US20100286608A1 - Drug-coated balloon catheter and method for the production thereof - Google Patents

Drug-coated balloon catheter and method for the production thereof Download PDF

Info

Publication number
US20100286608A1
US20100286608A1 US12/767,462 US76746210A US2010286608A1 US 20100286608 A1 US20100286608 A1 US 20100286608A1 US 76746210 A US76746210 A US 76746210A US 2010286608 A1 US2010286608 A1 US 2010286608A1
Authority
US
United States
Prior art keywords
polymer
membrane
balloon
active ingredient
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/767,462
Inventor
Michael Tittelbach
Raimund Moehl
Alwin Schwitzer
Matthias Wesselmann
Bodo Quint
Patrice Bachmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biotronik VI Patent AG
Original Assignee
Biotronik VI Patent AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biotronik VI Patent AG filed Critical Biotronik VI Patent AG
Assigned to BIOTRONIK VI PATENT AG reassignment BIOTRONIK VI PATENT AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TITTELBACH, MICHAEL, BACHMANN, PATRICE, MOEHL, RAIMUND, QUINT, BODO, SCHWITZER, ALWIN, DR., WESSELMANN, MATTHIAS, DR.
Publication of US20100286608A1 publication Critical patent/US20100286608A1/en
Priority to US15/008,873 priority Critical patent/US9833547B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/085Infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/02Methods for coating medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/06Coatings containing a mixture of two or more compounds

Definitions

  • the invention relates to a drug-coated balloon catheter and to a method for producing the same.
  • balloon catheters are a preferred therapeutic method for a wide variety of indications in many areas of medical technology.
  • angioplasty and cardiology for example, a dilation of constricted blood vessels by way of balloon dilation is proposed, releasing restenosis-inhibiting drugs at the same time.
  • the drugs are applied directly onto the balloon to be dilated.
  • up to 80% of the adhering drug is not applied at the desired location of the vessel, but instead is dissolved beforehand by the body fluid present in the lumen and carried away. This increases the risk of undesirable systemic side effects of the drugs.
  • a different approach would be to apply a coating receiving or covering the drug.
  • the production of such a coating is complex and catheters coated in this manner generally have short shelf lives.
  • the coating material must be biocompatible, and the properties of the drug and the coating system must be matched to each other in each individual case. In practice, this makes the implementation of such a drug-coated balloon catheter very complex, and it still does not provide the desired extent of safety for the local administration of the drug.
  • a first aspect of the present invention is a drug-coated balloon catheter having a balloon, comprising (i) a main membrane, and (ii) an asymmetrical polymer membrane which is applied to an outside of the main membrane and into which at least one pharmaceutical active ingredient is embedded.
  • Another aspect of the present invention is a method for producing a drug-coated balloon catheter, comprising the following steps: (a) providing a balloon blank having a main membrane; (b) wetting the main membrane with a homogeneous polymer solution comprising a solvent and a polymer; (c) inducing a phase separation of the polymer from the polymer solution by a measure selected from the group consisting of (i) Temperature change, (ii) immersing the wetted balloon blank in a bath of a liquid which can be mixed with the solvent of the polymer solution, but which does not dissolve, or hardly dissolves, the polymer, and (iii) exposing the wetted balloon blank to an atmosphere which comprises a gaseous constituent which can be mixed with the solvent of the polymer solution, but does not dissolve, or hardly dissolves, the polymer.
  • FIG. 1 shows an illustration of the balloon membrane of a balloon catheter modified using the method according to the invention.
  • FIG. 2 shows an enlarged section of the surface of the balloon membrane of FIG. 1 .
  • a first aspect of the invention is to provide a drug-coated balloon catheter, the balloon of which includes: (i) a main membrane, and (ii) an asymmetrical polymer membrane which is present on an outside of the main membrane and into which at least one pharmaceutical active ingredient is introduced.
  • the balloon catheter according to the invention therefore includes a microporous asymmetrical polymer membrane on the outside of the balloon wall.
  • This polymer membrane has a plurality of pores and micro-furrows, into which the drug to be applied is embedded in solute form or pure form.
  • asymmetrical polymer membranes stand out in that they have a higher thickness at the outsides thereof than at the bases thereof, which is to say on the side facing the main membrane. Accessibility of the cavities of the polymer membrane in the non-expanded state of the balloon is so low that any rinsing out of the drug by body fluid is significantly reduced or even prevented. It is only in the expanded state that the pores and micro-furrows at the top of the polymer membrane are dilated such that the incorporated active ingredient can be released without difficulty.
  • asymmetrical polymer membranes have a thin cover layer with suitable mechanical stability, which protects a porous structured located underneath.
  • the term “asymmetrical membrane” summarizes this very morphology in one term and is also used in the literature (see, for example, Membrane Technology in the Chemical Industry, 2001 Wiley-VCH Verlag GmbH, Chapter 3, pages 6-11).
  • the structure of asymmetrical polymer membranes is dependent on the production method thereof. Consequently, another aspect of the invention is directed at the production of such a drug-coated balloon catheter.
  • the method includes the following steps: (a) providing a balloon blank having a main membrane; (b) wetting the main membrane with a homogeneous polymer solution including a solvent and a polymer; (c) inducing a phase separation of the polymer from the polymer solution by one of the following measures: (i) Temperature change, (ii) immersing the wetted balloon blank in a bath of a liquid which can be mixed with the solvent of the polymer solution, but which does not dissolve, or hardly dissolves, the polymer (wet process), or (iii) exposing the wetted balloon blank to an atmosphere which includes a gaseous constituent which can be mixed with the solvent of the polymer solution, but does not dissolve, or hardly dissolves, the polymer (dry method).
  • the method is therefore based on a balloon catheter having a balloon, the outer membrane wall is to be coated.
  • the outer membrane wall is to be coated.
  • this is a monolumen, multilumen, or multi-layer catheter.
  • the outside of the balloon hereinafter referred to as the main membrane, is modified by deposition of the asymmetrical polymer membrane.
  • the main membrane at least on the outside thereof, preferably includes a polymer material that is commonly used for these purposes, in particular the polymer material of the main membrane is selected from the group including of polyurethane, polyether-polyurethane, polyethylene terephthalate, polybutylene terephthalate, polyamide, and also copolymers and blends thereof.
  • Polyamides are particularly preferred because they have particularly high strength.
  • Typical balloon materials are usually semicrystalline thermoplastic resins, wherein in the PTCA/PTA field primarily polyamides, polyethylene terephthalate (PET), or polybutylene terephthalate (PBT), and the copolymers and blends thereof are used.
  • Polyamides polyethylene terephthalate (PET), or polybutylene terephthalate (PBT), and the copolymers and blends thereof are used.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • Polyurethanes are gaining increasing importance as alternative materials for expandable and adaptable balloon applications.
  • Typical occlusion balloons are frequently made of latex.
  • a homogeneous polymer solution including a solvent having a polymer that is suited for developing the asymmetrical polymer membrane.
  • Polyurethanes or polyether-polyurethanes are polymers that are particularly preferred.
  • other polymers which can be homogeneously dissolved in a solvent such as aromatic polyimides, polyethersulfones, polypropylene, cellulose, and cellulose derivatives.
  • the solvent should be selected such that a sufficiently high concentration of the polymer for the method is possible.
  • the properties of the solvent significantly influence the phase inversion.
  • Suitable solvents include in particular dimethylformamide (DMF) and tetrahydrofurane (THF). The latter is particularly preferred, because it is easy to remove from the product as a result of the relatively low boiling point thereof and the excellent water solubility thereof.
  • DMF dimethylformamide
  • THF tetrahydrofurane
  • polyurethane and polyether-polyurethane have particularly high solubility.
  • the homogeneous polymer solution is applied in step (b) onto the region of the balloon catheter to be coated, be it by immersion into the solution or by spraying on the same, for example.
  • Wetting can take place in particular in the expanded state of the balloon blank, so that the regions of the polymer membrane close to the surface are further compacted upon deflation, making accessibility to the inner structure from the outside more difficult.
  • step (c) The process of phase inversion of the initially homogeneous polymer solution is initiated by a temperature change (alternative (i) step (c)), by immersing the wetted balloon blank into a bath of a fluid that can be mixed with the solvent of the polymer solution, but which does not dissolve, or hardly dissolves, the polymer (wet process; alternative (ii) step (c)), or by exposing the wetted balloon blank to an atmosphere which includes a gaseous constituent which can be mixed with the solvent, but which does not dissolve, or hardly dissolves, the polymer (dry method; alternative (iii) step c)).
  • a temperature change alternative (i) step (c)
  • a low-molecular compound acts as the solvent at high temperatures, but dissolves the powder only insufficiently at lower temperatures.
  • Such a process lends itself whenever the polymer to be deposited has poor solution properties, such as polypropylene.
  • Isothermal phase separation in particular after the drying process, is preferred in the present case.
  • the polymer solution is exposed to a liquid or gaseous constituent, which gradually spreads in the polymer solution, starting from the outside of the liquid polymer film.
  • this constituent cannot dissolve, or hardly dissolves, the polymer, so that the polymer is precipitated by way of phase separation.
  • Such a system is particularly easy to implement, for example, when using a THF polymer solution: here, water or a water/alcohol mixture can be used as the non-solvent for the polymer.
  • the morphology of the asymmetrical polymer membrane forming over the course of the method can be influenced by the selected method parameters.
  • the underlying mechanisms of the process are complex and have so far not been conclusively clarified.
  • parameters are known, which result in structures of a predominantly foam-like, microporous nature or having finger-like cavities/micro-furrows.
  • the foam-like structure is preferably formed when the polymer concentration in the polymer solution rises, the viscosity of the polymer solution is increased, such as by adding a cross-linking agent, or mixtures of solvents and non-solvents are used.
  • a structure representing a mixture of both structure types is preferred.
  • the pharmaceutical active ingredient can already be present in the polymer solution. This drastically simplifies the manufacturing process.
  • the active ingredient, or the active ingredient solution has minimal interaction with the polymer membrane in order to facilitate the release of the agent. This can be achieved, for example, by adding suitable additives to the polymer solution.
  • a balloon catheter having a balloon membrane comprising polyamide was closed distally with a silicone tube, inflated at low pressure (3-5 bar), and immersed in a solution.
  • the catheter was pulled out of the immersion solution in a continuous and slow movement, wherein it should be noted that the speed of pulling it out and the viscosity of the polymer to solution influence the applied layer thickness of the polymer membrane to be produced.
  • the coagulation of the polymer from the polymer solution is done by introducing the balloon catheter coated with the polymer solution into a conditioning chamber having an atmosphere of isopropanol/water (produced by heating a 50/50 isopropanol/water mixture at 70° C.).
  • FIGS. 1 and 2 illustrate the morphological changes on the surface of the balloon catheter.
  • the conical region of the balloon which is of interest for the coating, is defined proximally by the depth of immersion into the polymer solution and by the distal subsequent removal of the polymer coating by way of a solvent.
  • the balloon catheter In the inflated state, the balloon catheter can then be wetted with an active ingredient solution, which is embedded into the cavities of the polymer membrane that were produced.

Abstract

The invention relates to a drug-coated balloon catheter and to a method for producing the same. The balloon of the catheter includes (i) a main membrane, and (ii) an asymmetrical polymer membrane which is applied to an outside of the main membrane and into which at least one pharmaceutical active ingredient is introduced.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This invention claims benefit of priority to Germany patent application serial number DE 10 2009 002 893.5, filed on May 7, 2009; the contents of which is herein incorporated by reference in its entirety.
  • FIELD OF THE INVENTION
  • The invention relates to a drug-coated balloon catheter and to a method for producing the same.
  • BACKGROUND OF THE INVENTION
  • The use of balloon catheters is a preferred therapeutic method for a wide variety of indications in many areas of medical technology. In angioplasty and cardiology, for example, a dilation of constricted blood vessels by way of balloon dilation is proposed, releasing restenosis-inhibiting drugs at the same time. According to one variant, for this purpose the drugs are applied directly onto the balloon to be dilated. However, it has been found that in practice up to 80% of the adhering drug is not applied at the desired location of the vessel, but instead is dissolved beforehand by the body fluid present in the lumen and carried away. This increases the risk of undesirable systemic side effects of the drugs.
  • As a counter measure, it has been proposed, for example, to conduct the expansion of the balloon catheter over a dumbbell-shaped intermediate stage, in which the two ends of the balloon catheter shield the intermediate region coated with drugs from the lumen of the vessel. Thereafter, the balloon is fully expanded. Such a dumbbell-shaped balloon catheter used as an intermediate stage, however, is very complex to produce and handle and therefore prone to failure. In addition, it is impossible to prevent the drug from being rinsed out when irregular vessel geometries came into play.
  • A different approach would be to apply a coating receiving or covering the drug. The production of such a coating, however, is complex and catheters coated in this manner generally have short shelf lives. The coating material must be biocompatible, and the properties of the drug and the coating system must be matched to each other in each individual case. In practice, this makes the implementation of such a drug-coated balloon catheter very complex, and it still does not provide the desired extent of safety for the local administration of the drug.
  • SUMMARY OF THE INVENTION
  • It is therefore the object of the invention to provide a drug-coated catheter, which solves or at least mitigates one or more the problems addressed above.
  • A first aspect of the present invention is a drug-coated balloon catheter having a balloon, comprising (i) a main membrane, and (ii) an asymmetrical polymer membrane which is applied to an outside of the main membrane and into which at least one pharmaceutical active ingredient is embedded.
  • Another aspect of the present invention is a method for producing a drug-coated balloon catheter, comprising the following steps: (a) providing a balloon blank having a main membrane; (b) wetting the main membrane with a homogeneous polymer solution comprising a solvent and a polymer; (c) inducing a phase separation of the polymer from the polymer solution by a measure selected from the group consisting of (i) Temperature change, (ii) immersing the wetted balloon blank in a bath of a liquid which can be mixed with the solvent of the polymer solution, but which does not dissolve, or hardly dissolves, the polymer, and (iii) exposing the wetted balloon blank to an atmosphere which comprises a gaseous constituent which can be mixed with the solvent of the polymer solution, but does not dissolve, or hardly dissolves, the polymer.
  • DESCRIPTION OF THE DRAWINGS
  • The invention is described based on the attached drawings.
  • FIG. 1 shows an illustration of the balloon membrane of a balloon catheter modified using the method according to the invention.
  • FIG. 2 shows an enlarged section of the surface of the balloon membrane of FIG. 1.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A first aspect of the invention is to provide a drug-coated balloon catheter, the balloon of which includes: (i) a main membrane, and (ii) an asymmetrical polymer membrane which is present on an outside of the main membrane and into which at least one pharmaceutical active ingredient is introduced.
  • The balloon catheter according to the invention therefore includes a microporous asymmetrical polymer membrane on the outside of the balloon wall. This polymer membrane has a plurality of pores and micro-furrows, into which the drug to be applied is embedded in solute form or pure form. With respect to morphology, asymmetrical polymer membranes stand out in that they have a higher thickness at the outsides thereof than at the bases thereof, which is to say on the side facing the main membrane. Accessibility of the cavities of the polymer membrane in the non-expanded state of the balloon is so low that any rinsing out of the drug by body fluid is significantly reduced or even prevented. It is only in the expanded state that the pores and micro-furrows at the top of the polymer membrane are dilated such that the incorporated active ingredient can be released without difficulty.
  • Accordingly, asymmetrical polymer membranes have a thin cover layer with suitable mechanical stability, which protects a porous structured located underneath. The term “asymmetrical membrane” summarizes this very morphology in one term and is also used in the literature (see, for example, Membrane Technology in the Chemical Industry, 2001 Wiley-VCH Verlag GmbH, Chapter 3, pages 6-11). The structure of asymmetrical polymer membranes is dependent on the production method thereof. Consequently, another aspect of the invention is directed at the production of such a drug-coated balloon catheter. The method includes the following steps: (a) providing a balloon blank having a main membrane; (b) wetting the main membrane with a homogeneous polymer solution including a solvent and a polymer; (c) inducing a phase separation of the polymer from the polymer solution by one of the following measures: (i) Temperature change, (ii) immersing the wetted balloon blank in a bath of a liquid which can be mixed with the solvent of the polymer solution, but which does not dissolve, or hardly dissolves, the polymer (wet process), or (iii) exposing the wetted balloon blank to an atmosphere which includes a gaseous constituent which can be mixed with the solvent of the polymer solution, but does not dissolve, or hardly dissolves, the polymer (dry method).
  • After step (a), the method is therefore based on a balloon catheter having a balloon, the outer membrane wall is to be coated. For the purpose of the invention, it is immaterial whether this is a monolumen, multilumen, or multi-layer catheter. In any case, the outside of the balloon, hereinafter referred to as the main membrane, is modified by deposition of the asymmetrical polymer membrane.
  • The main membrane, at least on the outside thereof, preferably includes a polymer material that is commonly used for these purposes, in particular the polymer material of the main membrane is selected from the group including of polyurethane, polyether-polyurethane, polyethylene terephthalate, polybutylene terephthalate, polyamide, and also copolymers and blends thereof. Polyamides are particularly preferred because they have particularly high strength.
  • Typical balloon materials are usually semicrystalline thermoplastic resins, wherein in the PTCA/PTA field primarily polyamides, polyethylene terephthalate (PET), or polybutylene terephthalate (PBT), and the copolymers and blends thereof are used. Polyurethanes are gaining increasing importance as alternative materials for expandable and adaptable balloon applications. Typical occlusion balloons are frequently made of latex.
  • Furthermore, a homogeneous polymer solution is provided, including a solvent having a polymer that is suited for developing the asymmetrical polymer membrane. Polyurethanes or polyether-polyurethanes are polymers that are particularly preferred. However, it is also possible to use other polymers which can be homogeneously dissolved in a solvent, such as aromatic polyimides, polyethersulfones, polypropylene, cellulose, and cellulose derivatives.
  • The solvent should be selected such that a sufficiently high concentration of the polymer for the method is possible. In addition, the properties of the solvent significantly influence the phase inversion. Suitable solvents include in particular dimethylformamide (DMF) and tetrahydrofurane (THF). The latter is particularly preferred, because it is easy to remove from the product as a result of the relatively low boiling point thereof and the excellent water solubility thereof. In the solvents mentioned above, in particular polyurethane and polyether-polyurethane have particularly high solubility.
  • The homogeneous polymer solution is applied in step (b) onto the region of the balloon catheter to be coated, be it by immersion into the solution or by spraying on the same, for example. Wetting can take place in particular in the expanded state of the balloon blank, so that the regions of the polymer membrane close to the surface are further compacted upon deflation, making accessibility to the inner structure from the outside more difficult.
  • The process of phase inversion of the initially homogeneous polymer solution is initiated by a temperature change (alternative (i) step (c)), by immersing the wetted balloon blank into a bath of a fluid that can be mixed with the solvent of the polymer solution, but which does not dissolve, or hardly dissolves, the polymer (wet process; alternative (ii) step (c)), or by exposing the wetted balloon blank to an atmosphere which includes a gaseous constituent which can be mixed with the solvent, but which does not dissolve, or hardly dissolves, the polymer (dry method; alternative (iii) step c)).
  • During the thermal process, typically a low-molecular compound acts as the solvent at high temperatures, but dissolves the powder only insufficiently at lower temperatures. Such a process lends itself whenever the polymer to be deposited has poor solution properties, such as polypropylene.
  • Isothermal phase separation, in particular after the drying process, is preferred in the present case. In this process, the polymer solution is exposed to a liquid or gaseous constituent, which gradually spreads in the polymer solution, starting from the outside of the liquid polymer film. However, this constituent cannot dissolve, or hardly dissolves, the polymer, so that the polymer is precipitated by way of phase separation. Such a system is particularly easy to implement, for example, when using a THF polymer solution: here, water or a water/alcohol mixture can be used as the non-solvent for the polymer.
  • The morphology of the asymmetrical polymer membrane forming over the course of the method can be influenced by the selected method parameters. The underlying mechanisms of the process are complex and have so far not been conclusively clarified. For practical applications, however, parameters are known, which result in structures of a predominantly foam-like, microporous nature or having finger-like cavities/micro-furrows. The foam-like structure is preferably formed when the polymer concentration in the polymer solution rises, the viscosity of the polymer solution is increased, such as by adding a cross-linking agent, or mixtures of solvents and non-solvents are used. For the present purposes, a structure representing a mixture of both structure types is preferred.
  • In the simplest case, the pharmaceutical active ingredient can already be present in the polymer solution. This drastically simplifies the manufacturing process. However, it is also conceivable to apply a solution of a pharmaceutical active ingredient, or the pure active ingredient, onto the dried and purified polymer membrane after the asymmetrical polymer membrane has been produced. This application should be carried out in particular in the expanded state of the balloon in order to facilitate embedding of the material into the inner lumen of the polymer layer. Ideally, the active ingredient, or the active ingredient solution, has minimal interaction with the polymer membrane in order to facilitate the release of the agent. This can be achieved, for example, by adding suitable additives to the polymer solution.
  • The invention will be explained in more detail hereinafter based on one exemplary embodiment.
  • Example Production of a Coated Balloon Catheter
  • A balloon catheter having a balloon membrane comprising polyamide was closed distally with a silicone tube, inflated at low pressure (3-5 bar), and immersed in a solution. The catheter was pulled out of the immersion solution in a continuous and slow movement, wherein it should be noted that the speed of pulling it out and the viscosity of the polymer to solution influence the applied layer thickness of the polymer membrane to be produced.
  • The coagulation of the polymer from the polymer solution is done by introducing the balloon catheter coated with the polymer solution into a conditioning chamber having an atmosphere of isopropanol/water (produced by heating a 50/50 isopropanol/water mixture at 70° C.).
  • After 10 minutes, the balloon was removed from the conditioning chamber, rinsed several times with distilled water, and dried. FIGS. 1 and 2 illustrate the morphological changes on the surface of the balloon catheter.
  • The conical region of the balloon, which is of interest for the coating, is defined proximally by the depth of immersion into the polymer solution and by the distal subsequent removal of the polymer coating by way of a solvent.
  • In the inflated state, the balloon catheter can then be wetted with an active ingredient solution, which is embedded into the cavities of the polymer membrane that were produced.

Claims (11)

1. A drug-coated balloon catheter having a balloon, comprising:
(i) a main membrane, and
(ii) an asymmetrical polymer membrane which is applied to an outside of the main membrane and into which at least one pharmaceutical active ingredient is embedded.
2. The catheter according to claim 1, wherein the main membrane comprises a polymer material at least on the side thereof facing the polymer membrane.
3. The catheter according to claim 2, wherein the polymer material of the main membrane is selected from the group consisting of polyurethane, polyether-polyurethane, polyethylene terephthalate, polybutylene terephthalate, polyamide, and copolymers and blends thereof.
4. The catheter according to claim 3, wherein the polymer material of the main membrane is polyamide.
5. The catheter according to claim 1, wherein the polymer membrane comprises polyurethane or polyether-polyurethane.
6. The catheter according to claim 1, wherein at least one pharmaceutical active ingredient is embedded into the polymer membrane.
7. A method for producing a drug-coated balloon catheter, comprising the following steps:
a) providing a balloon blank having a main membrane;
b) wetting the main membrane with a homogeneous polymer solution comprising a solvent and a polymer;
c) inducing a phase separation of the polymer from the polymer solution by a measure selected from the group consisting of:
(i) Temperature change,
(ii) immersing the wetted balloon blank in a bath of a liquid which can be mixed with the solvent of the polymer solution, but which does not dissolve, or hardly dissolves, the polymer, and
(iii) exposing the wetted balloon blank to an atmosphere which comprises a gaseous constituent which can be mixed with the solvent of the polymer solution, but does not dissolve, or hardly dissolves, the polymer.
8. The method according to claim 7, wherein step c) is carried out in an expanded state of the balloon blank.
9. The method according to claim 8, wherein the polymer solution comprises a pharmaceutical active ingredient.
10. The method according to claim 7, wherein the balloon is dried after the phase separation, and subsequently a pharmaceutical active ingredient is embedded by applying an active ingredient solution, or a pure active ingredient, onto the polymer membrane in the expanded state of the balloon blank.
11. The method according to claim 7, wherein the main membrane of the balloon comprises polyamide at least on the side thereof facing the polymer membrane, and the polymer solution is a solution of polyurethane or polyether-polyurethane in tetrahydrofurane (THF) or dimethylformamide (DMF).
US12/767,462 2009-05-07 2010-04-26 Drug-coated balloon catheter and method for the production thereof Abandoned US20100286608A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/008,873 US9833547B2 (en) 2009-05-07 2016-01-28 Drug-coated balloon catheter and method for the production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009002893 2009-05-07
DE102009002893.5 2009-05-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/008,873 Division US9833547B2 (en) 2009-05-07 2016-01-28 Drug-coated balloon catheter and method for the production thereof

Publications (1)

Publication Number Publication Date
US20100286608A1 true US20100286608A1 (en) 2010-11-11

Family

ID=42102799

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/767,462 Abandoned US20100286608A1 (en) 2009-05-07 2010-04-26 Drug-coated balloon catheter and method for the production thereof
US15/008,873 Active 2030-04-27 US9833547B2 (en) 2009-05-07 2016-01-28 Drug-coated balloon catheter and method for the production thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/008,873 Active 2030-04-27 US9833547B2 (en) 2009-05-07 2016-01-28 Drug-coated balloon catheter and method for the production thereof

Country Status (2)

Country Link
US (2) US20100286608A1 (en)
EP (1) EP2248541B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120165922A1 (en) * 2010-12-22 2012-06-28 Gong Victoria M Method of modifying a coating on a medical device
US9592322B2 (en) 2012-03-27 2017-03-14 Terumo Kabushiki Kaisha Coating composition and medical device
US10195311B2 (en) 2009-12-18 2019-02-05 Interface Biologics, Inc. Local delivery of drugs from self assembled coatings
US11318232B2 (en) 2018-05-22 2022-05-03 Interface Biologics, Inc. Compositions and methods for delivering drugs to a vessel wall
US11771874B2 (en) 2019-07-02 2023-10-03 Biotronik Ag Functionalized balloon surface

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100429A (en) * 1989-04-28 1992-03-31 C. R. Bard, Inc. Endovascular stent and delivery system
US5304121A (en) * 1990-12-28 1994-04-19 Boston Scientific Corporation Drug delivery system making use of a hydrogel polymer coating
US6093463A (en) * 1997-12-12 2000-07-25 Intella Interventional Systems, Inc. Medical devices made from improved polymer blends
US20040086542A1 (en) * 1999-12-23 2004-05-06 Hossainy Syed F.A. Coating for implantable devices and a method of forming the same
US20050226991A1 (en) * 2004-04-07 2005-10-13 Hossainy Syed F Methods for modifying balloon of a catheter assembly
US20060184112A1 (en) * 2005-02-17 2006-08-17 Horn Daniel J Medical devices
US20060280858A1 (en) * 2001-01-05 2006-12-14 Lyudmila Kokish Balloon catheter for delivering therapeutic agents
US20070202147A1 (en) * 2006-02-28 2007-08-30 Kleiner Lothar W Poly(ester amide)-based drug delivery systems with controlled release rate and morphology
US20070280988A1 (en) * 2006-05-31 2007-12-06 Ludwig Florian N Coating layers for medical devices and methods of making the same
US7419696B2 (en) * 1993-04-26 2008-09-02 Medtronic, Inc. Medical devices for delivering a therapeutic agent and method of preparation
US20100189876A1 (en) * 2001-01-05 2010-07-29 Abbott Cardiovascular Systems Inc. Balloon Catheter for Delivering Therapeutic Agents
US20100198150A1 (en) * 2008-09-15 2010-08-05 Michal Eugene T Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens
US20110092900A1 (en) * 2008-04-09 2011-04-21 Alexander Rubben Method for Producing a Bioactive Surface on an Endoprosthesis or on the Balloon of a Balloon Catheter
US20120003379A1 (en) * 2007-12-10 2012-01-05 Yunbing Wang Methods to improve adhesion of polymer coatings over stents

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL91398A (en) * 1988-08-30 1994-05-30 Pfizer Pharmaceutical delivery device comprising active substance surrounded by asymmetric membrane
US5290306A (en) * 1989-11-29 1994-03-01 Cordis Corporation Puncture resistant balloon catheter
US5498238A (en) * 1990-06-15 1996-03-12 Cortrak Medical, Inc. Simultaneous angioplasty and phoretic drug delivery

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100429A (en) * 1989-04-28 1992-03-31 C. R. Bard, Inc. Endovascular stent and delivery system
US5304121A (en) * 1990-12-28 1994-04-19 Boston Scientific Corporation Drug delivery system making use of a hydrogel polymer coating
US7419696B2 (en) * 1993-04-26 2008-09-02 Medtronic, Inc. Medical devices for delivering a therapeutic agent and method of preparation
US6093463A (en) * 1997-12-12 2000-07-25 Intella Interventional Systems, Inc. Medical devices made from improved polymer blends
US20040086542A1 (en) * 1999-12-23 2004-05-06 Hossainy Syed F.A. Coating for implantable devices and a method of forming the same
US20060280858A1 (en) * 2001-01-05 2006-12-14 Lyudmila Kokish Balloon catheter for delivering therapeutic agents
US7658966B2 (en) * 2001-01-05 2010-02-09 Advanced Cardiovascular Systems, Inc. Balloon catheter for delivering therapeutic agents
US20100189876A1 (en) * 2001-01-05 2010-07-29 Abbott Cardiovascular Systems Inc. Balloon Catheter for Delivering Therapeutic Agents
US20050226991A1 (en) * 2004-04-07 2005-10-13 Hossainy Syed F Methods for modifying balloon of a catheter assembly
US20060184112A1 (en) * 2005-02-17 2006-08-17 Horn Daniel J Medical devices
US20070202147A1 (en) * 2006-02-28 2007-08-30 Kleiner Lothar W Poly(ester amide)-based drug delivery systems with controlled release rate and morphology
US20070280988A1 (en) * 2006-05-31 2007-12-06 Ludwig Florian N Coating layers for medical devices and methods of making the same
US20120003379A1 (en) * 2007-12-10 2012-01-05 Yunbing Wang Methods to improve adhesion of polymer coatings over stents
US20110092900A1 (en) * 2008-04-09 2011-04-21 Alexander Rubben Method for Producing a Bioactive Surface on an Endoprosthesis or on the Balloon of a Balloon Catheter
US20100198150A1 (en) * 2008-09-15 2010-08-05 Michal Eugene T Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10195311B2 (en) 2009-12-18 2019-02-05 Interface Biologics, Inc. Local delivery of drugs from self assembled coatings
US20120165922A1 (en) * 2010-12-22 2012-06-28 Gong Victoria M Method of modifying a coating on a medical device
US9724729B2 (en) * 2010-12-22 2017-08-08 Abbott Laboratories Method of modifying a coating on a medical device
US9592322B2 (en) 2012-03-27 2017-03-14 Terumo Kabushiki Kaisha Coating composition and medical device
US11318232B2 (en) 2018-05-22 2022-05-03 Interface Biologics, Inc. Compositions and methods for delivering drugs to a vessel wall
US11771874B2 (en) 2019-07-02 2023-10-03 Biotronik Ag Functionalized balloon surface

Also Published As

Publication number Publication date
EP2248541A3 (en) 2014-10-15
EP2248541B1 (en) 2018-10-31
US20160144077A1 (en) 2016-05-26
US9833547B2 (en) 2017-12-05
EP2248541A2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
US9833547B2 (en) Drug-coated balloon catheter and method for the production thereof
US11911301B2 (en) Polymer coatings containing drug powder of controlled morphology
JP6538742B2 (en) Apparatus of controlled porosity for tissue treatment, method of use and method of manufacture
EP3228335B1 (en) Drug coated balloon
JP6756620B2 (en) Drug composition and coating
EP1881853B1 (en) All-over coating of vessel stents
CN102458497A (en) Shellac and paclitaxel coated catheter balloons
ITMI20090014A1 (en) MEDICAL DEVICE WITH DRUG RELEASE
JP6643488B2 (en) Pharmaceutical compositions and coatings
CN104822397A (en) Retractable sheath devices, systems, and methods
WO1995003075A1 (en) Medical material and process for producing the same
CN103800987B (en) Medical balloon and preparation method thereof
US20040232589A1 (en) Balloon catheter and process for producing balloon for balloon catheters
EP3200844B1 (en) Lubricious medical device elements
JPS62501054A (en) Medical devices and their manufacturing methods
CN203017550U (en) Medical balloon
US9907935B2 (en) Coating of balloon catheters
US20120136367A1 (en) Multi-segment protective sheath for expandable medical devices
JP2021137460A (en) catheter
EP1663337B1 (en) Agent-releasing vascular prosthesis
WO2023160630A1 (en) Method for preparing drug eluting balloons without coating
US9808559B2 (en) Coating of a vascular endoprosthesis
JP2013192755A (en) Drug delivery balloon catheter and method of manufacturing the same
JPH06121828A (en) Medical balloon catheter
KR20230172735A (en) Balloon catheter with surface treated balloon and manufacturing method for the same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION