US20100225894A1 - Lithography systems and methods - Google Patents

Lithography systems and methods Download PDF

Info

Publication number
US20100225894A1
US20100225894A1 US12/655,692 US65569210A US2010225894A1 US 20100225894 A1 US20100225894 A1 US 20100225894A1 US 65569210 A US65569210 A US 65569210A US 2010225894 A1 US2010225894 A1 US 2010225894A1
Authority
US
United States
Prior art keywords
mask
light
imaging
pattern
imaging pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/655,692
Inventor
Bran Ferren
Nathan P. Myhrvold
Lowell L. Wood, JR.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deep Science LLC
Original Assignee
Searete LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Searete LLC filed Critical Searete LLC
Priority to US12/655,692 priority Critical patent/US20100225894A1/en
Assigned to SEARETE LLC reassignment SEARETE LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WOOD, LOWELL L., JR., MYHRVOLD, NATHAN P., FERREN, BRAN
Publication of US20100225894A1 publication Critical patent/US20100225894A1/en
Assigned to DEEP SCIENCE, LLC reassignment DEEP SCIENCE, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SEARETE LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process

Definitions

  • the present application relates, in general, to generating imaging patterns on integrated circuit substrates for lithography.
  • a method of generating an imaging pattern on an integrated circuit substrate includes orienting a mask having a mask pattern of a real-space representation of a Fourier-space representation of the imaging pattern in an imaging plane between a substantially coherent light source and the integrated circuit substrate; diffracting light with the mask according to the mask pattern to produce the imaging pattern; and exposing a photoresist on a surface of the integrated circuit substrate with the diffracted light from the mask.
  • an apparatus for generating an imaging pattern on a chip includes a mechanism for exposing a mask having a mask pattern related to a Fourier-space representation of the imaging pattern in an imaging plane with a substantially coherent light generated from a substantially coherent light source; and a mechanism for exposing a photoresist on a surface of the chip with a diffraction light diffracted from the mask in response to the substantially coherent light source, wherein the diffraction light forms the imaging pattern on the photoresist on the surface of the chip.
  • an apparatus for generating an imaging pattern on a chip includes a substantially coherent light source that emits substantially coherent light along a light path; a diffractive mask patterned to form a real-space representation of a Fourier-space representation related to the imaging pattern in an imaging plane; a mask holder operable to hold the diffractive mask in the light path, in an orientation that produces diffracted light in an exposure field; and a chip holder operable to hold a chip in the exposure field; wherein the diffractive mask is of a type that diffracts light to form the imaging pattern on a photoresist on a surface of the chip.
  • a method for designing a mask pattern for generating an imaging pattern on a photoresist responsive to substantially coherent light of a selected wavelength includes selecting a wave propagation function in a Fourier space as a function of the selected wavelength; defining a representation of the imaging pattern in real space; transforming the representation of the imaging pattern in real space to a representation of the imaging pattern in the Fourier space; dividing the representation of the imaging pattern in the Fourier space by the wave propagation function to find a representation of the mask pattern in the Fourier space; and transforming the representation of the mask pattern in the Fourier space into a representation of the mask pattern in real space.
  • a method of producing a selected pattern in a photomask includes identifying an exposure wavelength; defining a representation of the selected pattern in real space; transforming the representation of the selected pattern in real space to a representation of the selected pattern in Fourier space; for a selected geometric configuration of the photomask relative to an exposure field, identifying a wave propagation function in the Fourier space as a function of the exposure wavelength; applying the wave propagation function to the representation of the selected pattern in the Fourier space to produce a mask pattern representation in the Fourier space; and transforming the representation of the mask pattern in the Fourier space into a representation of the mask pattern in real space.
  • a method includes orienting a mask having a mask pattern of a real-space representation of a mathematical-space representation of an imaging pattern in an imaging plane between a substantially coherent light source and the integrated circuit substrate; diffracting light with the mask according to the mask pattern to produce the imaging pattern; and exposing a photoresist on a surface of the integrated circuit substrate with the diffracted light from the mask.
  • an apparatus for generating an imaging pattern on a chip includes: a mechanism for exposing a mask having a mask pattern related to a mathematical-space representation of an imaging pattern in an imaging plane with a substantially coherent light generated from a substantially coherent light source; and a mechanism for exposing a photoresist on a surface of the chip with a diffraction light diffracted from the mask in response to the substantially coherent light source, wherein the diffraction light forms the imaging pattern on the photoresist on the surface of the chip.
  • a method for designing a mask pattern for generating an imaging pattern on a photoresist responsive to substantially coherent light of a selected wavelength includes selecting a wave propagation function in a mathematical space as a function of the selected wavelength; defining a representation of the imaging pattern in real space; transforming the representation of the imaging pattern in real space to a representation of the imaging pattern in the mathematical space; dividing the representation of the imaging pattern in the mathematical space by the wave propagation function to find a representation of the mask pattern in the mathematical space; and transforming the representation of the mask pattern in the mathematical space into a representation of the mask pattern in real space.
  • related systems include but are not limited to circuitry and/or programming and/or electro-mechanical components for effecting the herein-referenced method aspects; the circuitry and/or programming and/or electro-mechanical components can be virtually any combination of hardware, software, firmware, and/or electro-mechanical components configured to effect the herein-referenced method aspects depending upon the design choices of the system designer in light of the teachings herein.
  • FIG. 1 is a flow chart depicting an embodiment of the subject matter of the present application
  • FIG. 2 is a flow chart depicting another embodiment of the subject matter of the present application.
  • FIG. 3 is a flow chart depicting another embodiment
  • FIG. 4 is a flow chart depicting another embodiment
  • FIG. 5 is a flow chart depicting another embodiment
  • FIG. 6 is a flow chart depicting another embodiment
  • FIG. 7 is a flow chart depicting another embodiment
  • FIG. 8 is a flow chart depicting another embodiment
  • FIG. 9 is a flow chart depicting another embodiment
  • FIG. 10 is a block diagram of another embodiment
  • FIG. 11 is a block diagram of another embodiment
  • FIG. 12 is a flow chart depicting another embodiment
  • FIG. 13 is a flow chart depicting another embodiment
  • FIG. 14 is a flow chart depicting another embodiment.
  • FIG. 15 is a flow chart depicting another embodiment.
  • FIG. 1 shows an embodiment of the subject matter of the present application, a method of generating an imaging pattern on an integrated circuit substrate, the method including orienting a mask having a mask pattern of a real space representation of a Fourier-space representation of the imaging pattern in an imaging plane between a substantially coherent light source and the integrated circuit substrate (step 100 ); diffracting light with the mask according to the mask pattern to produce the imaging pattern (step 102 ); and exposing a photoresist on a surface of the integrated circuit substrate with the diffracted light from the mask (step 104 ).
  • another embodiment includes step 106 , orienting a mask having a mask pattern of a real space representation of a Fourier-space representation of the imaging pattern in an imaging plane between a substantially coherent light source and the integrated circuit substrate, wherein the substantially coherent light source includes a laser, e.g., a free-electron laser, and, in addition, steps 102 and 104 as described above.
  • the substantially coherent light source includes a laser, e.g., a free-electron laser
  • FIG. 3 shows another embodiment that includes step 108 , orienting a mask having a mask pattern of a real space representation of a Fourier-space representation of the imaging pattern in an imaging plane between a substantially coherent light source and the integrated circuit substrate, wherein the substantially coherent light source includes a light having wavelengths of greater than or equal to about some practicable lower-end wavelength (e.g., 1/10 nanometer lasers such as those of International Business Machines and/or around 148 nanometer lasers such as those currently readily commercially available and/or lasers having wavelengths such as those listed in the Laser Wavelength Charts of Lexel Laser appearing on the World Wide Web at the following link: http://www.lexellaser.com/techinfo_wavelengths.htm and/or lasers having wavelengths such as those listed in the How Gas-Ion Lasers Work article of Lexel Laser appearing on the World Wide Web at the following link: http://www.lexellaser.com/techinfo_gas-ion.htm) and less than or equal to about some practic
  • another embodiment includes step 110 , orienting a mask having a mask pattern of a real space representation of a Fourier-space representation of the imaging pattern in an imaging plane between a substantially coherent light source and the integrated circuit substrate, wherein the substantially coherent light source includes a monochromator, e.g., a diffraction grating or a prism, and, in addition, steps 102 and 104 as described above.
  • a monochromator e.g., a diffraction grating or a prism
  • FIG. 5 shows another embodiment that includes step 112 , diffracting light with the mask according to the mask pattern to produce the imaging pattern, wherein the imaging pattern includes a plurality of diffraction particles, e.g., diffraction particles having nanometer scale sizes, and, in addition, steps 100 and 104 as described above.
  • the imaging pattern includes a plurality of diffraction particles, e.g., diffraction particles having nanometer scale sizes, and, in addition, steps 100 and 104 as described above.
  • FIG. 6 shows another embodiment that includes step 114 , orienting a mask having a mask pattern of a real space representation of a Fourier-space representation of the imaging pattern in an imaging plane between a substantially coherent light source and the integrated circuit substrate, wherein the mask includes a crystal having the mask pattern fabricated thereon, and, in addition, steps 102 and 104 as described above.
  • another embodiment includes step 116 , orienting a mask having a mask pattern of a real space representation of a Fourier-space representation of the imaging pattern in an imaging plane between a substantially coherent light source and the integrated circuit substrate, wherein the mask substantially parallels a surface of the chip, and, in addition, steps 102 and 104 as described above.
  • another embodiment includes step 118 , orienting a mask having a mask pattern of a real space representation of a Fourier-space representation of the imaging pattern in an imaging plane between a substantially coherent light source and the integrated circuit substrate, wherein the substantially coherent light source includes light having an s-polarization, and, in addition, steps 102 and 104 as described above.
  • another embodiment includes step 120 , exposing a photoresist on a surface of the integrated circuit substrate with the diffracted light from the mask, wherein the photoresist is substantially coincident with the imaging plane, and, in addition, steps 100 and 102 as described above.
  • FIG. 10 shows another embodiment, an apparatus 122 for generating an imaging pattern 124 on a chip 126 , the apparatus 122 including a mechanism for exposing a mask 128 having a mask pattern related to a Fourier-space representation of the imaging pattern 124 in an imaging plane 130 with a substantially coherent light 132 generated from a substantially coherent light source 134 ; and a mechanism for exposing a photoresist 136 on a surface 138 of the chip 126 with a diffraction light 140 diffracted from the mask 128 in response to the substantially coherent light source 134 ; wherein the diffraction light 140 forms the imaging pattern 124 on the photoresist 136 on the surface 138 of the chip 126 .
  • Mechanisms such as the herein-referenced mechanisms are typically design choices within the purview of the system designer skilled in the art.
  • an apparatus 142 for generating an imaging pattern 124 on a chip 126 includes a substantially coherent light source 134 that emits substantially coherent light 132 along a light path 144 ; a diffractive mask 146 , the diffractive mask 146 being patterned to form a real-space representation of a Fourier-space representation related to the imaging pattern 124 in an imaging plane 130 ; a mask holder 148 operable to hold the diffractive mask 146 in the light path 144 , in an orientation that produces diffracted light 149 in an exposure field 150 ; and a chip holder 152 operable to hold the chip 126 in the exposure field 150 ; wherein the diffractive mask 146 is of a type that diffracts light to form the imaging pattern 124 on a photoresist 136 on a surface 138 of the chip 126 .
  • the substantially coherent light source 134 may include a laser, e.g., a free electron laser.
  • the substantially coherent light source 134 may include light having one or more wavelengths within practicable upper and/or lower bounds such as, for example, bounds discussed elsewhere herein (e.g., in relation to FIG. 3 and/or in the as-filed claims).
  • the substantially coherent light source 134 may include a monochromator, e.g., a diffraction grating or a prism.
  • the imaging pattern 124 may include a plurality of diffraction particles, e.g., diffraction particles having sizes within nanometer ranges.
  • the mask 128 and the diffractive mask 146 may include a crystal having the imaging pattern 124 fabricated thereon.
  • a surface 153 of the mask 128 or of the diffractive mask 146 may substantially parallel the surface 138 of the chip 126 .
  • the substantially coherent light source 134 may emit substantially coherent light 132 having an s-polarization.
  • the photoresist 136 may substantially coincide with the imaging plane.
  • FIG. 12 depicts another embodiment, a method for designing a mask pattern for generating an imaging pattern on a photoresist responsive to substantially coherent light of a selected wavelength, the method including selecting a wave propagation function in a Fourier space as a function of the selected wavelength (step 154 ); defining a representation of the imaging pattern in real space (step 156 ); transforming the representation of the imaging pattern in real space to a representation of the imaging pattern in the Fourier space (step 158 ); dividing the representation of the imaging pattern in the Fourier space by the wave propagation function to find a representation of the mask pattern in the Fourier space (step 160 ); and transforming the representation of the mask pattern in the Fourier space into a representation of the mask pattern in real space (step 162 ).
  • a method of producing a selected pattern in a photomask includes identifying an exposure wavelength (step 164 ); defining a representation of the selected pattern in real space (step 166 ); transforming the representation of the selected pattern in real space to a representation of the selected pattern in Fourier space (step 168 ); for a selected geometric configuration of the photomask relative to an exposure field, identifying a wave propagation function in the Fourier space as a function of the exposure wavelength (step 170 ); applying the wave propagation function to the representation of the selected pattern in the Fourier space to produce a mask pattern representation in the Fourier space (step 172 ); and transforming the representation of the mask pattern in the Fourier space into a representation of the mask pattern in real space (step 174 ).
  • FIG. 14 depicts another embodiment, a method of producing a selected pattern in a photomask, including steps 164 , 166 , 168 , 170 , 172 and 174 as described above, and, in addition, step 176 , patterning a mask according to the representation of the mask pattern in real space.
  • FIG. 15 depicts another embodiment, a method of producing a selected pattern in a photomask, including steps 164 , 166 , 168 , 172 , and 174 as described above, and, in addition, step 178 , for a selected geometric configuration of the photomask relative to an exposure field, identifying a wave propagation function in the Fourier space as a function of the exposure wavelength, wherein the geometric configuration includes parallel orientation of the mask relative to the exposure field.
  • an implementer may opt for a mainly hardware and/or firmware vehicle; alternatively, if flexibility is paramount, the implementer may opt for a mainly software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware.
  • any vehicle to be utilized is a choice dependent upon the context in which the vehicle will be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary.
  • Those skilled in the art will recognize that optical aspects of implementations will require optically-oriented hardware, software, and or firmware.
  • a signal bearing media include, but are not limited to, the following: recordable type media such as floppy disks, hard disk drives, CD ROMs, digital tape, and computer memory; and transmission type media such as digital and analog communication links using TDM or IP based communication links (e.g., packet links).
  • electro-mechanical system includes, but is not limited to, electrical circuitry operably coupled with a transducer (e.g., an actuator, a motor, a piezoelectric crystal, etc.), electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment), and any non-electrical analog thereto, such as optical or other analogs.
  • a transducer e.g., an actuator, a motor, a piezo
  • electro-mechanical systems include but are not limited to a variety of consumer electronics systems, as well as other systems such as motorized transport systems, factory automation systems, security systems, and communication/computing systems.
  • electro-mechanical as used herein is not necessarily limited to a system that has both electrical and mechanical actuation except as context may dictate otherwise.
  • electrical circuitry includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment).
  • a computer program e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein
  • electrical circuitry forming a memory device e
  • any two components so associated can also be viewed as being “operably connected”, or “operably coupled”, to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable”, to each other to achieve the desired functionality.
  • operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components.

Abstract

A method of generating an imaging pattern using a mask having a mathematical (e.g., Fourier-space) representation of an imaging pattern in an imaging plane. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present application. Other methods and apparatuses are also disclosed.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application is related to and claims the benefit of the earliest available effective filing date(s) from the following listed application(s) (the “Related Applications”) (e.g., claims earliest available priority dates for other than provisional patent applications or claims benefits under 35 USC §119(e) for provisional patent applications, for any and all parent, grandparent, great-grandparent, etc. applications of the Related Application(s)), and incorporates by reference in its entirety all subject matter of the following listed application(s) (in the event of any inconsistencies between the instant application and an application incorporated by reference, the instant application controls):
  • 1. For purposes of the USPTO extra-statutory requirements, the present application constitutes a divisional of U.S. patent application Ser. No. 10/927,898 entitled INTEGRATED CIRCUIT LITHOGRAPHY naming Bran Ferren, Nathan P. Myhrvold, and Lowell L. Wood, Jr. as inventors, filed on 27 Aug. 2004, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
  • The United States Patent Office (USPTO) has published a notice to the effect that the USPTO's computer programs require that patent applicants reference both a serial number and indicate whether an application is a continuation or continuation-in-part. Stephen G. Kunin, Benefit of Prior-Filed Application, USPTO Official Gazette Mar. 18, 2003. The present Applicant Entity (hereinafter “Applicant”) has provided above a specific reference to the application(s) from which priority is being claimed as recited by statute. Applicant understands that the statute is unambiguous in its specific reference language and does not require either a serial number or any characterization, such as “continuation” or “continuation-in-part,” for claiming priority to U.S. patent applications. Notwithstanding the foregoing, Applicant understands that the USPTO's computer programs have certain data entry requirements, and hence Applicant is designating the present application as a continuation-in-part of its parent applications as set forth above, but expressly points out that such designations are not to be construed in any way as any type of commentary and/or admission as to whether or not the present application contains any new matter in addition to the matter of its parent application(s). All subject matter of the Related Applications and of any and all parent, grandparent, great-grandparent, etc. applications of the Related Applications is incorporated herein by reference to the extent such subject matter is not inconsistent herewith
  • TECHNICAL FIELD
  • The present application relates, in general, to generating imaging patterns on integrated circuit substrates for lithography.
  • SUMMARY
  • One embodiment, a method of generating an imaging pattern on an integrated circuit substrate, includes orienting a mask having a mask pattern of a real-space representation of a Fourier-space representation of the imaging pattern in an imaging plane between a substantially coherent light source and the integrated circuit substrate; diffracting light with the mask according to the mask pattern to produce the imaging pattern; and exposing a photoresist on a surface of the integrated circuit substrate with the diffracted light from the mask. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present application. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present application.
  • Another embodiment, an apparatus for generating an imaging pattern on a chip, includes a mechanism for exposing a mask having a mask pattern related to a Fourier-space representation of the imaging pattern in an imaging plane with a substantially coherent light generated from a substantially coherent light source; and a mechanism for exposing a photoresist on a surface of the chip with a diffraction light diffracted from the mask in response to the substantially coherent light source, wherein the diffraction light forms the imaging pattern on the photoresist on the surface of the chip. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present application. Mechanisms such as the herein-referenced mechanisms are typically design choices within the purview of the system designer skilled in the art.
  • Another embodiment, an apparatus for generating an imaging pattern on a chip, includes a substantially coherent light source that emits substantially coherent light along a light path; a diffractive mask patterned to form a real-space representation of a Fourier-space representation related to the imaging pattern in an imaging plane; a mask holder operable to hold the diffractive mask in the light path, in an orientation that produces diffracted light in an exposure field; and a chip holder operable to hold a chip in the exposure field; wherein the diffractive mask is of a type that diffracts light to form the imaging pattern on a photoresist on a surface of the chip. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present application.
  • Another embodiment, a method for designing a mask pattern for generating an imaging pattern on a photoresist responsive to substantially coherent light of a selected wavelength, includes selecting a wave propagation function in a Fourier space as a function of the selected wavelength; defining a representation of the imaging pattern in real space; transforming the representation of the imaging pattern in real space to a representation of the imaging pattern in the Fourier space; dividing the representation of the imaging pattern in the Fourier space by the wave propagation function to find a representation of the mask pattern in the Fourier space; and transforming the representation of the mask pattern in the Fourier space into a representation of the mask pattern in real space. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present application.
  • Another embodiment, a method of producing a selected pattern in a photomask, includes identifying an exposure wavelength; defining a representation of the selected pattern in real space; transforming the representation of the selected pattern in real space to a representation of the selected pattern in Fourier space; for a selected geometric configuration of the photomask relative to an exposure field, identifying a wave propagation function in the Fourier space as a function of the exposure wavelength; applying the wave propagation function to the representation of the selected pattern in the Fourier space to produce a mask pattern representation in the Fourier space; and transforming the representation of the mask pattern in the Fourier space into a representation of the mask pattern in real space. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present application.
  • Another embodiment, a method, includes orienting a mask having a mask pattern of a real-space representation of a mathematical-space representation of an imaging pattern in an imaging plane between a substantially coherent light source and the integrated circuit substrate; diffracting light with the mask according to the mask pattern to produce the imaging pattern; and exposing a photoresist on a surface of the integrated circuit substrate with the diffracted light from the mask. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present application.
  • Another embodiment, an apparatus for generating an imaging pattern on a chip, includes: a mechanism for exposing a mask having a mask pattern related to a mathematical-space representation of an imaging pattern in an imaging plane with a substantially coherent light generated from a substantially coherent light source; and a mechanism for exposing a photoresist on a surface of the chip with a diffraction light diffracted from the mask in response to the substantially coherent light source, wherein the diffraction light forms the imaging pattern on the photoresist on the surface of the chip. In addition to the foregoing, other apparatus aspects are described in the claims, drawings, and text forming a part of the present application. Mechanisms such as the herein-referenced mechanisms are typically design choices within the purview of the system designer skilled in the art.
  • Another embodiment, a method for designing a mask pattern for generating an imaging pattern on a photoresist responsive to substantially coherent light of a selected wavelength, includes selecting a wave propagation function in a mathematical space as a function of the selected wavelength; defining a representation of the imaging pattern in real space; transforming the representation of the imaging pattern in real space to a representation of the imaging pattern in the mathematical space; dividing the representation of the imaging pattern in the mathematical space by the wave propagation function to find a representation of the mask pattern in the mathematical space; and transforming the representation of the mask pattern in the mathematical space into a representation of the mask pattern in real space. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present application.
  • Other embodiments are described in the detailed descriptions of the figures. In addition to the foregoing, various other method and/or system and/or article aspects are set forth and described in the text (e.g., claims and/or detailed description) and/or drawings of the present application.
  • In one or more various aspects, related systems include but are not limited to circuitry and/or programming and/or electro-mechanical components for effecting the herein-referenced method aspects; the circuitry and/or programming and/or electro-mechanical components can be virtually any combination of hardware, software, firmware, and/or electro-mechanical components configured to effect the herein-referenced method aspects depending upon the design choices of the system designer in light of the teachings herein.
  • The foregoing is a summary and thus contains, by necessity, simplifications, generalizations and omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is NOT intended to be in any way limiting. Other aspects, inventive features, and advantages of the devices and/or processes described herein, as defined solely by the claims, will become apparent in the detailed description set forth herein.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a flow chart depicting an embodiment of the subject matter of the present application;
  • FIG. 2 is a flow chart depicting another embodiment of the subject matter of the present application;
  • FIG. 3 is a flow chart depicting another embodiment;
  • FIG. 4 is a flow chart depicting another embodiment;
  • FIG. 5 is a flow chart depicting another embodiment;
  • FIG. 6 is a flow chart depicting another embodiment;
  • FIG. 7 is a flow chart depicting another embodiment;
  • FIG. 8 is a flow chart depicting another embodiment;
  • FIG. 9 is a flow chart depicting another embodiment;
  • FIG. 10 is a block diagram of another embodiment;
  • FIG. 11 is a block diagram of another embodiment;
  • FIG. 12 is a flow chart depicting another embodiment;
  • FIG. 13 is a flow chart depicting another embodiment;
  • FIG. 14 is a flow chart depicting another embodiment; and
  • FIG. 15 is a flow chart depicting another embodiment.
  • The use of the same symbols in different drawings typically indicates similar or identical items.
  • DETAILED DESCRIPTION
  • FIG. 1 shows an embodiment of the subject matter of the present application, a method of generating an imaging pattern on an integrated circuit substrate, the method including orienting a mask having a mask pattern of a real space representation of a Fourier-space representation of the imaging pattern in an imaging plane between a substantially coherent light source and the integrated circuit substrate (step 100); diffracting light with the mask according to the mask pattern to produce the imaging pattern (step 102); and exposing a photoresist on a surface of the integrated circuit substrate with the diffracted light from the mask (step 104).
  • As shown in FIG. 2, another embodiment includes step 106, orienting a mask having a mask pattern of a real space representation of a Fourier-space representation of the imaging pattern in an imaging plane between a substantially coherent light source and the integrated circuit substrate, wherein the substantially coherent light source includes a laser, e.g., a free-electron laser, and, in addition, steps 102 and 104 as described above.
  • FIG. 3 shows another embodiment that includes step 108, orienting a mask having a mask pattern of a real space representation of a Fourier-space representation of the imaging pattern in an imaging plane between a substantially coherent light source and the integrated circuit substrate, wherein the substantially coherent light source includes a light having wavelengths of greater than or equal to about some practicable lower-end wavelength (e.g., 1/10 nanometer lasers such as those of International Business Machines and/or around 148 nanometer lasers such as those currently readily commercially available and/or lasers having wavelengths such as those listed in the Laser Wavelength Charts of Lexel Laser appearing on the World Wide Web at the following link: http://www.lexellaser.com/techinfo_wavelengths.htm and/or lasers having wavelengths such as those listed in the How Gas-Ion Lasers Work article of Lexel Laser appearing on the World Wide Web at the following link: http://www.lexellaser.com/techinfo_gas-ion.htm) and less than or equal to about some practicable upper-end wavelength (e.g., appropriately-chosen upper ends such as around 148 nanometer lasers and/or such as those that are currently readily commercially available (e.g., 148 nanometer lasers) and/or lasers having wavelengths such as those listed in the Laser Wavelength Charts of Lexel Laser appearing on the World Wide Web at the following link: http://www.lexellaser.com/techinfo_wavelengths.htm and/or lasers having wavelengths such as those listed in the How Gas-Ion Lasers Work article of Lexel Laser appearing on the World Wide Web at the following link: http://www.lexellaser.com/techinfo_gas-ion.htm), and, in addition, steps 102 and 104 as described above.
  • As shown in FIG. 4, another embodiment includes step 110, orienting a mask having a mask pattern of a real space representation of a Fourier-space representation of the imaging pattern in an imaging plane between a substantially coherent light source and the integrated circuit substrate, wherein the substantially coherent light source includes a monochromator, e.g., a diffraction grating or a prism, and, in addition, steps 102 and 104 as described above.
  • FIG. 5 shows another embodiment that includes step 112, diffracting light with the mask according to the mask pattern to produce the imaging pattern, wherein the imaging pattern includes a plurality of diffraction particles, e.g., diffraction particles having nanometer scale sizes, and, in addition, steps 100 and 104 as described above.
  • FIG. 6 shows another embodiment that includes step 114, orienting a mask having a mask pattern of a real space representation of a Fourier-space representation of the imaging pattern in an imaging plane between a substantially coherent light source and the integrated circuit substrate, wherein the mask includes a crystal having the mask pattern fabricated thereon, and, in addition, steps 102 and 104 as described above.
  • As shown in FIG. 7, another embodiment includes step 116, orienting a mask having a mask pattern of a real space representation of a Fourier-space representation of the imaging pattern in an imaging plane between a substantially coherent light source and the integrated circuit substrate, wherein the mask substantially parallels a surface of the chip, and, in addition, steps 102 and 104 as described above.
  • As shown in FIG. 8, another embodiment includes step 118, orienting a mask having a mask pattern of a real space representation of a Fourier-space representation of the imaging pattern in an imaging plane between a substantially coherent light source and the integrated circuit substrate, wherein the substantially coherent light source includes light having an s-polarization, and, in addition, steps 102 and 104 as described above.
  • As shown in FIG. 9, another embodiment includes step 120, exposing a photoresist on a surface of the integrated circuit substrate with the diffracted light from the mask, wherein the photoresist is substantially coincident with the imaging plane, and, in addition, steps 100 and 102 as described above.
  • FIG. 10 shows another embodiment, an apparatus 122 for generating an imaging pattern 124 on a chip 126, the apparatus 122 including a mechanism for exposing a mask 128 having a mask pattern related to a Fourier-space representation of the imaging pattern 124 in an imaging plane 130 with a substantially coherent light 132 generated from a substantially coherent light source 134; and a mechanism for exposing a photoresist 136 on a surface 138 of the chip 126 with a diffraction light 140 diffracted from the mask 128 in response to the substantially coherent light source 134; wherein the diffraction light 140 forms the imaging pattern 124 on the photoresist 136 on the surface 138 of the chip 126. Mechanisms such as the herein-referenced mechanisms are typically design choices within the purview of the system designer skilled in the art.
  • As shown in FIG. 11, another embodiment, an apparatus 142 for generating an imaging pattern 124 on a chip 126, includes a substantially coherent light source 134 that emits substantially coherent light 132 along a light path 144; a diffractive mask 146, the diffractive mask 146 being patterned to form a real-space representation of a Fourier-space representation related to the imaging pattern 124 in an imaging plane 130; a mask holder 148 operable to hold the diffractive mask 146 in the light path 144, in an orientation that produces diffracted light 149 in an exposure field 150; and a chip holder 152 operable to hold the chip 126 in the exposure field 150; wherein the diffractive mask 146 is of a type that diffracts light to form the imaging pattern 124 on a photoresist 136 on a surface 138 of the chip 126.
  • With regard to the embodiments depicted in FIGS. 10 and 11, the substantially coherent light source 134 may include a laser, e.g., a free electron laser. The substantially coherent light source 134 may include light having one or more wavelengths within practicable upper and/or lower bounds such as, for example, bounds discussed elsewhere herein (e.g., in relation to FIG. 3 and/or in the as-filed claims). The substantially coherent light source 134 may include a monochromator, e.g., a diffraction grating or a prism. The imaging pattern 124 may include a plurality of diffraction particles, e.g., diffraction particles having sizes within nanometer ranges. The mask 128 and the diffractive mask 146 may include a crystal having the imaging pattern 124 fabricated thereon. A surface 153 of the mask 128 or of the diffractive mask 146 may substantially parallel the surface 138 of the chip 126. The substantially coherent light source 134 may emit substantially coherent light 132 having an s-polarization. The photoresist 136 may substantially coincide with the imaging plane.
  • FIG. 12 depicts another embodiment, a method for designing a mask pattern for generating an imaging pattern on a photoresist responsive to substantially coherent light of a selected wavelength, the method including selecting a wave propagation function in a Fourier space as a function of the selected wavelength (step 154); defining a representation of the imaging pattern in real space (step 156); transforming the representation of the imaging pattern in real space to a representation of the imaging pattern in the Fourier space (step 158); dividing the representation of the imaging pattern in the Fourier space by the wave propagation function to find a representation of the mask pattern in the Fourier space (step 160); and transforming the representation of the mask pattern in the Fourier space into a representation of the mask pattern in real space (step 162).
  • As shown in FIG. 13, another embodiment, a method of producing a selected pattern in a photomask, includes identifying an exposure wavelength (step 164); defining a representation of the selected pattern in real space (step 166); transforming the representation of the selected pattern in real space to a representation of the selected pattern in Fourier space (step 168); for a selected geometric configuration of the photomask relative to an exposure field, identifying a wave propagation function in the Fourier space as a function of the exposure wavelength (step 170); applying the wave propagation function to the representation of the selected pattern in the Fourier space to produce a mask pattern representation in the Fourier space (step 172); and transforming the representation of the mask pattern in the Fourier space into a representation of the mask pattern in real space (step 174).
  • FIG. 14 depicts another embodiment, a method of producing a selected pattern in a photomask, including steps 164, 166, 168, 170, 172 and 174 as described above, and, in addition, step 176, patterning a mask according to the representation of the mask pattern in real space.
  • FIG. 15 depicts another embodiment, a method of producing a selected pattern in a photomask, including steps 164, 166, 168, 172, and 174 as described above, and, in addition, step 178, for a selected geometric configuration of the photomask relative to an exposure field, identifying a wave propagation function in the Fourier space as a function of the exposure wavelength, wherein the geometric configuration includes parallel orientation of the mask relative to the exposure field.
  • One skilled in the art will recognize that the foregoing components (e.g., steps), devices, and objects in FIGS. 1-15 and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are common. Consequently, as used herein, the specific exemplars set forth in FIGS. 1-15 and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar herein is also intended to be representative of its class, and the non-inclusion of such specific components (e.g., steps), devices, and objects herein should not be taken as indicating that limitation is desired.
  • Those skilled in the art will appreciate that the foregoing specific exemplary processes and/or devices and/or technologies are representative of more general processes and/or devices and/or technologies taught elsewhere herein, such as in the claims filed herewith and/or elsewhere in the present application.
  • Those having skill in the art will recognize that the state of the art has progressed to the point where there is little distinction left between hardware and software implementations of aspects of systems; the use of hardware or software is generally (but not always, in that in certain contexts the choice between hardware and software can become significant) a design choice representing cost vs. efficiency tradeoffs. Those having skill in the art will appreciate that there are various vehicles by which processes and/or systems and/or other technologies described herein can be effected (e.g., hardware, software, and/or firmware), and that the preferred vehicle will vary with the context in which the processes and/or systems and/or other technologies are deployed. For example, if an implementer determines that speed and accuracy are paramount, the implementer may opt for a mainly hardware and/or firmware vehicle; alternatively, if flexibility is paramount, the implementer may opt for a mainly software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware. Hence, there are several possible vehicles by which the processes and/or devices and/or other technologies described herein may be effected, none of which is inherently superior to the other in that any vehicle to be utilized is a choice dependent upon the context in which the vehicle will be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary. Those skilled in the art will recognize that optical aspects of implementations will require optically-oriented hardware, software, and or firmware.
  • The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. However, those skilled in the art will recognize that some aspects of the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter subject matter described herein applies equally regardless of the particular type of signal bearing media used to actually carry out the distribution. Examples of a signal bearing media include, but are not limited to, the following: recordable type media such as floppy disks, hard disk drives, CD ROMs, digital tape, and computer memory; and transmission type media such as digital and analog communication links using TDM or IP based communication links (e.g., packet links).
  • In a general sense, those skilled in the art will recognize that the various embodiments described herein can be implemented, individually and/or collectively, by various types of electro-mechanical systems having a wide range of electrical components such as hardware, software, firmware, or virtually any combination thereof; and a wide range of components that may impart mechanical force or motion such as rigid bodies, spring or torsional bodies, hydraulics, and electro-magnetically actuated devices, or virtually any combination thereof. Consequently, as used herein “electro-mechanical system” includes, but is not limited to, electrical circuitry operably coupled with a transducer (e.g., an actuator, a motor, a piezoelectric crystal, etc.), electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment), and any non-electrical analog thereto, such as optical or other analogs. Those skilled in the art will also appreciate that examples of electro-mechanical systems include but are not limited to a variety of consumer electronics systems, as well as other systems such as motorized transport systems, factory automation systems, security systems, and communication/computing systems. Those skilled in the art will recognize that electro-mechanical as used herein is not necessarily limited to a system that has both electrical and mechanical actuation except as context may dictate otherwise.
  • In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment).
  • The herein described aspects depict different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected”, or “operably coupled”, to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable”, to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components.
  • All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in any Application Data Sheet, are incorporated herein by reference, in their entireties.
  • While particular aspects of the present subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from this subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of this subject matter described herein. Furthermore, it is to be understood that the invention is solely defined by the appended claims. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or an limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.).
  • Other embodiments are within the following claims.

Claims (40)

1. A method of generating an imaging pattern at an image plane comprising:
orienting a mask having a mask pattern configured to pass light to provide a spatial frequency domain representation of of the imaging pattern;
diffracting light with the mask; and
transforming the diffracted light with an optic interposed between the mask and the image plane to provide the imaging pattern at the image plane.
2. The method of claim 1 wherein diffracting light with the mask comprises diffracting laser light with the mask.
3. The method of claim 1 wherein the image plane comprises a photoresist on an integrated circuit substrate.
4. The method of claim 1 wherein the substantially coherent light source includes a light having a wavelength of greater than about 148 nanometers and less than about 1000 nanometers.
5. The method of claim 1 wherein the substantially coherent light source includes a light having a wavelength of greater than about 1/10 (0.10) nanometers and less than about 148 nanometers.
6. The method of claim 1 wherein the substantially coherent light source includes a light having a wavelength of greater than about 1/10 (0.10) nanometers and less than about 10 nanometers.
7. The method of claim 1 wherein the substantially coherent light source includes a light having a non-zero wavelength.
8. The method of claim 1 wherein the substantially coherent light source includes a monochromator.
9. The method of claim 8 wherein the monochromator includes at least one of a diffraction grating or a prism.
10. The method of claim 8 wherein the monochromator is a device selected from a group including but not limited to a diffraction grating or a prism.
11. The method of claim 1 wherein the imaging pattern includes a plurality of diffraction particles.
12. The method of claim 11 wherein the plurality of diffraction particles includes diffraction particles having nanometer scale sizes.
13. The method of claim 1 wherein the mask includes at least one crystal having the mask pattern fabricated thereon.
14. The method of claim 1 wherein a surface of the mask substantially parallels a surface of the chip.
15. The method of claim 1 wherein the substantially coherent light source includes light having an s-polarization.
16. The method of claim 1 wherein the photoresist is substantially coincident with the imaging plane.
17. An apparatus for generating an imaging pattern at an image plane comprising:
mask means having a mask pattern configured to pass light to provide a spatial frequency domain representation of the imaging pattern;
light means for providing imaging light onto the mask means; and
diffractive means interposed between the mask means and the image plane and configured to diffract the imaging light transmitted by the mask means, wherein the imaging light transmitted by the mask means forms the imaging pattern at the image plane.
18. An apparatus for generating an imaging pattern at an image plane comprising:
a light source configured to emit imaging light;
a mask structure positioned to intercept at least a portion of the emitted imaging light, the mask structure including a light mask patterned to pass light according to a spatial frequency domain representation of the imaging pattern; and
a transforming optic interposed between the light mask and the image plane and being arranged to process the passed light in a manner that produces the imaging pattern at the image plane.
19. The apparatus of claim 18 wherein the substantially coherent light source includes at least one of a laser or a free electron laser.
20. The apparatus of claim 18 wherein the spatial frequency domain representation includes a spatial Fourier transform representation.
21. The apparatus of claim 18 wherein the substantially coherent light source includes a light having a wavelength of greater than about 148 nanometers and less than about 1000 nanometers.
22. The apparatus of claim 18 wherein the substantially coherent light source includes a light having a wavelength of greater than about 1/10 (0.10) nanometers and less than about 148 nanometers.
23. The apparatus of claim 18 wherein the substantially coherent light source includes a light having a wavelength of greater than about 1/10 (0.10) nanometers and less than about 10 nanometers.
24. The apparatus of claim 18 wherein the transforming optic arranged to process the passed light in a manner that produces the imaging pattern at the image plane includes:
a transforming optic arranged to process the passed light, including implementing a spatial Fourier transform, in a manner that produces the imaging pattern at the image plane.
25. The apparatus of claim 18 wherein the substantially coherent light source includes a monochromator.
26. The apparatus of claim 25 wherein the monochromator includes at least one of a diffraction grating or a prism.
27. The apparatus of claim 18 wherein the transforming optic arranged to process the passed light in a manner that produces the imaging pattern at the image plane includes:
a transforming optic arranged to process the passed light, including transforming with a lens positioned to produce a Fourier transform of the passed light, in a manner that produces the imaging pattern at the image plane.
28. The apparatus of claim 18 wherein the imaging pattern includes a plurality of diffraction particles.
29. The apparatus of claim 28 wherein the plurality of diffraction particles includes diffraction particles having sizes within nanometer ranges.
30. The apparatus of claim 18 wherein the mask includes at least one crystal having the imaging pattern fabricated thereon.
31. The apparatus of claim 18 wherein a surface of the mask substantially parallels the surface of the chip.
32. The apparatus of claim 18 wherein the substantially coherent light source emits substantially coherent light source having an s-polarization.
33. The apparatus of claim 18 wherein the photoresist substantially coincides with the imaging plane.
34. (canceled)
35. (canceled)
36. (canceled)
37. (canceled)
38. A method, comprising:
orienting a mask having a mask pattern configured to pass light to provide a spatial frequency domain representation of an imaging pattern in an imaging plane between a substantially coherent light source and the integrated circuit substrate;
diffracting light with the mask;
interposing a transforming optic between the mask and the image plane; and
transmitting the diffracted light through the transforming optic to provide the imaging pattern at the image plane.
39. An apparatus for generating an imaging pattern on a chip comprising:
mask means having a mask pattern configured to pass light to provide a spatial frequency domain representation of the imaging pattern;
light means for exposing the mask means with a substantially coherent light; and
optical means for processing a passed light from the mask means to provide a diffracted light that forms the imaging pattern on a photoresist.
40. (canceled)
US12/655,692 2004-08-27 2010-01-04 Lithography systems and methods Abandoned US20100225894A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/655,692 US20100225894A1 (en) 2004-08-27 2010-01-04 Lithography systems and methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/927,898 US7642037B2 (en) 2004-08-27 2004-08-27 Integrated circuit lithography
US12/655,692 US20100225894A1 (en) 2004-08-27 2010-01-04 Lithography systems and methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/927,898 Division US7642037B2 (en) 2004-08-27 2004-08-27 Integrated circuit lithography

Publications (1)

Publication Number Publication Date
US20100225894A1 true US20100225894A1 (en) 2010-09-09

Family

ID=35943705

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/927,898 Active 2026-07-04 US7642037B2 (en) 2004-08-27 2004-08-27 Integrated circuit lithography
US12/655,692 Abandoned US20100225894A1 (en) 2004-08-27 2010-01-04 Lithography systems and methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/927,898 Active 2026-07-04 US7642037B2 (en) 2004-08-27 2004-08-27 Integrated circuit lithography

Country Status (1)

Country Link
US (2) US7642037B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100135568A1 (en) * 2006-09-20 2010-06-03 Preil Moshe E Photo-mask and wafer image reconstruction

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3677634A (en) * 1968-12-23 1972-07-18 Ibm Contactless mask pattern exposure process and apparatus system having virtual extended depth of focus
US5212588A (en) * 1991-04-09 1993-05-18 The United States Of America As Represented By The United States Department Of Energy Reflective optical imaging system for extreme ultraviolet wavelengths
US5528364A (en) * 1994-07-19 1996-06-18 The Regents, University Of California High resolution EUV monochromator/spectrometer
US5541026A (en) * 1991-06-13 1996-07-30 Nikon Corporation Exposure apparatus and photo mask
US5705298A (en) * 1994-12-23 1998-01-06 Lucent Technologies Inc. Holographic method for generating three dimensional conformal photo lithographic masks
US5715039A (en) * 1995-05-19 1998-02-03 Hitachi, Ltd. Projection exposure apparatus and method which uses multiple diffraction gratings in order to produce a solid state device with fine patterns
US6077631A (en) * 1995-12-15 2000-06-20 Canon Kabushiki Kaisha Photomask and scanning exposure apparatus and device manufacturing method using same
US6295118B1 (en) * 1996-10-29 2001-09-25 Canon Kabushiki Kaisha Optical arrangement for exposure apparatus
US20010052969A1 (en) * 1998-12-08 2001-12-20 Bunau Rudolf Von Projection-microlithographic device
US6339471B1 (en) * 1996-08-27 2002-01-15 Nikon Corporation Projection exposure apparatus
US20020008911A1 (en) * 2000-03-15 2002-01-24 Yoshiyuki Sekine Projection optical system with diffractive optical element
US20020018189A1 (en) * 2000-06-01 2002-02-14 Johannes Catharinus Hubertus Mulkens Lithographic apparatus, device manufacturing method, and device manufactured thereby
US20020036763A1 (en) * 2000-07-05 2002-03-28 Krikke Jan Jaap Lithographic apparatus, device manufacturing method, and device manufactured thereby
US6445470B1 (en) * 1990-04-06 2002-09-03 University Of Southern California Apparatus for simultaneous spatial modulation of incoherent/coherent angulary multiplexed optical beams
US6485891B1 (en) * 1991-03-05 2002-11-26 Hitachi, Ltd. Exposure apparatus and method
US6538722B2 (en) * 1997-07-22 2003-03-25 Nikon Corporation Projection exposure method, projection exposure apparatus, and methods of manufacturing and optically cleaning the exposure apparatus
US6563564B2 (en) * 2000-06-14 2003-05-13 Asm Lithography B.V. Method of operating an optical imaging system, lithographic projection apparatus, device manufacturing method, and device manufactured thereby
US20040006757A1 (en) * 2002-03-25 2004-01-08 Chen Jang Fung Method and apparatus for defining mask patterns utilizing a spatial frequency doubling technique
US20040119970A1 (en) * 2002-11-01 2004-06-24 Mircea Dusa Test pattern, inspection method, and device manufacturing method
US20040160583A1 (en) * 2000-06-01 2004-08-19 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
US20060121362A1 (en) * 2004-12-02 2006-06-08 Hynix Semiconductor Inc. Photo mask and method for manufacturing patterns using the same
US7098992B2 (en) * 1999-09-10 2006-08-29 Nikon Corporation Light source unit and wavelength stabilizing control method, exposure apparatus and exposure method, method of making exposure apparatus, and device manufacturing method and device
US7271876B2 (en) * 2003-08-20 2007-09-18 Carl Zeiss Smt Ag Projection objective for microlithography
US7548370B2 (en) * 2004-06-29 2009-06-16 Asml Holding N.V. Layered structure for a tile wave plate assembly

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358722B1 (en) * 1994-04-25 2002-03-19 Roche Vitamins, Inc. Heat tolerant phytases

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3677634A (en) * 1968-12-23 1972-07-18 Ibm Contactless mask pattern exposure process and apparatus system having virtual extended depth of focus
US6445470B1 (en) * 1990-04-06 2002-09-03 University Of Southern California Apparatus for simultaneous spatial modulation of incoherent/coherent angulary multiplexed optical beams
US6485891B1 (en) * 1991-03-05 2002-11-26 Hitachi, Ltd. Exposure apparatus and method
US5212588A (en) * 1991-04-09 1993-05-18 The United States Of America As Represented By The United States Department Of Energy Reflective optical imaging system for extreme ultraviolet wavelengths
US5541026A (en) * 1991-06-13 1996-07-30 Nikon Corporation Exposure apparatus and photo mask
US5528364A (en) * 1994-07-19 1996-06-18 The Regents, University Of California High resolution EUV monochromator/spectrometer
US5705298A (en) * 1994-12-23 1998-01-06 Lucent Technologies Inc. Holographic method for generating three dimensional conformal photo lithographic masks
US5715039A (en) * 1995-05-19 1998-02-03 Hitachi, Ltd. Projection exposure apparatus and method which uses multiple diffraction gratings in order to produce a solid state device with fine patterns
US6077631A (en) * 1995-12-15 2000-06-20 Canon Kabushiki Kaisha Photomask and scanning exposure apparatus and device manufacturing method using same
US6339471B1 (en) * 1996-08-27 2002-01-15 Nikon Corporation Projection exposure apparatus
US6295118B1 (en) * 1996-10-29 2001-09-25 Canon Kabushiki Kaisha Optical arrangement for exposure apparatus
US6538722B2 (en) * 1997-07-22 2003-03-25 Nikon Corporation Projection exposure method, projection exposure apparatus, and methods of manufacturing and optically cleaning the exposure apparatus
US20010052969A1 (en) * 1998-12-08 2001-12-20 Bunau Rudolf Von Projection-microlithographic device
US7098992B2 (en) * 1999-09-10 2006-08-29 Nikon Corporation Light source unit and wavelength stabilizing control method, exposure apparatus and exposure method, method of making exposure apparatus, and device manufacturing method and device
US20020008911A1 (en) * 2000-03-15 2002-01-24 Yoshiyuki Sekine Projection optical system with diffractive optical element
US20020018189A1 (en) * 2000-06-01 2002-02-14 Johannes Catharinus Hubertus Mulkens Lithographic apparatus, device manufacturing method, and device manufactured thereby
US20040160583A1 (en) * 2000-06-01 2004-08-19 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
US6563564B2 (en) * 2000-06-14 2003-05-13 Asm Lithography B.V. Method of operating an optical imaging system, lithographic projection apparatus, device manufacturing method, and device manufactured thereby
US20020036763A1 (en) * 2000-07-05 2002-03-28 Krikke Jan Jaap Lithographic apparatus, device manufacturing method, and device manufactured thereby
US20040006757A1 (en) * 2002-03-25 2004-01-08 Chen Jang Fung Method and apparatus for defining mask patterns utilizing a spatial frequency doubling technique
US20040119970A1 (en) * 2002-11-01 2004-06-24 Mircea Dusa Test pattern, inspection method, and device manufacturing method
US7271876B2 (en) * 2003-08-20 2007-09-18 Carl Zeiss Smt Ag Projection objective for microlithography
US7548370B2 (en) * 2004-06-29 2009-06-16 Asml Holding N.V. Layered structure for a tile wave plate assembly
US20060121362A1 (en) * 2004-12-02 2006-06-08 Hynix Semiconductor Inc. Photo mask and method for manufacturing patterns using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100135568A1 (en) * 2006-09-20 2010-06-03 Preil Moshe E Photo-mask and wafer image reconstruction
US8644588B2 (en) * 2006-09-20 2014-02-04 Luminescent Technologies, Inc. Photo-mask and wafer image reconstruction

Also Published As

Publication number Publication date
US7642037B2 (en) 2010-01-05
US20060046212A1 (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP4749332B2 (en) Lithographic system and method with increased depth of focus
JP4724183B2 (en) System and method for generating periodic and / or quasi-periodic patterns on a sample
US20060109532A1 (en) System and method for forming well-defined periodic patterns using achromatic interference lithography
US20060199091A1 (en) Printing a mask with maximum possible process window through adjustment of the source distribution
US20090077526A1 (en) Write-Pattern Determination for Maskless Lithography
JP5048801B2 (en) Method and apparatus for generating complex patterns by integrating optics and interference lithography
US20160159232A1 (en) Contact apparatus and charging contact unit and method for electrically connecting a vehicle to a charging station
JP2008511035A (en) Holographic lithography
KR101069086B1 (en) Slm direct writer
JP2004253121A (en) Self-referenced holography using diffusive element
US6226110B1 (en) Method and apparatus for holographically recording an essentially periodic pattern
US20170212472A1 (en) System and method for holography-based fabrication
US20100225894A1 (en) Lithography systems and methods
WO2005066724A1 (en) Holographic multiple recording method, holographic recording device using the same, and holographic recording medium
JP4794324B2 (en) Dot matrix hologram with spatially varying period
Sincerbox Holographic scanners
JP3593359B2 (en) Hologram fabrication method
Jacobsen et al. Projection x‐ray lithography using computer‐generated holograms: A study of compatibility with proximity lithography
Gulses et al. Laser beam shaping with computer-generated holograms for fiducial marking
Poutous et al. Design and fabrication of customized illumination patterns for low-k1 lithography--a diffractive approach: II. Calcium fluoride controlled-angle diffusers
JP3355722B2 (en) How to create a diffraction grating pattern
JPH11353422A (en) Information reader for optical recording medium
Baylav Reduction of Line Edge Roughness (LER) in Interference-Like Large Field Lithography
CN115943349A (en) Method and apparatus for pattern generation
JPH07311307A (en) Phase apodization in binary-diffraction optical element

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEARETE LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FERREN, BRAN;MYHRVOLD, NATHAN P.;WOOD, LOWELL L., JR.;SIGNING DATES FROM 20100323 TO 20100508;REEL/FRAME:024429/0268

AS Assignment

Owner name: DEEP SCIENCE, LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SEARETE LLC;REEL/FRAME:037535/0584

Effective date: 20160113

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION