US20100233270A1 - Delivery of Oligonucleotide-Functionalized Nanoparticles - Google Patents

Delivery of Oligonucleotide-Functionalized Nanoparticles Download PDF

Info

Publication number
US20100233270A1
US20100233270A1 US12/724,395 US72439510A US2010233270A1 US 20100233270 A1 US20100233270 A1 US 20100233270A1 US 72439510 A US72439510 A US 72439510A US 2010233270 A1 US2010233270 A1 US 2010233270A1
Authority
US
United States
Prior art keywords
oligonucleotide
target
gene
nanoparticle
skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/724,395
Inventor
Chad A. Mirkin
Amy S. Paller
David A. Giljohann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern University
Original Assignee
Northwestern University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/684,836 external-priority patent/US20100184844A1/en
Application filed by Northwestern University filed Critical Northwestern University
Priority to US12/724,395 priority Critical patent/US20100233270A1/en
Assigned to NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT reassignment NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: NORTHWESTERN UNIVERSITY
Assigned to NORTHWESTERN UNIVERSITY reassignment NORTHWESTERN UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GILJOHANN, DAVID A., MIRKIN, CHAD A., PALLER, AMY S.
Publication of US20100233270A1 publication Critical patent/US20100233270A1/en
Priority to US13/721,366 priority patent/US10098958B2/en
Priority to US16/160,196 priority patent/US11633503B2/en
Assigned to NATIONAL INSTITUTES OF HEALTH - DIRECTOR DEITR reassignment NATIONAL INSTITUTES OF HEALTH - DIRECTOR DEITR CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: NORTHWESTERN UNIVERSITY
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/52Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an inorganic compound, e.g. an inorganic ion that is complexed with the active ingredient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5094Microcapsules containing magnetic carrier material, e.g. ferrite for drug targeting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions

Definitions

  • the present invention is directed to oligonucleotide-modified nanoparticle (ON-NP) conjugates and methods of inhibiting bacterial protein production.
  • the invention also relates to compositions and methods of delivering oligonucleotide-functionalized nanoparticle.
  • siRNAs hold great promise as potential therapeutic tools and are currently in clinical trials, targeting a wide range of clinical problems including cancer.
  • Gene silencing is much more cost-effective, and leads to down-regulation of protein expression and function with greater potential specificity than small molecule inhibitors.
  • siRNA treatment may target a single point mutation in a gene, while small molecule therapy to date does not precisely distinguish between mutant and normal gene products.
  • each melanoma Given the ability to determine specific gene alterations in each melanoma through identification of hotspot mutations, direct gene sequencing, or assays for gene amplification, each melanoma can be assigned a specific genetic signature.
  • the siRNA may be taken up by many cells, only cells with a mutated gene or activated signaling protein are affected by targeted gene therapy, thereby allowing normalization of pathway signaling in melanomas without adversely affecting normal cells.
  • nucleic acids As with delivery of many proteins, degradation of nucleic acids and poor bioavailability from the gastrointestinal tract are major hurdles to the oral delivery of siRNAs. Even with intravenous delivery, conventional siRNA is rapidly degraded by serum factors and does not reach its targets. Topical application of nucleic acids offers great therapeutic advantages, both for suppressing genes in lesional skin (for example and without limitation, to treat metastases in skin) and for transdermal delivery to internal targets. Application is painless and easily controlled, and skin is highly accessible. The effective physical barrier in the epidermis is localized mainly to the outermost area of epidermis, the stratum corneum, and to a lesser extent the deeper epidermis.
  • This epidermal barrier protects against extensive water loss (inside-out) and against the entry of environmental substances (outside-in), including nucleic acids.
  • Mechanical approaches such as ultrasound, laser and injection, have been used to facilitate penetration through the mouse stratum corneum and drive siRNA into skin, but require specialized equipment, limit the area of delivery, and potentially harm the skin.
  • Direct targeting of a skin disorder is an ideal model for gene suppressive therapy.
  • the commercially available materials to suppress genes in vitro have been marginally successful, at best, for delivering genetic material into primary cultured cells, such as keratinocytes (KCs) and melanocytes.
  • KCs keratinocytes
  • melanocytes keratinocytes
  • the outer layers of skin function as an anatomic barrier that traditionally prevents the penetration of nucleic acids and proteins into skin and, from dermis, into the circulation [Prausnitz et al., Nat Biotechnol 26: 1261-1268 (2008)].
  • traversing this layer to transfer sufficient amounts of oligonucleotides has been a challenge.
  • the skin is the largest organ of the body and contains three layers: the epidermis, dermis, and subcutaneous tissue.
  • the epidermis is the outer layer of skin.
  • the thickness of the epidermis varies in different types of skin. It is the thinnest on the eyelids at 0.05 mm and the thickest on the palms and soles at 1.5 mm.
  • the epidermis contains 4 major layers of progressively more differentiated cells. From bottom to top the layers are named:
  • the bottom layer the stratum basale
  • the cells divide and push already-formed cells into higher layers. As the cells move into the higher layers, they flatten, become more mature and eventually “die” and are shed.
  • the top layer of the epidermis, the stratum corneum is made of flattened skin cells that are shed; it takes about 4 weeks from cells of the stratum basale to reach the stratum corneum and subsequently be shed.
  • compositions and methods for delivering an oligonucleotide-functionalized nanoparticle are provided.
  • the present disclosure provides a dermal composition comprising an oligonucleotide-functionalized nanoparticle (ON-NP) and a dermal vehicle.
  • a dermal composition comprising an oligonucleotide-functionalized nanoparticle (ON-NP) and a dermal vehicle.
  • Also provided by the present disclosure is a method of dermal delivery of an oligonucleotide-functionalized nanoparticle comprising the step of administering a composition comprising the oligonucleotide-functionalized nanoparticle and a dermal vehicle to the skin of a patient in need thereof.
  • the delivery of the oligonucleotide-functionalized nanoparticle is transdermal. In another aspect, the delivery of the oligonucleotide-functionalized nanoparticle is topical. In another aspect, the delivery of the oligonucleotide-functionalized nanoparticle is to the epidermis and dermis after topical application.
  • the dermal vehicle comprises an ointment.
  • the ointment is Aquaphor.
  • a method of regulating gene expression comprising the step of administering a therapeutically effective amount of a composition comprising an oligonucleotide-functionalized nanoparticle to skin under conditions wherein the oligonucleotide-functionalized nanoparticle hybridizes to a target and regulates gene expression.
  • the target is a polynucleotide.
  • the polynucleotide is RNA.
  • the target is a polypeptide.
  • the administration of the composition ameliorates a skin disorder.
  • the skin disorder is selected from the group consisting of cancer, a genetic disorder, aging, inflammation, infection, and cosmetic disfigurement.
  • the cancer is selected from the group consisting of squamous cell carcinoma, basal cell carcinoma, breast cancer, and melanoma.
  • the target is a gene product expressed by a gene selected from the group consisting of Ras, I ⁇ B ⁇ , hedgehog, B-Raf, Akt and cyclin D.
  • the genetic disorder is selected from the group consisting of epideimolysis bullosa simplex, bullous ichthyosis, pachyonychia congenita, Costello syndrome and tuberous sclerosis.
  • the target is a gene product that comprises a mutation, said gene product being expressed by a gene selected from the group consisting of K5, K14, K1, K10, H-Ras and m-Tor.
  • the aging disorder is selected from the group consisting of UV-damage and progeria.
  • the target is a gene product expressed by a gene selected from the group consisting of matrix metalloproteinase-1 and progerin.
  • the inflammation is due to psoriasis.
  • the target is interleukin-23.
  • the viral infection results in warts.
  • the target is E6/E7.
  • the cosmetic disfigurement is selected from the group consisting of seborrheic keratoses, epidermal nevi and pigmented nevi.
  • the target is a gene product comprising a mutation, said gene product being expressed by a gene selected from the group consisting of FGFR3, K10 and B-Raf.
  • FIG. 1 depicts a schematic of oligonucleotide gold nanoparticle (Au-NP) conjugate blocking promoter complex binding (A) and full mRNA transcript formation (B) forming.
  • Au-NP oligonucleotide gold nanoparticle conjugate blocking promoter complex binding
  • B full mRNA transcript formation
  • FIG. 2 depicts electron microscopy images of E. coli following conjugate treatment.
  • FIG. 3 depicts a summary of results for the inhibition of bacterial luciferase expression using nanoparticles.
  • Nonsense denotes a sequence with no complementary region on the E. coli genome or transfected plasmid.
  • Antisense denotes a sequence targeting luciferase. Relative luciferase activity is shown as percentages within the bars, normalized to renilla expression.
  • FIG. 4 depicts the duplex invasion scheme.
  • FIG. 5 depicts penetration of approximately 25 nM siRNA-gold nanoparticles into the epidermis, dermis, and subcutaneous tissues within 24 hours after application.
  • B) Adipocytes (arrows) and fibroblasts of the underlying mesenchymal tissue (+) also take up fluorescent particles almost universally. Bar 20 ⁇ m.
  • FIG. 6 depicts GFP knockdown in C57BL/6-Tg(UBC-GFP)30 Scha/J mice after 4 weeks of treatment with siRNA-Au NPs.
  • RNA-NPs siRNA duplexes that are densely packed on the surface of nanoparticles
  • These conjugates exhibit a number of unique properties that include but are not limited to: Retention of the oligonucleotide shell under biological conditions, resulting in a single agent capable of simultaneous transfection and gene regulation.
  • Oligonucleotide-NPs ON-NPs
  • these structures do not serve solely as vehicles for nucleic acid delivery, but remain conjugated as structures inside cells.
  • ON-NPs Fluorescence spectroscopy studies reveal that the thiolated oligonucleotides remain bound to the NPs after cellular internalization, allowing one to take advantage of the composite properties of the nanomaterials.
  • Another property exhibited by ON-NPs is their extraordinary stability in physiological environments. Unlike other nanomaterials and gene transfection reagents, oligonucleotide-NPs can be easily manipulated under biologically relevant conditions. These include high and low salt concentrations, extremes in pH, and fluctuations in temperature.
  • An additional property of ON-NPs is their resistance to nuclease degradation. Since endo- and exo-nucleases are present in biological fluids and function to destroy foreign genetic material, methods for increasing the enzyme stability of nucleic acids are of paramount importance.
  • oligonucleotide-NPs While previous strategies to increase the enzyme stability of nucleic acids have relied on chemical modification, the enhanced resistance of oligonucleotide-NPs is unique in that it is based on dense functionalization of a nanoparticle surface. This environment creates a higher local dielectric within the vicinity of the nanoparticle surface, thus providing for both high affinity target recognition, and resistance to enzymatic degradation.
  • a further property exhibited by ON-NPs is their ability to enter a variety of cell types, including “hard to transfect” primary cells without the use of auxiliary reagents.
  • Another property of ON-NPs is their lack of apparent toxicity.
  • These nanoconjugates have unique size, charge, and surface functionality, with properties derived from the combination of the oligonucleotide and the NP. Preliminary toxicology screening for these unique materials has shown no acute toxicity at high doses in animal models.
  • ON-NPs topical application of ON-NPs is a novel means to deliver selective gene suppression to lesional skin, lymph nodes, or into the circulation for transdermal delivery to internal targets.
  • oligonucleotide-NP concentration is maximized at the sites of maximal tumor load, while minimizing potential side effects.
  • the present disclosure provides an antibiotic composition and methods of its use.
  • the antibiotic composition comprises a nanoparticle modified to include an oligonucleotide, wherein the oligonucleotide is sufficiently complementary to a target non-coding sequence of a prokaryotic gene such that the oligonucleotide will hybridize to the target sequence under conditions that allow hybridization.
  • the antibiotic composition inhibits growth of the target prokaryotic cell.
  • hybridization inhibits expression of a functional protein encoded by the targeted sequence.
  • transcription, translation or both of a prokaryotic protein encoded by the targeted sequence is inhibited.
  • the disclosure further provides a method of utilizing the antibiotic composition disclosed herein for inhibiting production of a target prokaryotic gene product in a cell comprising the step of contacting the cell with the antibiotic composition, wherein the oligonucleotide associated with the nanoparticle of the composition is sufficiently complementary to a target non-coding sequence of a bacterial gene under conditions that allow hybridization, and wherein hybridization results in inhibition of a functional prokaryotic gene product encoded by the target gene.
  • the oligonucleotide associated with the nanoparticle of the composition is sufficiently complementary to a target non-coding sequence of a bacterial gene under conditions that allow hybridization, and wherein hybridization results in inhibition of a functional prokaryotic gene product encoded by the target gene.
  • Hybridization of an oligonucleotide-functionalized nanoparticle and a target prokaryotic sequence forms a “complex” as defined herein.
  • a “complex” is either a double-strand (or duplex) complex or a triple-strand (or triplex) complex. It is contemplated herein that a triplex complex and a duplex complex inhibit translation or transcription of a target bacterial prokaryotic acid.
  • non-coding sequence has a meaning accepted in the art.
  • non-coding sequence describes a polynucleotide sequence that does not contain codons for translation a protein encoded by the gene.
  • a non-coding sequence is chromosomal.
  • a non-coding sequence is extra-chromosomal.
  • a non-coding sequence is complementary to all or part of the coding sequence of the gene.
  • Non-coding sequences include regulatory elements such as promoters, enhancers, and silencers of expression. Examples of non-coding sequences are 5′ non-coding sequences and 3′ non-coding sequences.
  • a “5′ non-coding sequence” refers to a polynucleotide sequence located 5′ (upstream) to the coding sequence.
  • the 5′ non-coding sequence can be present in the fully processed mRNA upstream of the initiation codon and may affect processing of the primary transcript to mRNA, mRNA stability or translation efficiency.
  • a “3′ non-coding sequence” refers to nucleotide sequences located 3′ (downstream) to a coding sequence and includes polyadenylation signal sequences and other sequences encoding signals capable of affecting mRNA processing or gene expression.
  • the polyadenylation signal is usually characterized by its ability to affect the addition of polyadenylic acid sequences to the 3′ end of the mRNA precursor.
  • a non-coding sequence comprises a promoter.
  • a “promoter” is a polynucleotide sequence that directs the transcription of a structural gene. Typically, a promoter is located in the 5′ non-coding sequence of a gene, proximal to the transcriptional start site of a structural gene. Sequence elements within promoters that function in the initiation of transcription are often characterized by consensus nucleotide sequences. These promoter elements include RNA polymerase binding sites, TATA sequences, CAAT sequences, differentiation-specific elements [DSEs; McGehee et al., Mol. Endocrinol.
  • CREs cyclic AMP response elements
  • SREs serum response elements
  • GREs glucocorticoid response elements
  • binding sites for other transcription factors such as CRE/ATF [O′Reilly et al., J. Biol. Chem. 267:19938 (1992)], AP2 [Ye et al., J. Biol. Chem. 269:25728 (1994)], SP1, cAMP response element binding protein [CREB; Loeken, Gene Expr.
  • a promoter is an inducible promoter, then the rate of transcription increases in response to an inducing agent. In contrast, the rate of transcription is not regulated by an inducing agent if the promoter is a constitutive promoter. Repressible promoters are also known.
  • a “core promoter” contains essential nucleotide sequences for promoter function, including the TATA box and start of transcription. By this definition, a core promoter may or may not have detectable activity in the absence of specific sequences that may enhance the activity or confer tissue specific activity.
  • a non-coding sequence comprises a regulatory element.
  • a “regulatory element” is a polynucleotide sequence that modulates the activity of a core promoter.
  • a regulatory element may contain a polynucleotide sequence that binds with cellular factors enabling transcription exclusively or preferentially in particular prokaryotes.
  • a non-coding sequence comprises an enhancer.
  • An “enhancer” is a type of regulatory element that can increase the efficiency of transcription, regardless of the distance or orientation of the enhancer relative to the start site of transcription.
  • polynucleotide and “oligonucleotide” are used interchangeably herein and have meanings accepted in the art.
  • Hybridization means an interaction between two or three strands of nucleic acids by hydrogen bonds in accordance with the rules of Watson-Crick DNA complementarity, Hoogstein binding, or other sequence-specific binding known in the art. Hybridization can be performed under different stringency conditions known in the art.
  • oligonucleotide-functionalized nanoparticle and “nanoconjugate” are used interchangeably herein.
  • T m the melting temperature
  • the term “dermal” means of or relating to the skin, and is used interchangeably herein with “cutaneous.” As used herein, “transdermal” means across the skin to the subcutaneous tissues and, often, into the systemic vascular or lymphatic circulation.
  • the term “topical” as used herein means pertaining to the skin. Thus, when a composition is applied topically, it is applied to the skin. It will be understood by those of ordinary skill in the art, however, that the term “topical” does not necessarily refer to where the composition will remain, but rather how it is applied.
  • compositions and methods of the present disclosure are, in various embodiments, contemplated to target different depths of skin depending on, for example and without limitation, a particular target of interest.
  • the compositions of the present disclosure target the epidermis.
  • the compositions of the present disclosure target the dermis.
  • the compositions of the present disclosure travel transdermally and reach subcutaneous tissue, the systemic vasculature or lymphatic circulation.
  • Factors that affect the depth of penetration of the compositions and methods of the present disclosure include, but are not limited to, the size of the nanoparticle and the density of functionalized oligonucleotides on the surface of the nanoparticle. These aspects are described in further detail herein below.
  • the present disclosure contemplates that the oligonucleotide-functionalized nanoparticle itself facilitates the depth to which the compositions of the present disclosure can travel.
  • the vehicle in the composition facilitates the depth to which the compositions of the present disclosure can travel.
  • the combination of the vehicle and oligonucleotide-functionalized nanoparticle together facilitate the depth to which the compositions of the present disclosure can travel.
  • Melanomas represent a heterogeneous group of tumors, with different patterns of oncogenic mutation and genomic amplification. Progression from a precursor lesion, such as a pigmented nevus, to melanoma is thought to follow a stepwise pathway with genetic change leading to activation of signaling pathways. Most common is activation of the RAS/RAF/MEK/ERK pathway (approximately 60% of melanomas have activating BRAF mutations and 25% NRAS mutations). Sun-exposed sites most commonly show BRAF mutations, whereas the less common mucosal or acral sites rarely show BRAF mutations.
  • BRAF mutations are frequently found in combination with either PTEN loss/inactivation ( ⁇ 30% of cell lines and at least 58% of melanoma metastases)(Birck et al., 2000) or activating AKT3 mutations (43-50% of melanomas) [Davies et al., Br J Cancer 99: 1265-1268 (2008); Lin et al., Cancer Res 68: 664-673 (2008); Stahl et al., Cancer Res 64: 7002-7010 (2004); Tsao et al., J Invest Dermatol 122: 337-341 (2004)].
  • the present disclosure provides antibiotic compositions comprising an oligonucleotide-modified nanoparticle and a vehicle, wherein the oligonucleotide is sufficiently complementary to a target non-coding sequence of a prokaryotic gene that it will hybridize to the target sequence under conditions that allow hybridization.
  • the antibiotic compositions are formulated for administration in a therapeutically effective amount to a mammal in need thereof for the treatment of a prokaryotic cell infection.
  • the mammal is a human.
  • hybridization of the oligonucleotide-modified nanoparticle to a prokaryotic gene inhibits (or prevents) the growth of a prokaryotic cell.
  • the hybridization of the oligonucleotide-modified nanoparticle to a prokaryotic gene is contemplated to result in a bacteriostatic or bactericidal effect in aspects wherein the prokaryote is bacteria.
  • the growth of the prokaryotic cell is inhibited by about 5% compared to the growth of the prokaryotic cell in the absence of contact with the oligonucleotide-modified nanoparticle.
  • the growth of the prokaryotic cell is inhibited by about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 2-fold, about 3-fold, about 4-fold, about 5-fold, about 6-fold, about 7-fold, about 8-fold, about 9-fold, about 10-fold, about 20-fold, about 50-fold or more compared to the growth of the prokaryotic cell in the absence of contact with the oligonucleotide-modified nanoparticle.
  • the growth of the prokaryotic cell is inhibited by about 5% compared to the growth of the prokaryotic cell in the absence of contact with the oligonucleotide-modified nanoparticle. In various aspects, the growth of the prokaryotic cell is inhibited by about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 2-fold, about 3-fold, about 4-fold, about 5-fold, about 6-fold, about 7-fold, about 8-fold, about 9-fold, about 10-fold, about 20-fold, about 50-fold or more compared to the growth of the prokaryotic cell in the absence of contact with the oligonucleotide-modified nanoparticle.
  • the level of inhibition of prokaryotic cell growth can be determined using routine techniques. For example, direct quantitation of the number of prokaryotic cells is performed by obtaining a set of samples (e.g., a bodily fluid in the case of in vivo inhibition or a liquid culture sample in the case of in vitro inhibition) wherein the samples are collected over a period of time, culturing the samples on solid growth-permissive media and counting the resultant number of prokaryotic cells that are able to grow. The number of prokaryotic cells at a later time point versus the number of prokaryotic cells at an earlier time point yields the percent inhibition of prokaryotic cell growth.
  • a set of samples e.g., a bodily fluid in the case of in vivo inhibition or a liquid culture sample in the case of in vitro inhibition
  • hybridization of the oligonucleotide-modified nanoparticle to a prokaryotic gene inhibits expression of a functional prokaryotic protein encoded by the prokaryotic gene.
  • a “functional prokaryotic protein” as used herein refers to a full length wild type protein encoded by a prokaryotic gene.
  • the expression of the functional prokaryotic protein is inhibited by about 5% compared to a cell that is not contacted with the oligonucleotide-modified nanoparticle.
  • the expression of the functional prokaryotic protein is inhibited by about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 2-fold, about 3-fold, about 4-fold, about 5-fold, about 6-fold, about 7-fold, about 8-fold, about 9-fold, about 10-fold, about 20-fold, about 50-fold or more compared to a cell that is not contacted with the oligonucleotide-modified nanoparticle.
  • methods provided embrace those which results in any degree of inhibition of expression of a target gene product.
  • the hybridization of the oligonucleotide-modified nanoparticle to a prokaryotic gene inhibits expression of a functional protein essential for prokaryotic cell growth.
  • the expression of the functional prokaryotic protein essential for prokaryotic cell growth is inhibited by about 5% compared to a cell that is not contacted with the oligonucleotide-modified nanoparticle.
  • the expression of the functional prokaryotic protein essential for prokaryotic cell growth is inhibited by about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 2-fold, about 3-fold, about 4-fold, about 5-fold, about 6-fold, about 7-fold, about 8-fold, about 9-fold, about 10-fold, about 20-fold, about 50-fold or more compared to a cell that is not contacted with the oligonucleotide-modified nanoparticle.
  • Prokaryotic proteins essential for growth include, but are not limited to, a gram-negative gene product, a gram-positive gene product, cell cycle gene product, a gene product involved in DNA replication, a cell division gene product, a gene product involved in protein synthesis, a bacterial gyrase, and an acyl carrier gene product. These classes are discussed in detail herein below.
  • the present disclosure also contemplates an antibiotic composition wherein hybridization to a target non-coding sequence of a prokaryotic gene results in expression of a protein encoded by the prokaryotic gene with altered activity.
  • the activity of the protein encoded by the prokaryotic gene is reduced about 5% compared to the activity of the protein in a prokaryotic cell that is not contacted with the oligonucleotide-modified nanoparticle.
  • activity of the prokaryotic protein is inhibited by about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 96%, about 97%, about 98% about 99% or about 100% compared to the activity of the protein in a prokaryotic cell that is not contacted with the oligonucleotide-modified nanoparticle.
  • the activity of the protein encoded by the prokaryotic gene is increased about 5% compared to the activity of the protein in a prokaryotic cell that is not contacted with the oligonucleotide-modified nanoparticle.
  • the expression of the prokaryotic protein is increased by about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 2-fold, about 3-fold, about 4-fold, about 5-fold, about 6-fold, about 7-fold, about 8-fold, about 9-fold, about 10-fold, about 20-fold, about 50-fold or more compared to the activity of the protein in a prokaryotic cell that is not contacted with the oligonucleotide-modified nanoparticle.
  • the activity of the protein in a prokaryotic cell is increased or decreased as a function of several parameters including but not limited to the sequence of the oligonucleotide attached to the nanoparticle, the prokaryotic gene (and the protein encoded by the gene) that is targeted, and the size of the nanoparticle.
  • the antibiotic composition of the present disclosure inhibits transcription of the prokaryotic gene. In some embodiments, it is contemplated that the antibiotic composition of the present disclosure inhibits translation of the prokaryotic gene.
  • the antibiotic composition hybridizes to a target non-coding sequence of a prokaryotic gene that confers a resistance to an antibiotic.
  • a target non-coding sequence of a prokaryotic gene that confers a resistance to an antibiotic are known to those of ordinary skill in the art and are discussed, e.g., in Liu et al., Nucleic Acids Research 37: D443-D447, 2009 (incorporated herein by reference in its entirety).
  • hybridization of the antibiotic composition to a target non-coding sequence of a prokaryotic gene that confers a resistance to an antibiotic results in increasing the susceptibility of the prokaryote to an antibiotic.
  • the susceptibility of the prokaryote to the antibiotic is increased by about 5% compared to the susceptibility of the prokaryote that was not contacted with the antibiotic composition. In various aspects, the susceptibility of the prokaryote to the antibiotic is increased by about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 2-fold, about 3-fold, about 4-fold, about 5-fold, about 6-fold, about 7-fold, about 8-fold, about 9-fold, about 10-fold, about 20-fold, about 50-fold or more compared to the susceptibility of the prokaryote that was not contacted with the antibiotic composition.
  • Relative susceptibility to an antibiotic can be determined by those of ordinary skill in the art using routine techniques as described herein.
  • the antibiotic composition comprising the oligonucleotide-modified nanoparticle conjugates are formulated for administration in combination with an antibiotic agent, each in a therapeutically effective amount.
  • antibiotic agent means any of a group of chemical substances having the capacity to inhibit the growth of, or to kill bacteria, and other microorganisms, used chiefly in the treatment of infectious diseases. See, e.g., U.S. Pat. No. 7,638,557 (incorporated by reference herein in its entirety).
  • antibiotic agents include, but are not limited to, Penicillin G; Methicillin; Nafcillin; Oxacillin; Cloxacillin; Dicloxacillin; Ampicillin; Amoxicillin; Ticarcillin; Carbenicillin; Mezlocillin; Azlocillin; Piperacillin; Imipenem; Aztreonam; Cephalothin; Cefaclor; Cefoxitin; Cefuroxime; Cefonicid; Cefmetazole; Cefotetan; Cefprozil; Loracarbef; Cefetamet; Cefoperazone; Cefotaxime; Ceftizoxime; Ceftriaxone; Ceftazidime; Cefepime; Cefixime; Cefpodoxime; Cefsulodin; Fleroxacin; Nalidixic acid; Norfloxacin; Ciprofloxacin; Ofloxacin; Enoxacin; Lomefloxacin; Cinoxacin; Doxycycline; Min
  • Anti-bacterial antibiotic agents include, but are not limited to, penicillins, cephalosporins, carbacephems, cephamycins, carbapenems, monobactams, aminoglycosides, glycopeptides, quinolones, tetracyclines, macrolides, and fluoroquinolones.
  • terapéuticaally effective amount refers to an amount of a composition sufficient to treat, ameliorate, or prevent the identified disease or condition, or to exhibit a detectable therapeutic, prophylactic, or inhibitory effect.
  • the effect can be detected by, for example, an improvement in clinical condition, reduction in symptoms, or by an assay described herein.
  • the precise effective amount for a subject will depend upon the subject's body weight, size, and health; the nature and extent of the condition; and the antibiotic composition or combination of compositions selected for administration. Therapeutically effective amounts for a given situation can be determined by routine experimentation that is within the skill and judgment of the clinician.
  • compositions described herein may be formulated in pharmaceutical compositions with a pharmaceutically acceptable excipient, carrier, or diluent.
  • the compound or composition can be administered by any route that permits treatment of the prokaryotic infection or condition.
  • compositions of the present disclosure that comprise an ON-NP and a vehicle are provided that are useful for topical application.
  • An additional route of administration is oral administration.
  • the compound or composition may be delivered to a patient using any standard route of administration, including parenterally, such as intravenously, intraperitoneally, intrapulmonary, subcutaneously or intramuscularly, intrathecally, transdermally, rectally, orally, nasally or by inhalation.
  • Slow release formulations may also be prepared from the agents described herein in order to achieve a controlled release of the active agent in contact with the body fluids in the gastro intestinal tract, and to provide a substantial constant and effective level of the active agent in the blood plasma.
  • the crystal form may be embedded for this purpose in a polymer matrix of a biological degradable polymer, a water-soluble polymer or a mixture of both, and optionally suitable surfactants. Embedding can mean in this context the incorporation of micro-particles in a matrix of polymers. Controlled release formulations are also obtained through encapsulation of dispersed micro-particles or emulsified micro-droplets via known dispersion or emulsion coating technologies.
  • Administration may take the form of single dose administration, or the compound of the embodiments can be administered over a period of time, either in divided doses or in a continuous-release formulation or administration method (e.g., a pump).
  • a continuous-release formulation or administration method e.g., a pump
  • the compounds of the embodiments are administered to the subject, the amounts of compound administered and the route of administration chosen should be selected to permit efficacious treatment of the disease condition.
  • the pharmaceutical compositions may be formulated with pharmaceutically acceptable excipients such as carriers, solvents, stabilizers, adjuvants, diluents, etc., depending upon the particular mode of administration and dosage form.
  • the pharmaceutical compositions should generally be formulated to achieve a physiologically compatible pH, and may range from a pH of about 3 to a pH of about 11, preferably about pH 3 to about pH 7, depending on the formulation and route of administration. In alternative embodiments, it may be preferred that the pH is adjusted to a range from about pH 5.0 to about pH 8. More particularly, the pharmaceutical compositions comprises in various aspects a therapeutically or prophylactically effective amount of at least one composition as described herein, together with one or more pharmaceutically acceptable excipients. As described herein, the pharmaceutical compositions may optionally comprise a combination of the compounds described herein.
  • pharmaceutically acceptable excipient refers to an excipient for administration of a pharmaceutical agent, such as the compounds described herein.
  • the term refers to any pharmaceutical excipient that may be administered without undue toxicity.
  • compositions are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition. Accordingly, there exists a wide variety of suitable formulations of pharmaceutical compositions (see, e.g., Remington's Pharmaceutical Sciences).
  • Suitable excipients may be carrier molecules that include large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles.
  • Other exemplary excipients include antioxidants (e.g., ascorbic acid), chelating agents (e.g., EDTA), carbohydrates (e.g., dextrin, hydroxyalkylcellulose, and/or hydroxyalkylmethylcellulose), stearic acid, liquids (e.g., oils, water, saline, glycerol and/or ethanol) wetting or emulsifying agents, pH buffering substances, and the like.
  • Liposomes are also included within the definition of pharmaceutically acceptable excipients.
  • compositions may be in the form of a sterile injectable preparation, such as a sterile injectable aqueous emulsion or oleaginous suspension.
  • a sterile injectable preparation such as a sterile injectable aqueous emulsion or oleaginous suspension.
  • This emulsion or suspension may be formulated by a person of ordinary skill in the art using suitable dispersing or wetting agents and suspending agents.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, such as a solution in 1,2-propane-diol.
  • the sterile injectable preparation may also be prepared as a lyophilized powder.
  • acceptable solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution.
  • sterile fixed oils may be employed as a solvent or suspending medium.
  • any bland fixed oil may be employed including synthetic mono- or diglycerides.
  • fatty acids e.g., oleic acid
  • the disclosure provides methods of targeting specific nucleic acids. Any type of prokaryotic nucleic acid may be targeted, and the methods may be used, e.g., for inhibition of production of a functional prokaryotic gene product. Examples of nucleic acids that can be targeted by the methods of the invention include but are not limited to genes and prokaryotic RNA or DNA.
  • the nucleic acid is RNA transcribed from genomic DNA.
  • the degree of inhibition is determined in vivo from, for example a body fluid sample of an individual in whom the target prokaryote is found and for which inhibition of a prokaryotic protein is desirable, or by imaging techniques in an individual in whom the target prokaryote is found and for which inhibition of a prokaryotic protein is desirable, well known in the art.
  • the degree of inhibition is determined in vivo by quantitating the amount of a prokaryote that remains in cell culture or an organism compared to the amount of a prokaryote that was in cell culture or an organism at an earlier time point.
  • the oligonucleotide-modified nanoparticle conjugate comprises the mutation and formation of a triplex complex initiates a recombination event between the oligonucleotide attached to the nanoparticle and a strand of the prokaryotic genome.
  • the oligonucleotide of the present disclosure has a T m , when hybridized with the target polynucleotide sequence, of at least about 45° C., typically between about 50° to 60° C., although the T m may be higher, e.g., 65° C.
  • the target is a prokaryotic polynucleotide
  • the selection of prokaryotic target polynucleotide sequence, and prokaryotic mRNA target polynucleotide sequences are considered herein below.
  • the oligonucleotides of the invention are designed to hybridize to a target oligonucleotide sequence under physiological conditions, with a T m substantially greater than 37° C., e.g., at least 45° C. and, in some aspects, approximately 60° C.-80° C.
  • the oligonucleotide is designed to have high binding affinity to the nucleic acid and, in one aspect, is 100% complementary to the target oligonucleotide sequence, or it may include mismatches.
  • the oligonucleotide is greater than 95% complementary to the target oligonucleotide sequence, greater than 90% complementary to the target oligonucleotide sequence, greater than 80% complementary to the target oligonucleotide sequence, greater than 75% complementary to the target oligonucleotide sequence, greater than 70% complementary to the target oligonucleotide sequence, greater than 65% complementary to the target oligonucleotide sequence, greater than 60% complementary to the target oligonucleotide sequence, greater than 55% complementary to the target oligonucleotide sequence, or greater than 50% complementary to the target oligonucleotide sequence.
  • Targets can be identified by obtaining , e.g., the sequence of a target nucleic acid of interest (e.g. from GenBank) and aligning it with other nucleic acid sequences using, for example, the MacVector 6.0 program, a ClustalW algorithm, the BLOSUM 30 matrix, and default parameters, which include an open gap penalty of 10 and an extended gap penalty of 5.0 for nucleic acid alignments.
  • a target nucleic acid of interest e.g. from GenBank
  • any essential prokaryotic gene is contemplated as a target gene using the methods of the present disclosure.
  • an essential prokaryotic gene for any prokaryotic species can be determined using a variety of methods including those described by Gerdes for E. coli [Gerdes et al., J Bacteriol. 185(19): 5673-84, 2003]. Many essential genes are conserved across the bacterial kingdom thereby providing additional guidance in target selection.
  • Target gene sequences can be identified using readily available bioinformatics resources such as those maintained by the National Center for Biotechnology Information (NCBI). Complete reference genomic sequences for a large number of microbial species can be obtained and sequences for essential bacterial genes identified.
  • Bacterial strains are also in one aspect obtained from the American Type Culture Collection (ATCC). Simple cell culture methods, using the appropriate culture medium and conditions for any given species, can be established to determine the antibacterial activity of oligonucleotide modified nanoparticle conjugates.
  • ATCC American Type Culture Collection
  • Oligonucleotide modified nanoparticle conjugates showing optimal activity are then tested in animal models, or veterinary animals, prior to use for treating human infection.
  • the oligonucleotides of the present disclosure are designed to hybridize to a sequence of a prokaryotic nucleic acid that encodes an essential prokaryotic gene.
  • exemplary genes include but are not limited to those required for cell division, cell cycle proteins, or genes required for lipid biosynthesis or nucleic acid replication. Any essential bacterial gene is a target once a gene's essentiality is determined.
  • One approach to determining which genes in an organism are essential is to use genetic footprinting techniques as described [Gerdes et al., J Bacterial. 185(19): 5673-84, 2003, incorporated by reference herein in its entirety].
  • 620 E. coli genes were identified as essential and 3,126 genes as dispensable for growth under culture conditions for robust aerobic growth. Evolutionary context analysis demonstrated that a significant number of essential E. coli genes are preserved throughout the bacterial kingdom, especially the subset of genes for key cellular processes such as DNA replication, cell division and protein synthesis.
  • the present disclosure provides an oligonucleotide that is a nucleic acid sequence effective to stably and specifically bind to a target sequence which encodes an essential bacterial protein including the following: (1) a sequence specific to a particular strain of a given species of bacteria, such as a strain of E. coli associated with food poisoning, e.g., O157:H7 (see Table 1 of U.S. Patent Application No.
  • the target for modulation of gene expression using the methods of the present disclosure comprises a prokaryotic nucleic acid expressed during active prokaryotic growth or replication, such as an mRNA sequence transcribed from a gene of the cell division and cell wall synthesis (division cell wall or dcw) gene cluster, including, but not limited to, zipA, sulA, secA, dicA, dicB, dicC, dicF, ftsA, ftsl, ftsN, ftsK, ftsL, ftsQ, ftsW, ftsZ, murC, murD, murE, murF, murg, minC, minD, minE, mraY, mraW, mraZ, seqA and ddlB.
  • a prokaryotic nucleic acid expressed during active prokaryotic growth or replication such as an mRNA sequence transcribed from a gene of the cell division and cell wall synthesis
  • Cell division in E. coli involves coordinated invagination of all 3 layers of the cell envelope (cytoplasmic membrane, rigid peptidoglycan layer and outer membrane). Constriction of the septum severs the cell into two compartments and segregates the replicated DNA. At least 9 essential gene products participate in this process: ftsZ, ftsA, ftsQ, ftsL, ftsI, ftsN, ftsK, ftsW and zipA [Hale et al., J Bacteriol. 181(1): 167-76, 1999].
  • Contemplated protein targets are the three discussed below, and in particular, the GyrA and AcpP targets described below.
  • FtsZ one of the earliest essential cell division genes in E. coli, is a soluble, tubulin-like GTPase that forms a membrane-associated ring at the division site of bacterial cells. The ring is thought to drive cell constriction, and appears to affect cell wall invagination. FtsZ binds directly to a novel integral inner membrane protein in E. coli called zipA, an essential component of the septal ring structure that mediates cell division in E. coli [Lutkenhaus et al., Annu Rev Biochem. 66: 93-116, 1997].
  • GyrA refers to subunit A of the bacterial gyrase enzyme, and the gene therefore.
  • Bacterial gyrase is one of the bacterial DNA topoisomerases that control the level of supercoiling of DNA in cells and is required for DNA replication.
  • AcpP encodes acyl carrier protein, an essential cofactor in lipid biosynthesis.
  • the fatty acid biosynthetic pathway requires that the heat stable cofactor acyl carrier protein binds intermediates in the pathway.
  • Table 1 of U.S. Patent Application No. 20080194463 provides exemplary bacterial sequences which contain a target sequence for each of a number of important pathogenic bacteria.
  • the gene sequences are derived from the GenBank Reference full genome sequence for each bacterial strain.
  • the oligonucleotides of the invention are designed to hybridize to a sequence encoding a bacterial 16S rRNA nucleic acid sequence under physiological conditions, with a T m substantially greater than 37° C., e.g., at least 45° C. and preferably 60° C.-80° C.
  • the oligonucleotide has a sequence that is effective to stably and specifically bind to a target 16S rRNA egne sequence which has one or more of the following characteristics: (1) a sequence found in a double stranded sequence of a 16s rRNA, e.g., the peptidyl transferase center, the alpha-sarcin loop and the mRNA binding sequence of the 16S rRNA sequence; (2) a sequence found in a single stranded sequence of a bacterial 16s rRNA; (3) a sequence specific to a particular strain of a given species of bacteria, i.e., a strain of E.
  • a target 16S rRNA egne sequence which has one or more of the following characteristics: (1) a sequence found in a double stranded sequence of a 16s rRNA, e.g., the peptidyl transferase center, the alpha-sarcin loop and the mRNA binding sequence of the 16S rRNA sequence;
  • coli associated with food poisoning (4) a sequence specific to a particular species of bacteria; (5) a sequence common to two or more species of bacteria; (6) a sequence common to two related genera of bacteria (i.e., bacterial genera of similar phylogenetic origin); (7) a sequence generally conserved among Gram-negative bacterial 16S rRNA sequences; (6) a sequence generally conserved among Gram-positive bacterial 16S rRNA sequences; or (7) a consensus sequence for bacterial 16S rRNA sequences in general.
  • Exemplary bacteria and associated GenBank Accession Nos. for 16S rRNA sequences are provided in Table 1 of U.S. Pat. No. 6,677,153, incorporated by reference herein in its entirety.
  • Escherichia coli is a Gram-negative bacterium that is part of the normal flora of the gastrointestinal tract. There are hundreds of strains of E. coli, most of which are harmless and live in the gastrointestinal tract of healthy humans and animals.
  • EEC group enterovirulent E. coli
  • enteropathogenic (EPEC) strains and those whose virulence mechanism is related to the excretion of typical E. coli enterotoxins.
  • Such strains of E. coli can cause various diseases including those associated with infection of the gastrointestinal tract and urinary tract, septicemia, pneumonia, and meningitis. Antibiotics are not effective against some strains and do not necessarily prevent recurrence of infection.
  • E. coli strain 0157:H7 is estimated to cause 10,000 to 20,000 cases of infection in the United States annually (Federal Centers for Disease Control and Prevention). Hemorrhagic colitis is the name of the acute disease caused by E. coli O157:H7. Preschool children and the elderly are at the greatest risk of serious complications. E. coli strain 0157:H7 was recently reported as the cause the death of four children who ate under-cooked hamburgers from a fast-food restaurant in the Pacific Northwest. [See, e.g., Jackson et al., Epidemiol. Infect. 120(1):17-20, 1998].
  • Exemplary sequences for enterovirulent E. coli strains include GenBank Accession Numbers X97542, AF074613, Y11275 and AJ007716.
  • Salmonella typhimurium are Gram-negative bacteria that cause various conditions that range clinically from localized gastrointestinal infections, gastroenteritis (diarrhea, abdominal cramps, and fever) to enteric fevers (including typhoid fever) which are serious systemic illnesses. Salmonella infection also causes substantial losses of livestock.
  • LPS lipopolysaccharide
  • Contaminated food is the major mode of transmission for non-typhoidal salmonella infection, due to the fact that Salmonella survive in meats and animal products that are not thoroughly cooked.
  • the most common animal sources are chickens, turkeys, pigs, and cows; in addition to numerous other domestic and wild animals.
  • the epidemiology of typhoid fever and other enteric fevers caused by Salmonella spp. is associated with water contaminated with human feces.
  • Vaccines are available for typhoid fever and are partially effective; however, no vaccines are available for non-typhoidal Salmonella infection.
  • Non-typhoidal salmonellosis is controlled by hygienic slaughtering practices and thorough cooking and refrigeration of food.
  • Antibiotics are indicated for systemic disease, and Ampicillin has been used with some success.
  • patients under treatment with excessive amounts of antibiotics patients under treatment with immunosuppressive drugs, following gastric surgery, and in patients with hemolytic anemia, leukemia, lymphoma, or AIDS, Salmonella infection remains a medical problem.
  • Pseudomonas spp. are motile, Gram-negative rods which are clinically important because they are resistant to most antibiotics, and are a major cause of hospital acquired (nosocomial) infections. Infection is most common in immunocompromised individuals, burn victims, individuals on respirators, individuals with indwelling catheters, IV narcotic users and individual with chronic pulmonary disease (e.g., cystic fibrosis). Although infection is rare in healthy individuals, it can occur at many sites and lead to urinary tract infections, sepsis, pneumonia, pharyngitis, and numerous other problems, and treatment often fails with greater significant mortality.
  • Pseudotnonas aeruginosa is a Gram-negative, aerobic, rod-shaped bacterium with unipolar motility.
  • An opportunistic human pathogen, P. aeruginosa is also an opportunistic pathogen of plants.
  • P. aeruginosa secretes a variety of pigments.
  • Definitive clinical identification of P. aeruginosa can include identifying the production of both pyocyanin and fluorescein as well as the organism's ability to grow at 42° C.
  • P. aeruginosa is also capable of growth in diesel and jet fuel, for which it is known as a hydrocarbon utilizing microorganism (or “HUM bug”), causing microbial corrosion.
  • Vibrio cholera is a Gram-negative rod which infects humans and causes cholera, a disease spread by poor sanitation, resulting in contaminated water supplies. Vibrio cholerae can colonize the human small intestine, where it produces a toxin that disrupts ion transport across the mucosa, causing diarrhea and water loss. Individuals infected with Vibrio cholerae require rehydration either intravenously or orally with a solution containing electrolytes. The illness is generally self-limiting; however, death can occur from dehydration and loss of essential electrolytes. Antibiotics such as tetracycline have been demonstrated to shorten the course of the illness, and oral vaccines are currently under development.
  • Neisseria gonorrhoea is a Gram-negative coccus, which is the causative agent of the common sexually transmitted disease, gonorrhea. Neisseria gonorrhoea can vary its surface antigens, preventing development of immunity to reinfection. Nearly 750,000 cases of gonorrhea are reported annually in the United States, with an estimated 750,000 additional unreported cases annually, mostly among teenagers and young adults. Ampicillin, amoxicillin, or some type of penicillin used to be recommended for the treatment of gonorrhea. However, the incidence of penicillin-resistant gonorrhea is increasing, and new antibiotics given by injection, e.g., ceftriaxone or spectinomycin, are now used to treat most gonococcal infections.
  • Staphylococcus aureus is a Gram-positive coccus which normally colonizes the human nose and is sometimes found on the skin. Staphylococcus can cause bloodstream infections, pneumonia, and nosocomial infections. Staph. aureus can cause severe food poisoning, and many strains grow in food and produce exotoxins. Staphylococcus resistance to common antibiotics, e.g., vancomycin, has emerged in the United States and abroad as a major public health challenge both in community and hospital settings. Recently, a vancomycin-resistant Staph. aureus isolate has also been identified in Japan.
  • Mycobacterium tuberculosis is a Gram positive bacterium which is the causative agent of tuberculosis, a sometimes crippling and deadly disease. Tuberculosis is on the rise and globally and the leading cause of death from a single infectious disease (with a current death rate of three million people per year). It can affect several organs of the human body, including the brain, the kidneys and the bones, however, tuberculosis most commonly affects the lungs.
  • H. pylori is a micro-aerophilic, Gram-negative, slow-growing, flagellated organism with a spiral or S-shaped morphology which infects the lining of the stomach.
  • H. pylori is a human gastric pathogen associated with chronic superficial gastritis, peptic ulcer disease, and chronic atrophic gastritis leading to gastric adenocarcinoma.
  • H. pylori is one of the most common chronic bacterial infections in humans and is found in over 90% of patients with active gastritis.
  • Current treatment includes triple drug therapy with bismuth, metronidazole, and either tetracycline or amoxicillin which eradicates H. pylori in most cases. Problems with triple therapy include patient compliance, side effects, and metronidazole resistance. Alternate regimens of dual therapy which show promise are amoxicillin plus metronidazole or omeprazole plus amoxicillin.
  • Streptococcus pneumoniae is a Gram-positive coccus and one of the most common causes of bacterial pneumonia as well as middle ear infections (otitis media) and meningitis.
  • pneumococcal diseases account for approximately 50,000 cases of bacteremia; 3,000 cases of meningitis; 100,000-135,000 hospitalizations; and 7 million cases of otitis media.
  • Pneumococcal infections cause an estimated 40,000 deaths annually in the United States.
  • S. pneumoniae strains have become common in the United States, with many penicillin-resistant pneumococci also resistant to other antimicrobial drugs, such as erythromycin or trimethoprim-sulfamethoxazole.
  • Treponema pallidum is a spirochete which causes syphilis.
  • T pallidum is exclusively a pathogen which causes syphilis, yaws and non-venereal endemic syphilis or pinta.
  • Treponema pallidum cannot be grown in vitro and does replicate in the absence of mammalian cells. The initial infection causes an ulcer at the site of infection; however, the bacteria move throughout the body, damaging many organs over time. In its late stages, untreated syphilis, although not contagious, can cause serious heart abnormalities, mental disorders, blindness, other neurologic problems, and death.
  • Syphilis is usually treated with penicillin, administered by injection. Other antibiotics are available for patients allergic to penicillin, or who do not respond to the usual doses of penicillin. In all stages of syphilis, proper treatment will cure the disease, but in late syphilis, damage already done to body organs cannot be reversed.
  • Chlamydia trachomatis is the most common bacterial sexually transmitted disease in the United States and it is estimated that 4 million new cases occur each year. The highest rates of infection are in 15 to 19 year olds. Chlamydia is a major cause of non-gonococcal urethritis (NGU), cervicitis, bacterial vaginitis, and pelvic inflammatory disease (PID). Chlamydia infections may have very mild symptoms or no symptoms at all; however, if left untreated Chlamydia infections can lead to serious damage to the reproductive organs, particularly in women. Antibiotics such as azithromycin, erythromycin, oflloxacin, amoxicillin or doxycycline are typically prescribed to treat Chlamydia infection.
  • Symptoms include fever and swollen lymph nodes and CSF is generally a relatively benign, self-limiting disease in people, however, infection with Bartonella henselae can produce distinct clinical symptoms in immunocompromised people, including, acute febrile illness with bacteremia, bacillary angiomatosis, peliosis hepatis, bacillary splenitis, and other chronic disease manifestations such as AIDS encephalopathy.
  • the disease is treated with antibiotics, such as doxycycline, erythromycin, rifampin, penicillin, gentamycin, ceftriaxone, ciprofloxacin, and azithromycin.
  • Haemophilus influenzae ( H. influenza ) is a family of Gram-negative bacteria; six types of which are known, with most H. influenza -related disease caused by type B, or “HIB”. Until a vaccine for HIB was developed, HIB was a common causes of otitis media, sinus infections, bronchitis, the most common cause of meningitis, and a frequent culprit in cases of pneumonia, septic arthritis (joint infections), cellulitis (infections of soft tissues), and pericarditis (infections of the membrane surrounding the heart).
  • the H. influenza type B bacterium is widespread in humans and usually lives in the throat and nose without causing illness. Unvaccinated children under age 5 are at risk for HIB disease. Meningitis and other serious infections caused by H. influenza infection can lead to brain damage or death.
  • Shigella dysenteriae is a Gram-negative rod which causes dysentary. In the colon, the bacteria enter mucosal cells and divide within mucosal cells, resulting in an extensive inflammatory response. Shigella infection can cause severe diarrhea which may lead to dehydration and can be dangerous for the very young, very old or chronically ill. Shigella dys. forms a potent toxin (shiga toxin), which is cytotoxic, enterotoxic, neurotoxic and acts as a inhibitor of protein synthesis. Resistance to antibiotics such as ampicillin and TMP-SMX has developed, however, treatment with newer, more expensive antibiotics such as ciprofloxacin, norfloxacin and enoxacin, remains effective.
  • Listeria is a genus of Gram-positive, motile bacteria found in human and animal feces.
  • Listeria monocytogenes causes such diseases as listeriosis, meningoencephalitis and meningitis. This organism is one of the leading causes of death from food-borne pathogens especially in pregnant women, newborns, the elderly, and immunocompromised individuals. It is found in environments such as decaying vegetable matter, sewage, water, and soil, and it can survive extremes of both temperatures and salt concentration making it an extremely dangerous food-born pathogen, especially on food that is not reheated.
  • the bacterium can spread from the site of infection in the intestines to the central nervous system and the fetal-placental unit. Meningitis, gastroenteritis, and septicemia can result from infection. In cattle and sheep, listeria infection causes encephalitis and spontaneous abortion.
  • Proteus mirabilis is an enteric, Gram-negative commensal organism, distantly related to E. coli . It normally colonizes the human urethra, but is an opportunistic pathogen that is the leading cause of urinary tract infections in catheterized individuals. P. mirabilis has two exceptional characteristics: 1) it has very rapid motility, which manifests itself as a swarming phenomenon on culture plates; and 2) it produces urease, which gives it the ability to degrade urea and survive in the genitourinary tract.
  • Yersinia pestis is the causative agent of plague (bubonic and pulmonary) a devastating disease which has killed millions worldwide.
  • the organism can be transmitted from rats to humans through the bite of an infected flea or from human-to-human through the air during widespread infection.
  • Yersinia pestis is an extremely pathogenic organism that requires very few numbers in order to cause disease, and is often lethal if left untreated. The organism is enteroinvasive, and can survive and propagate in macrophages prior to spreading systemically throughout the host.
  • Bacillus anthracis is also known as anthrax. Humans become infected when they come into contact with a contaminated animal. Anthrax is not transmitted due to person-to-person contact. The three forms of the disease reflect the sites of infection which include cutaneous (skin), pulmonary (lung), and intestinal. Pulmonary and intestinal infections are often fatal if left untreated. Spores are taken up by macrophages and become internalized into phagolysozomes (membranous compartment) whereupon germination initiates. Bacteria are released into the bloodstream once the infected macrophage lyses whereupon they rapidly multiply, spreading throughout the circulatory and lymphatic systems, a process that results in septic shock, respiratory distress and organ failure. The spores of this pathogen have been used as a terror weapon.
  • Burkholderia mallei is a Gram-negative aerobic bacterium that causes Glanders, an infectious disease that occurs primarily in horses, mules, and donkeys. It is rarely associated with human infection and is more commonly seen in domesticated animals. This organism is similar to B. pseudomallei and is differentiated by being nonmotile. The pathogen is host-adapted and is not found in the environment outside of its host. Glanders is often fatal if not treated with antibiotics, and transmission can occur through the air, or more commonly when in contact with infected animals. Rapid-onset pneumonia, bacteremia (spread of the organism through the blood), pustules, and death are common outcomes during infection.
  • the virulence mechanisms are not well understood, although a type III secretion system similar to the one from Salmonella typhimurium is necessary. No vaccine exists for this potentially dangerous organism which is thought to have potential as a biological terror agent.
  • the genome of this organism carries a large number of insertion sequences as compared to the related Bukholderia pseudomallei (below), and a large number of simple sequence repeats that may function in antigenic variation of cell surface proteins.
  • Burkholderia pseudomallei is a Gram-negative bacterium that causes meliodosis in humans and animals. Meliodosis is a disease found in certain parts of Asia, Thailand, and Australia.
  • B. pseudomallei is typically a soil organism and has been recovered from rice paddies and moist tropical soil, but as an opportunistic pathogen can cause disease in susceptible individuals such as those that suffer from diabetes mellitus. The organism can exist intracellularly, and causes pneumonia and bacteremia (spread of the bacterium through the bloodstream). The latency period can be extremely long, with infection preceding disease by decades, and treatment can take months of antibiotic use, with relapse a commonly observed phenomenon.
  • Intercellular spread can occur via induction of actin polymerization at one pole of the cell, allowing movement through the cytoplasm and from cell-to-cell.
  • This organism carries a number of small sequence repeats which may promoter antigenic variation, similar to what was found with the B. mallei genome.
  • Burkholderia cepacia is a Gram-negative bacterium composed of at least seven different sub-species, including Burkholderia multivorans, Burkholderia vietnamiensis, Burkholderia stabilis, Burkholderia cenocepacia and Burkholderia ambifaria.
  • B. cepacia is an important human pathogen which most often causes pneumonia in people with underlying lung disease (such as cystic fibrosis or immune problems (such as (chronic granulomatous disease).
  • B. cepacia is typically found in water and soil and can survive for prolonged periods in moist environments.
  • B. cepacia Individuals with the bacteria are often treated in a separate area than those without to limit spread. This is because infection with B. cepacia can lead to a rapid decline in lung function resulting in death. Diagnosis of B. cepacia involves isolation of the bacteria from sputum cultures. Treatment is difficult because B. cepacia is naturally resistant to many common antibiotics including aminoglycosides (such as tobramycin) and polymixin B. Treatment typically includes multiple antibiotics and may include ceftazidime, doxycycline, piperacillin, chloramphenicol, and co-trimoxazole.
  • Francisella tularensis was first noticed as the causative agent of a plague-like illness that affected squirrels in Tulare County in California in the early part of the 20th century by Edward Francis. The organism now bears his namesake. The disease is called tularemia and has been noted throughout recorded history. The organism can be transmitted from infected ticks or deerflies to a human, through infected meat, or via aerosol, and thus is a potential bioterrorism agent. It is an aquatic organism, and can be found living inside protozoans, similar to what is observed with Legionella. It has a high infectivity rate, and can invade phagocytic and nonphagocytic cells, multiplying rapidly. Once within a macrophage, the organism can escape the phagosome and live in the cytosol.
  • a healthy microflora in the gastrointestinal tract of livestock is of vital importance for health and corresponding production of associated food products.
  • the gastrointestinal tract of a healthy animal contains numerous types of bacteria (i.e., E. coli, Pseudomonas aeruginosa and Salmonella spp.), which live in ecological balance with one another. This balance may be disturbed by a change in diet, stress, or in response to antibiotic or other therapeutic treatment, resulting in bacterial diseases in the animals generally caused by bacteria such as Salmonella, Campylobacter, Enterococci, Tularemia and E. coli. Bacterial infection in these animals often necessitates therapeutic intervention, which has treatment costs as well being frequently associated with a decrease in productivity.
  • compositions comprising an ON-NP as disclosed herein is administered and regulates the expression of a target gene.
  • the composition is administered to ameliorate a skin disorder.
  • the skin disorder to be ameliorated includes, but is not limited to, a hyperproliferative disorder, a neoplastic disorder, a genetic disorder, aging, inflammation, infection, and cosmetic disfigurement.
  • the skin disorder includes but is not limited to cancer.
  • the cancer includes but is not limited to squamous cell carcinoma, basal cell carcinoma, melanoma and breast cancer.
  • a gene product targeted by a composition of the present disclosure includes but is not limited to Ras, I ⁇ B ⁇ , hedgehog, B-Raf, Akt and cyclin D.
  • a composition of the present disclosure is administered to ameliorate a genetic disorder that includes but is not limited to epidermolysis bullosa simplex, bullous ichthyosis, pachyonychia congenita, Costello syndrome and tuberous sclerosis.
  • a gene product that is targeted by the administered composition is a gene product that comprises a mutation, the gene product being expressed by a gene that includes but is not limited to K5, K14, K1, K10, H-Ras, N-Ras, K-Ras, NF- ⁇ B, Akt, B-raf, ERK, Mek1, Mek2, and m-Tor.
  • a composition of the present disclosure is administered to ameliorate an aging disorder that includes but is not limited to UV-damage and progeria.
  • a gene product that is targeted by the administered composition includes but is not limited to matrix metalloproteinase-1 and progerin.
  • a composition of the present disclosure is administered to ameliorate an inflammatory disorder that includes but is not limited to atopic dermatitis and psoriasis.
  • a gene product that is targeted by the administered composition includes but is not limited to interleukin-23.
  • a gene product that is targeted by the administered composition includes but is not limited to IL1- ⁇ , IL1- ⁇ , IL6, TNF- ⁇ , leukemia inhibitory factor (LW), IFN- ⁇ , oncostatin M (OSM), ciliary neurotrophic factor (CNTF), TGF- ⁇ , GM-CSF, IL-11, IL-12, IL-17, IL-18, IL-8.
  • a composition of the present disclosure is administered to ameliorate an infection.
  • the infection is a viral infection.
  • the infection is a bacterial infection as disclosed herein.
  • the viral infection results in warts.
  • a gene product that is targeted by the administered composition includes but is not limited to E6/E7.
  • a composition of the present disclosure is administered to ameliorate a cosmetic disfigurement that includes but is not limited to seborrheic keratoses, epidei mai nevi and pigmented nevi.
  • a gene product that is targeted by the administered composition is a gene product that comprises a mutation, the gene product being expressed by a gene that includes but is not limited to FGFR3, K10 and B-Raf.
  • ON-NP compositions and methods of the present disclosure comprise vehicles.
  • a “vehicle” is a base compound with which an oligonucleotide-functionalized nanoparticle is associated.
  • Vehicles useful in the compositions and methods of the present disclosure are known to those of ordinary skill in the art and include without limitation an ointment, cream, lotion, gel, foam, buffer solution or water.
  • vehicles comprise one or more additional substances including but not limited to salicylic acid, alpha-hydroxy acids, or urea that enhance the penetration through the stratum corneum.
  • vehicles contemplated for use in the compositions and methods of the present disclosure include, but are not limited to, Aquaphor® healing ointment, A+D, polyethylene glycol (PEG), glycerol, mineral oil, Vaseline Intensive Care cream (comprising mineral oil and glycerin), petroleum jelly, DML (comprising petrolatum, glycerin and PEG 20), DML (comprising petrolatum, glycerin and PEG 100), Eucerin moisturizing cream, Cetaphil (comprising petrolatum, glycerol and PEG 30), Cetaphil, CeraVe (comprising petrolatum and glycerin), CeraVe (comprising glycerin, EDTA and cholesterol), Jergens (comprising petrolatum, glycerin and mineral oil), and Nivea (comprising petrolatum, glycerin and mineral oil).
  • PEG polyethylene glycol
  • An ointment is a formulation of water in oil.
  • a cream as used herein is a formulation of oil in water.
  • a lotion has more water than a cream or an ointment;
  • a gel comprises alcohol, and
  • a foam is a substance that is formed by trapping gas bubbles in a liquid.
  • Nanoparticles are provided which are functionalized to have a polynucleotide attached thereto.
  • the size, shape and chemical composition of the nanoparticles contribute to the properties of the resulting polynucleotide-functionalized nanoparticle. These properties include for example, optical properties, optoelectronic properties, electrochemical properties, electronic properties, stability in various solutions, magnetic properties, and pore and channel size variation. Mixtures of nanoparticles having different sizes, shapes and/or chemical compositions, as well as the use of nanoparticles having uniform sizes, shapes and chemical composition, and therefore a mixture of properties are contemplated.
  • suitable particles include, without limitation, aggregate particles, isotropic (such as spherical particles), anisotropic particles (such as non-spherical rods, tetrahedral, and/or prisms) and core-shell particles, such as those described in U.S. Pat. No. 7,238,472 and International Publication No. WO 2003/08539, the disclosures of which are incorporated by reference in their entirety.
  • the nanoparticle is metallic, and in various aspects, the nanoparticle is a colloidal metal.
  • nanoparticles of the invention include metal (including for example and without limitation, silver, gold, platinum, aluminum, palladium, copper, cobalt, indium, nickel, or any other metal amenable to nanoparticle formation), semiconductor (including for example and without limitation, CdSe, CdS, and CdS or CdSe coated with ZnS) and magnetic (for example, ferromagnetite) colloidal materials.
  • nanoparticles of the invention include those that are available commercially, as well as those that are synthesized, e.g., produced from progressive nucleation in solution (e.g., by colloid reaction) or by various physical and chemical vapor deposition processes, such as sputter deposition. See, e.g., HaVashi, Vac. Sci. Technol. A5(4) :1375-84 (1987); Hayashi, Physics Today, 44-60 (1987); MRS Bulletin, January 1990, 16-47. As further described in U.S. Patent Publication No.
  • nanoparticles contemplated are alternatively produced using HAuCl 4 and a citrate-reducing agent, using methods known in the art. See, e.g., Marinakos et al., Adv. Mater. 11:34-37 (1999); Marinakos et al., Chem. Mater. 10: 1214-19 (1998); Enustun & Turkevich, J. Am. Chem. Soc. 85: 3317 (1963).
  • the size of the nanoparticle is related to its ability to penetrate the skin. In general, the smaller the diameter of the nanoparticle, the deeper the penetration into or through the skin. In one aspect, the diameter of the nanoparticle allows the ON-NP to traverse the skin and enter the blood to achieve systemic delivery of the ON-NP. In another aspect, the diameter of the nanoparticle prevents the ON-NP from traversing the skin and the ON-NP is retained at the surface of the skin. In various aspects, it will be understood by one of ordinary skill in the art that the size of the nanoparticle can be adjusted to achieve a desired depth of penetration of the administered ON-NP.
  • Nanoparticles can range in size from about 1 nm to about 250 nm in mean diameter, about 1 nm to about 240 nm in mean diameter, about 1 nm to about 230 nm in mean diameter, about 1 nm to about 220 nm in mean diameter, about 1 nm to about 210 nm in mean diameter, about 1 nm to about 200 nm in mean diameter, about 1 nm to about 190 nm in mean diameter, about 1 nm to about 180 nm in mean diameter, about 1 nm to about 170 nm in mean diameter, about 1 nm to about 160 nm in mean diameter, about 1 nm to about 150 nm in mean diameter, about 1 nm to about 140 nm in mean diameter, about 1 nm to about 130 nm in mean diameter, about 1 nm to about 120 nm in mean diameter, about 1 nm to about 110 nm in mean diameter, about 1 nm to about 100 nm in mean diameter
  • the size of the nanoparticles is from about 5 nm to about 150 nm (mean diameter), from about 5 to about 50 nm, from about 10 to about 30 nm, from about 10 to 150 nm, from about 10 to about 100 nm, or about 10 to about 50 nm.
  • the size of the nanoparticles is from about 5 nm to about 150 nm (mean diameter), from about 30 to about 100 nm, from about 40 to about 80 nm.
  • the size of the nanoparticles used in a method varies as required by their particular use or application. The variation of size is advantageously used to optimize certain physical characteristics of the nanoparticles, for example, optical properties or the amount of surface area that can be functionalized as described herein.
  • nucleotide or its plural as used herein is interchangeable with modified forms as discussed herein and otherwise known in the art.
  • the art uses the term “nucleobase” which embraces naturally-occurring nucleotide, and non-naturally-occurring nucleotides which include modified nucleotides.
  • nucleotide or nucleobase means the naturally occurring nucleobases adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U).
  • Non-naturally occurring nucleobases include, for example and without limitations, xanthine, diaminopurine, 8-oxo-N6-methyladenine, 7-deazaxanthine, 7-deazaguanine, N4,N4-ethanocytosin, N′,N′-ethano-2,6-diaminopurine, 5-methylcytosine (mC), 5-(C 3 -C 6 )-alkynyl-cytosine, 5-fluorouracil, 5-bromouracil, pseudoisocytosine, 2-hydroxy-5-methyl-4-triazolopyridin, isocytosine, isoguanine, inosine and the “non-naturally occurring” nucleobases described in Benner et al., U.S.
  • nucleobase also includes not only the known purine and pyrimidine heterocycles, but also heterocyclic analogues and tautomers thereof. Further naturally and non-naturally occurring nucleobases include those disclosed in U.S. Pat. No. 3,687,808 (Merigan, et al.), in Chapter 15 by Sanghvi, in Antisense Research and Application, Ed. S. T. Crooke and B.
  • polynucleotides also include one or more “nucleosidic bases” or “base units” which are a category of non-naturally-occurring nucleotides that include compounds such as heterocyclic compounds that can serve like nucleobases, including certain “universal bases” that are not nucleosidic bases in the most classical sense but serve as nucleosidic bases.
  • Universal bases include 3-nitropyrrole, optionally substituted indoles (e.g., 5-nitroindole), and optionally substituted hypoxanthine.
  • Other desirable universal bases include, pyrrole, diazole or triazole derivatives, including those universal bases known in the art.
  • Modified nucleobases include without limitation, 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-
  • Further modified bases include tricyclic pyrimidines such as phenoxazine cytidine(1H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), phenothiazine cytidine (1H-pyrimido[5,4-b][1,4]benzothiazin-2(3H)-one), G-clamps such as a substituted phenoxazine cytidine (e.g.
  • Modified bases may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone. Additional nucleobases include those disclosed in U.S. Pat. No.
  • Certain of these bases are useful for increasing the binding affinity and include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine.
  • 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. and are, in certain aspects combined with 2′-O-methoxyethyl sugar modifications. See, U.S. Pat. Nos. 3,687,808, U.S. Pat. Nos.
  • Nanoparticles provided that are functionalized with a polynucleotide, or a modified form thereof, and a domain as defined herein, generally comprise a polynucleotide from about 5 nucleotides to about 100 nucleotides in length.
  • nanoparticles are functionalized with polynucleotide that are about 5 to about 90 nucleotides in length, about 5 to about 80 nucleotides in length, about 5 to about 70 nucleotides in length, about 5 to about 60 nucleotides in length, about 5 to about 50 nucleotides in length about 5 to about 45 nucleotides in length, about 5 to about 40 nucleotides in length, about 5 to about 35 nucleotides in length, about 5 to about 30 nucleotides in length, about 5 to about 25 nucleotides in length, about 5 to about 20 nucleotides in length, about 5 to about 15 nucleotides in length, about 5 to about 10 nucleotides in length, and all polynucleotides intermediate in length of the sizes specifically disclosed to the extent that the polynucleotide is able to achieve the desired result.
  • polynucleotide that are about 5 to about 90 nucleotides in length, about 5 to about 80 nucle
  • nanoparticles with an oligonucleotide attached thereto are provided wherein an oligonucleotide further comprising a domain which affects the efficiency with which the nanoparticle is taken up by a cell is associated with the nanoparticle. Accordingly, the domain increases or decreases the efficiency.
  • efficiency refers to the number or rate of uptake of nanoparticles in/by a cell. Because the process of nanoparticles entering and exiting a cell is a dynamic one, efficiency can be increased by taking up more nanoparticles or by retaining those nanoparticles that enter the cell for a longer period of time. Similarly, efficiency can be decreased by taking up fewer nanoparticles or by retaining those nanoparticles that enter the cell for a shorter period of time.
  • the domain in some aspects, is contiguous/colinear with the oligonucleotide and is located proximally with respect to a nanoparticle. In some aspects, the domain is contiguous/colinear with the oligonucleotide and is located distally with respect to a nanoparticle.
  • proximal and distal refer to a position relative to the midpoint of the oligonucleotide. In some aspects, the domain is located at an internal region within the oligonucleotide. In further aspects, the domain is located on a second oligonucleotide that is attached to a nanoparticle. Accordingly, a domain, in some embodiments, is contemplated to be attached to a nanoparticle as a separate entity from an oligonucleotide.
  • an oligonucleotide in some embodiments, comprise more than one domain, located at any of the locations described herein.
  • the domain increases the efficiency of uptake of the oligonucleotide-functionalized nanoparticle by a cell.
  • the domain comprises a sequence of thymidine residues (polyT) or uridine residues (polyU).
  • the polyT or polyU sequence comprises two thymidines or uridines.
  • the polyT or polyU sequence comprises 3, 4, 5, 6, 7, 8, 9, 10, 11.
  • a nanoparticle functionalized with an oligonucleotide and a domain is taken up by a cell with greater efficiency than a nanoparticle functionalized with the same oligonucleotide but lacking the domain.
  • a nanoparticle functionalized with an oligonucleotide and a domain is taken up by a cell 1% more efficiently than a nanoparticle functionalized with the same oligonucleotide but lacking the domain.
  • a nanoparticle functionalized with an oligonucleotide and a domain is taken up by a cell 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%,32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 7
  • the domain decreases the efficiency of uptake of the oligonucleotide-functionalized nanoparticle by a cell.
  • the domain comprises a phosphate polymer (C3 residue) that is comprised of two phosphates.
  • the C3 residue comprises 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, about 55, about 60, about 65, about 70, about 75, about 80, about 85, about 90, about 95, about 100, about 125, about 150, about 175, about 200, about 250, about 300, about 350, about 400, about 450, about 500 or more phosphates.
  • a nanoparticle functionalized with an oligonucleotide and a domain is taken up by a cell with lower efficiency than a nanoparticle functionalized with the same oligonucleotide but lacking the domain.
  • a nanoparticle functionalized with an oligonucleotide and a domain is taken up by a cell 1% less efficiently than a nanoparticle functionalized with the same oligonucleotide but lacking the domain.
  • a nanoparticle functionalized with an oligonucleotide and a domain is taken up by a cell 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%,32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 7
  • Polynucleotides contemplated for attachment to a nanoparticle include those which modulate expression of a gene product expressed from a target polynucleotide.
  • Polynucleotides contemplated by the present disclosure include DNA, RNA and modified forms thereof as defined herein below. Accordingly, in various aspects and without limitation, polynucleotides which hybridize to a target polynucleotide and initiate a decrease in transcription or translation of the target polynucleotide, triple helix forming polynucleotides which hybridize to double-stranded polynucleotides and inhibit transcription, and ribozymes which hybridize to a target polynucleotide and inhibit translation, are contemplated.
  • a single functionalized oligonucleotide-nanoparticle composition has the ability to bind to multiple copies of the same transcript.
  • a nanoparticle is provided that is functionalized with identical polynucleotides, i.e., each polynucleotide has the same length and the same sequence.
  • the nanoparticle is functionalized with two or more polynucleotides which are not identical, i.e., at least one of the attached polynucleotides differ from at least one other attached polynucleotide in that it has a different length and/or a different sequence.
  • these different polynucleotides bind to the same single target polynucleotide but at different locations, or bind to different target polynucleotides which encode different gene products.
  • modified oligonucleotides are contemplated for functionalizing nanoparticles.
  • an oligonucleotide functionalized on a nanoparticle is completely modified or partially modified.
  • one or more, or all, sugar and/or one or more or all internucleotide linkages of the nucleotide units in the polynucleotide are replaced with “non-naturally occurring” groups.
  • this embodiment contemplates a peptide nucleic acid (PNA).
  • PNA compounds the sugar-backbone of a polynucleotide is replaced with an amide containing backbone. See, for example U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, and Nielsen et al., Science, 1991, 254, 1497-1500, the disclosures of which are herein incorporated by reference.
  • oligonucleotides include those containing modified backbones or non-natural internucleoside linkages. Oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. Modified oligonucleotides that do not have a phosphorus atom in their intemucleoside backbone are considered to be within the meaning of “oligonucleotide.”
  • Modified oligonucleotide backbones containing a phosphorus atom include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3′-alkylene phosphonates, 5′-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, selenophosphates and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those having inverted polarity wherein one or more intemucleotide linkages is a 3′ to 3′,5′ to 5′ or 2′ to 2′ linkage.
  • polynucleotides having inverted polarity comprising a single 3′ to 3′ linkage at the 3′-most internucleotide linkage, i.e. a single inverted nucleoside residue which may be abasic (the nucleotide is missing or has a hydroxyl group in place thereof). Salts, mixed salts and free acid forms are also contemplated.
  • Modified polynucleotide backbones that do not include a phosphorus atom have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages.
  • polynucleotides are provided with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and including —CH 2 —NH—O—CH 2 —, —CH 2 —N(CH 3 )—O—CH 2 —, —CH 2 —O—N(CH 3 )—CH 2 —, —CH 2 —N(CH 3 )—N(CH 3 )—CH 2 — and —O—N(CH 3 )—CH 2 —CH 2 — described in U.S. Pat. Nos. 5,489,677, and 5,602,240. See, for example, U.S. Pat. Nos.
  • the linkage between two successive monomers in the oligo consists of 2 to 4, desirably 3, groups/atoms selected from —CH 2 —, —O—, —S—, —NRH—, >C ⁇ O, >C ⁇ NRH, >C ⁇ S, —Si(R′′) 2 SO—, —S(O) 2 —, —P(O) 2 —, —PO(BH 3 )—, —P(O,S)—, —P(S) 2 —, —PO(R′′)—, —PO(OCH 3 )—, and —PO(NHRH)—, where RH is selected from hydrogen and C1-4-alkyl, and R′′ is selected from C1-6-alkyl and phenyl.
  • Modified polynucleotides may also contain one or more substituted sugar moieties.
  • polynucleotides comprise one of the following at the 2′ position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C 1 to C 10 alkyl or C 2 to C 10 alkenyl and alkynyl.
  • Other embodiments include O[(CH 2 ) n O] m CH 3 , O(CH2) n OCH 3 , O(CH 2 ) n NH 2 , O(CH 2 ) n CH 3 , O(CH 2 ) n ONH 2 , and O(CH 2 ) n ON[(CH 2 ) n CH 3 ] 2 , where n and m are from 1 to about 10.
  • polynucleotides comprise one of the following at the 2′ position: C1 to C10 lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH 3 , OCN, Cl, Br, CN, CF 3 , OCF 3 , SOCH 3 , SO 2 CH 3 , ONO 2 , NO 2 , N 3 , NH 2 , heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the phaimacokinetic properties of a polynucleotide, or a group for improving the pharmacodynamic properties of a polynucleotide, and other substituents having similar properties.
  • a modification includes 2′-methoxyethoxy (2′-O—CH 2 CH 2 OCH 3 , also known as 2′-O-(2-methoxyethyl) or 2′-MOE) (Martin et al., 1995, Helv. Chim Acta, 78: 486-504) i.e., an alkoxyalkoxy group.
  • modifications include 2′-dimethylaminooxyethoxy, i.e., a O(CH 2 ) 2 ON(CH 3 ) 2 group, also known as 2′-DMAOE, and 2′-dimethylaminoethoxyethoxy (also known in the art as 2′-O-dimethyl-amino-ethoxy-ethyl or 2′-DMAEOE), i.e., 2′-O—CH 2 —O—CH 2 —N(CH 3 ) 2 .
  • Still other modifications include 2′-methoxy (2′-O—CH 3 ), 2′-aminopropoxy (2′-OCH 2 CH 2 CH 2 NH 2 ), 2′-allyl (2′-CH 2 —CH ⁇ CH 2 ), 2′-O-allyl (2′-O—CH 2 —CH ⁇ CH 2 ) and 2′-fluoro (2′-F).
  • the 2′-modification may be in the arabino (up) position or ribo (down) position.
  • a 2′-arabino modification is 2′-F.
  • polynucleotide Similar modifications may also be made at other positions on the polynucleotide, for example, at the 3′ position of the sugar on the 3′ terminal nucleotide or in 2′-5′ linked polynucleotides and the 5′ position of 5′ terminal nucleotide.
  • Polynucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. See, for example, U.S. Pat. Nos.
  • a modification of the sugar includes Locked Nucleic Acids (LNAs) in which the 2′-hydroxyl group is linked to the 3′ or 4′ carbon atom of the sugar ring, thereby forming a bicyclic sugar moiety.
  • the linkage is in certain aspects a methylene (—CH 2 —)n group bridging the 2′ oxygen atom and the 4′ carbon atom wherein n is 1 or 2.
  • LNAs and preparation thereof are described in WO 98/39352 and WO 99/14226, the disclosures of which are incorporated herein by reference.
  • polypeptide refers to peptides, proteins, polymers of amino acids, hormones, viruses, and antibodies that are naturally derived, synthetically produced, or recombinantly produced.
  • the compositions of the present disclosure regulate the activity of a target polypeptide.
  • the nanoparticle is functionalized with an aptamer.
  • an “aptamer” is an oligonucleotide or peptide molecule that binds to a specific target molecule.
  • the oligonucleotide-functionalized nanoparticle binds to a target polypeptide and regulates its activity.
  • the activity of the target polypeptide is inhibited by about 5% compared to a cell that is not contacted with the oligonucleotide-functionalized nanoparticle.
  • the expression of the target polypeptide is inhibited by about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, 99% or more compared to a cell that is not contacted with the oligonucleotide-functionalized nanoparticle.
  • methods provided embrace those which results in any degree of inhibition of activity of a target polypeptide.
  • the density of oligonucleotides on the surface of the NP can be adjusted for a given application.
  • work by Seferos et al. [ Nano Lett., 9(1): 308-311, 2009] demonstrated that the density of DNA on the NP surface affected the rate at which it was degraded by nucleases.
  • This density modification is used, for example and without limitation, in a NP based drug delivery system where a drug and ON-NP enter cells, and the ON is degraded at a controlled rate.
  • Nanoparticles as provided herein have a packing density of the polynucleotides on the surface of the nanoparticle that is, in various aspects, sufficient to result in cooperative behavior between nanoparticles and between polynucleotide strands on a single nanoparticle.
  • the cooperative behavior between the nanoparticles increases the resistance of the polynucleotide to nuclease degradation.
  • the uptake of nanoparticles by a cell is influenced by the density of polynucleotides associated with the nanoparticle. As described in PCT/US2008/65366, incorporated herein by reference in its entirety, a higher density of polynucleotides on the surface of a nanoparticle is associated with an increased uptake of nanoparticles by a cell.
  • the surface density of oligonucleotides on the surface of the NP is related to its ability to penetrate the skin. In general, a higher surface density on the surface of the ON-NP, the deeper the penetration into or through the skin. In some aspects, the surface density allows the ON-NP to traverse the skin and enter the blood to achieve systemic delivery of the ON-NP. In another aspect, the surface density prevents the ON-NP from traversing the skin and the ON-NP is retained at the surface of the skin. In various aspects, it will be understood by one of ordinary skill in the art that the surface density of oligonucleotides on the surface of the nanoparticle can be adjusted to achieve a desired depth of penetration of the administered ON-NP.
  • a surface density adequate to make the nanoparticles stable and the conditions necessary to obtain it for a desired combination of nanoparticles and polynucleotides can be determined empirically. Generally, a surface density of at least 2 pmoles/cm 2 will be adequate to provide stable nanoparticle-oligonucleotide compositions. In some aspects, the surface density is at least 15 pmoles/cm 2 .
  • Methods are also provided wherein the polynucleotide is bound to the nanoparticle at a surface density of at least 2 pmol/cm 2 , at least 3 pmol/cm 2 , at least 4 pmol/cm 2 , at least 5 pmol/cm 2 , at least 6 pmol/cm 2 , at least 7 pmol/cm 2 , at least 8 pmol/cm 2 , at least 9 pmol/cm 2 , at least 10 pmol/cm 2 , at least about 15 pmol/cm 2 , at least about 20 pmol/cm 2 , at least about 25 pmol/cm 2 , at least about 30 pmol/cm 2 , at least about 35 pmol/cm 2 , at least about 40 pmol/cm 2 , at least about 45 pmol/cm 2 , at least about 50 pmol/cm 2 , at least about 55 pmol/cm 2 , at
  • Oligonucleotides contemplated for use in the methods include those bound to the nanoparticle through any means. Regardless of the means by which the oligonucleotide is attached to the nanoparticle, attachment in various aspects is effected through a 5′ linkage, a 3′ linkage, some type of internal linkage, or any combination of these attachments.
  • RNA Ribonucleic acid
  • Methods of attachment are known to those of ordinary skill in the art and are described in U.S. Publication No. 2009/0209629, which is incorporated by reference herein in its entirety. Methods of attaching RNA to a nanoparticle are generally described in PCT/US2009/65822, which is incorporated by reference herein in its entirety. Accordingly, in some embodiments, the disclosure contemplates that a polynucleotide attached to a nanoparticle is RNA.
  • nanoparticles with oligonucleotides attached thereto are provided wherein an oligonucleotide further comprising a domain is associated with the nanoparticle.
  • the domain is a polythymidine sequence.
  • the domain is a phosphate polymer (C3 residue).
  • the oligonucleotide attached to a nanoparticle is DNA.
  • the DNA is comprised of a sequence that is sufficiently complementary to a target sequence of a polynucleotide such that hybridization of the DNA oligonucleotide attached to a nanoparticle and the target polynucleotide takes place, thereby associating the target polynucleotide to the nanoparticle.
  • the DNA in various aspects is single stranded or double-stranded, as long as the double-stranded molecule also includes a single strand sequence that hybridizes to a single strand sequence of the target polynucleotide.
  • hybridization of the oligonucleotide functionalized on the nanoparticle can form a triplex structure with a double-stranded target polynucleotide.
  • a triplex structure can be formed by hybridization of a double-stranded oligonucleotide functionalized on a nanoparticle to a single-stranded target polynucleotide.
  • functionalized nanoparticles which include those wherein an oligonucleotide and a domain are attached to the nanoparticle through a spacer.
  • Spacer as used herein means a moiety that does not participate in modulating gene expression per se but which serves to increase distance between the nanoparticle and the functional oligonucleotide, or to increase distance between individual oligonucleotides when attached to the nanoparticle in multiple copies.
  • spacers are contemplated being located between individual oligonucleotides in tandem, whether the oligonucleotides have the same sequence or have different sequences.
  • the domain is optionally functionalized to the nanoparticle through a spacer.
  • spacers are optionally between some or all of the domain units in the tandem structure.
  • the spacer when present is an organic moiety.
  • the spacer is a polymer, including but not limited to a water-soluble polymer, a nucleic acid, a polypeptide, an oligosaccharide, a carbohydrate, a lipid, an ethylglycol, or combinations thereof.
  • the polynucleotide has a spacer through which it is covalently bound to the nanoparticles.
  • These polynucleotides are the same polynucleotides as described above.
  • the polynucleotide is spaced away from the surface of the nanoparticles and is more accessible for hybridization with its target.
  • the spacer is a polynucleotide
  • the length of the spacer in various embodiments at least about 10 nucleotides, 10-30 nucleotides, or even greater than 30 nucleotides.
  • the spacer may have any sequence which does not interfere with the ability of the polynucleotides to become bound to the nanoparticles or to the target polynucleotide.
  • the spacers should not have sequences complementary to each other or to that of the oligonucleotides, but may be all or in part complementary to the target polynucleotide.
  • the bases of the polynucleotide spacer are all adenines, all thymines, all cytidines, all guanines, all uracils, or all some other modified base.
  • Citrate-stabilized gold nanoparticles (from 1-250 nm) are prepared using published procedures [G. Frens, Nature Physical Science. 1973, 241, 20]. While a 13 and 5 nm size is used in this example, other examples include nanoparticles in size from 1 nm to 500 nm. Briefly, hydrogen tetrachloroaurate is reduced by treatment with citrate in refluxing water. The particle size and dispersity can be confirmed using transmission electron microscopy and uv/vis spectrophotometry. Thiolated oligonucleotides are synthesized using standard solid-phase phosphoramidite methodology [Pon, R. T. Solid-phase supports for oligonucleotide synthesis.
  • sodium dodecylsulphate (SDS) solution (10%) is added to the mixture to achieve a 0.1% SDS concentration
  • sodium chloride solution (2.0 M) is added to the mixture to achieve a 0.1 M sodium chloride concentration.
  • Six aliquots of sodium chloride solution (2.0 M) are then added to the mixture over an eight-hour period to achieve a final sodium chloride concentration of 0.3 M, and shaken overnight to complete the functionalization process.
  • the solution is centrifuged (13,000 rpm, 20 min) and resuspended in sterile phosphate buffered saline three times to produce the purified conjugates.
  • Oligonucleotide design in this example includes two possible mechanisms of action.
  • a sequence was designed using the published plasmid sequence that would preferentially hybridize to the sense strand of the promoter site for the Ampicillin resistance (AmpR) gene ⁇ -lactamase. This would sensitize the bacteria to ampicillin by taking advantage of the preferential hybridization of the conjugate (imparted by more favorable binding constant and/or intracellular concentration of the particles) to the promoter sequence of AmpR in the bacterial genome. This would prevent the promoter complex from binding to its target site and prevent transcription of the mRNA transcript (Amp resistance gene), therefore sensitizing the bacteria to ampicillin.
  • AmpR Ampicillin resistance
  • sequences used were 5′-AT TGT CTC ATG AGC GGA TAC ATA TTT GAA AAA AAA AAA AAA A-SH-3′ (SEQ ID NO: 1) and 5′-AT TGT CTC ATG AGC GGA TAC AAA AAA AAA A-SH-3′ (SEQ ID NO: 2).
  • a second strategy would utilize a sequence designed to hybridize to an internal region of the AmpR gene. In doing so, this would prevent the completion of the full mRNA transcript. The downstream effect of this is to prevent complete transcription of functional mRNA transcript (Amp resistance gene) and therefore sensitize bacteria to ampicillin.
  • a sense strand was chosen to hybridize to the target duplex DNA. The sequence for this was 5′-ACT TTT AAA GTT CTG CTA TAA AAA AAA AA-SH-3′ (SEQ ID NO: 3).
  • a scheme for both strategies is presented in FIG. 1 .
  • JM109 E. coli competent cells were transformed using an ampicillin containing plasmid (either psiCHECK 2, Promega or pScreen-iT, Invitrogen) according to published procedures (Promega and Invitrogen) and grown on antibiotic-containing (Amp) plates. A single colony was selected and grown in liquid culture with ampicillin for twelve hours. This culture was used to form a frozen (10% glycerol) stock for use in subsequent experiments.
  • FIG. 4 A schematic and the resulting data are shown in FIG. 4 (A and B).
  • the particle may bind a preformed duplex (triplex formation). Alternatively, the particle may displace a preformed duplex via its higher binding constant for the target sequence.
  • the particles are then centrifuged at 13,000 RPM, washed 3 times in PBS, and oxidized with KCN. Fluorescence of bound strands is measured.
  • siRNA-Au NPs Both DNA-Au NPs and siRNA-Au NPs have been shown to suppress gene function in multiple cells in vitro. For example, siRNA-Au NPs directed against survivin led to cell death of T-24 and HT-1376 bladder cancer cells. In addition, siRNA-Au NPs progressively decreased the expression of luciferase in HeLa cells over 4 days in culture after a single treatment, while luciferase expression returned to baseline levels by 4 days after treatment with conventional siRNA [Giljohann et al., J Am Chem Soc 131: 2072-2073 (2009)]. Cell toxicity is not observed at concentrations required for gene silencing, and immune-mediated effects are markedly lower than that of conventional nucleic acids.
  • citrate stabilized gold nanoparticles and oligonucleotide-modified particles were compared. While citrate stabilized particles induce significant changes in the gene expression profile of HeLa cells (127 genes up or down regulated), scrambled siRNA or DNA functionalized nanoparticles show no significant changes in the gene expression profile.
  • Nanoparticle Conjugates are Delivered Transdermally after Topical Application
  • a group of potential ointments, creams and lotions for topical delivery were identified that ensured easy mixing, retention at the applied site, and stability of the nanoconjugate (as determined by persistence of the characteristic red color of the nanoparticles).
  • Application of Cy5-labelled sense DNA-Au NP ointment (DNA-Au NPs in Aquaphor ointment®) to dorsal mouse skin showed penetration through stratum corneum to the epidermis by 2 h, penetration to the upper dermis by 6-8 h, and widespread distribution throughout the dermis by 24 and 48 h after a single application.
  • the demonstrated persistence of fluorescence correlated well with persistence of the gold nanoparticles in tissue as measured by ICP-MS.
  • Topical application has shown no evidence of toxicity.
  • gold particle accumulation was most notable in sites of melanoma metastases: skin, lymph nodes, lungs and, to a lesser extent, liver and kidneys. Histologic sections showed no inflammation, evidence of apoptosis or alteration in proliferation/thickness of skin.
  • Gold particles were detected in skin, lymph nodes, liver, GI tract and feces, with concentrations increasing in these organs in proportion to the concentration of applied nanoparticles.
  • GFP green fluorescent protein
  • C57BL/6-Tg(UBC-GFP)30Scha/J mouse ubiquitously expressing the transgene
  • siRNA-Au NPs directed against GFP were applied at 15 nM concentration topically using the Aquaphor vehicle.
  • the mice were treated serially three times weekly for four weeks, with a half of the dorsum of the mouse treated with anti-GFP siRNA-Au NPs and the other half treated with scrambled siRNA-Au NPs. After isolating the treated skin, fluorimetry was used to compare GFP levels between controls and those treated with the anti-GFP siRNA-Au NPs.
  • metastatic cells have been found to be distinguishable from non-metastasizing melanoma cells and normal melanocytes by the presence of a unique de-acetylated form of ganglioside GM3.
  • de-N-acetylGM3 is not only an antigenically distinct marker, but also drives cell migration and invasion [Liu J de-N-acetyl GM3 promotes melanoma cell migration and invasion via urokinase plasminogen activator receptor signaling-dependent matrix metalloproteinase-2 activation. Cancer Res (2009)]. Studies with explant mouse models have verified the value of de-N-acetylGM3 in suppressing the spread of metastasis of metastatic lines in mice to the lungs and liver. During these studies the time course of establishment of cutaneous and metastatic melanomas was explored in explant models with SK-MEL-28 and 1205Lu, two BRAF V600E/PTEN loss models.
  • siRNA-Au NPs were shown to decrease survivin mRNA levels by 91% as measured by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR).
  • conjugates are designed and demonstrated to target multiple mutations in a combinatorial manner.
  • functionalized conjugates are optimized for the purposes of concurrently regulating multiple genes.
  • BRAF/ERK and AKT3 signaling Multiple signaling pathways are known to be upregulated in metastatic melanomas, particularly BRAF/ERK and AKT3 signaling.
  • a common BRAF mutation and the activated AKT3 are targeted using a combinatorial approach.
  • the results of knockdown by the BRAF V600E and AKT3 siRNA-Au NPs is compared with the results of non-complementary control siRNA-Au NPs in each experiment. This determines the specificity of gene knockdown and allows for assessments of conjugate toxicity.
  • siRNA conjugates are designed to target the T1799A (V600E) mutation in BRAF. At least three sequences per target are designed using siRNA design algorithms or via selection from literature [Sharma et al., Cancer Res 65: 2412-2421 (2005)].
  • BRAF conjugates are individually assessed to determine optimal concentrations for gene knockdown in the BrafVE Ptenlox mouse cell line, 3 human BRAF V600E-containing cell lines (A375P; SK-MEL-28; 1205Lu) and, as negative controls, normal melanocytes (ScienCell Research Labs, Carlsbad, Calif.) and the C8161 metastatic melanoma cell line that shows only wildtype BRAF (see Table A).
  • a second sequence is designed to target AKT3 [Sharma et al., Clin Cancer Res 15: 1674-1685 (2009)], and is tested in the 3 BRAF V600E-containing cell lines, the C8161 line that also has AKT activation and, as a control, normal human melanocytes.
  • Cells from the transgenic mouse line are grown in the presence of 4-HT (and, as a control, without 4-HT) to induce BrafVE expression.
  • qRT-PCR and Western blot analysis is used after harvesting of cells at specific time points after siRNA-Au NP treatment to determine levels of mRNA and protein expression of human and mouse BRAF V600E and AKT3 [Dankort et al., Nat Genet 41: 544-552 (2009); Dankort et al., Genes Dev 21: 379-384 (2007)].
  • the effects of siRNA-Au NP treatment is evaluated on wildtype BRAF, CRAF, AKT1 and AKT2 by qRT-PCR and immunoblotting [Stahl et al., Cancer Res 64: 7002-7010 (2004)].
  • the technique also allows targeting of the less frequent mutations that lead to increased ERK activation, such as in NRAS (e.g., Q61L) or in c-KIT.
  • the gold nanoparticle acts as a scaffold for molecule attachment
  • the use of a combinatorial approach to simultaneously target BRAF V600E and AKT3 is examined.
  • siRNA duplexes targeting each mutation will be added to the nanoparticles in different ratios.
  • the delivery of siRNA to cells is precisely affected, allowing for investigation of knockdown and cellular response as the amounts of each target are fine tuned.
  • BRAF/ERK and AKT signaling Given the key role of BRAF/ERK and AKT signaling in increased melanoma cell proliferation and survival, a marked alteration in melanoma cell function in vitro occurs as a result of knockdown. Induction of apoptosis is determined by immunoblotting to assess PARP cleavage and by annexin V flow studies. The relative roles of BRAF V600E suppression and AKT3 suppression is dissected by determining protein expression of Bim (induced by BRAF activation), BCL-2 (induced by AKT activation) and BAD (suppressed by AKT activation). Lack of induced apoptosis in controls with scrambled sequences assures that apoptosis results from intended targeting rather than siRNA-Au NP toxicity.
  • Proliferation is assessed by cell counts and WST-1 [(4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate)] assays, and cyclin D1 expression is evaluated by immunoblotting.
  • Melanoma cells express factors that contribute to angiogenesis (particularly IL-8 and VEGF) and invasion (particularly MMP-2) [Liu J et al., de-N-acetyl GM3 promotes melanoma cell migration and invasion via urokinase plasminogen activator receptor signaling-dependent matrix metalloproteinase-2 activation. Cancer Res (2009)].
  • the multifunctional siRNA-AuNPs provide the opportunity to target alternative gene mutations (such as in the WM1366 cell line) or to add additional targeting siRNA's to the multifunctional siRNA-Au NPs targeting BRAF V600E and AKT3.
  • additional targeting siRNA's to the multifunctional siRNA-Au NPs targeting BRAF V600E and AKT3.
  • Table A The ability to target three or more genes using genetic profiles of each of the cell lines as well as their known genetic mutations is therefore contemplated (Table A).
  • both SK-MEL-28 and 1205Lu cells have specific CDK4 point mutations; although these mutations do not seem to affect the response to BRAF suppression, additional targeting allows exploration of the functional effect of these mutations.
  • SK-MEL-28 and 1205Lu have additional signature mutations in p53 (SK-MEL-28) and CDKN2A (1205Lu) that are targeted to explore their significance in metastatic melanoma transformation and progression. These cell lines have both been used extensively for in viva xenograft models.
  • the delivery, clearance, and toxicity of scrambled siRNA-Au NPs administered intravenously and transdermally is compared in an immunocompetent mouse. In addition, toxicity and pharmacokinetic profiles of the conjugates are assessed.
  • the multifunctional nanoparticles are also optimized for penetration through human skin as described herein above.
  • siRNA-Au NPs are delivered systemically by transdermal delivery, and their fate is tracked by the deposition of gold particles. Levels of gold particles in organs is measured by ICP-MS as previously described [Giljohann et al., Nano Lett 7: 3818-3821 (2007)]. In these studies, 6 mice are studied in each siRNA-Au NP treatment group with vehicle applied as a control in 2 mice for each parameter. In biodistribution studies, delivery is focused to the liver, lungs, skin and lymph nodes, the most common sites of melanoma metastases and sites reached by siRNA-Au NPs in studies with topical administration.
  • siRNA-Au NP 500 nM siRNA-Au NP is administered in these studies, since this concentration reaches internal targets well through transdermal delivery.
  • a time course experiment with the multifunctional siRNA-Au NPs is performed to determine: 1) the time course and efficiency of transdermal penetration; 2) the efficacy of delivery to internal organs; 3) the clearance after a single application; and 4) the potential for irritation or toxicity.
  • Mice are treated once and then euthanized at 8 timepoints from 2 h to 7 weeks post-treatment.
  • the distribution of siRNA-Au NP at the early timepoints i.e. 2, 4, 24, and 72 h
  • mice treated topically the treated site of skin is trisected for histological analysis to assure lack of toxicity, for ICP-MS to quantify gold particle concentration, and for storage at ⁇ 80° C.
  • the skin section for ICP-MS is subjected to a brief exposure to 60° C. water to separate epideiiiiis from the vascularized dermis and thereby determine epidermal versus dermaUsubcutaneous delivery.
  • organs as noted above
  • distant skin are assessed for gold content by ICP-MS, and a portion of each organ is taken for histologic assessment (see below).
  • mice are treated repeatedly in the proposed experiments, rather than just a single application, these studies are also performed with mice treated 2-3 times weekly (based on the persistence of gold particles in skin after single application) for 10 days, 4 weeks and 7 weeks to quantify gold particle accumulation.
  • mice are weighed every other day as well as observed for visible skin alterations or behavioral change.
  • histologic and immunohistochemical evaluations are performed at the organ level. Specifically, the presence of necrosis and inflammation in all tissues and, in the skin, alterations in epidermal maturation and the presence melanoderma (pigment dumping) is determined. If evidence of cutaneous or visceral atrophy is seen, cell proliferation is assessed immunohistochemically by detection of Ki67. The presence of suspected apoptosis is confirmed immunohistochemically (ApopTag In Situ Apoptosis Detection) [Lannutti et al., Cancer Res. 57(23): 5277-80 ( )97)].
  • ELISA assays for TNF-alpha expression are performed in siRNA-Au NP skin vs. control-treated skin, given that the skin is an innate immune organ and able to express pro-apoptotic cytokines.
  • Blood is obtained from cardiac puncture pre-terminally in all animals. In the single dose studies, the serum is frozen for future analysis if needed. Blood from mice treated for 10 days or more is analyzed for blood counts, aspartate aminotransferase (liver function) and creatinine levels (kidney function)(Charles River Labs).
  • the ability of the siRNA-Au NPs to traverse human skin is tested by using normal human skin from abdominoplasties to conduct in vitro experiments with Franz diffusion cells. These Franz cells have been the gold standard for testing flux through human skin for the past few decades. They are temperature- and humidity-controlled to match human in vivo conditions and, importantly, provide an osmotic gradient simulating skin. The transit of the gold particles through human skin is quantified by ICP-MS as a marker for penetration, since the siRNA and gold particles remain conjugated. Reconstituted skin is obtained after separating the stratum corneum/epidermis from the dermis. The integrity of reconstituted human skin samples is verified visually under a dissecting microscope.
  • siRNA-Au NPs Beginning with 500 nM and decreasing to as low as 100 pM
  • Aquaphor as a control. Studies are performed in at least triplicate and at least three times. These studies indicate the flux through human epidermis, the amount of drug passing across a cm 2 of skin surface over time (ng/cm 2 /h).
  • the skin is minced and gold particles extracted for ICP-MS measurements to measure the residual Au NPs in tissue.
  • mice are tested at each of 3 doses between 50 nM and 500 nM. Controls in the dose-finding studies include scrambled siRNA and Aquaphor alone. Mice are sacrificed at 7 weeks after initiation of therapy for necropsy. The primary melanoma(s) and any cutaneous metastases are photographed and the volume(s) are measured at the time of each treatment by calipers. The number of visible or palpable cutaneous metastases are noted. Gross metastases of the lungs, liver, lymph nodes, kidneys and brain are counted (facilitated by their dark brown color), and organs are examined histologically with multiple sections throughout each organ for evidence of micrometastases. Micrometastases are easily visible microscopically, but a Fontana-Masson stain is used to further accentuate the pigmentation if needed. The dosage that is most effective in reducing metastases without any evidence of toxicity is used for subsequent studies.
  • mice are administered siRNA-Au NPs, scrambled siRNA-Au NPs or control vehicle (topical Aquaphor) with a dosage and frequency based on previous studies. Sets of 8 mice each are sacrificed at 1, 3, 5, and 7 weeks after initiation of therapy to evaluate visceral metastasis grossly and histologically as described above.
  • mice treated with scrambled siRNA-Au NPs or vehicle and normal/untreated skin e.g., skin from the upper back in the transgenic mouse.
  • tumor cell proliferation with Ki67 staining i) peritumoral vascularity with anti-CD31 antibody; iii) tumor cell apoptosis with TUNEL assay or caspase 3 staining; iv) the direct suppression of expression of BrafVE, wildtype Braf, and Akt3 in the transgenic model using qPCR with primers as previously described [Dankort et al., Nat Genet 41: 544-552 (2009); Sharma et al., Clin Cancer Res 15: 1674-1685 (2009); Sharma et al., Cancer Res 66: 8200-8209 (2006); Sharma et al., Cancer Res 65: 2412-2421 (2005)]; and v) changes in protein expression of total Braf; Craf; p-Akt/ total Ala; and p-ERK1/2/ total ERK1/2.
  • Extracted protein from tumor samples is assayed for markers of angiogenesis and invasion (VEGF, MMP-2 and Hif-1) by immunoblotting.
  • Baseline retrobulbar bleeding and cardiac puncture at sacrifice 2 h after the last administration of siRNA-Au NPs is performed to assess IL-8 levels by ELISA [Crawford et al., Mol Cancer Ther 7: 492-499 (2008)].
  • Akt3 activation impact the immune response and promote cytotoxic T cell function is also assessed.
  • the number of Foxp3+(regulatory T cells) and CTLA4+/CD152 are counted in tumor sections.
  • AEC chromogen red color
  • Tumor-infiltrating lymphocytes are extracted from skin tumors [Lin et al., J Immunol 182: 6095-6104 (2009)] and from mice sacrificed at 1, 4, and 7 weeks after initiation of therapy. Cells are subjected to FACS analysis after staining with fluorochrome-conjugated antibodies against CD4, CD25, Foxp3, CD8 and CTLA4.
  • mice require euthanasia by 25-50 days [Dankort et al., Nat Genet 41: 544-552 (2009)] (e.g., when either the tumor reaches 2 cm at its maximal diameter or the mouse is morbid, such as showing poor feeding, loss of 20% of body weight in one week or 10% of body weight in two consecutive weeks, abnormal respiration, or posture indicating pain).
  • mice are sacrificed at time points up to 10 weeks. Treatment of mice continues and a comparison to untreated and scrambled siRNA-Au NP-treated mice is performed for survival studies of up to 3 months. Mouse survival is plotted using Kaplan-Meier survival curves.
  • mice are weighed every other day and observed for evidence of altered behavior or appetite.
  • Liver and kidney tissues are assessed for evidence of tissue toxicity (e.g., apoptosis or inflammation) by routine histopathological staining, and screening blood studies for bone marrow, hepatic and renal function are performed according to methods known in the art. Additional immunohistochemical evaluation (such as TUNEL and Ki67) is performed if evidence of toxicity is suspected.
  • siRNA-induced off-target effects is assessed in serum obtained by cardiac puncture to performing Whole Genome arrays (Affymetrix). Gene array studies are performed in at least triplicate on samples from mice exposed for at least 7 weeks to BrafVE Akt 3 siRNA-Au NPs and their controls; samples are banked and arrays performed on mice with shorter exposures if off-target effects are detected.

Abstract

The present invention relates to compositions and methods for delivering an oligonucleotide-functionalized nanoparticle.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the priority benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/187,759, filed Jun. 17, 2009, and is a continuation-in-part of U.S. application Ser. No. 12/684,836, filed Jan. 8, 2010 which claims the priority benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/143,293, filed Jan. 8, 2009, and U.S. Provisional Application No. 61/169,384, filed Apr. 15, 2009, the disclosures of all of which are incorporated herein by reference in their entirety.
  • STATEMENT OF GOVERNMENT INTEREST
  • This invention was made with government support under Grant Numbers 5DP1 OD000285 and U54 CA0119341, awarded by the National Institutes of Health (NIH). The government has certain rights in the invention.
  • FIELD OF THE INVENTION
  • The present invention is directed to oligonucleotide-modified nanoparticle (ON-NP) conjugates and methods of inhibiting bacterial protein production. The invention also relates to compositions and methods of delivering oligonucleotide-functionalized nanoparticle.
  • BACKGROUND OF THE INVENTION
  • Introduction of genetic material into cells and tissues for controlling gene expression has significantly impacted research involving gene pathways and function, and provides promise for therapeutic application. The genetic level approach has inherent specificity not available with the vast majority of drugs. siRNAs hold great promise as potential therapeutic tools and are currently in clinical trials, targeting a wide range of clinical problems including cancer. Gene silencing is much more cost-effective, and leads to down-regulation of protein expression and function with greater potential specificity than small molecule inhibitors. In particular, siRNA treatment may target a single point mutation in a gene, while small molecule therapy to date does not precisely distinguish between mutant and normal gene products. Given the ability to determine specific gene alterations in each melanoma through identification of hotspot mutations, direct gene sequencing, or assays for gene amplification, each melanoma can be assigned a specific genetic signature. Although the siRNA may be taken up by many cells, only cells with a mutated gene or activated signaling protein are affected by targeted gene therapy, thereby allowing normalization of pathway signaling in melanomas without adversely affecting normal cells.
  • As with delivery of many proteins, degradation of nucleic acids and poor bioavailability from the gastrointestinal tract are major hurdles to the oral delivery of siRNAs. Even with intravenous delivery, conventional siRNA is rapidly degraded by serum factors and does not reach its targets. Topical application of nucleic acids offers great therapeutic advantages, both for suppressing genes in lesional skin (for example and without limitation, to treat metastases in skin) and for transdermal delivery to internal targets. Application is painless and easily controlled, and skin is highly accessible. The effective physical barrier in the epidermis is localized mainly to the outermost area of epidermis, the stratum corneum, and to a lesser extent the deeper epidermis. This epidermal barrier protects against extensive water loss (inside-out) and against the entry of environmental substances (outside-in), including nucleic acids. Mechanical approaches, such as ultrasound, laser and injection, have been used to facilitate penetration through the mouse stratum corneum and drive siRNA into skin, but require specialized equipment, limit the area of delivery, and potentially harm the skin. These challenges emphasize the need for an easily applied transdermal system for delivering suppressive nucleic acids that is able to transit the stratum corneum.
  • Direct targeting of a skin disorder is an ideal model for gene suppressive therapy. However, the commercially available materials to suppress genes in vitro have been marginally successful, at best, for delivering genetic material into primary cultured cells, such as keratinocytes (KCs) and melanocytes. Furthermore, the outer layers of skin function as an anatomic barrier that traditionally prevents the penetration of nucleic acids and proteins into skin and, from dermis, into the circulation [Prausnitz et al., Nat Biotechnol 26: 1261-1268 (2008)]. Thus, traversing this layer to transfer sufficient amounts of oligonucleotides has been a challenge.
  • The skin is the largest organ of the body and contains three layers: the epidermis, dermis, and subcutaneous tissue. The epidermis is the outer layer of skin. The thickness of the epidermis varies in different types of skin. It is the thinnest on the eyelids at 0.05 mm and the thickest on the palms and soles at 1.5 mm. The epidermis contains 4 major layers of progressively more differentiated cells. From bottom to top the layers are named:
      • stratum basale
      • stratum spinosum
      • stratum granulosum
      • stratum corneum
  • The bottom layer, the stratum basale, has cells that are shaped like columns. In this layer the cells divide and push already-formed cells into higher layers. As the cells move into the higher layers, they flatten, become more mature and eventually “die” and are shed. The top layer of the epidermis, the stratum corneum, is made of flattened skin cells that are shed; it takes about 4 weeks from cells of the stratum basale to reach the stratum corneum and subsequently be shed.
  • SUMMARY OF THE INVENTION
  • The present disclosure provides compositions and methods for delivering an oligonucleotide-functionalized nanoparticle.
  • In some embodiments, the present disclosure provides a dermal composition comprising an oligonucleotide-functionalized nanoparticle (ON-NP) and a dermal vehicle.
  • Also provided by the present disclosure is a method of dermal delivery of an oligonucleotide-functionalized nanoparticle comprising the step of administering a composition comprising the oligonucleotide-functionalized nanoparticle and a dermal vehicle to the skin of a patient in need thereof.
  • In one aspect, the delivery of the oligonucleotide-functionalized nanoparticle is transdermal. In another aspect, the delivery of the oligonucleotide-functionalized nanoparticle is topical. In another aspect, the delivery of the oligonucleotide-functionalized nanoparticle is to the epidermis and dermis after topical application.
  • In some embodiments, the dermal vehicle comprises an ointment. In some aspects, the ointment is Aquaphor.
  • In another embodiment, a method of regulating gene expression is provided comprising the step of administering a therapeutically effective amount of a composition comprising an oligonucleotide-functionalized nanoparticle to skin under conditions wherein the oligonucleotide-functionalized nanoparticle hybridizes to a target and regulates gene expression.
  • In some aspects, the target is a polynucleotide. In related aspects, the polynucleotide is RNA. In some aspects, the target is a polypeptide.
  • In further embodiments of the present disclosure, the administration of the composition ameliorates a skin disorder.
  • In various embodiments, the skin disorder is selected from the group consisting of cancer, a genetic disorder, aging, inflammation, infection, and cosmetic disfigurement.
  • In some aspects, the cancer is selected from the group consisting of squamous cell carcinoma, basal cell carcinoma, breast cancer, and melanoma.
  • In still further embodiments, the target is a gene product expressed by a gene selected from the group consisting of Ras, IκBα, hedgehog, B-Raf, Akt and cyclin D.
  • In some aspects, the genetic disorder is selected from the group consisting of epideimolysis bullosa simplex, bullous ichthyosis, pachyonychia congenita, Costello syndrome and tuberous sclerosis. In further aspects, the target is a gene product that comprises a mutation, said gene product being expressed by a gene selected from the group consisting of K5, K14, K1, K10, H-Ras and m-Tor.
  • In some embodiments, the aging disorder is selected from the group consisting of UV-damage and progeria. In some aspects, the target is a gene product expressed by a gene selected from the group consisting of matrix metalloproteinase-1 and progerin.
  • In some embodiments, the inflammation is due to psoriasis. In some aspects, the target is interleukin-23.
  • In one embodiment, the viral infection results in warts. In some aspects, the target is E6/E7.
  • In further embodiments, the cosmetic disfigurement is selected from the group consisting of seborrheic keratoses, epidermal nevi and pigmented nevi. In various aspects, the target is a gene product comprising a mutation, said gene product being expressed by a gene selected from the group consisting of FGFR3, K10 and B-Raf.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts a schematic of oligonucleotide gold nanoparticle (Au-NP) conjugate blocking promoter complex binding (A) and full mRNA transcript formation (B) forming.
  • FIG. 2 depicts electron microscopy images of E. coli following conjugate treatment.
  • FIG. 3 depicts a summary of results for the inhibition of bacterial luciferase expression using nanoparticles. Nonsense denotes a sequence with no complementary region on the E. coli genome or transfected plasmid. Antisense denotes a sequence targeting luciferase. Relative luciferase activity is shown as percentages within the bars, normalized to renilla expression.
  • FIG. 4 depicts the duplex invasion scheme. A) Schematic of invasion of a duplex (fluorescein and adjacent dabcyl at terminus of duplex) by nanoparticle thereby releasing fluorescence signal. B) Results demonstrating increasing fluorescence with duplex invasion, both in short (20 base pair) duplexes and long (40 base pair) duplexes (Gray boxes represent nonsense sequences, Black boxes represent antisense sequences).
  • FIG. 5 depicts penetration of approximately 25 nM siRNA-gold nanoparticles into the epidermis, dermis, and subcutaneous tissues within 24 hours after application. A) Confocal imaging of siRNA-Au NPs in mouse skin. Left panel=Cy3. The bright color is the stratum corneum (outer skin)ayer), which may be brightly fluorescent both because of dense particle accumulation and autofluorescence; The hair (seen in longitudinal section within follicles) also is intensely fluorescent; Middle=DAPI staining of nuclei; Right=Overlap image. The image shows the uptake of fluorescent siRNA-Au NPs in ˜100% of epidermal cells. B) Adipocytes (arrows) and fibroblasts of the underlying mesenchymal tissue (+) also take up fluorescent particles almost universally. Bar=20 μm.
  • FIG. 6 depicts GFP knockdown in C57BL/6-Tg(UBC-GFP)30 Scha/J mice after 4 weeks of treatment with siRNA-Au NPs.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Disclosed herein is a nanoparticle delivery system that can be administered topically or transdermally for systemic delivery. In some embodiments, this system utilizes siRNA duplexes that are densely packed on the surface of nanoparticles (siRNA-NPs). These conjugates exhibit a number of unique properties that include but are not limited to: Retention of the oligonucleotide shell under biological conditions, resulting in a single agent capable of simultaneous transfection and gene regulation. Oligonucleotide-NPs (ON-NPs) are readily able to traverse cellular membranes without the addition of toxic transfection reagents. Importantly, these structures do not serve solely as vehicles for nucleic acid delivery, but remain conjugated as structures inside cells. Fluorescence spectroscopy studies reveal that the thiolated oligonucleotides remain bound to the NPs after cellular internalization, allowing one to take advantage of the composite properties of the nanomaterials. Another property exhibited by ON-NPs is their extraordinary stability in physiological environments. Unlike other nanomaterials and gene transfection reagents, oligonucleotide-NPs can be easily manipulated under biologically relevant conditions. These include high and low salt concentrations, extremes in pH, and fluctuations in temperature. An additional property of ON-NPs is their resistance to nuclease degradation. Since endo- and exo-nucleases are present in biological fluids and function to destroy foreign genetic material, methods for increasing the enzyme stability of nucleic acids are of paramount importance. While previous strategies to increase the enzyme stability of nucleic acids have relied on chemical modification, the enhanced resistance of oligonucleotide-NPs is unique in that it is based on dense functionalization of a nanoparticle surface. This environment creates a higher local dielectric within the vicinity of the nanoparticle surface, thus providing for both high affinity target recognition, and resistance to enzymatic degradation. A further property exhibited by ON-NPs is their ability to enter a variety of cell types, including “hard to transfect” primary cells without the use of auxiliary reagents. Another property of ON-NPs is their lack of apparent toxicity. These nanoconjugates have unique size, charge, and surface functionality, with properties derived from the combination of the oligonucleotide and the NP. Preliminary toxicology screening for these unique materials has shown no acute toxicity at high doses in animal models.
  • In is disclosed herein that topical application of ON-NPs is a novel means to deliver selective gene suppression to lesional skin, lymph nodes, or into the circulation for transdermal delivery to internal targets. In one embodiment, by delivering ON-NPs directly to lesional skin, oligonucleotide-NP concentration is maximized at the sites of maximal tumor load, while minimizing potential side effects.
  • In one aspect, the present disclosure provides an antibiotic composition and methods of its use. In one aspect, the antibiotic composition comprises a nanoparticle modified to include an oligonucleotide, wherein the oligonucleotide is sufficiently complementary to a target non-coding sequence of a prokaryotic gene such that the oligonucleotide will hybridize to the target sequence under conditions that allow hybridization. Through this hybridization, the antibiotic composition inhibits growth of the target prokaryotic cell. In the target cell, in certain aspects, hybridization inhibits expression of a functional protein encoded by the targeted sequence. In various aspects, transcription, translation or both of a prokaryotic protein encoded by the targeted sequence is inhibited. The disclosure further provides a method of utilizing the antibiotic composition disclosed herein for inhibiting production of a target prokaryotic gene product in a cell comprising the step of contacting the cell with the antibiotic composition, wherein the oligonucleotide associated with the nanoparticle of the composition is sufficiently complementary to a target non-coding sequence of a bacterial gene under conditions that allow hybridization, and wherein hybridization results in inhibition of a functional prokaryotic gene product encoded by the target gene. It will be appreciated by those of ordinary skill in the art that inhibition of either transcription or translation, or both transcription and translation, of the target prokaryotic sequence results in the inhibition of production of a functional protein encoded by the target prokaryotic sequence.
  • Hybridization of an oligonucleotide-functionalized nanoparticle and a target prokaryotic sequence forms a “complex” as defined herein. As used herein, a “complex” is either a double-strand (or duplex) complex or a triple-strand (or triplex) complex. It is contemplated herein that a triplex complex and a duplex complex inhibit translation or transcription of a target bacterial prokaryotic acid.
  • As used herein, a “non-coding sequence” has a meaning accepted in the art. In general, non-coding sequence describes a polynucleotide sequence that does not contain codons for translation a protein encoded by the gene. In some aspects, a non-coding sequence is chromosomal. In some aspects, a non-coding sequence is extra-chromosomal. In one aspect, a non-coding sequence is complementary to all or part of the coding sequence of the gene. Non-coding sequences include regulatory elements such as promoters, enhancers, and silencers of expression. Examples of non-coding sequences are 5′ non-coding sequences and 3′ non-coding sequences. A “5′ non-coding sequence” refers to a polynucleotide sequence located 5′ (upstream) to the coding sequence. The 5′ non-coding sequence can be present in the fully processed mRNA upstream of the initiation codon and may affect processing of the primary transcript to mRNA, mRNA stability or translation efficiency. A “3′ non-coding sequence” refers to nucleotide sequences located 3′ (downstream) to a coding sequence and includes polyadenylation signal sequences and other sequences encoding signals capable of affecting mRNA processing or gene expression. The polyadenylation signal is usually characterized by its ability to affect the addition of polyadenylic acid sequences to the 3′ end of the mRNA precursor.
  • In one embodiment, a non-coding sequence comprises a promoter. A “promoter” is a polynucleotide sequence that directs the transcription of a structural gene. Typically, a promoter is located in the 5′ non-coding sequence of a gene, proximal to the transcriptional start site of a structural gene. Sequence elements within promoters that function in the initiation of transcription are often characterized by consensus nucleotide sequences. These promoter elements include RNA polymerase binding sites, TATA sequences, CAAT sequences, differentiation-specific elements [DSEs; McGehee et al., Mol. Endocrinol. 7: 551 (1993)] cyclic AMP response elements (CREs), serum response elements [SREs; Treisman, Seminars in Cancer Biol. 1:47 (1990)], glucocorticoid response elements (GREs), and binding sites for other transcription factors, such as CRE/ATF [O′Reilly et al., J. Biol. Chem. 267:19938 (1992)], AP2 [Ye et al., J. Biol. Chem. 269:25728 (1994)], SP1, cAMP response element binding protein [CREB; Loeken, Gene Expr. 3:253 (1993)] and octamer factors [see, in general, Watson et al., eds., Molecular Biology of the Gene, 4th ed. (The Benjamin/Cummings Publishing Company, Inc. 1987), and Lemaigre and Rousseau, Biochem. J. 303:1 (1994)]. If a promoter is an inducible promoter, then the rate of transcription increases in response to an inducing agent. In contrast, the rate of transcription is not regulated by an inducing agent if the promoter is a constitutive promoter. Repressible promoters are also known. A “core promoter” contains essential nucleotide sequences for promoter function, including the TATA box and start of transcription. By this definition, a core promoter may or may not have detectable activity in the absence of specific sequences that may enhance the activity or confer tissue specific activity.
  • In another embodiment, a non-coding sequence comprises a regulatory element. A “regulatory element” is a polynucleotide sequence that modulates the activity of a core promoter. For example, a regulatory element may contain a polynucleotide sequence that binds with cellular factors enabling transcription exclusively or preferentially in particular prokaryotes.
  • In another embodiment, a non-coding sequence comprises an enhancer. An “enhancer” is a type of regulatory element that can increase the efficiency of transcription, regardless of the distance or orientation of the enhancer relative to the start site of transcription.
  • It is noted here that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise.
  • It is to be noted that the terms “polynucleotide” and “oligonucleotide” are used interchangeably herein and have meanings accepted in the art.
  • It is further noted that the teens “attached”, “conjugated”, “modified” and “functionalized” are also used interchangeably herein and refer to the association of an oligonucleotide with a nanoparticle.
  • “Hybridization” means an interaction between two or three strands of nucleic acids by hydrogen bonds in accordance with the rules of Watson-Crick DNA complementarity, Hoogstein binding, or other sequence-specific binding known in the art. Hybridization can be performed under different stringency conditions known in the art.
  • The terms “oligonucleotide-functionalized nanoparticle” and “nanoconjugate” are used interchangeably herein.
  • As used herein, the melting temperature, or “Tm” is the temperature at which two specific nucleic acids that are hybridized are dissociated by 50%.
  • As used herein, the term “dermal” means of or relating to the skin, and is used interchangeably herein with “cutaneous.” As used herein, “transdermal” means across the skin to the subcutaneous tissues and, often, into the systemic vascular or lymphatic circulation. The term “topical” as used herein means pertaining to the skin. Thus, when a composition is applied topically, it is applied to the skin. It will be understood by those of ordinary skill in the art, however, that the term “topical” does not necessarily refer to where the composition will remain, but rather how it is applied.
  • Compositions and methods of the present disclosure are, in various embodiments, contemplated to target different depths of skin depending on, for example and without limitation, a particular target of interest. In various embodiments, the compositions of the present disclosure target the epidermis. In some embodiments, the compositions of the present disclosure target the dermis. In further embodiments, the compositions of the present disclosure travel transdermally and reach subcutaneous tissue, the systemic vasculature or lymphatic circulation.
  • Factors that affect the depth of penetration of the compositions and methods of the present disclosure include, but are not limited to, the size of the nanoparticle and the density of functionalized oligonucleotides on the surface of the nanoparticle. These aspects are described in further detail herein below. Thus, in some aspects the present disclosure contemplates that the oligonucleotide-functionalized nanoparticle itself facilitates the depth to which the compositions of the present disclosure can travel. In some aspects, the vehicle in the composition facilitates the depth to which the compositions of the present disclosure can travel. In still further aspects, the combination of the vehicle and oligonucleotide-functionalized nanoparticle together facilitate the depth to which the compositions of the present disclosure can travel.
  • Melanomas represent a heterogeneous group of tumors, with different patterns of oncogenic mutation and genomic amplification. Progression from a precursor lesion, such as a pigmented nevus, to melanoma is thought to follow a stepwise pathway with genetic change leading to activation of signaling pathways. Most common is activation of the RAS/RAF/MEK/ERK pathway (approximately 60% of melanomas have activating BRAF mutations and 25% NRAS mutations). Sun-exposed sites most commonly show BRAF mutations, whereas the less common mucosal or acral sites rarely show BRAF mutations.
  • More than 95% of the BRAF mutations [Dhomen et al., Hematol Oncol Clin North Am 23, 529-545, ix (2009)] is a point mutation (T1799A) that substitutes valine for glutamic acid (V600E) and increases BRAF activation 500-fold. This mutation leads to hyperactive melanocyte ERK signaling and growth factor-independent proliferation of explanted tumors in mouse models [Wellbrock et al., Cancer Res. 64(7): 2338-42 (2004)].
  • Activation of the BRAF/ERK pathway alone, however, does not explain melanoma transformation. Indeed, metastatic melanomas tend to harbor more than one gene alteration [Goel et al., Oncogene 28: 2289-2298 (2009)] (see Table A, below), most commonly leading to activation of the phosphoinositide 3-kinase (P)3K)/protein kinase B (AKT) pathway (˜70% of sporadic melanomas) [Cheung et al., Cancer Res 68: 3429-3439 (2008)], in addition to BRAF/ERK activation. The critical role of constitutive PI3K/AKT activation in the BRAF V600E mutation-mediated development of melanoma has now been demonstrated in both in vitro and mouse studies. BRAF mutations are frequently found in combination with either PTEN loss/inactivation (˜30% of cell lines and at least 58% of melanoma metastases)(Birck et al., 2000) or activating AKT3 mutations (43-50% of melanomas) [Davies et al., Br J Cancer 99: 1265-1268 (2008); Lin et al., Cancer Res 68: 664-673 (2008); Stahl et al., Cancer Res 64: 7002-7010 (2004); Tsao et al., J Invest Dermatol 122: 337-341 (2004)].
  • TABLE A
    Genotypes of selected melanocytic cells and melanoma cell lines
    Cell line Genetic change Metastases
    Normal human None None
    melanocytes
    BRAFVEPTENlox Braf V600E (inducible by 4-HT), Lungs,
    (mouse) PTEN loss Lymph Node
    SK-MEL28 Homozygous BRAF V600E, CDK4 Lungs, liver
    R24C, PTEN T167A, p53 L145R,
    wildtype c-KIT, NRAS, CDKN2a
    1205Lu Hemizygous BRAF V600E, CDK4 Lung
    K22Q, PTEN MU/Hem del,
    CDKN2a mut, wildtype c-KIT,
    NRAS, p53
    A375P BRAF V600E, wildtype CDK4, None
    PTEN, p53, c-KIT, NRAS, CDKN2a
    C8161 AKT activation, but no BRAF Lung, liver
    mutation; other mutations unknown
  • Antibiotic Compositions
  • In some embodiments, the present disclosure provides antibiotic compositions comprising an oligonucleotide-modified nanoparticle and a vehicle, wherein the oligonucleotide is sufficiently complementary to a target non-coding sequence of a prokaryotic gene that it will hybridize to the target sequence under conditions that allow hybridization. In various embodiments, the antibiotic compositions are formulated for administration in a therapeutically effective amount to a mammal in need thereof for the treatment of a prokaryotic cell infection. In some aspects, the mammal is a human.
  • In various embodiments, it is contemplated that hybridization of the oligonucleotide-modified nanoparticle to a prokaryotic gene inhibits (or prevents) the growth of a prokaryotic cell. Thus, the hybridization of the oligonucleotide-modified nanoparticle to a prokaryotic gene is contemplated to result in a bacteriostatic or bactericidal effect in aspects wherein the prokaryote is bacteria. In aspects wherein the hybridization occurs in vivo, the growth of the prokaryotic cell is inhibited by about 5% compared to the growth of the prokaryotic cell in the absence of contact with the oligonucleotide-modified nanoparticle. In various aspects, the growth of the prokaryotic cell is inhibited by about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 2-fold, about 3-fold, about 4-fold, about 5-fold, about 6-fold, about 7-fold, about 8-fold, about 9-fold, about 10-fold, about 20-fold, about 50-fold or more compared to the growth of the prokaryotic cell in the absence of contact with the oligonucleotide-modified nanoparticle.
  • In aspects wherein the hybridization occurs in vitro, the growth of the prokaryotic cell is inhibited by about 5% compared to the growth of the prokaryotic cell in the absence of contact with the oligonucleotide-modified nanoparticle. In various aspects, the growth of the prokaryotic cell is inhibited by about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 2-fold, about 3-fold, about 4-fold, about 5-fold, about 6-fold, about 7-fold, about 8-fold, about 9-fold, about 10-fold, about 20-fold, about 50-fold or more compared to the growth of the prokaryotic cell in the absence of contact with the oligonucleotide-modified nanoparticle.
  • Whether the inhibition is in vivo or in vitro, one of ordinary skill in the art can determine the level of inhibition of prokaryotic cell growth using routine techniques. For example, direct quantitation of the number of prokaryotic cells is performed by obtaining a set of samples (e.g., a bodily fluid in the case of in vivo inhibition or a liquid culture sample in the case of in vitro inhibition) wherein the samples are collected over a period of time, culturing the samples on solid growth-permissive media and counting the resultant number of prokaryotic cells that are able to grow. The number of prokaryotic cells at a later time point versus the number of prokaryotic cells at an earlier time point yields the percent inhibition of prokaryotic cell growth.
  • In some embodiments, hybridization of the oligonucleotide-modified nanoparticle to a prokaryotic gene inhibits expression of a functional prokaryotic protein encoded by the prokaryotic gene. A “functional prokaryotic protein” as used herein refers to a full length wild type protein encoded by a prokaryotic gene. In one aspect, the expression of the functional prokaryotic protein is inhibited by about 5% compared to a cell that is not contacted with the oligonucleotide-modified nanoparticle. In various aspects, the expression of the functional prokaryotic protein is inhibited by about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 2-fold, about 3-fold, about 4-fold, about 5-fold, about 6-fold, about 7-fold, about 8-fold, about 9-fold, about 10-fold, about 20-fold, about 50-fold or more compared to a cell that is not contacted with the oligonucleotide-modified nanoparticle. In other words, methods provided embrace those which results in any degree of inhibition of expression of a target gene product.
  • In related aspects, the hybridization of the oligonucleotide-modified nanoparticle to a prokaryotic gene inhibits expression of a functional protein essential for prokaryotic cell growth. In one aspect, the expression of the functional prokaryotic protein essential for prokaryotic cell growth is inhibited by about 5% compared to a cell that is not contacted with the oligonucleotide-modified nanoparticle. In various aspects, the expression of the functional prokaryotic protein essential for prokaryotic cell growth is inhibited by about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 2-fold, about 3-fold, about 4-fold, about 5-fold, about 6-fold, about 7-fold, about 8-fold, about 9-fold, about 10-fold, about 20-fold, about 50-fold or more compared to a cell that is not contacted with the oligonucleotide-modified nanoparticle.
  • Prokaryotic proteins essential for growth include, but are not limited to, a gram-negative gene product, a gram-positive gene product, cell cycle gene product, a gene product involved in DNA replication, a cell division gene product, a gene product involved in protein synthesis, a bacterial gyrase, and an acyl carrier gene product. These classes are discussed in detail herein below.
  • The present disclosure also contemplates an antibiotic composition wherein hybridization to a target non-coding sequence of a prokaryotic gene results in expression of a protein encoded by the prokaryotic gene with altered activity. In one aspect, the activity of the protein encoded by the prokaryotic gene is reduced about 5% compared to the activity of the protein in a prokaryotic cell that is not contacted with the oligonucleotide-modified nanoparticle. In various aspects, activity of the prokaryotic protein is inhibited by about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 96%, about 97%, about 98% about 99% or about 100% compared to the activity of the protein in a prokaryotic cell that is not contacted with the oligonucleotide-modified nanoparticle. In another aspect, the activity of the protein encoded by the prokaryotic gene is increased about 5% compared to the activity of the protein in a prokaryotic cell that is not contacted with the oligonucleotide-modified nanoparticle. In various aspects, the expression of the prokaryotic protein is increased by about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 2-fold, about 3-fold, about 4-fold, about 5-fold, about 6-fold, about 7-fold, about 8-fold, about 9-fold, about 10-fold, about 20-fold, about 50-fold or more compared to the activity of the protein in a prokaryotic cell that is not contacted with the oligonucleotide-modified nanoparticle.
  • The activity of the protein in a prokaryotic cell is increased or decreased as a function of several parameters including but not limited to the sequence of the oligonucleotide attached to the nanoparticle, the prokaryotic gene (and the protein encoded by the gene) that is targeted, and the size of the nanoparticle.
  • In various embodiments, it is contemplated that the antibiotic composition of the present disclosure inhibits transcription of the prokaryotic gene. In some embodiments, it is contemplated that the antibiotic composition of the present disclosure inhibits translation of the prokaryotic gene.
  • In some embodiments, the antibiotic composition hybridizes to a target non-coding sequence of a prokaryotic gene that confers a resistance to an antibiotic. These genes are known to those of ordinary skill in the art and are discussed, e.g., in Liu et al., Nucleic Acids Research 37: D443-D447, 2009 (incorporated herein by reference in its entirety). In some aspects, hybridization of the antibiotic composition to a target non-coding sequence of a prokaryotic gene that confers a resistance to an antibiotic results in increasing the susceptibility of the prokaryote to an antibiotic. In one aspect, the susceptibility of the prokaryote to the antibiotic is increased by about 5% compared to the susceptibility of the prokaryote that was not contacted with the antibiotic composition. In various aspects, the susceptibility of the prokaryote to the antibiotic is increased by about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 2-fold, about 3-fold, about 4-fold, about 5-fold, about 6-fold, about 7-fold, about 8-fold, about 9-fold, about 10-fold, about 20-fold, about 50-fold or more compared to the susceptibility of the prokaryote that was not contacted with the antibiotic composition. Relative susceptibility to an antibiotic can be determined by those of ordinary skill in the art using routine techniques as described herein.
  • Combination Therapy with Antibiotics
  • In some embodiments, the antibiotic composition comprising the oligonucleotide-modified nanoparticle conjugates are formulated for administration in combination with an antibiotic agent, each in a therapeutically effective amount.
  • The term “antibiotic agent” as used herein means any of a group of chemical substances having the capacity to inhibit the growth of, or to kill bacteria, and other microorganisms, used chiefly in the treatment of infectious diseases. See, e.g., U.S. Pat. No. 7,638,557 (incorporated by reference herein in its entirety). Examples of antibiotic agents include, but are not limited to, Penicillin G; Methicillin; Nafcillin; Oxacillin; Cloxacillin; Dicloxacillin; Ampicillin; Amoxicillin; Ticarcillin; Carbenicillin; Mezlocillin; Azlocillin; Piperacillin; Imipenem; Aztreonam; Cephalothin; Cefaclor; Cefoxitin; Cefuroxime; Cefonicid; Cefmetazole; Cefotetan; Cefprozil; Loracarbef; Cefetamet; Cefoperazone; Cefotaxime; Ceftizoxime; Ceftriaxone; Ceftazidime; Cefepime; Cefixime; Cefpodoxime; Cefsulodin; Fleroxacin; Nalidixic acid; Norfloxacin; Ciprofloxacin; Ofloxacin; Enoxacin; Lomefloxacin; Cinoxacin; Doxycycline; Minocycline; Tetracycline; Amikacin; Gentamicin; Kanamycin; Netilmicin; Tobramycin; Streptomycin; Azithromycin; Clarithromycin; Erythromycin; Erythromycin estolate; Erythromycin ethyl succinate; Erythromycin glucoheptonate; Erythromycin lactobionate; Erythromycin stearate; Vancomycin; Teicoplanin; Chloramphenicol; Clindamycin; Trimethoprim; Sulfamethoxazole; Nitrofurantoin; Rifampin; Mupirocin; Metronidazole; Cephalexin; Roxithromycin; Co-amoxiclavuanate; combinations of Piperacillin and Tazobactam; and their various salts, acids, bases, and other derivatives. Anti-bacterial antibiotic agents include, but are not limited to, penicillins, cephalosporins, carbacephems, cephamycins, carbapenems, monobactams, aminoglycosides, glycopeptides, quinolones, tetracyclines, macrolides, and fluoroquinolones.
  • Dosing and Pharmaceutical Compositions
  • The term “therapeutically effective amount”, as used herein, refers to an amount of a composition sufficient to treat, ameliorate, or prevent the identified disease or condition, or to exhibit a detectable therapeutic, prophylactic, or inhibitory effect. The effect can be detected by, for example, an improvement in clinical condition, reduction in symptoms, or by an assay described herein. The precise effective amount for a subject will depend upon the subject's body weight, size, and health; the nature and extent of the condition; and the antibiotic composition or combination of compositions selected for administration. Therapeutically effective amounts for a given situation can be determined by routine experimentation that is within the skill and judgment of the clinician.
  • The compositions described herein may be formulated in pharmaceutical compositions with a pharmaceutically acceptable excipient, carrier, or diluent. The compound or composition can be administered by any route that permits treatment of the prokaryotic infection or condition. As described herein, compositions of the present disclosure that comprise an ON-NP and a vehicle are provided that are useful for topical application. An additional route of administration is oral administration. Additionally, the compound or composition may be delivered to a patient using any standard route of administration, including parenterally, such as intravenously, intraperitoneally, intrapulmonary, subcutaneously or intramuscularly, intrathecally, transdermally, rectally, orally, nasally or by inhalation. Slow release formulations may also be prepared from the agents described herein in order to achieve a controlled release of the active agent in contact with the body fluids in the gastro intestinal tract, and to provide a substantial constant and effective level of the active agent in the blood plasma. The crystal form may be embedded for this purpose in a polymer matrix of a biological degradable polymer, a water-soluble polymer or a mixture of both, and optionally suitable surfactants. Embedding can mean in this context the incorporation of micro-particles in a matrix of polymers. Controlled release formulations are also obtained through encapsulation of dispersed micro-particles or emulsified micro-droplets via known dispersion or emulsion coating technologies.
  • Administration may take the form of single dose administration, or the compound of the embodiments can be administered over a period of time, either in divided doses or in a continuous-release formulation or administration method (e.g., a pump). However the compounds of the embodiments are administered to the subject, the amounts of compound administered and the route of administration chosen should be selected to permit efficacious treatment of the disease condition.
  • In an embodiment, the pharmaceutical compositions may be formulated with pharmaceutically acceptable excipients such as carriers, solvents, stabilizers, adjuvants, diluents, etc., depending upon the particular mode of administration and dosage form. The pharmaceutical compositions should generally be formulated to achieve a physiologically compatible pH, and may range from a pH of about 3 to a pH of about 11, preferably about pH 3 to about pH 7, depending on the formulation and route of administration. In alternative embodiments, it may be preferred that the pH is adjusted to a range from about pH 5.0 to about pH 8. More particularly, the pharmaceutical compositions comprises in various aspects a therapeutically or prophylactically effective amount of at least one composition as described herein, together with one or more pharmaceutically acceptable excipients. As described herein, the pharmaceutical compositions may optionally comprise a combination of the compounds described herein.
  • The term “pharmaceutically acceptable excipient” refers to an excipient for administration of a pharmaceutical agent, such as the compounds described herein. The term refers to any pharmaceutical excipient that may be administered without undue toxicity.
  • Pharmaceutically acceptable excipients are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition. Accordingly, there exists a wide variety of suitable formulations of pharmaceutical compositions (see, e.g., Remington's Pharmaceutical Sciences).
  • Suitable excipients may be carrier molecules that include large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Other exemplary excipients include antioxidants (e.g., ascorbic acid), chelating agents (e.g., EDTA), carbohydrates (e.g., dextrin, hydroxyalkylcellulose, and/or hydroxyalkylmethylcellulose), stearic acid, liquids (e.g., oils, water, saline, glycerol and/or ethanol) wetting or emulsifying agents, pH buffering substances, and the like. Liposomes are also included within the definition of pharmaceutically acceptable excipients.
  • Additionally, the pharmaceutical compositions may be in the form of a sterile injectable preparation, such as a sterile injectable aqueous emulsion or oleaginous suspension. This emulsion or suspension may be formulated by a person of ordinary skill in the art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, such as a solution in 1,2-propane-diol.
  • The sterile injectable preparation may also be prepared as a lyophilized powder. Among the acceptable solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile fixed oils may be employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids (e.g., oleic acid) may likewise be used in the preparation of injectables.
  • Inhibition of Prokaryotic Protein
  • In some aspects, the disclosure provides methods of targeting specific nucleic acids. Any type of prokaryotic nucleic acid may be targeted, and the methods may be used, e.g., for inhibition of production of a functional prokaryotic gene product. Examples of nucleic acids that can be targeted by the methods of the invention include but are not limited to genes and prokaryotic RNA or DNA.
  • For prokaryotic target nucleic acid, in various aspects, the nucleic acid is RNA transcribed from genomic DNA.
  • The degree of inhibition is determined in vivo from, for example a body fluid sample of an individual in whom the target prokaryote is found and for which inhibition of a prokaryotic protein is desirable, or by imaging techniques in an individual in whom the target prokaryote is found and for which inhibition of a prokaryotic protein is desirable, well known in the art. Alternatively, the degree of inhibition is determined in vivo by quantitating the amount of a prokaryote that remains in cell culture or an organism compared to the amount of a prokaryote that was in cell culture or an organism at an earlier time point.
  • In embodiments where a triplex complex is formed, it is contemplated that a mutation is introduced to the prokaryotic genome. In these embodiments, the oligonucleotide-modified nanoparticle conjugate comprises the mutation and formation of a triplex complex initiates a recombination event between the oligonucleotide attached to the nanoparticle and a strand of the prokaryotic genome.
  • Oligonucleotide Hybridization and Design
  • The oligonucleotide of the present disclosure has a Tm, when hybridized with the target polynucleotide sequence, of at least about 45° C., typically between about 50° to 60° C., although the Tm may be higher, e.g., 65° C. In aspects wherein the target is a prokaryotic polynucleotide, the selection of prokaryotic target polynucleotide sequence, and prokaryotic mRNA target polynucleotide sequences are considered herein below.
  • In one embodiment, the oligonucleotides of the invention are designed to hybridize to a target oligonucleotide sequence under physiological conditions, with a Tm substantially greater than 37° C., e.g., at least 45° C. and, in some aspects, approximately 60° C.-80° C. The oligonucleotide is designed to have high binding affinity to the nucleic acid and, in one aspect, is 100% complementary to the target oligonucleotide sequence, or it may include mismatches. Methods are provided in which the oligonucleotide is greater than 95% complementary to the target oligonucleotide sequence, greater than 90% complementary to the target oligonucleotide sequence, greater than 80% complementary to the target oligonucleotide sequence, greater than 75% complementary to the target oligonucleotide sequence, greater than 70% complementary to the target oligonucleotide sequence, greater than 65% complementary to the target oligonucleotide sequence, greater than 60% complementary to the target oligonucleotide sequence, greater than 55% complementary to the target oligonucleotide sequence, or greater than 50% complementary to the target oligonucleotide sequence.
  • It will be understood that one of skill in the art may readily determine appropriate targets for oligonucleotide modified nanoparticle conjugates, and design and synthesize oligonucleotides using techniques known in the art. Targets can be identified by obtaining , e.g., the sequence of a target nucleic acid of interest (e.g. from GenBank) and aligning it with other nucleic acid sequences using, for example, the MacVector 6.0 program, a ClustalW algorithm, the BLOSUM 30 matrix, and default parameters, which include an open gap penalty of 10 and an extended gap penalty of 5.0 for nucleic acid alignments.
  • Any essential prokaryotic gene is contemplated as a target gene using the methods of the present disclosure. As described above, an essential prokaryotic gene for any prokaryotic species can be determined using a variety of methods including those described by Gerdes for E. coli [Gerdes et al., J Bacteriol. 185(19): 5673-84, 2003]. Many essential genes are conserved across the bacterial kingdom thereby providing additional guidance in target selection. Target gene sequences can be identified using readily available bioinformatics resources such as those maintained by the National Center for Biotechnology Information (NCBI). Complete reference genomic sequences for a large number of microbial species can be obtained and sequences for essential bacterial genes identified. Bacterial strains are also in one aspect obtained from the American Type Culture Collection (ATCC). Simple cell culture methods, using the appropriate culture medium and conditions for any given species, can be established to determine the antibacterial activity of oligonucleotide modified nanoparticle conjugates.
  • Oligonucleotide modified nanoparticle conjugates showing optimal activity are then tested in animal models, or veterinary animals, prior to use for treating human infection.
  • Therapeutic Targets Target Sequences for Cell-Division and Cell-Cycle Target Proteins
  • The oligonucleotides of the present disclosure are designed to hybridize to a sequence of a prokaryotic nucleic acid that encodes an essential prokaryotic gene. Exemplary genes include but are not limited to those required for cell division, cell cycle proteins, or genes required for lipid biosynthesis or nucleic acid replication. Any essential bacterial gene is a target once a gene's essentiality is determined. One approach to determining which genes in an organism are essential is to use genetic footprinting techniques as described [Gerdes et al., J Bacterial. 185(19): 5673-84, 2003, incorporated by reference herein in its entirety]. In this report, 620 E. coli genes were identified as essential and 3,126 genes as dispensable for growth under culture conditions for robust aerobic growth. Evolutionary context analysis demonstrated that a significant number of essential E. coli genes are preserved throughout the bacterial kingdom, especially the subset of genes for key cellular processes such as DNA replication, cell division and protein synthesis.
  • In various aspects, the present disclosure provides an oligonucleotide that is a nucleic acid sequence effective to stably and specifically bind to a target sequence which encodes an essential bacterial protein including the following: (1) a sequence specific to a particular strain of a given species of bacteria, such as a strain of E. coli associated with food poisoning, e.g., O157:H7 (see Table 1 of U.S. Patent Application No. 20080194463, incorporated by reference herein in its entirety); (2) a sequence common to two or more species of bacteria; (3) a sequence common to two related genera of bacteria (i.e., bacterial genera of similar phylogenetic origin); (4) a sequence generally conserved among Gram-negative bacteria; (5) generally conserved among Gram-positive bacteria; or (6) a consensus sequence for essential bacterial protein-encoding nucleic acid sequences in general.
  • In general, the target for modulation of gene expression using the methods of the present disclosure comprises a prokaryotic nucleic acid expressed during active prokaryotic growth or replication, such as an mRNA sequence transcribed from a gene of the cell division and cell wall synthesis (division cell wall or dcw) gene cluster, including, but not limited to, zipA, sulA, secA, dicA, dicB, dicC, dicF, ftsA, ftsl, ftsN, ftsK, ftsL, ftsQ, ftsW, ftsZ, murC, murD, murE, murF, murg, minC, minD, minE, mraY, mraW, mraZ, seqA and ddlB. See [Bramhill, Annu Rev Cell Dev Biol. 13: 395-424, 1997], and [Donachie, Annu Rev Microbial. 47: 199-230, 1993], both of which are expressly incorporated by reference herein, for general reviews of bacterial cell division and the cell cycle of E. coli, respectively. Additional targets include genes involved in lipid biosynthesis (e.g. acpP) and replication (e.g. gyrA).
  • Cell division in E. coli involves coordinated invagination of all 3 layers of the cell envelope (cytoplasmic membrane, rigid peptidoglycan layer and outer membrane). Constriction of the septum severs the cell into two compartments and segregates the replicated DNA. At least 9 essential gene products participate in this process: ftsZ, ftsA, ftsQ, ftsL, ftsI, ftsN, ftsK, ftsW and zipA [Hale et al., J Bacteriol. 181(1): 167-76, 1999]. Contemplated protein targets are the three discussed below, and in particular, the GyrA and AcpP targets described below.
  • FtsZ, one of the earliest essential cell division genes in E. coli, is a soluble, tubulin-like GTPase that forms a membrane-associated ring at the division site of bacterial cells. The ring is thought to drive cell constriction, and appears to affect cell wall invagination. FtsZ binds directly to a novel integral inner membrane protein in E. coli called zipA, an essential component of the septal ring structure that mediates cell division in E. coli [Lutkenhaus et al., Annu Rev Biochem. 66: 93-116, 1997].
  • GyrA refers to subunit A of the bacterial gyrase enzyme, and the gene therefore. Bacterial gyrase is one of the bacterial DNA topoisomerases that control the level of supercoiling of DNA in cells and is required for DNA replication.
  • AcpP encodes acyl carrier protein, an essential cofactor in lipid biosynthesis. The fatty acid biosynthetic pathway requires that the heat stable cofactor acyl carrier protein binds intermediates in the pathway.
  • For each of these three proteins, Table 1 of U.S. Patent Application No. 20080194463 provides exemplary bacterial sequences which contain a target sequence for each of a number of important pathogenic bacteria. The gene sequences are derived from the GenBank Reference full genome sequence for each bacterial strain.
  • Target Sequences for Prokaryotic 16S Ribosomal RNA
  • In one embodiment, the oligonucleotides of the invention are designed to hybridize to a sequence encoding a bacterial 16S rRNA nucleic acid sequence under physiological conditions, with a Tm substantially greater than 37° C., e.g., at least 45° C. and preferably 60° C.-80° C.
  • More particularly, the oligonucleotide has a sequence that is effective to stably and specifically bind to a target 16S rRNA egne sequence which has one or more of the following characteristics: (1) a sequence found in a double stranded sequence of a 16s rRNA, e.g., the peptidyl transferase center, the alpha-sarcin loop and the mRNA binding sequence of the 16S rRNA sequence; (2) a sequence found in a single stranded sequence of a bacterial 16s rRNA; (3) a sequence specific to a particular strain of a given species of bacteria, i.e., a strain of E. coli associated with food poisoning; (4) a sequence specific to a particular species of bacteria; (5) a sequence common to two or more species of bacteria; (6) a sequence common to two related genera of bacteria (i.e., bacterial genera of similar phylogenetic origin); (7) a sequence generally conserved among Gram-negative bacterial 16S rRNA sequences; (6) a sequence generally conserved among Gram-positive bacterial 16S rRNA sequences; or (7) a consensus sequence for bacterial 16S rRNA sequences in general.
  • Exemplary bacteria and associated GenBank Accession Nos. for 16S rRNA sequences are provided in Table 1 of U.S. Pat. No. 6,677,153, incorporated by reference herein in its entirety.
  • Escherichia coli (E. coli) is a Gram-negative bacterium that is part of the normal flora of the gastrointestinal tract. There are hundreds of strains of E. coli, most of which are harmless and live in the gastrointestinal tract of healthy humans and animals. Currently, there are four recognized classes of enterovirulent E. coli (the “EEC group”) that cause gastroenteritis in humans. Among these are the enteropathogenic (EPEC) strains and those whose virulence mechanism is related to the excretion of typical E. coli enterotoxins. Such strains of E. coli can cause various diseases including those associated with infection of the gastrointestinal tract and urinary tract, septicemia, pneumonia, and meningitis. Antibiotics are not effective against some strains and do not necessarily prevent recurrence of infection.
  • For example, E. coli strain 0157:H7 is estimated to cause 10,000 to 20,000 cases of infection in the United States annually (Federal Centers for Disease Control and Prevention). Hemorrhagic colitis is the name of the acute disease caused by E. coli O157:H7. Preschool children and the elderly are at the greatest risk of serious complications. E. coli strain 0157:H7 was recently reported as the cause the death of four children who ate under-cooked hamburgers from a fast-food restaurant in the Pacific Northwest. [See, e.g., Jackson et al., Epidemiol. Infect. 120(1):17-20, 1998].
  • Exemplary sequences for enterovirulent E. coli strains include GenBank Accession Numbers X97542, AF074613, Y11275 and AJ007716.
  • Salmonella typhimurium, are Gram-negative bacteria that cause various conditions that range clinically from localized gastrointestinal infections, gastroenteritis (diarrhea, abdominal cramps, and fever) to enteric fevers (including typhoid fever) which are serious systemic illnesses. Salmonella infection also causes substantial losses of livestock.
  • Typical of Gram-negative bacilli, the cell wall of Salmonella spp. contains a complex lipopolysaccharide (LPS) structure that is liberated upon lysis of the cell and may function as an endotoxin, which contributes to the virulence of the organism.
  • Contaminated food is the major mode of transmission for non-typhoidal salmonella infection, due to the fact that Salmonella survive in meats and animal products that are not thoroughly cooked. The most common animal sources are chickens, turkeys, pigs, and cows; in addition to numerous other domestic and wild animals. The epidemiology of typhoid fever and other enteric fevers caused by Salmonella spp. is associated with water contaminated with human feces.
  • Vaccines are available for typhoid fever and are partially effective; however, no vaccines are available for non-typhoidal Salmonella infection. Non-typhoidal salmonellosis is controlled by hygienic slaughtering practices and thorough cooking and refrigeration of food. Antibiotics are indicated for systemic disease, and Ampicillin has been used with some success. However, in patients under treatment with excessive amounts of antibiotics, patients under treatment with immunosuppressive drugs, following gastric surgery, and in patients with hemolytic anemia, leukemia, lymphoma, or AIDS, Salmonella infection remains a medical problem.
  • Pseudomonas spp. are motile, Gram-negative rods which are clinically important because they are resistant to most antibiotics, and are a major cause of hospital acquired (nosocomial) infections. Infection is most common in immunocompromised individuals, burn victims, individuals on respirators, individuals with indwelling catheters, IV narcotic users and individual with chronic pulmonary disease (e.g., cystic fibrosis). Although infection is rare in healthy individuals, it can occur at many sites and lead to urinary tract infections, sepsis, pneumonia, pharyngitis, and numerous other problems, and treatment often fails with greater significant mortality.
  • Pseudotnonas aeruginosa is a Gram-negative, aerobic, rod-shaped bacterium with unipolar motility. An opportunistic human pathogen, P. aeruginosa is also an opportunistic pathogen of plants. Like other Pseudomonads, P. aeruginosa secretes a variety of pigments. Definitive clinical identification of P. aeruginosa can include identifying the production of both pyocyanin and fluorescein as well as the organism's ability to grow at 42° C. P. aeruginosa is also capable of growth in diesel and jet fuel, for which it is known as a hydrocarbon utilizing microorganism (or “HUM bug”), causing microbial corrosion.
  • Vibrio cholera is a Gram-negative rod which infects humans and causes cholera, a disease spread by poor sanitation, resulting in contaminated water supplies. Vibrio cholerae can colonize the human small intestine, where it produces a toxin that disrupts ion transport across the mucosa, causing diarrhea and water loss. Individuals infected with Vibrio cholerae require rehydration either intravenously or orally with a solution containing electrolytes. The illness is generally self-limiting; however, death can occur from dehydration and loss of essential electrolytes. Antibiotics such as tetracycline have been demonstrated to shorten the course of the illness, and oral vaccines are currently under development.
  • Neisseria gonorrhoea is a Gram-negative coccus, which is the causative agent of the common sexually transmitted disease, gonorrhea. Neisseria gonorrhoea can vary its surface antigens, preventing development of immunity to reinfection. Nearly 750,000 cases of gonorrhea are reported annually in the United States, with an estimated 750,000 additional unreported cases annually, mostly among teenagers and young adults. Ampicillin, amoxicillin, or some type of penicillin used to be recommended for the treatment of gonorrhea. However, the incidence of penicillin-resistant gonorrhea is increasing, and new antibiotics given by injection, e.g., ceftriaxone or spectinomycin, are now used to treat most gonococcal infections.
  • Staphylococcus aureus is a Gram-positive coccus which normally colonizes the human nose and is sometimes found on the skin. Staphylococcus can cause bloodstream infections, pneumonia, and nosocomial infections. Staph. aureus can cause severe food poisoning, and many strains grow in food and produce exotoxins. Staphylococcus resistance to common antibiotics, e.g., vancomycin, has emerged in the United States and abroad as a major public health challenge both in community and hospital settings. Recently, a vancomycin-resistant Staph. aureus isolate has also been identified in Japan.
  • Mycobacterium tuberculosis is a Gram positive bacterium which is the causative agent of tuberculosis, a sometimes crippling and deadly disease. Tuberculosis is on the rise and globally and the leading cause of death from a single infectious disease (with a current death rate of three million people per year). It can affect several organs of the human body, including the brain, the kidneys and the bones, however, tuberculosis most commonly affects the lungs.
  • In the United States, approximately ten million individuals are infected with Mycobacterium tuberculosis, as indicated by positive skin tests, with approximately 26,000 new cases of active disease each year. The increase in tuberculosis (TB) cases has been associated with HIV/AIDS, homelessness, drug abuse and immigration of persons with active infections. Current treatment programs for drug-susceptible TB involve taking two or four drugs (e.g., isoniazid, rifampin, pyrazinamide, ethambutol or streptomycin), for a period of from six to nine months, because all of the TB germs cannot be destroyed by a single drug. In addition, the observation of drug-resistant and multiple drug resistant strains of Mycobacterium tuberculosis is on the rise.
  • Helicobacter pylori (H. pylori) is a micro-aerophilic, Gram-negative, slow-growing, flagellated organism with a spiral or S-shaped morphology which infects the lining of the stomach. H. pylori is a human gastric pathogen associated with chronic superficial gastritis, peptic ulcer disease, and chronic atrophic gastritis leading to gastric adenocarcinoma. H. pylori is one of the most common chronic bacterial infections in humans and is found in over 90% of patients with active gastritis. Current treatment includes triple drug therapy with bismuth, metronidazole, and either tetracycline or amoxicillin which eradicates H. pylori in most cases. Problems with triple therapy include patient compliance, side effects, and metronidazole resistance. Alternate regimens of dual therapy which show promise are amoxicillin plus metronidazole or omeprazole plus amoxicillin.
  • Streptococcus pneumoniae is a Gram-positive coccus and one of the most common causes of bacterial pneumonia as well as middle ear infections (otitis media) and meningitis. Each year in the United States, pneumococcal diseases account for approximately 50,000 cases of bacteremia; 3,000 cases of meningitis; 100,000-135,000 hospitalizations; and 7 million cases of otitis media. Pneumococcal infections cause an estimated 40,000 deaths annually in the United States. Children less than 2 years of age, adults over 65 years of age and persons of any age with underlying medical conditions, including, e.g., congestive heart disease, diabetes, emphysema, liver disease, sickle cell, HIV, and those living in special environments, e.g., nursing homes and long-term care facilities, at highest risk for infection.
  • Drug-resistant S. pneumoniae strains have become common in the United States, with many penicillin-resistant pneumococci also resistant to other antimicrobial drugs, such as erythromycin or trimethoprim-sulfamethoxazole.
  • Treponema pallidum is a spirochete which causes syphilis. T pallidum is exclusively a pathogen which causes syphilis, yaws and non-venereal endemic syphilis or pinta. Treponema pallidum cannot be grown in vitro and does replicate in the absence of mammalian cells. The initial infection causes an ulcer at the site of infection; however, the bacteria move throughout the body, damaging many organs over time. In its late stages, untreated syphilis, although not contagious, can cause serious heart abnormalities, mental disorders, blindness, other neurologic problems, and death.
  • Syphilis is usually treated with penicillin, administered by injection. Other antibiotics are available for patients allergic to penicillin, or who do not respond to the usual doses of penicillin. In all stages of syphilis, proper treatment will cure the disease, but in late syphilis, damage already done to body organs cannot be reversed.
  • Chlamydia trachomatis is the most common bacterial sexually transmitted disease in the United States and it is estimated that 4 million new cases occur each year. The highest rates of infection are in 15 to 19 year olds. Chlamydia is a major cause of non-gonococcal urethritis (NGU), cervicitis, bacterial vaginitis, and pelvic inflammatory disease (PID). Chlamydia infections may have very mild symptoms or no symptoms at all; however, if left untreated Chlamydia infections can lead to serious damage to the reproductive organs, particularly in women. Antibiotics such as azithromycin, erythromycin, oflloxacin, amoxicillin or doxycycline are typically prescribed to treat Chlamydia infection.
  • Bartonella henselae Cat Scratch Fever (CSF) or cat scratch disease (CSD), is a disease of humans acquired through exposure to cats, caused by a Gram-negative rod originally named Rochalimaea henselae, and currently known as Bartonella henselae. Symptoms include fever and swollen lymph nodes and CSF is generally a relatively benign, self-limiting disease in people, however, infection with Bartonella henselae can produce distinct clinical symptoms in immunocompromised people, including, acute febrile illness with bacteremia, bacillary angiomatosis, peliosis hepatis, bacillary splenitis, and other chronic disease manifestations such as AIDS encephalopathy. The disease is treated with antibiotics, such as doxycycline, erythromycin, rifampin, penicillin, gentamycin, ceftriaxone, ciprofloxacin, and azithromycin.
  • Haemophilus influenzae (H. influenza) is a family of Gram-negative bacteria; six types of which are known, with most H. influenza-related disease caused by type B, or “HIB”. Until a vaccine for HIB was developed, HIB was a common causes of otitis media, sinus infections, bronchitis, the most common cause of meningitis, and a frequent culprit in cases of pneumonia, septic arthritis (joint infections), cellulitis (infections of soft tissues), and pericarditis (infections of the membrane surrounding the heart). The H. influenza type B bacterium is widespread in humans and usually lives in the throat and nose without causing illness. Unvaccinated children under age 5 are at risk for HIB disease. Meningitis and other serious infections caused by H. influenza infection can lead to brain damage or death.
  • Shigella dysenteriae (Shigella dys.) is a Gram-negative rod which causes dysentary. In the colon, the bacteria enter mucosal cells and divide within mucosal cells, resulting in an extensive inflammatory response. Shigella infection can cause severe diarrhea which may lead to dehydration and can be dangerous for the very young, very old or chronically ill. Shigella dys. forms a potent toxin (shiga toxin), which is cytotoxic, enterotoxic, neurotoxic and acts as a inhibitor of protein synthesis. Resistance to antibiotics such as ampicillin and TMP-SMX has developed, however, treatment with newer, more expensive antibiotics such as ciprofloxacin, norfloxacin and enoxacin, remains effective.
  • Listeria is a genus of Gram-positive, motile bacteria found in human and animal feces. Listeria monocytogenes causes such diseases as listeriosis, meningoencephalitis and meningitis. This organism is one of the leading causes of death from food-borne pathogens especially in pregnant women, newborns, the elderly, and immunocompromised individuals. It is found in environments such as decaying vegetable matter, sewage, water, and soil, and it can survive extremes of both temperatures and salt concentration making it an extremely dangerous food-born pathogen, especially on food that is not reheated. The bacterium can spread from the site of infection in the intestines to the central nervous system and the fetal-placental unit. Meningitis, gastroenteritis, and septicemia can result from infection. In cattle and sheep, listeria infection causes encephalitis and spontaneous abortion.
  • Proteus mirabilis is an enteric, Gram-negative commensal organism, distantly related to E. coli. It normally colonizes the human urethra, but is an opportunistic pathogen that is the leading cause of urinary tract infections in catheterized individuals. P. mirabilis has two exceptional characteristics: 1) it has very rapid motility, which manifests itself as a swarming phenomenon on culture plates; and 2) it produces urease, which gives it the ability to degrade urea and survive in the genitourinary tract.
  • Yersinia pestis is the causative agent of plague (bubonic and pulmonary) a devastating disease which has killed millions worldwide. The organism can be transmitted from rats to humans through the bite of an infected flea or from human-to-human through the air during widespread infection. Yersinia pestis is an extremely pathogenic organism that requires very few numbers in order to cause disease, and is often lethal if left untreated. The organism is enteroinvasive, and can survive and propagate in macrophages prior to spreading systemically throughout the host.
  • Bacillus anthracis is also known as anthrax. Humans become infected when they come into contact with a contaminated animal. Anthrax is not transmitted due to person-to-person contact. The three forms of the disease reflect the sites of infection which include cutaneous (skin), pulmonary (lung), and intestinal. Pulmonary and intestinal infections are often fatal if left untreated. Spores are taken up by macrophages and become internalized into phagolysozomes (membranous compartment) whereupon germination initiates. Bacteria are released into the bloodstream once the infected macrophage lyses whereupon they rapidly multiply, spreading throughout the circulatory and lymphatic systems, a process that results in septic shock, respiratory distress and organ failure. The spores of this pathogen have been used as a terror weapon.
  • Burkholderia mallei is a Gram-negative aerobic bacterium that causes Glanders, an infectious disease that occurs primarily in horses, mules, and donkeys. It is rarely associated with human infection and is more commonly seen in domesticated animals. This organism is similar to B. pseudomallei and is differentiated by being nonmotile. The pathogen is host-adapted and is not found in the environment outside of its host. Glanders is often fatal if not treated with antibiotics, and transmission can occur through the air, or more commonly when in contact with infected animals. Rapid-onset pneumonia, bacteremia (spread of the organism through the blood), pustules, and death are common outcomes during infection. The virulence mechanisms are not well understood, although a type III secretion system similar to the one from Salmonella typhimurium is necessary. No vaccine exists for this potentially dangerous organism which is thought to have potential as a biological terror agent. The genome of this organism carries a large number of insertion sequences as compared to the related Bukholderia pseudomallei (below), and a large number of simple sequence repeats that may function in antigenic variation of cell surface proteins.
  • Burkholderia pseudomallei is a Gram-negative bacterium that causes meliodosis in humans and animals. Meliodosis is a disease found in certain parts of Asia, Thailand, and Australia. B. pseudomallei is typically a soil organism and has been recovered from rice paddies and moist tropical soil, but as an opportunistic pathogen can cause disease in susceptible individuals such as those that suffer from diabetes mellitus. The organism can exist intracellularly, and causes pneumonia and bacteremia (spread of the bacterium through the bloodstream). The latency period can be extremely long, with infection preceding disease by decades, and treatment can take months of antibiotic use, with relapse a commonly observed phenomenon. Intercellular spread can occur via induction of actin polymerization at one pole of the cell, allowing movement through the cytoplasm and from cell-to-cell. This organism carries a number of small sequence repeats which may promoter antigenic variation, similar to what was found with the B. mallei genome.
  • Burkholderia cepacia is a Gram-negative bacterium composed of at least seven different sub-species, including Burkholderia multivorans, Burkholderia vietnamiensis, Burkholderia stabilis, Burkholderia cenocepacia and Burkholderia ambifaria. B. cepacia is an important human pathogen which most often causes pneumonia in people with underlying lung disease (such as cystic fibrosis or immune problems (such as (chronic granulomatous disease). B. cepacia is typically found in water and soil and can survive for prolonged periods in moist environments. Person-to-person spread has been documented; as a result, many hospitals, clinics, and camps for patients with cystic fibrosis have enacted strict isolation precautions B. cepacia. Individuals with the bacteria are often treated in a separate area than those without to limit spread. This is because infection with B. cepacia can lead to a rapid decline in lung function resulting in death. Diagnosis of B. cepacia involves isolation of the bacteria from sputum cultures. Treatment is difficult because B. cepacia is naturally resistant to many common antibiotics including aminoglycosides (such as tobramycin) and polymixin B. Treatment typically includes multiple antibiotics and may include ceftazidime, doxycycline, piperacillin, chloramphenicol, and co-trimoxazole.
  • Francisella tularensis was first noticed as the causative agent of a plague-like illness that affected squirrels in Tulare County in California in the early part of the 20th century by Edward Francis. The organism now bears his namesake. The disease is called tularemia and has been noted throughout recorded history. The organism can be transmitted from infected ticks or deerflies to a human, through infected meat, or via aerosol, and thus is a potential bioterrorism agent. It is an aquatic organism, and can be found living inside protozoans, similar to what is observed with Legionella. It has a high infectivity rate, and can invade phagocytic and nonphagocytic cells, multiplying rapidly. Once within a macrophage, the organism can escape the phagosome and live in the cytosol.
  • Veterinary Applications
  • A healthy microflora in the gastrointestinal tract of livestock is of vital importance for health and corresponding production of associated food products. As with humans, the gastrointestinal tract of a healthy animal contains numerous types of bacteria (i.e., E. coli, Pseudomonas aeruginosa and Salmonella spp.), which live in ecological balance with one another. This balance may be disturbed by a change in diet, stress, or in response to antibiotic or other therapeutic treatment, resulting in bacterial diseases in the animals generally caused by bacteria such as Salmonella, Campylobacter, Enterococci, Tularemia and E. coli. Bacterial infection in these animals often necessitates therapeutic intervention, which has treatment costs as well being frequently associated with a decrease in productivity.
  • As a result, livestock are routinely treated with antibiotics to maintain the balance of flora in the gastrointestinal tract. The disadvantages of this approach are the development of antibiotic resistant bacteria and the carry over of such antibiotics and the resistant bacteria into resulting food products for human consumption.
  • Targets for Ameliorating a Skin Disorder
  • In some embodiments of the present disclosure it is contemplated that a composition comprising an ON-NP as disclosed herein is administered and regulates the expression of a target gene. In various embodiments, the composition is administered to ameliorate a skin disorder.
  • In some aspects, the skin disorder to be ameliorated includes, but is not limited to, a hyperproliferative disorder, a neoplastic disorder, a genetic disorder, aging, inflammation, infection, and cosmetic disfigurement. In further aspects, the skin disorder includes but is not limited to cancer. In yet further aspects, the cancer includes but is not limited to squamous cell carcinoma, basal cell carcinoma, melanoma and breast cancer. In related aspects, a gene product targeted by a composition of the present disclosure includes but is not limited to Ras, IκBα, hedgehog, B-Raf, Akt and cyclin D.
  • In some embodiments, a composition of the present disclosure is administered to ameliorate a genetic disorder that includes but is not limited to epidermolysis bullosa simplex, bullous ichthyosis, pachyonychia congenita, Costello syndrome and tuberous sclerosis. In some aspects, a gene product that is targeted by the administered composition is a gene product that comprises a mutation, the gene product being expressed by a gene that includes but is not limited to K5, K14, K1, K10, H-Ras, N-Ras, K-Ras, NF-κB, Akt, B-raf, ERK, Mek1, Mek2, and m-Tor.
  • In some embodiments, a composition of the present disclosure is administered to ameliorate an aging disorder that includes but is not limited to UV-damage and progeria. In some aspects, a gene product that is targeted by the administered composition includes but is not limited to matrix metalloproteinase-1 and progerin.
  • In further embodiments, a composition of the present disclosure is administered to ameliorate an inflammatory disorder that includes but is not limited to atopic dermatitis and psoriasis. In some aspects, a gene product that is targeted by the administered composition includes but is not limited to interleukin-23. In various aspects, a gene product that is targeted by the administered composition includes but is not limited to IL1-α, IL1-β, IL6, TNF-α, leukemia inhibitory factor (LW), IFN-γ, oncostatin M (OSM), ciliary neurotrophic factor (CNTF), TGF-β, GM-CSF, IL-11, IL-12, IL-17, IL-18, IL-8.
  • In still further embodiments, a composition of the present disclosure is administered to ameliorate an infection. In some aspects, the infection is a viral infection. In some aspects, the infection is a bacterial infection as disclosed herein. In aspects wherein the infection is a viral infection, it is contemplated that the viral infection results in warts. In these aspects, a gene product that is targeted by the administered composition includes but is not limited to E6/E7.
  • In some embodiments, a composition of the present disclosure is administered to ameliorate a cosmetic disfigurement that includes but is not limited to seborrheic keratoses, epidei mai nevi and pigmented nevi. In some aspects, a gene product that is targeted by the administered composition is a gene product that comprises a mutation, the gene product being expressed by a gene that includes but is not limited to FGFR3, K10 and B-Raf.
  • Vehicles
  • In some embodiments, ON-NP compositions and methods of the present disclosure comprise vehicles. As used herein, a “vehicle” is a base compound with which an oligonucleotide-functionalized nanoparticle is associated.
  • Vehicles useful in the compositions and methods of the present disclosure are known to those of ordinary skill in the art and include without limitation an ointment, cream, lotion, gel, foam, buffer solution or water. In some embodiments, vehicles comprise one or more additional substances including but not limited to salicylic acid, alpha-hydroxy acids, or urea that enhance the penetration through the stratum corneum.
  • In various aspects, vehicles contemplated for use in the compositions and methods of the present disclosure include, but are not limited to, Aquaphor® healing ointment, A+D, polyethylene glycol (PEG), glycerol, mineral oil, Vaseline Intensive Care cream (comprising mineral oil and glycerin), petroleum jelly, DML (comprising petrolatum, glycerin and PEG 20), DML (comprising petrolatum, glycerin and PEG 100), Eucerin moisturizing cream, Cetaphil (comprising petrolatum, glycerol and PEG 30), Cetaphil, CeraVe (comprising petrolatum and glycerin), CeraVe (comprising glycerin, EDTA and cholesterol), Jergens (comprising petrolatum, glycerin and mineral oil), and Nivea (comprising petrolatum, glycerin and mineral oil). One of ordinary skill in the art will understand from the above list that additional vehicles are useful in the compositions and methods of the present disclosure.
  • An ointment, as used herein, is a formulation of water in oil. A cream as used herein is a formulation of oil in water. In general, a lotion has more water than a cream or an ointment; a gel comprises alcohol, and a foam is a substance that is formed by trapping gas bubbles in a liquid. These terms are understood by those of ordinary skill in the art.
  • Nanoparticles
  • Nanoparticles are provided which are functionalized to have a polynucleotide attached thereto. The size, shape and chemical composition of the nanoparticles contribute to the properties of the resulting polynucleotide-functionalized nanoparticle. These properties include for example, optical properties, optoelectronic properties, electrochemical properties, electronic properties, stability in various solutions, magnetic properties, and pore and channel size variation. Mixtures of nanoparticles having different sizes, shapes and/or chemical compositions, as well as the use of nanoparticles having uniform sizes, shapes and chemical composition, and therefore a mixture of properties are contemplated. Examples of suitable particles include, without limitation, aggregate particles, isotropic (such as spherical particles), anisotropic particles (such as non-spherical rods, tetrahedral, and/or prisms) and core-shell particles, such as those described in U.S. Pat. No. 7,238,472 and International Publication No. WO 2003/08539, the disclosures of which are incorporated by reference in their entirety.
  • In one embodiment, the nanoparticle is metallic, and in various aspects, the nanoparticle is a colloidal metal. Thus, in various embodiments, nanoparticles of the invention include metal (including for example and without limitation, silver, gold, platinum, aluminum, palladium, copper, cobalt, indium, nickel, or any other metal amenable to nanoparticle formation), semiconductor (including for example and without limitation, CdSe, CdS, and CdS or CdSe coated with ZnS) and magnetic (for example, ferromagnetite) colloidal materials.
  • Also, as described in U.S. Patent Publication No 2003/0147966, nanoparticles of the invention include those that are available commercially, as well as those that are synthesized, e.g., produced from progressive nucleation in solution (e.g., by colloid reaction) or by various physical and chemical vapor deposition processes, such as sputter deposition. See, e.g., HaVashi, Vac. Sci. Technol. A5(4) :1375-84 (1987); Hayashi, Physics Today, 44-60 (1987); MRS Bulletin, January 1990, 16-47. As further described in U.S. Patent Publication No. 2003/0147966, nanoparticles contemplated are alternatively produced using HAuCl4 and a citrate-reducing agent, using methods known in the art. See, e.g., Marinakos et al., Adv. Mater. 11:34-37 (1999); Marinakos et al., Chem. Mater. 10: 1214-19 (1998); Enustun & Turkevich, J. Am. Chem. Soc. 85: 3317 (1963).
  • In some embodiments, the size of the nanoparticle is related to its ability to penetrate the skin. In general, the smaller the diameter of the nanoparticle, the deeper the penetration into or through the skin. In one aspect, the diameter of the nanoparticle allows the ON-NP to traverse the skin and enter the blood to achieve systemic delivery of the ON-NP. In another aspect, the diameter of the nanoparticle prevents the ON-NP from traversing the skin and the ON-NP is retained at the surface of the skin. In various aspects, it will be understood by one of ordinary skill in the art that the size of the nanoparticle can be adjusted to achieve a desired depth of penetration of the administered ON-NP.
  • Nanoparticles can range in size from about 1 nm to about 250 nm in mean diameter, about 1 nm to about 240 nm in mean diameter, about 1 nm to about 230 nm in mean diameter, about 1 nm to about 220 nm in mean diameter, about 1 nm to about 210 nm in mean diameter, about 1 nm to about 200 nm in mean diameter, about 1 nm to about 190 nm in mean diameter, about 1 nm to about 180 nm in mean diameter, about 1 nm to about 170 nm in mean diameter, about 1 nm to about 160 nm in mean diameter, about 1 nm to about 150 nm in mean diameter, about 1 nm to about 140 nm in mean diameter, about 1 nm to about 130 nm in mean diameter, about 1 nm to about 120 nm in mean diameter, about 1 nm to about 110 nm in mean diameter, about 1 nm to about 100 nm in mean diameter, about 1 nm to about 90 nm in mean diameter, about 1 nm to about 80 nm in mean diameter, about 1 nm to about 70 nm in mean diameter, about 1 nm to about 60 nm in mean diameter, about 1 nm to about 50 nm in mean diameter, about 1 nm to about 40 nm in mean diameter, about 1 nm to about 30 nm in mean diameter, or about 1 nm to about 20 nm in mean diameter, about 1 nm to about 10 nm in mean diameter. In other aspects, the size of the nanoparticles is from about 5 nm to about 150 nm (mean diameter), from about 5 to about 50 nm, from about 10 to about 30 nm, from about 10 to 150 nm, from about 10 to about 100 nm, or about 10 to about 50 nm. The size of the nanoparticles is from about 5 nm to about 150 nm (mean diameter), from about 30 to about 100 nm, from about 40 to about 80 nm. The size of the nanoparticles used in a method varies as required by their particular use or application. The variation of size is advantageously used to optimize certain physical characteristics of the nanoparticles, for example, optical properties or the amount of surface area that can be functionalized as described herein.
  • Oligonucleotides
  • The term “nucleotide” or its plural as used herein is interchangeable with modified forms as discussed herein and otherwise known in the art. In certain instances, the art uses the term “nucleobase” which embraces naturally-occurring nucleotide, and non-naturally-occurring nucleotides which include modified nucleotides. Thus, nucleotide or nucleobase means the naturally occurring nucleobases adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U). Non-naturally occurring nucleobases include, for example and without limitations, xanthine, diaminopurine, 8-oxo-N6-methyladenine, 7-deazaxanthine, 7-deazaguanine, N4,N4-ethanocytosin, N′,N′-ethano-2,6-diaminopurine, 5-methylcytosine (mC), 5-(C3-C6)-alkynyl-cytosine, 5-fluorouracil, 5-bromouracil, pseudoisocytosine, 2-hydroxy-5-methyl-4-triazolopyridin, isocytosine, isoguanine, inosine and the “non-naturally occurring” nucleobases described in Benner et al., U.S. Pat. No. 5,432,272 and Susan M. Freier and Karl-Heinz Altmann, 1997, Nucleic Acids Research, vol. 25: pp 4429-4443. The term “nucleobase” also includes not only the known purine and pyrimidine heterocycles, but also heterocyclic analogues and tautomers thereof. Further naturally and non-naturally occurring nucleobases include those disclosed in U.S. Pat. No. 3,687,808 (Merigan, et al.), in Chapter 15 by Sanghvi, in Antisense Research and Application, Ed. S. T. Crooke and B. Lebleu, CRC Press, 1993, in Englisch et al., 1991, Angewandte Chemie, International Edition, 30: 613-722 (see especially pages 622 and 623, and in the Concise Encyclopedia of Polymer Science and Engineering, J. I. Kroschwitz Ed., John Wiley & Sons, 1990, pages 858-859, Cook, Anti-Cancer Drug Design 1991, 6, 585-607, each of which are hereby incorporated by reference in their entirety). In various aspects, polynucleotides also include one or more “nucleosidic bases” or “base units” which are a category of non-naturally-occurring nucleotides that include compounds such as heterocyclic compounds that can serve like nucleobases, including certain “universal bases” that are not nucleosidic bases in the most classical sense but serve as nucleosidic bases. Universal bases include 3-nitropyrrole, optionally substituted indoles (e.g., 5-nitroindole), and optionally substituted hypoxanthine. Other desirable universal bases include, pyrrole, diazole or triazole derivatives, including those universal bases known in the art.
  • A modified nucleotides are described in EP 1 072 679 and WO 97/12896, the disclosures of which are incorporated herein by reference. Modified nucleobases include without limitation, 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 2-F-adenine, 2-amino-adenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Further modified bases include tricyclic pyrimidines such as phenoxazine cytidine(1H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), phenothiazine cytidine (1H-pyrimido[5,4-b][1,4]benzothiazin-2(3H)-one), G-clamps such as a substituted phenoxazine cytidine (e.g. 9-(2-aminoethoxy)-H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), carbazole cytidine (2H-pyrimido[4,5-b]indol-2-one), pyridoindole cytidine (H-pyrido[3′,2′:4,5]pyrrolo[2,3-d]pyrimidin-2-one). Modified bases may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone. Additional nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. 1., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., 1991, Angewandte Chemie, International Edition, 30: 613, and those disclosed by Sanghvi, Y. S., Chapter 15, Antisense Research and Applications, pages 289-302, Crooke, S. T. and Lebleu, B., ed., CRC Press, 1993. Certain of these bases are useful for increasing the binding affinity and include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. and are, in certain aspects combined with 2′-O-methoxyethyl sugar modifications. See, U.S. Pat. Nos. 3,687,808, U.S. Pat. Nos. 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,645,985; 5,830,653; 5,763,588; 6,005,096; 5,750,692 and 5,681,941, the disclosures of which are incorporated herein by reference.
  • Methods of making polynucleotides of a predetermined sequence are well-known. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual (2nd ed. 1989) and F. Eckstein (ed.) Oligonucleotides and Analogues, 1st Ed. (Oxford University Press, New York, 1991). Solid-phase synthesis methods are preferred for both polyribonucleotides and polydeoxyribonucleotides (the well-known methods of synthesizing DNA are also useful for synthesizing RNA). Polyribonucleotides can also be prepared enzymatically. Non-naturally occurring nucleobases can be incorporated into the polynucleotide, as well. See, e.g., U.S. Pat. No. 7,223,833; Katz, J. Am. Chem. Soc., 74:2238 (1951); Yamane, et al., J. Am. Chem. Soc., 83:2599 (1961); Kosturko, et al., Biochemistry, 13:3949 (1974); Thomas, J. Am. Chem. Soc., 76:6032 (1954); Zhang, et al., J. Am. Chem. Soc., 127:74-75 (2005); and Zimmermann, et al., J. Am. Chem. Soc., 124:13684-13685 (2002).
  • Nanoparticles provided that are functionalized with a polynucleotide, or a modified form thereof, and a domain as defined herein, generally comprise a polynucleotide from about 5 nucleotides to about 100 nucleotides in length. More specifically, nanoparticles are functionalized with polynucleotide that are about 5 to about 90 nucleotides in length, about 5 to about 80 nucleotides in length, about 5 to about 70 nucleotides in length, about 5 to about 60 nucleotides in length, about 5 to about 50 nucleotides in length about 5 to about 45 nucleotides in length, about 5 to about 40 nucleotides in length, about 5 to about 35 nucleotides in length, about 5 to about 30 nucleotides in length, about 5 to about 25 nucleotides in length, about 5 to about 20 nucleotides in length, about 5 to about 15 nucleotides in length, about 5 to about 10 nucleotides in length, and all polynucleotides intermediate in length of the sizes specifically disclosed to the extent that the polynucleotide is able to achieve the desired result. Accordingly, polynucleotides of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 or more nucleotides in length are contemplated.
  • In some aspects, nanoparticles with an oligonucleotide attached thereto are provided wherein an oligonucleotide further comprising a domain which affects the efficiency with which the nanoparticle is taken up by a cell is associated with the nanoparticle. Accordingly, the domain increases or decreases the efficiency. As used herein, “efficiency” refers to the number or rate of uptake of nanoparticles in/by a cell. Because the process of nanoparticles entering and exiting a cell is a dynamic one, efficiency can be increased by taking up more nanoparticles or by retaining those nanoparticles that enter the cell for a longer period of time. Similarly, efficiency can be decreased by taking up fewer nanoparticles or by retaining those nanoparticles that enter the cell for a shorter period of time.
  • The domain, in some aspects, is contiguous/colinear with the oligonucleotide and is located proximally with respect to a nanoparticle. In some aspects, the domain is contiguous/colinear with the oligonucleotide and is located distally with respect to a nanoparticle. The terms “proximal” and “distal” refer to a position relative to the midpoint of the oligonucleotide. In some aspects, the domain is located at an internal region within the oligonucleotide. In further aspects, the domain is located on a second oligonucleotide that is attached to a nanoparticle. Accordingly, a domain, in some embodiments, is contemplated to be attached to a nanoparticle as a separate entity from an oligonucleotide.
  • It is further contemplated that an oligonucleotide, in some embodiments, comprise more than one domain, located at any of the locations described herein.
  • The domain, in some embodiments, increases the efficiency of uptake of the oligonucleotide-functionalized nanoparticle by a cell. In some aspects, the domain comprises a sequence of thymidine residues (polyT) or uridine residues (polyU). In further aspects, the polyT or polyU sequence comprises two thymidines or uridines. In various aspects, the polyT or polyU sequence comprises 3, 4, 5, 6, 7, 8, 9, 10, 11. 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, about 55, about 60, about 65, about 70, about 75, about 80, about 85, about 90, about 95, about 100, about 125, about 150, about 175, about 200, about 250, about 300, about 350, about 400, about 450, about 500 or more thymidine or uridine residues.
  • In some embodiments, it is contemplated that a nanoparticle functionalized with an oligonucleotide and a domain is taken up by a cell with greater efficiency than a nanoparticle functionalized with the same oligonucleotide but lacking the domain. In some aspects, a nanoparticle functionalized with an oligonucleotide and a domain is taken up by a cell 1% more efficiently than a nanoparticle functionalized with the same oligonucleotide but lacking the domain. In various aspects, a nanoparticle functionalized with an oligonucleotide and a domain is taken up by a cell 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%,32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, about 2-fold, about 3-fold, about 4-fold, about 5-fold, about 6-fold, about 7-fold, about 8-fold, about 9-fold, about 10-fold, about 20-fold, about 30-fold, about 40-fold, about 50-fold, about 100-fold or higher, more efficiently than a nanoparticle functionalized with the same oligonucleotide but lacking the domain.
  • In some embodiments, the domain decreases the efficiency of uptake of the oligonucleotide-functionalized nanoparticle by a cell. In some aspects, the domain comprises a phosphate polymer (C3 residue) that is comprised of two phosphates. In various aspects, the C3 residue comprises 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, about 55, about 60, about 65, about 70, about 75, about 80, about 85, about 90, about 95, about 100, about 125, about 150, about 175, about 200, about 250, about 300, about 350, about 400, about 450, about 500 or more phosphates.
  • In some embodiments, it is contemplated that a nanoparticle functionalized with an oligonucleotide and a domain is taken up by a cell with lower efficiency than a nanoparticle functionalized with the same oligonucleotide but lacking the domain. In some aspects, a nanoparticle functionalized with an oligonucleotide and a domain is taken up by a cell 1% less efficiently than a nanoparticle functionalized with the same oligonucleotide but lacking the domain. In various aspects, a nanoparticle functionalized with an oligonucleotide and a domain is taken up by a cell 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%,32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, about 2-fold, about 3-fold, about 4-fold, about 5-fold, about 6-fold, about 7-fold, about 8-fold, about 9-fold, about 10-fold, about 20-fold, about 30-fold, about 40-fold, about 50-fold, about 100-fold or higher, less efficiently than a nanoparticle functionalized with the same oligonucleotide but lacking the domain.
  • Polynucleotides contemplated for attachment to a nanoparticle include those which modulate expression of a gene product expressed from a target polynucleotide. Polynucleotides contemplated by the present disclosure include DNA, RNA and modified forms thereof as defined herein below. Accordingly, in various aspects and without limitation, polynucleotides which hybridize to a target polynucleotide and initiate a decrease in transcription or translation of the target polynucleotide, triple helix forming polynucleotides which hybridize to double-stranded polynucleotides and inhibit transcription, and ribozymes which hybridize to a target polynucleotide and inhibit translation, are contemplated.
  • In various aspects, if a specific polynucleotide is targeted, a single functionalized oligonucleotide-nanoparticle composition has the ability to bind to multiple copies of the same transcript. In one aspect, a nanoparticle is provided that is functionalized with identical polynucleotides, i.e., each polynucleotide has the same length and the same sequence. In other aspects, the nanoparticle is functionalized with two or more polynucleotides which are not identical, i.e., at least one of the attached polynucleotides differ from at least one other attached polynucleotide in that it has a different length and/or a different sequence. In aspects wherein different polynucleotides are attached to the nanoparticle, these different polynucleotides bind to the same single target polynucleotide but at different locations, or bind to different target polynucleotides which encode different gene products.
  • Modified Oligonucleotides
  • As discussed above, modified oligonucleotides are contemplated for functionalizing nanoparticles. In various aspects, an oligonucleotide functionalized on a nanoparticle is completely modified or partially modified. Thus, in various aspects, one or more, or all, sugar and/or one or more or all internucleotide linkages of the nucleotide units in the polynucleotide are replaced with “non-naturally occurring” groups.
  • In one aspect, this embodiment contemplates a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of a polynucleotide is replaced with an amide containing backbone. See, for example U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, and Nielsen et al., Science, 1991, 254, 1497-1500, the disclosures of which are herein incorporated by reference.
  • Other linkages between nucleotides and unnatural nucleotides contemplated for the disclosed polynucleotides include those described in U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,180; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; 5,792,747; and 5,700,920; U.S. Patent Publication No. 20040219565; International Patent Publication Nos. WO 98/39352 and WO 99/14226; Mesmaeker et. al., Current Opinion in Structural Biology 5:343-355 (1995) and Susan M. Freier and Karl-Heinz Altmann, Nucleic Acids Research, 25:4429-4443 (1997), the disclosures of which are incorporated herein by reference.
  • Specific examples of oligonucleotides include those containing modified backbones or non-natural internucleoside linkages. Oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. Modified oligonucleotides that do not have a phosphorus atom in their intemucleoside backbone are considered to be within the meaning of “oligonucleotide.”
  • Modified oligonucleotide backbones containing a phosphorus atom include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3′-alkylene phosphonates, 5′-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, selenophosphates and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those having inverted polarity wherein one or more intemucleotide linkages is a 3′ to 3′,5′ to 5′ or 2′ to 2′ linkage. Also contemplated are polynucleotides having inverted polarity comprising a single 3′ to 3′ linkage at the 3′-most internucleotide linkage, i.e. a single inverted nucleoside residue which may be abasic (the nucleotide is missing or has a hydroxyl group in place thereof). Salts, mixed salts and free acid forms are also contemplated.
  • Representative United States patents that teach the preparation of the above phosphorus-containing linkages include, U.S. Pat. Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,194,599; 5,565,555; 5,527,899; 5,721,218; 5,672,697 and 5,625,050, the disclosures of which are incorporated by reference herein.
  • Modified polynucleotide backbones that do not include a phosphorus atom have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages; siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thiofoiniacetyl backbones; methylene formacetyl and thioformacetyl backbones; riboacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts. In still other embodiments, polynucleotides are provided with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and including —CH2—NH—O—CH2—, —CH2—N(CH3)—O—CH2—, —CH2—O—N(CH3)—CH2—, —CH2—N(CH3)—N(CH3)—CH2— and —O—N(CH3)—CH2—CH2— described in U.S. Pat. Nos. 5,489,677, and 5,602,240. See, for example, U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; 5,792,608; 5,646,269 and 5,677,439, the disclosures of which are incorporated herein by reference in their entireties.
  • In various forms, the linkage between two successive monomers in the oligo consists of 2 to 4, desirably 3, groups/atoms selected from —CH2—, —O—, —S—, —NRH—, >C═O, >C═NRH, >C═S, —Si(R″)2SO—, —S(O)2—, —P(O)2—, —PO(BH3)—, —P(O,S)—, —P(S)2—, —PO(R″)—, —PO(OCH3)—, and —PO(NHRH)—, where RH is selected from hydrogen and C1-4-alkyl, and R″ is selected from C1-6-alkyl and phenyl. Illustrative examples of such linkages are —CH2—CH2—CH2—, —CH2CO—CH2—, —CH2—CHOH—CH2—, —O—CH2—O—, —O—CH2—CH2—, —O—CH2—CH=(including R5 when used as a linkage to a succeeding monomer), —CH2—CH2—O—, —NRH—CH2—CH2—, —CH2—CH2—NRH—, —CH2—NRH—CH2, —O—CH2—CH2—NRH—, —NRH—CO—O—, —NRH—CO—NRH—, —NRH—CS—NRH—, —NRH—C(═NRH)—NRH—, —NRH—CO—CH2—NRH—O—CO—O—, —O—CO—CH2—O—, —O—CH2—CO—O—, —CH2—CO—NRH—, —O—CO—NRH—, —NRH—CO—CH2—, —O—CH2—CO—NRH—, —O—CH2—CH2—NRH—, —CH═N—O—, —CH2—NRH—O—, —CH2—O—, —CH2—ON=(including R5 when used as a linkage to a succeeding monomer), —CH2—O—NRH—, —CO—NRH—CH2—, —CH2—NRH—O—, —CH2—NRH—CO—, —O—NRH—CH2—, —O—NRH, —O—CH2—S—, —S—CH2—O—, —CH2—CH2—S—, —O—CH2—CH2—S—, —S—CH2—CH=(including R5 when used as a linkage to a succeeding monomer), —S—CH2—CH2—, —S—CH2—CH2—O—, —S—CH2—CH2—S—, —CH2—S—CH2—, —CH2—SO—CH2—, —CH2—SO2—CH2—, —O—SO—O—, —O—S(O)2—O—, —O—S(O)2—CH2—, —O—S(O)2—NRH—, —NRH—S(O)2—CH2—; —O—S(O)2—CH2—, —O—P(O)2O—, —O—P(O,S)—O—, —O—P(S)2—O—, —S—P(O)2—O—, —S—P(O,S)—O—, —S—P(S)2—O—, —O—P(O)2—S—, —O—P(O,S)—S—, —O—P(S)2—S—, —S—P(O)2—S—, —S—P(O,S)—S—, —S—P(S)2—S—, —O—PO(R″)—O—, —O—PO(OCH3)—O—, —O—PO(O CH2CH3)—O—, —O—PO(O CH2CH2S—R)—O—, —O—PO(BH3)—O—, —O—PO(NHRN)—O—, —O—P(O)2—NRH H—, —NRH—P(O)2—O—, —O—P(O,NRH)—O—, —CH2—P(O)2—O—, —O—P(O)2—CH2—, and —O—Si(R″)2—O—; among which —CH2—CO—NRH—, —CH2—NRH—O—, —S—CH2—O—, —O—P(O)2—O—O—P(—O,S)—O—, —O—P(S)2—O—, —NRH P(O)2—O—, —O—P(O,NRH)—O—, —O—PO(R″)—O—, —O—PO(CH3)—O—, and —O—PO(NHRN)—O—, where RH is selected form hydrogen and C1-4-alkyl, and R″ is selected from C1-6-alkyl and phenyl, are contemplated. Further illustrative examples are given in Mesmaeker et. al., 1995, Current Opinion in Structural Biology, 5: 343-355 and Susan M. Freier and Karl-Heinz Altmann, 1997, Nucleic Acids Research, vol 25: pp 4429-4443.
  • Still other modified forms of polynucleotides are described in detail in U.S. Patent Application No. 20040219565, the disclosure of which is incorporated by reference herein in its entirety.
  • Modified polynucleotides may also contain one or more substituted sugar moieties. In certain aspects, polynucleotides comprise one of the following at the 2′ position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl. Other embodiments include O[(CH2)nO]mCH3, O(CH2)nOCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nONH2, and O(CH2)nON[(CH2)nCH3]2, where n and m are from 1 to about 10. Other polynucleotides comprise one of the following at the 2′ position: C1 to C10 lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the phaimacokinetic properties of a polynucleotide, or a group for improving the pharmacodynamic properties of a polynucleotide, and other substituents having similar properties. In one aspect, a modification includes 2′-methoxyethoxy (2′-O—CH2CH2OCH3, also known as 2′-O-(2-methoxyethyl) or 2′-MOE) (Martin et al., 1995, Helv. Chim Acta, 78: 486-504) i.e., an alkoxyalkoxy group. Other modifications include 2′-dimethylaminooxyethoxy, i.e., a O(CH2)2ON(CH3)2 group, also known as 2′-DMAOE, and 2′-dimethylaminoethoxyethoxy (also known in the art as 2′-O-dimethyl-amino-ethoxy-ethyl or 2′-DMAEOE), i.e., 2′-O—CH2—O—CH2—N(CH3)2.
  • Still other modifications include 2′-methoxy (2′-O—CH3), 2′-aminopropoxy (2′-OCH2CH2CH2NH2), 2′-allyl (2′-CH2—CH═CH2), 2′-O-allyl (2′-O—CH2—CH═CH2) and 2′-fluoro (2′-F). The 2′-modification may be in the arabino (up) position or ribo (down) position. In one aspect, a 2′-arabino modification is 2′-F. Similar modifications may also be made at other positions on the polynucleotide, for example, at the 3′ position of the sugar on the 3′ terminal nucleotide or in 2′-5′ linked polynucleotides and the 5′ position of 5′ terminal nucleotide. Polynucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. See, for example, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; 5,792,747; and 5,700,920, the disclosures of which are incorporated by reference in their entireties herein.
  • In one aspect, a modification of the sugar includes Locked Nucleic Acids (LNAs) in which the 2′-hydroxyl group is linked to the 3′ or 4′ carbon atom of the sugar ring, thereby forming a bicyclic sugar moiety. The linkage is in certain aspects a methylene (—CH2—)n group bridging the 2′ oxygen atom and the 4′ carbon atom wherein n is 1 or 2. LNAs and preparation thereof are described in WO 98/39352 and WO 99/14226, the disclosures of which are incorporated herein by reference.
  • Polypeptides
  • As used herein, the tei in “polypeptide” refers to peptides, proteins, polymers of amino acids, hormones, viruses, and antibodies that are naturally derived, synthetically produced, or recombinantly produced.
  • In some embodiments, the compositions of the present disclosure regulate the activity of a target polypeptide. Accordingly, in various aspects, the nanoparticle is functionalized with an aptamer. As used herein, an “aptamer” is an oligonucleotide or peptide molecule that binds to a specific target molecule. Thus, in some embodiments, the oligonucleotide-functionalized nanoparticle binds to a target polypeptide and regulates its activity.
  • In one aspect, the activity of the target polypeptide is inhibited by about 5% compared to a cell that is not contacted with the oligonucleotide-functionalized nanoparticle. In various aspects, the expression of the target polypeptide is inhibited by about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, 99% or more compared to a cell that is not contacted with the oligonucleotide-functionalized nanoparticle. In other words, methods provided embrace those which results in any degree of inhibition of activity of a target polypeptide.
  • Surface Density
  • The density of oligonucleotides on the surface of the NP can be adjusted for a given application. For instance, work by Seferos et al. [Nano Lett., 9(1): 308-311, 2009] demonstrated that the density of DNA on the NP surface affected the rate at which it was degraded by nucleases. This density modification is used, for example and without limitation, in a NP based drug delivery system where a drug and ON-NP enter cells, and the ON is degraded at a controlled rate.
  • Nanoparticles as provided herein have a packing density of the polynucleotides on the surface of the nanoparticle that is, in various aspects, sufficient to result in cooperative behavior between nanoparticles and between polynucleotide strands on a single nanoparticle. In another aspect, the cooperative behavior between the nanoparticles increases the resistance of the polynucleotide to nuclease degradation. In yet another aspect, the uptake of nanoparticles by a cell is influenced by the density of polynucleotides associated with the nanoparticle. As described in PCT/US2008/65366, incorporated herein by reference in its entirety, a higher density of polynucleotides on the surface of a nanoparticle is associated with an increased uptake of nanoparticles by a cell.
  • In some embodiments, the surface density of oligonucleotides on the surface of the NP is related to its ability to penetrate the skin. In general, a higher surface density on the surface of the ON-NP, the deeper the penetration into or through the skin. In some aspects, the surface density allows the ON-NP to traverse the skin and enter the blood to achieve systemic delivery of the ON-NP. In another aspect, the surface density prevents the ON-NP from traversing the skin and the ON-NP is retained at the surface of the skin. In various aspects, it will be understood by one of ordinary skill in the art that the surface density of oligonucleotides on the surface of the nanoparticle can be adjusted to achieve a desired depth of penetration of the administered ON-NP.
  • A surface density adequate to make the nanoparticles stable and the conditions necessary to obtain it for a desired combination of nanoparticles and polynucleotides can be determined empirically. Generally, a surface density of at least 2 pmoles/cm2 will be adequate to provide stable nanoparticle-oligonucleotide compositions. In some aspects, the surface density is at least 15 pmoles/cm2. Methods are also provided wherein the polynucleotide is bound to the nanoparticle at a surface density of at least 2 pmol/cm2, at least 3 pmol/cm2, at least 4 pmol/cm2, at least 5 pmol/cm2, at least 6 pmol/cm2, at least 7 pmol/cm2, at least 8 pmol/cm2, at least 9 pmol/cm2, at least 10 pmol/cm2, at least about 15 pmol/cm2, at least about 20 pmol/cm2, at least about 25 pmol/cm2, at least about 30 pmol/cm2, at least about 35 pmol/cm2, at least about 40 pmol/cm2, at least about 45 pmol/cm2, at least about 50 pmol/cm2, at least about 55 pmol/cm2, at least about 60 pmol/cm2, at least about 65 pmol/cm2, at least about 70 pmoUcm2, at least about 75 pmol/cm2, at least about 80 pmol/cm2, at least about 85 pmol/cm2, at least about 90 pmol/cm2, at least about 95 pmol/cm2, at least about 100 pmol/cm2, at least about 125 pmol/cm2, at least about 150 pmol/cm2, at least about 175 pmol/cm2, at least about 200 pmol/cm2, at least about 250 pmol/cm2, at least about 300 pmol/cm2, at least about 350 pmol/cm2, at least about 400 pmol/cm2, at least about 450 pmol/cm2, at least about 500 pmol/cm2, at least about 550 pmol/cm2, at least about 600 pmol/cm2, at least about 650 pmol/cm2, at least about 700 pmol/cm2, at least about 750 pmol/cm2, at least about 800 pmoUcm2, at least about 850 pmol/cm2, at least about 900 pmol/cm2, at least about 950 pmol/cm2, at least about 1000 pmol/cm2 or more.
  • Oligonucleotide Attachment to a Nanoparticle
  • Oligonucleotides contemplated for use in the methods include those bound to the nanoparticle through any means. Regardless of the means by which the oligonucleotide is attached to the nanoparticle, attachment in various aspects is effected through a 5′ linkage, a 3′ linkage, some type of internal linkage, or any combination of these attachments.
  • Methods of attachment are known to those of ordinary skill in the art and are described in U.S. Publication No. 2009/0209629, which is incorporated by reference herein in its entirety. Methods of attaching RNA to a nanoparticle are generally described in PCT/US2009/65822, which is incorporated by reference herein in its entirety. Accordingly, in some embodiments, the disclosure contemplates that a polynucleotide attached to a nanoparticle is RNA.
  • In some aspects, nanoparticles with oligonucleotides attached thereto are provided wherein an oligonucleotide further comprising a domain is associated with the nanoparticle. In some aspects, the domain is a polythymidine sequence. In other aspects, the domain is a phosphate polymer (C3 residue).
  • In some embodiments, the oligonucleotide attached to a nanoparticle is DNA. When DNA is attached to the nanoparticle, the DNA is comprised of a sequence that is sufficiently complementary to a target sequence of a polynucleotide such that hybridization of the DNA oligonucleotide attached to a nanoparticle and the target polynucleotide takes place, thereby associating the target polynucleotide to the nanoparticle. The DNA in various aspects is single stranded or double-stranded, as long as the double-stranded molecule also includes a single strand sequence that hybridizes to a single strand sequence of the target polynucleotide. In some aspects, hybridization of the oligonucleotide functionalized on the nanoparticle can form a triplex structure with a double-stranded target polynucleotide. In another aspect, a triplex structure can be formed by hybridization of a double-stranded oligonucleotide functionalized on a nanoparticle to a single-stranded target polynucleotide.
  • Spacers
  • In certain aspects, functionalized nanoparticles are contemplated which include those wherein an oligonucleotide and a domain are attached to the nanoparticle through a spacer. “Spacer” as used herein means a moiety that does not participate in modulating gene expression per se but which serves to increase distance between the nanoparticle and the functional oligonucleotide, or to increase distance between individual oligonucleotides when attached to the nanoparticle in multiple copies. Thus, spacers are contemplated being located between individual oligonucleotides in tandem, whether the oligonucleotides have the same sequence or have different sequences. In aspects of the invention where a domain is attached directly to a nanoparticle, the domain is optionally functionalized to the nanoparticle through a spacer. In aspects wherein domains in tandem are functionalized to a nanoparticle, spacers are optionally between some or all of the domain units in the tandem structure. In one aspect, the spacer when present is an organic moiety. In another aspect, the spacer is a polymer, including but not limited to a water-soluble polymer, a nucleic acid, a polypeptide, an oligosaccharide, a carbohydrate, a lipid, an ethylglycol, or combinations thereof.
  • In certain aspects, the polynucleotide has a spacer through which it is covalently bound to the nanoparticles. These polynucleotides are the same polynucleotides as described above. As a result of the binding of the spacer to the nanoparticles, the polynucleotide is spaced away from the surface of the nanoparticles and is more accessible for hybridization with its target. In instances wherein the spacer is a polynucleotide, the length of the spacer in various embodiments at least about 10 nucleotides, 10-30 nucleotides, or even greater than 30 nucleotides. The spacer may have any sequence which does not interfere with the ability of the polynucleotides to become bound to the nanoparticles or to the target polynucleotide. The spacers should not have sequences complementary to each other or to that of the oligonucleotides, but may be all or in part complementary to the target polynucleotide. In certain aspects, the bases of the polynucleotide spacer are all adenines, all thymines, all cytidines, all guanines, all uracils, or all some other modified base.
  • EXAMPLES Example 1 Preparation of Nanoparticles
  • Citrate-stabilized gold nanoparticles (from 1-250 nm) are prepared using published procedures [G. Frens, Nature Physical Science. 1973, 241, 20]. While a 13 and 5 nm size is used in this example, other examples include nanoparticles in size from 1 nm to 500 nm. Briefly, hydrogen tetrachloroaurate is reduced by treatment with citrate in refluxing water. The particle size and dispersity can be confirmed using transmission electron microscopy and uv/vis spectrophotometry. Thiolated oligonucleotides are synthesized using standard solid-phase phosphoramidite methodology [Pon, R. T. Solid-phase supports for oligonucleotide synthesis. Methods in Molecular Biology (Totowa, N.J., United States) (1993), 20 (Protocols for Oligonucleotides and Analogs), 465-496]. The thiol-modified oligonucleotides are next added to 13±1 and 5 nm gold colloids at a concentration of 3 nmol of oligonucleotide per 1 mL of 10 nM colloid and shaken overnight. After 12 hours, sodium dodecylsulphate (SDS) solution (10%) is added to the mixture to achieve a 0.1% SDS concentration, phosphate buffer (0.1 M; pH=7.4) is added to the mixture to achieve a 0.01 phosphate concentration, and sodium chloride solution (2.0 M) is added to the mixture to achieve a 0.1 M sodium chloride concentration. Six aliquots of sodium chloride solution (2.0 M) are then added to the mixture over an eight-hour period to achieve a final sodium chloride concentration of 0.3 M, and shaken overnight to complete the functionalization process. The solution is centrifuged (13,000 rpm, 20 min) and resuspended in sterile phosphate buffered saline three times to produce the purified conjugates.
  • Example 2 Oligonucleotide Modified Nanoparticle Conjugate Methods
  • Oligonucleotide design in this example includes two possible mechanisms of action. First, a sequence was designed using the published plasmid sequence that would preferentially hybridize to the sense strand of the promoter site for the Ampicillin resistance (AmpR) gene β-lactamase. This would sensitize the bacteria to ampicillin by taking advantage of the preferential hybridization of the conjugate (imparted by more favorable binding constant and/or intracellular concentration of the particles) to the promoter sequence of AmpR in the bacterial genome. This would prevent the promoter complex from binding to its target site and prevent transcription of the mRNA transcript (Amp resistance gene), therefore sensitizing the bacteria to ampicillin. The sequences used were 5′-AT TGT CTC ATG AGC GGA TAC ATA TTT GAA AAA AAA AAA A-SH-3′ (SEQ ID NO: 1) and 5′-AT TGT CTC ATG AGC GGA TAC AAA AAA AAA A-SH-3′ (SEQ ID NO: 2).
  • A second strategy would utilize a sequence designed to hybridize to an internal region of the AmpR gene. In doing so, this would prevent the completion of the full mRNA transcript. The downstream effect of this is to prevent complete transcription of functional mRNA transcript (Amp resistance gene) and therefore sensitize bacteria to ampicillin. For this strategy, a sense strand was chosen to hybridize to the target duplex DNA. The sequence for this was 5′-ACT TTT AAA GTT CTG CTA TAA AAA AAA AA-SH-3′ (SEQ ID NO: 3). A scheme for both strategies is presented in FIG. 1. Alternatively, one could use traditional antisense strategy to bind mRNA and prevent protein production, thus sensitizing the bacteria to antibiotics.
  • JM109 E. coli competent cells were transformed using an ampicillin containing plasmid (either psiCHECK 2, Promega or pScreen-iT, Invitrogen) according to published procedures (Promega and Invitrogen) and grown on antibiotic-containing (Amp) plates. A single colony was selected and grown in liquid culture with ampicillin for twelve hours. This culture was used to form a frozen (10% glycerol) stock for use in subsequent experiments.
  • After thawing stocks of E. coli, a small volume was grown in liquid broth either with or without ampicillin as detailed below, and plated on corresponding LB plates. In one example, 5 μL of frozen bacterial broth was grown in lmL of LB broth with 30 nM particles for 5.5 hrs. From this 1 mL, 100 μL was plated and grown overnight. Bacterial entry was confirmed using transmission electron microscopy (FIG. 2).
  • After several hours of treatment with nanoparticles, a small volume of bacteria is plated on either ampicillin positive or ampicillin negative plates. The bacteria are grown on these plates for an additional twelve hours, and the number of colonies grown under each condition is evaluated. The results are summarized below in Table 1, below. A 66% inhibition of bacterial growth was obtained using this strategy. Routine optimization of conditions is expected to yield a 100% successful sensitization of bacteria.
  • TABLE 1
    Trial Expected
    Growth Conditions 1 2 3 Growth
    E. coli (−) NA NA NA (−)
    Amp (−)
    Nanoparticle (−)
    E. coli (−) (−) (−) (−) (−)
    Amp (+)
    Nanoparticle (−)
    E. coli (+) NA NA NA (+)
    Amp (−)
    NonsenseNP (+)
    E. coli (+) NA NA NA (+)
    Amp (+)
    NonsenseNP (+)
    E. coli (+) (+) (+) (−) (+)
    Amp (−)
    PromotorNP (+)
    E. coli (+) (−) (−) (−) (−)
    Amp (+)
    PromotorNP (+)
    E. coli (+) (+) (+) (−) (+)
    Amp (−)
    InternalNP (+)
    E. coli (+) (−) (−) (−) (−)
    Amp (+)
    InternalNP (+)
    Protocol: 5 μL bacterial broth in 1 mL broth with 30 nM particles grown
    for 3.5 hrs. Plating of 100 μL and grown overnight.
    Trial Expected
    Growth Conditions 1 2 3 Growth
    E. coli (−) (−) (−) (−) (−)
    Amp (−)
    Nanoparticle (−)
    E. coli (−) (−) (−) (−) (−)
    Amp (+)
    Nanoparticle (−)
    E. coli (+) (+) (+) (+) (+)
    Amp (−)
    NonsenseNP (+)
    E. coli (+) (+) (+) (+) (+)
    Amp (+)
    NonsenseNP (+)
    E. coli (+) (+) (+) (+) (+)
    Amp (−)
    PromotorNP (+)
    E. coli (+) (−) (−) (+) (−)
    Amp (+)
    PromotorNP (+)
    E. coli (+) (+) (+) (+) (+)
    Amp (−)
    InternalNP (+)
    E. coli (+) (+) (+) (+) (−)
    Amp (+)
    InternalNP (+)
    Protocol: 5 μL bacterial broth in 1 mL broth with 30 nM particles grown
    for 5.5 hrs. Plating of 100 μL and grown overnight.
  • Example 3 Oligonucleotide Modified Nanoparticle Conjugates Achieve Transcriptional Knockdown
  • An additional strategy was employed to examine transcriptional knockdown in a plasmid derived Luciferase gene. This model was used to demonstrate site-selective gene knock down by differentiating Luciferase knockdown from a separate region on the plasmid encoding Renilla expression. To assay this effect the Dual-Luciferase Reporter Assay System (Promega) was used. The strategy employed for this model was to block formation of a full mRNA transcript of the luciferase gene. This results in diminution of luciferase signal in relation to renilla. The sequence used for this was 5′-CCC GAG CAA CGC AAA CGC AAA AAA AAA AA-SH-3′ (SEQ ID NO: 4). Alternatively, one could use a strategy similar to that used above to block the promoter complex from binding its target site. In this example, 5 nm particles were used. The resulting knockdown after 12 hours was 59% using 300 nM concentration of particles (p value =0.0004). These results demonstrate another method of achieving gene regulation at the transcriptional level. A summary of the data is shown in FIG. 3.
  • Example 4 Oligonucleotide Modified Nanoparticle Conjugate Blocking of Transcription
  • As a demonstration of these conjugates' ability to block transcription and subsequent protein production by hybridizing with double stranded genomic DNA, an in vitro transcription assay was conducted. Oligonucleotide functionalized gold nanoparticles were added in an in vitro transcription reaction (Promega) that contained double-stranded plasmid DNA encoding the luciferase gene. The oligonucleotide sequence targeted the sense strand of luciferase gene, thus could only block transcription and not translation. As a control, nanoparticle conjugates functionalized with non-complementary sequence was also used in an identical manner. The transcription reaction was allowed to proceed and luciferase activity was measured using a commercial kit (Promega). In the samples that contained nanoparticle conjugates that targeted the luciferase gene, a significant reduction in luciferase activity (>75%) was observed compared to control reactions that contained nanoparticle conjugates with non-complementary sequences.
  • Additionally, to elucidate the underlying principle of knockdown, experiments were conducted in buffer to examine oligonucleotide gold nanoparticle conjugate invasion of a preformed duplex. A schematic and the resulting data are shown in FIG. 4 (A and B). The particle may bind a preformed duplex (triplex formation). Alternatively, the particle may displace a preformed duplex via its higher binding constant for the target sequence. The particles are then centrifuged at 13,000 RPM, washed 3 times in PBS, and oxidized with KCN. Fluorescence of bound strands is measured. Without being bound by theory, this is hypothesized to result in the release of a fluorescein-capped oligonucleotide (antisense strand) and an increase in fluorescence signal. Prior to nanoparticle addition, a duplex with quencher (dabcyl, sense strand) and fluorophore (fluoroscein, antisense strand) are formed. Over a range of concentrations, sequence specificity for this strategy can be seen.
  • Example 5 Gene Suppression without Toxicity In Vitro
  • Both DNA-Au NPs and siRNA-Au NPs have been shown to suppress gene function in multiple cells in vitro. For example, siRNA-Au NPs directed against survivin led to cell death of T-24 and HT-1376 bladder cancer cells. In addition, siRNA-Au NPs progressively decreased the expression of luciferase in HeLa cells over 4 days in culture after a single treatment, while luciferase expression returned to baseline levels by 4 days after treatment with conventional siRNA [Giljohann et al., J Am Chem Soc 131: 2072-2073 (2009)]. Cell toxicity is not observed at concentrations required for gene silencing, and immune-mediated effects are markedly lower than that of conventional nucleic acids. Concurrent suppression of more than one gene with the oligonucleotide-Au NPs has also been shown; simultaneously adding DNA-Au NPs against two enzymes of ganglioside biosythesis (GM2/GD2 synthase and GD3 synthase) to cultured keratinocytes (KCs) led to accumulation of the GM3 substrate at the keratinocyte membrane by 3 days after initiation, with persistence of visible membrane expression for at least a week after antisense blockade.
  • To examine cellular responses to these nanoconjugates, 13 nm citrate stabilized gold nanoparticles and oligonucleotide-modified particles were compared. While citrate stabilized particles induce significant changes in the gene expression profile of HeLa cells (127 genes up or down regulated), scrambled siRNA or DNA functionalized nanoparticles show no significant changes in the gene expression profile.
  • Example 6 Nanoparticle Conjugates are Delivered Transdermally after Topical Application
  • Studies using a DNA-Au NP or siRNA-Au NP indicate that primary human keratinocytes take up DNA-Au NPs and siRNA-Au NPs at ˜100% efficiency within 2 hours. Using inductively coupled plasma mass spectroscopy (ICP-MS) to measure gold particle uptake [Giljohannet al., Nano Lett 7: 3818-3821 (2007)], the uptake by cultured keratinocytes of DNA-Au NPs was found to be at least 10-fold greater than the uptake of any other cells, and the uptake of siRNA-Au NPs into KCs was up to 20-fold higher than other cell types. For example, incubation of 50 pM siRNA-Au NPs for 6 h with KCs in low calcium medium leads to uptake of approximately 6×105 NPs per cell, much higher than cell uptake with conventional siRNAs.
  • A group of potential ointments, creams and lotions for topical delivery were identified that ensured easy mixing, retention at the applied site, and stability of the nanoconjugate (as determined by persistence of the characteristic red color of the nanoparticles). Application of Cy5-labelled sense DNA-Au NP ointment (DNA-Au NPs in Aquaphor ointment®) to dorsal mouse skin showed penetration through stratum corneum to the epidermis by 2 h, penetration to the upper dermis by 6-8 h, and widespread distribution throughout the dermis by 24 and 48 h after a single application. The demonstrated persistence of fluorescence correlated well with persistence of the gold nanoparticles in tissue as measured by ICP-MS. Similarly, Cy3-modified siRNA-Au NP ointment was taken up rapidly through mouse skin, showing excellent penetration to the base of the epidermis, through the dermis and into subcutaneous tissues by 24 h after application (FIG. 5A, B). These studies showed that the nanoparticles penetrated the stratum corneum, traversed the epidermis, and reached the dermis with its vasculature.
  • Topical application has shown no evidence of toxicity. Application of 15 nM scrambled siRNA-Au NP for 1 month to the dorsal skin of C57BL/6 mice led to no observed systemic or cutaneous clinical change. In comparison with controls (application of vehicle or untreated), gold particle accumulation was most notable in sites of melanoma metastases: skin, lymph nodes, lungs and, to a lesser extent, liver and kidneys. Histologic sections showed no inflammation, evidence of apoptosis or alteration in proliferation/thickness of skin. In preliminary toxicology studies, mice were treated daily for 10 days with topically applied scrambled siRNA-Au NPs at dosages ranging from 50 nM to 500 nM (n=5 in each group). Gold particles were detected in skin, lymph nodes, liver, GI tract and feces, with concentrations increasing in these organs in proportion to the concentration of applied nanoparticles.
  • Example 7 Topically Applied siRNA-Au NPs Suppress Gene Expression
  • In studies to target gene expression using a topical approach, green fluorescent protein (GFP) was targeted in mice ubiquitously expressing the transgene (C57BL/6-Tg(UBC-GFP)30Scha/J). siRNA-Au NPs directed against GFP were applied at 15 nM concentration topically using the Aquaphor vehicle. The mice were treated serially three times weekly for four weeks, with a half of the dorsum of the mouse treated with anti-GFP siRNA-Au NPs and the other half treated with scrambled siRNA-Au NPs. After isolating the treated skin, fluorimetry was used to compare GFP levels between controls and those treated with the anti-GFP siRNA-Au NPs. In treated mice (n=5), this regime resulted in a 43% decrease in GFP expression as measured fluorescently (p<0.0036) (FIG. 6) The approximately 12% knockdown seen from the skin in mice treated on one half with scrambled (control) siRNA-Au NPs reflected systemic uptake of the anti-GFP siRNA-Au NPs.
  • Example 8 Metastatic Melanoma as a Therapeutic Target
  • Through the study of human melanoma cell lines of different genotypes (e.g., SK-MEL-28, 1205Lu, A375P, C8161, and WM3211 lines) and human melanoma tissue, metastatic cells have been found to be distinguishable from non-metastasizing melanoma cells and normal melanocytes by the presence of a unique de-acetylated form of ganglioside GM3. de-N-acetylGM3 is not only an antigenically distinct marker, but also drives cell migration and invasion [Liu J de-N-acetyl GM3 promotes melanoma cell migration and invasion via urokinase plasminogen activator receptor signaling-dependent matrix metalloproteinase-2 activation. Cancer Res (2009)]. Studies with explant mouse models have verified the value of de-N-acetylGM3 in suppressing the spread of metastasis of metastatic lines in mice to the lungs and liver. During these studies the time course of establishment of cutaneous and metastatic melanomas was explored in explant models with SK-MEL-28 and 1205Lu, two BRAF V600E/PTEN loss models. In these models, subcutaneous inoculation of 106 cells lead to skin tumors and metastases to the lung and liver in the majority of mice within a few weeks after inoculation by gross, microscopic and RT-PCR evaluation. The ability of siRNA-Au NPs to penetrate into melanoma cells and suppress the expression of survivin was also studied. Using an SK-MEL 28 melanoma cell line, siRNA Au-NPs were shown to decrease survivin mRNA levels by 91% as measured by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR).
  • Example 9 Multifunctional siRNA-Au NPs for Targeting Known Genes Involved in Metastatic Melanoma using a Combinatorial In Vitro Approach
  • The ability of multifunctional nanoparticles to genetically target signaling pathways in melanoma is examined. The conjugates are designed and demonstrated to target multiple mutations in a combinatorial manner. Using a ratio-metric approach, functionalized conjugates are optimized for the purposes of concurrently regulating multiple genes.
  • Multiple signaling pathways are known to be upregulated in metastatic melanomas, particularly BRAF/ERK and AKT3 signaling. A common BRAF mutation and the activated AKT3 are targeted using a combinatorial approach. In addition, the results of knockdown by the BRAF V600E and AKT3 siRNA-Au NPs is compared with the results of non-complementary control siRNA-Au NPs in each experiment. This determines the specificity of gene knockdown and allows for assessments of conjugate toxicity.
  • The optimal strategy for targeting these two melanoma targets independently is determined. First, siRNA conjugates are designed to target the T1799A (V600E) mutation in BRAF. At least three sequences per target are designed using siRNA design algorithms or via selection from literature [Sharma et al., Cancer Res 65: 2412-2421 (2005)]. BRAF conjugates are individually assessed to determine optimal concentrations for gene knockdown in the BrafVE Ptenlox mouse cell line, 3 human BRAF V600E-containing cell lines (A375P; SK-MEL-28; 1205Lu) and, as negative controls, normal melanocytes (ScienCell Research Labs, Carlsbad, Calif.) and the C8161 metastatic melanoma cell line that shows only wildtype BRAF (see Table A).
  • A second sequence is designed to target AKT3 [Sharma et al., Clin Cancer Res 15: 1674-1685 (2009)], and is tested in the 3 BRAF V600E-containing cell lines, the C8161 line that also has AKT activation and, as a control, normal human melanocytes. Cells from the transgenic mouse line are grown in the presence of 4-HT (and, as a control, without 4-HT) to induce BrafVE expression. qRT-PCR and Western blot analysis is used after harvesting of cells at specific time points after siRNA-Au NP treatment to determine levels of mRNA and protein expression of human and mouse BRAF V600E and AKT3 [Dankort et al., Nat Genet 41: 544-552 (2009); Dankort et al., Genes Dev 21: 379-384 (2007)]. To confirm the specificity of knockdown, the effects of siRNA-Au NP treatment is evaluated on wildtype BRAF, CRAF, AKT1 and AKT2 by qRT-PCR and immunoblotting [Stahl et al., Cancer Res 64: 7002-7010 (2004)]. The technique also allows targeting of the less frequent mutations that lead to increased ERK activation, such as in NRAS (e.g., Q61L) or in c-KIT.
  • Since the gold nanoparticle acts as a scaffold for molecule attachment, the use of a combinatorial approach to simultaneously target BRAF V600E and AKT3 is examined. siRNA duplexes targeting each mutation will be added to the nanoparticles in different ratios. Using the ability to control the stoichiometry of the conjugate, the delivery of siRNA to cells is precisely affected, allowing for investigation of knockdown and cellular response as the amounts of each target are fine tuned.
  • Example 10 Assessments of Signaling Pathway Alterations and Cell Function
  • The effects on signaling and cell biologic behavior of selected individual and multifunctional siRNA-Au NPs are compared as described [Sun et al., J Invest Dermatol 119: 107-117 (2002); Wang et al., J Invest Dermatol 126: 2687-2696 (2006); Wang et al., J Biol Chem 276: 44504-44511 (2001); Wang et al., J Biol Chem 278: 25591-25599 (2003)]. BRAF V600E/AKT3 siRNA-Au NPs suppresses both ERK phosphorylation, and AKT expression and phosphorylation. This is confirmed through immunoblotting with antibodies directed against pERK. ERK, pAKT, and AKT. Given the key role of BRAF/ERK and AKT signaling in increased melanoma cell proliferation and survival, a marked alteration in melanoma cell function in vitro occurs as a result of knockdown. Induction of apoptosis is determined by immunoblotting to assess PARP cleavage and by annexin V flow studies. The relative roles of BRAF V600E suppression and AKT3 suppression is dissected by determining protein expression of Bim (induced by BRAF activation), BCL-2 (induced by AKT activation) and BAD (suppressed by AKT activation). Lack of induced apoptosis in controls with scrambled sequences assures that apoptosis results from intended targeting rather than siRNA-Au NP toxicity. Proliferation is assessed by cell counts and WST-1 [(4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate)] assays, and cyclin D1 expression is evaluated by immunoblotting. Melanoma cells express factors that contribute to angiogenesis (particularly IL-8 and VEGF) and invasion (particularly MMP-2) [Liu J et al., de-N-acetyl GM3 promotes melanoma cell migration and invasion via urokinase plasminogen activator receptor signaling-dependent matrix metalloproteinase-2 activation. Cancer Res (2009)]. Expression of tumor VEGF, Hif-1α and MMP-2 is assessed by immunoblotting cell extracts and supernatants; to assess MMP-2 function zymography assays of culture supernatants are performed as previously described [Liu J et al., de-N-acetyl GM3 promotes melanoma cell migration and invasion via urokinase plasminogen activator receptor signaling-dependent matrix metalloproteinase-2 activation. Cancer Res (2009); Wang et al., J Biol Chem 278: 25591-25599 (2003)]. IL-8 expression is assessed in cell supernatants by ELISA [Crawford et al., Mol Cancer Ther 7: 492-499 (2008)]. Cell invasion assays are performed using Matrigel Invasion Chambers [Wang et al., J Biol Chem 278: 25591-25599 (2003)].
  • The multifunctional siRNA-AuNPs provide the opportunity to target alternative gene mutations (such as in the WM1366 cell line) or to add additional targeting siRNA's to the multifunctional siRNA-Au NPs targeting BRAF V600E and AKT3. The ability to target three or more genes using genetic profiles of each of the cell lines as well as their known genetic mutations is therefore contemplated (Table A). For example, both SK-MEL-28 and 1205Lu cells have specific CDK4 point mutations; although these mutations do not seem to affect the response to BRAF suppression, additional targeting allows exploration of the functional effect of these mutations. Similarly, SK-MEL-28 and 1205Lu have additional signature mutations in p53 (SK-MEL-28) and CDKN2A (1205Lu) that are targeted to explore their significance in metastatic melanoma transformation and progression. These cell lines have both been used extensively for in viva xenograft models.
  • Example 11 Conditions, Safety and Biodistribution for Transdermal and Intravenous Delivery of siRNA Nanoconjugates
  • The delivery, clearance, and toxicity of scrambled siRNA-Au NPs administered intravenously and transdermally is compared in an immunocompetent mouse. In addition, toxicity and pharmacokinetic profiles of the conjugates are assessed. The multifunctional nanoparticles are also optimized for penetration through human skin as described herein above.
  • siRNA-Au NPs are delivered systemically by transdermal delivery, and their fate is tracked by the deposition of gold particles. Levels of gold particles in organs is measured by ICP-MS as previously described [Giljohann et al., Nano Lett 7: 3818-3821 (2007)]. In these studies, 6 mice are studied in each siRNA-Au NP treatment group with vehicle applied as a control in 2 mice for each parameter. In biodistribution studies, delivery is focused to the liver, lungs, skin and lymph nodes, the most common sites of melanoma metastases and sites reached by siRNA-Au NPs in studies with topical administration. The kidney, spleen, adrenals and GI tract (sites of potential toxicity) are also monitored; and the brain (an occasional site of metastasis in humans that is difficult to reach). 500 nM siRNA-Au NP is administered in these studies, since this concentration reaches internal targets well through transdermal delivery.
  • Transdermal Delivery
  • Widespread uptake of 25 nM fluorophore-conjugated siRNA-Au NPs by epidermal, dermal and subcutaneous cells has been demonstrated within 24 h after application (FIG. 5), and delivery of gold particles to the skin, lymph nodes, lungs, liver and kidney, even after application of only 15 nM unifunctional siRNA-Au NPs. Studies are performed in immunocompetent C57BL/6 mice at 7-8 weeks of age, the age at which treatment starts in the transgenic mouse melanoma model.
  • Delivery, Clearance and Toxicity with Single Administration
  • A time course experiment with the multifunctional siRNA-Au NPs is performed to determine: 1) the time course and efficiency of transdermal penetration; 2) the efficacy of delivery to internal organs; 3) the clearance after a single application; and 4) the potential for irritation or toxicity. Mice are treated once and then euthanized at 8 timepoints from 2 h to 7 weeks post-treatment. In these studies, the distribution of siRNA-Au NP at the early timepoints (i.e. 2, 4, 24, and 72 h) is compared to assure penetration through skin, delivery to organs, and clearance. In mice treated topically, the treated site of skin is trisected for histological analysis to assure lack of toxicity, for ICP-MS to quantify gold particle concentration, and for storage at −80° C. (e.g., for later ELISA assays). The skin section for ICP-MS is subjected to a brief exposure to 60° C. water to separate epideiiiiis from the vascularized dermis and thereby determine epidermal versus dermaUsubcutaneous delivery. At sacrifice, organs (as noted above) and distant skin are assessed for gold content by ICP-MS, and a portion of each organ is taken for histologic assessment (see below).
  • Accumulation with Repeated Administration
  • Given that mice are treated repeatedly in the proposed experiments, rather than just a single application, these studies are also performed with mice treated 2-3 times weekly (based on the persistence of gold particles in skin after single application) for 10 days, 4 weeks and 7 weeks to quantify gold particle accumulation.
  • Assessment for Toxicity
  • Mice are weighed every other day as well as observed for visible skin alterations or behavioral change. To test for adverse effects, histologic and immunohistochemical evaluations are performed at the organ level. Specifically, the presence of necrosis and inflammation in all tissues and, in the skin, alterations in epidermal maturation and the presence melanoderma (pigment dumping) is determined. If evidence of cutaneous or visceral atrophy is seen, cell proliferation is assessed immunohistochemically by detection of Ki67. The presence of suspected apoptosis is confirmed immunohistochemically (ApopTag In Situ Apoptosis Detection) [Lannutti et al., Cancer Res. 57(23): 5277-80 ( )97)]. If epidermal apoptosis is seen in treated skin. ELISA assays for TNF-alpha expression are performed in siRNA-Au NP skin vs. control-treated skin, given that the skin is an innate immune organ and able to express pro-apoptotic cytokines.
  • Blood is obtained from cardiac puncture pre-terminally in all animals. In the single dose studies, the serum is frozen for future analysis if needed. Blood from mice treated for 10 days or more is analyzed for blood counts, aspartate aminotransferase (liver function) and creatinine levels (kidney function)(Charles River Labs).
  • Transdermal Delivery in Human Skin
  • The ability of the siRNA-Au NPs to traverse human skin is tested by using normal human skin from abdominoplasties to conduct in vitro experiments with Franz diffusion cells. These Franz cells have been the gold standard for testing flux through human skin for the past few decades. They are temperature- and humidity-controlled to match human in vivo conditions and, importantly, provide an osmotic gradient simulating skin. The transit of the gold particles through human skin is quantified by ICP-MS as a marker for penetration, since the siRNA and gold particles remain conjugated. Reconstituted skin is obtained after separating the stratum corneum/epidermis from the dermis. The integrity of reconstituted human skin samples is verified visually under a dissecting microscope. To further verify that tissue is intact, receptor fluid samples are collected in the first 30 minutes with the assumption that gold is not detectable in samples collected within the first thirty minutes if tissue is intact. After mounting skin onto Franz cells, siRNA-Au NPs (beginning with 500 nM and decreasing to as low as 100 pM) are applied with Aquaphor as a control. Studies are performed in at least triplicate and at least three times. These studies indicate the flux through human epidermis, the amount of drug passing across a cm2 of skin surface over time (ng/cm2/h). At the end of 6 hours and 24 hours, the skin is minced and gold particles extracted for ICP-MS measurements to measure the residual Au NPs in tissue.
  • Example 12 Establishment of the Mouse Model
  • Melanomas are induced by topical administration of 5 mM 4-HT in DMSO at 6 weeks of age to the left and right flank areas on 3 consecutive days, as previously described [Dankort et al., Nat Genet 41: 544-552 (2009)]. These highly pigmented melanomas will first be apparent at 7-10 days after 4-HT administration in the transgenic model as highly pigmented tumors [Dankort et al., Nat Genet 41: 544-552 (2009)]. In studies to generate the mouse model, application of solvent alone is used as a control. To simulate human disease, in which therapy would not begin until at least the skin tumor is first detectable, initiation of therapy is withheld in both mouse models until the melanoma is visible or palpable with a minimal area of at least 5 mm2.
  • Dose-Finding Studies
  • Eight mice are tested at each of 3 doses between 50 nM and 500 nM. Controls in the dose-finding studies include scrambled siRNA and Aquaphor alone. Mice are sacrificed at 7 weeks after initiation of therapy for necropsy. The primary melanoma(s) and any cutaneous metastases are photographed and the volume(s) are measured at the time of each treatment by calipers. The number of visible or palpable cutaneous metastases are noted. Gross metastases of the lungs, liver, lymph nodes, kidneys and brain are counted (facilitated by their dark brown color), and organs are examined histologically with multiple sections throughout each organ for evidence of micrometastases. Micrometastases are easily visible microscopically, but a Fontana-Masson stain is used to further accentuate the pigmentation if needed. The dosage that is most effective in reducing metastases without any evidence of toxicity is used for subsequent studies.
  • Time Course of Development of Metastases and its Alteration by siRNA-Au NP Therapy
  • Mice are administered siRNA-Au NPs, scrambled siRNA-Au NPs or control vehicle (topical Aquaphor) with a dosage and frequency based on previous studies. Sets of 8 mice each are sacrificed at 1, 3, 5, and 7 weeks after initiation of therapy to evaluate visceral metastasis grossly and histologically as described above.
  • Mechanism of the Effect of siRNA-Au NPs
  • The primary tumors are divided for routine histologic and immunohistochemical studies, immunoblot analysis, and qPCR. Controls in these studies are tumors from mice treated with scrambled siRNA-Au NPs or vehicle and normal/untreated skin (e.g., skin from the upper back in the transgenic mouse). The following is investigated: i) tumor cell proliferation with Ki67 staining; ii) peritumoral vascularity with anti-CD31 antibody; iii) tumor cell apoptosis with TUNEL assay or caspase 3 staining; iv) the direct suppression of expression of BrafVE, wildtype Braf, and Akt3 in the transgenic model using qPCR with primers as previously described [Dankort et al., Nat Genet 41: 544-552 (2009); Sharma et al., Clin Cancer Res 15: 1674-1685 (2009); Sharma et al., Cancer Res 66: 8200-8209 (2006); Sharma et al., Cancer Res 65: 2412-2421 (2005)]; and v) changes in protein expression of total Braf; Craf; p-Akt/ total Ala; and p-ERK1/2/ total ERK1/2. Extracted protein from tumor samples is assayed for markers of angiogenesis and invasion (VEGF, MMP-2 and Hif-1) by immunoblotting. Baseline retrobulbar bleeding and cardiac puncture at sacrifice 2 h after the last administration of siRNA-Au NPs is performed to assess IL-8 levels by ELISA [Crawford et al., Mol Cancer Ther 7: 492-499 (2008)]. In the immunocompetent transgenic model, whether suppression of Braf and/or Akt3 activation impact the immune response and promote cytotoxic T cell function is also assessed. These studies compare cells from untreated or scrambled siRNA-Au NP treated mice with BrafVE Akt3 siRNA-Au NP-treated transgenic mice. Using immunohistochemistry, the number of Foxp3+(regulatory T cells) and CTLA4+/CD152 (cytotoxic CD8+ T cells) are counted in tumor sections. To ensure visualization of antibody, AEC chromogen (red color) is used. Tumor-infiltrating lymphocytes are extracted from skin tumors [Lin et al., J Immunol 182: 6095-6104 (2009)] and from mice sacrificed at 1, 4, and 7 weeks after initiation of therapy. Cells are subjected to FACS analysis after staining with fluorochrome-conjugated antibodies against CD4, CD25, Foxp3, CD8 and CTLA4.
  • Persistence of siRNA Suppression
  • In separate studies mice are treated with siRNA-Au NPs for 7 weeks to control primary tumor growth and metastases. Therapy is discontinued in half of the mice (n=12). Mice without treatment and a cohort with continuing treatment are sacrificed 2, 4, 8 and 12 weeks later. The primary melanoma is measured twice weekly and visceral metastases are counted at termination. In addition, Au-NPs are quantified in the skin and visceral tumors to determine how their clearance correlates with reversal of tumor suppression.
  • Prolongation of Survival
  • Transgenic mice require euthanasia by 25-50 days [Dankort et al., Nat Genet 41: 544-552 (2009)] (e.g., when either the tumor reaches 2 cm at its maximal diameter or the mouse is morbid, such as showing poor feeding, loss of 20% of body weight in one week or 10% of body weight in two consecutive weeks, abnormal respiration, or posture indicating pain). In the studies described above to assess the effect of siRNA-Au NPs, mice are sacrificed at time points up to 10 weeks. Treatment of mice continues and a comparison to untreated and scrambled siRNA-Au NP-treated mice is performed for survival studies of up to 3 months. Mouse survival is plotted using Kaplan-Meier survival curves.
  • Assessment of Toxicity
  • Mice are weighed every other day and observed for evidence of altered behavior or appetite. Liver and kidney tissues are assessed for evidence of tissue toxicity (e.g., apoptosis or inflammation) by routine histopathological staining, and screening blood studies for bone marrow, hepatic and renal function are performed according to methods known in the art. Additional immunohistochemical evaluation (such as TUNEL and Ki67) is performed if evidence of toxicity is suspected. siRNA-induced off-target effects is assessed in serum obtained by cardiac puncture to performing Whole Genome arrays (Affymetrix). Gene array studies are performed in at least triplicate on samples from mice exposed for at least 7 weeks to BrafVE Akt 3 siRNA-Au NPs and their controls; samples are banked and arrays performed on mice with shorter exposures if off-target effects are detected.
  • Statistical Analyses
  • The ability of synthesized conjugates to knockdown genes and affect protein expression is assessed using the two-tailed Student's t test with significance at P<0.05. The significance of differences in the size of cutaneous melanomas and number of lung and liver metastases is determined using the nonparametric Mann-Whitney U-test and PRISM software. Significance in survival studies is determined by logrank tests of the survival plots.
  • While the present invention has been described in terms of various embodiments and examples, it is understood that variations and improvements will occur to those skilled in the art. Therefore, only such limitations as appear in the claims should be placed on the invention.

Claims (25)

1. A method of dermal delivery of an oligonucleotide-functionalized nanoparticle comprising the step of:
administering a therapeutically effective amount of a composition comprising the oligonucleotide-functionalized nanoparticle and a dermal vehicle to the skin of a patient in need thereof.
2. The method of claim 1 wherein the delivery of the oligonucleotide-functionalized nanoparticle is transdermal.
3. The method of claim 1 wherein the delivery of the oligonucleotide-functionalized nanoparticle is topical.
4. The method of claim 1, said dermal vehicle comprising an ointment.
5. The method of claim 4 wherein the ointment is Aquaphor.
6. A method of regulating gene expression comprising the step of:
administering a therapeutically effective amount of a composition comprising an oligonucleotide-functionalized nanoparticle to skin under conditions wherein the oligonucleotide-functionalized nanoparticle hybridizes to a target and regulates gene expression.
7. The method of claim 6 wherein the target is a polypeptide.
8. The method of claim 6 wherein the target is a polynucleotide.
9. The method of claim 8 wherein the polynucleotide is RNA.
10. The method of claim 6 wherein the administration of the composition ameliorates a skin disorder.
11. The method of claim 10 wherein the skin disorder is selected from the group consisting of cancer, a genetic disorder, aging, inflammation, infection, and cosmetic disfigurement.
12. The method of claim 11 wherein the cancer is selected from the group consisting of squamous cell carcinoma, basal cell carcinoma, breast cancer and melanoma.
13. The method of claim 12 wherein the target is a gene product expressed by a gene selected from the group consisting of Ras, IKBa, hedgehog, B-Raf, Akt and cyclin D.
14. The method of claim 11 wherein the genetic disorder is selected from the group consisting of epidermolysis bullosa simplex, bullous ichthyosis, pachyonychia congenita, Costello syndrome and tuberous sclerosis.
15. The method of claim 14 wherein the target is a gene product that comprises a mutation, said gene product being expressed by a gene selected from the group consisting of K5, K14, Ki, K10, H-Ras and m-Tor.
16. The method of claim 11 wherein the aging disorder is selected from the group consisting of UV-damage and progeria.
17. The method of claim 16 wherein the target is a gene product expressed by a gene selected from the group consisting of matrix metalloproteinase-1 and progerin.
18. The method of claim 11 wherein the inflammation is due to psoriasis.
19. The method of claim 18 wherein the target is interleukin-23.
20. The method of claim 11 wherein the viral infection results in warts.
21. The method of claim 20 wherein the target is E6/E7.
22. The method of claim 11 wherein the cosmetic disfigurement is selected from the group consisting of seborrheic keratoses, epidermal nevi and pigmented nevi.
23. The method of claim 22 wherein the target is a gene product comprising a mutation, said gene product being expressed by a gene selected from the group consisting of FGFR3, K10 and B-Raf.
24. A dermal composition comprising an oligonucleotide-functionalized nanoparticle and a dermal vehicle.
25. The method of claim 1 using the composition of claim 24.
US12/724,395 2009-01-08 2010-03-15 Delivery of Oligonucleotide-Functionalized Nanoparticles Abandoned US20100233270A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/724,395 US20100233270A1 (en) 2009-01-08 2010-03-15 Delivery of Oligonucleotide-Functionalized Nanoparticles
US13/721,366 US10098958B2 (en) 2009-01-08 2012-12-20 Delivery of oligonucleotide functionalized nanoparticles
US16/160,196 US11633503B2 (en) 2009-01-08 2018-10-15 Delivery of oligonucleotide-functionalized nanoparticles

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US14329309P 2009-01-08 2009-01-08
US16938409P 2009-04-15 2009-04-15
US18775909P 2009-06-17 2009-06-17
US12/684,836 US20100184844A1 (en) 2009-01-08 2010-01-08 Inhibition of Bacterial Protein Production by Polyvalent Oligonucleotide Modified Nanoparticle Conjugates
US12/724,395 US20100233270A1 (en) 2009-01-08 2010-03-15 Delivery of Oligonucleotide-Functionalized Nanoparticles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/684,836 Continuation-In-Part US20100184844A1 (en) 2009-01-08 2010-01-08 Inhibition of Bacterial Protein Production by Polyvalent Oligonucleotide Modified Nanoparticle Conjugates

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/721,366 Continuation US10098958B2 (en) 2009-01-08 2012-12-20 Delivery of oligonucleotide functionalized nanoparticles

Publications (1)

Publication Number Publication Date
US20100233270A1 true US20100233270A1 (en) 2010-09-16

Family

ID=42730908

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/724,395 Abandoned US20100233270A1 (en) 2009-01-08 2010-03-15 Delivery of Oligonucleotide-Functionalized Nanoparticles
US13/721,366 Active US10098958B2 (en) 2009-01-08 2012-12-20 Delivery of oligonucleotide functionalized nanoparticles
US16/160,196 Active US11633503B2 (en) 2009-01-08 2018-10-15 Delivery of oligonucleotide-functionalized nanoparticles

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/721,366 Active US10098958B2 (en) 2009-01-08 2012-12-20 Delivery of oligonucleotide functionalized nanoparticles
US16/160,196 Active US11633503B2 (en) 2009-01-08 2018-10-15 Delivery of oligonucleotide-functionalized nanoparticles

Country Status (1)

Country Link
US (3) US20100233270A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120222469A1 (en) * 2011-03-04 2012-09-06 Jian-Ping Xie Apparatus and Procedure For In Vitro Measurement of a Substance, Nicotine, Released From a Smokeless Tobacco Product
WO2013036974A1 (en) 2011-09-11 2013-03-14 Aurasense, Llc Cellular uptake control systems
WO2013040499A1 (en) * 2011-09-14 2013-03-21 Northwestern University Nanoconjugates able to cross the blood-brain barrier
WO2015013675A1 (en) 2013-07-25 2015-01-29 Aurasense Therapeutics, Llc Spherical nucleic acid-based constructs as immunoregulatory agents
US9216155B2 (en) 2010-01-19 2015-12-22 Northwestern University Synthetic nanostructures including nucleic acids and/or other entities
US20160095929A1 (en) * 2011-08-10 2016-04-07 Northwestern University Promotion of wound healing
US9532948B2 (en) 2008-04-25 2017-01-03 Northwestern University Nanostructure suitable for sequestering cholesterol and other molecules
US9890427B2 (en) 2007-02-09 2018-02-13 Northwestern University Particles for detecting intracellular targets
WO2017159998A3 (en) * 2016-03-17 2018-08-02 서강대학교 산학협력단 Half-coating method for nanoparticles
US10078092B2 (en) 2015-03-18 2018-09-18 Northwestern University Assays for measuring binding kinetics and binding capacity of acceptors for lipophilic or amphiphilic molecules
US10208310B2 (en) 2014-10-06 2019-02-19 Exicure, Inc. Anti-TNF compounds
US10260089B2 (en) 2012-10-29 2019-04-16 The Research Foundation Of The State University Of New York Compositions and methods for recognition of RNA using triple helical peptide nucleic acids
US10434064B2 (en) 2014-06-04 2019-10-08 Exicure, Inc. Multivalent delivery of immune modulators by liposomal spherical nucleic acids for prophylactic or therapeutic applications
US10517924B2 (en) 2014-11-24 2019-12-31 Northwestern University High density lipoprotein nanoparticles for inflammation
US10568898B2 (en) 2013-08-13 2020-02-25 Northwestern University Lipophilic nanoparticles for drug delivery
WO2020181144A1 (en) 2019-03-06 2020-09-10 Northwestern University Hairpin-like oligonucleotide-conjugated spherical nucleic acid
US10837018B2 (en) 2013-07-25 2020-11-17 Exicure, Inc. Spherical nucleic acid-based constructs as immunostimulatory agents for prophylactic and therapeutic use
US11213593B2 (en) 2014-11-21 2022-01-04 Northwestern University Sequence-specific cellular uptake of spherical nucleic acid nanoparticle conjugates
US11364304B2 (en) 2016-08-25 2022-06-21 Northwestern University Crosslinked micellar spherical nucleic acids
WO2022192038A1 (en) 2021-03-12 2022-09-15 Northwestern University Antiviral vaccines using spherical nucleic acids
US11633503B2 (en) 2009-01-08 2023-04-25 Northwestern University Delivery of oligonucleotide-functionalized nanoparticles
US11696954B2 (en) 2017-04-28 2023-07-11 Exicure Operating Company Synthesis of spherical nucleic acids using lipophilic moieties
US11866700B2 (en) 2016-05-06 2024-01-09 Exicure Operating Company Liposomal spherical nucleic acid (SNA) constructs presenting antisense oligonucleotides (ASO) for specific knockdown of interleukin 17 receptor mRNA

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11433131B2 (en) 2017-05-11 2022-09-06 Northwestern University Adoptive cell therapy using spherical nucleic acids (SNAs)
CN109420177B (en) 2017-08-28 2022-03-04 香港中文大学 Materials and methods for efficient in vivo delivery of DNA nanostructures to atherosclerotic plaques
WO2020210378A1 (en) * 2019-04-08 2020-10-15 University Of Massachusetts Localization of payload delivery systems to tumor sites via beacon cell targeting

Citations (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496689A (en) * 1983-12-27 1985-01-29 Miles Laboratories, Inc. Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer
US4587044A (en) * 1983-09-01 1986-05-06 The Johns Hopkins University Linkage of proteins to nucleic acids
US4667025A (en) * 1982-08-09 1987-05-19 Wakunaga Seiyaku Kabushiki Kaisha Oligonucleotide derivatives
US4670417A (en) * 1985-06-19 1987-06-02 Ajinomoto Co., Inc. Hemoglobin combined with a poly(alkylene oxide)
US4824941A (en) * 1983-03-10 1989-04-25 Julian Gordon Specific antibody to the native form of 2'5'-oligonucleotides, the method of preparation and the use as reagents in immunoassays or for binding 2'5'-oligonucleotides in biological systems
US4828979A (en) * 1984-11-08 1989-05-09 Life Technologies, Inc. Nucleotide analogs for nucleic acid labeling and detection
US4835263A (en) * 1983-01-27 1989-05-30 Centre National De La Recherche Scientifique Novel compounds containing an oligonucleotide sequence bonded to an intercalating agent, a process for their synthesis and their use
US4904582A (en) * 1987-06-11 1990-02-27 Synthetic Genetics Novel amphiphilic nucleic acid conjugates
US4981957A (en) * 1984-07-19 1991-01-01 Centre National De La Recherche Scientifique Oligonucleotides with modified phosphate and modified carbohydrate moieties at the respective chain termini
US5013830A (en) * 1986-09-08 1991-05-07 Ajinomoto Co., Inc. Compounds for the cleavage at a specific position of RNA, oligomers employed for the formation of said compounds, and starting materials for the synthesis of said oligomers
US5023243A (en) * 1981-10-23 1991-06-11 Molecular Biosystems, Inc. Oligonucleotide therapeutic agent and method of making same
US5082830A (en) * 1988-02-26 1992-01-21 Enzo Biochem, Inc. End labeled nucleotide probe
US5109124A (en) * 1988-06-01 1992-04-28 Biogen, Inc. Nucleic acid probe linked to a label having a terminal cysteine
US5112963A (en) * 1987-11-12 1992-05-12 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Modified oligonucleotides
US5118802A (en) * 1983-12-20 1992-06-02 California Institute Of Technology DNA-reporter conjugates linked via the 2' or 5'-primary amino group of the 5'-terminal nucleoside
US5118800A (en) * 1983-12-20 1992-06-02 California Institute Of Technology Oligonucleotides possessing a primary amino group in the terminal nucleotide
US5177196A (en) * 1990-08-16 1993-01-05 Microprobe Corporation Oligo (α-arabinofuranosyl nucleotides) and α-arabinofuranosyl precursors thereof
US5185444A (en) * 1985-03-15 1993-02-09 Anti-Gene Deveopment Group Uncharged morpolino-based polymers having phosphorous containing chiral intersubunit linkages
US5188897A (en) * 1987-10-22 1993-02-23 Temple University Of The Commonwealth System Of Higher Education Encapsulated 2',5'-phosphorothioate oligoadenylates
US5194599A (en) * 1988-09-23 1993-03-16 Gilead Sciences, Inc. Hydrogen phosphonodithioate compositions
US5214136A (en) * 1990-02-20 1993-05-25 Gilead Sciences, Inc. Anthraquinone-derivatives oligonucleotides
US5214134A (en) * 1990-09-12 1993-05-25 Sterling Winthrop Inc. Process of linking nucleosides with a siloxane bridge
US5216141A (en) * 1988-06-06 1993-06-01 Benner Steven A Oligonucleotide analogs containing sulfur linkages
US5218105A (en) * 1990-07-27 1993-06-08 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
US5220007A (en) * 1990-02-15 1993-06-15 The Worcester Foundation For Experimental Biology Method of site-specific alteration of RNA and production of encoded polypeptides
US5276019A (en) * 1987-03-25 1994-01-04 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
US5279302A (en) * 1992-01-28 1994-01-18 Hitachi Medical Corporation Ultrasonic doppler blood flow measuring apparatus
US5292873A (en) * 1989-11-29 1994-03-08 The Research Foundation Of State University Of New York Nucleic acids labeled with naphthoquinone probe
US5317098A (en) * 1986-03-17 1994-05-31 Hiroaki Shizuya Non-radioisotope tagging of fragments
US5319080A (en) * 1991-10-17 1994-06-07 Ciba-Geigy Corporation Bicyclic nucleosides, oligonucleotides, process for their preparation and intermediates
US5321131A (en) * 1990-03-08 1994-06-14 Hybridon, Inc. Site-specific functionalization of oligodeoxynucleotides for non-radioactive labelling
US5391723A (en) * 1989-05-31 1995-02-21 Neorx Corporation Oligonucleotide conjugates
US5399676A (en) * 1989-10-23 1995-03-21 Gilead Sciences Oligonucleotides with inverted polarity
US5403711A (en) * 1987-11-30 1995-04-04 University Of Iowa Research Foundation Nucleic acid hybridization and amplification method for detection of specific sequences in which a complementary labeled nucleic acid probe is cleaved
US5405939A (en) * 1987-10-22 1995-04-11 Temple University Of The Commonwealth System Of Higher Education 2',5'-phosphorothioate oligoadenylates and their covalent conjugates with polylysine
US5405938A (en) * 1989-12-20 1995-04-11 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US5414077A (en) * 1990-02-20 1995-05-09 Gilead Sciences Non-nucleoside linkers for convenient attachment of labels to oligonucleotides using standard synthetic methods
US5416203A (en) * 1989-06-06 1995-05-16 Northwestern University Steroid modified oligonucleotides
US5484908A (en) * 1991-11-26 1996-01-16 Gilead Sciences, Inc. Oligonucleotides containing 5-propynyl pyrimidines
US5486603A (en) * 1990-01-08 1996-01-23 Gilead Sciences, Inc. Oligonucleotide having enhanced binding affinity
US5489677A (en) * 1990-07-27 1996-02-06 Isis Pharmaceuticals, Inc. Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms
US5491133A (en) * 1987-11-30 1996-02-13 University Of Iowa Research Foundation Methods for blocking the expression of specifically targeted genes
US5502177A (en) * 1993-09-17 1996-03-26 Gilead Sciences, Inc. Pyrimidine derivatives for labeled binding partners
US5510475A (en) * 1990-11-08 1996-04-23 Hybridon, Inc. Oligonucleotide multiple reporter precursors
US5512439A (en) * 1988-11-21 1996-04-30 Dynal As Oligonucleotide-linked magnetic particles and uses thereof
US5512667A (en) * 1990-08-28 1996-04-30 Reed; Michael W. Trifunctional intermediates for preparing 3'-tailed oligonucleotides
US5514785A (en) * 1990-05-11 1996-05-07 Becton Dickinson And Company Solid supports for nucleic acid hybridization assays
US5519134A (en) * 1994-01-11 1996-05-21 Isis Pharmaceuticals, Inc. Pyrrolidine-containing monomers and oligomers
US5519126A (en) * 1988-03-25 1996-05-21 University Of Virginia Alumni Patents Foundation Oligonucleotide N-alkylphosphoramidates
US5525711A (en) * 1994-05-18 1996-06-11 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Pteridine nucleotide analogs as fluorescent DNA probes
US5525465A (en) * 1987-10-28 1996-06-11 Howard Florey Institute Of Experimental Physiology And Medicine Oligonucleotide-polyamide conjugates and methods of production and applications of the same
US5591584A (en) * 1994-08-25 1997-01-07 Chiron Corporation N-4 modified pyrimidine deoxynucleotides and oligonucleotide probes synthesized therewith
US5591722A (en) * 1989-09-15 1997-01-07 Southern Research Institute 2'-deoxy-4'-thioribonucleosides and their antiviral activity
US5594121A (en) * 1991-11-07 1997-01-14 Gilead Sciences, Inc. Enhanced triple-helix and double-helix formation with oligomers containing modified purines
US5596086A (en) * 1990-09-20 1997-01-21 Gilead Sciences, Inc. Modified internucleoside linkages having one nitrogen and two carbon atoms
US5596091A (en) * 1994-03-18 1997-01-21 The Regents Of The University Of California Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleotides
US5595726A (en) * 1992-01-21 1997-01-21 Pharmacyclics, Inc. Chromophore probe for detection of nucleic acid
US5597909A (en) * 1994-08-25 1997-01-28 Chiron Corporation Polynucleotide reagents containing modified deoxyribose moieties, and associated methods of synthesis and use
US5597696A (en) * 1994-07-18 1997-01-28 Becton Dickinson And Company Covalent cyanine dye oligonucleotide conjugates
US5599928A (en) * 1994-02-15 1997-02-04 Pharmacyclics, Inc. Texaphyrin compounds having improved functionalization
US5602240A (en) * 1990-07-27 1997-02-11 Ciba Geigy Ag. Backbone modified oligonucleotide analogs
US5608046A (en) * 1990-07-27 1997-03-04 Isis Pharmaceuticals, Inc. Conjugated 4'-desmethyl nucleoside analog compounds
US5610289A (en) * 1990-07-27 1997-03-11 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogues
US5610300A (en) * 1992-07-01 1997-03-11 Ciba-Geigy Corporation Carbocyclic nucleosides containing bicyclic rings, oligonucleotides therefrom, process for their preparation, their use and intermediates
US5614617A (en) * 1990-07-27 1997-03-25 Isis Pharmaceuticals, Inc. Nuclease resistant, pyrimidine modified oligonucleotides that detect and modulate gene expression
US5618704A (en) * 1990-07-27 1997-04-08 Isis Pharmacueticals, Inc. Backbone-modified oligonucleotide analogs and preparation thereof through radical coupling
US5623065A (en) * 1990-08-13 1997-04-22 Isis Pharmaceuticals, Inc. Gapped 2' modified oligonucleotides
US5623070A (en) * 1990-07-27 1997-04-22 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US5625050A (en) * 1994-03-31 1997-04-29 Amgen Inc. Modified oligonucleotides and intermediates useful in nucleic acid therapeutics
US5627053A (en) * 1994-03-29 1997-05-06 Ribozyme Pharmaceuticals, Inc. 2'deoxy-2'-alkylnucleotide containing nucleic acid
US5633360A (en) * 1992-04-14 1997-05-27 Gilead Sciences, Inc. Oligonucleotide analogs capable of passive cell membrane permeation
US5714331A (en) * 1991-05-24 1998-02-03 Buchardt, Deceased; Ole Peptide nucleic acids having enhanced binding affinity, sequence specificity and solubility
US5719262A (en) * 1993-11-22 1998-02-17 Buchardt, Deceased; Ole Peptide nucleic acids having amino acid side chains
US5721218A (en) * 1989-10-23 1998-02-24 Gilead Sciences, Inc. Oligonucleotides with inverted polarity
US5750692A (en) * 1990-01-11 1998-05-12 Isis Pharmaceuticals, Inc. Synthesis of 3-deazapurines
US6361944B1 (en) * 1996-07-29 2002-03-26 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US6506564B1 (en) * 1996-07-29 2003-01-14 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US6544776B1 (en) * 1997-12-15 2003-04-08 Somalogic, Inc. Nucleic acid ligand diagnostic biochip
US6677153B2 (en) * 1999-11-29 2004-01-13 Avi Biopharma, Inc. Antisense antibacterial method and composition
US6844161B2 (en) * 1997-09-04 2005-01-18 Gryphon Therapeutics, Inc. Modular protein libraries and methods of preparation
US20050059016A1 (en) * 2002-11-05 2005-03-17 Ecker David J. Structural motifs and oligomeric compounds and their use in gene modulation
US20050074753A1 (en) * 1999-04-30 2005-04-07 Goldsborough Andrew Simon Isolation of nucleic acid
US20050096263A1 (en) * 2003-10-30 2005-05-05 Keay Susan K. Novel antiproliferative factor and methods of use
US20060008907A1 (en) * 2004-06-09 2006-01-12 The Curators Of The University Of Missouri Control of gene expression via light activated RNA interference
US20060019917A1 (en) * 2001-05-18 2006-01-26 Sirna Therapeutics, Inc. RNA interference mediated inhibition of stromal cell-derived factor-1 (SDF-1) gene expression using short interfering nucleic acid (siNA)
US6991900B2 (en) * 2000-06-28 2006-01-31 California Institute Of Technology Methods for identifying an essential gene in a prokaryotic microorganism
US20060025363A1 (en) * 2002-08-21 2006-02-02 Ute Breitenbach Use of antisense oligonucleotides for the treatment of degenerative skin conditions
US20060035344A1 (en) * 2002-10-18 2006-02-16 Pachuk Catherine J Double-stranded rna structures and constructs, and methods for generating and using the same
US20060105343A1 (en) * 2003-01-09 2006-05-18 Children's Medical Center Corporation Methods for diagnosis and prognosis of cancer
US20070105139A1 (en) * 2005-10-07 2007-05-10 Fujifilm Corporation Fluorescent probe and fluorescence detecting method
US7223833B1 (en) * 1991-05-24 2007-05-29 Isis Pharmaceuticals, Inc. Peptide nucleic acid conjugates
US7332586B2 (en) * 2001-07-10 2008-02-19 North Carolina State University Nanoparticle delivery vehicle
US20090035576A1 (en) * 2006-09-08 2009-02-05 Prasad Paras N Nanoparticles for two-photon activated photodynamic therapy and imaging
US20090081244A1 (en) * 1996-11-14 2009-03-26 Army, Gov. Of The Us, As Represented By The Dry Formulation for Transcutaneous Immunization
US20100183634A1 (en) * 2009-01-01 2010-07-22 Cornell University, a New York Corporation Multifunctional nucleic acid nano-structures
US20110172404A1 (en) * 2008-05-19 2011-07-14 Cornell University Self-Assembly of Nanoparticles Through Nuclei Acid Engineering

Family Cites Families (353)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687808A (en) 1969-08-14 1972-08-29 Univ Leland Stanford Junior Synthetic polynucleotides
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
US4489055A (en) 1978-07-19 1984-12-18 N.V. Sopar S.A. Process for preparing biodegradable submicroscopic particles containing a biologically active substance and their use
US4289872A (en) 1979-04-06 1981-09-15 Allied Corporation Macromolecular highly branched homogeneous compound based on lysine units
JPS6023084B2 (en) 1979-07-11 1985-06-05 味の素株式会社 blood substitute
US4469863A (en) 1980-11-12 1984-09-04 Ts O Paul O P Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof
US4640835A (en) 1981-10-30 1987-02-03 Nippon Chemiphar Company, Ltd. Plasminogen activator derivatives
US4476301A (en) 1982-04-29 1984-10-09 Centre National De La Recherche Scientifique Oligonucleotides, a process for preparing the same and their application as mediators of the action of interferon
US4605735A (en) 1983-02-14 1986-08-12 Wakunaga Seiyaku Kabushiki Kaisha Oligonucleotide derivatives
US4948882A (en) 1983-02-22 1990-08-14 Syngene, Inc. Single-stranded labelled oligonucleotides, reactive monomers and methods of synthesis
US5008050A (en) 1984-06-20 1991-04-16 The Liposome Company, Inc. Extrusion technique for producing unilamellar vesicles
US5550111A (en) 1984-07-11 1996-08-27 Temple University-Of The Commonwealth System Of Higher Education Dual action 2',5'-oligoadenylate antiviral derivatives and uses thereof
US5430136A (en) 1984-10-16 1995-07-04 Chiron Corporation Oligonucleotides having selectably cleavable and/or abasic sites
US5258506A (en) 1984-10-16 1993-11-02 Chiron Corporation Photolabile reagents for incorporation into oligonucleotide chains
US5367066A (en) 1984-10-16 1994-11-22 Chiron Corporation Oligonucleotides with selectably cleavable and/or abasic sites
FR2575751B1 (en) 1985-01-08 1987-04-03 Pasteur Institut NOVEL ADENOSINE DERIVATIVE NUCLEOSIDES, THEIR PREPARATION AND THEIR BIOLOGICAL APPLICATIONS
US5034506A (en) 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US5166315A (en) 1989-12-20 1992-11-24 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US5235033A (en) 1985-03-15 1993-08-10 Anti-Gene Development Group Alpha-morpholino ribonucleoside derivatives and polymers thereof
US4762779A (en) 1985-06-13 1988-08-09 Amgen Inc. Compositions and methods for functionalizing nucleic acids
US4791192A (en) 1986-06-26 1988-12-13 Takeda Chemical Industries, Ltd. Chemically modified protein with polyethyleneglycol
JPS638396A (en) 1986-06-30 1988-01-14 Wakunaga Pharmaceut Co Ltd Poly-labeled oligonucleotide derivative
US5541308A (en) 1986-11-24 1996-07-30 Gen-Probe Incorporated Nucleic acid probes for detection and/or quantitation of non-viral organisms
US5264423A (en) 1987-03-25 1993-11-23 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
US5229490A (en) 1987-05-06 1993-07-20 The Rockefeller University Multiple antigen peptide system
EP0366685B1 (en) 1987-06-24 1994-10-19 Howard Florey Institute Of Experimental Physiology And Medicine Nucleoside derivatives
PT88550A (en) 1987-09-21 1989-07-31 Ml Tecnology Ventures Lp PROCESS FOR THE PREPARATION OF NON-NUCLEOTIDIC LIGACATION REAGENTS FOR NUCLEOTIDIAL PROBES
US5585481A (en) 1987-09-21 1996-12-17 Gen-Probe Incorporated Linking reagents for nucleotide probes
US5278302A (en) 1988-05-26 1994-01-11 University Patents, Inc. Polynucleotide phosphorodithioates
US5175273A (en) 1988-07-01 1992-12-29 Genentech, Inc. Nucleic acid intercalating agents
US5262536A (en) 1988-09-15 1993-11-16 E. I. Du Pont De Nemours And Company Reagents for the preparation of 5'-tagged oligonucleotides
US5457183A (en) 1989-03-06 1995-10-10 Board Of Regents, The University Of Texas System Hydroxylated texaphyrins
US5256775A (en) 1989-06-05 1993-10-26 Gilead Sciences, Inc. Exonuclease-resistant oligonucleotides
US5451463A (en) 1989-08-28 1995-09-19 Clontech Laboratories, Inc. Non-nucleoside 1,3-diol reagents for labeling synthetic oligonucleotides
US5134066A (en) 1989-08-29 1992-07-28 Monsanto Company Improved probes using nucleosides containing 3-dezauracil analogs
US5254469A (en) 1989-09-12 1993-10-19 Eastman Kodak Company Oligonucleotide-enzyme conjugate that can be used as a probe in hybridization assays and polymerase chain reaction procedures
US5264564A (en) 1989-10-24 1993-11-23 Gilead Sciences Oligonucleotide analogs with novel linkages
ATE190981T1 (en) 1989-10-24 2000-04-15 Isis Pharmaceuticals Inc 2'-MODIFIED NUCLEOTIDES
US5264562A (en) 1989-10-24 1993-11-23 Gilead Sciences, Inc. Oligonucleotide analogs with novel linkages
US5177198A (en) 1989-11-30 1993-01-05 University Of N.C. At Chapel Hill Process for preparing oligoribonucleoside and oligodeoxyribonucleoside boranophosphates
US5130302A (en) 1989-12-20 1992-07-14 Boron Bilogicals, Inc. Boronated nucleoside, nucleotide and oligonucleotide compounds, compositions and methods for using same
US5646265A (en) 1990-01-11 1997-07-08 Isis Pharmceuticals, Inc. Process for the preparation of 2'-O-alkyl purine phosphoramidites
US5587361A (en) 1991-10-15 1996-12-24 Isis Pharmaceuticals, Inc. Oligonucleotides having phosphorothioate linkages of high chiral purity
US5681941A (en) 1990-01-11 1997-10-28 Isis Pharmaceuticals, Inc. Substituted purines and oligonucleotide cross-linking
US5670633A (en) 1990-01-11 1997-09-23 Isis Pharmaceuticals, Inc. Sugar modified oligonucleotides that detect and modulate gene expression
US5955589A (en) 1991-12-24 1999-09-21 Isis Pharmaceuticals Inc. Gapped 2' modified oligonucleotides
US5459255A (en) 1990-01-11 1995-10-17 Isis Pharmaceuticals, Inc. N-2 substituted purines
US5578718A (en) 1990-01-11 1996-11-26 Isis Pharmaceuticals, Inc. Thiol-derivatized nucleosides
US5149797A (en) 1990-02-15 1992-09-22 The Worcester Foundation For Experimental Biology Method of site-specific alteration of rna and production of encoded polypeptides
US5470967A (en) 1990-04-10 1995-11-28 The Dupont Merck Pharmaceutical Company Oligonucleotide analogs with sulfamate linkages
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
GB9009980D0 (en) 1990-05-03 1990-06-27 Amersham Int Plc Phosphoramidite derivatives,their preparation and the use thereof in the incorporation of reporter groups on synthetic oligonucleotides
US5270163A (en) 1990-06-11 1993-12-14 University Research Corporation Methods for identifying nucleic acid ligands
US5637459A (en) 1990-06-11 1997-06-10 Nexstar Pharmaceuticals, Inc. Systematic evolution of ligands by exponential enrichment: chimeric selex
US5138045A (en) 1990-07-27 1992-08-11 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
US5541307A (en) 1990-07-27 1996-07-30 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogs and solid phase synthesis thereof
US5688941A (en) 1990-07-27 1997-11-18 Isis Pharmaceuticals, Inc. Methods of making conjugated 4' desmethyl nucleoside analog compounds
US5677437A (en) 1990-07-27 1997-10-14 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
WO1992002534A2 (en) 1990-08-03 1992-02-20 Sterling Drug, Inc. Compounds and methods for inhibiting gene expression
US5245022A (en) 1990-08-03 1993-09-14 Sterling Drug, Inc. Exonuclease resistant terminally substituted oligonucleotides
US5561225A (en) 1990-09-19 1996-10-01 Southern Research Institute Polynucleotide analogs containing sulfonate and sulfonamide internucleoside linkages
US5432272A (en) 1990-10-09 1995-07-11 Benner; Steven A. Method for incorporating into a DNA or RNA oligonucleotide using nucleotides bearing heterocyclic bases
US5672697A (en) 1991-02-08 1997-09-30 Gilead Sciences, Inc. Nucleoside 5'-methylene phosphonates
US5539082A (en) 1993-04-26 1996-07-23 Nielsen; Peter E. Peptide nucleic acids
US5371241A (en) 1991-07-19 1994-12-06 Pharmacia P-L Biochemicals Inc. Fluorescein labelled phosphoramidites
US5571799A (en) 1991-08-12 1996-11-05 Basco, Ltd. (2'-5') oligoadenylate analogues useful as inhibitors of host-v5.-graft response
EP1331011A3 (en) 1991-10-24 2003-12-17 Isis Pharmaceuticals, Inc. Derivatized oligonucleotides having improved uptake and other properties
ATE226093T1 (en) 1991-11-26 2002-11-15 Isis Pharmaceuticals Inc INCREASED FORMATION OF TRIPLE AND DOUBLE HELICES FROM OLIGOMERS WITH MODIFIED PYRIMIDINES
TW393513B (en) 1991-11-26 2000-06-11 Isis Pharmaceuticals Inc Enhanced triple-helix and double-helix formation with oligomers containing modified pyrimidines
US5792608A (en) 1991-12-12 1998-08-11 Gilead Sciences, Inc. Nuclease stable and binding competent oligomers and methods for their use
US5359044A (en) 1991-12-13 1994-10-25 Isis Pharmaceuticals Cyclobutyl oligonucleotide surrogates
US5700922A (en) 1991-12-24 1997-12-23 Isis Pharmaceuticals, Inc. PNA-DNA-PNA chimeric macromolecules
US5565552A (en) 1992-01-21 1996-10-15 Pharmacyclics, Inc. Method of expanded porphyrin-oligonucleotide conjugate synthesis
FR2687679B1 (en) 1992-02-05 1994-10-28 Centre Nat Rech Scient OLIGOTHIONUCLEOTIDES.
JPH07505915A (en) 1992-04-14 1995-06-29 コーネル リサーチ ファウンデーション、インコーポレーテッド Dendritic macromolecules and their production method
US5756355A (en) 1992-04-22 1998-05-26 Ecole Polytechnique Federale De Lausanne Lipid membrane sensors
US5434257A (en) 1992-06-01 1995-07-18 Gilead Sciences, Inc. Binding compentent oligomers containing unsaturated 3',5' and 2',5' linkages
ATE171210T1 (en) 1992-07-02 1998-10-15 Hybridon Inc SELF-STABILIZED OLIGONUCLEOTIDES AS THERAPEUTICS
US5272250A (en) 1992-07-10 1993-12-21 Spielvogel Bernard F Boronated phosphoramidate compounds
US5652355A (en) 1992-07-23 1997-07-29 Worcester Foundation For Experimental Biology Hybrid oligonucleotide phosphorothioates
US5472881A (en) 1992-11-12 1995-12-05 University Of Utah Research Foundation Thiol labeling of DNA for attachment to gold surfaces
US5574142A (en) 1992-12-15 1996-11-12 Microprobe Corporation Peptide linkers for improved oligonucleotide delivery
US5476925A (en) 1993-02-01 1995-12-19 Northwestern University Oligodeoxyribonucleotides including 3'-aminonucleoside-phosphoramidate linkages and terminal 3'-amino groups
GB9304618D0 (en) 1993-03-06 1993-04-21 Ciba Geigy Ag Chemical compounds
CA2159631A1 (en) 1993-03-30 1994-10-13 Sanofi Acyclic nucleoside analogs and oligonucleotide sequences containing them
CA2159629A1 (en) 1993-03-31 1994-10-13 Sanofi Oligonucleotides with amide linkages replacing phosphodiester linkages
DE4311944A1 (en) 1993-04-10 1994-10-13 Degussa Coated sodium percarbonate particles, process for their preparation and detergent, cleaning and bleaching compositions containing them
NL9301919A (en) 1993-05-27 1994-12-16 Pelt & Hooykaas Method for capturing environmentally harmful substances from material contaminated with such substances.
ES2186690T3 (en) 1993-09-02 2003-05-16 Ribozyme Pharm Inc ENZYMATIC NUCLEIC ACID CONTAINING NON-NUCLEOTIDES.
CA2174339A1 (en) 1993-10-27 1995-05-04 Lech W. Dudycz 2'-amido and 2'-peptido modified oligonucleotides
US5457187A (en) 1993-12-08 1995-10-10 Board Of Regents University Of Nebraska Oligonucleotides containing 5-fluorouracil
US5446137B1 (en) 1993-12-09 1998-10-06 Behringwerke Ag Oligonucleotides containing 4'-substituted nucleotides
NZ278490A (en) 1993-12-09 1998-03-25 Univ Jefferson Chimeric polynucleotide with both ribo- and deoxyribonucleotides in one strand and deoxyribonucleotides in a second strand
US5646269A (en) 1994-04-28 1997-07-08 Gilead Sciences, Inc. Method for oligonucleotide analog synthesis
US6207646B1 (en) 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US5792747A (en) 1995-01-24 1998-08-11 The Administrators Of The Tulane Educational Fund Highly potent agonists of growth hormone releasing hormone
DE69633617T3 (en) 1995-03-23 2010-05-20 Immunex Corp., Seattle IL-17 RECEPTOR
US6902735B1 (en) 1995-07-19 2005-06-07 Genetics Institute, Llc Antibodies to human IL-17F and other CTLA-8-related proteins
US5652356A (en) 1995-08-17 1997-07-29 Hybridon, Inc. Inverted chimeric and hybrid oligonucleotides
US5912340A (en) 1995-10-04 1999-06-15 Epoch Pharmaceuticals, Inc. Selective binding complementary oligonucleotides
AU4043497A (en) 1996-07-29 1998-02-20 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US6582921B2 (en) 1996-07-29 2003-06-24 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses thereof
US6750016B2 (en) 1996-07-29 2004-06-15 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US20020172953A1 (en) 1996-07-29 2002-11-21 Mirkin Chad A. Movement of biomolecule-coated nanoparticles in an electric field
US7098320B1 (en) 1996-07-29 2006-08-29 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US6056973A (en) 1996-10-11 2000-05-02 Sequus Pharmaceuticals, Inc. Therapeutic liposome composition and method of preparation
WO1998023284A1 (en) 1996-11-27 1998-06-04 Immunex Corporation Method of regulating nitric oxide production
US7005412B1 (en) 1996-11-27 2006-02-28 Immunex Corporation Method of treating ulcerative colitis and Crohn's disease using IL-17 receptor proteins
EP0856579A1 (en) 1997-01-31 1998-08-05 BIOGNOSTIK GESELLSCHAFT FÜR BIOMOLEKULARE DIAGNOSTIK mbH An antisense oligonucleotide preparation method
JP3756313B2 (en) 1997-03-07 2006-03-15 武 今西 Novel bicyclonucleosides and oligonucleotide analogues
EP0985033A4 (en) 1997-04-04 2005-07-13 Biosite Inc Polyvalent and polyclonal libraries
US6426334B1 (en) 1997-04-30 2002-07-30 Hybridon, Inc. Oligonucleotide mediated specific cytokine induction and reduction of tumor growth in a mammal
US20030104044A1 (en) 1997-05-14 2003-06-05 Semple Sean C. Compositions for stimulating cytokine secretion and inducing an immune response
US6974669B2 (en) 2000-03-28 2005-12-13 Nanosphere, Inc. Bio-barcodes based on oligonucleotide-modified nanoparticles
WO1999014226A2 (en) 1997-09-12 1999-03-25 Exiqon A/S Bi- and tri-cyclic nucleoside, nucleotide and oligonucleotide analogues
US6849719B2 (en) 1997-09-17 2005-02-01 Human Genome Sciences, Inc. Antibody to an IL-17 receptor like protein
US6482923B1 (en) 1997-09-17 2002-11-19 Human Genome Sciences, Inc. Interleukin 17-like receptor protein
EP1015488B1 (en) 1997-09-17 2009-09-09 Human Genome Sciences, Inc. Interleukin-17 receptor-like protein
AU1249299A (en) 1997-11-25 1999-06-15 Brax Genomics Limited Chimeric antisense oligonucleotides against tnf-alpha and their uses
US6562578B1 (en) 1999-01-11 2003-05-13 Schering Corporation IL-17-like cytokine binding compounds and antibodies
US6271209B1 (en) 1998-04-03 2001-08-07 Valentis, Inc. Cationic lipid formulation delivering nucleic acid to peritoneal tumors
PT1076703E (en) 1998-05-15 2007-10-10 Genentech Inc Therapeutic uses of il-17 homologous polypeptides
US7771719B1 (en) 2000-01-11 2010-08-10 Genentech, Inc. Pharmaceutical compositions, kits, and therapeutic uses of antagonist antibodies to IL-17E
US6287765B1 (en) 1998-05-20 2001-09-11 Molecular Machines, Inc. Methods for detecting and identifying single molecules
AUPP547398A0 (en) 1998-08-26 1998-09-17 Medvet Science Pty. Ltd. Predictive assessment of certain skeletal disorders
CA2248592A1 (en) 1998-08-31 2000-02-29 Christopher D. Batich Microspheres for use in the treatment of cancer
US6228642B1 (en) 1998-10-05 2001-05-08 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of tumor necrosis factor-(α) (TNF-α) expression
US6080580A (en) 1998-10-05 2000-06-27 Isis Pharmaceuticals Inc. Antisense oligonucleotide modulation of tumor necrosis factor-α (TNF-α) expression
US6403312B1 (en) 1998-10-16 2002-06-11 Xencor Protein design automatic for protein libraries
US6827979B2 (en) 1999-01-07 2004-12-07 Northwestern University Methods utilizing scanning probe microscope tips and products therefor or produced thereby
EP2341144A1 (en) 1999-01-11 2011-07-06 Schering Corporation Interleukin-17 related mammalian cytokines. Polynucleotides encoding them. Uses
AR022404A1 (en) 1999-01-25 2002-09-04 Photogen Inc METHOD AND AGENTS FOR IMPROVED RADIATION THERAPY
EP1053751A1 (en) 1999-05-17 2000-11-22 Institut National De La Sante Et De La Recherche Medicale (Inserm) Compositions and methods for treating cell proliferation disorders
US6656730B1 (en) 1999-06-15 2003-12-02 Isis Pharmaceuticals, Inc. Oligonucleotides conjugated to protein-binding drugs
AU784040B2 (en) 1999-06-25 2006-01-19 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
EP1072679A3 (en) 1999-07-20 2002-07-31 Agilent Technologies, Inc. (a Delaware corporation) Method of producing nucleic acid molecules with reduced secondary structure
DE19935756A1 (en) 1999-07-27 2001-02-08 Mologen Forschungs Entwicklung Covalently closed nucleic acid molecule for immune stimulation
US6585947B1 (en) 1999-10-22 2003-07-01 The Board Of Trustess Of The University Of Illinois Method for producing silicon nanoparticles
US20030181412A1 (en) 1999-12-21 2003-09-25 Ingeneus Corporation Method for modifying transcription and/or translation in an organism for therapeutic, prophylactic and/or analytic uses
CA2395742A1 (en) 1999-12-30 2001-07-12 Aventis Pharma S.A. Compositions comprising nucleic acids incorporated in bilaminar mineral particles
JP2004501340A (en) 2000-01-13 2004-01-15 ナノスフェアー インコーポレイテッド Oligonucleotide-attached nanoparticles and methods of use
US6287860B1 (en) 2000-01-20 2001-09-11 Isis Pharmaceuticals, Inc. Antisense inhibition of MEKK2 expression
AT409085B (en) 2000-01-28 2002-05-27 Cistem Biotechnologies Gmbh PHARMACEUTICAL COMPOSITION FOR IMMUNULATING AND PRODUCING VACCINES
AU2001236638A1 (en) 2000-02-04 2001-08-14 The Board Of Trustees Of The University Of Arkansas Evi27 gene sequences and protein encoded thereby
US7833992B2 (en) 2001-05-18 2010-11-16 Merck Sharpe & Dohme Conjugates and compositions for cellular delivery
US7491805B2 (en) 2001-05-18 2009-02-17 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
US8273866B2 (en) 2002-02-20 2012-09-25 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SINA)
US8202979B2 (en) 2002-02-20 2012-06-19 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid
US6569419B2 (en) 2000-02-29 2003-05-27 Zymogenetics, Inc. Methods for promoting production of myelin by Schwann cells
US7129222B2 (en) 2000-03-10 2006-10-31 Dynavax Technologies Corporation Immunomodulatory formulations and methods for use thereof
US7718397B2 (en) 2000-03-21 2010-05-18 Genentech, Inc. Nucleic acids encoding receptor for IL-17 homologous polypeptides and uses thereof
WO2001073123A2 (en) 2000-03-28 2001-10-04 Nanosphere Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US7291284B2 (en) 2000-05-26 2007-11-06 Northwestern University Fabrication of sub-50 nm solid-state nanostructures based on nanolithography
US6602669B2 (en) 2000-07-11 2003-08-05 Northwestern University Method of detection by enhancement of silver staining
CN1341660A (en) 2000-09-07 2002-03-27 上海博德基因开发有限公司 A novel polypeptide-human interleukin receptor-ligand (IL-17B and IL17BR) 32.56 and polynucleotide for coding said polypeptide
MXPA03003407A (en) 2000-10-18 2004-05-04 Immunex Corp Methods for treating rheumatoid arthritis using il-17 antagonists.
US6678548B1 (en) 2000-10-20 2004-01-13 The Trustees Of The University Of Pennsylvania Unified probabilistic framework for predicting and detecting seizure onsets in the brain and multitherapeutic device
AU2002225714A1 (en) 2000-11-10 2002-05-21 The Regents Of The University Of California Il-17 receptor-like protein, uses thereof, and modulation of catabolic activity of il-17 cytokines on bone and cartilage
US7083958B2 (en) 2000-11-20 2006-08-01 The Board Of Trustees Of The University Of Illinois Membrane scaffold proteins
DK1345959T3 (en) 2000-11-20 2011-09-05 Univ Illinois Membrane scaffold proteins
DE60130583T3 (en) 2000-12-01 2018-03-22 Europäisches Laboratorium für Molekularbiologie SMALL RNA MOLECULES TRANSFERRING RNA INTERFERENCE
DE10065475A1 (en) 2000-12-28 2002-07-18 Switch Biotech Ag Use of intermediate-conductance potassium channel proteins for the diagnosis, prevention and treatment of disorders associated with disturbed keratinocyte activity, especially psoriasis
ES2360481T3 (en) 2001-01-25 2011-06-06 Zymogenetics, Inc. PROCEDURE TO TREAT PSORIASIS USING AN IL-17D ANTAGONIST.
US7563618B2 (en) 2001-03-23 2009-07-21 Geron Corporation Oligonucleotide conjugates
US7667004B2 (en) 2001-04-17 2010-02-23 Abmaxis, Inc. Humanized antibodies against vascular endothelial growth factor
GB0111279D0 (en) 2001-05-10 2001-06-27 Nycomed Imaging As Radiolabelled liposomes
US20090299045A1 (en) 2001-05-18 2009-12-03 Sirna Therapeutics, Inc. RNA Interference Mediated Inhibition Of Interleukin and Interleukin Gene Expression Using Short Interfering Nucleic Acid (siNA)
WO2002096262A2 (en) 2001-05-25 2002-12-05 Northwestern University Non-alloying core shell nanoparticles
AU2002314855B2 (en) 2001-05-30 2007-08-09 Board Of Trustees Of The Leland Stanford, Jr., University Delivery system for nucleic acids
US20030134810A1 (en) 2001-10-09 2003-07-17 Chris Springate Methods and compositions comprising biocompatible materials useful for the administration of therapeutic agents
WO2003046173A1 (en) 2001-11-28 2003-06-05 Center For Advanced Science And Technology Incubation, Ltd. siRNA EXPRESSION SYSTEM AND PROCESS FOR PRODUCING FUNCTIONAL GENE-KNOCKDOWN CELLS AND THE LIKE USING THE SAME
AU2002350332A1 (en) 2001-12-17 2003-06-30 Tao Chen Methods of parallel gene cloning and analysis
EP2128248B2 (en) 2002-02-01 2017-01-11 Life Technologies Corporation Oligonucleotide compositions with enhanced efficiency
US20040038303A1 (en) 2002-04-08 2004-02-26 Unger Gretchen M. Biologic modulations with nanoparticles
CA2488048A1 (en) 2002-05-30 2003-12-11 Memorial Sloan-Kettering Cancer Center Kinase suppressor of ras inactivation for therapy of ras mediated tumorigenesis
CA2388049A1 (en) 2002-05-30 2003-11-30 Immunotech S.A. Immunostimulatory oligonucleotides and uses thereof
US20040023382A1 (en) 2002-07-31 2004-02-05 Isis Pharmaceuticals Inc. Antisense modulation of PPP3CB expression
US7956176B2 (en) 2002-09-05 2011-06-07 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US20040219565A1 (en) 2002-10-21 2004-11-04 Sakari Kauppinen Oligonucleotides useful for detecting and analyzing nucleic acids of interest
KR101076931B1 (en) 2002-10-30 2011-10-26 제넨테크, 인크. Inhibition of IL-17 production
WO2006006948A2 (en) 2002-11-14 2006-01-19 Dharmacon, Inc. METHODS AND COMPOSITIONS FOR SELECTING siRNA OF IMPROVED FUNCTIONALITY
US20040158051A1 (en) 2002-11-19 2004-08-12 Mihri Ozkan Mono and dual conjugation of nanostructures and methods of making and using thereof
GB0227738D0 (en) 2002-11-28 2003-01-08 Univ Liverpool Nanoparticle conjugates and method of production thereof
JP2007525651A (en) 2003-05-30 2007-09-06 ナノスフェアー インコーポレイテッド Methods for detecting analytes based on evanescent illumination and scattering-based detection of nanoparticle probe complexes
US7727969B2 (en) 2003-06-06 2010-06-01 Massachusetts Institute Of Technology Controlled release nanoparticle having bound oligonucleotide for targeted delivery
GB0313259D0 (en) 2003-06-09 2003-07-16 Consejo Superior Investigacion Magnetic nanoparticles
US20080057128A1 (en) 2003-07-18 2008-03-06 Omeros Corporation Biodegradable triblock copolymers, synthesis methods therefore, and hydrogels and biomaterials made there from
US7611728B2 (en) 2003-09-05 2009-11-03 Supernus Pharmaceuticals, Inc. Osmotic delivery of therapeutic compounds by solubility enhancement
CN100393209C (en) 2003-09-09 2008-06-11 杰龙公司 Modified oligonucleotides for telomerase inhibition
WO2005030259A2 (en) 2003-09-25 2005-04-07 Coley Pharmaceutical Group, Inc. Nucleic acid-lipophilic conjugates
US7846412B2 (en) 2003-12-22 2010-12-07 Emory University Bioconjugated nanostructures, methods of fabrication thereof, and methods of use thereof
CN104109712A (en) 2004-02-18 2014-10-22 克罗莫塞尔公司 Methods and materials using signaling probes
WO2005082922A1 (en) 2004-02-26 2005-09-09 Layerlab Aktiebolag Oligonucleotides related to lipid membrane attachments
EP1742958B1 (en) 2004-03-15 2017-05-17 City of Hope Methods and compositions for the specific inhibition of gene expression by double-stranded rna
WO2005108614A2 (en) 2004-04-07 2005-11-17 Northwestern University Reversible and chemically programmable micelle assembly with dna block-copolymer amphiphiles
WO2005108616A1 (en) 2004-05-03 2005-11-17 Schering Corporation Use of il-17 expression to predict skin inflammation; methods of treatment
US20050287593A1 (en) 2004-05-03 2005-12-29 Schering Corporation Use of cytokine expression to predict skin inflammation; methods of treatment
EP1744620A2 (en) 2004-05-12 2007-01-24 Genentech, Inc. Novel gene disruptions, compositions and methods relating thereto
US20080213177A1 (en) 2004-05-24 2008-09-04 Thomas William Rademacher Nanoparticles Comprising Rna Ligands
GB0411537D0 (en) 2004-05-24 2004-06-23 Midatech Ltd Nanoparticles comprising rna ligands
US7964196B2 (en) 2004-05-25 2011-06-21 Chimeros, Inc. Self-assembling nanoparticle drug delivery system
EP1766089A1 (en) 2004-06-30 2007-03-28 Applera Corporation Analog probe complexes
WO2006012695A1 (en) 2004-08-04 2006-02-09 Panvax Limited An immunogenic composition
WO2006015560A1 (en) 2004-08-09 2006-02-16 Mologen Ag Immunomodulating agent used in conjunction with chemotherapy
US20060083781A1 (en) 2004-10-14 2006-04-20 Shastri V P Functionalized solid lipid nanoparticles and methods of making and using same
TW200616606A (en) 2004-10-19 2006-06-01 Schering Ag Treatment and prevention of multi-drug resistance
KR100721928B1 (en) 2004-11-05 2007-05-28 주식회사 바이오씨에스 Pharmaceutical composition for treating or preventing dermatitis comprising CpG oligodeoxynucleotide
WO2006064453A2 (en) 2004-12-17 2006-06-22 Koninklijke Philips Electronics N.V. Targeting agents for molecular imaging
US20090238767A1 (en) 2004-12-17 2009-09-24 Koninklijke Philips Electronics, N.V. Targeting contrast agents or targeting therapeutic agents for molecular imaging and therapy
EP1674128A1 (en) 2004-12-22 2006-06-28 Steinbeis-Transferzentrum für Herz-Kreislaufforschung Magnetic pole matrices useful for tissue engineering and treatment of disease
US8007829B2 (en) 2005-01-19 2011-08-30 William Marsh Rice University Method to fabricate inhomogeneous particles
CA2596509A1 (en) 2005-02-14 2006-08-24 Wyeth Interleukin-17f antibodies and other il-17f signaling antagonists and uses therefor
WO2007086883A2 (en) 2005-02-14 2007-08-02 Sirna Therapeutics, Inc. Cationic lipids and formulated molecular compositions containing them
US7404969B2 (en) 2005-02-14 2008-07-29 Sirna Therapeutics, Inc. Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules
KR100704011B1 (en) 2005-02-16 2007-04-04 한국과학기술원 Detection method for specific biomolecular interactions using FRET between metal nanoparticle and quantum dot
CA2600036A1 (en) 2005-03-04 2006-09-14 Dynavax Technologies Corporation Vaccines comprising oligonucleotides having immunostimulatory sequences (iss) wherein the iss are conjugated to antigens and stabilized by buffer conditions and further excipients
WO2006099445A2 (en) 2005-03-14 2006-09-21 Massachusetts Institute Of Technology Nanocells for diagnosis and treatment of diseases and disorders
DE102005016873A1 (en) 2005-04-12 2006-10-19 Magforce Nanotechnologies Ag New nano-particle useful for production of composition to treatment and/or prophylaxis of proliferative illnesses, cancer and bacterial infections, where nano-particle is bonded therapeutic substance
US8246995B2 (en) 2005-05-10 2012-08-21 The Board Of Trustees Of The Leland Stanford Junior University Hydrophobic nanotubes and nanoparticles as transporters for the delivery of drugs into cells
EP1880019A1 (en) 2005-05-12 2008-01-23 Arizona Board Regents, a body corporate of the State of Arizona, acting for and on behalf of Arizona State University Self-assembled nucleic acid nanoarrays and uses therefor
US8252756B2 (en) 2005-06-14 2012-08-28 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
US8067571B2 (en) 2005-07-13 2011-11-29 Avi Biopharma, Inc. Antibacterial antisense oligonucleotide and method
JP5481068B2 (en) 2005-08-31 2014-04-23 アメリカ合衆国 Methods for altering the immune response elicited by CpG oligodeoxynucleotides
EP1934265A4 (en) 2005-09-15 2009-06-24 Univ Utah Res Found Polymeric compositions and methods of making and using thereof
WO2007047455A2 (en) 2005-10-13 2007-04-26 Northwestern University Colorimetric screening of dna binding/intercalating agents with gold nanoparticle probes
FR2892819B1 (en) 2005-10-28 2008-02-01 Centre Nat Rech Scient PERSISTENT LUMINESCENCE NANOPARTICLES FOR THEIR USE AS A DIAGNOSTIC AGENT FOR IN VIVO OPTICAL IMAGING
WO2007067733A2 (en) 2005-12-09 2007-06-14 Massachusetts Institute Of Technology Compositions and methods to monitor rna delivery to cells
US20070243132A1 (en) * 2005-12-22 2007-10-18 Apollo Life Sciences Limited Transdermal delivery of pharmaceutical agents
US20070148251A1 (en) 2005-12-22 2007-06-28 Hossainy Syed F A Nanoparticle releasing medical devices
WO2007089607A2 (en) 2006-01-26 2007-08-09 University Of Massachusetts Rna silencing agents for use in therapy and nanotransporters for efficient delivery of same
WO2007106683A2 (en) 2006-03-10 2007-09-20 The Trustees Of The University Of Pennsylvania Biomimetic iron-oxide-containing lipoprotein and related materials
US20100167051A1 (en) 2006-03-31 2010-07-01 Goia Dan V Process for Manufacture of Silver-Based Particles and Electrical Contact Materials
GB0607866D0 (en) 2006-04-20 2006-05-31 Isis Innovation Nanostructures
WO2007127624A1 (en) 2006-04-26 2007-11-08 The Uab Research Foundation Reducing cancer cell invasion using an inhibitor of toll like receptor signaling
AU2007254190A1 (en) 2006-05-16 2007-11-29 Gilead Sciences, Inc. Integrase inhibitors
US20110052697A1 (en) 2006-05-17 2011-03-03 Gwangju Institute Of Science & Technology Aptamer-Directed Drug Delivery
WO2008097328A2 (en) 2006-06-23 2008-08-14 Northwestern University Asymmetric functionalized nanoparticles and methods of use
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
JP2010500375A (en) 2006-08-08 2010-01-07 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Multistage delivery of active agents
WO2008042156A1 (en) 2006-09-28 2008-04-10 Northwestern University Maximizing oligonucleotide loading on gold nanoparticle
EP1914234A1 (en) * 2006-10-16 2008-04-23 GPC Biotech Inc. Pyrido[2,3-d]pyrimidines and their use as kinase inhibitors
US20080181928A1 (en) 2006-12-22 2008-07-31 Miv Therapeutics, Inc. Coatings for implantable medical devices for liposome delivery
WO2008089248A2 (en) 2007-01-19 2008-07-24 The Board Of Trustees Of The University Of Illinois Amphiphilic substances and triggered liberation from lipid vesicles
WO2008089771A1 (en) 2007-01-24 2008-07-31 Syddansk Universitet Dna controlled assembly of lipid membranes
AU2008212820B2 (en) 2007-02-09 2014-01-30 Northwestern University Particles for detecting intracellular targets
EP2129803A4 (en) 2007-02-27 2010-11-03 Univ Northwestern Molecule attachment to nanoparticles
US20080292545A1 (en) 2007-04-04 2008-11-27 Yuehe Lin Functionalized Encoded Apoferritin Nanoparticles and Processes for Making and Using Same
JP2010523595A (en) 2007-04-04 2010-07-15 マサチューセッツ インスティテュート オブ テクノロジー Poly (amino acid) targeting part
US8323694B2 (en) 2007-05-09 2012-12-04 Nanoprobes, Inc. Gold nanoparticles for selective IR heating
WO2008141289A1 (en) 2007-05-10 2008-11-20 Northwestern University Silver nanoparticle binding agent conjugates based on moieties with triple cyclic disulfide anchoring groups
EP2160464B1 (en) 2007-05-30 2014-05-21 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
CA2688415C (en) 2007-05-31 2015-11-10 Anterios, Inc. Nucleic acid nanoparticles and uses therefor
DK2152897T3 (en) 2007-06-05 2015-04-27 Biocistronix Ab Methods and materials related to hårpigmentering and cancer
US20100183504A1 (en) 2007-06-14 2010-07-22 Fanqing Frank Chen Multimodal imaging probes for in vivo targeted and non-targeted imaging and therapeutics
US20080317768A1 (en) 2007-06-21 2008-12-25 Boeing Company Bioconjugated nanoparticles
CA2731399A1 (en) 2007-07-23 2009-01-29 Aarhus Universitet Nanoparticle-mediated treatment for inflammatory diseases
AU2008286735A1 (en) 2007-08-15 2009-02-19 Idera Pharmaceuticals, Inc. Toll like receptor modulators
US8563527B2 (en) 2007-08-20 2013-10-22 Pharmain Corporation Oligonucleotide core carrier compositions for delivery of nucleic acid-containing therapeutic agents, methods of making and using the same
WO2009026412A1 (en) 2007-08-21 2009-02-26 Children's Medical Center Corporation Treatment of airway hyperreactivity
AU2008318778B2 (en) 2007-10-29 2014-10-02 Regulus Therapeutics Inc. Targeting microRNAs for the treatment of liver cancer
CN101969772A (en) 2007-10-31 2011-02-09 帕梅拉·立普金 Prostaglandin analog compositions and methods to treat epithelial-related conditions
AU2008325122A1 (en) 2007-11-09 2009-05-14 Northeastern University Self-assembling micelle-like nanoparticles for systemic gene delivery
EP2233437A4 (en) 2007-12-06 2016-07-27 Univ Tokushima Nanofunctional silica particles and manufacturing method thereof
US20090148384A1 (en) 2007-12-10 2009-06-11 Fischer Katrin Functionalized, solid polymer nanoparticles comprising epothilones
EP2229411B1 (en) 2007-12-12 2019-02-27 University Health Network High-density lipoprotein-like peptide-phospholipid scaffold ("hpps") nanoparticles
WO2009091582A1 (en) 2008-01-17 2009-07-23 Indigene Pharmaceuticals, Inc. PRODUCTION OF R-α-LIPOIC ACID BY FERMENTATION USING GENETICALLY ENGINEERED MICROORGANISMS
MX2010009195A (en) 2008-02-21 2011-03-02 Univ Kentucky Res Found Ultra-small rnas as toll-like receptor-3 antagonists.
ES2447465T3 (en) 2008-03-05 2014-03-12 Baxter International Inc. Modified surface particles and methods for targeted drug administration
EP2105145A1 (en) 2008-03-27 2009-09-30 ETH Zürich Method for muscle-specific delivery lipid-conjugated oligonucleotides
DK2288336T3 (en) 2008-04-25 2017-03-13 Univ Northwestern NANOSTRUCTURES SUITABLE FOR COMPLEXATION OF CHOLESTEROL
US8063131B2 (en) 2008-06-18 2011-11-22 University Of Washington Nanoparticle-amphipol complexes for nucleic acid intracellular delivery and imaging
US8268796B2 (en) 2008-06-27 2012-09-18 Children's Hospital & Research Center At Oakland Lipophilic nucleic acid delivery vehicle and methods of use thereof
JP2011529501A (en) 2008-07-28 2011-12-08 イデラ ファーマシューティカルズ インコーポレイテッド Regulation of Toll-like receptor 9 expression by antisense oligonucleotides
US20100047188A1 (en) 2008-08-04 2010-02-25 Idera Pharmaceuticals, Inc. Modulation of toll-like receptor 8 expression by antisense oligonucleotides
CN102245187A (en) 2008-08-04 2011-11-16 艾德拉药物股份有限公司 Modulation of TOLL-like receptor 3 expression by antisense oligonucleotides
US20100092486A1 (en) 2008-08-08 2010-04-15 Idera Pharmaceuticals, Inc. Modulation of myeloid differentation primary response gene 88 (myd88) expression by antisense oligonucleotides
EP2334300B1 (en) 2008-09-24 2016-02-17 The Provost, Fellows, Foundation Scholars, & the other members of Board, of the College of the Holy & Undiv. Trinity of Queen Elizabeth near Dublin Composition and method for treatment of preterm labor
CA2740000C (en) 2008-10-09 2017-12-12 Tekmira Pharmaceuticals Corporation Improved amino lipids and methods for the delivery of nucleic acids
US8574582B2 (en) 2008-10-31 2013-11-05 Janssen Biotech, Inc. Methods for mediating fibrotic response
US20110223257A1 (en) 2008-11-17 2011-09-15 Enzon Pharmaceuticals, Inc. Releasable fusogenic lipids for nucleic acids delivery systems
MX2011005429A (en) 2008-11-24 2011-06-21 Univ Northwestern Polyvalent rna-nanoparticle compositions.
US20100233270A1 (en) 2009-01-08 2010-09-16 Northwestern University Delivery of Oligonucleotide-Functionalized Nanoparticles
CA2749536A1 (en) 2009-01-08 2010-07-15 Northwestern University Inhibition of bacterial protein production by polyvalent oligonucleotide modified nanoparticle conjugates
EP2406376A1 (en) 2009-03-12 2012-01-18 Alnylam Pharmaceuticals, Inc. LIPID FORMULATED COMPOSITIONS AND METHODS FOR INHIBITING EXPRESSION OF Eg5 AND VEGF GENES
KR20120022938A (en) 2009-04-15 2012-03-12 노오쓰웨스턴 유니버시티 Delivery of oligonucleotide-functionalized nanoparticles
CN102612561A (en) 2009-06-01 2012-07-25 艾德拉药物股份有限公司 Potentiation of autoimmune and inflammatory disease treatments by immune regulatory oligonucleotide (iro) antagonists of tlr7 and tlr9
WO2010147387A2 (en) 2009-06-18 2010-12-23 Industry Academic Cooperation Foundation, Hallym University Immunostimulatory compositions comprising liposome-encapsulated oligonucleotides as active ingredients
WO2011017382A2 (en) 2009-08-03 2011-02-10 The Regents Of The University Of California Nanofibers and morphology shifting micelles
WO2011017456A2 (en) 2009-08-04 2011-02-10 Northwestern University Localized delivery of nanoparticles for therapeutic and diagnostic applications
WO2011017690A2 (en) 2009-08-07 2011-02-10 Northwestern University Intracellular delivery of contrast agents with functionalized nanoparticles
ES2646097T3 (en) 2009-08-27 2017-12-12 Idera Pharmaceuticals, Inc. Composition to inhibit gene expression and its uses
WO2011028847A1 (en) 2009-09-01 2011-03-10 Northwestern University Polyvalent polynucleotide nanoparticle conjugates as delivery vehicles for a chemotherapeutic agent
CN102625697A (en) 2009-09-01 2012-08-01 西北大学 Delivery of therapeutic agents using oligonucleotide-modified nanoparticles as carriers
US20110053829A1 (en) 2009-09-03 2011-03-03 Curevac Gmbh Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids
US20120288935A1 (en) 2009-09-23 2012-11-15 Northwestern University "Click" Nanoparticle Conjugates
US20110111974A1 (en) 2009-10-23 2011-05-12 Northwestern University Short Duplex Probes for Enhanced Target Hybridization
CA2779099C (en) 2009-10-30 2021-08-10 Northwestern University Templated nanoconjugates
WO2011079290A1 (en) 2009-12-24 2011-06-30 Northwestern University Oligonucleotide specific uptake of nanoconjugates
US20130034599A1 (en) 2010-01-19 2013-02-07 Northwestern University Synthetic nanostructures including nucleic acids and/or other entities
US20130101512A1 (en) 2010-03-12 2013-04-25 Chad A. Mirkin Crosslinked polynucleotide structure
KR101783068B1 (en) 2010-03-19 2017-09-28 메사추세츠 인스티튜트 오브 테크놀로지 Lipid vesicle compositions and methods of use
EP3269811B1 (en) 2010-07-28 2020-10-07 Advanced Innovation Development Co. Ltd. Nucleic acid having adjuvant activity and use thereof
US9549901B2 (en) 2010-09-03 2017-01-24 The Brigham And Women's Hospital, Inc. Lipid-polymer hybrid particles
WO2012040524A1 (en) 2010-09-24 2012-03-29 Mallinckrodt Llc Aptamer conjugates for targeting of therapeutic and/or diagnostic nanocarriers
DK3238709T3 (en) 2011-04-28 2020-09-28 Platform Brightworks Two Ltd IMPROVED PARENTERAL FORMULATIONS OF LIPOFILE PHARMACEUTICALS AND METHODS FOR THE PREPARATION AND USE OF THE SAME
ES2653247T3 (en) 2011-06-09 2018-02-06 Curna, Inc. Treatment of frataxin-related diseases (FXN) by inhibiting the natural antisense transcript to the FXN gene
JP6170047B2 (en) 2011-08-31 2017-07-26 ユニバーシティ・オブ・ジョージア・リサーチ・ファウンデイション・インコーポレイテッド Apoptosis-targeting nanoparticles
EP2753929A4 (en) 2011-09-11 2015-05-06 Aurasense Llc Cellular uptake control systems
EP2755692B1 (en) 2011-09-14 2020-11-25 Northwestern University Nanoconjugates able to cross the blood-brain barrier
WO2013049941A1 (en) 2011-10-06 2013-04-11 Immunovaccine Technologies Inc. Liposome compositions comprising an adjuvant that activates or increases the activity of tlr2 and uses thereof
TW201321018A (en) 2011-11-28 2013-06-01 Univ Kaohsiung Medical Functionalized nanoparticles base on polymers for therapy applications
AU2012347765B2 (en) 2011-12-06 2017-05-04 Research Institute At Nationwide Childrens's Hospital Non-ionic, low osmolar contrast agents for delivery of antisense oligonucleotides and treatment of disease
US20150080320A1 (en) 2012-05-16 2015-03-19 Aadigen, Llc Multi-target modulation for treating fibrosis and inflammatory conditions
WO2014172698A1 (en) 2013-04-19 2014-10-23 Isis Pharmaceuticals, Inc. Compositions and methods for modulation nucleic acids through nonsense mediated decay
WO2015013675A1 (en) 2013-07-25 2015-01-29 Aurasense Therapeutics, Llc Spherical nucleic acid-based constructs as immunoregulatory agents
US10894963B2 (en) 2013-07-25 2021-01-19 Exicure, Inc. Spherical nucleic acid-based constructs as immunostimulatory agents for prophylactic and therapeutic use
CN112107693B (en) 2013-12-03 2023-05-26 西北大学 Liposome particles, method for preparing said liposome particles and use thereof
US20170175121A1 (en) 2014-04-03 2017-06-22 Exicure, Inc. Self assembling nucleic acid nanostructures
WO2015152693A2 (en) 2014-04-04 2015-10-08 (주)바이오니아 Novel double-stranded oligo rna and pharmaceutical composition comprising same for preventing or treating fibrosis or respiratory diseases
PL3164113T3 (en) 2014-06-04 2019-09-30 Exicure, Inc. Multivalent delivery of immune modulators by liposomal spherical nucleic acids for prophylactic or therapeutic applications
CA2958431A1 (en) 2014-08-19 2016-02-25 Northwestern University Protein/oligonucleotide core-shell nanoparticle therapeutics
EP3183345B1 (en) 2014-08-20 2021-06-16 Northwestern University Biocompatible infinite coordination polymer nanoparticle-nucleic acid conjugates for antisense gene regulation
MX2017004448A (en) 2014-10-06 2017-10-23 Exicure Inc Anti-tnf compounds.
CN107106493A (en) 2014-11-21 2017-08-29 西北大学 The sequence-specific cellular uptake of spherical nucleic acid nano particle conjugate
AU2016206658A1 (en) 2015-01-14 2017-08-03 Exicure, Inc. Nucleic acid nanostructures with core motifs
US20180042848A1 (en) 2015-02-18 2018-02-15 Exicure, Inc. Immuno-regulatory lipid containing spherical nucleic acids
WO2016149323A1 (en) 2015-03-16 2016-09-22 Exicure, Inc. Immunomodulatory spherical nucleic acids
WO2017011662A1 (en) 2015-07-14 2017-01-19 Exicure, Inc. Spherical nucleic acid (sna)-mediated delivery of lipid-complexes to cells
EP3964528A1 (en) 2015-07-29 2022-03-09 Novartis AG Combination therapies comprising antibody molecules to lag-3
US20200297867A1 (en) 2016-02-01 2020-09-24 Exicure, Inc. Surface functionalization of liposomes and liposomal spherical nucleic acids (snas)
US20170240960A1 (en) 2016-02-24 2017-08-24 Aurasense, Llc Spherical nucleic acids (sna) flare based fluorescence in situ hybridization
WO2017184427A1 (en) 2016-04-19 2017-10-26 Exicure, Inc. Topical administration of therapeutic agents and oligonucleotide formulations
WO2017193081A1 (en) 2016-05-06 2017-11-09 Exicure, Inc. Spherical nucleic acid tlr9 agonists
JP7186094B2 (en) 2016-05-06 2022-12-08 イグジキュア オペレーティング カンパニー Liposomal Spherical Nucleic Acid (SNA) Constructs Presenting Antisense Oligonucleotides (ASOs) for Specific Knockdown of Interleukin 17 Receptor mRNA
WO2018039629A2 (en) 2016-08-25 2018-03-01 Northwestern University Micellar spherical nucleic acids from thermoresponsive, traceless templates
WO2018152327A1 (en) 2017-02-15 2018-08-23 Northwestern University Enhancing stability and immunomodulatory activity of liposomal spherical nucleic acids
US20200248183A1 (en) 2017-04-03 2020-08-06 Subbarao Nallagatla Tlr9-targeted spherical nucleic acids having potent antitumor activity
SG11201909048TA (en) 2017-04-21 2019-11-28 Genentech Inc Use of klk5 antagonists for treatment of a disease
WO2018201090A1 (en) 2017-04-28 2018-11-01 Exicure, Inc. Synthesis of spherical nucleic acids using lipophilic moieties
US11433131B2 (en) 2017-05-11 2022-09-06 Northwestern University Adoptive cell therapy using spherical nucleic acids (SNAs)
US20200291394A1 (en) 2017-05-17 2020-09-17 Northwestern University Conjugation of peptides to spherical nucleic acids (snas) using traceless linkers
WO2019118883A1 (en) 2017-12-15 2019-06-20 Northwestern University Structure-function relationships in the development of immunotherapeutic agents
WO2019168558A1 (en) 2018-02-28 2019-09-06 Exicure, Inc. Liposomal spherical nucleic acid (sna) constructs for survival of motor neuron (sma) inhibitors
WO2019169203A1 (en) 2018-02-28 2019-09-06 Exicure, Inc. Liposomal spherical nucleic acid (sna) constructs for survival of motor neuron (sma) inhibitors
WO2019246409A1 (en) 2018-06-20 2019-12-26 Exicure, Inc. Il-1 beta targeting spherical nucleic acids
AU2020223028A1 (en) 2019-02-12 2021-09-23 Exicure Operating Company Combined spherical nucleic acid and checkpoint inhibitor for antitumor therapy
WO2020219985A1 (en) 2019-04-26 2020-10-29 Exicure, Inc. Administration of spherical nucleic acids for ophthalmological uses
WO2021046254A1 (en) 2019-09-04 2021-03-11 Exicure, Inc. Liposomal spherical nucleic acid (sna) constructs for splice modulation
WO2021202557A1 (en) 2020-03-30 2021-10-07 Exicure Operating Company Spherical nucleic acids (snas) for regulation of frataxin
EP4192477A1 (en) 2020-08-07 2023-06-14 Exicure Operating Company Treatment of skin diseases and disorders using inhibitors of kallikrein-related peptidases (klk)
US20230330129A1 (en) 2020-08-11 2023-10-19 Exicure Operating Company Tumor necrosis factor receptor superfamily (tnfrsf) agonists, spherical nucleic acid (sna) tlr9 agonists and checkpoint inhibitors for antitumor therapy
WO2022147541A1 (en) 2021-01-04 2022-07-07 Exicure Operating Company Compounds for modulating scn9a expression
WO2022150369A1 (en) 2021-01-06 2022-07-14 Exicure Operating Company Compounds for the treatment of batten disease

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023243A (en) * 1981-10-23 1991-06-11 Molecular Biosystems, Inc. Oligonucleotide therapeutic agent and method of making same
US4667025A (en) * 1982-08-09 1987-05-19 Wakunaga Seiyaku Kabushiki Kaisha Oligonucleotide derivatives
US4835263A (en) * 1983-01-27 1989-05-30 Centre National De La Recherche Scientifique Novel compounds containing an oligonucleotide sequence bonded to an intercalating agent, a process for their synthesis and their use
US4824941A (en) * 1983-03-10 1989-04-25 Julian Gordon Specific antibody to the native form of 2'5'-oligonucleotides, the method of preparation and the use as reagents in immunoassays or for binding 2'5'-oligonucleotides in biological systems
US4587044A (en) * 1983-09-01 1986-05-06 The Johns Hopkins University Linkage of proteins to nucleic acids
US5118800A (en) * 1983-12-20 1992-06-02 California Institute Of Technology Oligonucleotides possessing a primary amino group in the terminal nucleotide
US5118802A (en) * 1983-12-20 1992-06-02 California Institute Of Technology DNA-reporter conjugates linked via the 2' or 5'-primary amino group of the 5'-terminal nucleoside
US4496689A (en) * 1983-12-27 1985-01-29 Miles Laboratories, Inc. Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer
US4981957A (en) * 1984-07-19 1991-01-01 Centre National De La Recherche Scientifique Oligonucleotides with modified phosphate and modified carbohydrate moieties at the respective chain termini
US4828979A (en) * 1984-11-08 1989-05-09 Life Technologies, Inc. Nucleotide analogs for nucleic acid labeling and detection
US5185444A (en) * 1985-03-15 1993-02-09 Anti-Gene Deveopment Group Uncharged morpolino-based polymers having phosphorous containing chiral intersubunit linkages
US4670417A (en) * 1985-06-19 1987-06-02 Ajinomoto Co., Inc. Hemoglobin combined with a poly(alkylene oxide)
US5317098A (en) * 1986-03-17 1994-05-31 Hiroaki Shizuya Non-radioisotope tagging of fragments
US5013830A (en) * 1986-09-08 1991-05-07 Ajinomoto Co., Inc. Compounds for the cleavage at a specific position of RNA, oligomers employed for the formation of said compounds, and starting materials for the synthesis of said oligomers
US5286717A (en) * 1987-03-25 1994-02-15 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
US5276019A (en) * 1987-03-25 1994-01-04 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
US4904582A (en) * 1987-06-11 1990-02-27 Synthetic Genetics Novel amphiphilic nucleic acid conjugates
US5405939A (en) * 1987-10-22 1995-04-11 Temple University Of The Commonwealth System Of Higher Education 2',5'-phosphorothioate oligoadenylates and their covalent conjugates with polylysine
US5188897A (en) * 1987-10-22 1993-02-23 Temple University Of The Commonwealth System Of Higher Education Encapsulated 2',5'-phosphorothioate oligoadenylates
US5525465A (en) * 1987-10-28 1996-06-11 Howard Florey Institute Of Experimental Physiology And Medicine Oligonucleotide-polyamide conjugates and methods of production and applications of the same
US5112963A (en) * 1987-11-12 1992-05-12 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Modified oligonucleotides
US5403711A (en) * 1987-11-30 1995-04-04 University Of Iowa Research Foundation Nucleic acid hybridization and amplification method for detection of specific sequences in which a complementary labeled nucleic acid probe is cleaved
US5491133A (en) * 1987-11-30 1996-02-13 University Of Iowa Research Foundation Methods for blocking the expression of specifically targeted genes
US5082830A (en) * 1988-02-26 1992-01-21 Enzo Biochem, Inc. End labeled nucleotide probe
US5519126A (en) * 1988-03-25 1996-05-21 University Of Virginia Alumni Patents Foundation Oligonucleotide N-alkylphosphoramidates
US5109124A (en) * 1988-06-01 1992-04-28 Biogen, Inc. Nucleic acid probe linked to a label having a terminal cysteine
US5216141A (en) * 1988-06-06 1993-06-01 Benner Steven A Oligonucleotide analogs containing sulfur linkages
US5194599A (en) * 1988-09-23 1993-03-16 Gilead Sciences, Inc. Hydrogen phosphonodithioate compositions
US5512439A (en) * 1988-11-21 1996-04-30 Dynal As Oligonucleotide-linked magnetic particles and uses thereof
US5599923A (en) * 1989-03-06 1997-02-04 Board Of Regents, University Of Tx Texaphyrin metal complexes having improved functionalization
US5391723A (en) * 1989-05-31 1995-02-21 Neorx Corporation Oligonucleotide conjugates
US5416203A (en) * 1989-06-06 1995-05-16 Northwestern University Steroid modified oligonucleotides
US5591722A (en) * 1989-09-15 1997-01-07 Southern Research Institute 2'-deoxy-4'-thioribonucleosides and their antiviral activity
US5399676A (en) * 1989-10-23 1995-03-21 Gilead Sciences Oligonucleotides with inverted polarity
US5527899A (en) * 1989-10-23 1996-06-18 Gilead Sciences, Inc. Oligonucleotides with inverted polarity
US5721218A (en) * 1989-10-23 1998-02-24 Gilead Sciences, Inc. Oligonucleotides with inverted polarity
US5292873A (en) * 1989-11-29 1994-03-08 The Research Foundation Of State University Of New York Nucleic acids labeled with naphthoquinone probe
US5405938A (en) * 1989-12-20 1995-04-11 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US5486603A (en) * 1990-01-08 1996-01-23 Gilead Sciences, Inc. Oligonucleotide having enhanced binding affinity
US5750692A (en) * 1990-01-11 1998-05-12 Isis Pharmaceuticals, Inc. Synthesis of 3-deazapurines
US5220007A (en) * 1990-02-15 1993-06-15 The Worcester Foundation For Experimental Biology Method of site-specific alteration of RNA and production of encoded polypeptides
US5214136A (en) * 1990-02-20 1993-05-25 Gilead Sciences, Inc. Anthraquinone-derivatives oligonucleotides
US5414077A (en) * 1990-02-20 1995-05-09 Gilead Sciences Non-nucleoside linkers for convenient attachment of labels to oligonucleotides using standard synthetic methods
US5321131A (en) * 1990-03-08 1994-06-14 Hybridon, Inc. Site-specific functionalization of oligodeoxynucleotides for non-radioactive labelling
US5514785A (en) * 1990-05-11 1996-05-07 Becton Dickinson And Company Solid supports for nucleic acid hybridization assays
US5623070A (en) * 1990-07-27 1997-04-22 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US5489677A (en) * 1990-07-27 1996-02-06 Isis Pharmaceuticals, Inc. Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms
US5218105A (en) * 1990-07-27 1993-06-08 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
US5602240A (en) * 1990-07-27 1997-02-11 Ciba Geigy Ag. Backbone modified oligonucleotide analogs
US5608046A (en) * 1990-07-27 1997-03-04 Isis Pharmaceuticals, Inc. Conjugated 4'-desmethyl nucleoside analog compounds
US5614617A (en) * 1990-07-27 1997-03-25 Isis Pharmaceuticals, Inc. Nuclease resistant, pyrimidine modified oligonucleotides that detect and modulate gene expression
US5618704A (en) * 1990-07-27 1997-04-08 Isis Pharmacueticals, Inc. Backbone-modified oligonucleotide analogs and preparation thereof through radical coupling
US5610289A (en) * 1990-07-27 1997-03-11 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogues
US5623065A (en) * 1990-08-13 1997-04-22 Isis Pharmaceuticals, Inc. Gapped 2' modified oligonucleotides
US5177196A (en) * 1990-08-16 1993-01-05 Microprobe Corporation Oligo (α-arabinofuranosyl nucleotides) and α-arabinofuranosyl precursors thereof
US5512667A (en) * 1990-08-28 1996-04-30 Reed; Michael W. Trifunctional intermediates for preparing 3'-tailed oligonucleotides
US5214134A (en) * 1990-09-12 1993-05-25 Sterling Winthrop Inc. Process of linking nucleosides with a siloxane bridge
US5596086A (en) * 1990-09-20 1997-01-21 Gilead Sciences, Inc. Modified internucleoside linkages having one nitrogen and two carbon atoms
US5510475A (en) * 1990-11-08 1996-04-23 Hybridon, Inc. Oligonucleotide multiple reporter precursors
US7223833B1 (en) * 1991-05-24 2007-05-29 Isis Pharmaceuticals, Inc. Peptide nucleic acid conjugates
US5714331A (en) * 1991-05-24 1998-02-03 Buchardt, Deceased; Ole Peptide nucleic acids having enhanced binding affinity, sequence specificity and solubility
US5319080A (en) * 1991-10-17 1994-06-07 Ciba-Geigy Corporation Bicyclic nucleosides, oligonucleotides, process for their preparation and intermediates
US5393878A (en) * 1991-10-17 1995-02-28 Ciba-Geigy Corporation Bicyclic nucleosides, oligonucleotides, process for their preparation and intermediates
US5594121A (en) * 1991-11-07 1997-01-14 Gilead Sciences, Inc. Enhanced triple-helix and double-helix formation with oligomers containing modified purines
US5484908A (en) * 1991-11-26 1996-01-16 Gilead Sciences, Inc. Oligonucleotides containing 5-propynyl pyrimidines
US5595726A (en) * 1992-01-21 1997-01-21 Pharmacyclics, Inc. Chromophore probe for detection of nucleic acid
US5279302A (en) * 1992-01-28 1994-01-18 Hitachi Medical Corporation Ultrasonic doppler blood flow measuring apparatus
US5633360A (en) * 1992-04-14 1997-05-27 Gilead Sciences, Inc. Oligonucleotide analogs capable of passive cell membrane permeation
US5610300A (en) * 1992-07-01 1997-03-11 Ciba-Geigy Corporation Carbocyclic nucleosides containing bicyclic rings, oligonucleotides therefrom, process for their preparation, their use and intermediates
US5502177A (en) * 1993-09-17 1996-03-26 Gilead Sciences, Inc. Pyrimidine derivatives for labeled binding partners
US5719262A (en) * 1993-11-22 1998-02-17 Buchardt, Deceased; Ole Peptide nucleic acids having amino acid side chains
US5519134A (en) * 1994-01-11 1996-05-21 Isis Pharmaceuticals, Inc. Pyrrolidine-containing monomers and oligomers
US5599928A (en) * 1994-02-15 1997-02-04 Pharmacyclics, Inc. Texaphyrin compounds having improved functionalization
US5596091A (en) * 1994-03-18 1997-01-21 The Regents Of The University Of California Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleotides
US5627053A (en) * 1994-03-29 1997-05-06 Ribozyme Pharmaceuticals, Inc. 2'deoxy-2'-alkylnucleotide containing nucleic acid
US5625050A (en) * 1994-03-31 1997-04-29 Amgen Inc. Modified oligonucleotides and intermediates useful in nucleic acid therapeutics
US5525711A (en) * 1994-05-18 1996-06-11 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Pteridine nucleotide analogs as fluorescent DNA probes
US5597696A (en) * 1994-07-18 1997-01-28 Becton Dickinson And Company Covalent cyanine dye oligonucleotide conjugates
US5591584A (en) * 1994-08-25 1997-01-07 Chiron Corporation N-4 modified pyrimidine deoxynucleotides and oligonucleotide probes synthesized therewith
US5597909A (en) * 1994-08-25 1997-01-28 Chiron Corporation Polynucleotide reagents containing modified deoxyribose moieties, and associated methods of synthesis and use
US6361944B1 (en) * 1996-07-29 2002-03-26 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US6506564B1 (en) * 1996-07-29 2003-01-14 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US6709825B2 (en) * 1996-07-29 2004-03-23 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US20090081244A1 (en) * 1996-11-14 2009-03-26 Army, Gov. Of The Us, As Represented By The Dry Formulation for Transcutaneous Immunization
US6844161B2 (en) * 1997-09-04 2005-01-18 Gryphon Therapeutics, Inc. Modular protein libraries and methods of preparation
US6544776B1 (en) * 1997-12-15 2003-04-08 Somalogic, Inc. Nucleic acid ligand diagnostic biochip
US20050074753A1 (en) * 1999-04-30 2005-04-07 Goldsborough Andrew Simon Isolation of nucleic acid
US6677153B2 (en) * 1999-11-29 2004-01-13 Avi Biopharma, Inc. Antisense antibacterial method and composition
US6991900B2 (en) * 2000-06-28 2006-01-31 California Institute Of Technology Methods for identifying an essential gene in a prokaryotic microorganism
US20060019917A1 (en) * 2001-05-18 2006-01-26 Sirna Therapeutics, Inc. RNA interference mediated inhibition of stromal cell-derived factor-1 (SDF-1) gene expression using short interfering nucleic acid (siNA)
US7332586B2 (en) * 2001-07-10 2008-02-19 North Carolina State University Nanoparticle delivery vehicle
US20060025363A1 (en) * 2002-08-21 2006-02-02 Ute Breitenbach Use of antisense oligonucleotides for the treatment of degenerative skin conditions
US20060035344A1 (en) * 2002-10-18 2006-02-16 Pachuk Catherine J Double-stranded rna structures and constructs, and methods for generating and using the same
US20050059016A1 (en) * 2002-11-05 2005-03-17 Ecker David J. Structural motifs and oligomeric compounds and their use in gene modulation
US20060105343A1 (en) * 2003-01-09 2006-05-18 Children's Medical Center Corporation Methods for diagnosis and prognosis of cancer
US20050096263A1 (en) * 2003-10-30 2005-05-05 Keay Susan K. Novel antiproliferative factor and methods of use
US20060008907A1 (en) * 2004-06-09 2006-01-12 The Curators Of The University Of Missouri Control of gene expression via light activated RNA interference
US20070105139A1 (en) * 2005-10-07 2007-05-10 Fujifilm Corporation Fluorescent probe and fluorescence detecting method
US20090035576A1 (en) * 2006-09-08 2009-02-05 Prasad Paras N Nanoparticles for two-photon activated photodynamic therapy and imaging
US20110172404A1 (en) * 2008-05-19 2011-07-14 Cornell University Self-Assembly of Nanoparticles Through Nuclei Acid Engineering
US20100183634A1 (en) * 2009-01-01 2010-07-22 Cornell University, a New York Corporation Multifunctional nucleic acid nano-structures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
McKenzie et al, Small,Vol. 3, No. 11, pages 1866-1868 (2007). *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9890427B2 (en) 2007-02-09 2018-02-13 Northwestern University Particles for detecting intracellular targets
US9532948B2 (en) 2008-04-25 2017-01-03 Northwestern University Nanostructure suitable for sequestering cholesterol and other molecules
US11633503B2 (en) 2009-01-08 2023-04-25 Northwestern University Delivery of oligonucleotide-functionalized nanoparticles
US10328026B2 (en) 2010-01-19 2019-06-25 Northwestern University Synthetic nanostructures including nucleic acids and/or other entities
US11285106B2 (en) 2010-01-19 2022-03-29 Northwestern University Synthetic nanostructures including nucleic acids and/or other entities
US9216155B2 (en) 2010-01-19 2015-12-22 Northwestern University Synthetic nanostructures including nucleic acids and/or other entities
US20120222469A1 (en) * 2011-03-04 2012-09-06 Jian-Ping Xie Apparatus and Procedure For In Vitro Measurement of a Substance, Nicotine, Released From a Smokeless Tobacco Product
US9464972B2 (en) * 2011-03-04 2016-10-11 Jian-Ping Xie Apparatus and procedure for in vitro measurement of a substance, nicotine, released from a smokeless tobacco product
US20160095929A1 (en) * 2011-08-10 2016-04-07 Northwestern University Promotion of wound healing
WO2013036974A1 (en) 2011-09-11 2013-03-14 Aurasense, Llc Cellular uptake control systems
US10398784B2 (en) 2011-09-14 2019-09-03 Northwestern Univerity Nanoconjugates able to cross the blood-brain barrier
WO2013040499A1 (en) * 2011-09-14 2013-03-21 Northwestern University Nanoconjugates able to cross the blood-brain barrier
US9889209B2 (en) * 2011-09-14 2018-02-13 Northwestern University Nanoconjugates able to cross the blood-brain barrier
US20150031745A1 (en) * 2011-09-14 2015-01-29 Northwestern University Nanoconjugates able to cross the blood-brain barrier
US10260089B2 (en) 2012-10-29 2019-04-16 The Research Foundation Of The State University Of New York Compositions and methods for recognition of RNA using triple helical peptide nucleic acids
US10894963B2 (en) 2013-07-25 2021-01-19 Exicure, Inc. Spherical nucleic acid-based constructs as immunostimulatory agents for prophylactic and therapeutic use
WO2015013675A1 (en) 2013-07-25 2015-01-29 Aurasense Therapeutics, Llc Spherical nucleic acid-based constructs as immunoregulatory agents
US10837018B2 (en) 2013-07-25 2020-11-17 Exicure, Inc. Spherical nucleic acid-based constructs as immunostimulatory agents for prophylactic and therapeutic use
US10568898B2 (en) 2013-08-13 2020-02-25 Northwestern University Lipophilic nanoparticles for drug delivery
US10434064B2 (en) 2014-06-04 2019-10-08 Exicure, Inc. Multivalent delivery of immune modulators by liposomal spherical nucleic acids for prophylactic or therapeutic applications
US11123294B2 (en) 2014-06-04 2021-09-21 Exicure Operating Company Multivalent delivery of immune modulators by liposomal spherical nucleic acids for prophylactic or therapeutic applications
US10208310B2 (en) 2014-10-06 2019-02-19 Exicure, Inc. Anti-TNF compounds
US10760080B2 (en) 2014-10-06 2020-09-01 Exicure, Inc. Anti-TNF compounds
US11213593B2 (en) 2014-11-21 2022-01-04 Northwestern University Sequence-specific cellular uptake of spherical nucleic acid nanoparticle conjugates
US10517924B2 (en) 2014-11-24 2019-12-31 Northwestern University High density lipoprotein nanoparticles for inflammation
US10078092B2 (en) 2015-03-18 2018-09-18 Northwestern University Assays for measuring binding kinetics and binding capacity of acceptors for lipophilic or amphiphilic molecules
US10864549B2 (en) 2016-03-17 2020-12-15 Sogang University Research Foundation Half-coating method for nanoparticles
WO2017159998A3 (en) * 2016-03-17 2018-08-02 서강대학교 산학협력단 Half-coating method for nanoparticles
US11866700B2 (en) 2016-05-06 2024-01-09 Exicure Operating Company Liposomal spherical nucleic acid (SNA) constructs presenting antisense oligonucleotides (ASO) for specific knockdown of interleukin 17 receptor mRNA
US11364304B2 (en) 2016-08-25 2022-06-21 Northwestern University Crosslinked micellar spherical nucleic acids
US11696954B2 (en) 2017-04-28 2023-07-11 Exicure Operating Company Synthesis of spherical nucleic acids using lipophilic moieties
WO2020181144A1 (en) 2019-03-06 2020-09-10 Northwestern University Hairpin-like oligonucleotide-conjugated spherical nucleic acid
WO2022192038A1 (en) 2021-03-12 2022-09-15 Northwestern University Antiviral vaccines using spherical nucleic acids

Also Published As

Publication number Publication date
US20190030185A1 (en) 2019-01-31
US11633503B2 (en) 2023-04-25
US20130172404A1 (en) 2013-07-04
US10098958B2 (en) 2018-10-16

Similar Documents

Publication Publication Date Title
US11633503B2 (en) Delivery of oligonucleotide-functionalized nanoparticles
AU2016238902B2 (en) Delivery of Oligonucleotide-Functionalized Nanoparticles
AU2010203474B2 (en) Inhibition of bacterial protein production by polyvalent oligonucleotide modified nanoparticle conjugates
JP5906508B2 (en) Double-stranded lipid-modified RNA with high RNA interference effect
JP2011500002A (en) Lipid-modified double-stranded RNA with high RNA interference effect
JP2017522044A (en) Antisense antimicrobial compounds and methods
WO2016004168A1 (en) Spherical nanoparticles as antibacterial agents
JP7393121B2 (en) Antisense antibacterial compounds and methods
JP5674923B2 (en) Pharmaceutical compositions containing antisense oligonucleotides and methods of using the same
Bai et al. Antisense antibacterials: from proof-of-concept to therapeutic perspectives
JP2012519655A (en) Pharmaceutical composition for addressing side effects of Spiegelmer administration
JP2020193160A (en) Drug carrier for pulmonary delivery and pulmonary disease therapeutic drug containing the same
WO2023092040A1 (en) Spherical nucleic acids for cgas-sting and stat3 pathway modulation for the immunotherapeutic treatment of cancer

Legal Events

Date Code Title Description
AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:NORTHWESTERN UNIVERSITY;REEL/FRAME:024216/0241

Effective date: 20100326

AS Assignment

Owner name: NORTHWESTERN UNIVERSITY, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIRKIN, CHAD A.;PALLER, AMY S.;GILJOHANN, DAVID A.;SIGNING DATES FROM 20100325 TO 20100420;REEL/FRAME:024440/0434

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH - DIRECTOR DEITR, MARYLAND

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:NORTHWESTERN UNIVERSITY;REEL/FRAME:058477/0266

Effective date: 20211207