. Further, the aforementioned specification discloses means and methods for performing various manipulations on images captured by the camera sensing device leading to the production of various effects in any output image.
  • the manipulations are disclosed to be highly flexible in nature and can be implemented through the insertion into the Artcam of cards having encoded thereon various instructions for the manipulation of images, the cards hereinafter being known as Artcards.
  • the Artcam further has significant onboard processing power in an Artcam Central Processor unit (ACP) which is interconnected to a memory device for the storage of important data and images.
  • ACP Artcam Central Processor unit
  • the Artcards contain, on one surface encoded information and on the other surface, contain an image distorted by the particular effect produced by the Artcard.
  • the Artcard is inserted in an Artcard reader in the side of camera and, upon insertion, results in an output image being distorted in the same manner as the distortion appearing on the surface of Artcard.
  • the image 2 as originally captured by the CCD device is subject to a processing step 3 when a flash has been utilised so as to produce a processed output image for printing.
  • FIG. 2 there is illustrated in more detail, one particular image processing algorithm 10 which can be utilised when a flash has been utilised in capturing an image by a CCD device.
  • the algorithm is preferably only utilised when a flash was used 11 to take the picture captured by the CCD.
  • the purpose of the algorithm is to reduce the image effects due to the utilisation of the flash.
  • image effects can include the well known “red-eye” effect of individual eyes appearing red in a photographic image.
  • Other effects such as flash reflections off reflective surfaces can also be separately processed utilising other algorithms.
  • the first step 12 in eliminating red-eye effects in the images is to determine the faces within the image.
  • the face detection process 12 can proceed by detecting regions of contiguous colour which map the hue, saturation and value (HSV) of the range of human face colours under the range of normal lighting encountered after any other applied image enhancements or hue corrections.
  • the detected regions can then be passed through various heuristic tests including determining the presence of eyes, mouth, overall shape and overlap.
  • the heuristic tests produce a resulting probability of a face being present in the image and where this is above a threshold, a face is determined to be located in the image.
  • each eye in step 12 is then independently processed to determine its special range of colours so as determine whether a red-eye removal process is required instep 14 .
  • a retouching algorithm 15 is applied to the eye area so as to reduce the red saturation whilst simultaneously not introducing any discontinuities or likely artefacts in the output image.
  • a retouching algorithm 15 is applied to the eye area so as to reduce the red saturation whilst simultaneously not introducing any discontinuities or likely artefacts in the output image.
  • many different techniques could be utilised including a form of gaussian alteration around a central point of the eye.
  • any other retouching algorithms including remapping colours affected by the spectral nature of the flashlight are also utilised at this time.
  • the Artcard inserted could have a number of manipulations applied to the image which are specific to the flash setting.
  • clip arts containing candles, light globes etc could be inserted in an image utilising a flash and large suns inserted in non-flash images.
  • the embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable.
  • thermal ink jet The most significant problem with thermal ink jet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal ink jet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out.
  • piezoelectric ink jet The most significant problem with piezoelectric ink jet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per print head, but is a major impediment to the fabrication of pagewidth print heads with 19,200 nozzles.
  • the ink jet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications.
  • new ink jet technologies have been created.
  • the target features include:
  • ink jet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems
  • the print head is designed to be a monolithic 0.5 micron CMOS chip with MEMS post processing.
  • the print head is 100 mm long, with a width which depends upon the ink jet type.
  • the smallest print head designed is IJ38, which is 0.35 mm wide, giving a chip area of 35 square mm.
  • the print heads each contain 19,200 nozzles plus data and control circuitry.
  • Ink is supplied to the back of the print head by injection molded plastic ink channels.
  • the molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool
  • Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer.
  • the print head is connected to the camera circuitry by tape automated bonding.
  • ink jet configurations can readily be derived from these forty-five examples by substituting alternative configurations along one or more of the 11 axes.
  • Most of the IJ01 to IJ45 examples can be made into ink jet print heads with characteristics superior to any currently available ink jet technology.
  • Suitable applications for the ink jet technologies include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WWW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc.
  • Electro- An electric field is Low power Low maximum Seiko Epson, Usui strictive used to activate consumption strain (approx. et all JP 253401/96 electrostriction in Many ink types can 0.01%)
  • IJ04 relaxor materials such be used Large area required as lead lanthanum Low thermal for actuator due to zirconate titanate expansion low strain (PLZT) or lead Electric field Response speed is magnesium niobate strength required marginal ( ⁇ 10 ⁇ s) (PMN).
  • Perovskite ( ⁇ 1 ⁇ s) Actuators require a materials such as tin Relatively high large area modified lead longitudinal strain lanthanum zirconate High efficiency titanate (PLZSnT) Electric field exhibit large strains of strength of around 3 V/ ⁇ m up to 1% associated can be readily with the AFE to FE provided phase transition.
  • Electro- Conductive plates are Low power Difficult to operate IJ02, IJ04 static separated by a consumption electrostatic devices plates compressible or fluid Many ink types can in an aqueous dielectric (usually air). be used environment Upon application of a Fast operation The electrostatic voltage, the plates actuator will attract each other and normally need to be displace ink, causing separated from the drop ejection.
  • the ink conductive plates may Very large area be in a comb or required to achieve honeycomb structure, high forces or stacked to increase High voltage drive the surface area and transistors may be therefore the force.
  • required Full pagewidth print heads are not competitive due to actuator size
  • An electromagnet Low power Complex fabrication IJ07, IJ10 magnet directly attracts a consumption Permanent magnetic electro- permanent magnet
  • Many ink types can material such as magnetic displacing ink and be used Neodymium Iron causing drop ejection.
  • the pagewidth print Copper metalization soft magnetic material heads should be used for is in two parts, which long are normally held electromigration apart by a spring. lifetime and low When the solenoid is resistivity actuated, the two parts Electroplating is attract, displacing the required ink. High saturation flux density is required (2.0-2.1 T is achievable with CoNiFe [1]) Lorenz The Lorenz force Low power Force acts as a IJ06, IJ11, IJ13, force acting on a current consumption twisting motion IJ16 carrying wire in a Many ink types can Typically, only a magnetic field is be used quarter of the utilized.
  • Pre-stressing may be required Surface Ink under positive Low power Requires Silverbrook, EP tension pressure is held in a consumption supplementary force 0771 658 A2 and reduction nozzle by surface Simple construction to effect drop related patent tension.
  • the surface No unusual separation applications tension of the ink is materials required in Requires special ink reduced below the fabrication surfactants bubble threshold, High efficiency Speed may be causing the ink to Easy extension from limited by surfactant egress from the single nozzles to properties nozzle.
  • pagewidth print heads Viscosity
  • the ink viscosity is Simple construction Requires Silverbrook, EP reduction locally reduced to No unusual supplementary force 0771 658 A2 and select which drops are materials required in to effect drop related patent to be ejected.
  • a fabrication separation applications viscosity reduction can Easy extension from Requires special ink be achieved single nozzles to viscosity properties electrothermally with pagewidth print High speed is most inks, but special heads difficult to achieve inks can be engineered Requires oscillating for a 100:1 viscosity ink pressure reduction.
  • a high temperature difference typically 80 degrees
  • Acoustic An acoustic wave is Can operate without Complex drive 1993 Hadimioglu et generated and a nozzle plate circuitry al, EUP 550,192 focussed upon the Complex fabrication 1993 Elrod et al, drop ejection region.
  • Simple planar Corrosion IJ29, IJ30, IJ31, fabrication prevention can be IJ32, IJ33, IJ34, Small chip area difficult IJ35, IJ36, IJ37, required for each Pigmented inks may IJ38, IJ39, IJ40, actuator be infeasible, as IJ41 Fast operation pigment particles High efficiency may jam the bend CMOS compatible actuator voltages and currents Standard MEMS processes can be used Easy extension from single nozzles to pagewidth print heads High CTE A material with a very High force can be Requires special IJ09, IJ17, IJ18, thermo- high coefficient of generated material (e.g.
  • PTFE PTFE
  • IJ20 IJ21, IJ22
  • elastic thermal expansion Three methods of Requires a PTFE IJ23, IJ24, IJ27, actuator (CTE) such as PTFE deposition are deposition process, IJ28, IJ29, IJ30, polytetrafluoroethylene under development: which is not yet IJ31, IJ42, IJ43, (PTFE) is used.
  • CTE actuator
  • PTFE deposition process IJ28, IJ29, IJ30
  • polytetrafluoroethylene under development which is not yet IJ31, IJ42, IJ43, (PTFE) is used.
  • CVD high CTE materials deposition
  • fabs are usually non- spin coating
  • PTFE deposition conductive a heater evaporation cannot be followed fabricated from a PTFE is a candidate with high conductive material is for low dielectric temperature (above incorporated.
  • a 50 ⁇ m constant insulation 350° C.) processing long PTFE bend in ULSI Pigmented inks may actuator with Very low power be infeasible, as polysilicon heater and consumption pigment particles 15 mW power input Many ink types can may jam the bend can provide 180 ⁇ N be used actuator force and 10 ⁇ m Simple planar deflection.
  • Actuator fabrication motions include: Small chip area Bend required for each Push actuator Buckle Fast operation Rotate High efficiency CMOS compatible voltages and currents Easy extension from single nozzles to pagewidth print heads Conductive A polymer with a high High force can be Requires special IJ24 polymer coefficient of thermal generated materials thermo- expansion (such as Very low power development (High elastic PTFE) is doped with consumption CTE conductive actuator conducting substances Many ink types can polymer) to increase its be used Requires a PTFE conductivity to about 3 Simple planar deposition process, orders of magnitude fabrication which is not yet below that of copper. Small chip area standard in ULSI The conducting required for each fabs polymer expands actuator PTFE deposition when resistively Fast operation cannot be followed heated.
  • IJ24 polymer coefficient of thermal generated materials thermo- expansion such as Very low power development (High elastic PTFE) is doped with consumption CTE conductive actuator conducting substances Many ink types can polymer
  • CMOS compatible temperature (above conducting dopants voltages and 350° C.) processing include: currents Evaporation and Carbon nanotubes Easy extension from CVD deposition Metal fibers single nozzles to techniques cannot Conductive polymers pagewidth print be used such as doped heads Pigmented inks may polythiophene be infeasible, as Carbon granules pigment particles may jam the bend actuator Shape A shape memory alloy High force is Fatigue limits IJ26 memory such as TiNi (also available (stresses maximum number alloy known as Nitinol - of hundreds of MPa) of cycles Nickel Titanium alloy Large strain is Low strain (1%) is developed at the Naval available (more than required to extend Ordnance Laboratory) 3%) fatigue resistance is thermally switched High corrosion Cycle rate limited between its weak resistance by heat removal martensitic state and Simple construction Requires unusual its high stiffness Easy extension from materials (TiNi) austenic state.
  • IJ26 memory such as TiNi (also available (stresses maximum number alloy known as Nit
  • the single nozzles to The latent heat of shape of the actuator pagewidth print transformation must in its martensitic state heads be provided is deformed relative to Low voltage High current the austenic shape. operation operation
  • the shape change Requires pre- causes ejection of a stressing to distort drop.
  • the martensitic state Linear Linear magnetic Linear Magnetic Requires unusual IJ12 Magnetic actuators include the actuators can be semiconductor Actuator Linear Induction constructed with materials such as Actuator (LIA), Linear high thrust, long soft magnetic alloys Permanent Magnet travel, and high (e.g.
  • LMSA Linear planar require permanent Reluctance semiconductor magnetic materials Synchronous Actuator fabrication such as Neodymium (LRSA), Linear techniques iron boron (NdFeB) Switched Reluctance Long actuator travel Requires complex Actuator (LSRA), and is available multi-phase drive the Linear Stepper Medium force is circuitry Actuator (LSA). available High current Low voltage operation operation
  • the drop velocity is less than method, but is IJ12, IJ14, IJ16, must have a sufficient 4 m/s related to the refill IJ20, IJ22, IJ23, velocity to overcome Can be efficient, method normally IJ24, IJ25, IJ26, the surface tension.
  • Electrostatic field Selected drops are separate the drop alternate rows of the separated from the ink from the nozzle image in the nozzle by Monolithic color contact with the print print heads are medium or a transfer difficult roller.
  • Electro- The drops to be Very simple print Requires very high Silverbrook, EP static pull printed are selected by head fabrication can electrostatic field 0771 658 A2 and on ink some manner (e.g. be used Electrostatic field related patent thermally induced The drop selection for small nozzle applications surface tension means does not need sizes is above air Tone-Jet reduction of to provide the breakdown pressurized ink).
  • energy required to Electrostatic field Selected drops are separate the drop may attract dust separated from the ink from the nozzle in the nozzle by a strong electric field.
  • the be achieved due to Requires ink ink pressure is pulsed reduced refill time pressure modulator at a multiple of the Drop timing can be Friction and wear drop ejection very accurate must be considered frequency.
  • the actuator energy Stiction is possible can be very low Shuttered
  • the actuator moves a Actuators with Moving parts are IJ08, IJ15, IJ18, grill shutter to block ink small travel can be required IJ19 flow through a grill to used Requires ink the nozzle.
  • the shutter Actuators with pressure modulator movement need only small force can be Friction and wear be equal to the width used must be considered of the grill holes.
  • the allowing higher Ink pressure phase applications acoustic actuator selects which operating speed and amplitude must IJ08, IJ13, IJ15, stimulation) drops are to be fired
  • the actuators may be carefully IJ17, IJ18, IJ19, by selectively operate with much controlled IJ21 blocking or enabling lower energy Acoustic reflections nozzles.
  • the ink Acoustic lenses can in the ink chamber pressure oscillation be used to focus the must be designed may be achieved by sound on the for vibrating the print nozzles head, or preferably by an actuator in the ink supply.
  • Media The print head is Low power Precision assembly Silverbrook, EP proximity placed in close High accuracy required 0771 658 A2 and proximity to the print Simple print head Paper fibers may related patent medium.
  • Transfer Drops are printed to a High accuracy Bulky Silverbrook, EP roller transfer roller instead Wide range of print Expensive 0771 658 A2 and of straight to the print substrates can be Complex related patent medium.
  • a transfer used construction applications roller can also be used Ink can be dried on Tektronix hot melt for proximity drop the transfer roller piezoelectric ink jet separation. Any of the IJ series Electro- An electric field is Low power Field strength Silverbrook, EP static used to accelerate Simple print head required for 0771 658 A2 and selected drops towards construction separation of small related patent the print medium.
  • a magnetic field is Low power Requires magnetic Silverbrook, EP magnetic used to accelerate Simple print head ink 0771 658 A2 and field selected drops of construction Requires strong related patent magnetic ink towards magnetic field applications the print medium.
  • Cross The print head is Does not require Requires external IJ06, IJ16 magnetic placed in a constant magnetic materials magnet field magnetic field.
  • Lorenz force in a the print head may be high, current carrying wire manufacturing resulting in is used to move the process electromigration actuator.
  • Pulsed A pulsed magnetic Very low power Complex print head IJ10 magnetic field is used to operation is possible construction field cyclically attract a Small print head Magnetic materials paddle, which pushes size required in print on the ink.
  • a small head actuator moves a catch, which selectively prevents the paddle from moving.
  • IJ18, IJ19, IJ20, actuator The expansion may be that the materials do IJ21, IJ22, IJ23, thermal, piezoelectric, not delaminate IJ24, IJ27, IJ29, magnetostrictive, or Residual bend IJ30, IJ31, IJ32, other mechanism.
  • the resulting from high IJ33, IJ34, IJ35, bend actuator converts temperature or high IJ36, IJ37, IJ38, a high force low travel stress during IJ39, IJ42, IJ43, actuator mechanism to formation IJ44 high travel, lower force mechanism.
  • Actuator A series of thin Increased travel Increased Some piezoelectric stack actuators are stacked. Reduced drive fabrication ink jets This can be voltage complexity IJ04 appropriate where Increased possibility actuators require high of short circuits due electric field strength, to pinholes such as electrostatic and piezoelectric actuators. Multiple Multiple smaller Increases the force Actuator forces may IJ12, IJ13, IJ18, actuators actuators are used available from an not add linearly, IJ20, IJ22, IJ28, simultaneously to actuator reducing efficiency IJ42, IJ43 move the ink. Each Multiple actuators actuator need provide can be positioned to only a portion of the control ink flow force required.
  • Flexure A bend actuator has a Simple means of Care must be taken IJ10, IJ19, IJ33 bend small region near the increasing travel of not to exceed the actuator fixture point, which a bend actuator elastic limit in the flexes much more flexure area readily than the Stress distribution is remainder of the very uneven actuator.
  • the actuator Difficult to flexing is effectively accurately model converted from an with finite element even coiling to an analysis angular bend, resulting in greater travel of the actuator tip.
  • Catch The actuator controls a Very low actuator Complex IJ10 small catch.
  • the catch energy construction either enables or Very small actuator Requires external disables movement of size force an ink pusher that is Unsuitable for controlled in a bulk pigmented inks manner.
  • Gears Gears can be used to Low force, low Moving parts are IJ13 increase travel at the travel actuators can required expense of duration.
  • actuator Circular gears, rack Can be fabricated cycles are required and pinion, ratchets, using standard More complex drive and other gearing surface MEMS electronics methods can be used.
  • Process Complex construction Friction, friction, and wear are possible Buckle
  • a buckle plate can be Very fast movement Must stay within S. Hirata et al, “An plate used to change a slow achievable elastic limits of the Ink-jet Head Using actuator into a fast materials for long Diaphragm motion. It can also device life Microactuator”, convert a high force, High stresses Proc. IEEE MEMS, low travel actuator involved February 1996, pp 418-423.
  • the volume of the Simple construction High energy is Hewlett-Packard expansion actuator changes, in the case of typically required to Thermal Ink jet pushing the ink in all thermal ink jet achieve volume Canon Bubblejet directions. expansion. This leads to thermal stress, cavitation, and kogation in thermal ink jet implementations Linear,
  • the actuator moves in Efficient coupling to High fabrication IJ01, IJ02, IJ04, normal to a direction normal to ink drops ejected complexity may be IJ07, IJ11, IJ14 chip the print head surface. normal to the required to achieve surface
  • the nozzle is typically surface perpendicular in the line of motion movement.
  • Rotary levers may Device complexity IJ05, IJ08, IJ13, the rotation of some be used to increase May have friction at IJ28 element, such a grill or travel a pivot point impeller Small chip area requirements Bend The actuator bends A very small change Requires the 1970 Kyser et al when energized. This in dimensions can actuator to be made U.S. Pat. No. 3,946,398 may be due to be converted to a from at least two 1973 Stemme U.S. Pat. No. differential thermal large motion.
  • the actuator is Can be used with Requires careful IJ26, IJ32 normally bent, and shape memory balance of stresses straightens when alloys where the to ensure that the energized. austenitic phase is quiescent bend is planar accurate Double
  • the actuator bends in One actuator can be Difficult to make IJ36, IJ37, IJ38 bend one direction when used to power two the drops ejected by one element is nozzles. both bend directions energized, and bends Reduced chip size. identical. the other way when Not sensitive to A small efficiency another element is ambient temperature loss compared to energized. equivalent single bend actuators. Shear Energizing the Can increase the Not readily 1985 Fishbeck U.S. Pat. No.
  • actuator causes a shear effective travel of applicable to other 4,584,590 motion in the actuator piezoelectric actuator material.
  • actuators mechanisms Radial The actuator squeezes Relatively easy to High force required 1970 Zoltan U.S. Pat. No. constriction an ink reservoir, fabricate single Inefficient 3,683,212 forcing ink from a nozzles from glass Difficult to integrate constricted nozzle. tubing as with VLSI macroscopic processes structures Coil/ A coiled actuator Easy to fabricate as Difficult to fabricate IJ17, IJ21, IJ34, uncoil uncoils or coils more a planar VLSI for non-planar IJ35 tightly.
  • Curl A set of actuators curl Relatively simple Relatively large IJ43 outwards outwards, pressurizing construction chip area ink in a chamber surrounding the actuators, and expelling ink from a nozzle in the chamber.
  • Iris Multiple vanes enclose High efficiency High fabrication IJ22 a volume of ink. These Small chip area complexity simultaneously rotate, Not suitable for reducing the volume pigmented inks between the vanes.
  • the ink is under a Drop selection and Requires a method Silverbrook, EP ink positive pressure, so separation forces (such as a nozzle 0771 658 A2 and pressure that in the quiescent can be reduced rim or effective related patent state some of the ink Fast refill time hydrophobizing, or applications drop already protrudes both) to prevent Possible operation from the nozzle.
  • Inlet filter is located Additional Restricts refill rate IJ04, IJ12, IJ24, between the ink inlet advantage of ink May result in IJ27, IJ29, IJ30 and the nozzle filtration complex chamber.
  • the filter Ink filter may be construction has a multitude of fabricated with no small holes or slots, additional process restricting ink flow. steps The filter also removes particles which may block the nozzle.
  • the ink inlet channel Design simplicity Restricts refill rate IJ02, IJ37, IJ44 compared to the nozzle chamber May result in a to nozzle has a substantially relatively large chip smaller cross section area than that of the nozzle, Only partially resulting in easier ink effective egress out of the nozzle than out of the inlet.
  • Inlet A secondary actuator Increases speed of Requires separate IJ09 shutter controls the position of the ink-jet print refill actuator and a shutter, closing off head operation drive circuit the ink inlet when the main actuator is energized.
  • the inlet is The method avoids the Back-flow problem Requires careful IJ01, IJ03, IJ05, located problem of inlet back- is eliminated design to minimize IJ06, IJ07, IJ10, behind the flow by arranging the negative IJ11, IJ14, IJ16, ink- ink-pushing surface of pressure behind the IJ22, IJ23, IJ25, pushing the actuator between paddle IJ28, IJ31, IJ32, surface the inlet and the IJ33, IJ34, IJ35, nozzle.
  • IJ36, IJ39, IJ40, IJ41 Part of the The actuator and a Significant Small increase in IJ07, IJ20, IJ26, actuator wall of the ink reductions in back- fabrication IJ38 moves to chamber are arranged flow can be complexity shut off so that the motion of achieved the inlet the actuator closes off Compact designs the inlet.
  • the nozzle firing is IJ26, IJ27, IJ28, usually performed IJ29, IJ30, IJ31, during a special IJ32, IJ33, IJ34, clearing cycle, after IJ36, IJ37, IJ38, first moving the print IJ39, IJ40,, IJ41, head to a cleaning IJ42, IJ43, IJ44,, station.
  • An ultrasonic wave is A high nozzle High IJ08, IJ13, IJ15, resonance applied to the ink clearing capability implementation cost IJ17, IJ18, IJ19, chamber.
  • This wave is can be achieved if system does not IJ21 of an appropriate May be already include an amplitude and implemented at very acoustic actuator frequency to cause low cost in systems sufficient force at the which already nozzle to clear include acoustic blockages. This is actuators easiest to achieve if the ultrasonic wave is at a resonant frequency of the ink cavity.
  • the plate alignment is related patent has a post for every required applications nozzle. A post moves Moving parts are through each nozzle, required displacing dried ink. There is risk of damage to the nozzles Accurate fabrication is required Ink
  • the pressure of the ink May be effective Requires pressure May be used with pressure is temporarily where other pump or other all IJ series ink jets pulse increased so that ink methods cannot be pressure actuator streams from all of the used Expensive nozzles. This may be Wasteful of ink used in conjunction with actuator energizing.
  • Print head A flexible ‘blade’ is Effective for planar Difficult to use if Many ink jet wiper wiped across the print print head surfaces print head surface is systems head surface.
  • the Low cost non-planar or very blade is usually fragile fabricated from a Requires flexible polymer, e.g. mechanical parts rubber or synthetic Blade can wear out elastomer.
  • a separate heater is Can be effective Fabrication Can be used with ink boiling provided at the nozzle where other nozzle complexity many IJ series ink heater although the normal clearing methods jets drop e-ection cannot be used mechanism does not Can be implemented require it.
  • the heaters at no additional cost do not require in some ink jet individual drive configurations circuits, as many nozzles can be cleared simultaneously, and no imaging is required.
  • Electro- A nozzle plate is Fabrication High temperatures Hewlett Packard formed separately fabricated simplicity and pressures are Thermal Ink jet nickel from electroformed required to bond nickel, and bonded to nozzle plate the print head chip. Minimum thickness constraints Differential thermal expansion Laser Individual nozzle No masks required Each hole must be Canon Bubblejet ablated or holes are ablated by an Can be quite fast individually formed 1988 Sercel et al., drilled intense UV laser in a Some control over Special equipment SPIE, Vol. 998 polymer nozzle plate, which is nozzle profile is required Excimer Beam typically a polymer possible Slow where there Applications, pp.
  • the nozzle plate is a High accuracy ( ⁇ 1 ⁇ m) Requires long etch IJ03, IJ05, IJ06, etched buried etch stop in the Monolithic times IJ07, IJ08, IJ09, through wafer.
  • Nozzle Low cost Requires a support IJ10, IJ13, IJ14, substrate chambers are etched in No differential wafer IJ15, IJ16, IJ19, the front of the wafer, expansion IJ21, IJ23, IJ25, and the wafer is IJ26 thinned from the back side.
  • Nozzles are then etched in the etch stop layer.
  • No nozzle Various methods have No nozzles to Difficult to control Ricoh 1995 Sekiya plate been tried to eliminate become clogged drop position et al U.S. Pat. No. 5,412,413 the nozzles entirely, to accurately 1993 Hadimioglu et prevent nozzle Crosstalk problems al EUP 550,192 clogging.
  • Elrod et al include thermal bubble EUP 572,220 mechanisms and acoustic lens mechanisms Trough Each drop ejector has Reduced Drop firing IJ35 a trough through manufacturing direction is sensitive which a paddle moves. complexity to wicking. There is no nozzle Monolithic plate. Nozzle slit The elimination of No nozzles to Difficult to control 1989 Saito et al instead of nozzle holes and become clogged drop position U.S. Pat. No. 4,799,068 individual replacement by a slit accurately nozzles encompassing many Crosstalk problems actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves
  • Edge Ink flow is along the Simple construction Nozzles limited to Canon Bubblejet (‘edge surface of the chip, No silicon etching edge 1979 Endo et al GB shooter’) and ink drops are required High resolution is patent 2,007,162 ejected from the chip Good heat sinking difficult Xerox heater-in-pit edge. via substrate Fast color printing 1990 Hawkins et al Mechanically strong requires one print U.S. Pat. No.
  • Cockles paper 0771 658 A2 and Modern ink dyes have related patent high water-fastness, applications light fastness Aqueous, Water based ink which Environmentally Slow drying IJ02, IJ04, IJ21, pigment typically contains: friendly Corrosive IJ26, IJ27, IJ30 water, pigment, No odor Pigment may clog Silverbrook, EP surfactant, humectant, Reduced bleed nozzles 0771 658 A2 and and biocide.
  • Reduced wicking Pigment may clog related patent Pigments have an Reduced actuator applications advantage in reduced strikethrough mechanisms Piezoelectric ink- bleed, wicking and Cockles paper jets strikethrough.
  • Methyl MEK is a highly Very fast drying Odorous All IJ series ink jets Ethyl volatile solvent used Prints on various Flammable Ketone for industrial printing substrates such as (MEK) on difficult surfaces metals and plastics such as aluminum cans.
  • Alcohol Alcohol based inks Fast drying Slight odor All IJ series ink jets (ethanol, can be used where the Operates at sub- Flammable 2-butanol, printer must operate at freezing and temperatures below temperatures others) the freezing point of Reduced paper water.
  • An example of cockle this is in-camera Low cost consumer photographic printing.
  • Phase The ink is solid at No drying time-ink High viscosity Tektronix hot melt change room temperature, and instantly freezes on Printed ink typically piezoelectric ink jets (hot melt) is melted in the print the print medium has a ‘waxy’ feel 1989 Nowak U.S. Pat. No. head before jetting. Almost any print Printed pages may 4,820,346 Hot melt inks are medium can be used ‘block’ All IJ series ink jets usually wax based, No paper cockle Ink temperature with a melting point occurs may be above the around 80° C.
  • Oil Oil based inks are High solubility High viscosity: this All IJ series ink jets extensively used in medium for some is a significant offset printing. They dyes limitation for use in have advantages in Does not cockle ink jets, which improved paper usually require a characteristics on Does not wick low viscosity. Some paper (especially no through paper short chain and wicking or cockle). multi-branched oils Oil soluble dies and have a sufficiently pigments are required. low viscosity.
  • Micro- A microemulsion is a Stops ink bleed Viscosity higher All IJ series ink jets emulsion stable, self forming High dye solubility than water emulsion of oil, water, Water, oil, and Cost is slightly and surfactant.
  • the amphiphilic soluble higher than water characteristic drop size dies can be used based ink is less than 100 nm, Can stabilize High surfactant and is determined by pigment concentration the preferred curvature suspensions required (around of the surfactant. 5%)

Abstract

A method of processing and printing an image captured by a digital camera, said digital camera comprising an image sensor, a processor and a 100 millimeter pagewidth printhead connected to the processor, said method being performed within and by THE processor and comprising the steps of:
    • locating distortions in captured images;
    • retouching the captured images so as to reduce the effects of the located distortions to produce a retouched image;
    • generating print data representing the retouched image; and
    • selectively controlling nozzles across the pagewidth printhead to print the retouched image using the generated print data

Description

    CROSS REFERENCES TO RELATED APPLICATIONS
  • This is a Continuation of U.S. application Ser. No. 10/636,285 filed on Aug. 8, 2003, which is a Continuation of U.S. application Ser. No. 09/112,742, filed on Jul. 10, 1998.
  • The following Australian provisional patent applications are hereby incorporated by cross-reference. For the purposes of location and identification, US patent applications identified by their US patent application serial numbers (USSN) are listed alongside the Australian applications from which the US patent applications claim the right of priority.
  • US PATENT/PATENT
    CROSS-REFERENCED APPLICATION
    AUSTRALIAN (CLAIMING RIGHT
    PROVISIONAL OF PRIORITY FROM
    PATENT AUSTRALIAN PROVISIONAL DOCKET
    APPLICATION NO. APPLICATION) NO.
    PO7991 6,750,901 ART01US
    PO8505 6,476,863 ART02US
    PO7988 6,788,336 ART03US
    PO9395 6,322,181 ART04US
    PO8017 6,597,817 ART06US
    PO8014 6,227,648 ART07US
    PO8025 6,727,948 ART08US
    PO8032 6,690,419 ART09US
    PO7999 6,727,951 ART10US
    PO8030 6,196,541 ART13US
    PO7997 6,195,150 ART15US
    PO7979 6,362,868 ART16US
    PO7978 6,831,681 ART18US
    PO7982 6,431,669 ART19US
    PO7989 6,362,869 ART20US
    PO8019 6,472,052 ART21US
    PO7980 6,356,715 ART22US
    PO8018 6,894,694 ART24US
    PO7938 6,636,216 ART25US
    PO8016 6,366,693 ART26US
    PO8024 6,329,990 ART27US
    PO7939 6,459,495 ART29US
    PO8501 6,137,500 ART30US
    PO8500 6,690,416 ART31US
    PO7987 7,050,143 ART32US
    PO8022 6,398,328 ART33US
    PO8497 7,110,024 ART34US
    PO8020 6,431,704 ART38US
    PO8504 6,879,341 ART42US
    PO8000 6,415,054 ART43US
    PO7934 6,665,454 ART45US
    PO7990 6,542,645 ART46US
    PO8499 6,486,886 ART47US
    PO8502 6,381,361 ART48US
    PO7981 6,317,192 ART50US
    PO7986 6,850,274 ART51US
    PO8026 6,646,757 ART53US
    PO8028 6,624,848 ART56US
    PO9394 6,357,135 ART57US
    PO9397 6,271,931 ART59US
    PO9398 6,353,772 ART60US
    PO9399 6,106,147 ART61US
    PO9400 6,665,008 ART62US
    PO9401 6,304,291 ART63US
    PO9403 6,305,770 ART65US
    PO9405 6,289,262 ART66US
    PP0959 6,315,200 ART68US
    PP1397 6,217,165 ART69US
    PP2370 6,786,420 DOT01US
    PO8003 6,350,023 Fluid01US
    PO8005 6,318,849 Fluid02US
    PO8066 6,227,652 IJ01US
    PO8072 6,213,588 IJ02US
    PO8040 6,213,589 IJ03US
    PO8071 6,231,163 IJ04US
    PO8047 6,247,795 IJ05US
    PO8035 6,394,581 IJ06US
    PO8044 6,244,691 IJ07US
    PO8063 6,257,704 IJ08US
    PO8057 6,416,168 IJ09US
    PO8056 6,220,694 IJ10US
    PO8069 6,257,705 IJ11US
    PO8049 6,247,794 IJ12US
    PO8036 6,234,610 IJ13US
    PO8048 6,247,793 IJ14US
    PO8070 6,264,306 IJ15US
    PO8067 6,241,342 IJ16US
    PO8001 6,247,792 IJ17US
    PO8038 6,264,307 IJ18US
    PO8033 6,254,220 IJ19US
    PO8002 6,234,611 IJ20US
    PO8068 6,302,528 IJ21US
    PO8062 6,283,582 IJ22US
    PO8034 6,239,821 IJ23US
    PO8039 6,338,547 IJ24US
    PO8041 6,247,796 IJ25US
    PO8004 6,557,977 IJ26US
    PO8037 6,390,603 IJ27US
    PO8043 6,362,843 IJ28US
    PO8042 6,293,653 IJ29US
    PO8064 6,312,107 IJ30US
    PO9389 6,227,653 IJ31US
    PO9391 6,234,609 IJ32US
    PP0888 6,238,040 IJ33US
    PP0891 6,188,415 IJ34US
    PP0890 6,227,654 IJ35US
    PP0873 6,209,989 IJ36US
    PP0993 6,247,791 IJ37US
    PP0890 6,336,710 IJ38US
    PP1398 6,217,153 IJ39US
    PP2592 6,416,167 IJ40US
    PP2593 6,243,113 IJ41US
    PP3991 6,283,581 IJ42US
    PP3987 6,247,790 IJ43US
    PP3985 6,260,953 IJ44US
    PP3983 6,267,469 IJ45US
    PO7935 6,224,780 IJM01US
    PO7936 6,235,212 IJM02US
    PO7937 6,280,643 IJM03US
    PO8061 6,284,147 IJM04US
    PO8054 6,214,244 IJM05US
    PO8065 6,071,750 IJM06US
    PO8055 6,267,905 IJM07US
    PO8053 6,251,298 IJM08US
    PO8078 6,258,285 IJM09US
    PO7933 6,225,138 IJM10US
    PO7950 6,241,904 IJM11US
    PO7949 6,299,786 IJM12US
    PO8060 6,866,789 IJM13US
    PO8059 6,231,773 IJM14US
    PO8073 6,190,931 IJM15US
    PO8076 6,248,249 IJM16US
    PO8075 6,290,862 IJM17US
    PO8079 6,241,906 IJM18US
    PO8050 6,565,762 IJM19US
    PO8052 6,241,905 IJM20US
    PO7948 6,451,216 IJM21US
    PO7951 6,231,772 IJM22US
    PO8074 6,274,056 IJM23US
    PO7941 6,290,861 IJM24US
    PO8077 6,248,248 IJM25US
    PO8058 6,306,671 IJM26US
    PO8051 6,331,258 IJM27US
    PO8045 6,110,754 IJM28US
    PO7952 6,294,101 IJM29US
    PO8046 6,416,679 IJM30US
    PO9390 6,264,849 IJM31US
    PO9392 6,254,793 IJM32US
    PP0889 6,235,211 IJM35US
    PP0887 6,491,833 IJM36US
    PP0882 6,264,850 IJM37US
    PP0874 6,258,284 IJM38US
    PP1396 6,312,615 IJM39US
    PP3989 6,228,668 IJM40US
    PP2591 6,180,427 IJM41US
    PP3990 6,171,875 IJM42US
    PP3986 6,267,904 IJM43US
    PP3984 6,245,247 IJM44US
    PP3982 6,315,914 IJM45US
    PP0895 6,231,148 IR01US
    PP0869 6,293,658 IR04US
    PP0887 6,614,560 IR05US
    PP0885 6,238,033 IR06US
    PP0884 6,312,070 IR10US
    PP0886 6,238,111 IR12US
    PP0877 6,378,970 IR16US
    PP0878 6,196,739 IR17US
    PP0883 6,270,182 IR19US
    PP0880 6,152,619 IR20US
    PO8006 6,087,638 MEMS02US
    PO8007 6,340,222 MEMS03US
    PO8010 6,041,600 MEMS05US
    PO8011 6,299,300 MEMS06US
    PO7947 6,067,797 MEMS07US
    PO7944 6,286,935 MEMS09US
    PO7946 6,044,646 MEMS10US
    PP0894 6,382,769 MEMS13US
  • FIELD OF INVENTION
  • The present invention relates to an image processing method and apparatus and, in particular, discloses a process for correcting for flash induced distortions in a Digital Image Camera.
  • The present invention further relates to the field of digital image processing and in particular, the field of processing of images taken via a digital camera.
  • BACKGROUND OF THE INVENTION
  • Recently, digital cameras have become increasingly popular. These cameras normally operate by means of imaging a desired image utilising a charge coupled device (CCD) array and storing the imaged scene on an electronic storage medium for later down loading onto a computer system for subsequent manipulation and printing out. Normally, when utilising a computer system to print out an image, sophisticated software may be available to manipulate the image in accordance with requirements.
  • Unfortunately such systems require significant post processing of a captured image and normally present the image in an orientation in which it was taken, relying on the post processing process to perform any necessary or required modifications of the captured image. Further, much of the environmental information available when the picture was taken is lost.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to utilise flash information in a digital image camera for processing digital images.
  • In accordance with a first aspect of the present invention there is provided a method of processing an image captured utilising a digital camera and a flash said method comprising the steps of:
  • a) locating distortions of said captured image due to the utilisation of said flash;
  • (b) retouching said image so as to locally reduce the effect of said distortions.
  • In accordance with the second aspect of the present invention there is provided a digital camera having reduced flash distortion effects on captured images comprising;
  • (a) a digital image capture means for the capture of images;
  • (b) a distortion location means for locating flash induced colour distortions in the captured image; and
  • (c) image correction means connected to said distortion location means and said digital image capture means and adapted to process said captured image to reduce the effects of said distortions;
  • (d) display means connected to said image correction means for displaying said captured image having reduced flash distortion effects.
  • BRIEF DESCRIPTION OF DRAWING
  • Notwithstanding any other forms which may fall within the scope of the present invention, preferred forms of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:
  • FIG. 1 illustrates the process of capturing and outputting an image; and
  • FIG. 2 illustrates the process of red-eye removal.
  • DESCRIPTION OF PREFERRED AND OTHER EMBODIMENTS
  • The preferred embodiment is preferably implemented through suitable programming of a hand held camera device such as that described in Patent Application having applicant's reference (ART01) U.S. Ser. No. 09/113,060 filed concurrently herewith by the present applicant the content of which is hereby specifically incorporated by cross reference.
  • The aforementioned patent specification discloses a camera system, hereinafter known as an “Artcam” type camera, wherein sensed images can be directly printed out by an Artcam portable camera unit. Further, the aforementioned specification discloses means and methods for performing various manipulations on images captured by the camera sensing device leading to the production of various effects in any output image. The manipulations are disclosed to be highly flexible in nature and can be implemented through the insertion into the Artcam of cards having encoded thereon various instructions for the manipulation of images, the cards hereinafter being known as Artcards. The Artcam further has significant onboard processing power in an Artcam Central Processor unit (ACP) which is interconnected to a memory device for the storage of important data and images. As disclosed in U.S. Ser. No. 09/113,060 (issued as U.S. Pat. No. 6,750,901), the Artcards contain, on one surface encoded information and on the other surface, contain an image distorted by the particular effect produced by the Artcard. The Artcard is inserted in an Artcard reader in the side of camera and, upon insertion, results in an output image being distorted in the same manner as the distortion appearing on the surface of Artcard.
  • One important form of processing is the removal of “red-eye” effects that can result in captured images as result of utilisation of a flash.
  • Turning now to FIG. 1, in the preferred embodiment, the image 2 as originally captured by the CCD device is subject to a processing step 3 when a flash has been utilised so as to produce a processed output image for printing.
  • Turning now to FIG. 2, there is illustrated in more detail, one particular image processing algorithm 10 which can be utilised when a flash has been utilised in capturing an image by a CCD device. The algorithm is preferably only utilised when a flash was used 11 to take the picture captured by the CCD. The purpose of the algorithm is to reduce the image effects due to the utilisation of the flash. Such image effects can include the well known “red-eye” effect of individual eyes appearing red in a photographic image. Other effects such as flash reflections off reflective surfaces can also be separately processed utilising other algorithms. The first step 12 in eliminating red-eye effects in the images is to determine the faces within the image. The face detection process 12 can proceed by detecting regions of contiguous colour which map the hue, saturation and value (HSV) of the range of human face colours under the range of normal lighting encountered after any other applied image enhancements or hue corrections. The detected regions can then be passed through various heuristic tests including determining the presence of eyes, mouth, overall shape and overlap. The heuristic tests produce a resulting probability of a face being present in the image and where this is above a threshold, a face is determined to be located in the image.
  • Once a face has been determined within an image, the eyes are located within the face in step 13. Each eye in step 12 is then independently processed to determine its special range of colours so as determine whether a red-eye removal process is required instep 14.
  • If the red-eye removal process 14 is required, a retouching algorithm 15 is applied to the eye area so as to reduce the red saturation whilst simultaneously not introducing any discontinuities or likely artefacts in the output image. Of course, many different techniques could be utilised including a form of gaussian alteration around a central point of the eye. Finally, the image is written in step 16 in its updated form, back to the memory device of the ACP.
  • Preferably, any other retouching algorithms including remapping colours affected by the spectral nature of the flashlight are also utilised at this time.
  • Alternatively, the Artcard inserted could have a number of manipulations applied to the image which are specific to the flash setting. For example, clip arts containing candles, light globes etc could be inserted in an image utilising a flash and large suns inserted in non-flash images.
  • It would be appreciated by a person skilled in the art that numerous variations and/or modifications may be made to the present invention as shown in the specific embodiment without departing from the spirit or scope of the invention as broadly described. The present embodiment is, therefore, to be considered in all respects to be illustrative and not restrictive.
  • Ink Jet Technologies
  • The embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable.
  • The most significant problem with thermal ink jet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal ink jet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out.
  • The most significant problem with piezoelectric ink jet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per print head, but is a major impediment to the fabrication of pagewidth print heads with 19,200 nozzles.
  • Ideally, the ink jet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications. To meet the requirements of digital photography, new ink jet technologies have been created. The target features include:
  • low power (less than 10 Watts)
  • high resolution capability (1,600 dpi or more)
  • photographic quality output
  • low manufacturing cost
  • small size (pagewidth times minimum cross section)
  • high speed (<2 seconds per page).
  • All of these features can be met or exceeded by the ink jet systems described below with differing levels of difficulty. Forty-five different ink jet technologies have been developed by the Assignee to give a wide range of choices for high volume manufacture. These technologies form part of separate applications assigned to the present Assignee as set out in the table under the heading Cross References to Related Applications.
  • The ink jet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems
  • For ease of manufacture using standard process equipment, the print head is designed to be a monolithic 0.5 micron CMOS chip with MEMS post processing. For color photographic applications, the print head is 100 mm long, with a width which depends upon the ink jet type. The smallest print head designed is IJ38, which is 0.35 mm wide, giving a chip area of 35 square mm. The print heads each contain 19,200 nozzles plus data and control circuitry.
  • Ink is supplied to the back of the print head by injection molded plastic ink channels. The molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer. The print head is connected to the camera circuitry by tape automated bonding.
  • Tables of Drop-on-Demand Ink Jets
  • Eleven important characteristics of the fundamental operation of individual ink jet nozzles have been identified. These characteristics are largely orthogonal, and so can be elucidated as an eleven dimensional matrix. Most of the eleven axes of this matrix include entries developed by the present assignee.
  • The following tables form the axes of an eleven dimensional table of ink jet types.
  • Actuator mechanism (18 types)
  • Basic operation mode (7 types)
  • Auxiliary mechanism (8 types)
  • Actuator amplification or modification method (17 types)
  • Actuator motion (19 types)
  • Nozzle refill method (4 types)
  • Method of restricting back-flow through inlet (10 types)
  • Nozzle clearing method (9 types)
  • Nozzle plate construction (9 types)
  • Drop ejection direction (5 types)
  • Ink type (7 types)
  • The complete eleven dimensional table represented by these axes contains 36.9 billion possible configurations of ink jet nozzle. While not all of the possible combinations result in a viable ink jet technology, many million configurations are viable. It is clearly impractical to elucidate all of the possible configurations. Instead, certain ink jet types have been investigated in detail. These are designated IJ01 to IJ45 which match the docket numbers in the table under the heading Cross References to Relation Applications.
  • Other ink jet configurations can readily be derived from these forty-five examples by substituting alternative configurations along one or more of the 11 axes. Most of the IJ01 to IJ45 examples can be made into ink jet print heads with characteristics superior to any currently available ink jet technology.
  • Where there are prior art examples known to the inventor, one or more of these examples are listed in the examples column of the tables below. The IJ01 to IJ45 series are also listed in the examples column. In some cases, a print technology may be listed more than once in a table, where it shares characteristics with more than one entry.
  • Suitable applications for the ink jet technologies include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WWW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc.
  • The information associated with the aforementioned 11 dimensional matrix are set out in the following tables.
  • ACTUATOR MECHANISM (APPLIED ONLY TO SELECTED INK DROPS)
    Description Advantages Disadvantages Examples
    Thermal An electrothermal Large force High power Canon Bubblejet
    bubble heater heats the ink to generated Ink carrier limited to 1979 Endo et al GB
    above boiling point, Simple construction water patent 2,007,162
    transferring significant No moving parts Low efficiency Xerox heater-in-pit
    heat to the aqueous Fast operation High temperatures 1990 Hawkins et al
    ink. A bubble Small chip area required U.S. Pat. No. 4,899,181
    nucleates and quickly required for actuator High mechanical Hewlett-Packard TIJ
    forms, expelling the stress 1982 Vaught et al
    ink. Unusual materials U.S. Pat. No. 4,490,728
    The efficiency of the required
    process is low, with Large drive
    typically less than transistors
    0.05% of the electrical Cavitation causes
    energy being actuator failure
    transformed into Kogation reduces
    kinetic energy of the bubble formation
    drop. Large print heads
    are difficult to
    fabricate
    Piezo- A piezoelectric crystal Low power Very large area Kyser et al U.S. Pat. No.
    electric such as lead consumption required for actuator 3,946,398
    lanthanum zirconate Many ink types can Difficult to integrate Zoltan U.S. Pat. No.
    (PZT) is electrically be used with electronics 3,683,212
    activated, and either Fast operation High voltage drive 1973 Stemme U.S. Pat. No.
    expands, shears, or High efficiency transistors required 3,747,120
    bends to apply Full pagewidth print Epson Stylus
    pressure to the ink, heads impractical Tektronix
    ejecting drops. due to actuator size IJ04
    Requires electrical
    poling in high field
    strengths during
    manufacture
    Electro- An electric field is Low power Low maximum Seiko Epson, Usui
    strictive used to activate consumption strain (approx. et all JP 253401/96
    electrostriction in Many ink types can 0.01%) IJ04
    relaxor materials such be used Large area required
    as lead lanthanum Low thermal for actuator due to
    zirconate titanate expansion low strain
    (PLZT) or lead Electric field Response speed is
    magnesium niobate strength required marginal (~10 μs)
    (PMN). (approx. 3.5 V/μm) High voltage drive
    can be generated transistors required
    without difficulty Full pagewidth print
    Does not require heads impractical
    electrical poling due to actuator size
    Ferro- An electric field is Low power Difficult to integrate IJ04
    electric used to induce a phase consumption with electronics
    transition between the Many ink types can Unusual materials
    antiferroelectric (AFE) be used such as PLZSnT are
    and ferroelectric (FE) Fast operation required
    phase. Perovskite (<1 μs) Actuators require a
    materials such as tin Relatively high large area
    modified lead longitudinal strain
    lanthanum zirconate High efficiency
    titanate (PLZSnT) Electric field
    exhibit large strains of strength of around 3 V/μm
    up to 1% associated can be readily
    with the AFE to FE provided
    phase transition.
    Electro- Conductive plates are Low power Difficult to operate IJ02, IJ04
    static separated by a consumption electrostatic devices
    plates compressible or fluid Many ink types can in an aqueous
    dielectric (usually air). be used environment
    Upon application of a Fast operation The electrostatic
    voltage, the plates actuator will
    attract each other and normally need to be
    displace ink, causing separated from the
    drop ejection. The ink
    conductive plates may Very large area
    be in a comb or required to achieve
    honeycomb structure, high forces
    or stacked to increase High voltage drive
    the surface area and transistors may be
    therefore the force. required
    Full pagewidth print
    heads are not
    competitive due to
    actuator size
    Electro- A strong electric field Low current High voltage 1989 Saito et al,
    static pull is applied to the ink, consumption required U.S. Pat. No. 4,799,068
    on ink whereupon Low temperature May be damaged by 1989 Miura et al,
    electrostatic attraction sparks due to air U.S. Pat. No. 4,810,954
    accelerates the ink breakdown Tone-jet
    towards the print Required field
    medium. strength increases as
    the drop size
    decreases
    High voltage drive
    transistors required
    Electrostatic field
    attracts dust
    Permanent An electromagnet Low power Complex fabrication IJ07, IJ10
    magnet directly attracts a consumption Permanent magnetic
    electro- permanent magnet, Many ink types can material such as
    magnetic displacing ink and be used Neodymium Iron
    causing drop ejection. Fast operation Boron (NdFeB)
    Rare earth magnets High efficiency required.
    with a field strength Easy extension from High local currents
    around 1 Tesla can be single nozzles to required
    used. Examples are: pagewidth print Copper metalization
    Samarium Cobalt heads should be used for
    (SaCo) and magnetic long
    materials in the electromigration
    neodymium iron boron lifetime and low
    family (NdFeB, resistivity
    NdDyFeBNb, Pigmented inks are
    NdDyFeB, etc) usually infeasible
    Operating
    temperature limited
    to the Curie
    temperature (around
    540 K)
    Soft A solenoid induced a Low power Complex fabrication IJ01, IJ05, IJ08,
    magnetic magnetic field in a soft consumption Materials not IJ10, IJ12, IJ14,
    core magnetic core or yoke Many ink types can usually present in a IJ15, IJ17
    electro- fabricated from a be used CMOS fab such as
    magnetic ferrous material such Fast operation NiFe, CoNiFe, or
    as electroplated iron High efficiency CoFe are required
    alloys such as CoNiFe Easy extension from High local currents
    [1], CoFe, or NiFe single nozzles to required
    alloys. Typically, the pagewidth print Copper metalization
    soft magnetic material heads should be used for
    is in two parts, which long
    are normally held electromigration
    apart by a spring. lifetime and low
    When the solenoid is resistivity
    actuated, the two parts Electroplating is
    attract, displacing the required
    ink. High saturation flux
    density is required
    (2.0-2.1 T is
    achievable with
    CoNiFe [1])
    Lorenz The Lorenz force Low power Force acts as a IJ06, IJ11, IJ13,
    force acting on a current consumption twisting motion IJ16
    carrying wire in a Many ink types can Typically, only a
    magnetic field is be used quarter of the
    utilized. Fast operation solenoid length
    This allows the High efficiency provides force in a
    magnetic field to be Easy extension from useful direction
    supplied externally to single nozzles to High local currents
    the print head, for pagewidth print required
    example with rare heads Copper metalization
    earth permanent should be used for
    magnets. long
    Only the current electromigration
    carrying wire need be lifetime and low
    fabricated on the print- resistivity
    head, simplifying Pigmented inks are
    materials usually infeasible
    requirements.
    Magneto- The actuator uses the Many ink types can Force acts as a Fischenbeck, U.S. Pat. No.
    striction giant magnetostrictive be used twisting motion 4,032,929
    effect of materials Fast operation Unusual materials IJ25
    such as Terfenol-D (an Easy extension from such as Terfenol-D
    alloy of terbium, single nozzles to are required
    dysprosium and iron pagewidth print High local currents
    developed at the Naval heads required
    Ordnance Laboratory, High force is Copper metalization
    hence Ter-Fe-NOL). available should be used for
    For best efficiency, the long
    actuator should be pre- electromigration
    stressed to approx. 8 MPa. lifetime and low
    resistivity
    Pre-stressing may
    be required
    Surface Ink under positive Low power Requires Silverbrook, EP
    tension pressure is held in a consumption supplementary force 0771 658 A2 and
    reduction nozzle by surface Simple construction to effect drop related patent
    tension. The surface No unusual separation applications
    tension of the ink is materials required in Requires special ink
    reduced below the fabrication surfactants
    bubble threshold, High efficiency Speed may be
    causing the ink to Easy extension from limited by surfactant
    egress from the single nozzles to properties
    nozzle. pagewidth print
    heads
    Viscosity The ink viscosity is Simple construction Requires Silverbrook, EP
    reduction locally reduced to No unusual supplementary force 0771 658 A2 and
    select which drops are materials required in to effect drop related patent
    to be ejected. A fabrication separation applications
    viscosity reduction can Easy extension from Requires special ink
    be achieved single nozzles to viscosity properties
    electrothermally with pagewidth print High speed is
    most inks, but special heads difficult to achieve
    inks can be engineered Requires oscillating
    for a 100:1 viscosity ink pressure
    reduction. A high temperature
    difference (typically
    80 degrees) is
    required
    Acoustic An acoustic wave is Can operate without Complex drive 1993 Hadimioglu et
    generated and a nozzle plate circuitry al, EUP 550,192
    focussed upon the Complex fabrication 1993 Elrod et al,
    drop ejection region. Low efficiency EUP 572,220
    Poor control of drop
    position
    Poor control of drop
    volume
    Thermo- An actuator which Low power Efficient aqueous IJ03, IJ09, IJ17,
    elastic relies upon differential consumption operation requires a IJ18, IJ19, IJ20,
    bend thermal expansion Many ink types can thermal insulator on IJ21, IJ22, IJ23,
    actuator upon Joule heating is be used the hot side IJ24, IJ27, IJ28,
    used. Simple planar Corrosion IJ29, IJ30, IJ31,
    fabrication prevention can be IJ32, IJ33, IJ34,
    Small chip area difficult IJ35, IJ36, IJ37,
    required for each Pigmented inks may IJ38, IJ39, IJ40,
    actuator be infeasible, as IJ41
    Fast operation pigment particles
    High efficiency may jam the bend
    CMOS compatible actuator
    voltages and
    currents
    Standard MEMS
    processes can be
    used
    Easy extension from
    single nozzles to
    pagewidth print
    heads
    High CTE A material with a very High force can be Requires special IJ09, IJ17, IJ18,
    thermo- high coefficient of generated material (e.g. PTFE) IJ20, IJ21, IJ22,
    elastic thermal expansion Three methods of Requires a PTFE IJ23, IJ24, IJ27,
    actuator (CTE) such as PTFE deposition are deposition process, IJ28, IJ29, IJ30,
    polytetrafluoroethylene under development: which is not yet IJ31, IJ42, IJ43,
    (PTFE) is used. As chemical vapor standard in ULSI IJ44
    high CTE materials deposition (CVD), fabs
    are usually non- spin coating, and PTFE deposition
    conductive, a heater evaporation cannot be followed
    fabricated from a PTFE is a candidate with high
    conductive material is for low dielectric temperature (above
    incorporated. A 50 μm constant insulation 350° C.) processing
    long PTFE bend in ULSI Pigmented inks may
    actuator with Very low power be infeasible, as
    polysilicon heater and consumption pigment particles
    15 mW power input Many ink types can may jam the bend
    can provide 180 μN be used actuator
    force and 10 μm Simple planar
    deflection. Actuator fabrication
    motions include: Small chip area
    Bend required for each
    Push actuator
    Buckle Fast operation
    Rotate High efficiency
    CMOS compatible
    voltages and
    currents
    Easy extension from
    single nozzles to
    pagewidth print
    heads
    Conductive A polymer with a high High force can be Requires special IJ24
    polymer coefficient of thermal generated materials
    thermo- expansion (such as Very low power development (High
    elastic PTFE) is doped with consumption CTE conductive
    actuator conducting substances Many ink types can polymer)
    to increase its be used Requires a PTFE
    conductivity to about 3 Simple planar deposition process,
    orders of magnitude fabrication which is not yet
    below that of copper. Small chip area standard in ULSI
    The conducting required for each fabs
    polymer expands actuator PTFE deposition
    when resistively Fast operation cannot be followed
    heated. High efficiency with high
    Examples of CMOS compatible temperature (above
    conducting dopants voltages and 350° C.) processing
    include: currents Evaporation and
    Carbon nanotubes Easy extension from CVD deposition
    Metal fibers single nozzles to techniques cannot
    Conductive polymers pagewidth print be used
    such as doped heads Pigmented inks may
    polythiophene be infeasible, as
    Carbon granules pigment particles
    may jam the bend
    actuator
    Shape A shape memory alloy High force is Fatigue limits IJ26
    memory such as TiNi (also available (stresses maximum number
    alloy known as Nitinol - of hundreds of MPa) of cycles
    Nickel Titanium alloy Large strain is Low strain (1%) is
    developed at the Naval available (more than required to extend
    Ordnance Laboratory) 3%) fatigue resistance
    is thermally switched High corrosion Cycle rate limited
    between its weak resistance by heat removal
    martensitic state and Simple construction Requires unusual
    its high stiffness Easy extension from materials (TiNi)
    austenic state. The single nozzles to The latent heat of
    shape of the actuator pagewidth print transformation must
    in its martensitic state heads be provided
    is deformed relative to Low voltage High current
    the austenic shape. operation operation
    The shape change Requires pre-
    causes ejection of a stressing to distort
    drop. the martensitic state
    Linear Linear magnetic Linear Magnetic Requires unusual IJ12
    Magnetic actuators include the actuators can be semiconductor
    Actuator Linear Induction constructed with materials such as
    Actuator (LIA), Linear high thrust, long soft magnetic alloys
    Permanent Magnet travel, and high (e.g. CoNiFe)
    Synchronous Actuator efficiency using Some varieties also
    (LPMSA), Linear planar require permanent
    Reluctance semiconductor magnetic materials
    Synchronous Actuator fabrication such as Neodymium
    (LRSA), Linear techniques iron boron (NdFeB)
    Switched Reluctance Long actuator travel Requires complex
    Actuator (LSRA), and is available multi-phase drive
    the Linear Stepper Medium force is circuitry
    Actuator (LSA). available High current
    Low voltage operation
    operation
  • BASIC OPERATION MODE
    Description Advantages Disadvantages Examples
    Actuator This is the simplest Simple operation Drop repetition rate Thermal ink jet
    directly mode of operation: the No external fields is usually limited to Piezoelectric ink jet
    pushes ink actuator directly required around 10 kHz. IJ01, IJ02, IJ03,
    supplies sufficient Satellite drops can However, this is not IJ04, IJ05, IJ06,
    kinetic energy to expel be avoided if drop fundamental to the IJ07, IJ09, IJ11,
    the drop. The drop velocity is less than method, but is IJ12, IJ14, IJ16,
    must have a sufficient 4 m/s related to the refill IJ20, IJ22, IJ23,
    velocity to overcome Can be efficient, method normally IJ24, IJ25, IJ26,
    the surface tension. depending upon the used IJ27, IJ28, IJ29,
    actuator used All of the drop IJ30, IJ31, IJ32,
    kinetic energy must IJ33, IJ34, IJ35,
    be provided by the IJ36, IJ37, IJ38,
    actuator IJ39, IJ40, IJ41,
    Satellite drops IJ42, IJ43, IJ44
    usually form if drop
    velocity is greater
    than 4.5 m/s
    Proximity The drops to be Very simple print Requires close Silverbrook, EP
    printed are selected by head fabrication can proximity between 0771 658 A2 and
    some manner (e.g. be used the print head and related patent
    thermally induced The drop selection the print media or applications
    surface tension means does not need transfer roller
    reduction of to provide the May require two
    pressurized ink). energy required to print heads printing
    Selected drops are separate the drop alternate rows of the
    separated from the ink from the nozzle image
    in the nozzle by Monolithic color
    contact with the print print heads are
    medium or a transfer difficult
    roller.
    Electro- The drops to be Very simple print Requires very high Silverbrook, EP
    static pull printed are selected by head fabrication can electrostatic field 0771 658 A2 and
    on ink some manner (e.g. be used Electrostatic field related patent
    thermally induced The drop selection for small nozzle applications
    surface tension means does not need sizes is above air Tone-Jet
    reduction of to provide the breakdown
    pressurized ink). energy required to Electrostatic field
    Selected drops are separate the drop may attract dust
    separated from the ink from the nozzle
    in the nozzle by a
    strong electric field.
    Magnetic The drops to be Very simple print Requires magnetic Silverbrook, EP
    pull on ink printed are selected by head fabrication can ink 0771 658 A2 and
    some manner (e.g. be used Ink colors other than related patent
    thermally induced The drop selection black are difficult applications
    surface tension means does not need Requires very high
    reduction of to provide the magnetic fields
    pressurized ink). energy required to
    Selected drops are separate the drop
    separated from the ink from the nozzle
    in the nozzle by a
    strong magnetic field
    acting on the magnetic
    ink.
    Shutter The actuator moves a High speed (>50 kHz) Moving parts are IJ13, IJ17, IJ21
    shutter to block ink operation can required
    flow to the nozzle. The be achieved due to Requires ink
    ink pressure is pulsed reduced refill time pressure modulator
    at a multiple of the Drop timing can be Friction and wear
    drop ejection very accurate must be considered
    frequency. The actuator energy Stiction is possible
    can be very low
    Shuttered The actuator moves a Actuators with Moving parts are IJ08, IJ15, IJ18,
    grill shutter to block ink small travel can be required IJ19
    flow through a grill to used Requires ink
    the nozzle. The shutter Actuators with pressure modulator
    movement need only small force can be Friction and wear
    be equal to the width used must be considered
    of the grill holes. High speed (>50 kHz) Stiction is possible
    operation can
    be achieved
    Pulsed A pulsed magnetic Extremely low Requires an external IJ10
    magnetic field attracts an ‘ink energy operation is pulsed magnetic
    pull on ink pusher’ at the drop possible field
    pusher ejection frequency. An No heat dissipation Requires special
    actuator controls a problems materials for both
    catch, which prevents the actuator and the
    the ink pusher from ink pusher
    moving when a drop is Complex
    not to be ejected. construction
    AUXILIARY MECHANISM (APPLIED TO ALL NOZZLES)
    None The actuator directly Simplicity of Drop ejection Most ink jets,
    fires the ink drop, and construction energy must be including
    there is no external Simplicity of supplied by piezoelectric and
    field or other operation individual nozzle thermal bubble.
    mechanism required. Small physical size actuator IJ01, IJ02, IJ03,
    IJ04, IJ05, IJ07,
    IJ09, IJ11, IJ12,
    IJ14, IJ20, IJ22,
    IJ23, IJ24, IJ25,
    IJ26, IJ27, IJ28,
    IJ29, IJ30, IJ31,
    IJ32, IJ33, IJ34,
    IJ35, IJ36, IJ37,
    IJ38, IJ39, IJ40,
    IJ41, IJ42, IJ43,
    IJ44
    Oscillating The ink pressure Oscillating ink Requires external Silverbrook, EP
    ink oscillates, providing pressure can provide ink pressure 0771 658 A2 and
    pressure much of the drop a refill pulse, oscillator related patent
    (including ejection energy. The allowing higher Ink pressure phase applications
    acoustic actuator selects which operating speed and amplitude must IJ08, IJ13, IJ15,
    stimulation) drops are to be fired The actuators may be carefully IJ17, IJ18, IJ19,
    by selectively operate with much controlled IJ21
    blocking or enabling lower energy Acoustic reflections
    nozzles. The ink Acoustic lenses can in the ink chamber
    pressure oscillation be used to focus the must be designed
    may be achieved by sound on the for
    vibrating the print nozzles
    head, or preferably by
    an actuator in the ink
    supply.
    Media The print head is Low power Precision assembly Silverbrook, EP
    proximity placed in close High accuracy required 0771 658 A2 and
    proximity to the print Simple print head Paper fibers may related patent
    medium. Selected construction cause problems applications
    drops protrude from Cannot print on
    the print head further rough substrates
    than unselected drops,
    and contact the print
    medium. The drop
    soaks into the medium
    fast enough to cause
    drop separation.
    Transfer Drops are printed to a High accuracy Bulky Silverbrook, EP
    roller transfer roller instead Wide range of print Expensive 0771 658 A2 and
    of straight to the print substrates can be Complex related patent
    medium. A transfer used construction applications
    roller can also be used Ink can be dried on Tektronix hot melt
    for proximity drop the transfer roller piezoelectric ink jet
    separation. Any of the IJ series
    Electro- An electric field is Low power Field strength Silverbrook, EP
    static used to accelerate Simple print head required for 0771 658 A2 and
    selected drops towards construction separation of small related patent
    the print medium. drops is near or applications
    above air Tone-Jet
    breakdown
    Direct A magnetic field is Low power Requires magnetic Silverbrook, EP
    magnetic used to accelerate Simple print head ink 0771 658 A2 and
    field selected drops of construction Requires strong related patent
    magnetic ink towards magnetic field applications
    the print medium.
    Cross The print head is Does not require Requires external IJ06, IJ16
    magnetic placed in a constant magnetic materials magnet
    field magnetic field. The to be integrated in Current densities
    Lorenz force in a the print head may be high,
    current carrying wire manufacturing resulting in
    is used to move the process electromigration
    actuator. problems
    Pulsed A pulsed magnetic Very low power Complex print head IJ10
    magnetic field is used to operation is possible construction
    field cyclically attract a Small print head Magnetic materials
    paddle, which pushes size required in print
    on the ink. A small head
    actuator moves a
    catch, which
    selectively prevents
    the paddle from
    moving.
  • ACTUATOR AMPLIFICATION OR MODIFICATION METHOD
    Description Advantages Disadvantages Examples
    None No actuator Operational Many actuator Thermal Bubble Ink
    mechanical simplicity mechanisms have jet
    amplification is used. insufficient travel, IJ01, IJ02, IJ06,
    The actuator directly or insufficient force, IJ07, IJ16, IJ25,
    drives the drop to efficiently drive IJ26
    ejection process. the drop ejection
    process
    Differential An actuator material Provides greater High stresses are Piezoelectric
    expansion expands more on one travel in a reduced involved IJ03, IJ09, IJ17,
    bend side than on the other. print head area Care must be taken IJ18, IJ19, IJ20,
    actuator The expansion may be that the materials do IJ21, IJ22, IJ23,
    thermal, piezoelectric, not delaminate IJ24, IJ27, IJ29,
    magnetostrictive, or Residual bend IJ30, IJ31, IJ32,
    other mechanism. The resulting from high IJ33, IJ34, IJ35,
    bend actuator converts temperature or high IJ36, IJ37, IJ38,
    a high force low travel stress during IJ39, IJ42, IJ43,
    actuator mechanism to formation IJ44
    high travel, lower
    force mechanism.
    Transient A trilayer bend Very good High stresses are IJ40, IJ41
    bend actuator where the two temperature stability involved
    actuator outside layers are High speed, as a Care must be taken
    identical. This cancels new drop can be that the materials do
    bend due to ambient fired before heat not delaminate
    temperature and dissipates
    residual stress. The Cancels residual
    actuator only responds stress of formation
    to transient heating of
    one side or the other.
    Reverse The actuator loads a Better coupling to Fabrication IJ05, IJ11
    spring spring. When the the ink complexity
    actuator is turned off, High stress in the
    the spring releases. spring
    This can reverse the
    force/distance curve of
    the actuator to make it
    compatible with the
    force/time
    requirements of the
    drop ejection.
    Actuator A series of thin Increased travel Increased Some piezoelectric
    stack actuators are stacked. Reduced drive fabrication ink jets
    This can be voltage complexity IJ04
    appropriate where Increased possibility
    actuators require high of short circuits due
    electric field strength, to pinholes
    such as electrostatic
    and piezoelectric
    actuators.
    Multiple Multiple smaller Increases the force Actuator forces may IJ12, IJ13, IJ18,
    actuators actuators are used available from an not add linearly, IJ20, IJ22, IJ28,
    simultaneously to actuator reducing efficiency IJ42, IJ43
    move the ink. Each Multiple actuators
    actuator need provide can be positioned to
    only a portion of the control ink flow
    force required. accurately
    Linear A linear spring is used Matches low travel Requires print head IJ15
    Spring to transform a motion actuator with higher area for the spring
    with small travel and travel requirements
    high force into a Non-contact method
    longer travel, lower of motion
    force motion. transformation
    Coiled A bend actuator is Increases travel Generally restricted IJ17, IJ21, IJ34,
    actuator coiled to provide Reduces chip area to planar IJ35
    greater travel in a Planar implementations
    reduced chip area. implementations are due to extreme
    relatively easy to fabrication difficulty
    fabricate. in other orientations.
    Flexure A bend actuator has a Simple means of Care must be taken IJ10, IJ19, IJ33
    bend small region near the increasing travel of not to exceed the
    actuator fixture point, which a bend actuator elastic limit in the
    flexes much more flexure area
    readily than the Stress distribution is
    remainder of the very uneven
    actuator. The actuator Difficult to
    flexing is effectively accurately model
    converted from an with finite element
    even coiling to an analysis
    angular bend, resulting
    in greater travel of the
    actuator tip.
    Catch The actuator controls a Very low actuator Complex IJ10
    small catch. The catch energy construction
    either enables or Very small actuator Requires external
    disables movement of size force
    an ink pusher that is Unsuitable for
    controlled in a bulk pigmented inks
    manner.
    Gears Gears can be used to Low force, low Moving parts are IJ13
    increase travel at the travel actuators can required
    expense of duration. be used Several actuator
    Circular gears, rack Can be fabricated cycles are required
    and pinion, ratchets, using standard More complex drive
    and other gearing surface MEMS electronics
    methods can be used. processes Complex
    construction
    Friction, friction,
    and wear are
    possible
    Buckle A buckle plate can be Very fast movement Must stay within S. Hirata et al, “An
    plate used to change a slow achievable elastic limits of the Ink-jet Head Using
    actuator into a fast materials for long Diaphragm
    motion. It can also device life Microactuator”,
    convert a high force, High stresses Proc. IEEE MEMS,
    low travel actuator involved February 1996, pp 418-423.
    into a high travel, Generally high IJ18, IJ27
    medium force motion. power requirement
    Tapered A tapered magnetic Linearizes the Complex IJ14
    magnetic pole can increase magnetic construction
    pole travel at the expense force/distance curve
    of force.
    Lever A lever and fulcrum is Matches low travel High stress around IJ32, IJ36, IJ37
    used to transform a actuator with higher the fulcrum
    motion with small travel requirements
    travel and high force Fulcrum area has no
    into a motion with linear movement,
    longer travel and and can be used for
    lower force. The lever a fluid seal
    can also reverse the
    direction of travel.
    Rotary The actuator is High mechanical Complex IJ28
    impeller connected to a rotary advantage construction
    impeller. A small The ratio of force to Unsuitable for
    angular deflection of travel of the actuator pigmented inks
    the actuator results in can be matched to
    a rotation of the the nozzle
    impeller vanes, which requirements by
    push the ink against varying the number
    stationary vanes and of impeller vanes
    out of the nozzle.
    Acoustic A refractive or No moving parts Large area required 1993 Hadimioglu et
    lens diffractive (e.g. zone Only relevant for al, EUP 550,192
    plate) acoustic lens is acoustic ink jets 1993 Elrod et al,
    used to concentrate EUP 572,220
    sound waves.
    Sharp A sharp point is used Simple construction Difficult to fabricate Tone-jet
    conductive to concentrate an using standard VLSI
    point electrostatic field. processes for a
    surface ejecting ink-
    jet
    Only relevant for
    electrostatic ink jets
  • ACTUATOR MOTION
    Description Advantages Disadvantages Examples
    Volume The volume of the Simple construction High energy is Hewlett-Packard
    expansion actuator changes, in the case of typically required to Thermal Ink jet
    pushing the ink in all thermal ink jet achieve volume Canon Bubblejet
    directions. expansion. This
    leads to thermal
    stress, cavitation,
    and kogation in
    thermal ink jet
    implementations
    Linear, The actuator moves in Efficient coupling to High fabrication IJ01, IJ02, IJ04,
    normal to a direction normal to ink drops ejected complexity may be IJ07, IJ11, IJ14
    chip the print head surface. normal to the required to achieve
    surface The nozzle is typically surface perpendicular
    in the line of motion
    movement.
    Parallel to The actuator moves Suitable for planar Fabrication IJ12, IJ13, IJ15,
    chip parallel to the print fabrication complexity IJ33,, IJ34, IJ35,
    surface head surface. Drop Friction IJ36
    ejection may still be Stiction
    normal to the surface.
    Membrane An actuator with a The effective area of Fabrication 1982 Howkins U.S. Pat. No.
    push high force but small the actuator complexity 4,459,601
    area is used to push a becomes the Actuator size
    stiff membrane that is membrane area Difficulty of
    in contact with the ink. integration in a
    VLSI process
    Rotary The actuator causes Rotary levers may Device complexity IJ05, IJ08, IJ13,
    the rotation of some be used to increase May have friction at IJ28
    element, such a grill or travel a pivot point
    impeller Small chip area
    requirements
    Bend The actuator bends A very small change Requires the 1970 Kyser et al
    when energized. This in dimensions can actuator to be made U.S. Pat. No. 3,946,398
    may be due to be converted to a from at least two 1973 Stemme U.S. Pat. No.
    differential thermal large motion. distinct layers, or to 3,747,120
    expansion, have a thermal IJ03, IJ09, IJ10,
    piezoelectric difference across the IJ19, IJ23, IJ24,
    expansion, actuator IJ25, IJ29, IJ30,
    magnetostriction, or IJ31, IJ33, IJ34,
    other form of relative IJ35
    dimensional change.
    Swivel The actuator swivels Allows operation Inefficient coupling IJ06
    around a central pivot. where the net linear to the ink motion
    This motion is suitable force on the paddle
    where there are is zero
    opposite forces Small chip area
    applied to opposite requirements
    sides of the paddle,
    e.g. Lorenz force.
    Straighten The actuator is Can be used with Requires careful IJ26, IJ32
    normally bent, and shape memory balance of stresses
    straightens when alloys where the to ensure that the
    energized. austenitic phase is quiescent bend is
    planar accurate
    Double The actuator bends in One actuator can be Difficult to make IJ36, IJ37, IJ38
    bend one direction when used to power two the drops ejected by
    one element is nozzles. both bend directions
    energized, and bends Reduced chip size. identical.
    the other way when Not sensitive to A small efficiency
    another element is ambient temperature loss compared to
    energized. equivalent single
    bend actuators.
    Shear Energizing the Can increase the Not readily 1985 Fishbeck U.S. Pat. No.
    actuator causes a shear effective travel of applicable to other 4,584,590
    motion in the actuator piezoelectric actuator
    material. actuators mechanisms
    Radial The actuator squeezes Relatively easy to High force required 1970 Zoltan U.S. Pat. No.
    constriction an ink reservoir, fabricate single Inefficient 3,683,212
    forcing ink from a nozzles from glass Difficult to integrate
    constricted nozzle. tubing as with VLSI
    macroscopic processes
    structures
    Coil/ A coiled actuator Easy to fabricate as Difficult to fabricate IJ17, IJ21, IJ34,
    uncoil uncoils or coils more a planar VLSI for non-planar IJ35
    tightly. The motion of process devices
    the free end of the Small area required, Poor out-of-plane
    actuator ejects the ink. therefore low cost stiffness
    Bow The actuator bows (or Can increase the Maximum travel is IJ16, IJ18, IJ27
    buckles) in the middle speed of travel constrained
    when energized. Mechanically rigid High force required
    Push-Pull Two actuators control The structure is Not readily suitable IJ18
    a shutter. One actuator pinned at both ends, for ink jets which
    pulls the shutter, and so has a high out-of- directly push the ink
    the other pushes it. plane rigidity
    Curl A set of actuators curl Good fluid flow to Design complexity IJ20, IJ42
    inwards inwards to reduce the the region behind
    volume of ink that the actuator
    they enclose. increases efficiency
    Curl A set of actuators curl Relatively simple Relatively large IJ43
    outwards outwards, pressurizing construction chip area
    ink in a chamber
    surrounding the
    actuators, and
    expelling ink from a
    nozzle in the chamber.
    Iris Multiple vanes enclose High efficiency High fabrication IJ22
    a volume of ink. These Small chip area complexity
    simultaneously rotate, Not suitable for
    reducing the volume pigmented inks
    between the vanes.
    Acoustic The actuator vibrates The actuator can be Large area required 1993 Hadimioglu et
    vibration at a high frequency. physically distant for efficient al, EUP 550,192
    from the ink operation at useful 1993 Elrod et al,
    frequencies EUP 572,220
    Acoustic coupling
    and crosstalk
    Complex drive
    circuitry
    Poor control of drop
    volume and position
    None In various ink jet No moving parts Various other Silverbrook, EP
    designs the actuator tradeoffs are 0771 658 A2 and
    does not move. required to related patent
    eliminate moving applications
    parts Tone-jet
  • NOZZLE REFILL METHOD
    Description Advantages Disadvantages Examples
    Surface This is the normal way Fabrication Low speed Thermal ink jet
    tension that ink jets are simplicity Surface tension Piezoelectric ink jet
    refilled. After the Operational force relatively IJ01-IJ07, IJ10-IJ14,
    actuator is energized, simplicity small compared to IJ16, IJ20, IJ22-IJ45
    it typically returns actuator force
    rapidly to its normal Long refill time
    position. This rapid usually dominates
    return sucks in air the total repetition
    through the nozzle rate
    opening. The ink
    surface tension at the
    nozzle then exerts a
    small force restoring
    the meniscus to a
    minimum area. This
    force refills the nozzle.
    Shuttered Ink to the nozzle High speed Requires common IJ08, IJ13, IJ15,
    oscillating chamber is provided at Low actuator ink pressure IJ17, IJ18, IJ19,
    ink a pressure that energy, as the oscillator IJ21
    pressure oscillates at twice the actuator need only May not be suitable
    drop ejection open or close the for pigmented inks
    frequency. When a shutter, instead of
    drop is to be ejected, ejecting the ink drop
    the shutter is opened
    for 3 half cycles: drop
    ejection, actuator
    return, and refill. The
    shutter is then closed
    to prevent the nozzle
    chamber emptying
    during the next
    negative pressure
    cycle.
    Refill After the main High speed, as the Requires two IJ09
    actuator actuator has ejected a nozzle is actively independent
    drop a second (refill) refilled actuators per nozzle
    actuator is energized.
    The refill actuator
    pushes ink into the
    nozzle chamber. The
    refill actuator returns
    slowly, to prevent its
    return from emptying
    the chamber again.
    Positive The ink is held a slight High refill rate, Surface spill must Silverbrook, EP
    ink positive pressure. therefore a high be prevented 0771 658 A2 and
    pressure After the ink drop is drop repetition rate Highly hydrophobic related patent
    ejected, the nozzle is possible print head surfaces applications
    chamber fills quickly are required Alternative for:,
    as surface tension and IJ01-IJ07, IJ10-IJ14,
    ink pressure both IJ16, IJ20, IJ22-IJ45
    operate to refill the
    nozzle.
  • METHOD OF RESTRICTING BACK-FLOW THROUGH INLET
    Description Advantages Disadvantages Examples
    Long inlet The ink inlet channel Design simplicity Restricts refill rate Thermal ink jet
    channel to the nozzle chamber Operational May result in a Piezoelectric ink jet
    is made long and simplicity relatively large chip IJ42, IJ43
    relatively narrow, Reduces crosstalk area
    relying on viscous Only partially
    drag to reduce inlet effective
    back-flow.
    Positive The ink is under a Drop selection and Requires a method Silverbrook, EP
    ink positive pressure, so separation forces (such as a nozzle 0771 658 A2 and
    pressure that in the quiescent can be reduced rim or effective related patent
    state some of the ink Fast refill time hydrophobizing, or applications
    drop already protrudes both) to prevent Possible operation
    from the nozzle. flooding of the of the following:
    This reduces the ejection surface of IJ01-IJ07, IJ09-IJ12,
    pressure in the nozzle the print head. IJ14, IJ16,
    chamber which is IJ20, IJ22,, IJ23-IJ34,
    required to eject a IJ36-IJ41,
    certain volume of ink. IJ44
    The reduction in
    chamber pressure
    results in a reduction
    in ink pushed out
    through the inlet.
    Baffle One or more baffles The refill rate is not Design complexity HP Thermal Ink Jet
    are placed in the inlet as restricted as the May increase Tektronix
    ink flow. When the long inlet method. fabrication piezoelectric ink jet
    actuator is energized, Reduces crosstalk complexity (e.g.
    the rapid ink Tektronix hot melt
    movement creates Piezoelectric print
    eddies which restrict heads).
    the flow through the
    inlet. The slower refill
    process is unrestricted,
    and does not result in
    eddies.
    Flexible In this method recently Significantly Not applicable to Canon
    flap disclosed by Canon, reduces back-flow most ink jet
    restricts the expanding actuator for edge-shooter configurations
    inlet (bubble) pushes on a thermal ink jet Increased
    flexible flap that devices fabrication
    restricts the inlet. complexity
    Inelastic
    deformation of
    polymer flap results
    in creep over
    extended use
    Inlet filter A filter is located Additional Restricts refill rate IJ04, IJ12, IJ24,
    between the ink inlet advantage of ink May result in IJ27, IJ29, IJ30
    and the nozzle filtration complex
    chamber. The filter Ink filter may be construction
    has a multitude of fabricated with no
    small holes or slots, additional process
    restricting ink flow. steps
    The filter also removes
    particles which may
    block the nozzle.
    Small inlet The ink inlet channel Design simplicity Restricts refill rate IJ02, IJ37, IJ44
    compared to the nozzle chamber May result in a
    to nozzle has a substantially relatively large chip
    smaller cross section area
    than that of the nozzle, Only partially
    resulting in easier ink effective
    egress out of the
    nozzle than out of the
    inlet.
    Inlet A secondary actuator Increases speed of Requires separate IJ09
    shutter controls the position of the ink-jet print refill actuator and
    a shutter, closing off head operation drive circuit
    the ink inlet when the
    main actuator is
    energized.
    The inlet is The method avoids the Back-flow problem Requires careful IJ01, IJ03, IJ05,
    located problem of inlet back- is eliminated design to minimize IJ06, IJ07, IJ10,
    behind the flow by arranging the the negative IJ11, IJ14, IJ16,
    ink- ink-pushing surface of pressure behind the IJ22, IJ23, IJ25,
    pushing the actuator between paddle IJ28, IJ31, IJ32,
    surface the inlet and the IJ33, IJ34, IJ35,
    nozzle. IJ36, IJ39, IJ40,
    IJ41
    Part of the The actuator and a Significant Small increase in IJ07, IJ20, IJ26,
    actuator wall of the ink reductions in back- fabrication IJ38
    moves to chamber are arranged flow can be complexity
    shut off so that the motion of achieved
    the inlet the actuator closes off Compact designs
    the inlet. possible
    Nozzle In some configurations Ink back-flow None related to ink Silverbrook, EP
    actuator of ink jet, there is no problem is back-flow on 0771 658 A2 and
    does not expansion or eliminated actuation related patent
    result in movement of an applications
    ink back- actuator which may Valve-jet
    flow cause ink back-flow Tone-jet
    through the inlet.
  • NOZZLE CLEARING METHOD
    Description Advantages Disadvantages Examples
    Normal All of the nozzles are No added May not be Most ink jet systems
    nozzle fired periodically, complexity on the sufficient to IJ01, IJ02, IJ03,
    firing before the ink has a print head displace dried ink IJ04, IJ05, IJ06,
    chance to dry. When IJ07, IJ09, IJ10,
    not in use the nozzles IJ11, IJ12, IJ14,
    are sealed (capped) IJ16, IJ20, IJ22,
    against air. IJ23, IJ24, IJ25,
    The nozzle firing is IJ26, IJ27, IJ28,
    usually performed IJ29, IJ30, IJ31,
    during a special IJ32, IJ33, IJ34,
    clearing cycle, after IJ36, IJ37, IJ38,
    first moving the print IJ39, IJ40,, IJ41,
    head to a cleaning IJ42, IJ43, IJ44,,
    station. IJ45
    Extra In systems which heat Can be highly Requires higher Silverbrook, EP
    power to the ink, but do not boil effective if the drive voltage for 0771 658 A2 and
    ink heater it under normal heater is adjacent to clearing related patent
    situations, nozzle the nozzle May require larger applications
    clearing can be drive transistors
    achieved by over-
    powering the heater
    and boiling ink at the
    nozzle.
    Rapid The actuator is fired in Does not require Effectiveness May be used with:
    succession rapid succession. In extra drive circuits depends IJ01, IJ02, IJ03,
    of some configurations, on the print head substantially upon IJ04, IJ05, IJ06,
    actuator this may cause heat Can be readily the configuration of IJ07, IJ09, IJ10,
    pulses build-up at the nozzle controlled and the ink jet nozzle IJ11, IJ14, IJ16,
    which boils the ink, initiated by digital IJ20, IJ22, IJ23,
    clearing the nozzle. In logic IJ24, IJ25, IJ27,
    other situations, it may IJ28, IJ29, IJ30,
    cause sufficient IJ31, IJ32, IJ33,
    vibrations to dislodge IJ34, IJ36, IJ37,
    clogged nozzles. IJ38, IJ39, IJ40,
    IJ41, IJ42, IJ43,
    IJ44, IJ45
    Extra Where an actuator is A simple solution Not suitable where May be used with:
    power to not normally driven to where applicable there is a hard limit IJ03, IJ09, IJ16,
    ink the limit of its motion, to actuator IJ20, IJ23, IJ24,
    pushing nozzle clearing may be movement IJ25, IJ27, IJ29,
    actuator assisted by providing IJ30, IJ31, IJ32,
    an enhanced drive IJ39, IJ40, IJ41,
    signal to the actuator. IJ42, IJ43, IJ44,
    IJ45
    Acoustic An ultrasonic wave is A high nozzle High IJ08, IJ13, IJ15,
    resonance applied to the ink clearing capability implementation cost IJ17, IJ18, IJ19,
    chamber. This wave is can be achieved if system does not IJ21
    of an appropriate May be already include an
    amplitude and implemented at very acoustic actuator
    frequency to cause low cost in systems
    sufficient force at the which already
    nozzle to clear include acoustic
    blockages. This is actuators
    easiest to achieve if
    the ultrasonic wave is
    at a resonant
    frequency of the ink
    cavity.
    Nozzle A microfabricated Can clear severely Accurate Silverbrook, EP
    clearing plate is pushed against clogged nozzles mechanical 0771 658 A2 and
    plate the nozzles. The plate alignment is related patent
    has a post for every required applications
    nozzle. A post moves Moving parts are
    through each nozzle, required
    displacing dried ink. There is risk of
    damage to the
    nozzles
    Accurate fabrication
    is required
    Ink The pressure of the ink May be effective Requires pressure May be used with
    pressure is temporarily where other pump or other all IJ series ink jets
    pulse increased so that ink methods cannot be pressure actuator
    streams from all of the used Expensive
    nozzles. This may be Wasteful of ink
    used in conjunction
    with actuator
    energizing.
    Print head A flexible ‘blade’ is Effective for planar Difficult to use if Many ink jet
    wiper wiped across the print print head surfaces print head surface is systems
    head surface. The Low cost non-planar or very
    blade is usually fragile
    fabricated from a Requires
    flexible polymer, e.g. mechanical parts
    rubber or synthetic Blade can wear out
    elastomer. in high volume print
    systems
    Separate A separate heater is Can be effective Fabrication Can be used with
    ink boiling provided at the nozzle where other nozzle complexity many IJ series ink
    heater although the normal clearing methods jets
    drop e-ection cannot be used
    mechanism does not Can be implemented
    require it. The heaters at no additional cost
    do not require in some ink jet
    individual drive configurations
    circuits, as many
    nozzles can be cleared
    simultaneously, and no
    imaging is required.
  • NOZZLE PLATE CONSTRUCTION
    Description Advantages Disadvantages Examples
    Electro- A nozzle plate is Fabrication High temperatures Hewlett Packard
    formed separately fabricated simplicity and pressures are Thermal Ink jet
    nickel from electroformed required to bond
    nickel, and bonded to nozzle plate
    the print head chip. Minimum thickness
    constraints
    Differential thermal
    expansion
    Laser Individual nozzle No masks required Each hole must be Canon Bubblejet
    ablated or holes are ablated by an Can be quite fast individually formed 1988 Sercel et al.,
    drilled intense UV laser in a Some control over Special equipment SPIE, Vol. 998
    polymer nozzle plate, which is nozzle profile is required Excimer Beam
    typically a polymer possible Slow where there Applications, pp.
    such as polyimide or Equipment required are many thousands 76-83
    polysulphone is relatively low cost of nozzles per print 1993 Watanabe et
    head al., U.S. Pat. No. 5,208,604
    May produce thin
    burrs at exit holes
    Silicon A separate nozzle High accuracy is Two part K. Bean, IEEE
    micro- plate is attainable construction Transactions on
    machined micromachined from High cost Electron Devices,
    single crystal silicon, Requires precision Vol. ED-25, No. 10,
    and bonded to the alignment 1978, pp 1185-1195
    print head wafer. Nozzles may be Xerox 1990
    clogged by adhesive Hawkins et al., U.S. Pat. No.
    4,899,181
    Glass Fine glass capillaries No expensive Very small nozzle 1970 Zoltan U.S. Pat. No.
    capillaries are drawn from glass equipment required sizes are difficult to 3,683,212
    tubing. This method Simple to make form
    has been used for single nozzles Not suited for mass
    making individual production
    nozzles, but is difficult
    to use for bulk
    manufacturing of print
    heads with thousands
    of nozzles.
    Monolithic, The nozzle plate is High accuracy (<1 μm) Requires sacrificial Silverbrook, EP
    surface deposited as a layer Monolithic layer under the 0771 658 A2 and
    micro- using standard VLSI Low cost nozzle plate to form related patent
    machined deposition techniques. Existing processes the nozzle chamber applications
    using VLSI Nozzles are etched in can be used Surface may be IJ01, IJ02, IJ04,
    litho- the nozzle plate using fragile to the touch IJ11, IJ12, IJ17,
    graphic VLSI lithography and IJ18, IJ20, IJ22,
    processes etching. IJ24, IJ27, IJ28,
    IJ29, IJ30, IJ31,
    IJ32, IJ33, IJ34,
    IJ36, IJ37, IJ38,
    IJ39, IJ40, IJ41,
    IJ42, IJ43, IJ44
    Monolithic, The nozzle plate is a High accuracy (<1 μm) Requires long etch IJ03, IJ05, IJ06,
    etched buried etch stop in the Monolithic times IJ07, IJ08, IJ09,
    through wafer. Nozzle Low cost Requires a support IJ10, IJ13, IJ14,
    substrate chambers are etched in No differential wafer IJ15, IJ16, IJ19,
    the front of the wafer, expansion IJ21, IJ23, IJ25,
    and the wafer is IJ26
    thinned from the back
    side. Nozzles are then
    etched in the etch stop
    layer.
    No nozzle Various methods have No nozzles to Difficult to control Ricoh 1995 Sekiya
    plate been tried to eliminate become clogged drop position et al U.S. Pat. No. 5,412,413
    the nozzles entirely, to accurately 1993 Hadimioglu et
    prevent nozzle Crosstalk problems al EUP 550,192
    clogging. These 1993 Elrod et al
    include thermal bubble EUP 572,220
    mechanisms and
    acoustic lens
    mechanisms
    Trough Each drop ejector has Reduced Drop firing IJ35
    a trough through manufacturing direction is sensitive
    which a paddle moves. complexity to wicking.
    There is no nozzle Monolithic
    plate.
    Nozzle slit The elimination of No nozzles to Difficult to control 1989 Saito et al
    instead of nozzle holes and become clogged drop position U.S. Pat. No. 4,799,068
    individual replacement by a slit accurately
    nozzles encompassing many Crosstalk problems
    actuator positions
    reduces nozzle
    clogging, but increases
    crosstalk due to ink
    surface waves
  • DROP EJECTION DIRECTION
    Description Advantages Disadvantages Examples
    Edge Ink flow is along the Simple construction Nozzles limited to Canon Bubblejet
    (‘edge surface of the chip, No silicon etching edge 1979 Endo et al GB
    shooter’) and ink drops are required High resolution is patent 2,007,162
    ejected from the chip Good heat sinking difficult Xerox heater-in-pit
    edge. via substrate Fast color printing 1990 Hawkins et al
    Mechanically strong requires one print U.S. Pat. No. 4,899,181
    Ease of chip head per color Tone-jet
    handing
    Surface Ink flow is along the No bulk silicon Maximum ink flow Hewlett-Packard TIJ
    (‘roof surface of the chip, etching required is severely restricted 1982 Vaught et al
    shooter’) and ink drops are Silicon can make an U.S. Pat. No. 4,490,728
    ejected from the chip effective heat sink IJ02, IJ11, IJ12,
    surface, normal to the Mechanical strength IJ20, IJ22
    plane of the chip.
    Through Ink flow is through the High ink flow Requires bulk Silverbrook, EP
    chip, chip, and ink drops are Suitable for silicon etching 0771 658 A2 and
    forward ejected from the front pagewidth print related patent
    (‘up surface of the chip. heads applications
    shooter’) High nozzle packing IJ04, IJ17, IJ18,
    density therefore IJ24, IJ27-IJ45
    low manufacturing
    cost
    Through Ink flow is through the High ink flow Requires wafer IJ01, IJ03, IJ05,
    chip, chip, and ink drops are Suitable for thinning IJ06, IJ07, IJ08,
    reverse ejected from the rear pagewidth print Requires special IJ09, IJ10, IJ13,
    (‘down surface of the chip. heads handling during IJ14, IJ15, IJ16,
    shooter’) High nozzle packing manufacture IJ19, IJ21, IJ23,
    density therefore IJ25, IJ26
    low manufacturing
    cost
    Through Ink flow is through the Suitable for Pagewidth print Epson Stylus
    actuator actuator, which is not piezoelectric print heads require Tektronix hot melt
    fabricated as part of heads several thousand piezoelectric ink jets
    the same substrate as connections to drive
    the drive transistors. circuits
    Cannot be
    manufactured in
    standard CMOS
    fabs
    Complex assembly
    required
  • INK TYPE
    Description Advantages Disadvantages Examples
    Aqueous, Water based ink which Environmentally Slow drying Most existing ink
    dye typically contains: friendly Corrosive jets
    water, dye, surfactant, No odor Bleeds on paper All IJ series ink jets
    humectant, and May strikethrough Silverbrook, EP
    biocide. Cockles paper 0771 658 A2 and
    Modern ink dyes have related patent
    high water-fastness, applications
    light fastness
    Aqueous, Water based ink which Environmentally Slow drying IJ02, IJ04, IJ21,
    pigment typically contains: friendly Corrosive IJ26, IJ27, IJ30
    water, pigment, No odor Pigment may clog Silverbrook, EP
    surfactant, humectant, Reduced bleed nozzles 0771 658 A2 and
    and biocide. Reduced wicking Pigment may clog related patent
    Pigments have an Reduced actuator applications
    advantage in reduced strikethrough mechanisms Piezoelectric ink-
    bleed, wicking and Cockles paper jets
    strikethrough. Thermal ink jets
    (with significant
    restrictions)
    Methyl MEK is a highly Very fast drying Odorous All IJ series ink jets
    Ethyl volatile solvent used Prints on various Flammable
    Ketone for industrial printing substrates such as
    (MEK) on difficult surfaces metals and plastics
    such as aluminum
    cans.
    Alcohol Alcohol based inks Fast drying Slight odor All IJ series ink jets
    (ethanol, can be used where the Operates at sub- Flammable
    2-butanol, printer must operate at freezing
    and temperatures below temperatures
    others) the freezing point of Reduced paper
    water. An example of cockle
    this is in-camera Low cost
    consumer
    photographic printing.
    Phase The ink is solid at No drying time-ink High viscosity Tektronix hot melt
    change room temperature, and instantly freezes on Printed ink typically piezoelectric ink jets
    (hot melt) is melted in the print the print medium has a ‘waxy’ feel 1989 Nowak U.S. Pat. No.
    head before jetting. Almost any print Printed pages may 4,820,346
    Hot melt inks are medium can be used ‘block’ All IJ series ink jets
    usually wax based, No paper cockle Ink temperature
    with a melting point occurs may be above the
    around 80° C. After No wicking occurs curie point of
    jetting the ink freezes No bleed occurs permanent magnets
    almost instantly upon No strikethrough Ink heaters consume
    contacting the print occurs power
    medium or a transfer Long warm-up time
    roller.
    Oil Oil based inks are High solubility High viscosity: this All IJ series ink jets
    extensively used in medium for some is a significant
    offset printing. They dyes limitation for use in
    have advantages in Does not cockle ink jets, which
    improved paper usually require a
    characteristics on Does not wick low viscosity. Some
    paper (especially no through paper short chain and
    wicking or cockle). multi-branched oils
    Oil soluble dies and have a sufficiently
    pigments are required. low viscosity.
    Slow drying
    Micro- A microemulsion is a Stops ink bleed Viscosity higher All IJ series ink jets
    emulsion stable, self forming High dye solubility than water
    emulsion of oil, water, Water, oil, and Cost is slightly
    and surfactant. The amphiphilic soluble higher than water
    characteristic drop size dies can be used based ink
    is less than 100 nm, Can stabilize High surfactant
    and is determined by pigment concentration
    the preferred curvature suspensions required (around
    of the surfactant. 5%)

Claims (3)

1. A method of processing and printing an image captured by a digital camera, said digital camera comprising an image sensor, a processor and a pagewidth printhead connected to the processor, said method being performed within and by said processor and comprising the steps of:
locating distortions in captured images;
retouching the captured images so as to reduce the effects of the located distortions to produce a retouched image;
generating print data representing the retouched image; and
selectively controlling nozzles across the pagewidth printhead to print the retouched image using the generated print data.
2. A method as claimed in claim 1 wherein the locating step comprises automatically locating faces within the captured images.
3. A method as claimed in claim 1 wherein the located distortions include “red-eye” effects.
US12/778,885 1997-07-15 2010-05-12 Method of Processing and Printing Digital Images Abandoned US20100220199A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/778,885 US20100220199A1 (en) 1997-07-15 2010-05-12 Method of Processing and Printing Digital Images

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
AUPO7998 1997-07-15
AUPO7991 1997-07-15
AUPO7991A AUPO799197A0 (en) 1997-07-15 1997-07-15 Image processing method and apparatus (ART01)
AUPO7998A AUPO799897A0 (en) 1997-07-15 1997-07-15 Image processing method and apparatus (ART11)
US11274298A 1998-07-10 1998-07-10
US10/636,285 US7724282B2 (en) 1997-07-15 2003-08-08 Method of processing digital image to correct for flash effects
US12/778,885 US20100220199A1 (en) 1997-07-15 2010-05-12 Method of Processing and Printing Digital Images

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/636,285 Continuation US7724282B2 (en) 1997-07-15 2003-08-08 Method of processing digital image to correct for flash effects

Publications (1)

Publication Number Publication Date
US20100220199A1 true US20100220199A1 (en) 2010-09-02

Family

ID=46299741

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/636,285 Expired - Fee Related US7724282B2 (en) 1997-07-15 2003-08-08 Method of processing digital image to correct for flash effects
US10/636,224 Expired - Fee Related US7705891B2 (en) 1997-07-15 2003-08-08 Correction of distortions in digital images
US12/765,861 Expired - Fee Related US8013905B2 (en) 1997-07-15 2010-04-23 Method of processing images captured by digital camera to reduce distortion
US12/778,885 Abandoned US20100220199A1 (en) 1997-07-15 2010-05-12 Method of Processing and Printing Digital Images

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10/636,285 Expired - Fee Related US7724282B2 (en) 1997-07-15 2003-08-08 Method of processing digital image to correct for flash effects
US10/636,224 Expired - Fee Related US7705891B2 (en) 1997-07-15 2003-08-08 Correction of distortions in digital images
US12/765,861 Expired - Fee Related US8013905B2 (en) 1997-07-15 2010-04-23 Method of processing images captured by digital camera to reduce distortion

Country Status (1)

Country Link
US (4) US7724282B2 (en)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6786420B1 (en) 1997-07-15 2004-09-07 Silverbrook Research Pty. Ltd. Data distribution mechanism in the form of ink dots on cards
US6803989B2 (en) * 1997-07-15 2004-10-12 Silverbrook Research Pty Ltd Image printing apparatus including a microcontroller
US6702417B2 (en) * 1997-07-12 2004-03-09 Silverbrook Research Pty Ltd Printing cartridge with capacitive sensor identification
US6618117B2 (en) 1997-07-12 2003-09-09 Silverbrook Research Pty Ltd Image sensing apparatus including a microcontroller
US6879341B1 (en) 1997-07-15 2005-04-12 Silverbrook Research Pty Ltd Digital camera system containing a VLIW vector processor
US6985207B2 (en) 1997-07-15 2006-01-10 Silverbrook Research Pty Ltd Photographic prints having magnetically recordable media
US7551201B2 (en) 1997-07-15 2009-06-23 Silverbrook Research Pty Ltd Image capture and processing device for a print on demand digital camera system
US6690419B1 (en) 1997-07-15 2004-02-10 Silverbrook Research Pty Ltd Utilising eye detection methods for image processing in a digital image camera
US7724282B2 (en) * 1997-07-15 2010-05-25 Silverbrook Research Pty Ltd Method of processing digital image to correct for flash effects
US6624848B1 (en) * 1997-07-15 2003-09-23 Silverbrook Research Pty Ltd Cascading image modification using multiple digital cameras incorporating image processing
US7110024B1 (en) * 1997-07-15 2006-09-19 Silverbrook Research Pty Ltd Digital camera system having motion deblurring means
AUPO802797A0 (en) 1997-07-15 1997-08-07 Silverbrook Research Pty Ltd Image processing method and apparatus (ART54)
US7738015B2 (en) * 1997-10-09 2010-06-15 Fotonation Vision Limited Red-eye filter method and apparatus
US7352394B1 (en) * 1997-10-09 2008-04-01 Fotonation Vision Limited Image modification based on red-eye filter analysis
US7630006B2 (en) * 1997-10-09 2009-12-08 Fotonation Ireland Limited Detecting red eye filter and apparatus using meta-data
US7042505B1 (en) 1997-10-09 2006-05-09 Fotonation Ireland Ltd. Red-eye filter method and apparatus
AUPP702098A0 (en) 1998-11-09 1998-12-03 Silverbrook Research Pty Ltd Image creation method and apparatus (ART73)
AUPQ056099A0 (en) 1999-05-25 1999-06-17 Silverbrook Research Pty Ltd A method and apparatus (pprint01)
US6941027B1 (en) * 2000-07-27 2005-09-06 Eastman Kodak Company Method of and system for automatically determining a level of light falloff in an image
JP3966461B2 (en) * 2002-08-09 2007-08-29 株式会社リコー Electronic camera device
US7689009B2 (en) * 2005-11-18 2010-03-30 Fotonation Vision Ltd. Two stage detection for photographic eye artifacts
US7920723B2 (en) * 2005-11-18 2011-04-05 Tessera Technologies Ireland Limited Two stage detection for photographic eye artifacts
US7587085B2 (en) * 2004-10-28 2009-09-08 Fotonation Vision Limited Method and apparatus for red-eye detection in an acquired digital image
US8036458B2 (en) * 2007-11-08 2011-10-11 DigitalOptics Corporation Europe Limited Detecting redeye defects in digital images
US7970182B2 (en) 2005-11-18 2011-06-28 Tessera Technologies Ireland Limited Two stage detection for photographic eye artifacts
US8254674B2 (en) * 2004-10-28 2012-08-28 DigitalOptics Corporation Europe Limited Analyzing partial face regions for red-eye detection in acquired digital images
US7574016B2 (en) 2003-06-26 2009-08-11 Fotonation Vision Limited Digital image processing using face detection information
US7616233B2 (en) * 2003-06-26 2009-11-10 Fotonation Vision Limited Perfecting of digital image capture parameters within acquisition devices using face detection
US8170294B2 (en) * 2006-11-10 2012-05-01 DigitalOptics Corporation Europe Limited Method of detecting redeye in a digital image
US7792970B2 (en) 2005-06-17 2010-09-07 Fotonation Vision Limited Method for establishing a paired connection between media devices
US7536036B2 (en) * 2004-10-28 2009-05-19 Fotonation Vision Limited Method and apparatus for red-eye detection in an acquired digital image
US8520093B2 (en) * 2003-08-05 2013-08-27 DigitalOptics Corporation Europe Limited Face tracker and partial face tracker for red-eye filter method and apparatus
US9412007B2 (en) * 2003-08-05 2016-08-09 Fotonation Limited Partial face detector red-eye filter method and apparatus
US20110102643A1 (en) * 2004-02-04 2011-05-05 Tessera Technologies Ireland Limited Partial Face Detector Red-Eye Filter Method and Apparatus
US7599577B2 (en) * 2005-11-18 2009-10-06 Fotonation Vision Limited Method and apparatus of correcting hybrid flash artifacts in digital images
WO2007095553A2 (en) 2006-02-14 2007-08-23 Fotonation Vision Limited Automatic detection and correction of non-red eye flash defects
DE602007012246D1 (en) * 2006-06-12 2011-03-10 Tessera Tech Ireland Ltd PROGRESS IN EXTENDING THE AAM TECHNIQUES FROM GRAY CALENDAR TO COLOR PICTURES
US7889242B2 (en) * 2006-10-26 2011-02-15 Hewlett-Packard Development Company, L.P. Blemish repair tool for digital photographs in a camera
US8055067B2 (en) * 2007-01-18 2011-11-08 DigitalOptics Corporation Europe Limited Color segmentation
JP2010520567A (en) 2007-03-05 2010-06-10 フォトネーション ビジョン リミテッド Red-eye false detection filtering using face position and orientation
US8503818B2 (en) 2007-09-25 2013-08-06 DigitalOptics Corporation Europe Limited Eye defect detection in international standards organization images
US8212864B2 (en) * 2008-01-30 2012-07-03 DigitalOptics Corporation Europe Limited Methods and apparatuses for using image acquisition data to detect and correct image defects
US8081254B2 (en) * 2008-08-14 2011-12-20 DigitalOptics Corporation Europe Limited In-camera based method of detecting defect eye with high accuracy
JP5100596B2 (en) * 2008-10-03 2012-12-19 キヤノン株式会社 Information processing apparatus and information processing method
GB2471647B (en) * 2009-06-16 2016-03-23 Aptina Imaging Corp Use of Z-order data in an image sensor
US8854413B2 (en) 2012-06-01 2014-10-07 Cisco Technology, Inc. Communicating with an endpoint using matrix barcodes
US10558848B2 (en) 2017-10-05 2020-02-11 Duelight Llc System, method, and computer program for capturing an image with correct skin tone exposure
CN111008582B (en) * 2019-11-28 2023-04-07 厦门瑞为信息技术有限公司 Head photo analysis method, system and equipment

Citations (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748939A (en) * 1971-08-11 1973-07-31 Borden Inc Traversing film cutter
US3896691A (en) * 1972-04-27 1975-07-29 Maurice Granger Device for the simultaneous dispensing and severing of webs of wound material
US4253476A (en) * 1974-03-08 1981-03-03 Shigeo Sato Tobacco filter and method of removing impurities from tobacco smoke
US4494862A (en) * 1980-09-30 1985-01-22 Minolta Camera Kabushiki Kaisha Computerized information processing system equipped with copying apparatus
US4534142A (en) * 1980-06-30 1985-08-13 Jens Drefahl Roof covering
US4819395A (en) * 1985-12-26 1989-04-11 Shimizu Construction Co., Ltd. Textile reinforced structural components
US4845770A (en) * 1986-11-20 1989-07-04 Oki Electric Industry Co., Ltd. Method and apparatus for processing embossed card
US4868676A (en) * 1986-03-19 1989-09-19 Shapr Kabushiki Kaisha Manual copying apparatus
US4902880A (en) * 1988-09-30 1990-02-20 Peripheral Dynamics, Inc. Card reader system and method with printing and verification capability
US4987030A (en) * 1987-10-07 1991-01-22 Toray Industries, Inc. High-tenacity conjugated fiber and process for preparation thereof
US5018072A (en) * 1987-08-18 1991-05-21 Hitachi, Ltd. Optically readable mail system with general and receiver specific information
US5103311A (en) * 1988-01-11 1992-04-07 U.S. Philips Corporation Data processing module and video processing system incorporating same
US5398063A (en) * 1990-11-09 1995-03-14 Olympus Optical Co., Ltd. Focusing position detecting device incorporated in a microscope
US5398315A (en) * 1992-12-30 1995-03-14 North American Philips Corporation Multi-processor video display apparatus
US5463470A (en) * 1991-10-09 1995-10-31 Fuji Photo Film Co., Ltd. Methods of collecting photometric image data and determining light exposure by extracting feature image data from an original image
US5465163A (en) * 1991-03-18 1995-11-07 Canon Kabushiki Kaisha Image processing method and apparatus for processing oversized original images and for synthesizing multiple images
US5493409A (en) * 1990-11-29 1996-02-20 Minolta Camera Kabushiki Kaisha Still video camera having a printer capable of printing a photographed image in a plurality of printing modes
US5506603A (en) * 1993-05-19 1996-04-09 Fujitsu Ltd. Method and device for airbrushing
US5604537A (en) * 1992-09-10 1997-02-18 Canon Kabushiki Kaisha Imaging apparatus having an automatic focusing means
US5613175A (en) * 1995-08-31 1997-03-18 Xerox Corporation Anisotropic imaging member
US5621545A (en) * 1993-12-08 1997-04-15 Motta; Ricardo J. Image production using color error diffusion
US5634730A (en) * 1995-11-06 1997-06-03 Bobry; Howard H. Hand-held electronic printer
US5666226A (en) * 1993-05-25 1997-09-09 Sharp Kabushiki Kaisha Optical apparatus
US5679456A (en) * 1993-07-21 1997-10-21 Toray Industries, Inc. Fiber reinforced thermoplastic resin structure, process for production of same, and extruder for production of same
US5726435A (en) * 1994-03-14 1998-03-10 Nippondenso Co., Ltd. Optically readable two-dimensional code and method and apparatus using the same
US5745175A (en) * 1995-10-02 1998-04-28 Flashpoint Technologies, Inc. Method and system for providing automatic focus control for a still digital camera
US5748764A (en) * 1993-07-19 1998-05-05 Eastman Kodak Company Automated detection and correction of eye color defects due to flash illumination
US5748326A (en) * 1993-12-07 1998-05-05 Fisher-Price Inc. Instant special effects electronic camera
US5757388A (en) * 1996-12-16 1998-05-26 Eastman Kodak Company Electronic camera and integral ink jet printer
US5761726A (en) * 1993-11-30 1998-06-02 Texas Instruments Incorporated Base address generation in a multi-processing system having plural memories with a unified address space corresponding to each processor
US5768609A (en) * 1989-11-17 1998-06-16 Texas Instruments Incorporated Reduced area of crossbar and method of operation
US5768482A (en) * 1995-06-14 1998-06-16 Hewlett-Packard Company Resolution-triggered sharpening for scaling of a digital-matrix image
US5825882A (en) * 1992-11-19 1998-10-20 Gemplus Card International Encryption and authentication method and circuit for synchronous smart card
US5845166A (en) * 1997-02-20 1998-12-01 Eastman Kodak Company Hybrid camera with identification matching of film and electronic images
US5866253A (en) * 1996-08-19 1999-02-02 Isorca, Inc. Synthetic reinforcing strands with spaced filaments
US5867213A (en) * 1993-10-21 1999-02-02 Canon Kabushiki Kaisha Image pickup apparatus having image-shake correcting devices determined according to zoom magnifying power
US5894309A (en) * 1997-02-27 1999-04-13 Mitsubishi Electric Information Technology Center America, Inc. System for modifying lighting in photographs
US5907434A (en) * 1995-03-20 1999-05-25 Canon Kabushiki Kaisha Image pickup apparatus
US5917963A (en) * 1995-09-21 1999-06-29 Canon Kabushiki Kaisha Image processing apparatus and image processing method
US6033137A (en) * 1995-09-14 2000-03-07 Canon Kabushiki Kaisha Ink jet printing apparatus performing printing with correction of image data at boundary portion of image
US6084713A (en) * 1995-01-18 2000-07-04 Rosenthal; Bruce A. Lenticular optical system
US6134030A (en) * 1996-05-24 2000-10-17 Canon Kabushiki Kaisha Image reading apparatus and image reading unit and control apparatus
US6217165B1 (en) * 1997-07-15 2001-04-17 Silverbrook Research Pty. Ltd. Ink and media cartridge with axial ink chambers
US6304684B1 (en) * 2000-02-15 2001-10-16 Cyberecord, Inc. Information processing system and method of using same
US6359650B1 (en) * 1994-12-28 2002-03-19 Canon Kabushiki Kaisha Electronic camera having a tilt detection function
US6362868B1 (en) * 1997-07-15 2002-03-26 Silverbrook Research Pty Ltd. Print media roll and ink replaceable cartridge
US20020054212A1 (en) * 1994-09-28 2002-05-09 Hiroki Fukuoka Digital electronic still camera which receives an input/output control program through a detachable communication interface card
US6421050B1 (en) * 1997-02-27 2002-07-16 Mitsubishi Electric Research Laboratories, Inc. User interface for creation of image generation and transformation functions
US6425661B1 (en) * 2000-06-30 2002-07-30 Silverbrook Research Pty Ltd Ink cartridge
US6472052B1 (en) * 1997-07-15 2002-10-29 Silverbrook Research Pty Ltd Digital camera print roll with periodic anisotropic stiffness
US20030043273A1 (en) * 1995-08-29 2003-03-06 Etsurou Suzuki Printer-built-in image-sensing apparatus and electric-consumption control method thereof
US6573927B2 (en) * 1997-02-20 2003-06-03 Eastman Kodak Company Electronic still camera for capturing digital image and creating a print order
US6727948B1 (en) * 1997-07-15 2004-04-27 Silverbrook Research Pty Ltd Utilizing autofocus information for image processing in a digital camera
US6803989B2 (en) * 1997-07-15 2004-10-12 Silverbrook Research Pty Ltd Image printing apparatus including a microcontroller
US6879341B1 (en) * 1997-07-15 2005-04-12 Silverbrook Research Pty Ltd Digital camera system containing a VLIW vector processor
US6918654B2 (en) * 1997-07-15 2005-07-19 Silverbrook Research Pty Ltd Ink distribution assembly for an ink jet printhead
US6985207B2 (en) * 1997-07-15 2006-01-10 Silverbrook Research Pty Ltd Photographic prints having magnetically recordable media
US20060098232A1 (en) * 2003-12-26 2006-05-11 Naoki Nakano Image-processing method and apparatus, and image-forming apparatus
US7050143B1 (en) * 1998-07-10 2006-05-23 Silverbrook Research Pty Ltd Camera system with computer language interpreter
US7086724B2 (en) * 1997-07-15 2006-08-08 Silverbrook Res Pty Ltd Compact media and ink cartridge for inkjet printhead
US7110024B1 (en) * 1997-07-15 2006-09-19 Silverbrook Research Pty Ltd Digital camera system having motion deblurring means
US7173729B2 (en) * 1999-05-25 2007-02-06 Silverbrook Research Pty Ltd Effects module for a camera and printer assembly
US7377706B2 (en) * 1997-07-15 2008-05-27 Silverbrook Research Pty Ltd Print media roll and ink supply cartridge
US7404633B2 (en) * 1997-07-15 2008-07-29 Silverbrook Research Pty Ltd Inkjet cartridge with ink reservoir core and releasable housing
US7483053B2 (en) * 1998-07-10 2009-01-27 Silverbrook Research Pty Ltd Combined camera and printer assembly with a card reader for image processing instructions
US7517071B2 (en) * 1997-07-15 2009-04-14 Silverbrook Research Pty Ltd Print roll unit with ink storage core
US7525687B2 (en) * 1997-07-15 2009-04-28 Silverbrook Research Pty Ltd Garment creation system
US20090207208A1 (en) * 1998-06-09 2009-08-20 Silverbrook Research Pty Ltd Nozzle Arrangement Using Unevenly Heated Thermal Actuators
US7654626B2 (en) * 1997-07-15 2010-02-02 Silverbrook Research Pty Ltd Camera device incorporating a color printer with ink validation apparatus
US7665834B2 (en) * 1997-07-12 2010-02-23 Silverbrook Research Pty Ltd Print roll with ink reservoir and print media roll sections
US7724282B2 (en) * 1997-07-15 2010-05-25 Silverbrook Research Pty Ltd Method of processing digital image to correct for flash effects
US7758166B2 (en) * 1997-07-15 2010-07-20 Silverbrook Research Pty Ltd Inkjet nozzle with paddle layer sandwiched between first and second wafers
US7905574B2 (en) * 1997-07-15 2011-03-15 Silverbrook Research Pty Ltd Method of fabricating resistor and proximate drive transistor for a printhead
US7957009B2 (en) * 1997-07-12 2011-06-07 Silverbrook Research Pty Ltd Image sensing and printing device
US8020979B2 (en) * 2001-08-06 2011-09-20 Silverbrook Research Pty Ltd Cartridge with optically readalble print media and ink information

Family Cites Families (267)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3735350A (en) 1966-02-10 1973-05-22 J Lemelson Code scanning system
CH495017A (en) 1968-07-16 1970-08-15 Ciba Geigy Method for scanning color codes and converting them into binary codes, as well as means for carrying out this method
US3731062A (en) 1971-05-21 1973-05-01 Binary Systems Inc Optical card reader drive
US3737629A (en) 1971-06-09 1973-06-05 Addressograph Multigraph Optical code reader
US3701098A (en) 1971-06-15 1972-10-24 Scanner Device for machine reading of information without manipulation of the information carrier
US3778541A (en) 1971-09-03 1973-12-11 Itek Corp System for analyzing multicolored scenes
US4000239A (en) 1971-12-13 1976-12-28 Teijin Limited Process for spinning naphthalate polyester fibers
CH556068A (en) 1972-01-03 1974-11-15 Sodeco Compteurs De Geneve IDENTIFICATION CARD READER.
US3857019A (en) 1973-03-05 1974-12-24 Honeywell Inf Systems Card reader data logic with position indication and error detection
US3976973A (en) 1974-01-07 1976-08-24 Recognition Equipment Incorporated Horizontal scan vertical simulation character reading
US3916420A (en) 1974-05-06 1975-10-28 Ncr Co Printer and display system
US4088981A (en) 1975-11-12 1978-05-09 Citibank N.A. Automated data entry and display system
US4494864A (en) * 1977-12-27 1985-01-22 The Three Dimensional Photography Corp. Apparatus for stereoscopic photography
US4200867A (en) 1978-04-03 1980-04-29 Hill Elmer D System and method for painting images by synthetic color signal generation and control
US4173401A (en) 1978-05-15 1979-11-06 Eastman Kodak Company Apparatus for displaying alphanumeric information coded on a film cartridge
US4463359A (en) 1979-04-02 1984-07-31 Canon Kabushiki Kaisha Droplet generating method and apparatus thereof
JPS56154720A (en) 1980-05-02 1981-11-30 Olympus Optical Co Ltd Film cassette
JPS5752967A (en) 1980-09-17 1982-03-29 Nec Corp Device for immediately calculating and displaying dose distribution
JPS57210878A (en) 1981-05-29 1982-12-24 Toshiba Corp Transfer printer
DE3238509A1 (en) 1981-10-19 1983-05-05 Canon K.K., Tokyo IMAGE RECORDING DEVICE
US4488563A (en) 1982-04-29 1984-12-18 Mitsubishi Acetate Co., Ltd. Filter plug
US4500919A (en) 1982-05-04 1985-02-19 Massachusetts Institute Of Technology Color reproduction system
JPS5971865A (en) 1982-10-19 1984-04-23 Nec Corp Color ink jet printer
US4596039A (en) 1983-12-30 1986-06-17 International Business Machines Corporation Method for converting an image from a run end or run length representation to a bit map
JPS60192668A (en) 1984-03-14 1985-10-01 Toshiba Corp Image former
US5031049A (en) 1984-05-25 1991-07-09 Canon Kabushiki Kaisha Automatic object image follow-up device
DE3583378D1 (en) 1984-10-02 1991-08-08 Fujitsu Ltd PRINTER WITH A PAPER FEED INSERTIBLE FROM THE FRONT.
US4796038A (en) 1985-07-24 1989-01-03 Ateq Corporation Laser pattern generation apparatus
US4783823A (en) 1985-09-16 1988-11-08 Omron Tateisi Electronics, Co. Card identifying method and apparatus
IT1182682B (en) 1985-11-14 1987-10-05 Olivetti & Co Spa ELECTRICALLY CONDUCTIVE INK JET PRINT AND RELATED PRINTING DEVICE
US4762986A (en) 1986-03-10 1988-08-09 Canon Kabushiki Kaisha Automatic focussing system including in-focus position prediction means
US4754487A (en) 1986-05-27 1988-06-28 Image Recall Systems, Inc. Picture storage and retrieval system for various limited storage mediums
US4837628A (en) 1986-07-14 1989-06-06 Kabushiki Kaisha Toshiba Electronic still camera for recording still picture on memory card with mode selecting shutter release
US5260735A (en) 1986-11-19 1993-11-09 Minolta Camera Kabushiki Kaisha Camera system
US4833599A (en) 1987-04-20 1989-05-23 Multiflow Computer, Inc. Hierarchical priority branch handling for parallel execution in a parallel processor
US4914452A (en) * 1987-05-08 1990-04-03 Ricoh Company, Ltd. Ink sheet/recording paper cassette
US4791443A (en) 1987-06-12 1988-12-13 Eastman Kodak Company Photographic processor with auxiliary power supply
JPH0193254A (en) 1987-10-02 1989-04-12 Canon Inc Recorder
US4975969A (en) 1987-10-22 1990-12-04 Peter Tal Method and apparatus for uniquely identifying individuals by particular physical characteristics and security system utilizing the same
US5216490A (en) 1988-01-13 1993-06-01 Charles Stark Draper Laboratory, Inc. Bridge electrodes for microelectromechanical devices
US5111288A (en) 1988-03-02 1992-05-05 Diamond Electronics, Inc. Surveillance camera system
NL8801440A (en) 1988-06-06 1990-01-02 Philips Nv DEVICE FOR REPRODUCING DIGITALIZED VIDEO IMAGES WITH SLOPE FLAT ERROR.
JP2728436B2 (en) 1988-06-23 1998-03-18 キヤノン株式会社 Ink jet recording device
US5042079A (en) 1988-08-12 1991-08-20 Casio Computer Co., Ltd. Method of recording/reproducing data of mesh pattern, and apparatus therefor
JPH0236825U (en) 1988-09-02 1990-03-09
US5239292A (en) 1988-10-04 1993-08-24 Crosfield Electronics Ltd. Computer graphics system electronically simulating painting on canvas
US5036472A (en) 1988-12-08 1991-07-30 Hallmark Cards, Inc. Computer controlled machine for vending personalized products or the like
US4937676A (en) 1989-02-10 1990-06-26 Polariod Corporation Electronic camera system with detachable printer
US5515101A (en) 1989-04-28 1996-05-07 Minolta Co., Ltd. Title generator for a video camera
US4993405A (en) 1989-05-15 1991-02-19 Olympus Optical Co., Ltd. Imaging apparatus
DE69028038T2 (en) 1989-05-17 1997-01-30 Minolta Camera Kk Recording and repro camera
US5107290A (en) 1989-06-06 1992-04-21 Canon Kabushiki Kaisha Camera
IT1232551B (en) 1989-07-13 1992-02-19 Olivetti & Co Spa PRINT HEAD FOR A INK-JET THERMAL PRINTER
US5204944A (en) 1989-07-28 1993-04-20 The Trustees Of Columbia University In The City Of New York Separable image warping methods and systems using spatial lookup tables
GB2235347B (en) 1989-08-21 1994-06-08 Barber Pamela L Apparatus for making electronically-produced postcards and method of operating same
US5412402A (en) 1989-09-01 1995-05-02 Quantel Limited Electronic graphic systems
US5175808A (en) 1989-09-12 1992-12-29 Pixar Method and apparatus for non-affine image warping
US5247611A (en) 1989-09-15 1993-09-21 Emtek Health Care Systems, Inc. Spreadsheet cell having multiple data fields
DE69031541T2 (en) 1989-10-20 1998-03-05 Canon Kk Ink jet device and cartridge with ink reservoir can be set up on this device
US5182548A (en) 1990-01-10 1993-01-26 Silicon Graphics, Inc. Method and apparatus for painting on a computer
US5154956A (en) 1990-01-11 1992-10-13 Lamco Ltd., Inc. Non-curling pressure-sensitive adhesive labels with release liners
US5235428A (en) 1990-02-21 1993-08-10 Sony Corporation Auto-focus system for video camera
EP0667609B1 (en) 1990-03-09 2000-05-24 Canon Kabushiki Kaisha Signal recording system
JPH03261276A (en) 1990-03-12 1991-11-21 Seiko Epson Corp Print camera
JP2567492B2 (en) 1990-04-19 1996-12-25 富士写真フイルム株式会社 Shooting mode input device
GB2244622B (en) 1990-05-30 1994-06-15 Sony Corp Image signal processing
JPH0490354A (en) 1990-08-02 1992-03-24 Canon Inc Ink jet recorder
US6278486B1 (en) 1990-09-18 2001-08-21 Canon Kabushiki Kaisha Information signal controlling system
JPH0771203B2 (en) 1990-09-18 1995-07-31 キヤノン株式会社 Signal recording device and signal processing device
JP2803072B2 (en) 1990-10-18 1998-09-24 富士写真フイルム株式会社 Image stabilization device
US5559714A (en) 1990-10-22 1996-09-24 Hallmark Cards, Incorporated Method and apparatus for display sequencing personalized social occasion products
EP0485293B1 (en) 1990-11-08 1999-04-21 Canon Kabushiki Kaisha Image processing system
EP0485690B1 (en) 1990-11-13 1999-05-26 International Business Machines Corporation Parallel associative processor system
US5809292A (en) 1990-11-13 1998-09-15 International Business Machines Corporation Floating point for simid array machine
US5138459A (en) 1990-11-20 1992-08-11 Personal Computer Cameras, Inc. Electronic still video camera with direct personal computer (pc) compatible digital format output
US5191640A (en) 1990-12-26 1993-03-02 Xerox Corporation Method for optimal discrete rendering of images
US5432896A (en) 1991-01-31 1995-07-11 Axa Corporation Watercolor simulation in computer graphics
US5243174A (en) 1991-03-05 1993-09-07 The Gift Certificate Center, Inc. Method and apparatus for generating gift certificates
US5615123A (en) 1991-04-02 1997-03-25 Creatacard, Inc. System for creating and producing custom card products
US5384899A (en) 1991-04-16 1995-01-24 Scitex Corporation Ltd. Apparatus and method for emulating a substrate
US5121139A (en) 1991-04-29 1992-06-09 Tektronix, Inc. Compact ink jet printer having a drum drive mechanism
SE468414B (en) 1991-05-14 1993-01-11 Sune Svanberg FILTER PICTURE REGISTRATION IN POOR LIGHT
JP3256982B2 (en) 1991-05-14 2002-02-18 富士ゼロックス株式会社 Image processing device
JPH04358291A (en) 1991-06-04 1992-12-11 Hitachi Ltd Color image changing method
JP3181073B2 (en) 1991-07-01 2001-07-03 キヤノン株式会社 Ink jet recording device
US5282051A (en) 1991-07-29 1994-01-25 Xerox Corporation Apparatus and method for performing resolution conversion on image data with auto correlation
US5266781A (en) 1991-08-15 1993-11-30 Datacard Corporation Modular card processing system
US5420635A (en) * 1991-08-30 1995-05-30 Fuji Photo Film Co., Ltd. Video camera, imaging method using video camera, method of operating video camera, image processing apparatus and method, and solid-state electronic imaging device
US5594500A (en) 1991-10-17 1997-01-14 Canon Kabushiki Kaisha Image pickup apparatus
JP2746790B2 (en) 1992-03-02 1998-05-06 富士写真フイルム株式会社 Stereoscopic image recording method and stereoscopic image recording apparatus
US5752114A (en) 1992-03-17 1998-05-12 Sony Corporation Photographic and video image system
US5467118A (en) 1993-12-21 1995-11-14 Hewlett-Packard Company Ink cartridge for a hard copy printing or plotting apparatus
US5771245A (en) 1992-03-20 1998-06-23 Xerox Corporation Process for independently protecting two dimensional codes from one or more burst errors patterns
US5442188A (en) 1992-04-22 1995-08-15 Gould Instruments Systems, Inc. Strip chart recorder paper attribute detector and monitor
DE69331646D1 (en) 1992-04-29 2002-04-11 Canon Kk Graphic system and method
US5581773A (en) 1992-05-12 1996-12-03 Glover; Michael A. Massively parallel SIMD processor which selectively transfers individual contiguously disposed serial memory elements
US6118484A (en) 1992-05-22 2000-09-12 Canon Kabushiki Kaisha Imaging apparatus
JPH0630319A (en) 1992-06-02 1994-02-04 Sony Corp Autofocus device
JPH07325934A (en) 1992-07-10 1995-12-12 Walt Disney Co:The Method and equipment for provision of graphics enhanced to virtual world
US6020898A (en) 1992-07-27 2000-02-01 Olympus Optical Co., Ltd. Information display system for displaying time-series numerical values and graph simultaneously
US5559930A (en) 1992-08-03 1996-09-24 Hewlett-Packard Company Method for reducing pixel density along a plurality of axes of a multiple dimension image representation
JPH0662309A (en) 1992-08-10 1994-03-04 Olympus Optical Co Ltd Film picture reproducing device
US5398131A (en) 1992-08-13 1995-03-14 Hall; Dennis R. Stereoscopic hardcopy methods
US5420607A (en) 1992-09-02 1995-05-30 Miller; Robert F. Electronic paintbrush and color palette
US5489935A (en) 1992-09-04 1996-02-06 Consilium Overseas Limited Laser printer power saver
JPH06105271A (en) 1992-09-16 1994-04-15 Asahi Optical Co Ltd Ic memory card camera system
JP3249200B2 (en) 1992-09-16 2002-01-21 株式会社リコー Curl straightener
US5600563A (en) 1992-09-23 1997-02-04 Onkor Ltd. System for printing social expression cards
US5438430A (en) 1992-09-25 1995-08-01 Xerox Corporation Paper user interface for image manipulations such as cut and paste
KR0147572B1 (en) 1992-10-09 1998-09-15 김광호 Method & apparatus for object tracing
US5625411A (en) 1992-12-22 1997-04-29 Fuji Photo Film, Ltd. Video camera printer apparatus and method of controlling same and apparatus and method for detecting print inhibit signal
US6000791A (en) 1992-12-23 1999-12-14 Hewlett-Packard Company Printer having a removable print cartridge with handle incorporating an ink inlet value
JPH06222414A (en) 1993-01-22 1994-08-12 Canon Inc Vibrationproofing system
US5402527A (en) 1993-04-23 1995-03-28 Xerox Corporation Apparatus and method for determining the page description language in which a print job is written
US5513117A (en) 1993-04-30 1996-04-30 Small; Maynard E. Apparatus and method for electronically dispensing personalized greeting cards and gifts
US5442567A (en) 1993-04-30 1995-08-15 Small; Maynard E. Apparatus and method for electronically dispensing personalized greeting cards and gifts
JPH06332085A (en) 1993-05-10 1994-12-02 Quad Tech Inc Formation method of wound belt body of graphic image
JPH06320832A (en) 1993-05-17 1994-11-22 Oki Electric Ind Co Ltd Printer
JP3085824B2 (en) 1993-05-20 2000-09-11 富士写真フイルム株式会社 Memory controller
US6199874B1 (en) 1993-05-26 2001-03-13 Cornell Research Foundation Inc. Microelectromechanical accelerometer for automotive applications
JPH06350907A (en) 1993-06-07 1994-12-22 Fuji Photo Film Co Ltd Electronic still camera
US5708900A (en) 1993-06-18 1998-01-13 Olympus Optical Co., Ltd. Camera
US5502485A (en) 1993-06-23 1996-03-26 Nikon Corporation Camera which compresses digital image data in correspondence with the focus control or the stop value of the camera
JP3097014B2 (en) 1993-07-08 2000-10-10 株式会社リコー Electronic still camera
US5530793A (en) 1993-09-24 1996-06-25 Eastman Kodak Company System for custom imprinting a variety of articles with images obtained from a variety of different sources
US6122403A (en) 1995-07-27 2000-09-19 Digimarc Corporation Computer system linked by using information in data objects
GB9325076D0 (en) 1993-12-07 1994-02-02 The Technology Partnership Plc Electronic camera
JP3244371B2 (en) 1993-12-22 2002-01-07 オリンパス光学工業株式会社 Audio information processing system and audio information processing method
JPH07199030A (en) 1993-12-28 1995-08-04 Minolta Co Ltd Telescope
US5592597A (en) 1994-02-14 1997-01-07 Parametric Technology Corporation Real-time image generation system for simulating physical paint, drawing media, and feature modeling with 3-D graphics
JPH07226911A (en) 1994-02-15 1995-08-22 Eastman Kodak Japan Kk Electronic still camera
US5835616A (en) 1994-02-18 1998-11-10 University Of Central Florida Face detection using templates
US5477264A (en) 1994-03-29 1995-12-19 Eastman Kodak Company Electronic imaging system using a removable software-enhanced storage device
US5854882A (en) 1994-04-08 1998-12-29 The University Of Rochester Halftone correction systems
US5621868A (en) 1994-04-15 1997-04-15 Sony Corporation Generating imitation custom artwork by simulating brush strokes and enhancing edges
JPH07298307A (en) 1994-04-28 1995-11-10 Canon Inc Image recording and reproducing device
US5555496A (en) 1994-05-06 1996-09-10 Mary T. Tackbary Method and apparatus for communicating with a card distribution center for management, selection, and delivery of social expression cards
US5528339A (en) 1994-08-26 1996-06-18 Eastman Kodak Company Color image reproduction of scenes with color enhancement and preferential tone mapping
US5572596A (en) 1994-09-02 1996-11-05 David Sarnoff Research Center, Inc. Automated, non-invasive iris recognition system and method
US5781708A (en) 1994-09-13 1998-07-14 Intermec Technology, Inc. Integral bar code printer and reader system and method of operation
US5488223A (en) 1994-09-13 1996-01-30 Intermec Corporation System and method for automatic selection of printer control parameters
US5872594A (en) 1994-09-20 1999-02-16 Thompson; Paul A. Method for open loop camera control using a motion model to control camera movement
JP3009539U (en) 1994-09-28 1995-04-04 明和グラビア株式会社 Printed sheet with glitter
US5678081A (en) 1994-10-05 1997-10-14 Fuji Photo Optical Co., Ltd. Photographic camera having a picture size switching device
JPH08118727A (en) 1994-10-28 1996-05-14 Canon Inc Method and apparatus for correcting recorder head, recording head corrected by the same apparatus and recorder using the same head
ATE220005T1 (en) 1994-10-31 2002-07-15 Canon Kk METHOD FOR PRODUCING AN INK JET HEAD, INK JET PRINT HEAD PRODUCED BY THIS METHOD AND INK JET APPARATUS COMPRISING THIS PRINT HEAD
US5592237A (en) 1994-11-04 1997-01-07 Infimed, Inc. High resolution image processor with multiple bus architecture
US5751303A (en) 1994-11-10 1998-05-12 Lasermaster Corporation Printing medium management apparatus
US5792249A (en) 1995-01-25 1998-08-11 Canon Kabushiki Kaisha Liquid composition, ink set, image-forming method and apparatus using the same
EP0725364B1 (en) 1995-02-02 2006-11-15 Matsushita Electric Industrial Co., Ltd. Image processing apparatus
AUPN113395A0 (en) 1995-02-14 1995-03-09 Canon Information Systems Research Australia Pty Ltd Colour conversion method
US5552837A (en) 1995-03-01 1996-09-03 Gemstar Development Corporation Remote controller for scanning data and controlling a video system
EP0812447B1 (en) 1995-03-02 2004-05-26 Parametric Technology Corporation Computer graphics system for creating and enhancing texture maps
DE19549376A1 (en) 1995-03-07 1996-09-26 Francotyp Postalia Gmbh System for thermotransfer printing procedure
EP0765226A1 (en) 1995-04-12 1997-04-02 Eastman Kodak Company Color video printer and a photo-cd system with integrated printer
JPH08336069A (en) 1995-04-13 1996-12-17 Eastman Kodak Co Electronic still camera
US6047130A (en) 1995-04-24 2000-04-04 Environmental Protection Systems, Inc. Apparatus and method for portrait photography
JP3452685B2 (en) 1995-05-10 2003-09-29 三菱電機株式会社 Face image processing device
US5754700A (en) 1995-06-09 1998-05-19 Intel Corporation Method and apparatus for improving the quality of images for non-real time sensitive applications
KR200154398Y1 (en) 1995-07-13 1999-08-02 윤종용 Paper unrolling apparatus
US5999697A (en) 1995-07-21 1999-12-07 Sony Corporation Apparatus for recording and/or reproducing still images
US6005582A (en) 1995-08-04 1999-12-21 Microsoft Corporation Method and system for texture mapping images with anisotropic filtering
JP3567540B2 (en) 1995-08-11 2004-09-22 ブラザー工業株式会社 Scanning optical device
US5587740A (en) 1995-08-17 1996-12-24 Brennan; James M. Digital photo kiosk
US5999203A (en) 1995-08-18 1999-12-07 Ttp Group, Plc Printer assembly with easily loaded paper cartridge
JPH09116843A (en) 1995-10-20 1997-05-02 Canon Inc Image pickup device with printer
US5715325A (en) 1995-08-30 1998-02-03 Siemens Corporate Research, Inc. Apparatus and method for detecting a face in a video image
EP0763930B1 (en) 1995-09-15 2002-10-16 Agfa-Gevaert Method for calculating color gamuts
US5819240A (en) 1995-10-11 1998-10-06 E-Stamp Corporation System and method for generating personalized postage indica
US5754690A (en) 1995-10-27 1998-05-19 Xerox Corporation Position sensitive detector based image conversion system capable of preserving subpixel information
US5896176A (en) 1995-10-27 1999-04-20 Texas Instruments Incorporated Content-based video compression
US5790699A (en) 1995-10-27 1998-08-04 Xerox Corporation Macrodetector based image conversion system
US6034740A (en) 1995-10-30 2000-03-07 Kabushiki Kaisha Photron Keying system and composite image producing method
US5740343A (en) 1995-11-03 1998-04-14 3Dfx Interactive, Incorporated Texture compositing apparatus and method
US6111605A (en) 1995-11-06 2000-08-29 Ricoh Company Limited Digital still video camera, image data output system for digital still video camera, frame for data relay for digital still video camera, data transfer system for digital still video camera, and image regenerating apparatus
JP3490559B2 (en) * 1995-11-14 2004-01-26 富士写真フイルム株式会社 Method for determining main part of image and method for determining copy conditions
US5884013A (en) 1995-11-17 1999-03-16 Agfa-Gevaert Autotypical screening with optimised dotshape
US5790193A (en) 1995-11-22 1998-08-04 Eastman Kodak Company Accessory module for an electronic camera
US5706049A (en) 1995-11-30 1998-01-06 Eastman Kodak Company Camera that records an active image area identifier with an image
US5710582A (en) 1995-12-07 1998-01-20 Xerox Corporation Hybrid ink jet printer
JP3436851B2 (en) 1995-12-11 2003-08-18 大日本スクリーン製造株式会社 How to change the data conversion table
JP3376194B2 (en) 1995-12-15 2003-02-10 キヤノン株式会社 Image processing apparatus and method
JPH09171220A (en) * 1995-12-20 1997-06-30 Fuji Photo Film Co Ltd Exposure deciding method
US5731062A (en) 1995-12-22 1998-03-24 Hoechst Celanese Corp Thermoplastic three-dimensional fiber network
US5822606A (en) 1996-01-11 1998-10-13 Morton; Steven G. DSP having a plurality of like processors controlled in parallel by an instruction word, and a control processor also controlled by the instruction word
US5841441A (en) 1996-01-19 1998-11-24 Virtus Corporation High-speed three-dimensional texture mapping systems and methods
US5992994A (en) 1996-01-31 1999-11-30 Hewlett-Packard Company Large inkjet print swath media support system
US5619737A (en) 1996-02-07 1997-04-08 Eastman Kodak Company Encodement-on-film recording apparatus utilizes flash components in a camera
WO1997030375A1 (en) 1996-02-13 1997-08-21 Obsidian Imaging, Inc. Method and apparatus for configuring a camera through external means
US6009188A (en) 1996-02-16 1999-12-28 Microsoft Corporation Method and system for digital plenoptic imaging
JP3745067B2 (en) 1996-02-20 2006-02-15 キヤノン株式会社 Imaging apparatus and control method thereof
US5867394A (en) 1996-03-01 1999-02-02 The Standard Register Company Document dispenser operational program downloading
US5818023A (en) 1996-03-05 1998-10-06 Metanetics Corporation Portable ID card verification apparatus
JPH09252429A (en) 1996-03-18 1997-09-22 Nippon Television Network Corp Picture replacement system and picture replacement method
US5852673A (en) 1996-03-27 1998-12-22 Chroma Graphics, Inc. Method for general image manipulation and composition
US6052648A (en) 1996-04-12 2000-04-18 Earthwatch Communications, Inc. Method and system for display of weather-related information
US6020931A (en) 1996-04-25 2000-02-01 George S. Sheng Video composition and position system and media signal communication system
US5815186A (en) 1996-04-29 1998-09-29 Hewlett-Packard Company Removable roll-feed apparatus and method
US5907354A (en) 1996-05-23 1999-05-25 Eastman Kodak Company Memory card housing with a center-actuated ejector
JP2907120B2 (en) 1996-05-29 1999-06-21 日本電気株式会社 Red-eye detection correction device
US5852502A (en) 1996-05-31 1998-12-22 American Digital Imaging, Inc. Apparatus and method for digital camera and recorder having a high resolution color composite image output
JP3037140B2 (en) 1996-06-13 2000-04-24 日本電気オフィスシステム株式会社 Digital camera
US5977982A (en) 1996-06-28 1999-11-02 Avid Technology Inc. System and method for modification of the visual characteristics of digital 3D objects
US5966134A (en) 1996-06-28 1999-10-12 Softimage Simulating cel animation and shading
US5726693A (en) 1996-07-22 1998-03-10 Eastman Kodak Company Ink printing apparatus using ink surfactants
US5974238A (en) 1996-08-07 1999-10-26 Compaq Computer Corporation Automatic data synchronization between a handheld and a host computer using pseudo cache including tags and logical data elements
JPH1056604A (en) 1996-08-07 1998-02-24 Olympus Optical Co Ltd Electronic camera with built-in printer and medium to be recorded
US5894326A (en) 1996-08-26 1999-04-13 Eastman Kodak Company Electronic camera having a printer
US5878292A (en) 1996-08-29 1999-03-02 Eastman Kodak Company Image-audio print, method of making and player for using
US6028611A (en) 1996-08-29 2000-02-22 Apple Computer, Inc. Modular digital image processing via an image processing chain
US6157394A (en) 1996-08-29 2000-12-05 Apple Computer, Inc. Flexible digital image processing via an image processing chain with modular image processors
US5914748A (en) 1996-08-30 1999-06-22 Eastman Kodak Company Method and apparatus for generating a composite image using the difference of two images
US5734154A (en) 1996-09-03 1998-03-31 Motorola, Inc. Smart card with Iintegrated reader and visual image display
US6097431A (en) 1996-09-04 2000-08-01 Flashpoint Technology, Inc. Method and system for reviewing and navigating among images on an image capture unit
US5874836A (en) 1996-09-06 1999-02-23 International Business Machines Corporation High reliability I/O stacked fets
US5787193A (en) 1996-09-27 1998-07-28 Xerox Corporation System for converting color image signals from RGB to CMY color spaces through look-up tables
JPH10178557A (en) 1996-10-14 1998-06-30 Oki Data:Kk Color image processing method
JP3031613B2 (en) 1996-11-12 2000-04-10 株式会社つくばソフト研究所 Color / shade image input / output device and input / output method
US5864630A (en) 1996-11-20 1999-01-26 At&T Corp Multi-modal method for locating objects in images
US5991429A (en) 1996-12-06 1999-11-23 Coffin; Jeffrey S. Facial recognition system for security access and identification
US5924737A (en) 1996-12-12 1999-07-20 Young America Corporation Postcard check
US5991865A (en) 1996-12-31 1999-11-23 Compaq Computer Corporation MPEG motion compensation using operand routing and performing add and divide in a single instruction
US6022099A (en) 1997-01-21 2000-02-08 Eastman Kodak Company Ink printing with drop separation
US5949426A (en) 1997-01-28 1999-09-07 Integrated Device Technology, Inc. Non-linear texture map blending
US5909248A (en) 1997-01-31 1999-06-01 Eastman Kodak Company Exposure control of camera attached to printer electronic camera
US6014165A (en) 1997-02-07 2000-01-11 Eastman Kodak Company Apparatus and method of producing digital image with improved performance characteristic
JPH10226139A (en) 1997-02-14 1998-08-25 Canon Inc Image forming system, image forming apparatus, and medium
US5917542A (en) 1997-02-18 1999-06-29 Eastman Kodak Company System and method for digital image capture and transmission
US6198489B1 (en) 1997-02-21 2001-03-06 University Of Washington Computer generated watercolor
JP3101580B2 (en) 1997-02-26 2000-10-23 三洋電機株式会社 Image recording and playback device
US5938766A (en) 1997-03-21 1999-08-17 Apple Computer, Inc. System for extending functionality of a digital ROM using RAM/ROM jump tables and patch manager for updating the tables
US5999190A (en) 1997-04-04 1999-12-07 Avid Technology, Inc. Computer imaging using graphics components
US5986671A (en) 1997-04-10 1999-11-16 Eastman Kodak Company Method of combining two digitally generated images
US5917937A (en) 1997-04-15 1999-06-29 Microsoft Corporation Method for performing stereo matching to recover depths, colors and opacities of surface elements
JPH10294918A (en) 1997-04-18 1998-11-04 Canon Inc Digital camera and ink jet recorder
US6227643B1 (en) 1997-05-20 2001-05-08 Encad, Inc. Intelligent printer components and printing system
US5964156A (en) 1997-06-04 1999-10-12 Agfa Corporation Optimizing workflow in a prepress printing system
US5860036A (en) 1997-06-10 1999-01-12 Eastman Kodak Company Controlling display useable in printers
US5933137A (en) 1997-06-10 1999-08-03 Flashpoint Technology, Inc. Method and system for acclerating a user interface of an image capture unit during play mode
US6014170A (en) 1997-06-20 2000-01-11 Nikon Corporation Information processing apparatus and method
US6043821A (en) 1997-06-30 2000-03-28 Ati Technologies, Inc. Method and apparatus for rendering pixel information from blended texture maps
US5980010A (en) 1997-06-30 1999-11-09 Eastman Kodak Company Scanning ink jet printer for electronic displays
AUPO850597A0 (en) 1997-08-11 1997-09-04 Silverbrook Research Pty Ltd Image processing method and apparatus (art01a)
US6665454B1 (en) 1997-07-15 2003-12-16 Silverbrook Research Pty Ltd Dot adjacency compensation in optical storage systems using ink dots
AUPO939997A0 (en) 1997-09-23 1997-10-16 Silverbrook Research Pty Ltd Data processing method and apparatus (ART61)
AUPO850097A0 (en) 1997-08-11 1997-09-04 Silverbrook Research Pty Ltd Image processing method and apparatus (art31)
US6057850A (en) 1997-07-15 2000-05-02 Silicon Graphics, Inc. Blended texture illumination mapping
US6304291B1 (en) 1997-07-15 2001-10-16 Silverbrook Research Pty Ltd Artcard for the administration of the operation of a camera device
US7284843B2 (en) 1997-07-15 2007-10-23 Silverbrook Research Pty Ltd Ink distribution assembly for an ink jet printhead
US6262769B1 (en) 1997-07-31 2001-07-17 Flashpoint Technology, Inc. Method and system for auto rotating a graphical user interface for managing portrait and landscape images in an image capture unit
US6292574B1 (en) 1997-08-29 2001-09-18 Eastman Kodak Company Computer program product for redeye detection
US6252976B1 (en) 1997-08-29 2001-06-26 Eastman Kodak Company Computer program product for redeye detection
US6260137B1 (en) 1997-09-12 2001-07-10 Siemens Aktiengesellschaft Data processing unit with digital signal processing capabilities
US6407777B1 (en) 1997-10-09 2002-06-18 Deluca Michael Joseph Red-eye filter method and apparatus
US5996893A (en) 1997-10-28 1999-12-07 Eastman Kodak Company Method and apparatus for visually identifying an area on a photograph or image where digital data is stored
US6323912B1 (en) 1997-11-20 2001-11-27 Eastman Kodak Company Electronic camera with microfluidic printer that prints scented images
JP2997924B2 (en) 1997-11-26 2000-01-11 株式会社東京機械製作所 Tower type multi-color printing device
US6038491A (en) 1997-11-26 2000-03-14 Mars, Incorporated Monitoring and reporting system using cellular carriers
US5949967A (en) 1997-12-12 1999-09-07 Eastman Kodak Company Transforming input color values to device control signals
US6102505A (en) 1997-12-18 2000-08-15 Eastman Kodak Company Recording audio and electronic images
US6278491B1 (en) 1998-01-29 2001-08-21 Hewlett-Packard Company Apparatus and a method for automatically detecting and reducing red-eye in a digital image
US6226015B1 (en) 1998-02-25 2001-05-01 Intel Corporation Method of automatically producing sketches and cartoon images from movies
FR2775930B1 (en) 1998-03-11 2000-06-02 Heidelberger Druckmasch Ag DEVICE FOR CONTROLLING THE PRINTING OF MATERIAL TAPE IN A ROTARY PRINTING MACHINE
US6011536A (en) 1998-04-17 2000-01-04 New York University Method and system for generating an image having a hand-painted appearance
US6285410B1 (en) 1998-09-11 2001-09-04 Mgi Software Corporation Method and system for removal of flash artifacts from digital images
US6134339A (en) 1998-09-17 2000-10-17 Eastman Kodak Company Method and apparatus for determining the position of eyes and for correcting eye-defects in a captured frame
US6163361A (en) 1999-04-23 2000-12-19 Eastman Kodak Company Digital camera including a printer for receiving a cartridge having security control circuitry

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748939A (en) * 1971-08-11 1973-07-31 Borden Inc Traversing film cutter
US3896691A (en) * 1972-04-27 1975-07-29 Maurice Granger Device for the simultaneous dispensing and severing of webs of wound material
US4253476A (en) * 1974-03-08 1981-03-03 Shigeo Sato Tobacco filter and method of removing impurities from tobacco smoke
US4534142A (en) * 1980-06-30 1985-08-13 Jens Drefahl Roof covering
US4494862A (en) * 1980-09-30 1985-01-22 Minolta Camera Kabushiki Kaisha Computerized information processing system equipped with copying apparatus
US4819395A (en) * 1985-12-26 1989-04-11 Shimizu Construction Co., Ltd. Textile reinforced structural components
US4868676A (en) * 1986-03-19 1989-09-19 Shapr Kabushiki Kaisha Manual copying apparatus
US4845770A (en) * 1986-11-20 1989-07-04 Oki Electric Industry Co., Ltd. Method and apparatus for processing embossed card
US5018072A (en) * 1987-08-18 1991-05-21 Hitachi, Ltd. Optically readable mail system with general and receiver specific information
US4987030A (en) * 1987-10-07 1991-01-22 Toray Industries, Inc. High-tenacity conjugated fiber and process for preparation thereof
US5103311A (en) * 1988-01-11 1992-04-07 U.S. Philips Corporation Data processing module and video processing system incorporating same
US4902880A (en) * 1988-09-30 1990-02-20 Peripheral Dynamics, Inc. Card reader system and method with printing and verification capability
US5768609A (en) * 1989-11-17 1998-06-16 Texas Instruments Incorporated Reduced area of crossbar and method of operation
US5398063A (en) * 1990-11-09 1995-03-14 Olympus Optical Co., Ltd. Focusing position detecting device incorporated in a microscope
US5875034A (en) * 1990-11-29 1999-02-23 Minolta Co., Ltd. Camera system having a recordable medium positioned between photographing and reproducing portions
US5493409A (en) * 1990-11-29 1996-02-20 Minolta Camera Kabushiki Kaisha Still video camera having a printer capable of printing a photographed image in a plurality of printing modes
US5465163A (en) * 1991-03-18 1995-11-07 Canon Kabushiki Kaisha Image processing method and apparatus for processing oversized original images and for synthesizing multiple images
US5463470A (en) * 1991-10-09 1995-10-31 Fuji Photo Film Co., Ltd. Methods of collecting photometric image data and determining light exposure by extracting feature image data from an original image
US5604537A (en) * 1992-09-10 1997-02-18 Canon Kabushiki Kaisha Imaging apparatus having an automatic focusing means
US5825882A (en) * 1992-11-19 1998-10-20 Gemplus Card International Encryption and authentication method and circuit for synchronous smart card
US5398315A (en) * 1992-12-30 1995-03-14 North American Philips Corporation Multi-processor video display apparatus
US5506603A (en) * 1993-05-19 1996-04-09 Fujitsu Ltd. Method and device for airbrushing
US5666226A (en) * 1993-05-25 1997-09-09 Sharp Kabushiki Kaisha Optical apparatus
US5748764A (en) * 1993-07-19 1998-05-05 Eastman Kodak Company Automated detection and correction of eye color defects due to flash illumination
US5679456A (en) * 1993-07-21 1997-10-21 Toray Industries, Inc. Fiber reinforced thermoplastic resin structure, process for production of same, and extruder for production of same
US5824410A (en) * 1993-07-21 1998-10-20 Toray Industries, Inc. Fiber reinforced thermoplastic resin structure, process for production of same, and extruder for production of same
US5867213A (en) * 1993-10-21 1999-02-02 Canon Kabushiki Kaisha Image pickup apparatus having image-shake correcting devices determined according to zoom magnifying power
US5761726A (en) * 1993-11-30 1998-06-02 Texas Instruments Incorporated Base address generation in a multi-processing system having plural memories with a unified address space corresponding to each processor
US5748326A (en) * 1993-12-07 1998-05-05 Fisher-Price Inc. Instant special effects electronic camera
US5621545A (en) * 1993-12-08 1997-04-15 Motta; Ricardo J. Image production using color error diffusion
US5726435A (en) * 1994-03-14 1998-03-10 Nippondenso Co., Ltd. Optically readable two-dimensional code and method and apparatus using the same
US20020054212A1 (en) * 1994-09-28 2002-05-09 Hiroki Fukuoka Digital electronic still camera which receives an input/output control program through a detachable communication interface card
US6359650B1 (en) * 1994-12-28 2002-03-19 Canon Kabushiki Kaisha Electronic camera having a tilt detection function
US6084713A (en) * 1995-01-18 2000-07-04 Rosenthal; Bruce A. Lenticular optical system
US5907434A (en) * 1995-03-20 1999-05-25 Canon Kabushiki Kaisha Image pickup apparatus
US5768482A (en) * 1995-06-14 1998-06-16 Hewlett-Packard Company Resolution-triggered sharpening for scaling of a digital-matrix image
US20030043273A1 (en) * 1995-08-29 2003-03-06 Etsurou Suzuki Printer-built-in image-sensing apparatus and electric-consumption control method thereof
US5613175A (en) * 1995-08-31 1997-03-18 Xerox Corporation Anisotropic imaging member
US6033137A (en) * 1995-09-14 2000-03-07 Canon Kabushiki Kaisha Ink jet printing apparatus performing printing with correction of image data at boundary portion of image
US5917963A (en) * 1995-09-21 1999-06-29 Canon Kabushiki Kaisha Image processing apparatus and image processing method
US5745175A (en) * 1995-10-02 1998-04-28 Flashpoint Technologies, Inc. Method and system for providing automatic focus control for a still digital camera
US5634730A (en) * 1995-11-06 1997-06-03 Bobry; Howard H. Hand-held electronic printer
US6134030A (en) * 1996-05-24 2000-10-17 Canon Kabushiki Kaisha Image reading apparatus and image reading unit and control apparatus
US5866253A (en) * 1996-08-19 1999-02-02 Isorca, Inc. Synthetic reinforcing strands with spaced filaments
US5757388A (en) * 1996-12-16 1998-05-26 Eastman Kodak Company Electronic camera and integral ink jet printer
US5845166A (en) * 1997-02-20 1998-12-01 Eastman Kodak Company Hybrid camera with identification matching of film and electronic images
US6573927B2 (en) * 1997-02-20 2003-06-03 Eastman Kodak Company Electronic still camera for capturing digital image and creating a print order
US5894309A (en) * 1997-02-27 1999-04-13 Mitsubishi Electric Information Technology Center America, Inc. System for modifying lighting in photographs
US6421050B1 (en) * 1997-02-27 2002-07-16 Mitsubishi Electric Research Laboratories, Inc. User interface for creation of image generation and transformation functions
US7703910B2 (en) * 1997-03-16 2010-04-27 Silverbrook Research Pty Ltd Print roll unit incorporating pinch rollers
US7957009B2 (en) * 1997-07-12 2011-06-07 Silverbrook Research Pty Ltd Image sensing and printing device
US7690765B2 (en) * 1997-07-12 2010-04-06 Silverbrook Research Pty Ltd Central processor for a camera with printing capabilities
US7665834B2 (en) * 1997-07-12 2010-02-23 Silverbrook Research Pty Ltd Print roll with ink reservoir and print media roll sections
US6472052B1 (en) * 1997-07-15 2002-10-29 Silverbrook Research Pty Ltd Digital camera print roll with periodic anisotropic stiffness
US7525687B2 (en) * 1997-07-15 2009-04-28 Silverbrook Research Pty Ltd Garment creation system
US6773874B2 (en) * 1997-07-15 2004-08-10 Silverbrook Research Pty Ltd Digital print media output with reduced residual curl
US6803989B2 (en) * 1997-07-15 2004-10-12 Silverbrook Research Pty Ltd Image printing apparatus including a microcontroller
US6879341B1 (en) * 1997-07-15 2005-04-12 Silverbrook Research Pty Ltd Digital camera system containing a VLIW vector processor
US6913875B2 (en) * 1997-07-15 2005-07-05 Silverbrook Research Pty Ltd Curl resistant print media
US6918654B2 (en) * 1997-07-15 2005-07-19 Silverbrook Research Pty Ltd Ink distribution assembly for an ink jet printhead
US6954254B2 (en) * 1997-07-15 2005-10-11 Silverbrook Research Pty Ltd Printing cartridge with ink and print media supplies
US6985207B2 (en) * 1997-07-15 2006-01-10 Silverbrook Research Pty Ltd Photographic prints having magnetically recordable media
US7970275B2 (en) * 1997-07-15 2011-06-28 Silverbrook Research Pty Ltd Digital camera system for simultaneous printing and magnetic recording
US7965416B2 (en) * 1997-07-15 2011-06-21 Silverbrook Research Pty Ltd Method for creating a garment
US7063940B2 (en) * 1997-07-15 2006-06-20 Silverbrook Research Pty Ltd Curl resistant media
US7084951B2 (en) * 1997-07-15 2006-08-01 Silverbrook Research Pty Ltd Combined media- and ink-supply cartridge
US7086724B2 (en) * 1997-07-15 2006-08-08 Silverbrook Res Pty Ltd Compact media and ink cartridge for inkjet printhead
US7110024B1 (en) * 1997-07-15 2006-09-19 Silverbrook Research Pty Ltd Digital camera system having motion deblurring means
US6217165B1 (en) * 1997-07-15 2001-04-17 Silverbrook Research Pty. Ltd. Ink and media cartridge with axial ink chambers
US7186499B2 (en) * 1997-07-15 2007-03-06 Silverbrook Research Pty Ltd Print medium with anisotropic bending properties
US7357497B2 (en) * 1997-07-15 2008-04-15 Silverbrook Research Pty Ltd Print roll core with internal ink storage
US7377706B2 (en) * 1997-07-15 2008-05-27 Silverbrook Research Pty Ltd Print media roll and ink supply cartridge
US7385639B2 (en) * 1997-07-15 2008-06-10 Silverbrook Research Pty Ltd Digital camera utilizing autofocus settings for image manipulation
US7404633B2 (en) * 1997-07-15 2008-07-29 Silverbrook Research Pty Ltd Inkjet cartridge with ink reservoir core and releasable housing
US7936395B2 (en) * 1997-07-15 2011-05-03 Silverbrook Research Pty Ltd Printer CPU with VLIW processor
US7517071B2 (en) * 1997-07-15 2009-04-14 Silverbrook Research Pty Ltd Print roll unit with ink storage core
US6727948B1 (en) * 1997-07-15 2004-04-27 Silverbrook Research Pty Ltd Utilizing autofocus information for image processing in a digital camera
US7557853B2 (en) * 1997-07-15 2009-07-07 Silverbrook Research Pty Ltd Processing of digital images using autofocus settings for image enhancement
US7576794B2 (en) * 1997-07-15 2009-08-18 Silverbrook Research Pty Ltd Manipulation of digital camera images utilizing stored autofocus settings
US7576795B2 (en) * 1997-07-15 2009-08-18 Silverbrook Research Pty Ltd Digital image camera using autofocus information for image enhancement
US7905574B2 (en) * 1997-07-15 2011-03-15 Silverbrook Research Pty Ltd Method of fabricating resistor and proximate drive transistor for a printhead
US7581826B2 (en) * 1997-07-15 2009-09-01 Silverbrook Research Pty Ltd Ink reservoir
US7590347B2 (en) * 1997-07-15 2009-09-15 Silverbrook Research Pty Ltd Photographic prints having magnetically recordable media
US7646403B2 (en) * 1997-07-15 2010-01-12 Kia Silverbrook De-blurring in a digital image system
US7654626B2 (en) * 1997-07-15 2010-02-02 Silverbrook Research Pty Ltd Camera device incorporating a color printer with ink validation apparatus
US7796166B2 (en) * 1997-07-15 2010-09-14 Silverbrook Research Pty Ltd Digital camera system incorporating VLIM image processor
US6362868B1 (en) * 1997-07-15 2002-03-26 Silverbrook Research Pty Ltd. Print media roll and ink replaceable cartridge
US7701506B2 (en) * 1997-07-15 2010-04-20 Silverbrook Research Pty Ltd Digital camera having functionally interconnected image processing elements
US7773125B2 (en) * 1997-07-15 2010-08-10 Silverbrook Research Pty Ltd VLIW image processor
US7724282B2 (en) * 1997-07-15 2010-05-25 Silverbrook Research Pty Ltd Method of processing digital image to correct for flash effects
US7742696B2 (en) * 1997-07-15 2010-06-22 Silverbrook Research Pty Ltd Digital camera having printhead and magnetic recorder
US7750971B2 (en) * 1997-07-15 2010-07-06 Silverbrook Research Pty Ltd Camera sensing device for capturing and manipulating images
US7758166B2 (en) * 1997-07-15 2010-07-20 Silverbrook Research Pty Ltd Inkjet nozzle with paddle layer sandwiched between first and second wafers
US20090207208A1 (en) * 1998-06-09 2009-08-20 Silverbrook Research Pty Ltd Nozzle Arrangement Using Unevenly Heated Thermal Actuators
US7483053B2 (en) * 1998-07-10 2009-01-27 Silverbrook Research Pty Ltd Combined camera and printer assembly with a card reader for image processing instructions
US7050143B1 (en) * 1998-07-10 2006-05-23 Silverbrook Research Pty Ltd Camera system with computer language interpreter
US7173729B2 (en) * 1999-05-25 2007-02-06 Silverbrook Research Pty Ltd Effects module for a camera and printer assembly
US6304684B1 (en) * 2000-02-15 2001-10-16 Cyberecord, Inc. Information processing system and method of using same
US6425661B1 (en) * 2000-06-30 2002-07-30 Silverbrook Research Pty Ltd Ink cartridge
US8020979B2 (en) * 2001-08-06 2011-09-20 Silverbrook Research Pty Ltd Cartridge with optically readalble print media and ink information
US20060098232A1 (en) * 2003-12-26 2006-05-11 Naoki Nakano Image-processing method and apparatus, and image-forming apparatus

Also Published As

Publication number Publication date
US7724282B2 (en) 2010-05-25
US7705891B2 (en) 2010-04-27
US20040032512A1 (en) 2004-02-19
US20100201846A1 (en) 2010-08-12
US8013905B2 (en) 2011-09-06
US20040032526A1 (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US7724282B2 (en) Method of processing digital image to correct for flash effects
US7901048B2 (en) Inkjet printhead with thermal actuator coil
US7284833B2 (en) Fluid ejection chip that incorporates wall-mounted actuators
US7540592B2 (en) Micro-electromechanical nozzle assembly with an arcuate actuator
US7901055B2 (en) Printhead having plural fluid ejection heating elements
US7753485B2 (en) Ink ejection nozzle with oscillator and shutter arrangement
US7468139B2 (en) Method of depositing heater material over a photoresist scaffold
US20070070124A1 (en) Nozzle assembly incorporating a shuttered actuation mechanism
US8029107B2 (en) Printhead with double omega-shaped heater elements
US20080204562A1 (en) Camera system having serially connected camera devices to facilitate a cascade of imaging effects
US20090115819A1 (en) Micro-electromechanical fluid ejection mechanism having a shape memory alloy actuator

Legal Events

Date Code Title Description
AS Assignment

Owner name: SILVERBROOK RESEARCH PTY LTD, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SILVERBROOK, KIA;REEL/FRAME:024376/0194

Effective date: 20021218

AS Assignment

Owner name: ZAMTEC LIMITED, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SILVERBROOK RESEARCH PTY. LIMITED AND CLAMATE PTY LIMITED;REEL/FRAME:028524/0813

Effective date: 20120503

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION