US20100297669A1 - NUCLEIC ACIDS AND CORRESPONDING PROTEINS ENTITLED 191P4D12(b) USEFUL IN TREATMENT AND DETECTION OF CANCER - Google Patents

NUCLEIC ACIDS AND CORRESPONDING PROTEINS ENTITLED 191P4D12(b) USEFUL IN TREATMENT AND DETECTION OF CANCER Download PDF

Info

Publication number
US20100297669A1
US20100297669A1 US12/821,045 US82104510A US2010297669A1 US 20100297669 A1 US20100297669 A1 US 20100297669A1 US 82104510 A US82104510 A US 82104510A US 2010297669 A1 US2010297669 A1 US 2010297669A1
Authority
US
United States
Prior art keywords
protein
cancer
amino acid
antibody
peptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/821,045
Inventor
Arthur B. Raitano
Pia M. Challita-Eid
Aya Jakobovits
Mary Faris
Wangmao Ge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agensys Inc
Original Assignee
Agensys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agensys Inc filed Critical Agensys Inc
Priority to US12/821,045 priority Critical patent/US20100297669A1/en
Assigned to AGENSYS, INC. reassignment AGENSYS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FARIS, MARY, GE, WANGMAO, CHALLITA-EID, PIA M., RAITANO, ARTHUR B., JAKOBOVITS, AYA
Publication of US20100297669A1 publication Critical patent/US20100297669A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention described herein relates to genes and their encoded proteins, termed 191P4D12(b), expressed in certain cancers, and to diagnostic and therapeutic methods and compositions useful in the management of cancers that express 191P4D12(b).
  • Cancer is the second leading cause of human death next to coronary disease. Worldwide, millions of people die from cancer every year. In the United States alone, as reported by the American Cancer Society, cancer causes the death of well over a half-million people annually, with over 1.2 million new cases diagnosed per year. While deaths from heart disease have been declining significantly, those resulting from cancer generally are on the rise. In the early part of the next century, cancer is predicted to become the leading cause of death.
  • carcinomas of the lung, prostate, breast, colon, pancreas, and ovary represent the primary causes of cancer death. These and virtually all other carcinomas share a common lethal feature. With very few exceptions, metastatic disease from a carcinoma is fatal. Moreover, even for those cancer patients who initially survive their primary cancers, common experience has shown that their lives are dramatically altered. Many cancer patients experience strong anxieties driven by the awareness of the potential for recurrence or treatment failure. Many cancer patients experience physical debilitations following treatment. Furthermore, many cancer patients experience a recurrence.
  • prostate cancer is the fourth most prevalent cancer in men. In North America and Northern Europe, it is by far the most common cancer in males and is the second leading cause of cancer death in men. In the United States alone, well over 30,000 men die annually of this disease—second only to lung cancer. Despite the magnitude of these figures, there is still no effective treatment for metastatic prostate cancer. Surgical prostatectomy, radiation therapy, hormone ablation therapy, surgical castration and chemotherapy continue to be the main treatment modalities. Unfortunately, these treatments are ineffective for many and are often associated with undesirable consequences.
  • PSA serum prostate specific antigen
  • the LAPC Los Angeles Prostate Cancer
  • SCID severe combined immune deficient mice
  • More recently identified prostate cancer markers include PCTA-1 (Su et al., 1996, Proc. Natl. Acad. Sci. USA 93: 7252), prostate-specific membrane (PSM) antigen (Pinto et al., Clin Cancer Res 1996 Sep.
  • Renal cell carcinoma accounts for approximately 3 percent of adult malignancies. Once adenomas reach a diameter of 2 to 3 cm, malignant potential exists. In the adult, the two principal malignant renal tumors are renal cell adenocarcinoma and transitional cell carcinoma of the renal pelvis or ureter. The incidence of renal cell adenocarcinoma is estimated at more than 29,000 cases in the United States, and more than 11,600 patients died of this disease in 1998. Transitional cell carcinoma is less frequent, with an incidence of approximately 500 cases per year in the United States.
  • bladder cancer represents approximately 5 percent in men (fifth most common neoplasm) and 3 percent in women (eighth most common neoplasm). The incidence is increasing slowly, concurrent with an increasing older population. In 1998, there was an estimated 54,500 cases, including 39,500 in men and 15,000 in women. The age-adjusted incidence in the United States is 32 per 100,000 for men and eight per 100,000 in women. The historic male/female ratio of 3:1 may be decreasing related to smoking patterns in women. There were an estimated 11,000 deaths from bladder cancer in 1998 (7,800 in men and 3,900 in women). Bladder cancer incidence and mortality strongly increase with age and will be an increasing problem as the population becomes more elderly.
  • bladder cancers recur in the bladder.
  • Bladder cancer is managed with a combination of transurethral resection of the bladder (TUR) and intravesical chemotherapy or immunotherapy.
  • TUR transurethral resection of the bladder
  • the multifocal and recurrent nature of bladder cancer points out the limitations of TUR.
  • Most muscle-invasive cancers are not cured by TUR alone. Radical cystectomy and urinary diversion is the most effective means to eliminate the cancer but carry an undeniable impact on urinary and sexual function. There continues to be a significant need for treatment modalities that are beneficial for bladder cancer patients.
  • Treatment options for lung and bronchial cancer are determined by the type and stage of the cancer and include surgery, radiation therapy, and chemotherapy. For many localized cancers, surgery is usually the treatment of choice. Because the disease has usually spread by the time it is discovered, radiation therapy and chemotherapy are often needed in combination with surgery. Chemotherapy alone or combined with radiation is the treatment of choice for small cell lung cancer; on this regimen, a large percentage of patients experience remission, which in some cases is long lasting. There is however, an ongoing need for effective treatment and diagnostic approaches for lung and bronchial cancers.
  • treatment of breast cancer may involve lumpectomy (local removal of the tumor) and removal of the lymph nodes under the arm; mastectomy (surgical removal of the breast) and removal of the lymph nodes under the arm; radiation therapy; chemotherapy; or hormone therapy.
  • lumpectomy local removal of the tumor
  • mastectomy surgical removal of the breast
  • radiation therapy chemotherapy
  • hormone therapy chemotherapy
  • two or more methods are used in combination.
  • Numerous studies have shown that, for early stage disease, long-term survival rates after lumpectomy plus radiotherapy are similar to survival rates after modified radical mastectomy.
  • Significant advances in reconstruction techniques provide several options for breast reconstruction after mastectomy. Recently, such reconstruction has been done at the same time as the mastectomy.
  • DCIS ductal carcinoma in situ
  • Surgery, radiation therapy, and chemotherapy are treatment options for ovarian cancer.
  • Surgery usually includes the removal of one or both ovaries, the fallopian tubes (salpingo-oophorectomy), and the uterus (hysterectomy).
  • the fallopian tubes salivary-oophorectomy
  • the uterus hematoma-oophorectomy
  • pancreatic cancer There were an estimated 28,300 new cases of pancreatic cancer in the United States in 2000. Over the past 20 years, rates of pancreatic cancer have declined in men. Rates among women have remained approximately constant but may be beginning to decline. Pancreatic cancer caused an estimated 28,200 deaths in 2000 in the United States. Over the past 20 years, there has been a slight but significant decrease in mortality rates among men (about ⁇ 0.9% per year) while rates have increased slightly among women.
  • pancreatic cancer Surgery, radiation therapy, and chemotherapy are treatment options for pancreatic cancer. These treatment options can extend survival and/or relieve symptoms in many patients but are not likely to produce a cure for most. There is a significant need for additional therapeutic and diagnostic options for pancreatic cancer.
  • the present invention relates to a gene, designated 191P4D12(b), that has now been found to be over-expressed in the cancer(s) listed in Table I.
  • Northern blot expression analysis of 191P4D12(b) gene expression in normal tissues shows a restricted expression pattern in adult tissues.
  • the nucleotide ( FIG. 2 ) and amino acid ( FIG. 2 , and FIG. 3 ) sequences of 191P4D12(b) are provided.
  • the invention provides polynucleotides corresponding or complementary to all or part of the 191P4D12(b) genes, mRNAs, and/or coding sequences, preferably in isolated form, including polynucleotides encoding 191P4D12(b)-related proteins and fragments of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more than 25 contiguous amino acids; at least 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 85, 90, 95, 100 or more than 100 contiguous amino acids of a 191P4D12(b)-related protein, as well as the peptides/proteins themselves; DNA, RNA, DNA/RNA hybrids, and related molecules, polynucleotides or oligonucleotides complementary or having at least a 90% homology to the 191P4D12(b) genes or mRNA sequences or parts thereof, and polynucleotides or oligonucleot
  • Recombinant DNA molecules containing 191P4D12(b) polynucleotides, cells transformed or transduced with such molecules, and host-vector systems for the expression of 191P4D12(b) gene products are also provided.
  • the invention further provides antibodies that bind to 191P4D12(b) proteins and polypeptide fragments thereof, including polyclonal and monoclonal antibodies, murine and other mammalian antibodies, chimeric antibodies, humanized and fully human antibodies, and antibodies labeled with a detectable marker or therapeutic agent.
  • FIG. 2 is not encoded and/or the entire amino acid sequence of FIG. 2 is not prepared.
  • the entire nucleic acid sequence of FIG. 2 is encoded and/or the entire amino acid sequence of FIG. 2 is prepared, either of which are in respective human unit dose forms.
  • the invention further provides methods for detecting the presence and status of 191P4D12(b) polynucleotides and proteins in various biological samples, as well as methods for identifying cells that express 191P4D12(b).
  • a typical embodiment of this invention provides methods for monitoring 191P4D12(b) gene products in a tissue or hematology sample having or suspected of having some form of growth dysregulation such as cancer.
  • the invention further provides various immunogenic or therapeutic compositions and strategies for treating cancers that express 191P4D12(b) such as cancers of tissues listed in Table I, including therapies aimed at inhibiting the transcription, translation, processing or function of 191P4D12(b) as well as cancer vaccines.
  • the invention provides compositions, and methods comprising them, for treating a cancer that expresses 191P4D12(b) in a human subject wherein the composition comprises a carrier suitable for human use and a human unit dose of one or more than one agent that inhibits the production or function of 191P4D12(b).
  • the carrier is a uniquely human carrier.
  • the agent is a moiety that is immunoreactive with 191P4D12(b) protein.
  • moieties include, but are not limited to, antibodies (such as single chain, monoclonal, polyclonal, humanized, chimeric, or human antibodies), functional equivalents thereof (whether naturally occurring or synthetic), and combinations thereof.
  • the antibodies can be conjugated to a diagnostic or therapeutic moiety.
  • the agent is a small molecule as defined herein.
  • the agent comprises one or more than one peptide which comprises a cytotoxic T lymphocyte (CTL) epitope that binds an HLA class I molecule in a human to elicit a CTL response to 191P4D12(b) and/or one or more than one peptide which comprises a helper T lymphocyte (HTL) epitope which binds an HLA class II molecule in a human to elicit an HTL response.
  • CTL cytotoxic T lymphocyte
  • HTL helper T lymphocyte
  • the peptides of the invention may be on the same or on one or more separate polypeptide molecules.
  • the agent comprises one or more than one nucleic acid molecule that expresses one or more than one of the CTL or HTL response stimulating peptides as described above.
  • the one or more than one nucleic acid molecule may express a moiety that is immunologically reactive with 191P4D12(b) as described above.
  • the one or more than one nucleic acid molecule may also be, or encodes, a molecule that inhibits production of 191P4D12(b).
  • Non-limiting examples of such molecules include, but are not limited to, those complementary to a nucleotide sequence essential for production of 191P4D12(b) (e.g.
  • HLA Peptide Tables respective to its parental protein, e.g., variant 1, variant 2, etc.
  • HLA Peptide Tables respective to its parental protein, e.g., variant 1, variant 2, etc.
  • search Peptides in Table VII Generally, a unique Search Peptide is used to obtain HLA peptides of a particular for a particular variant. The position of each Search Peptide relative to its respective parent molecule is listed in Table VII.
  • a Search Peptide begins at position “X”, one must add the value “X ⁇ 1” to each position in Tables VIII-XXI and XXII to XLIX to obtain the actual position of the HLA peptides in their parental molecule. For example, if a particular Search Peptide begins at position 150 of its parental molecule, one must add 150 ⁇ 1, i.e., 149 to each HLA peptide amino acid position to calculate the position of that amino acid in the parent molecule.
  • One embodiment of the invention comprises an HLA peptide, that occurs at least twice in Tables VIII-XXI and XXII to XLIX collectively, or an oligonucleotide that encodes the HLA peptide.
  • Another embodiment of the invention comprises an HLA peptide that occurs at least once in Tables VIII-XXI and at least once in tables XXII to XLIX, or an oligonucleotide that encodes the HLA peptide.
  • antibody epitopes which comprise a peptide regions, or an oligonucleotide encoding the peptide region, that has one two, three, four, or five of the following characteristics:
  • a peptide region of at least 5 amino acids of a particular peptide of FIG. 3 in any whole number increment up to the full length of that protein in FIG. 3 , that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Hydrophilicity profile of FIG. 5 ;
  • a peptide region of at least 5 amino acids of a particular peptide of FIG. 3 in any whole number increment up to the full length of that protein in FIG. 3 , that includes an amino acid position having a value equal to or less than 0.5, 0.4, 0.3, 0.2, 0.1, or having a value equal to 0.0, in the Hydropathicity profile of FIG. 6 ;
  • a peptide region of at least 5 amino acids of a particular peptide of FIG. 3 in any whole number increment up to the full length of that protein in FIG. 3 , that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Percent Accessible Residues profile of FIG. 7 ;
  • a peptide region of at least 5 amino acids of a particular peptide of FIG. 3 in any whole number increment up to the full length of that protein in FIG. 3 , that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Average Flexibility profile of FIG. 8 ; or
  • FIG. 1 The 191P4D12(b) SSH sequence of 223 nucleotides.
  • FIG. 2 A) The cDNA and amino acid sequence of 191P4D12(b) variant 1 (also called “191P4D12(b) v.1” or “191P4D12(b) variant 1”) is shown in FIG. 2A .
  • the start methionine is underlined.
  • the open reading frame extends from nucleic acid 264-1796 including the stop codon.
  • 191P4D12(b) variant 2 (also called “191P4D12(b) v.2”) is shown in FIG. 2B .
  • the codon for the start methionine is underlined.
  • the open reading frame extends from nucleic acid 264-1796 including the stop codon.
  • 191P4D12(b) variant 3 (also called “191P4D12(b) v.3”) is shown in FIG. 2C .
  • the codon for the start methionine is underlined.
  • the open reading frame extends from nucleic acid 264-1796 including the stop codon.
  • 191P4D12(b) variant 4 (also called “191P4D12(b) v.4”) is shown in FIG. 2D .
  • the codon for the start methionine is underlined.
  • the open reading frame extends from nucleic acid 264-1796 including the stop codon.
  • 191P4D12(b) variant 5 (also called “191P4D12(b) v.5”) is shown in FIG. 2E .
  • the codon for the start methionine is underlined.
  • the open reading frame extends from nucleic acid 264-1796 including the stop codon.
  • 191P4D12(b) variant 6 (also called “191P4D12(b) v.6”) is shown in FIG. 2F .
  • the codon for the start methionine is underlined.
  • the open reading frame extends from nucleic acid 789-1676 including the stop codon.
  • 191P4D12(b) variant 7 (also called “191P4D12(b) v.7”) is shown in FIG. 2G .
  • the codon for the start methionine is underlined.
  • the open reading frame extends from nucleic acid 264-1721 including the stop codon.
  • 191P4D12(b) variant 8 (also called “191P4D12(b) v.8”) is shown in FIG. 2H .
  • the codon for the start methionine is underlined.
  • the open reading frame extends from nucleic acid 264-1796 including the stop codon.
  • 191P4D12(b) variant 9 (also called “191P4D12(b) v.9”) is shown in FIG. 2I .
  • the codon for the start methionine is underlined.
  • the open reading frame extends from nucleic acid 708-1121 including the stop codon.
  • 191P4D12(b) variant 10 (also called “191P4D12(b) v.10”) is shown in FIG. 2J .
  • the codon for the start methionine is underlined.
  • the open reading frame extends from nucleic acid 264-1796 including the stop codon.
  • 191P4D12(b) variant 11 (also called “191P4D12(b) v.11”) is shown in FIG. 2K .
  • the codon for the start methionine is underlined.
  • the open reading frame extends from nucleic acid 264-1796 including the stop codon.
  • 191P4D12(b) variant 12 (also called “191P4D12(b) v.12”) is shown in FIG. 2L .
  • the codon for the start methionine is underlined.
  • the open reading frame extends from nucleic acid 264-1796 including the stop codon.
  • 191P4D12(b) variant 13 (also called “191P4D12(b) v.13”) is shown in FIG. 2M .
  • the codon for the start methionine is underlined.
  • the open reading frame extends from nucleic acid 264-1799 including the stop codon.
  • 191P4D12(b) variant 14 (also called “191P4D12(b) v.14”) is shown in FIG. 2N .
  • the codon for the start methionine is underlined.
  • the open reading frame extends from nucleic acid 708-1121 including the stop codon.
  • FIG. 3 is a diagrammatic representation of FIG. 3 .
  • 191P4D12(b) includes all variants thereof, including those shown in FIGS. 2 , 3 , 10 , and 11 , unless the context clearly indicates otherwise.
  • FIG. 4-B Alignment of 191P4D12(b) with known homologs.
  • FIG. 4(A) Alignment of 191P4D12(b) with human Ig superfamily receptor LNIR (gi 14714574).
  • FIG. 4(B) Alignment of 191P4D12(b) with mouse nectin 4 (gi 18874521).
  • FIGS. 5A-C Hydrophilicity amino acid profile of 191P4D12(b)v.1, v.7, and v.9 determined by computer algorithm sequence analysis using the method of Hopp and Woods (Hopp T. P., Woods K. R., 1981. Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828) accessed on the Protscale website located on the World Wide Web through the ExPasy molecular biology server.
  • FIGS. 6A-C Hydropathicity amino acid profile of 191P4D12(b)v.1, v.7, and v.9 determined by computer algorithm sequence analysis using the method of Kyte and Doolittle (Kyte J., Doolittle R. F., 1982. J. Mol. Biol. 157:105-132) accessed on the ProtScale website located on the World Wide Web through the ExPasy molecular biology server.
  • FIGS. 7A-C Percent accessible residues amino acid profile of 191P4D12(b)v.1, v.7, and v.9 determined by computer algorithm sequence analysis using the method of Janin (Janin J., 1979 Nature 277:491-492) accessed on the ProtScale website located on the World Wide Web at through the ExPasy molecular biology server.
  • FIGS. 8A-C Average flexibility amino acid profile of 191P4D12(b)v.1, v.7, and v.9 determined by computer algorithm sequence analysis using the method of Bhaskaran and Ponnuswamy (Bhaskaran R., and Ponnuswamy P. K., 1988. Int. J. Pept. Protein Res. 32:242-255) accessed on the ProtScale website located on the World Wide Web at through the ExPasy molecular biology server.
  • FIGS. 9A-C Beta-turn amino acid profile of 191P4D12(b)v.1, v.7, and v.9 determined by computer algorithm sequence analysis using the method of Deleage and Roux (Deleage, G., Roux B. 1987 Protein Engineering 1:289-294) accessed on the ProtScale website located on the World Wide Web through the ExPasy molecular biology server.
  • FIG. 10 Schematic alignment of SNP variants of 191P4D12(b).
  • Variants 191P4D12(b) v.2 through v.5 and v.10 through v.12 are variants with single nucleotide differences.
  • v.13 had an insertion of three bases (GCA) between 1262 and 1263 and added one amino acid “A” to the protein.
  • Variant v.14 was a SNP variant of transcript variant v.9, corresponding to the SNP at 2688 of v.1. Though these SNP variants were shown separately, they could also occur in any combinations and in any transcript variants, as shown in FIG. 12 , that contained the base pairs. Numbers correspond to those of 191P4D12(b) v.1. Black box shows the same sequence as 191P4D12(b) v.1. SNPs are indicated above the box.
  • FIG. 11 Schematic alignment of protein variants of 191P4D12(b). Protein variants correspond to nucleotide variants. Nucleotide variants 191P4D12(b) v.3, v.4, v.5 and v.8 coded for the same protein as v.1. Nucleotide variants 191P4D12(b) v.6, v.7, v.8 and v.9 were splice variants of v.1, as shown in FIG. 12 . Variant v.9 translated to a totally different protein than other variants, with two isoforms that different from each other by one amino acid at 64: A or D.
  • Variant v.13 had an insertion of one amino acid “A” at 334. Single amino acid differences were indicated above the boxes. Black boxes represent the same sequence as 191P4D12(b) v.1. Numbers underneath the box correspond to 191P4D12(b) v.1.
  • FIG. 12 Exon compositions of transcript variants of 191P4D12(b).
  • Variant 191P4D12(b) v.6, v.7, v.8 and v.9 are transcript variants of v.1.
  • Variant v.9 was part of the last exon of v.1. The order of the potential exons on the human genome is shown at the bottom. Poly A tails were not shown in the figure. Ends of exons are shown above the boxes. Numbers in “( )” underneath the boxes correspond to those of 191P4D12(b) v.1. Lengths of introns and exons are not proportional.
  • FIG. 13A-L Secondary structure and transmembrane domains prediction for 191P4D12(b) protein variants ( FIGS. 13A-D ).
  • the secondary structure of 191P4D12(b) protein variants 1 (SEQ ID NO:127), v6 (SEQ ID NO:128), v7 (SEQ ID NO:129), and v9 (SEQ ID NO:130) ( FIGS. 13A-D respectively) were predicted using the HNN—Hierarchical Neural Network method (Guermeur, 1997), accessed from the ExPasy molecular biology server located on the World Wide Web. This method predicts the presence and location of alpha helices, extended strands, and random coils from the primary protein sequence.
  • FIGS. 13E , 13 G, 13 I, 13 K Schematic representations of the probability of existence of transmembrane regions and orientation of 191P4D12(b) variants 1, 6, 7, and 9, respectively, based on the TMpred algorithm of Hofmann and Stoffel which utilizes TMBASE (K. Hofmann, W. Stoffel. TMBASE—A database of membrane spanning protein segments Biol. Chem. Hoppe-Seyler 374:166, 1993).
  • FIGS. 13F , 13 H, 13 J, 13 L Schematic representations of the probability of existence of transmembrane regions and orientation of 191P4D12(b) variants 1, 6, 7, and 9, respectively, based on the TMpred algorithm of Hofmann and Stoffel which utilizes TMBASE (K. Hofmann, W. Stoffel. TMBASE—A database of membrane spanning protein segments Biol. Chem. Hoppe-Seyler 374:166, 1993).
  • FIG. 14 191P4D12(b) Expression by RT-PCR.
  • First strand cDNA was prepared from (A) vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), normal kidney, prostate cancer pool, bladder cancer pool, colon cancer pool, lung cancer pool, breast cancer pool and cancer metastasis pool; (B) prostate cancer metastasis to lymph node, prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, cancer metastasis pool, pancreas cancer pool, and LAPC prostate xenograft pool. Normalization was performed by PCR using primers to actin and GAPDH.
  • FIG. 15 Expression of 191P4D12(b) in normal tissues. Two multiple tissue northern blots (Clontech) both with 2 ug of mRNA/lane were probed with the 191P4D12(b) sequence. Size standards in kilobases (kb) are indicated on the side. Results show expression of an approximately 4 kb transcript in placenta and very weakly in prostate but not in any other normal tissue tested. A smaller 191P4D12(b) transcript of approximately 2.5 kb was detected in heart and skeletal muscle.
  • FIG. 16 Expression of 191P4D12(b) in Patient Cancer Specimens and Normal Tissues.
  • RNA was extracted from a pool of 3 bladder cancer patient specimens, as well as from normal prostate (NP), normal bladder (NB), normal kidney (NK), normal colon (NC), normal lung (NL), normal breast (NBr), normal ovary (NO), and normal pancreas (NPa).
  • Northern blot with 10 ug of total RNA/lane was probed with 191P4D12(b) SSH sequence. Size standards in kilobases (kb) are indicated on the side.
  • the 191P4D12(b) transcript was detected in the bladder cancer specimens, but not in the normal tissues tested.
  • FIG. 17 Expression of 191P4D12(b) in Bladder Cancer Patient Specimens. RNA was extracted from bladder cancer cell lines (CL), normal bladder (N), and bladder cancer patient tumors (T). Northern blots with 10 ug of total RNA were probed with the 191P4D12(b) SSH fragment. Size standards in kilobases are on the side. Results show expression of the approximately 4 kb 191P4D12(b) transcript in the bladder tumor tissues but not in normal bladder. A smaller transcript was detected in the HT1197 cell line but not in the other cancer cell lines tested.
  • FIG. 18 Expression of 191P4D12(b) in Prostate Cancer Xenografts.
  • RNA was extracted from normal prostate, and from the prostate cancer xenografts LAPC-4AD, LAPC-4AI, LAPC-9AD, and LAPC-9AI.
  • Northern blots with 10 ug of total RNA were probed with the 191P4D12(b) SSH fragment. Size standards in kilobases are on the side. Results show expression of the approximately 4 kb 191P4D12(b) transcript in all the LAPC xenograft tissues but not in normal prostate.
  • FIG. 19 Expression of 191P4D12(b) in Cervical Cancer Patient Specimens. RNA was extracted from normal cervix, Hela cancer cell line, and 3 cervix cancer patient tumors (T). Northern blots with 10 ug of total RNA were probed with the 191P4D12(b) SSH fragment. Size standards in kilobases are on the side. Results show expression of the approximately 4 kb 191P4D12(b) transcript in 2 out of 3 cervix tumors but not in normal cervix nor in the Hela cell line.
  • FIG. 20 Expression of 191P4D12(b) in Lung Cancer Patient Specimens. RNA was extracted from lung cancer cell lines (CL), normal lung (N), bladder cancer patient tumors (T), and normal adjacent tissue (Nat). Northern blots with 10 ug of total RNA were probed with the 191P4D12(b). Size standards in kilobases are on the side. Results show expression of the approximately 4 kb 191P4D12(b) transcript in the lung tumor tissues but not in normal lung nor in the cell lines tested.
  • FIGS. 21A-F 191P4D12(b) Expression in Lung Cancer.
  • FIG. 21B 191P4D12(b) Expression in Bladder Cancer.
  • FIG. 21F 191P4D12(b) Expression in Cervical Cancer.
  • First strand cDNA was prepared from a panel of cervix cancer specimens. Normalization was performed by PCR using primers to actin. Semi-quantitative PCR, using primers to 191P4D12(b) SSH fragment, was performed at 26 and 30 cycles of amplification.
  • FIG. 22 Transient Expression of 191P4D12(b) in Transfected 293T Cells.
  • 293T cells were transfected with either 191P4D12(b) pTag5, 191P4D12(b).pcDNA3.1/mychis or pcDNA3.1/mychis vector control. Forty hours later, cell lysates and supernatant were collected. Samples were run on an SDS-PAGE acrylamide gel, blotted and stained with anti-his antibody. The blot was developed using the ECL chemiluminescence kit and visualized by autoradiography.
  • Results show expression from 191P4D12(b).pTag5 plasmid of 191P4D12(b) extracellular domain in the lysate (Lane 2) and secretion in the culture supernatant (Lane 1). Also, expression of 191P4D12(b) was detected from in the lysates of 191P4D12(b).pcDNA3.1/mychis transfected cells (Lane 3), but not from the control pcDNA3.1/mychis (Lane 4).
  • FIG. 23 Expression of 191P4D12(b) in Transduced Cells Following Retroviral Gene Transfer. 3T3 cells were transduced with the pSRa retroviral vector encoding the 191P4D12(b) gene. Following selection with neomycin, the cells were expanded and RNA was extracted. Northern blot with 10 ug of total RNA/lane was probed with the 191P4D12(b) SSH sequence. Size standards in kilobases (kb) are indicated on the side. Results show expression of the 191P4D12(b) transcript driven from the retroviral LTR, which migrates slower than the endogenous 4 kb 191P4D12(b) transcript detected in the positive control LAPC-4AD.
  • Vaccine Compositions Comprising DC Pulsed with CTL and/or HTL Peptides
  • prostate cancer locally advanced prostate cancer
  • advanced disease and “locally advanced disease” mean prostate cancers that have extended through the prostate capsule, and are meant to include stage C disease under the American Urological Association (AUA) system, stage C1-C2 disease under the Whitmore-Jewett system, and stage T3-T4 and N+ disease under the TNM (tumor, node, metastasis) system.
  • AUA American Urological Association
  • stage C1-C2 disease under the Whitmore-Jewett system
  • T3-T4 and N+ disease under the TNM (tumor, node, metastasis) system.
  • surgery is not recommended for patients with locally advanced disease, and these patients have substantially less favorable outcomes compared to patients having clinically localized (organ-confined) prostate cancer.
  • Locally advanced disease is clinically identified by palpable evidence of induration beyond the lateral border of the prostate, or asymmetry or induration above the prostate base.
  • Locally advanced prostate cancer is presently diagnosed pathologically following radical prostatectomy
  • “Altering the native glycosylation pattern” is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence 191P4D12(b) (either by removing the underlying glycosylation site or by deleting the glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence 191P4D12(b).
  • the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moieties present.
  • analog refers to a molecule which is structurally similar or shares similar or corresponding attributes with another molecule (e.g. a 191P4D12(b)-related protein).
  • a 191P4D12(b)-related protein e.g. an analog of a 191P4D12(b) protein can be specifically bound by an antibody or T cell that specifically binds to 191P4D12(b).
  • antibody is used in the broadest sense. Therefore, an “antibody” can be naturally occurring or man-made such as monoclonal antibodies produced by conventional hybridoma technology.
  • Anti-191P4D12(b) antibodies comprise monoclonal and polyclonal antibodies as well as fragments containing the antigen-binding domain and/or one or more complementarity determining regions of these antibodies.
  • an “antibody fragment” is defined as at least a portion of the variable region of the immunoglobulin molecule that binds to its target, i.e., the antigen-binding region. In one embodiment it specifically covers single anti-191P4D12(b) antibodies and clones thereof (including agonist, antagonist and neutralizing antibodies) and anti-191P4D12(b) antibody compositions with polyepitopic specificity.
  • codon optimized sequences refers to nucleotide sequences that have been optimized for a particular host species by replacing any codons having a usage frequency of less than about 20%. Nucleotide sequences that have been optimized for expression in a given host species by elimination of spurious polyadenylation sequences, elimination of exon/intron splicing signals, elimination of transposon-like repeats and/or optimization of GC content in addition to codon optimization are referred to herein as an “expression enhanced sequences.”
  • a “combinatorial library” is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical “building blocks” such as reagents.
  • a linear combinatorial chemical library such as a polypeptide (e.g., mutein) library, is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound).
  • Numerous chemical compounds are synthesized through such combinatorial mixing of chemical building blocks (Gallop et al., J. Med. Chem. 37 (9): 1233-1251 (1994)).
  • combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Pat. No. 5,010,175, Furka, Pept. Prot. Res. 37:487-493 (1991), Houghton et al., Nature, 354:84-88 (1991)), peptoids (PCT Publication No WO 91/19735), encoded peptides (PCT Publication WO 93/20242), random bio-oligomers (PCT Publication WO 92/00091), benzodiazepines (U.S. Pat. No.
  • cytotoxic agent refers to a substance that inhibits or prevents the expression activity of cells, function of cells and/or causes destruction of cells.
  • the term is intended to include radioactive isotopes chemotherapeutic agents, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof.
  • cytotoxic agents include, but are not limited to auristatins, auromycins, maytansinoids, yttrium, bismuth, ricin, ricin A-chain, combrestatin, duocarmycins, dolostatins, doxorubicin, daunorubicin, taxol, cisplatin, cc1065, ethidium bromide, mitomycin, etoposide, tenopo side, vincristine, vinblastine, colchicine, dihydroxy anthracin dione, actinomycin, diphtheria toxin, Pseudomonas exotoxin (PE) A, PE40, abrin, abrin A chain, modeccin A chain, alpha-sarcin, gelonin, mitogellin, retstrictocin, phenomycin, enomycin, curicin, crotin, calicheamicin, Sapaonaria officinalis
  • the “gene product” is sometimes referred to herein as a protein or mRNA.
  • a “gene product of the invention” is sometimes referred to herein as a “cancer amino acid sequence”, “cancer protein”, “protein of a cancer listed in Table I”, a “cancer mRNA”, “mRNA of a cancer listed in Table I”, etc.
  • the cancer protein is encoded by a nucleic acid of FIG. 2 .
  • the cancer protein can be a fragment, or alternatively, be the full-length protein to the fragment encoded by the nucleic acids of FIG. 2 .
  • a cancer amino acid sequence is used to determine sequence identity or similarity.
  • the sequences are naturally occurring allelic variants of a protein encoded by a nucleic acid of FIG. 2 .
  • the sequences are sequence variants as further described herein.
  • “High throughput screening” assays for the presence, absence, quantification, or other properties of particular nucleic acids or protein products are well known to those of skill in the art.
  • binding assays and reporter gene assays are similarly well known.
  • U.S. Pat. No. 5,559,410 discloses high throughput screening methods for proteins
  • U.S. Pat. No. 5,585,639 discloses high throughput screening methods for nucleic acid binding (i.e., in arrays)
  • U.S. Pat. Nos. 5,576,220 and 5,541,061 disclose high throughput methods of screening for ligand/antibody binding.
  • high throughput screening systems are commercially available (see, e.g., Amersham Biosciences, Piscataway, N.J.; Zymark Corp., Hopkinton, Mass.; Air Technical Industries, Mentor, Ohio; Beckman Instruments, Inc. Fullerton, Calif.; Precision Systems, Inc., Natick, Mass.; etc.). These systems typically automate entire procedures, including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. The manufacturers of such systems provide detailed protocols for various high throughput systems. Thus, e.g., Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.
  • HLA Human Leukocyte Antigen
  • MHC Major Histocompatibility Complex
  • hybridize used in the context of polynucleotides, are meant to refer to conventional hybridization conditions, preferably such as hybridization in 50% formamide/6 ⁇ SSC/0.1% SDS/100 ⁇ g/ml ssDNA, in which temperatures for hybridization are above 37 degrees C. and temperatures for washing in 0.1 ⁇ SSC/0.1% SDS are above 55 degrees C.
  • isolated or “biologically pure” refer to material which is substantially or essentially free from components which normally accompany the material as it is found in its native state.
  • isolated peptides in accordance with the invention preferably do not contain materials normally associated with the peptides in their in situ environment.
  • a polynucleotide is said to be “isolated” when it is substantially separated from contaminant polynucleotides that correspond or are complementary to genes other than the 191P4D12(b) genes or that encode polypeptides other than 191P4D12(b) gene product or fragments thereof.
  • a skilled artisan can readily employ nucleic acid isolation procedures to obtain an isolated 191P4D12(b) polynucleotide.
  • a protein is said to be “isolated,” for example, when physical, mechanical or chemical methods are employed to remove the 191P4D12(b) proteins from cellular constituents that are normally associated with the protein.
  • a skilled artisan can readily employ standard purification methods to obtain an isolated 191P4D12(b) protein.
  • an isolated protein can be prepared by chemical means.
  • mammal refers to any organism classified as a mammal, including mice, rats, rabbits, dogs, cats, cows, horses and humans. In one embodiment of the invention, the mammal is a mouse. In another embodiment of the invention, the mammal is a human.
  • metastatic prostate cancer and “metastatic disease” mean prostate cancers that have spread to regional lymph nodes or to distant sites, and are meant to include stage D disease under the AUA system and stage T ⁇ N ⁇ M+ under the TNM system.
  • surgery is generally not indicated for patients with metastatic disease, and hormonal (androgen ablation) therapy is a preferred treatment modality.
  • Patients with metastatic prostate cancer eventually develop an androgen-refractory state within 12 to 18 months of treatment initiation. Approximately half of these androgen-refractory patients die within 6 months after developing that status.
  • the most common site for prostate cancer metastasis is bone. Prostate cancer bone metastases are often osteoblastic rather than osteolytic (i.e., resulting in net bone formation).
  • Bone metastases are found most frequently in the spine, followed by the femur, pelvis, rib cage, skull and humerus. Other common sites for metastasis include lymph nodes, lung, liver and brain. Metastatic prostate cancer is typically diagnosed by open or laparoscopic pelvic lymphadenectomy, whole body radionuclide scans, skeletal radiography, and/or bone lesion biopsy.
  • modulator or “test compound” or “drug candidate” or grammatical equivalents as used herein describe any molecule, e.g., protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, etc., to be tested for the capacity to directly or indirectly alter the cancer phenotype or the expression of a cancer sequence, e.g., a nucleic acid or protein sequences, or effects of cancer sequences (e.g., signaling, gene expression, protein interaction, etc.)
  • a modulator will neutralize the effect of a cancer protein of the invention.
  • neutralize is meant that an activity of a protein is inhibited or blocked, along with the consequent effect on the cell.
  • a modulator will neutralize the effect of a gene, and its corresponding protein, of the invention by normalizing levels of said protein.
  • modulators alter expression profiles, or expression profile nucleic acids or proteins provided herein, or downstream effector pathways.
  • the modulator suppresses a cancer phenotype, e.g. to a normal tissue fingerprint.
  • a modulator induced a cancer phenotype.
  • a plurality of assay mixtures is run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration or below the level of detection.
  • Modulators, drug candidates or test compounds encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 100 and less than about 2,500 Daltons. Preferred small molecules are less than 2000, or less than 1500 or less than 1000 or less than 500 D.
  • Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups.
  • the candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups.
  • Modulators also comprise biomolecules such as peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Particularly preferred are peptides.
  • One class of modulators are peptides, for example of from about five to about 35 amino acids, with from about five to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred.
  • the cancer modulatory protein is soluble, includes a non-transmembrane region, and/or, has an N-terminal Cys to aid in solubility.
  • the C-terminus of the fragment is kept as a free acid and the N-terminus is a free amine to aid in coupling, i.e., to cysteine.
  • a cancer protein of the invention is conjugated to an immunogenic agent as discussed herein.
  • the cancer protein is conjugated to BSA.
  • the peptides of the invention e.g., of preferred lengths, can be linked to each other or to other amino acids to create a longer peptide/protein.
  • the modulatory peptides can be digests of naturally occurring proteins as is outlined above, random peptides, or “biased” random peptides.
  • peptide/protein-based modulators are antibodies, and fragments thereof, as defined herein.
  • Modulators of cancer can also be nucleic acids.
  • Nucleic acid modulating agents can be naturally occurring nucleic acids, random nucleic acids, or “biased” random nucleic acids. For example, digests of prokaryotic or eukaryotic genomes can be used in an approach analogous to that outlined above for proteins.
  • the term “monoclonal antibody” refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the antibodies comprising the population are identical except for possible naturally occurring mutations that are present in minor amounts.
  • a motif can be either contiguous or capable of being aligned to certain positions that are generally correlated with a certain function or property.
  • motif refers to the pattern of residues in a peptide of defined length, usually a peptide of from about 8 to about 13 amino acids for a class I HLA motif and from about 6 to about 25 amino acids for a class II HLA motif, which is recognized by a particular HLA molecule.
  • Peptide motifs for HLA binding are typically different for each protein encoded by each human HLA allele and differ in the pattern of the primary and secondary anchor residues.
  • a “pharmaceutical excipient” comprises a material such as an adjuvant, a carrier, pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservative, and the like.
  • “Pharmaceutically acceptable” refers to a non-toxic, inert, and/or composition that is physiologically compatible with humans or other mammals.
  • polynucleotide means a polymeric form of nucleotides of at least 10 bases or base pairs in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide, and is meant to include single and double stranded forms of DNA and/or RNA. In the art, this term if often used interchangeably with “oligonucleotide”.
  • a polynucleotide can comprise a nucleotide sequence disclosed herein wherein thymidine (T), as shown for example in FIG. 2 , can also be uracil (U); this definition pertains to the differences between the chemical structures of DNA and RNA, in particular the observation that one of the four major bases in RNA is uracil (U) instead of thymidine (T).
  • polypeptide means a polymer of at least about 4, 5, 6, 7, or 8 amino acids. Throughout the specification, standard three letter or single letter designations for amino acids are used. In the art, this term is often used interchangeably with “peptide” or “protein”.
  • HLA “primary anchor residue” is an amino acid at a specific position along a peptide sequence which is understood to provide a contact point between the immunogenic peptide and the HLA molecule.
  • One to three, usually two, primary anchor residues within a peptide of defined length generally defines a “motif” for an immunogenic peptide. These residues are understood to fit in close contact with peptide binding groove of an HLA molecule, with their side chains buried in specific pockets of the binding groove.
  • the primary anchor residues for an HLA class I molecule are located at position 2 (from the amino terminal position) and at the carboxyl terminal position of a 8, 9, 10, 11, or 12 residue peptide epitope in accordance with the invention.
  • the primary anchor residues of a peptide binds an HLA class II molecule are spaced relative to each other, rather than to the termini of a peptide, where the peptide is generally of at least 9 amino acids in length.
  • the primary anchor positions for each motif and supermotif are set forth in Table IV.
  • analog peptides can be created by altering the presence or absence of particular residues in the primary and/or secondary anchor positions shown in Table IV. Such analogs are used to modulate the binding affinity and/or population coverage of a peptide comprising a particular HLA motif or supermotif.
  • Radioisotopes include, but are not limited to the following (non-limiting exemplary uses are also set forth):
  • Actinium-225 See Thorium-229 (Th-229) (AC-225) Actinium-227 Parent of Radium-223 (Ra-223) which is an alpha emitter used to treat (AC-227) metastases in the skeleton resulting from cancer (i.e., breast and prostate cancers), and cancer radioimmunotherapy Bismuth-212 See Thorium-228 (Th-228) (Bi-212) Bismuth-213 See Thorium-229 (Th-229) (Bi-213) Cadmium-109 Cancer detection (Cd-109) Cobalt-60 Radiation source for radiotherapy of cancer, for food irradiators, and for (Co-60) sterilization of medical supplies Copper-64 A positron emitter used for cancer therapy and SPECT imaging (Cu-64) Copper-67 Beta/gamma emitter used in cancer radioimmunotherapy and diagnostic (Cu-67) studies (i.e., breast and colon cancers, and lymphoma) Dysprosium-166 Cancer radioimmunotherapy (Dy-16)
  • Tc-99m is the most widely used radioisotope used for diagnostic imaging of various cancers and diseases involving the brain, heart, liver, lungs; also used in detection of deep vein thrombosis of the legs Osmium-194 Cancer radioimmunotherapy (Os-194) Palladium-103 Prostate cancer treatment (Pd-103) Platinum-195m Studies on biodistribution and metabolism of cisplatin, a (Pt-195m) chemotherapeutic drug Phosphorus-32 Polycythemia rubra vera (blood cell disease) and leukemia treatment, (P-32) bone cancer diagnosis/treatment; colon, pancreatic, and liver cancer treatment; radiolabeling nucleic acids for in vitro research, diagnosis of superficial tumors, treatment of blocked arteries (i.e., arteriosclerosis and restenosis), and intracavity therapy Phosphorus-33 Leukemia treatment, bone disease diagnosis/treatment, radiolabeling, and (P-33) treatment of blocked arteries (i.e.,
  • each nucleic acid and peptide consists of essentially random nucleotides and amino acids, respectively. These random peptides (or nucleic acids, discussed herein) can incorporate any nucleotide or amino acid at any position.
  • the synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.
  • a library is “fully randomized,” with no sequence preferences or constants at any position.
  • the library is a “biased random” library. That is, some positions within the sequence either are held constant, or are selected from a limited number of possibilities.
  • the nucleotides or amino acid residues are randomized within a defined class, e.g., of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc., or to purines, etc.
  • a “recombinant” DNA or RNA molecule is a DNA or RNA molecule that has been subjected to molecular manipulation in vitro.
  • Non-limiting examples of small molecules include compounds that bind or interact with 191P4D12(b), ligands including hormones, neuropeptides, chemokines, odorants, phospholipids, and functional equivalents thereof that bind and preferably inhibit 191P4D12(b) protein function.
  • Such non-limiting small molecules preferably have a molecular weight of less than about 10 kDa, more preferably below about 9, about 8, about 7, about 6, about 5 or about 4 kDa.
  • small molecules physically associate with, or bind, 191P4D12(b) protein; are not found in naturally occurring metabolic pathways; and/or are more soluble in aqueous than non-aqueous solutions
  • “Stringency” of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured nucleic acid sequences to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature that can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).
  • “Stringent conditions” or “high stringency conditions”, as defined herein, are identified by, but not limited to, those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50° C.; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42° C.; or (3) employ 50% formamide, 5 ⁇ SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 ⁇ Denhardt's solution, sonicated salmon sperm DNA (50 ⁇ g/ml), 0.1% SDS, and
  • Modely stringent conditions are described by, but not limited to, those in Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and % SDS) less stringent than those described above.
  • washing solution and hybridization conditions e.g., temperature, ionic strength and % SDS
  • An example of moderately stringent conditions is overnight incubation at 37° C.
  • HLA “supermotif” is a peptide binding specificity shared by HLA molecules encoded by two or more HLA alleles. Overall phenotypic frequencies of HLA-supertypes in different ethnic populations are set forth in Table IV (F). The non-limiting constituents of various supetypes are as follows:
  • to treat or “therapeutic” and grammatically related terms, refer to any improvement of any consequence of disease, such as prolonged survival, less morbidity, and/or a lessening of side effects which are the byproducts of an alternative therapeutic modality; full eradication of disease is not required.
  • a “transgenic animal” (e.g., a mouse or rat) is an animal having cells that contain a transgene, which transgene was introduced into the animal or an ancestor of the animal at a prenatal, e.g., an embryonic stage.
  • a “transgene” is a DNA that is integrated into the genome of a cell from which a transgenic animal develops.
  • an HLA or cellular immune response “vaccine” is a composition that contains or encodes one or more peptides of the invention.
  • vaccines such as a cocktail of one or more individual peptides; one or more peptides of the invention comprised by a polyepitopic peptide; or nucleic acids that encode such individual peptides or polypeptides, e.g., a minigene that encodes a polyepitopic peptide.
  • the “one or more peptides” can include any whole unit integer from 1-150 or more, e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, or 150 or more peptides of the invention.
  • the peptides or polypeptides can optionally be modified, such as by lipidation, addition of targeting or other sequences.
  • HLA class I peptides of the invention can be admixed with, or linked to, HLA class II peptides, to facilitate activation of both cytotoxic T lymphocytes and helper T lymphocytes.
  • HLA vaccines can also comprise peptide-pulsed antigen presenting cells, e.g., dendritic cells.
  • variant refers to a molecule that exhibits a variation from a described type or norm, such as a protein that has one or more different amino acid residues in the corresponding position(s) of a specifically described protein (e.g. the 191P4D12(b) protein shown in FIG. 2 or FIG. 3 .
  • An analog is an example of a variant protein.
  • Splice isoforms and single nucleotides polymorphisms (SNPs) are further examples of variants.
  • the “191P4D12(b)-related proteins” of the invention include those specifically identified herein, as well as allelic variants, conservative substitution variants, analogs and homologs that can be isolated/generated and characterized without undue experimentation following the methods outlined herein or readily available in the art. Fusion proteins that combine parts of different 191P4D12(b) proteins or fragments thereof, as well as fusion proteins of a 191P4D12(b) protein and a heterologous polypeptide are also included. Such 191P4D12(b) proteins are collectively referred to as the 191P4D12(b)-related proteins, the proteins of the invention, or 191P4D12(b).
  • 191P4D12(b)-related protein refers to a polypeptide fragment or a 191P4D12(b) protein sequence of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more than 25 amino acids; or, at least 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, or 576 or more amino acids.
  • One aspect of the invention provides polynucleotides corresponding or complementary to all or part of a 191P4D12(b) gene, mRNA, and/or coding sequence, preferably in isolated form, including polynucleotides encoding a 191P4D12(b)-related protein and fragments thereof, DNA, RNA, DNA/RNA hybrid, and related molecules, polynucleotides or oligonucleotides complementary to a 191P4D12(b) gene or mRNA sequence or a part thereof, and polynucleotides or oligonucleotides that hybridize to a 191P4D12(b) gene, mRNA, or to a 191P4D12(b) encoding polynucleotide (collectively, “191P4D12(b) polynucleotides”).
  • T can also be U in FIG. 2 .
  • Embodiments of a 191P4D12(b) polynucleotide include: a 191P4D12(b) polynucleotide having the sequence shown in FIG. 2 , the nucleotide sequence of 191P4D12(b) as shown in FIG. 2 wherein T is U; at least 10 contiguous nucleotides of a polynucleotide having the sequence as shown in FIG. 2 ; or, at least 10 contiguous nucleotides of a polynucleotide having the sequence as shown in FIG. 2 where T is U.
  • embodiments of 191P4D12(b) nucleotides comprise, without limitation:
  • (IV) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2C , from nucleotide residue number 264 through nucleotide residue number 1796, including the a stop codon, wherein T can also be U;
  • V a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2D , from nucleotide residue number 264 through nucleotide residue number 1796, including the stop codon, wherein T can also be U;
  • VI a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2E , from nucleotide residue number 264 through nucleotide residue number 1796, including the stop codon, wherein T can also be U;
  • VI a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2F , from nucleotide residue number 789 through nucleotide residue number 1676, including the stop codon, wherein T can also be U;
  • VIII a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2G , from nucleotide residue number 264 through nucleotide residue number 1721, including the stop codon, wherein T can also be U;
  • (IX) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2H , from nucleotide residue number 264 through nucleotide residue number 1796, including the stop codon, wherein T can also be U;
  • (X) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2I , from nucleotide residue number 708 through nucleotide residue number 1121, including the stop codon, wherein T can also be U;
  • (XI) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2J , from nucleotide residue number 264 through nucleotide residue number 1796, including the stop codon, wherein T can also be U;
  • (XII) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2K , from nucleotide residue number 264 through nucleotide residue number 1796, including the stop codon, wherein T can also be U;
  • (XIII) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2L , from nucleotide residue number 264 through nucleotide residue number 1796, including the stop codon, wherein T can also be U;
  • XIV a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2M , from nucleotide residue number 264 through nucleotide residue number 1799, including the stop codon, wherein T can also be U;
  • (XV) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2N , from nucleotide residue number 708 through nucleotide residue number 1121, including the stop codon, wherein T can also be U;
  • XVI a polynucleotide that encodes a 191P4D12(b)-related protein that is at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% homologous to an entire amino acid sequence shown in FIG. 2A-N ;
  • XVII a polynucleotide that encodes a 191P4D12(b)-related protein that is at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identical to an entire amino acid sequence shown in FIG. 2A-N ;
  • (XIX) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIGS. 3A-B and 3 E-G in any whole number increment up to 510 that includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5 ;
  • (XX) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIGS. 3A-B and 3 E-G in any whole number increment up to 510 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6 ;
  • (XXI) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIGS. 3A-B and 3 E-G in any whole number increment up to 510 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7 ;
  • (XXII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIGS. 3A-B and 3 E-G in any whole number increment up to 510 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8 ;
  • (XXIII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIGS. 3A-B and 3 E-G in any whole number increment up to 510 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9 ;
  • (XXIV) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3C in any whole number increment up to 295 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5 ;
  • (XXV) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3C in any whole number increment up to 295 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6 ;
  • (XXVI) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3C in any whole number increment up to 295 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7 ;
  • (XXVII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3C in any whole number increment up to 295 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8 ;
  • (XXVIII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3C in any whole number increment up to 295 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9
  • (XXIX) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3D in any whole number increment up to 485 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5 ;
  • (XXX) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3D in any whole number increment up to 485 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6 ;
  • (XXXI) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3D in any whole number increment up to 485 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7 ;
  • (XXXII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3D in any whole number increment up to 485 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8 ;
  • (XXXIII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3D in any whole number increment up to 485 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9
  • (XXXIV) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3H in any whole number increment up to 511 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5 ;
  • (XXXV) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3H in any whole number increment up to 511 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6 ;
  • (XXXVI) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3H in any whole number increment up to 511 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7 ;
  • (XXXVII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3H in any whole number increment up to 511 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8 ;
  • (XXXVIII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3H in any whole number increment up to 511 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9
  • (XXXIX) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3I-J in any whole number increment up to 137 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5 ;
  • (XL) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3I-J in any whole number increment up to 137 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6 ;
  • XLI a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3I-J in any whole number increment up to 137 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7 ;
  • XLII a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3I-J in any whole number increment up to 137 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8 ;
  • (XLIII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3I-J in any whole number increment up to 137 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9
  • (XLVI) a composition comprising a polynucleotide of any of (I)-(XLIII) or peptide of (XLV) together with a pharmaceutical excipient and/or in a human unit dose form.
  • (XLVII) a method of using a polynucleotide of any (I)-(XLIV) or peptide of (XLV) or a composition of (XLVI) in a method to modulate a cell expressing 191P4D12(b),
  • (XLVIII) a method of using a polynucleotide of any (I)-(XLIV) or peptide of (XLV) or a composition of (XLVI) in a method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 191P4D12(b)
  • (XLIX) a method of using a polynucleotide of any (I)-(XLIV) or peptide of (XLV) or a composition of (XLVI) in a method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 191P4D12(b), said cell from a cancer of a tissue listed in Table I;
  • (L) a method of using a polynucleotide of any (I)-(XLIV) or peptide of (XLV) or a composition of (XLVI) in a method to diagnose, prophylax, prognose, or treat a cancer;
  • (LI) a method of using a polynucleotide of any (I)-(XLIV) or peptide of (XLV) or a composition of (XLVI) in a method to diagnose, prophylax, prognose, or treat a cancer of a tissue listed in Table I;
  • (LII) a method of using a polynucleotide of any (I)-(XLIV) or peptide of (XLV) or a composition of (XLVI) in a method to identify or characterize a modulator of a cell expressing 191P4D12(b).
  • Typical embodiments of the invention disclosed herein include 191P4D12(b) polynucleotides that encode specific portions of 191P4D12(b) mRNA sequences (and those which are complementary to such sequences) such as those that encode the proteins and/or fragments thereof, for example:
  • representative embodiments of the invention disclosed herein include: polynucleotides and their encoded peptides themselves encoding about amino acid 1 to about amino acid 10 of the 191P4D12(b) protein shown in FIG. 2 or FIG. 3 , polynucleotides encoding about amino acid 10 to about amino acid 20 of the 191P4D12(b) protein shown in FIG. 2 or FIG. 3 , polynucleotides encoding about amino acid 20 to about amino acid 30 of the 191P4D12(b) protein shown in FIG. 2 or FIG. 3 , polynucleotides encoding about amino acid 30 to about amino acid 40 of the 191P4D12(b) protein shown in FIG. 2 or FIG.
  • polynucleotides encoding about amino acid 40 to about amino acid 50 of the 191P4D12(b) protein shown in FIG. 2 or FIG. 3 polynucleotides encoding about amino acid 50 to about amino acid 60 of the 191P4D12(b) protein shown in FIG. 2 or FIG. 3
  • polynucleotides encoding about amino acid 60 to about amino acid 70 of the 191P4D12(b) protein shown in FIG. 2 or FIG. 3 polynucleotides encoding about amino acid 70 to about amino acid 80 of the 191P4D12(b) protein shown in FIG. 2 or FIG.
  • polynucleotides encoding about amino acid 80 to about amino acid 90 of the 191P4D12(b) protein shown in FIG. 2 or FIG. 3 polynucleotides encoding about amino acid 90 to about amino acid 100 of the 191P4D12(b) protein shown in FIG. 2 or FIG. 3 , in increments of about 10 amino acids, ending at the carboxyl terminal amino acid set forth in FIG. 2 or FIG. 3 .
  • polynucleotides encoding portions of the amino acid sequence (of about 10 amino acids), of amino acids, 100 through the carboxyl terminal amino acid of the 191P4D12(b) protein are embodiments of the invention. Wherein it is understood that each particular amino acid position discloses that position plus or minus five amino acid residues.
  • Polynucleotides encoding relatively long portions of a 191P4D12(b) protein are also within the scope of the invention.
  • polynucleotides encoding from about amino acid 1 (or 20 or 30 or 40 etc.) to about amino acid 20, (or 30, or 40 or 50 etc.) of the 191P4D12(b) protein “or variant” shown in FIG. 2 or FIG. 3 can be generated by a variety of techniques well known in the art.
  • These polynucleotide fragments can include any portion of the 191P4D12(b) sequence as shown in FIG. 2 .
  • Additional illustrative embodiments of the invention disclosed herein include 191P4D12(b) polynucleotide fragments encoding one or more of the biological motifs contained within a 191P4D12(b) protein “or variant” sequence, including one or more of the motif-bearing subsequences of a 191P4D12(b) protein “or variant” set forth in Tables VIII-XXI and XXII-XLIX.
  • typical polynucleotide fragments of the invention encode one or more of the regions of 191P4D12(b) protein or variant that exhibit homology to a known molecule.
  • typical polynucleotide fragments can encode one or more of the 191P4D12(b) protein or variant N-glycosylation sites, cAMP and cGMP-dependent protein kinase phosphorylation sites, casein kinase II phosphorylation sites or N-myristoylation site and amidation sites.
  • HLA Peptide Tables e.g., variant 1, variant 2, etc.
  • search Peptides listed in Table VII.
  • a unique Search Peptide is used to obtain HLA peptides for a particular variant. The position of each Search Peptide relative to its respective parent molecule is listed in Table VII.
  • a Search Peptide begins at position “X”, one must add the value “X minus 1” to each position in Tables VIII-XXI and Tables XXII-IL to obtain the actual position of the HLA peptides in their parental molecule. For example if a particular Search Peptide begins at position 150 of its parental molecule, one must add 150 ⁇ 1, i.e., 149 to each HLA peptide amino acid position to calculate the position of that amino acid in the parent molecule.
  • the polynucleotides of the preceding paragraphs have a number of different specific uses.
  • the human 191P4D12(b) gene maps to the chromosomal location set forth in the Example entitled “Chromosomal Mapping of 191P4D12(b).”
  • polynucleotides that encode different regions of the 191P4D12(b) proteins are used to characterize cytogenetic abnormalities of this chromosomal locale, such as abnormalities that are identified as being associated with various cancers.
  • polynucleotides encoding specific regions of the 191P4D12(b) proteins provide new tools that can be used to delineate, with greater precision than previously possible, cytogenetic abnormalities in the chromosomal region that encodes 191P4D12(b) that may contribute to the malignant phenotype.
  • these polynucleotides satisfy a need in the art for expanding the sensitivity of chromosomal screening in order to identify more subtle and less common chromosomal abnormalities (see e.g. Evans et al., Am. J. Obstet. Gynecol 171 (4): 1055-1057 (1994)).
  • 191P4D12(b) was shown to be highly expressed in prostate and other cancers, 191P4D12(b) polynucleotides are used in methods assessing the status of 191P4D12(b) gene products in normal versus cancerous tissues. Typically, polynucleotides that encode specific regions of the 191P4D12(b) proteins are used to assess the presence of perturbations (such as deletions, insertions, point mutations, or alterations resulting in a loss of an antigen etc.) in specific regions of the 191P4D12(b) gene, such as regions containing one or more motifs.
  • perturbations such as deletions, insertions, point mutations, or alterations resulting in a loss of an antigen etc.
  • Exemplary assays include both RT-PCR assays as well as single-strand conformation polymorphism (SSCP) analysis (see, e.g., Marrogi et al., J. Cutan. Pathol. 26 (8): 369-378 (1999), both of which utilize polynucleotides encoding specific regions of a protein to examine these regions within the protein.
  • SSCP single-strand conformation polymorphism
  • nucleic acid related embodiments of the invention disclosed herein are genomic DNA, cDNAs, ribozymes, and antisense molecules, as well as nucleic acid molecules based on an alternative backbone, or including alternative bases, whether derived from natural sources or synthesized, and include molecules capable of inhibiting the RNA or protein expression of 191P4D12(b).
  • antisense molecules can be RNAs or other molecules, including peptide nucleic acids (PNAs) or non-nucleic acid molecules such as phosphorothioate derivatives that specifically bind DNA or RNA in a base pair-dependent manner.
  • PNAs peptide nucleic acids
  • non-nucleic acid molecules such as phosphorothioate derivatives that specifically bind DNA or RNA in a base pair-dependent manner.
  • a skilled artisan can readily obtain these classes of nucleic acid molecules using the 191P4D12(b) polynucleotides and polynucleotide sequences disclosed herein.
  • Antisense technology entails the administration of exogenous oligonucleotides that bind to a target polynucleotide located within the cells.
  • the term “antisense” refers to the fact that such oligonucleotides are complementary to their intracellular targets, e.g., 191P4D12(b). See for example, Jack Cohen, Oligodeoxynucleotides, Antisense Inhibitors of Gene Expression, CRC Press, 1989; and Synthesis 1:1-5 (1988).
  • the 191P4D12(b) antisense oligonucleotides of the present invention include derivatives such as S-oligonucleotides (phosphorothioate derivatives or S-oligos, see, Jack Cohen, supra), which exhibit enhanced cancer cell growth inhibitory action.
  • S-oligos are isoelectronic analogs of an oligonucleotide (O-oligo) in which a nonbridging oxygen atom of the phosphate group is replaced by a sulfur atom.
  • the S-oligos of the present invention can be prepared by treatment of the corresponding O-oligos with 3H-1,2-benzodithiol-3-one-1,1-dioxide, which is a sulfur transfer reagent. See, e.g., Iyer, R. P. et al., J. Org. Chem. 55:4693-4698 (1990); and Iyer, R. P. et al., J. Am. Chem. Soc. 112:1253-1254 (1990).
  • Additional 191P4D12(b) antisense oligonucleotides of the present invention include morpholino antisense oligonucleotides known in the art (see, e.g., Partridge et al., 1996, Antisense & Nucleic Acid Drug Development 6: 169-175).
  • the 191P4D12(b) antisense oligonucleotides of the present invention typically can be RNA or DNA that is complementary to and stably hybridizes with the first 100 5′ codons or last 100 3′ codons of a 191P4D12(b) genomic sequence or the corresponding mRNA. Absolute complementarity is not required, although high degrees of complementarity are preferred. Use of an oligonucleotide complementary to this region allows for the selective hybridization to 191P4D12(b) mRNA and not to mRNA specifying other regulatory subunits of protein kinase.
  • 191P4D12(b) antisense oligonucleotides of the present invention are 15 to 30-mer fragments of the antisense DNA molecule that have a sequence that hybridizes to 191P4D12(b) mRNA.
  • 191P4D12(b) antisense oligonucleotide is a 30-mer oligonucleotide that is complementary to a region in the first 10 5′ codons or last 10 3′ codons of 191P4D12(b).
  • the antisense molecules are modified to employ ribozymes in the inhibition of 191P4D12(b) expression, see, e.g., L. A. Couture & D. T. Stinchcomb; Trends Genet. 12: 510-515 (1996).
  • nucleotides of the invention include primers and primer pairs, which allow the specific amplification of polynucleotides of the invention or of any specific parts thereof, and probes that selectively or specifically hybridize to nucleic acid molecules of the invention or to any part thereof.
  • Probes can be labeled with a detectable marker, such as, for example, a radioisotope, fluorescent compound, bioluminescent compound, a chemiluminescent compound, metal chelator or enzyme.
  • a detectable marker such as, for example, a radioisotope, fluorescent compound, bioluminescent compound, a chemiluminescent compound, metal chelator or enzyme.
  • Such probes and primers are used to detect the presence of a 191P4D12(b) polynucleotide in a sample and as a means for detecting a cell expressing a 191P4D12(b) protein.
  • probes include polypeptides comprising all or part of the human 191P4D12(b) cDNA sequence shown in FIG. 2 .
  • primer pairs capable of specifically amplifying 191P4D12(b) mRNAs are also described in the Examples. As will be understood by the skilled artisan, a great many different primers and probes can be prepared based on the sequences provided herein and used effectively to amplify and/or detect a 191P4D12(b) mRNA.
  • the 191P4D12(b) polynucleotides of the invention are useful for a variety of purposes, including but not limited to their use as probes and primers for the amplification and/or detection of the 191P4D12(b) gene(s), mRNA(s), or fragments thereof; as reagents for the diagnosis and/or prognosis of prostate cancer and other cancers; as coding sequences capable of directing the expression of 191P4D12(b) polypeptides; as tools for modulating or inhibiting the expression of the 191P4D12(b) gene(s) and/or translation of the 191P4D12(b) transcript(s); and as therapeutic agents.
  • the present invention includes the use of any probe as described herein to identify and isolate a 191P4D12(b) or 191P4D12(b) related nucleic acid sequence from a naturally occurring source, such as humans or other mammals, as well as the isolated nucleic acid sequence per se, which would comprise all or most of the sequences found in the probe used.
  • the 191P4D12(b) cDNA sequences described herein enable the isolation of other polynucleotides encoding 191P4D12(b) gene product(s), as well as the isolation of polynucleotides encoding 191P4D12(b) gene product homologs, alternatively spliced isoforms, allelic variants, and mutant forms of a 191P4D12(b) gene product as well as polynucleotides that encode analogs of 191P4D12(b)-related proteins.
  • Various molecular cloning methods that can be employed to isolate full length cDNAs encoding a 191P4D12(b) gene are well known (see, for example, Sambrook, J.
  • a 191P4D12(b) gene itself can be isolated by screening genomic DNA libraries, bacterial artificial chromosome libraries (BACs), yeast artificial chromosome libraries (YACs), and the like, with 191P4D12(b) DNA probes or primers.
  • BACs bacterial artificial chromosome libraries
  • YACs yeast artificial chromosome libraries
  • the invention also provides recombinant DNA or RNA molecules containing a 191P4D12(b) polynucleotide, a fragment, analog or homologue thereof, including but not limited to phages, plasmids, phagemids, cosmids, YACs, BACs, as well as various viral and non-viral vectors well known in the art, and cells transformed or transfected with such recombinant DNA or RNA molecules. Methods for generating such molecules are well known (see, for example, Sambrook et al., 1989, supra).
  • the invention further provides a host-vector system comprising a recombinant DNA molecule containing a 191P4D12(b) polynucleotide, fragment, analog or homologue thereof within a suitable prokaryotic or eukaryotic host cell.
  • suitable eukaryotic host cells include a yeast cell, a plant cell, or an animal cell, such as a mammalian cell or an insect cell (e.g., a baculovirus-infectible cell such as an Sf9 or HighFive cell).
  • suitable mammalian cells include various prostate cancer cell lines such as DU145 and TsuPr1, other transfectable or transducible prostate cancer cell lines, primary cells (PrEC), as well as a number of mammalian cells routinely used for the expression of recombinant proteins (e.g., COS, CHO, 293, 293T cells). More particularly, a polynucleotide comprising the coding sequence of 191P4D12(b) or a fragment, analog or homolog thereof can be used to generate 191P4D12(b) proteins or fragments thereof using any number of host-vector systems routinely used and widely known in the art.
  • 191P4D12(b) proteins or fragments thereof are available, see for example, Sambrook et al., 1989, supra; Current Protocols in Molecular Biology, 1995, supra).
  • Preferred vectors for mammalian expression include but are not limited to pcDNA 3.1 myc-His-tag (Invitrogen) and the retroviral vector pSR ⁇ tkneo (Muller et al., 1991, MCB 11:1785).
  • 191P4D12(b) can be expressed in several prostate cancer and non-prostate cell lines, including for example 293, 293T, rat-1, NIH 3T3 and TsuPr1.
  • the host-vector systems of the invention are useful for the production of a 191P4D12(b) protein or fragment thereof. Such host-vector systems can be employed to study the functional properties of 191P4D12(b) and 191P4D12(b) mutations or analogs.
  • Recombinant human 191P4D12(b) protein or an analog or homolog or fragment thereof can be produced by mammalian cells transfected with a construct encoding a 191P4D12(b)-related nucleotide.
  • 293T cells can be transfected with an expression plasmid encoding 191P4D12(b) or fragment, analog or homolog thereof, a 191P4D12(b)-related protein is expressed in the 293T cells, and the recombinant 191P4D12(b) protein is isolated using standard purification methods (e.g., affinity purification using anti-191P4D12(b) antibodies).
  • a 191P4D12(b) coding sequence is subcloned into the retroviral vector pSR ⁇ MSVtkneo and used to infect various mammalian cell lines, such as NIH 3T3, TsuPr1, 293 and rat-1 in order to establish 191P4D12(b) expressing cell lines.
  • various mammalian cell lines such as NIH 3T3, TsuPr1, 293 and rat-1
  • Various other expression systems well known in the art can also be employed.
  • Expression constructs encoding a leader peptide joined in frame to a 191P4D12(b) coding sequence can be used for the generation of a secreted form of recombinant 191P4D12(b) protein.
  • Additional sequence modifications are known to enhance protein expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon/intron splice site signals, transposon-like repeats, and/or other such well-characterized sequences that are deleterious to gene expression.
  • the GC content of the sequence is adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. Where possible, the sequence is modified to avoid predicted hairpin secondary mRNA structures.
  • Other useful modifications include the addition of a translational initiation consensus sequence at the start of the open reading frame, as described in Kozak, Mol. Cell.
  • 191P4D12(b)-related proteins Another aspect of the present invention provides 191P4D12(b)-related proteins.
  • Specific embodiments of 191P4D12(b) proteins comprise a polypeptide having all or part of the amino acid sequence of human 191P4D12(b) as shown in FIG. 2 or FIG. 3 .
  • embodiments of 191P4D12(b) proteins comprise variant, homolog or analog polypeptides that have alterations in the amino acid sequence of 191P4D12(b) shown in FIG. 2 or FIG. 3 .
  • Embodiments of a 191P4D12(b) polypeptide include: a 191P4D12(b) polypeptide having a sequence shown in FIG. 2 , a peptide sequence of a 191P4D12(b) as shown in FIG. 2 wherein T is U; at least 10 contiguous nucleotides of a polypeptide having the sequence as shown in FIG. 2 ; or, at least 10 contiguous peptides of a polypeptide having the sequence as shown in FIG. 2 where T is U.
  • embodiments of 191P4D12(b) peptides comprise, without limitation:
  • (I) a protein comprising, consisting essentially of, or consisting of an amino acid sequence as shown in FIG. 2A-N or FIG. 3A-J ;
  • (V) a protein that comprises at least one peptide set forth in Tables VIII-XXI, collectively, which peptide is also set forth in Tables XXII to XLIX, collectively, optionally with a proviso that it is not an entire protein of FIG. 2 ;
  • (VI) a protein that comprises at least two peptides selected from the peptides set forth in Tables VIII-XLIX, optionally with a proviso that it is not an entire protein of FIG. 2 ;
  • VII a protein that comprises at least two peptides selected from the peptides set forth in Tables VIII to XLIX collectively, with a proviso that the protein is not a contiguous sequence from an amino acid sequence of FIG. 2 ;
  • (VIII) a protein that comprises at least one peptide selected from the peptides set forth in Tables VIII-XXI; and at least one peptide selected from the peptides set forth in Tables XXII to XLIX, with a proviso that the protein is not a contiguous sequence from an amino acid sequence of FIG. 2 ;
  • (IX) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3A-B or 3 E-G, in any whole number increment up to 510 respectively that includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5 ;
  • (X) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3A-B or 3 E-G, in any whole number increment up to 510 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6 ;
  • (XI) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3A-B or 3 E-G, in any whole number increment up to 510 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7 ;
  • (XII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3A-B or 3 E-G, in any whole number increment up to 510 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8 ;
  • (XIII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, amino acids of a protein of FIG. 3A-B or 3 E-G in any whole number increment up to 510 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9 ;
  • XIV a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3C , in any whole number increment up to 295 respectively that includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5 ;
  • (XV) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3C , in any whole number increment up to 295 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6 ;
  • XVI a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3C , in any whole number increment up to 295 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7 ;
  • XVII a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3C , in any whole number increment up to 295 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8 ;
  • (XVIII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, amino acids of a protein of FIG. 3C in any whole number increment up to 295 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9 ;
  • (XIX) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3D , in any whole number increment up to 485 respectively that includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5 ;
  • (XX) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3D , in any whole number increment up to 485 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6 ;
  • (XXI) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3D , in any whole number increment up to 485 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7 ;
  • (XXII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3D , in any whole number increment up to 485 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8 ;
  • (XXIII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, amino acids of a protein of FIG. 3D in any whole number increment up to 485 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9 ;
  • (XXIV) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3H , in any whole number increment up to 511 respectively that includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5 ;
  • (XXV) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3H , in any whole number increment up to 511 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6 ;
  • (XXVI) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3H , in any whole number increment up to 511 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7 ;
  • (XXVII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3H , in any whole number increment up to 511 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8 ;
  • (XXVIII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, amino acids of a protein of FIG. 3H in any whole number increment up to 511 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9 ;
  • (XXIX) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3I-J , in any whole number increment up to 137 respectively that includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5 ;
  • (XXX) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3I-J , in any whole number increment up to 137 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6 ;
  • (XXXI) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3I-J , in any whole number increment up to 137 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7 ;
  • (XXXII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3I-J , in any whole number increment up to 137 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8 ;
  • (XXXIII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, amino acids of a protein of FIG. 3I-J in any whole number increment up to 137 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9 ;
  • XLII a peptide which comprises one two, three, four, or five of the following characteristics, or an oligonucleotide encoding such peptide:
  • a region of at least 5 amino acids of a particular peptide of FIG. 3 in any whole number increment up to the full length of that protein in FIG. 3 , that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Hydrophilicity profile of FIG. 5 ;
  • a region of at least 5 amino acids of a particular peptide of FIG. 3 in any whole number increment up to the full length of that protein in FIG. 3 , that includes an amino acid position having a value equal to or less than 0.5, 0.4, 0.3, 0.2, 0.1, or having a value equal to 0.0, in the Hydropathicity profile of FIG. 6 ;
  • a region of at least 5 amino acids of a particular peptide of FIG. 3 in any whole number increment up to the full length of that protein in FIG. 3 , that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Percent Accessible Residues profile of FIG. 7 ;
  • a region of at least 5 amino acids of a particular peptide of FIG. 3 in any whole number increment up to the full length of that protein in FIG. 3 , that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Average Flexibility profile of FIG. 8 ; or,
  • (XLIII) a composition comprising a peptide of (I)-(XLII) or an antibody or binding region thereof together with a pharmaceutical excipient and/or in a human unit dose form;
  • (XLIV) a method of using a peptide of (I)-(XLII), or an antibody or binding region thereof or a composition of (XLIII) in a method to modulate a cell expressing 191P4D12(b);
  • (XLV) a method of using a peptide of (I)-(XLII) or an antibody or binding region thereof or a composition of (XLIII) in a method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 191P4D12(b);
  • (XLVI) a method of using a peptide of (I)-(XLII) or an antibody or binding region thereof or a composition (XlIII) in a method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 191P4D12(b), said cell from a cancer of a tissue listed in Table I;
  • (XLVII) a method of using a peptide of (I)-(XLII) or an antibody or binding region thereof or a composition of (XLIII) in a method to diagnose, prophylax, prognose, or treat a cancer;
  • (XLVIII) a method of using a peptide of (I)-(XLII) or an antibody or binding region thereof or a composition of (XLIII) in a method to diagnose, prophylax, prognose, or treat a cancer of a tissue listed in Table I;
  • (XLIX) a method of using a peptide of (I)-(XLII) or an antibody or binding region thereof or a composition (XLIII) in a method to identify or characterize a modulator of a cell expressing 191P4D12(b).
  • Typical embodiments of the invention disclosed herein include 191P4D12(b) polynucleotides that encode specific portions of 191P4D12(b) mRNA sequences (and those which are complementary to such sequences) such as those that encode the proteins and/or fragments thereof, for example:
  • allelic variants of human 191P4D12(b) share a high degree of structural identity and homology (e.g., 90% or more homology).
  • allelic variants of a 191P4D12(b) protein contain conservative amino acid substitutions within the 191P4D12(b) sequences described herein or contain a substitution of an amino acid from a corresponding position in a homologue of 191P4D12(b).
  • 191P4D12(b) allelic variants are proteins that share a high degree of homology with at least a small region of a particular 191P4D12(b) amino acid sequence, but further contain a radical departure from the sequence, such as a non-conservative substitution, truncation, insertion or frame shift.
  • a radical departure from the sequence such as a non-conservative substitution, truncation, insertion or frame shift.
  • the terms, similarity, identity, and homology each have a distinct meaning as appreciated in the field of genetics.
  • orthology and paralogy can be important concepts describing the relationship of members of a given protein family in one organism to the members of the same family in other organisms.
  • Proteins of the invention can comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 conservative substitutions. Such changes include substituting any of isoleucine (I), valine (V), and leucine (L) for any other of these hydrophobic amino acids; aspartic acid (D) for glutamic acid (E) and vice versa; glutamine (Q) for asparagine (N) and vice versa; and serine (S) for threonine (T) and vice versa.
  • isoleucine I
  • V valine
  • L leucine
  • Such changes include substituting any of isoleucine (I), valine (V), and leucine (L) for any other of these hydrophobic amino acids; aspartic acid (D) for glutamic acid (E) and vice versa; glutamine (Q) for asparagine (N) and vice versa; and serine (S) for threonine (T) and vice versa.
  • substitutions can also be considered conservative, depending on the environment of the particular amino acid and its role in the three-dimensional structure of the protein.
  • G glycine
  • A alanine
  • V valine
  • M Methionine
  • L Lysine
  • K arginine
  • R arginine
  • Embodiments of the invention disclosed herein include a wide variety of art-accepted variants or analogs of 191P4D12(b) proteins such as polypeptides having amino acid insertions, deletions and substitutions.
  • 191P4D12(b) variants can be made using methods known in the art such as site-directed mutagenesis, alanine scanning, and PCR mutagenesis. Site-directed mutagenesis (Carter et al., Nucl. Acids Res., 13:4331 (1986); Zoller et al., Nucl.
  • Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence that is involved in a specific biological activity such as a protein-protein interaction.
  • preferred scanning amino acids are relatively small, neutral amino acids.
  • amino acids include alanine, glycine, serine, and cysteine.
  • Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta-carbon and is less likely to alter the main-chain conformation of the variant. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions (Creighton, The Proteins , (W.H. Freeman & Co., N.Y.); Chothia, J. Mol. Biol., 150:1 (1976)). If alanine substitution does not yield adequate amounts of variant, an isosteric amino acid can be used.
  • 191P4D12(b) variants, analogs or homologs have the distinguishing attribute of having at least one epitope that is “cross reactive” with a 191P4D12(b) protein having an amino acid sequence of FIG. 3 .
  • cross reactive means that an antibody or T cell that specifically binds to a 191P4D12(b) variant also specifically binds to a 191P4D12(b) protein having an amino acid sequence set forth in FIG. 3 .
  • a polypeptide ceases to be a variant of a protein shown in FIG.
  • 191P4D12(b)-related protein variants share 70%, 75%, 80%, 85% or 90% or more similarity with an amino acid sequence of FIG. 3 , or a fragment thereof.
  • Another specific class of 191P4D12(b) protein variants or analogs comprises one or more of the 191P4D12(b) biological motifs described herein or presently known in the art.
  • analogs of 191P4D12(b) fragments nucleic or amino acid
  • have altered functional e.g. immunogenic
  • embodiments of the claimed invention include polypeptides containing less than the full amino acid sequence of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3 .
  • representative embodiments of the invention comprise peptides/proteins having any 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more contiguous amino acids of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3 .
  • representative embodiments of the invention disclosed herein include polypeptides consisting of about amino acid 1 to about amino acid 10 of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3 , polypeptides consisting of about amino acid 10 to about amino acid 20 of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3 , polypeptides consisting of about amino acid 20 to about amino acid 30 of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3 , polypeptides consisting of about amino acid 30 to about amino acid 40 of a 191P4D12(b) protein shown in FIG. 2 or FIG.
  • polypeptides consisting of about amino acid 40 to about amino acid 50 of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3 polypeptides consisting of about amino acid 50 to about amino acid 60 of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3
  • polypeptides consisting of about amino acid 60 to about amino acid 70 of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3 polypeptides consisting of about amino acid 70 to about amino acid 80 of a 191P4D12(b) protein shown in FIG. 2 or FIG.
  • polypeptides consisting of about amino acid 80 to about amino acid 90 of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3 polypeptides consisting of about amino acid 90 to about amino acid 100 of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3 , etc. throughout the entirety of a 191P4D12(b) amino acid sequence.
  • polypeptides consisting of about amino acid 1 (or 20 or 30 or 40 etc.) to about amino acid 20, (or 130, or 140 or 150 etc.) of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3 are embodiments of the invention. It is to be appreciated that the starting and stopping positions in this paragraph refer to the specified position as well as that position plus or minus 5 residues.
  • 191P4D12(b)-related proteins are generated using standard peptide synthesis technology or using chemical cleavage methods well known in the art. Alternatively, recombinant methods can be used to generate nucleic acid molecules that encode a 191P4D12(b)-related protein. In one embodiment, nucleic acid molecules provide a means to generate defined fragments of a 191P4D12(b) protein (or variants, homologs or analogs thereof).
  • Additional illustrative embodiments of the invention disclosed herein include 191P4D12(b) polypeptides comprising the amino acid residues of one or more of the biological motifs contained within a 191P4D12(b) polypeptide sequence set forth in FIG. 2 or FIG. 3 .
  • Various motifs are known in the art, and a protein can be evaluated for the presence of such motifs by a number of publicly available Internet sites (see, e.g., EpimatrixTM and EpimerTM Brown University, and BIMAS).
  • Motif bearing subsequences of all 191P4D12(b) variant proteins are set forth and identified in Tables VIII-XXI and XXII-XLIX.
  • Table V sets forth several frequently occurring motifs based on pfam searches.
  • the columns of Table V list (1) motif name abbreviation, (2) percent identity found amongst the different member of the motif family, (3) motif name or description and (4) most common function; location information is included if the motif is relevant for location.
  • Polypeptides comprising one or more of the 191P4D12(b) motifs discussed above are useful in elucidating the specific characteristics of a malignant phenotype in view of the observation that the 191P4D12(b) motifs discussed above are associated with growth dysregulation and because 191P4D12(b) is overexpressed in certain cancers (See, e.g., Table I).
  • Casein kinase II, cAMP and camp-dependent protein kinase, and Protein Kinase C are enzymes known to be associated with the development of the malignant phenotype (see e.g.
  • Amidation is another protein modification also associated with cancer and cancer progression (see e.g. Treston et al., J. Natl. Cancer Inst. Monogr. (13): 169-175 (1992)).
  • proteins of the invention comprise one or more of the immunoreactive epitopes identified in accordance with art-accepted methods, such as the peptides set forth in Tables VIII-XXI and XXII-XLIX.
  • CTL epitopes can be determined using specific algorithms to identify peptides within a 191P4D12(b) protein that are capable of optimally binding to specified HLA alleles (e.g., Table IV; EpimatrixTM and EpimerTM, Brown University).
  • processes for identifying peptides that have sufficient binding affinity for HLA molecules and which are correlated with being immunogenic epitopes are well known in the art, and are carried out without undue experimentation.
  • processes for identifying peptides that are immunogenic epitopes are well known in the art, and are carried out without undue experimentation either in vitro or in vivo.
  • epitopes in order to modulate immunogenicity. For example, one begins with an epitope that bears a CTL or HTL motif (see, e.g., the HLA Class I and HLA Class II motifs/supermotifs of Table IV).
  • the epitope is analoged by substituting out an amino acid at one of the specified positions, and replacing it with another amino acid specified for that position.
  • residues defined in Table IV one can substitute out a deleterious residue in favor of any other residue, such as a preferred residue; substitute a less-preferred residue with a preferred residue; or substitute an originally-occurring preferred residue with another preferred residue. Substitutions can occur at primary anchor positions or at other positions in a peptide; see, e.g., Table IV.
  • polypeptides comprising combinations of the different motifs set forth in Table VI, and/or, one or more of the predicted CTL epitopes of Tables VIII-XXI and XXII-XLIX, and/or, one or more of the predicted HTL epitopes of Tables XLVI-XLIX, and/or, one or more of the T cell binding motifs known in the art.
  • Preferred embodiments contain no insertions, deletions or substitutions either within the motifs or within the intervening sequences of the polypeptides.
  • embodiments which include a number of either N-terminal and/or C-terminal amino acid residues on either side of these motifs may be desirable (to, for example, include a greater portion of the polypeptide architecture in which the motif is located).
  • the number of N-terminal and/or C-terminal amino acid residues on either side of a motif is between about 1 to about 100 amino acid residues, preferably 5 to about 50 amino acid residues.
  • 191P4D12(b)-related proteins are embodied in many forms, preferably in isolated form.
  • a purified 191P4D12(b) protein molecule will be substantially free of other proteins or molecules that impair the binding of 191P4D12(b) to antibody, T cell or other ligand.
  • the nature and degree of isolation and purification will depend on the intended use.
  • Embodiments of a 191P4D12(b)-related proteins include purified 191P4D12(b)-related proteins and functional, soluble 191P4D12(b)-related proteins.
  • a functional, soluble 191P4D12(b) protein or fragment thereof retains the ability to be bound by antibody, T cell or other ligand.
  • the invention also provides 191P4D12(b) proteins comprising biologically active fragments of a 191P4D12(b) amino acid sequence shown in FIG. 2 or FIG. 3 .
  • Such proteins exhibit properties of the starting 191P4D12(b) protein, such as the ability to elicit the generation of antibodies that specifically bind an epitope associated with the starting 191P4D12(b) protein; to be bound by such antibodies; to elicit the activation of HTL or CTL; and/or, to be recognized by HTL or CTL that also specifically bind to the starting protein.
  • 191P4D12(b)-related polypeptides that contain particularly interesting structures can be predicted and/or identified using various analytical techniques well known in the art, including, for example, the methods of Chou-Fasman, Garnier-Robson, Kyte-Doolittle, Eisenberg, Karplus-Schultz or Jameson-Wolf analysis, or based on immunogenicity. Fragments that contain such structures are particularly useful in generating subunit-specific anti-191P4D12(b) antibodies or T cells or in identifying cellular factors that bind to 191P4D12(b). For example, hydrophilicity profiles can be generated, and immunogenic peptide fragments identified, using the method of Hopp, T. P. and Woods, K.
  • Hydropathicity profiles can be generated, and immunogenic peptide fragments identified, using the method of Kyte, J. and Doolittle, R. F., 1982, J. Mol. Biol. 157:105-132. Percent (%) Accessible Residues profiles can be generated, and immunogenic peptide fragments identified, using the method of Janin J., 1979, Nature 277:491-492. Average Flexibility profiles can be generated, and immunogenic peptide fragments identified, using the method of Bhaskaran R., Ponnuswamy P. K., 1988, Int. J. Pept. Protein Res. 32:242-255. Beta-turn profiles can be generated, and immunogenic peptide fragments identified, using the method of Deleage, G., Roux B., 1987, Protein Engineering 1:289-294.
  • CTL epitopes can be determined using specific algorithms to identify peptides within a 191P4D12(b) protein that are capable of optimally binding to specified HLA alleles (e.g., by using the listings in Table IV(A)-(E); EpimatrixTM and EpimerTM, Brown University, and BIMAS). Illustrating this, peptide epitopes from 191P4D12(b) that are presented in the context of human MHC Class I molecules, e.g., HLA-A1, A2, A3, All, A24, B7 and B35 were predicted (see, e.g., Tables VIII-XXI, XXII-XLIX).
  • the complete amino acid sequence of the 191P4D12(b) protein and relevant portions of other variants i.e., for HLA Class I predictions 9 flanking residues on either side of a point mutation or exon junction, and for HLA Class II predictions 14 flanking residues on either side of a point mutation or exon junction corresponding to that variant, were entered into the HLA Peptide Motif Search algorithm found in the Bioinformatics and Molecular Analysis Section (BIMAS) in addition to the site SYFPEITHI.
  • BIMAS Bioinformatics and Molecular Analysis Section
  • HLA peptide motif search algorithm was developed by Dr. Ken Parker based on binding of specific peptide sequences in the groove of HLA Class I molecules, in particular HLA-A2 (see, e.g., Falk et al., Nature 351: 290-6 (1991); Hunt et al., Science 255:1261-3 (1992); Parker et al., J. Immunol. 149:3580-7 (1992); Parker et al., J. Immunol. 152:163-75 (1994)).
  • This algorithm allows location and ranking of 8-mer, 9-mer, and 10-mer peptides from a complete protein sequence for predicted binding to HLA-A2 as well as numerous other HLA Class I molecules.
  • HLA class I binding peptides are 8-, 9-, 10 or 11-mers.
  • the epitopes preferably contain a leucine (L) or methionine (M) at position 2 and a valine (V) or leucine (L) at the C-terminus (see, e.g., Parker et al., J. Immunol. 149:3580-7 (1992)).
  • Selected results of 191P4D12(b) predicted binding peptides are shown in Tables VIII-XXI and XXII-XLIX herein.
  • Tables VIII-XXI and XXII-XLVII selected candidates, 9-mers and 10-mers, for each family member are shown along with their location, the amino acid sequence of each specific peptide, and an estimated binding score.
  • Tables XLVI-XLIX selected candidates, 15-mers, for each family member are shown along with their location, the amino acid sequence of each specific peptide, and an estimated binding score.
  • the binding score corresponds to the estimated half time of dissociation of complexes containing the peptide at 37° C. at pH 6.5. Peptides with the highest binding score are predicted to be the most tightly bound to HLA Class I on the cell surface for the greatest period of time and thus represent the best immunogenic targets for T-cell recognition.
  • every epitope predicted by the BIMAS site, EpimerTM and EpimatrixTM sites, or specified by the HLA class I or class II motifs available in the art or which become part of the art such as set forth in Table IV (or determined using World Wide Web for SYFPEITHI or BIMAS) are to be “applied” to a 191P4D12(b) protein in accordance with the invention.
  • “applied” means that a 191P4D12(b) protein is evaluated, e.g., visually or by computer-based patterns finding methods, as appreciated by those of skill in the relevant art.
  • Every subsequence of a 191P4D12(b) protein of 8, 9, 10, or 11 amino acid residues that bears an HLA Class I motif, or a subsequence of 9 or more amino acid residues that bear an HLA Class II motif are within the scope of the invention.
  • 191P4D12(b) can be conveniently expressed in cells (such as 293T cells) transfected with a commercially available expression vector such as a CMV-driven expression vector encoding 191P4D12(b) with a C-terminal 6 ⁇ His and MYC tag (pcDNA3.1/mycHIS, Invitrogen or Tag5, GenHunter Corporation, Nashville Tenn.).
  • the Tag5 vector provides an IgGK secretion signal that can be used to facilitate the production of a secreted 191P4D12(b) protein in transfected cells.
  • the secreted HIS-tagged 191P4D12(b) in the culture media can be purified, e.g., using a nickel column using standard techniques.
  • Modifications of 191P4D12(b)-related proteins such as covalent modifications are included within the scope of this invention.
  • One type of covalent modification includes reacting targeted amino acid residues of a 191P4D12(b) polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues of a 191P4D12(b) protein.
  • Another type of covalent modification of a 191P4D12(b) polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of a protein of the invention.
  • Another type of covalent modification of 191P4D12(b) comprises linking a 191P4D12(b) polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol (PEG), polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Pat. No. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.
  • PEG polyethylene glycol
  • polypropylene glycol polypropylene glycol
  • polyoxyalkylenes polyoxyalkylenes
  • the 191P4D12(b)-related proteins of the present invention can also be modified to form a chimeric molecule comprising 191P4D12(b) fused to another, heterologous polypeptide or amino acid sequence.
  • a chimeric molecule can be synthesized chemically or recombinantly.
  • a chimeric molecule can have a protein of the invention fused to another tumor-associated antigen or fragment thereof.
  • a protein in accordance with the invention can comprise a fusion of fragments of a 191P4D12(b) sequence (amino or nucleic acid) such that a molecule is created that is not, through its length, directly homologous to the amino or nucleic acid sequences shown in FIG. 2 or FIG. 3 .
  • Such a chimeric molecule can comprise multiples of the same subsequence of 191P4D12(b).
  • a chimeric molecule can comprise a fusion of a 191P4D12(b)-related protein with a polyhistidine epitope tag, which provides an epitope to which immobilized nickel can selectively bind, with cytokines or with growth factors.
  • the epitope tag is generally placed at the amino- or carboxyl-terminus of a 191P4D12(b) protein.
  • the chimeric molecule can comprise a fusion of a 191P4D12(b)-related protein with an immunoglobulin or a particular region of an immunoglobulin.
  • the chimeric molecule also referred to as an “immunoadhesin”
  • a fusion could be to the Fc region of an IgG molecule.
  • the Ig fusions preferably include the substitution of a soluble (transmembrane domain deleted or inactivated) form of a 191P4D12(b) polypeptide in place of at least one variable region within an Ig molecule.
  • the immunoglobulin fusion includes the hinge, CH2 and CH3, or the hinge, CHI, CH2 and CH3 regions of an IgGI molecule.
  • the proteins of the invention have a number of different specific uses.
  • 191P4D12(b) is highly expressed in prostate and other cancers
  • 191P4D12(b)-related proteins are used in methods that assess the status of 191P4D12(b) gene products in normal versus cancerous tissues, thereby elucidating the malignant phenotype.
  • polypeptides from specific regions of a 191P4D12(b) protein are used to assess the presence of perturbations (such as deletions, insertions, point mutations etc.) in those regions (such as regions containing one or more motifs).
  • Exemplary assays utilize antibodies or T cells targeting 191P4D12(b)-related proteins comprising the amino acid residues of one or more of the biological motifs contained within a 191P4D12(b) polypeptide sequence in order to evaluate the characteristics of this region in normal versus cancerous tissues or to elicit an immune response to the epitope.
  • 191P4D12(b)-related proteins that contain the amino acid residues of one or more of the biological motifs in a 191P4D12(b) protein are used to screen for factors that interact with that region of 191P4D12(b).
  • 191P4D12(b) protein fragments/subsequences are particularly useful in generating and characterizing domain-specific antibodies (e.g., antibodies recognizing an extracellular or intracellular epitope of a 191P4D12(b) protein), for identifying agents or cellular factors that bind to 191P4D12(b) or a particular structural domain thereof, and in various therapeutic and diagnostic contexts, including but not limited to diagnostic assays, cancer vaccines and methods of preparing such vaccines.
  • domain-specific antibodies e.g., antibodies recognizing an extracellular or intracellular epitope of a 191P4D12(b) protein
  • Proteins encoded by the 191P4D12(b) genes, or by analogs, homologs or fragments thereof, have a variety of uses, including but not limited to generating antibodies and in methods for identifying ligands and other agents and cellular constituents that bind to a 191P4D12(b) gene product.
  • Antibodies raised against a 191P4D12(b) protein or fragment thereof are useful in diagnostic and prognostic assays, and imaging methodologies in the management of human cancers characterized by expression of 191P4D12(b) protein, such as those listed in Table I. Such antibodies can be expressed intracellularly and used in methods of treating patients with such cancers.
  • 191P4D12(b)-related nucleic acids or proteins are also used in generating HTL or CTL responses.
  • Various immunological assays useful for the detection of 191P4D12(b) proteins are used, including but not limited to various types of radioimmunoassays, enzyme-linked immunosorbent assays (ELISA), enzyme-linked immunofluorescent assays (ELIFA), immunocytochemical methods, and the like.
  • Antibodies can be labeled and used as immunological imaging reagents capable of detecting 191P4D12(b)-expressing cells (e.g., in radioscintigraphic imaging methods).
  • 191P4D12(b) proteins are also particularly useful in generating cancer vaccines, as further described herein.
  • Another aspect of the invention provides antibodies that bind to 191P4D12(b)-related proteins.
  • Preferred antibodies specifically bind to a 191P4D12(b)-related protein and do not bind (or bind weakly) to peptides or proteins that are not 191P4D12(b)-related proteins under physiological conditions.
  • physiological conditions include: 1) phosphate buffered saline; 2) Tris-buffered saline containing 25 mM Tris and 150 mM NaCl; or normal saline (0.9% NaCl); 4) animal serum such as human serum; or, 5) a combination of any of 1) through 4); these reactions preferably taking place at pH 7.5, alternatively in a range of pH 7.0 to 8.0, or alternatively in a range of pH 6.5 to 8.5; also, these reactions taking place at a temperature between 4° C. to 37° C.
  • antibodies that bind 191P4D12(b) can bind 191P4D12(b)-related proteins such as the homologs or analogs thereof.
  • 191P4D12(b) antibodies of the invention are particularly useful in cancer (see, e.g., Table I) diagnostic and prognostic assays, and imaging methodologies. Similarly, such antibodies are useful in the treatment, diagnosis, and/or prognosis of other cancers, to the extent 191P4D12(b) is also expressed or overexpressed in these other cancers. Moreover, intracellularly expressed antibodies (e.g., single chain antibodies) are therapeutically useful in treating cancers in which the expression of 191P4D12(b) is involved, such as advanced or metastatic prostate cancers.
  • the invention also provides various immunological assays useful for the detection and quantification of 191P4D12(b) and mutant 191P4D12(b)-related proteins.
  • Such assays can comprise one or more 191P4D12(b) antibodies capable of recognizing and binding a 191P4D12(b)-related protein, as appropriate.
  • These assays are performed within various immunological assay formats well known in the art, including but not limited to various types of radioimmunoassays, enzyme-linked immunosorbent assays (ELISA), enzyme-linked immunofluorescent assays (ELIFA), and the like.
  • Immunological non-antibody assays of the invention also comprise T cell immunogenicity assays (inhibitory or stimulatory) as well as major histocompatibility complex (MHC) binding assays.
  • T cell immunogenicity assays inhibitory or stimulatory
  • MHC major histocompatibility complex
  • immunological imaging methods capable of detecting prostate cancer and other cancers expressing 191P4D12(b) are also provided by the invention, including but not limited to radioscintigraphic imaging methods using labeled 191P4D12(b) antibodies.
  • assays are clinically useful in the detection, monitoring, and prognosis of 191P4D12(b) expressing cancers such as prostate cancer.
  • 191P4D12(b) antibodies are also used in methods for purifying a 191P4D12(b)-related protein and for isolating 191P4D12(b) homologues and related molecules.
  • a method of purifying a 191P4D12(b)-related protein comprises incubating a 191P4D12(b) antibody, which has been coupled to a solid matrix, with a lysate or other solution containing a 191P4D12(b)-related protein under conditions that permit the 191P4D12(b) antibody to bind to the 191P4D12(b)-related protein; washing the solid matrix to eliminate impurities; and eluting the 191P4D12(b)-related protein from the coupled antibody.
  • Other uses of 191P4D12(b) antibodies in accordance with the invention include generating anti-idiotypic antibodies that mimic a 191P4D12(b) protein.
  • antibodies can be prepared by immunizing a suitable mammalian host using a 191P4D12(b)-related protein, peptide, or fragment, in isolated or immunoconjugated form (Antibodies: A Laboratory Manual, CSH Press, Eds., Harlow, and Lane (1988); Harlow, Antibodies, Cold Spring Harbor Press, NY (1989)).
  • fusion proteins of 191P4D12(b) can also be used, such as a 191P4D12(b) GST-fusion protein.
  • a GST fusion protein comprising all or most of the amino acid sequence of FIG. 2 or FIG. 3 is produced, then used as an immunogen to generate appropriate antibodies.
  • a 191P4D12(b)-related protein is synthesized and used as an immunogen.
  • naked DNA immunization techniques known in the art are used (with or without purified 191P4D12(b)-related protein or 191P4D12(b) expressing cells) to generate an immune response to the encoded immunogen (for review, see Donnelly et al., 1997, Ann. Rev. Immunol. 15: 617-648).
  • the amino acid sequence of a 191P4D12(b) protein as shown in FIG. 2 or FIG. 3 can be analyzed to select specific regions of the 191P4D12(b) protein for generating antibodies.
  • hydrophobicity and hydrophilicity analyses of a 191P4D12(b) amino acid sequence are used to identify hydrophilic regions in the 191P4D12(b) structure.
  • Regions of a 191P4D12(b) protein that show immunogenic structure, as well as other regions and domains can readily be identified using various other methods known in the art, such as Chou-Fasman, Garnier-Robson, Kyte-Doolittle, Eisenberg, Karplus-Schultz or Jameson-Wolf analysis.
  • Hydrophilicity profiles can be generated using the method of Hopp, T. P. and Woods, K. R., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828. Hydropathicity profiles can be generated using the method of Kyte, J. and Doolittle, R. F., 1982, J. Mol. Biol. 157:105-132. Percent (%) Accessible Residues profiles can be generated using the method of Janin J., 1979, Nature 277:491-492. Average Flexibility profiles can be generated using the method of Bhaskaran R., Ponnuswamy P. K., 1988, Int. J. Pept. Protein Res. 32:242-255.
  • Beta-turn profiles can be generated using the method of Deleage, G., Roux B., 1987, Protein Engineering 1:289-294. Thus, each region identified by any of these programs or methods is within the scope of the present invention. Methods for the generation of 191P4D12(b) antibodies are further illustrated by way of the examples provided herein. Methods for preparing a protein or polypeptide for use as an immunogen are well known in the art. Also well known in the art are methods for preparing immunogenic conjugates of a protein with a carrier, such as BSA, KLH or other carrier protein.
  • 191P4D12(b) monoclonal antibodies can be produced by various means well known in the art. For example, immortalized cell lines that secrete a desired monoclonal antibody are prepared using the standard hybridoma technology of Kohler and Milstein or modifications that immortalize antibody-producing B cells, as is generally known. Immortalized cell lines that secrete the desired antibodies are screened by immunoassay in which the antigen is a 191P4D12(b)-related protein. When the appropriate immortalized cell culture is identified, the cells can be expanded and antibodies produced either from in vitro cultures or from ascites fluid.
  • the antibodies or fragments of the invention can also be produced, by recombinant means. Regions that bind specifically to the desired regions of a 191P4D12(b) protein can also be produced in the context of chimeric or complementarity-determining region (CDR) grafted antibodies of multiple species origin. Humanized or human 191P4D12(b) antibodies can also be produced, and are preferred for use in therapeutic contexts.
  • CDR complementarity-determining region
  • Fully human 191P4D12(b) monoclonal antibodies can be generated using cloning technologies employing large human Ig gene combinatorial libraries (i.e., phage display) (Griffiths and Hoogenboom, Building an in vitro immune system: human antibodies from phage display libraries. In: Protein Engineering of Antibody Molecules for Prophylactic and Therapeutic Applications in Man, Clark, M. (Ed.), Nottingham Academic, pp 45-64 (1993); Burton and Barbas, Human Antibodies from combinatorial libraries. Id., pp 65-82).
  • Fully human 191P4D12(b) monoclonal antibodies can also be produced using transgenic mice engineered to contain human immunoglobulin gene loci as described in PCT Patent Application WO98/24893, Kucherlapati and Jakobovits et al., published Dec. 3, 1997 (see also, Jakobovits, 1998, Exp. Opin. Invest. Drugs 7 (4): 607-614; U.S. Pat. Nos. 6,162,963 issued 19 Dec. 2000; 6,150,584 issued 12 Nov. 2000; and, 6,114,598 issued 5 Sep. 2000). This method avoids the in vitro manipulation required with phage display technology and efficiently produces high affinity authentic human antibodies.
  • Reactivity of 191P4D12(b) antibodies with a 191P4D12(b)-related protein can be established by a number of well known means, including Western blot, immunoprecipitation, ELISA, and FACS analyses using, as appropriate, 191P4D12(b)-related proteins, 191P4D12(b)-expressing cells or extracts thereof.
  • a 191P4D12(b) antibody or fragment thereof can be labeled with a detectable marker or conjugated to a second molecule. Suitable detectable markers include, but are not limited to, a radioisotope, a fluorescent compound, a bioluminescent compound, chemiluminescent compound, a metal chelator or an enzyme.
  • bi-specific antibodies specific for two or more 191P4D12(b) epitopes are generated using methods generally known in the art.
  • Homodimeric antibodies can also be generated by cross-linking techniques known in the art (e.g., Wolff et al., Cancer Res. 53: 2560-2565).
  • compositions of the invention induce a therapeutic or prophylactic immune responses in very broad segments of the world-wide population.
  • immunology-related technology For an understanding of the value and efficacy of compositions of the invention that induce cellular immune responses, a brief review of immunology-related technology is provided.
  • a complex of an HLA molecule and a peptidic antigen acts as the ligand recognized by HLA-restricted T cells (Buus, S. et al., Cell 47:1071, 1986; Babbitt, B. P. et al., Nature 317:359, 1985; Townsend, A. and Bodmer, H., Annu. Rev. Immunol. 7:601, 1989; Germain, R. N., Annu. Rev. Immunol. 11:403, 1993).
  • class I and class II allele-specific HLA binding motifs allows identification of regions within a protein that are correlated with binding to particular HLA antigen(s).
  • candidates for epitope-based vaccines have been identified; such candidates can be further evaluated by HLA-peptide binding assays to determine binding affinity and/or the time period of association of the epitope and its corresponding HLA molecule. Additional confirmatory work can be performed to select, amongst these vaccine candidates, epitopes with preferred characteristics in terms of population coverage, and/or immunogenicity.
  • HLA transgenic mice see, e.g., Wentworth, P. A. et al., J. Immunol. 26:97, 1996; Wentworth, P. A. et al., Int. Immunol. 8:651, 1996; Alexander, J. et al., J. Immunol. 159:4753, 1997).
  • peptides in incomplete Freund's adjuvant are administered subcutaneously to HLA transgenic mice.
  • splenocytes are removed and cultured in vitro in the presence of test peptide for approximately one week.
  • Peptide-specific T cells are detected using, e.g., a 51 Cr-release assay involving peptide sensitized target cells and target cells expressing endogenously generated antigen.
  • recall responses are detected by culturing PBL from subjects that have been exposed to the antigen due to disease and thus have generated an immune response “naturally”, or from patients who were vaccinated against the antigen.
  • PBL from subjects are cultured in vitro for 1-2 weeks in the presence of test peptide plus antigen presenting cells (APC) to allow activation of “memory” T cells, as compared to “naive” T cells.
  • APC antigen presenting cells
  • T cell activity is detected using assays including 51 Cr release involving peptide-sensitized targets, T cell proliferation, or lymphokine release.
  • Nucleic acids that encode a 191P4D12(b)-related protein can also be used to generate either transgenic animals or “knock out” animals that, in turn, are useful in the development and screening of therapeutically useful reagents.
  • cDNA encoding 191P4D12(b) can be used to clone genomic DNA that encodes 191P4D12(b). The cloned genomic sequences can then be used to generate transgenic animals containing cells that express DNA that encode 191P4D12(b).
  • Methods for generating transgenic animals, particularly animals such as mice or rats, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866 issued 12 Apr. 1988, and 4,870,009 issued 26 Sep. 1989.
  • particular cells would be targeted for 191P4D12(b) transgene incorporation with tissue-specific enhancers.
  • Transgenic animals that include a copy of a transgene encoding 191P4D12(b) can be used to examine the effect of increased expression of DNA that encodes 191P4D12(b). Such animals can be used as tester animals for reagents thought to confer protection from, for example, pathological conditions associated with its overexpression. In accordance with this aspect of the invention, an animal is treated with a reagent and a reduced incidence of a pathological condition, compared to untreated animals that bear the transgene, would indicate a potential therapeutic intervention for the pathological condition.
  • non-human homologues of 191P4D12(b) can be used to construct a 191P4D12(b) “knock out” animal that has a defective or altered gene encoding 191P4D12(b) as a result of homologous recombination between the endogenous gene encoding 191P4D12(b) and altered genomic DNA encoding 191P4D12(b) introduced into an embryonic cell of the animal.
  • cDNA that encodes 191P4D12(b) can be used to clone genomic DNA encoding 191P4D12(b) in accordance with established techniques.
  • a portion of the genomic DNA encoding 191P4D12(b) can be deleted or replaced with another gene, such as a gene encoding a selectable marker that can be used to monitor integration.
  • another gene such as a gene encoding a selectable marker that can be used to monitor integration.
  • several kilobases of unaltered flanking DNA are included in the vector (see, e.g., Thomas and Capecchi, Cell, 51:503 (1987) for a description of homologous recombination vectors).
  • the vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected (see, e.g., Li et al., Cell, 69:915 (1992)).
  • the selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras (see, e.g., Bradley, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach , E. J. Robertson, ed. (IRL, Oxford, 1987), pp. 113-152).
  • a chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal, and the embryo brought to term to create a “knock out” animal.
  • Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain the homologously recombined DNA.
  • Knock out animals can be characterized, for example, for their ability to defend against certain pathological conditions or for their development of pathological conditions due to absence of a 191P4D12(b) polypeptide.
  • Another aspect of the present invention relates to methods for detecting 191P4D12(b) polynucleotides and 191P4D12(b)-related proteins, as well as methods for identifying a cell that expresses 191P4D12(b).
  • the expression profile of 191P4D12(b) makes it a diagnostic marker for metastasized disease. Accordingly, the status of 191P4D12(b) gene products provides information useful for predicting a variety of factors including susceptibility to advanced stage disease, rate of progression, and/or tumor aggressiveness.
  • the status of 191P4D12(b) gene products in patient samples can be analyzed by a variety protocols that are well known in the art including immunohistochemical analysis, the variety of Northern blotting techniques including in situ hybridization, RT-PCR analysis (for example on laser capture micro-dissected samples), Western blot analysis and tissue array analysis.
  • the invention provides assays for the detection of 191P4D12(b) polynucleotides in a biological sample, such as serum, bone, prostate, and other tissues, urine, semen, cell preparations, and the like.
  • Detectable 191P4D12(b) polynucleotides include, for example, a 191P4D12(b) gene or fragment thereof, 191P4D12(b) mRNA, alternative splice variant 191P4D12(b) mRNAs, and recombinant DNA or RNA molecules that contain a 191P4D12(b) polynucleotide.
  • a number of methods for amplifying and/or detecting the presence of 191P4D12(b) polynucleotides are well known in the art and can be employed in the practice of this aspect of the invention.
  • a method for detecting a 191P4D12(b) mRNA in a biological sample comprises producing cDNA from the sample by reverse transcription using at least one primer; amplifying the cDNA so produced using a 191P4D12(b) polynucleotides as sense and antisense primers to amplify 191P4D12(b) cDNAs therein; and detecting the presence of the amplified 191P4D12(b) cDNA.
  • the sequence of the amplified 191P4D12(b) cDNA can be determined.
  • a method of detecting a 191P4D12(b) gene in a biological sample comprises first isolating genomic DNA from the sample; amplifying the isolated genomic DNA using 191P4D12(b) polynucleotides as sense and antisense primers; and detecting the presence of the amplified 191P4D12(b) gene.
  • Any number of appropriate sense and antisense probe combinations can be designed from a 191P4D12(b) nucleotide sequence (see, e.g., FIG. 2 ) and used for this purpose.
  • the invention also provides assays for detecting the presence of a 191P4D12(b) protein in a tissue or other biological sample such as serum, semen, bone, prostate, urine, cell preparations, and the like.
  • Methods for detecting a 191P4D12(b)-related protein are also well known and include, for example, immunoprecipitation, immunohistochemical analysis, Western blot analysis, molecular binding assays, ELISA, ELIFA and the like.
  • a method of detecting the presence of a 191P4D12(b)-related protein in a biological sample comprises first contacting the sample with a 191P4D12(b) antibody, a 191P4D12(b)-reactive fragment thereof, or a recombinant protein containing an antigen-binding region of a 191P4D12(b) antibody; and then detecting the binding of 191P4D12(b)-related protein in the sample.
  • an assay for identifying a cell that expresses a 191P4D12(b) gene comprises detecting the presence of 191P4D12(b) mRNA in the cell.
  • Methods for the detection of particular mRNAs in cells include, for example, hybridization assays using complementary DNA probes (such as in situ hybridization using labeled 191P4D12(b) riboprobes, Northern blot and related techniques) and various nucleic acid amplification assays (such as RT-PCR using complementary primers specific for 191P4D12(b), and other amplification type detection methods, such as, for example, branched DNA, SISBA, TMA and the like).
  • an assay for identifying a cell that expresses a 191P4D12(b) gene comprises detecting the presence of 191P4D12(b)-related protein in the cell or secreted by the cell.
  • Various methods for the detection of proteins are well known in the art and are employed for the detection of 191P4D12(b)-related proteins and cells that express 191P4D12(b)-related proteins.
  • 191P4D12(b) expression analysis is also useful as a tool for identifying and evaluating agents that modulate 191P4D12(b) gene expression.
  • 191P4D12(b) expression is significantly upregulated in prostate cancer, and is expressed in cancers of the tissues listed in Table I.
  • Identification of a molecule or biological agent that inhibits 191P4D12(b) expression or over-expression in cancer cells is of therapeutic value.
  • such an agent can be identified by using a screen that quantifies 191P4D12(b) expression by RT-PCR, nucleic acid hybridization or antibody binding.
  • Oncogenesis is known to be a multistep process where cellular growth becomes progressively dysregulated and cells progress from a normal physiological state to precancerous and then cancerous states (see, e.g., Alers et al., Lab Invest. 77 (5): 437-438 (1997) and Isaacs et al., Cancer Surv. 23: 19-32 (1995)).
  • examining a biological sample for evidence of dysregulated cell growth allows for early detection of such aberrant physiology, before a pathologic state such as cancer has progressed to a stage that therapeutic options are more limited and or the prognosis is worse.
  • the status of 191P4D12(b) in a biological sample of interest can be compared, for example, to the status of 191P4D12(b) in a corresponding normal sample (e.g. a sample from that individual or alternatively another individual that is not affected by a pathology).
  • a corresponding normal sample e.g. a sample from that individual or alternatively another individual that is not affected by a pathology.
  • An alteration in the status of 191P4D12(b) in the biological sample provides evidence of dysregulated cellular growth.
  • a predetermined normative value such as a predetermined normal level of mRNA expression (see, e.g., Grever et al., J. Comp. Neurol. 1996 Dec. 9; 376 (2): 306-14 and U.S. Pat. No. 5,837,501) to compare 191P4D12(b) status in a sample.
  • status in this context is used according to its art accepted meaning and refers to the condition or state of a gene and its products. Typically, skilled artisans use a number of parameters to evaluate the condition or state of a gene and its products. These include, but are not limited to the location of expressed gene products (including the location of 191P4D12(b) expressing cells) as well as the level, and biological activity of expressed gene products (such as 191P4D12(b) mRNA, polynucleotides and polypeptides).
  • an alteration in the status of 191P4D12(b) comprises a change in the location of 191P4D12(b) and/or 191P4D12(b) expressing cells and/or an increase in 191P4D12(b) mRNA and/or protein expression.
  • 191P4D12(b) status in a sample can be analyzed by a number of means well known in the art, including without limitation, immunohistochemical analysis, in situ hybridization, RT-PCR analysis on laser capture micro-dissected samples, Western blot analysis, and tissue array analysis.
  • Typical protocols for evaluating the status of a 191P4D12(b) gene and gene products are found, for example in Ausubel et al. eds., 1995, Current Protocols In Molecular Biology, Units 2 (Northern Blotting), 4 (Southern Blotting), 15 (Immunoblotting) and 18 (PCR Analysis).
  • the status of 191P4D12(b) in a biological sample is evaluated by various methods utilized by skilled artisans including, but not limited to genomic Southern analysis (to examine, for example perturbations in a 191P4D12(b) gene), Northern analysis and/or PCR analysis of 191P4D12(b) mRNA (to examine, for example alterations in the polynucleotide sequences or expression levels of 191P4D12(b) mRNAs), and, Western and/or immunohistochemical analysis (to examine, for example alterations in polypeptide sequences, alterations in polypeptide localization within a sample, alterations in expression levels of 191P4D12(b) proteins and/or associations of 191P4D12(b) proteins with polypeptide binding partners).
  • genomic Southern analysis to examine, for example perturbations in a 191P4D12(b) gene
  • Northern analysis and/or PCR analysis of 191P4D12(b) mRNA to examine, for example alterations in the polynucleo
  • Detectable 191P4D12(b) polynucleotides include, for example, a 191P4D12(b) gene or fragment thereof, 191P4D12(b) mRNA, alternative splice variants, 191P4D12(b) mRNAs, and recombinant DNA or RNA molecules containing a 191P4D12(b) polynucleotide.
  • the expression profile of 191P4D12(b) makes it a diagnostic marker for local and/or metastasized disease, and provides information on the growth or oncogenic potential of a biological sample.
  • the status of 191P4D12(b) provides information useful for predicting susceptibility to particular disease stages, progression, and/or tumor aggressiveness.
  • the invention provides methods and assays for determining 191P4D12(b) status and diagnosing cancers that express 191P4D12(b), such as cancers of the tissues listed in Table I.
  • assays that evaluate the levels of 191P4D12(b) mRNA transcripts or proteins in a biological sample can be used to diagnose a disease associated with 191P4D12(b) dysregulation, and can provide prognostic information useful in defining appropriate therapeutic options.
  • the expression status of 191P4D12(b) provides information including the presence, stage and location of dysplastic, precancerous and cancerous cells, predicting susceptibility to various stages of disease, and/or for gauging tumor aggressiveness. Moreover, the expression profile makes it useful as an imaging reagent for metastasized disease. Consequently, an aspect of the invention is directed to the various molecular prognostic and diagnostic methods for examining the status of 191P4D12(b) in biological samples such as those from individuals suffering from, or suspected of suffering from a pathology characterized by dysregulated cellular growth, such as cancer.
  • the status of 191P4D12(b) in a biological sample can be examined by a number of well-known procedures in the art.
  • the status of 191P4D12(b) in a biological sample taken from a specific location in the body can be examined by evaluating the sample for the presence or absence of 191P4D12(b) expressing cells (e.g. those that express 191P4D12(b) mRNAs or proteins).
  • This examination can provide evidence of dysregulated cellular growth, for example, when 191P4D12(b)-expressing cells are found in a biological sample that does not normally contain such cells (such as a lymph node), because such alterations in the status of 191P4D12(b) in a biological sample are often associated with dysregulated cellular growth.
  • one indicator of dysregulated cellular growth is the metastases of cancer cells from an organ of origin (such as the prostate) to a different area of the body (such as a lymph node).
  • evidence of dysregulated cellular growth is important for example because occult lymph node metastases can be detected in a substantial proportion of patients with prostate cancer, and such metastases are associated with known predictors of disease progression (see, e.g., Murphy et al., Prostate 42 (4): 315-317 (2000); Su et al., Semin. Surg. Oncol. 18 (1): 17-28 (2000) and Freeman et al., J Urol 1995 August 154 (2 Pt 1):474-8).
  • the invention provides methods for monitoring 191P4D12(b) gene products by determining the status of 191P4D12(b) gene products expressed by cells from an individual suspected of having a disease associated with dysregulated cell growth (such as hyperplasia or cancer) and then comparing the status so determined to the status of 191P4D12(b) gene products in a corresponding normal sample.
  • the presence of aberrant 191P4D12(b) gene products in the test sample relative to the normal sample provides an indication of the presence of dysregulated cell growth within the cells of the individual.
  • the invention provides assays useful in determining the presence of cancer in an individual, comprising detecting a significant increase in 191P4D12(b) mRNA or protein expression in a test cell or tissue sample relative to expression levels in the corresponding normal cell or tissue.
  • the presence of 191P4D12(b) mRNA can, for example, be evaluated in tissues including but not limited to those listed in Table I.
  • the presence of significant 191P4D12(b) expression in any of these tissues is useful to indicate the emergence, presence and/or severity of a cancer, since the corresponding normal tissues do not express 191P4D12(b) mRNA or express it at lower levels.
  • 191P4D12(b) status is determined at the protein level rather than at the nucleic acid level.
  • such a method comprises determining the level of 191P4D12(b) protein expressed by cells in a test tissue sample and comparing the level so determined to the level of 191P4D12(b) expressed in a corresponding normal sample.
  • the presence of 191P4D12(b) protein is evaluated, for example, using immunohistochemical methods.
  • 191P4D12(b) antibodies or binding partners capable of detecting 191P4D12(b) protein expression are used in a variety of assay formats well known in the art for this purpose.
  • These perturbations can include insertions, deletions, substitutions and the like.
  • Such evaluations are useful because perturbations in the nucleotide and amino acid sequences are observed in a large number of proteins associated with a growth dysregulated phenotype (see, e.g., Marrogi et al., 1999, J. Cutan. Pathol. 26 (8):369-378).
  • a mutation in the sequence of 191P4D12(b) may be indicative of the presence or promotion of a tumor.
  • Such assays therefore have diagnostic and predictive value where a mutation in 191P4D12(b) indicates a potential loss of function or increase in tumor growth.
  • nucleotide and amino acid sequences are well known in the art. For example, the size and structure of nucleic acid or amino acid sequences of 191P4D12(b) gene products are observed by the Northern, Southern, Western, PCR and DNA sequencing protocols discussed herein.
  • other methods for observing perturbations in nucleotide and amino acid sequences such as single strand conformation polymorphism analysis are well known in the art (see, e.g., U.S. Pat. Nos. 5,382,510 issued 7 Sep. 1999, and 5,952,170 issued 17 Jan. 1995).
  • methylation status of a 191P4D12(b) gene in a biological sample.
  • Aberrant demethylation and/or hypermethylation of CpG islands in gene 5′ regulatory regions frequently occurs in immortalized and transformed cells, and can result in altered expression of various genes.
  • promoter hypermethylation of the pi-class glutathione S-transferase (a protein expressed in normal prostate but not expressed in >90% of prostate carcinomas) appears to permanently silence transcription of this gene and is the most frequently detected genomic alteration in prostate carcinomas (De Marzo et al., Am. J. Pathol. 155 (6): 1985-1992 (1999)).
  • methylation-sensitive restriction enzymes that cannot cleave sequences that contain methylated CpG sites to assess the methylation status of CpG islands.
  • MSP methylation specific PCR
  • MSP methylation specific PCR
  • This procedure involves initial modification of DNA by sodium bisulfite (which will convert all unmethylated cytosines to uracil) followed by amplification using primers specific for methylated versus unmethylated DNA. Protocols involving methylation interference can also be found for example in Current Protocols In Molecular Biology, Unit 12, Frederick M. Ausubel et al. eds., 1995.
  • Gene amplification is an additional method for assessing the status of 191P4D12(b).
  • Gene amplification is measured in a sample directly, for example, by conventional Southern blotting or Northern blotting to quantitate the transcription of mRNA (Thomas, 1980, Proc. Natl. Acad. Sci. USA, 77:5201-5205), dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein.
  • antibodies are employed that recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn are labeled and the assay carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.
  • Biopsied tissue or peripheral blood can be conveniently assayed for the presence of cancer cells using for example, Northern, dot blot or RT-PCR analysis to detect 191P4D12(b) expression.
  • the presence of RT-PCR amplifiable 191P4D12(b) mRNA provides an indication of the presence of cancer.
  • RT-PCR assays are well known in the art. RT-PCR detection assays for tumor cells in peripheral blood are currently being evaluated for use in the diagnosis and management of a number of human solid tumors. In the prostate cancer field, these include RT-PCR assays for the detection of cells expressing PSA and PSM (Verkaik et al., 1997, Urol. Res. 25:373-384; Ghossein et al., 1995, J. Clin. Oncol. 13:1195-2000; Heston et al., 1995, Clin. Chem. 41:1687-1688).
  • a further aspect of the invention is an assessment of the susceptibility that an individual has for developing cancer.
  • a method for predicting susceptibility to cancer comprises detecting 191P4D12(b) mRNA or 191P4D12(b) protein in a tissue sample, its presence indicating susceptibility to cancer, wherein the degree of 191P4D12(b) mRNA expression correlates to the degree of susceptibility.
  • the presence of 191P4D12(b) in prostate or other tissue is examined, with the presence of 191P4D12(b) in the sample providing an indication of prostate cancer susceptibility (or the emergence or existence of a prostate tumor).
  • the presence of one or more perturbations in 191P4D12(b) gene products in the sample is an indication of cancer susceptibility (or the emergence or existence of a tumor).
  • a method for gauging aggressiveness of a tumor comprises determining the level of 191P4D12(b) mRNA or 191P4D12(b) protein expressed by tumor cells, comparing the level so determined to the level of 191P4D12(b) mRNA or 191P4D12(b) protein expressed in a corresponding normal tissue taken from the same individual or a normal tissue reference sample, wherein the degree of 191P4D12(b) mRNA or 191P4D12(b) protein expression in the tumor sample relative to the normal sample indicates the degree of aggressiveness.
  • aggressiveness of a tumor is evaluated by determining the extent to which 191P4D12(b) is expressed in the tumor cells, with higher expression levels indicating more aggressive tumors.
  • Another embodiment is the evaluation of the integrity of 191P4D12(b) nucleotide and amino acid sequences in a biological sample, in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions and the like. The presence of one or more perturbations indicates more aggressive tumors.
  • methods for observing the progression of a malignancy in an individual over time comprise determining the level of 191P4D12(b) mRNA or 191P4D12(b) protein expressed by cells in a sample of the tumor, comparing the level so determined to the level of 191P4D12(b) mRNA or 191P4D12(b) protein expressed in an equivalent tissue sample taken from the same individual at a different time, wherein the degree of 191P4D12(b) mRNA or 191P4D12(b) protein expression in the tumor sample over time provides information on the progression of the cancer.
  • the progression of a cancer is evaluated by determining 191P4D12(b) expression in the tumor cells over time, where increased expression over time indicates a progression of the cancer. Also, one can evaluate the integrity 191P4D12(b) nucleotide and amino acid sequences in a biological sample in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions and the like, where the presence of one or more perturbations indicates a progression of the cancer.
  • Another embodiment of the invention is directed to methods for observing a coincidence between the expression of 191P4D12(b) gene and 191P4D12(b) gene products (or perturbations in 191P4D12(b) gene and 191P4D12(b) gene products) and a factor that is associated with malignancy, as a means for diagnosing and prognosticating the status of a tissue sample.
  • factors associated with malignancy can be utilized, such as the expression of genes associated with malignancy (e.g.
  • Methods for observing a coincidence between the expression of 191P4D12(b) gene and 191P4D12(b) gene products (or perturbations in 191P4D12(b) gene and 191P4D12(b) gene products) and another factor that is associated with malignancy are useful, for example, because the presence of a set of specific factors that coincide with disease provides information crucial for diagnosing and prognosticating the status of a tissue sample.
  • methods for observing a coincidence between the expression of 191P4D12(b) gene and 191P4D12(b) gene products entails detecting the overexpression of 191P4D12(b) mRNA or protein in a tissue sample, detecting the overexpression of PSA mRNA or protein in a tissue sample (or PSCA or PSM expression), and observing a coincidence of 191P4D12(b) mRNA or protein and PSA mRNA or protein overexpression (or PSCA or PSM expression).
  • the expression of 191P4D12(b) and PSA mRNA in prostate tissue is examined, where the coincidence of 191P4D12(b) and PSA mRNA overexpression in the sample indicates the existence of prostate cancer, prostate cancer susceptibility or the emergence or status of a prostate tumor.
  • Standard methods for the detection and quantification of 191P4D12(b) mRNA include in situ hybridization using labeled 191P4D12(b) riboprobes, Northern blot and related techniques using 191P4D12(b) polynucleotide probes, RT-PCR analysis using primers specific for 191P4D12(b), and other amplification type detection methods, such as, for example, branched DNA, SISBA, TMA and the like.
  • semi-quantitative RT-PCR is used to detect and quantify 191P4D12(b) mRNA expression.
  • Any number of primers capable of amplifying 191P4D12(b) can be used for this purpose, including but not limited to the various primer sets specifically described herein.
  • polyclonal or monoclonal antibodies specifically reactive with the wild-type 191P4D12(b) protein can be used in an immunohistochemical assay of biopsied tissue.
  • the 191P4D12(b) protein and nucleic acid sequences disclosed herein allow a skilled artisan to identify proteins, small molecules and other agents that interact with 191P4D12(b), as well as pathways activated by 191P4D12(b) via any one of a variety of art accepted protocols.
  • one can utilize one of the so-called interaction trap systems also referred to as the “two-hybrid assay”.
  • molecules interact and reconstitute a transcription factor which directs expression of a reporter gene, whereupon the expression of the reporter gene is assayed.
  • Other systems identify protein-protein interactions in vivo through reconstitution of a eukaryotic transcriptional activator, see, e.g., U.S. Pat. Nos.
  • peptide libraries can be screen peptide libraries to identify molecules that interact with 191P4D12(b) protein sequences.
  • peptides that bind to 191P4D12(b) are identified by screening libraries that encode a random or controlled collection of amino acids.
  • Peptides encoded by the libraries are expressed as fusion proteins of bacteriophage coat proteins, the bacteriophage particles are then screened against the 191P4D12(b) protein(s).
  • peptides having a wide variety of uses are thus identified without any prior information on the structure of the expected ligand or receptor molecule.
  • Typical peptide libraries and screening methods that can be used to identify molecules that interact with 191P4D12(b) protein sequences are disclosed for example in U.S. Pat. Nos. 5,723,286 issued 3 Mar. 1998 and 5,733,731 issued 31 Mar. 1998.
  • cell lines that express 191P4D12(b) are used to identify protein-protein interactions mediated by 191P4D12(b). Such interactions can be examined using immunoprecipitation techniques (see, e.g., Hamilton B. J., et al. Biochem. Biophys. Res. Commun. 1999, 261:646-51).
  • 191P4D12(b) protein can be immunoprecipitated from 191P4D12(b)-expressing cell lines using anti-191P4D12(b) antibodies.
  • antibodies against His-tag can be used in a cell line engineered to express fusions of 191P4D12(b) and a His-tag (vectors mentioned above).
  • the immunoprecipitated complex can be examined for protein association by procedures such as Western blotting, 35 S-methionine labeling of proteins, protein microsequencing, silver staining and two-dimensional gel electrophoresis.
  • Small molecules and ligands that interact with 191P4D12(b) can be identified through related embodiments of such screening assays. For example, small molecules can be identified that interfere with protein function, including molecules that interfere with 191P4D12(b)'s ability to mediate phosphorylation and de-phosphorylation, interaction with DNA or RNA molecules as an indication of regulation of cell cycles, second messenger signaling or tumorigenesis.
  • small molecules that modulate 191P4D12(b)-related ion channel, protein pump, or cell communication functions are identified and used to treat patients that have a cancer that expresses 191P4D12(b) (see, e.g., Hille, B., Ionic Channels of Excitable Membranes 2 nd Ed., Sinauer Assoc., Sunderland, Mass., 1992).
  • ligands that regulate 191P4D12(b) function can be identified based on their ability to bind 191P4D12(b) and activate a reporter construct. Typical methods are discussed for example in U.S. Pat. No. 5,928,868 issued 27 Jul.
  • hybrid ligands in which at least one ligand is a small molecule.
  • cells engineered to express a fusion protein of 191P4D12(b) and a DNA-binding protein are used to co-express a fusion protein of a hybrid ligand/small molecule and a cDNA library transcriptional activator protein.
  • the cells further contain a reporter gene, the expression of which is conditioned on the proximity of the first and second fusion proteins to each other, an event that occurs only if the hybrid ligand binds to target sites on both hybrid proteins. Those cells that express the reporter gene are selected and the unknown small molecule or the unknown ligand is identified. This method provides a means of identifying modulators, which activate or inhibit 191P4D12(b).
  • An embodiment of this invention comprises a method of screening for a molecule that interacts with a 191P4D12(b) amino acid sequence shown in FIG. 2 or FIG. 3 , comprising the steps of contacting a population of molecules with a 191P4D12(b) amino acid sequence, allowing the population of molecules and the 191P4D12(b) amino acid sequence to interact under conditions that facilitate an interaction, determining the presence of a molecule that interacts with the 191P4D12(b) amino acid sequence, and then separating molecules that do not interact with the 191P4D12(b) amino acid sequence from molecules that do.
  • the method further comprises purifying, characterizing and identifying a molecule that interacts with the 191P4D12(b) amino acid sequence.
  • the identified molecule can be used to modulate a function performed by 191P4D12(b).
  • the 191P4D12(b) amino acid sequence is contacted with a library of peptides.
  • 191P4D12(b) as a protein that is normally expressed in a restricted set of tissues, but which is also expressed in cancers such as those listed in Table I, opens a number of therapeutic approaches to the treatment of such cancers.
  • targeted antitumor therapies have been useful even when the targeted protein is expressed on normal tissues, even vital normal organ tissues.
  • a vital organ is one that is necessary to sustain life, such as the heart or colon.
  • a non-vital organ is one that can be removed whereupon the individual is still able to survive. Examples of non-vital organs are ovary, breast, and prostate.
  • Herceptin® is an FDA approved pharmaceutical that has as its active ingredient an antibody which is immunoreactive with the protein variously known as HER2, HER2/neu, and erb-b-2. It is marketed by Genentech and has been a commercially successful antitumor agent. Herceptin sales reached almost $400 million in 2002. Herceptin is a treatment for HER2 positive metastatic breast cancer. However, the expression of HER2 is not limited to such tumors. The same protein is expressed in a number of normal tissues. In particular, it is known that HER2/neu is present in normal kidney and heart, thus these tissues are present in all human recipients of Herceptin.
  • HER2/neu in normal kidney is also confirmed by Latif, Z., et al., B.J.U. International (2002) 89:5-9.
  • this article which evaluated whether renal cell carcinoma should be a preferred indication for anti-HER2 antibodies such as Herceptin
  • both protein and mRNA are produced in benign renal tissues.
  • HER2/neu protein was strongly overexpressed in benign renal tissue.
  • Herceptin is a very useful, FDA approved, and commercially successful drug.
  • the effect of Herceptin on cardiac tissue, i.e., “cardiotoxicity,” has merely been a side effect to treatment. When patients were treated with Herceptin alone, significant cardiotoxicity occurred in a very low percentage of patients.
  • kidney tissue is indicated to exhibit normal expression, possibly even higher expression than cardiac tissue, kidney has no appreciable Herceptin side effect whatsoever.
  • kidney tissue is indicated to exhibit normal expression, possibly even higher expression than cardiac tissue, kidney has no appreciable Herceptin side effect whatsoever.
  • cardiac tissue has manifested any appreciable side effect at all.
  • EGFR epidermal growth factor receptor
  • therapeutic approaches that inhibit the activity of a 191P4D12(b) protein are useful for patients suffering from a cancer that expresses 191P4D12(b).
  • These therapeutic approaches generally fall into two classes.
  • One class comprises various methods for inhibiting the binding or association of a 191P4D12(b) protein with its binding partner or with other proteins.
  • Another class comprises a variety of methods for inhibiting the transcription of a 191P4D12(b) gene or translation of 191P4D12(b) mRNA.
  • the invention provides cancer vaccines comprising a 191P4D12(b)-related protein or 191P4D12(b)-related nucleic acid.
  • cancer vaccines prevent and/or treat 191P4D12(b)-expressing cancers with minimal or no effects on non-target tissues.
  • the use of a tumor antigen in a vaccine that generates humoral and/or cell-mediated immune responses as anti-cancer therapy is well known in the art and has been employed in prostate cancer using human PSMA and rodent PAP immunogens (Hodge et al., 1995, Int. J. Cancer 63:231-237; Fong et al., 1997, J. Immunol. 159:3113-3117).
  • Such methods can be readily practiced by employing a 191P4D12(b)-related protein, or a 191P4D12(b)-encoding nucleic acid molecule and recombinant vectors capable of expressing and presenting the 191P4D12(b) immunogen (which typically comprises a number of antibody or T cell epitopes).
  • Skilled artisans understand that a wide variety of vaccine systems for delivery of immunoreactive epitopes are known in the art (see, e.g., Heryln et al., Ann Med 1999 February 31 (1):66-78; Maruyama et al., Cancer Immunol Immunother 2000 June 49 (3):123-32) Briefly, such methods of generating an immune response (e.g.
  • a mammal's immune system comprises the steps of: exposing the mammal's immune system to an immunoreactive epitope (e.g. an epitope present in a 191P4D12(b) protein shown in FIG. 3 or analog or homolog thereof) so that the mammal generates an immune response that is specific for that epitope (e.g. generates antibodies that specifically recognize that epitope).
  • an immunoreactive epitope e.g. an epitope present in a 191P4D12(b) protein shown in FIG. 3 or analog or homolog thereof
  • a 191P4D12(b) immunogen contains a biological motif, see e.g., Tables VIII-XXI and XXII-XLIX, or a peptide of a size range from 191P4D12(b) indicated in FIG. 5 , FIG. 6 , FIG. 7 , FIG. 8 , and FIG. 9 .
  • Such vaccine compositions can include, for example, lipopeptides (e.g., Vitiello, A. et al., J. Clin. Invest. 95:341, 1995), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) (“PLG”) microspheres (see, e.g., Eldridge, et al., Molec. Immunol.
  • lipopeptides e.g., Vitiello, A. et al., J. Clin. Invest. 95:341, 1995
  • PLG poly(DL-lactide-co-glycolide)
  • Toxin-targeted delivery technologies also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Mass.) may also be used.
  • the vaccine compositions of the invention can also be used in conjunction with other treatments used for cancer, e.g., surgery, chemotherapy, drug therapies, radiation therapies, etc. including use in combination with immune adjuvants such as IL-2, IL-12, GM-CSF, and the like.
  • CTL epitopes can be determined using specific algorithms to identify peptides within 191P4D12(b) protein that bind corresponding HLA alleles (see e.g., Table IV; EpimerTM and EpimatrixTM, Brown University, and BIMAS.
  • a 191P4D12(b) immunogen contains one or more amino acid sequences identified using techniques well known in the art, such as the sequences shown in Tables VIII-XXI and XXII-XLIX or a peptide of 8, 9, 10 or 11 amino acids specified by an HLA Class I motif/supermotif (e.g., Table IV (A), Table IV (D), or Table IV (E)) and/or a peptide of at least 9 amino acids that comprises an HLA Class II motif/supermotif (e.g., Table IV (B) or Table IV (C)).
  • HLA Class I motif/supermotif e.g., Table IV (A), Table IV (D), or Table IV (E)
  • HLA Class II motif/supermotif e.g., Table IV (B) or Table IV (C)
  • the HLA Class I binding groove is essentially closed ended so that peptides of only a particular size range can fit into the groove and be bound, generally HLA Class I epitopes are 8, 9, 10, or 11 amino acids long.
  • the HLA Class II binding groove is essentially open ended; therefore a peptide of about 9 or more amino acids can be bound by an HLA Class II molecule. Due to the binding groove differences between HLA Class I and II, HLA Class I motifs are length specific, i.e., position two of a Class I motif is the second amino acid in an amino to carboxyl direction of the peptide.
  • HLA Class II epitopes are often 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 amino acids long, or longer than 25 amino acids.
  • Methods of generating an immune response in a mammal comprise exposing the mammal's immune system to an immunogenic epitope on a protein (e.g. a 191P4D12(b) protein) so that an immune response is generated.
  • a protein e.g. a 191P4D12(b) protein
  • a typical embodiment consists of a method for generating an immune response to 191P4D12(b) in a host, by contacting the host with a sufficient amount of at least one 191P4D12(b) B cell or cytotoxic T-cell epitope or analog thereof; and at least one periodic interval thereafter re-contacting the host with the 191P4D12(b) B cell or cytotoxic T-cell epitope or analog thereof.
  • a specific embodiment consists of a method of generating an immune response against a 191P4D12(b)-related protein or a man-made multiepitopic peptide comprising: administering 191P4D12(b) immunogen (e.g.
  • a 191P4D12(b) protein or a peptide fragment thereof, a 191P4D12(b) fusion protein or analog etc. in a vaccine preparation to a human or another mammal.
  • vaccine preparations further contain a suitable adjuvant (see, e.g., U.S. Pat. No. 6,146,635) or a universal helper epitope such as a PADRETM peptide (Epimmune Inc., San Diego, Calif.; see, e.g., Alexander et al., J. Immunol. 2000 164 (3); 164 (3): 1625-1633; Alexander et al., Immunity 1994 1 (9): 751-761 and Alexander et al., Immunol.
  • a suitable adjuvant see, e.g., U.S. Pat. No. 6,146,635
  • a universal helper epitope such as a PADRETM peptide (Epimmune Inc., San Diego, Calif.;
  • An alternative method comprises generating an immune response in an individual against a 191P4D12(b) immunogen by: administering in vivo to muscle or skin of the individual's body a DNA molecule that comprises a DNA sequence that encodes a 191P4D12(b) immunogen, the DNA sequence operatively linked to regulatory sequences which control the expression of the DNA sequence; wherein the DNA molecule is taken up by cells, the DNA sequence is expressed in the cells and an immune response is generated against the immunogen (see, e.g., U.S. Pat. No. 5,962,428).
  • a genetic vaccine facilitator such as anionic lipids; saponins; lectins; estrogenic compounds; hydroxylated lower alkyls; dimethyl sulfoxide; and urea is also administered.
  • an antiidiotypic antibody can be administered that mimics 191P4D12(b), in order to generate a response to the target antigen.
  • Vaccine compositions of the invention include nucleic acid-mediated modalities.
  • DNA or RNA that encode protein(s) of the invention can be administered to a patient.
  • Genetic immunization methods can be employed to generate prophylactic or therapeutic humoral and cellular immune responses directed against cancer cells expressing 191P4D12(b).
  • Constructs comprising DNA encoding a 191P4D12(b)-related protein/immunogen and appropriate regulatory sequences can be injected directly into muscle or skin of an individual, such that the cells of the muscle or skin take-up the construct and express the encoded 191P4D12(b) protein/immunogen.
  • a vaccine comprises a 191P4D12(b)-related protein.
  • 191P4D12(b)-related protein immunogen results in the generation of prophylactic or therapeutic humoral and cellular immunity against cells that bear a 191P4D12(b) protein.
  • Various prophylactic and therapeutic genetic immunization techniques known in the art can be used (for review, see information and references published at Internet address genweb.com). Nucleic acid-based delivery is described, for instance, in Wolff et. al., Science 247:1465 (1990) as well as U.S. Pat. Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720.
  • DNA-based delivery technologies include “naked DNA”, facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated (“gene gun”) or pressure-mediated delivery (see, e.g., U.S. Pat. No. 5,922,687).
  • proteins of the invention can be expressed via viral or bacterial vectors.
  • viral gene delivery systems that can be used in the practice of the invention include, but are not limited to, vaccinia, fowlpox, canarypox, adenovirus, influenza, poliovirus, adeno-associated virus, lentivirus, and Sindbis virus (see, e.g., Restifo, 1996, Curr. Opin. Immunol. 8:658-663; Tsang et al. J. Natl. Cancer Inst. 87:982-990 (1995)).
  • Non-viral delivery systems can also be employed by introducing naked DNA encoding a 191P4D12(b)-related protein into the patient (e.g., intramuscularly or intradermally) to induce an anti-tumor response.
  • Vaccinia virus is used, for example, as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into a host, the recombinant vaccinia virus expresses the protein immunogenic peptide, and thereby elicits a host immune response.
  • Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Pat. No. 4,722,848.
  • Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al., Nature 351:456-460 (1991).
  • BCG vectors are described in Stover et al., Nature 351:456-460 (1991).
  • a wide variety of other vectors useful for therapeutic administration or immunization of the peptides of the invention e.g. adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified an
  • gene delivery systems are used to deliver a 191P4D12(b)-related nucleic acid molecule.
  • the full-length human 191P4D12(b) cDNA is employed.
  • 191P4D12(b) nucleic acid molecules encoding specific cytotoxic T lymphocyte (CTL) and/or antibody epitopes are employed.
  • APCs antigen presenting cells
  • DC dendritic cells
  • IL-12 antigen presenting cells
  • PSMA prostate-specific membrane antigen
  • dendritic cells can be used to present 191P4D12(b) peptides to T cells in the context of MHC class I or II molecules.
  • autologous dendritic cells are pulsed with 191P4D12(b) peptides capable of binding to MHC class I and/or class II molecules.
  • dendritic cells are pulsed with the complete 191P4D12(b) protein.
  • Yet another embodiment involves engineering the overexpression of a 191P4D12(b) gene in dendritic cells using various implementing vectors known in the art, such as adenovirus (Arthur et al., 1997, Cancer Gene Ther. 4:17-25), retrovirus (Henderson et al., 1996, Cancer Res.
  • Cells that express 191P4D12(b) can also be engineered to express immune modulators, such as GM-CSF, and used as immunizing agents.
  • 191P4D12(b) is an attractive target for antibody-based therapeutic strategies.
  • a number of antibody strategies are known in the art for targeting both extracellular and intracellular molecules (see, e.g., complement and ADCC mediated killing as well as the use of intrabodies).
  • 191P4D12(b) is expressed by cancer cells of various lineages relative to corresponding normal cells, systemic administration of 191P4D12(b)-immunoreactive compositions are prepared that exhibit excellent sensitivity without toxic, non-specific and/or non-target effects caused by binding of the immunoreactive composition to non-target organs and tissues.
  • Antibodies specifically reactive with domains of 191P4D12(b) are useful to treat 191P4D12(b)-expressing cancers systemically, either as conjugates with a toxin or therapeutic agent, or as naked antibodies capable of inhibiting cell proliferation or function.
  • 191P4D12(b) antibodies can be introduced into a patient such that the antibody binds to 191P4D12(b) and modulates a function, such as an interaction with a binding partner, and consequently mediates destruction of the tumor cells and/or inhibits the growth of the tumor cells.
  • Mechanisms by which such antibodies exert a therapeutic effect can include complement-mediated cytolysis, antibody-dependent cellular cytotoxicity, modulation of the physiological function of 191P4D12(b), inhibition of ligand binding or signal transduction pathways, modulation of tumor cell differentiation, alteration of tumor angiogenesis factor profiles, and/or apoptosis.
  • antibodies can be used to specifically target and bind immunogenic molecules such as an immunogenic region of a 191P4D12(b) sequence shown in FIG. 2 or FIG. 3 .
  • cytotoxic agents see, e.g., Slevers et al. Blood 93:11 3678-3684 (Jun. 1, 1999)).
  • cytotoxic and/or therapeutic agents When cytotoxic and/or therapeutic agents are delivered directly to cells, such as by conjugating them to antibodies specific for a molecule expressed by that cell (e.g. 191P4D12(b)), the cytotoxic agent will exert its known biological effect (i.e. cytotoxicity) on those cells.
  • compositions and methods for using antibody-cytotoxic agent conjugates to kill cells are known in the art.
  • typical methods entail administering to an animal having a tumor a biologically effective amount of a conjugate comprising a selected cytotoxic and/or therapeutic agent linked to a targeting agent (e.g. an anti-191P4D12(b) antibody) that binds to a marker (e.g. 191P4D12(b)) expressed, accessible to binding or localized on the cell surfaces.
  • a targeting agent e.g. an anti-191P4D12(b) antibody
  • a marker e.g. 191P4D12(b)
  • a typical embodiment is a method of delivering a cytotoxic and/or therapeutic agent to a cell expressing 191P4D12(b), comprising conjugating the cytotoxic agent to an antibody that immunospecifically binds to a 191P4D12(b) epitope, and, exposing the cell to the antibody-agent conjugate.
  • Another illustrative embodiment is a method of treating an individual suspected of suffering from metastasized cancer, comprising a step of administering parenterally to said individual a pharmaceutical composition comprising a therapeutically effective amount of an antibody conjugated to a cytotoxic and/or therapeutic agent.
  • Cancer immunotherapy using anti-191P4D12(b) antibodies can be done in accordance with various approaches that have been successfully employed in the treatment of other types of cancer, including but not limited to colon cancer (Arlen et al., 1998, Crit. Rev. Immunol. 18:133-138), multiple myeloma (Ozaki et al., 1997, Blood 90:3179-3186, Tsunenari et al., 1997, Blood 90:2437-2444), gastric cancer (Kasprzyk et al., 1992, Cancer Res. 52:2771-2776), B-cell lymphoma (Funakoshi et al., 1996, J. Immunother. Emphasis Tumor Immunol.
  • leukemia Zhong et al., 1996, Leuk. Res. 20:581-589
  • colorectal cancer Moun et al., 1994, Cancer Res. 54:6160-6166; Velders et al., 1995, Cancer Res. 55:4398-4403)
  • breast cancer Shepard et al., 1991, J. Clin. Immunol. 11:117-127.
  • Some therapeutic approaches involve conjugation of naked antibody to a toxin or radioisotope, such as the conjugation of Y 91 or I 131 to anti-CD20 antibodies (e.g., ZevalinTM, IDEC Pharmaceuticals Corp.
  • antibodies and other therapeutic agents such as HerceptinTM (trastuzumab) with paclitaxel (Genentech, Inc.).
  • the antibodies can be conjugated to a therapeutic agent.
  • 191P4D12(b) antibodies can be administered in conjunction with radiation, chemotherapy or hormone ablation.
  • antibodies can be conjugated to a toxin such as calicheamicin (e.g., MylotargTM, Wyeth-Ayerst, Madison, N.J., a recombinant humanized IgG 4 kappa antibody conjugated to antitumor antibiotic calicheamicin) or a maytansinoid (e.g., taxane-based Tumor-Activated Prodrug, TAP, platform, ImmunoGen, Cambridge, Mass., also see e.g., U.S. Pat. No. 5,416,064).
  • a toxin such as calicheamicin (e.g., MylotargTM, Wyeth-Ayerst, Madison, N.J., a recombinant humanized IgG 4 kappa antibody conjugated to antitumor antibiotic calicheamicin) or a maytansinoid (e.g., taxane-based Tumor-Activated Prodrug, TAP, platform, ImmunoGen, Cambridge
  • antibody therapy can be particularly appropriate in advanced or metastatic cancers. Treatment with the antibody therapy of the invention is indicated for patients who have received one or more rounds of chemotherapy. Alternatively, antibody therapy of the invention is combined with a chemotherapeutic or radiation regimen for patients who have not received chemotherapeutic treatment. Additionally, antibody therapy can enable the use of reduced dosages of concomitant chemotherapy, particularly for patients who do not tolerate the toxicity of the chemotherapeutic agent very well. Fan et al. (Cancer Res. 53:4637-4642, 1993), Prewett et al. (International J. of Onco. 9:217-224, 1996), and Hancock et al. (Cancer Res. 51:4575-4580, 1991) describe the use of various antibodies together with chemotherapeutic agents.
  • antibody therapy can be particularly appropriate in advanced or metastatic cancers. Treatment with the antibody therapy of the invention is indicated for patients who have received one or more rounds of chemotherapy. Alternatively, antibody therapy of the invention is combined with a chemotherapeutic or radiation regimen for patients who have not received chemotherapeutic treatment. Additionally, antibody therapy can enable the use of reduced dosages of concomitant chemotherapy, particularly for patients who do not tolerate the toxicity of the chemotherapeutic agent very well.
  • Cancer patients can be evaluated for the presence and level of 191P4D12(b) expression, preferably using immunohistochemical assessments of tumor tissue, quantitative 191P4D12(b) imaging, or other techniques that reliably indicate the presence and degree of 191P4D12(b) expression. Immunohistochemical analysis of tumor biopsies or surgical specimens is preferred for this purpose. Methods for immunohistochemical analysis of tumor tissues are well known in the art.
  • Anti-191P4D12(b) monoclonal antibodies that treat prostate and other cancers include those that initiate a potent immune response against the tumor or those that are directly cytotoxic.
  • anti-191P4D12(b) monoclonal antibodies can elicit tumor cell lysis by either complement-mediated or antibody-dependent cell cytotoxicity (ADCC) mechanisms, both of which require an intact Fc portion of the immunoglobulin molecule for interaction with effector cell Fc receptor sites on complement proteins.
  • ADCC antibody-dependent cell cytotoxicity
  • anti-191P4D12(b) mAbs that exert a direct biological effect on tumor growth are useful to treat cancers that express 191P4D12(b).
  • Mechanisms by which directly cytotoxic mAbs act include: inhibition of cell growth, modulation of cellular differentiation, modulation of tumor angiogenesis factor profiles, and the induction of apoptosis.
  • the mechanism(s) by which a particular anti-191P4D12(b) mAb exerts an anti-tumor effect is evaluated using any number of in vitro assays that evaluate cell death such as ADCC, ADMMC, complement-mediated cell lysis, and so forth, as is generally known in the art.
  • preferred monoclonal antibodies used in the therapeutic methods of the invention are those that are either fully human or humanized and that bind specifically to the target 191P4D12(b) antigen with high affinity but exhibit low or no antigenicity in the patient.
  • Therapeutic methods of the invention contemplate the administration of single anti-191P4D12(b) mAbs as well as combinations, or cocktails, of different mAbs.
  • Such mAb cocktails can have certain advantages inasmuch as they contain mAbs that target different epitopes, exploit different effector mechanisms or combine directly cytotoxic mAbs with mAbs that rely on immune effector functionality. Such mAbs in combination can exhibit synergistic therapeutic effects.
  • anti-191P4D12(b) mAbs can be administered concomitantly with other therapeutic modalities, including but not limited to various chemotherapeutic agents, androgen-blockers, immune modulators (e.g., IL-2, GM-CSF), surgery or radiation.
  • the anti-191P4D12(b) mAbs are administered in their “naked” or unconjugated form, or can have a therapeutic agent(s) conjugated to them.
  • Anti-191P4D12(b) antibody formulations are administered via any route capable of delivering the antibodies to a tumor cell.
  • Routes of administration include, but are not limited to, intravenous, intraperitoneal, intramuscular, intratumor, intradermal, and the like.
  • Treatment generally involves repeated administration of the anti-191P4D12(b) antibody preparation, via an acceptable route of administration such as intravenous injection (IV), typically at a dose in the range of about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25 mg/kg body weight.
  • IV intravenous injection
  • doses in the range of 10-1000 mg mAb per week are effective and well tolerated.
  • an initial loading dose of approximately 4 mg/kg patient body weight IV, followed by weekly doses of about 2 mg/kg IV of the anti-191P4D12(b) mAb preparation represents an acceptable dosing regimen.
  • the initial loading dose is administered as a 90-minute or longer infusion.
  • the periodic maintenance dose is administered as a 30 minute or longer infusion, provided the initial dose was well tolerated.
  • various factors can influence the ideal dose regimen in a particular case.
  • Such factors include, for example, the binding affinity and half life of the Ab or mAbs used, the degree of 191P4D12(b) expression in the patient, the extent of circulating shed 191P4D12(b) antigen, the desired steady-state antibody concentration level, frequency of treatment, and the influence of chemotherapeutic or other agents used in combination with the treatment method of the invention, as well as the health status of a particular patient.
  • patients should be evaluated for the levels of 191P4D12(b) in a given sample (e.g. the levels of circulating 191P4D12(b) antigen and/or 191P4D12(b) expressing cells) in order to assist in the determination of the most effective dosing regimen, etc.
  • levels of 191P4D12(b) in a given sample e.g. the levels of circulating 191P4D12(b) antigen and/or 191P4D12(b) expressing cells
  • Such evaluations are also used for monitoring purposes throughout therapy, and are useful to gauge therapeutic success in combination with the evaluation of other parameters (for example, urine cytology and/or ImmunoCyt levels in bladder cancer therapy, or by analogy, serum PSA levels in prostate cancer therapy).
  • Anti-idiotypic anti-191P4D12(b) antibodies can also be used in anti-cancer therapy as a vaccine for inducing an immune response to cells expressing a 191P4D12(b)-related protein.
  • the generation of anti-idiotypic antibodies is well known in the art; this methodology can readily be adapted to generate anti-idiotypic anti-191P4D12(b) antibodies that mimic an epitope on a 191P4D12(b)-related protein (see, for example, Wagner et al., 1997, Hybridoma 16: 33-40; Foon et al., 1995, J. Clin. Invest. 96:334-342; Herlyn et al., 1996, Cancer Immunol. Immunother. 43:65-76).
  • Such an anti-idiotypic antibody can be used in cancer vaccine strategies.
  • Vaccines and methods of preparing vaccines that contain an immunogenically effective amount of one or more HLA-binding peptides as described herein are further embodiments of the invention.
  • vaccines in accordance with the invention encompass compositions of one or more of the claimed peptides.
  • a peptide can be present in a vaccine individually.
  • the peptide can exist as a homopolymer comprising multiple copies of the same peptide, or as a heteropolymer of various peptides.
  • Polymers have the advantage of increased immunological reaction and, where different peptide epitopes are used to make up the polymer, the additional ability to induce antibodies and/or CTLs that react with different antigenic determinants of the pathogenic organism or tumor-related peptide targeted for an immune response.
  • the composition can be a naturally occurring region of an antigen or can be prepared, e.g., recombinantly or by chemical synthesis.
  • Carriers that can be used with vaccines of the invention are well known in the art, and include, e.g., thyroglobulin, albumins such as human serum albumin, tetanus toxoid, polyamino acids such as poly L -lysine, poly L -glutamic acid, influenza, hepatitis B virus core protein, and the like.
  • the vaccines can contain a physiologically tolerable (i.e., acceptable) diluent such as water, or saline, preferably phosphate buffered saline.
  • the vaccines also typically include an adjuvant.
  • Adjuvants such as incomplete Freund's adjuvant, aluminum phosphate, aluminum hydroxide, or alum are examples of materials well known in the art. Additionally, as disclosed herein, CTL responses can be primed by conjugating peptides of the invention to lipids, such as tripalmitoyl-S-glycerylcysteinlyseryl-serine (P 3 CSS). Moreover, an adjuvant such as a synthetic cytosine-phosphorothiolated-guanine-containing (CpG) oligonucleotides has been found to increase CTL responses 10- to 100-fold. (see, e.g. Davila and Celis, J. Immunol. 165:539-547 (2000))
  • the immune system of the host Upon immunization with a peptide composition in accordance with the invention, via injection, aerosol, oral, transdermal, transmucosal, intrapleural, intrathecal, or other suitable routes, the immune system of the host responds to the vaccine by producing large amounts of CTLs and/or HTLs specific for the desired antigen. Consequently, the host becomes at least partially immune to later development of cells that express or overexpress 191P4D12(b) antigen, or derives at least some therapeutic benefit when the antigen was tumor-associated.
  • class I peptide components may be desirable to combine with components that induce or facilitate neutralizing antibody and or helper T cell responses directed to the target antigen.
  • a preferred embodiment of such a composition comprises class I and class II epitopes in accordance with the invention.
  • An alternative embodiment of such a composition comprises a class I and/or class II epitope in accordance with the invention, along with a cross reactive HTL epitope such as PADRETM (Epimmune, San Diego, Calif.) molecule (described e.g., in U.S. Pat. No. 5,736,142).
  • a vaccine of the invention can also include antigen-presenting cells (APC), such as dendritic cells (DC), as a vehicle to present peptides of the invention.
  • APC antigen-presenting cells
  • DC dendritic cells
  • Vaccine compositions can be created in vitro, following dendritic cell mobilization and harvesting, whereby loading of dendritic cells occurs in vitro.
  • dendritic cells are transfected, e.g., with a minigene in accordance with the invention, or are pulsed with peptides.
  • the dendritic cell can then be administered to a patient to elicit immune responses in vivo.
  • Vaccine compositions either DNA- or peptide-based, can also be administered in vivo in combination with dendritic cell mobilization whereby loading of dendritic cells occurs in vivo.
  • the following principles are utilized when selecting an array of epitopes for inclusion in a polyepitopic composition for use in a vaccine, or for selecting discrete epitopes to be included in a vaccine and/or to be encoded by nucleic acids such as a minigene. It is preferred that each of the following principles be balanced in order to make the selection.
  • the multiple epitopes to be incorporated in a given vaccine composition may be, but need not be, contiguous in sequence in the native antigen from which the epitopes are derived.
  • Epitopes are selected which, upon administration, mimic immune responses that have been observed to be correlated with tumor clearance.
  • this includes 3-4 epitopes that come from at least one tumor associated antigen (TAA).
  • TAA tumor associated antigen
  • HLA Class II a similar rationale is employed; again 3-4 epitopes are selected from at least one TAA (see, e.g., Rosenberg et al., Science 278:1447-1450).
  • Epitopes from one TAA may be used in combination with epitopes from one or more additional TAAs to produce a vaccine that targets tumors with varying expression patterns of frequently-expressed TAAs.
  • Epitopes are selected that have the requisite binding affinity established to be correlated with immunogenicity: for HLA Class I an IC 50 of 500 nM or less, often 200 nM or less; and for Class II an IC 50 of 1000 nM or less.
  • Sufficient supermotif bearing-peptides, or a sufficient array of allele-specific motif-bearing peptides, are selected to give broad population coverage. For example, it is preferable to have at least 80% population coverage.
  • a Monte Carlo analysis a statistical evaluation known in the art, can be employed to assess the breadth, or redundancy of, population coverage.
  • Nested epitopes occur where at least two epitopes overlap in a given peptide sequence.
  • a nested peptide sequence can comprise B cell, HLA class I and/or HLA class II epitopes.
  • a general objective is to provide the greatest number of epitopes per sequence.
  • an aspect is to avoid providing a peptide that is any longer than the amino terminus of the amino terminal epitope and the carboxyl terminus of the carboxyl terminal epitope in the peptide.
  • a multi-epitopic sequence such as a sequence comprising nested epitopes, it is generally important to screen the sequence in order to insure that it does not have pathological or other deleterious biological properties.
  • a polyepitopic protein is created, or when creating a minigene, an objective is to generate the smallest peptide that encompasses the epitopes of interest. This principle is similar, if not the same as that employed when selecting a peptide comprising nested epitopes. However, with an artificial polyepitopic peptide, the size minimization objective is balanced against the need to integrate any spacer sequences between epitopes in the polyepitopic protein.
  • Spacer amino acid residues can, for example, be introduced to avoid junctional epitopes (an epitope recognized by the immune system, not present in the target antigen, and only created by the man-made juxtaposition of epitopes), or to facilitate cleavage between epitopes and thereby enhance epitope presentation.
  • Junctional epitopes are generally to be avoided because the recipient may generate an immune response to that non-native epitope. Of particular concern is a junctional epitope that is a “dominant epitope.” A dominant epitope may lead to such a zealous response that immune responses to other epitopes are diminished or suppressed.
  • potential peptide epitopes can also be selected on the basis of their conservancy.
  • a criterion for conservancy may define that the entire sequence of an HLA class I binding peptide or the entire 9-mer core of a class II binding peptide be conserved in a designated percentage of the sequences evaluated for a specific protein antigen.
  • Nucleic acids encoding the peptides of the invention are a particularly useful embodiment of the invention. Epitopes for inclusion in a minigene are preferably selected according to the guidelines set forth in the previous section.
  • a preferred means of administering nucleic acids encoding the peptides of the invention uses minigene constructs encoding a peptide comprising one or multiple epitopes of the invention.
  • a vaccine may also comprise epitopes that are derived from other TAAs.
  • the immunogenicity of a multi-epitopic minigene can be confirmed in transgenic mice to evaluate the magnitude of CTL induction responses against the epitopes tested. Further, the immunogenicity of DNA-encoded epitopes in vivo can be correlated with the in vitro responses of specific CTL lines against target cells transfected with the DNA plasmid. Thus, these experiments can show that the minigene serves to both: 1.) generate a CTL response and 2.) that the induced CTLs recognized cells expressing the encoded epitopes.
  • the amino acid sequences of the epitopes may be reverse translated.
  • a human codon usage table can be used to guide the codon choice for each amino acid.
  • These epitope-encoding DNA sequences may be directly adjoined, so that when translated, a continuous polypeptide sequence is created.
  • additional elements can be incorporated into the minigene design.
  • amino acid sequences that can be reverse translated and included in the minigene sequence include: HLA class I epitopes, HLA class II epitopes, antibody epitopes, a ubiquitination signal sequence, and/or an endoplasmic reticulum targeting signal.
  • HLA presentation of CTL and HTL epitopes may be improved by including synthetic (e.g. poly-alanine) or naturally-occurring flanking sequences adjacent to the CTL or HTL epitopes; these larger peptides comprising the epitope(s) are within the scope of the invention.
  • the minigene sequence may be converted to DNA by assembling oligonucleotides that encode the plus and minus strands of the minigene. Overlapping oligonucleotides (30-100 bases long) may be synthesized, phosphorylated, purified and annealed under appropriate conditions using well known techniques. The ends of the oligonucleotides can be joined, for example, using T4 DNA ligase. This synthetic minigene, encoding the epitope polypeptide, can then be cloned into a desired expression vector.
  • Standard regulatory sequences well known to those of skill in the art are preferably included in the vector to ensure expression in the target cells.
  • a promoter with a down-stream cloning site for minigene insertion a polyadenylation signal for efficient transcription termination; an E. coli origin of replication; and an E. coli selectable marker (e.g. ampicillin or kanamycin resistance).
  • Numerous promoters can be used for this purpose, e.g., the human cytomegalovirus (hCMV) promoter. See, e.g., U.S. Pat. Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences.
  • introns are required for efficient gene expression, and one or more synthetic or naturally-occurring introns could be incorporated into the transcribed region of the minigene.
  • mRNA stabilization sequences and sequences for replication in mammalian cells may also be considered for increasing minigene expression.
  • the minigene is cloned into the polylinker region downstream of the promoter.
  • This plasmid is transformed into an appropriate E. coli strain, and DNA is prepared using standard techniques. The orientation and DNA sequence of the minigene, as well as all other elements included in the vector, are confirmed using restriction mapping and DNA sequence analysis. Bacterial cells harboring the correct plasmid can be stored as a master cell bank and a working cell bank.
  • immunostimulatory sequences appear to play a role in the immunogenicity of DNA vaccines. These sequences may be included in the vector, outside the minigene coding sequence, if desired to enhance immunogenicity.
  • a bi-cistronic expression vector which allows production of both the minigene-encoded epitopes and a second protein (included to enhance or decrease immunogenicity) can be used.
  • proteins or polypeptides that could beneficially enhance the immune response if co-expressed include cytokines (e.g., IL-2, IL-12, GM-CSF), cytokine-inducing molecules (e.g., LeIF), costimulatory molecules, or for HTL responses, pan-DR binding proteins (PADRETM, Epimmune, San Diego, Calif.).
  • Helper (HTL) epitopes can be joined to intracellular targeting signals and expressed separately from expressed CTL epitopes; this allows direction of the HTL epitopes to a cell compartment different than that of the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the HLA class II pathway, thereby improving HTL induction.
  • immunosuppressive molecules e.g. TGF- ⁇
  • TGF- ⁇ immunosuppressive molecules
  • Therapeutic quantities of plasmid DNA can be produced for example, by fermentation in E. coli , followed by purification. Aliquots from the working cell bank are used to inoculate growth medium, and grown to saturation in shaker flasks or a bioreactor according to well-known techniques. Plasmid DNA can be purified using standard bioseparation technologies such as solid phase anion-exchange resins supplied by QIAGEN, Inc. (Valencia, Calif.). If required, supercoiled DNA can be isolated from the open circular and linear forms using gel electrophoresis or other methods.
  • Purified plasmid DNA can be prepared for injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffer saline (PBS). This approach, known as “naked DNA,” is currently being used for intramuscular (IM) administration in clinical trials. To maximize the immunotherapeutic effects of minigene DNA vaccines, an alternative method for formulating purified plasmid DNA may be desirable. A variety of methods have been described, and new techniques may become available.
  • Cationic lipids, glycolipids, and fusogenic liposomes can also be used in the formulation (see, e.g., as described by WO 93/24640; Mannino & Gould-Fogerite, BioTechniques 6 (7): 682 (1988); U.S. Pat. No. 5,279,833; WO 91/06309; and Felgner, et al., Proc. Nat'l Acad. Sci. USA 84:7413 (1987).
  • peptides and compounds referred to collectively as protective, interactive, non-condensing compounds could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types.
  • Target cell sensitization can be used as a functional assay for expression and HLA class I presentation of minigene-encoded CTL epitopes.
  • the plasmid DNA is introduced into a mammalian cell line that is suitable as a target for standard CTL chromium release assays.
  • the transfection method used will be dependent on the final formulation. Electroporation can be used for “naked” DNA, whereas cationic lipids allow direct in vitro transfection.
  • a plasmid expressing green fluorescent protein (GFP) can be co-transfected to allow enrichment of transfected cells using fluorescence activated cell sorting (FACS).
  • FACS fluorescence activated cell sorting
  • HTL epitopes are then chromium-51 ( 51 Cr) labeled and used as target cells for epitope-specific CTL lines; cytolysis, detected by 51 Cr release, indicates both production of, and HLA presentation of, minigene-encoded CTL epitopes. Expression of HTL epitopes may be evaluated in an analogous manner using assays to assess HTL activity.
  • In vivo immunogenicity is a second approach for functional testing of minigene DNA formulations.
  • Transgenic mice expressing appropriate human HLA proteins are immunized with the DNA product.
  • the dose and route of administration are formulation dependent (e.g., IM for DNA in PBS, intraperitoneal (i.p.) for lipid-complexed DNA).
  • Twenty-one days after immunization splenocytes are harvested and restimulated for one week in the presence of peptides encoding each epitope being tested. Thereafter, for CTL effector cells, assays are conducted for cytolysis of peptide-loaded, 51 Cr-labeled target cells using standard techniques.
  • Lysis of target cells that were sensitized by HLA loaded with peptide epitopes, corresponding to minigene-encoded epitopes, demonstrates DNA vaccine function for in vivo induction of CTLs. Immunogenicity of HTL epitopes is confirmed in transgenic mice in an analogous manner.
  • nucleic acids can be administered using ballistic delivery as described, for instance, in U.S. Pat. No. 5,204,253.
  • particles comprised solely of DNA are administered.
  • DNA can be adhered to particles, such as gold particles.
  • Minigenes can also be delivered using other bacterial or viral delivery systems well known in the art, e.g., an expression construct encoding epitopes of the invention can be incorporated into a viral vector such as vaccinia.
  • Vaccine compositions comprising CTL peptides of the invention can be modified, e.g., analoged, to provide desired attributes, such as improved serum half life, broadened population coverage or enhanced immunogenicity.
  • the ability of a peptide to induce CTL activity can be enhanced by linking the peptide to a sequence which contains at least one epitope that is capable of inducing a T helper cell response.
  • a CTL peptide can be directly linked to a T helper peptide, often CTL epitope/HTL epitope conjugates are linked by a spacer molecule.
  • the spacer is typically comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions.
  • the spacers are typically selected from, e.g., Ala, Gly, or other neutral spacers of nonpolar amino acids or neutral polar amino acids.
  • the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo-oligomer. When present, the spacer will usually be at least one or two residues, more usually three to six residues and sometimes 10 or more residues.
  • the CTL peptide epitope can be linked to the T helper peptide epitope either directly or via a spacer either at the amino or carboxy terminus of the CTL peptide.
  • the amino terminus of either the immunogenic peptide or the T helper peptide may be acylated.
  • the T helper peptide is one that is recognized by T helper cells present in a majority of a genetically diverse population. This can be accomplished by selecting peptides that bind to many, most, or all of the HLA class II molecules.
  • Examples of such amino acid bind many HLA Class II molecules include sequences from antigens such as tetanus toxoid at positions 830-843 (QYIKANSKFIGITE; SEQ ID NO:44), Plasmodium falciparum circumsporozoite (CS) protein at positions 378-398 (DIEKKIAKMEKASSVFNVVNS; SEQ ID NO:45), and Streptococcus 18 kD protein at positions 116-131 (GAVDSILGGVATYGAA; SEQ ID NO:46).
  • Other examples include peptides bearing a DR 1-4-7 supermotif, or either of the DR3 motifs.
  • An alternative of a pan-DR binding epitope comprises all “L” natural amino acids and can be provided in the form of nucleic acids that encode the epitope.
  • HTL peptide epitopes can also be modified to alter their biological properties. For example, they can be modified to include D -amino acids to increase their resistance to proteases and thus extend their serum half life, or they can be conjugated to other molecules such as lipids, proteins, carbohydrates, and the like to increase their biological activity.
  • a T helper peptide can be conjugated to one or more palmitic acid chains at either the amino or carboxyl termini.
  • compositions of the invention at least one component which primes B lymphocytes or T lymphocytes.
  • Lipids have been identified as agents capable of priming CTL in vivo.
  • palmitic acid residues can be attached to the ⁇ - and ⁇ -amino groups of a lysine residue and then linked, e.g., via one or more linking residues such as Gly, Gly-Gly-, Ser, Ser-Ser, or the like, to an immunogenic peptide.
  • the lipidated peptide can then be administered either directly in a micelle or particle, incorporated into a liposome, or emulsified in an adjuvant, e.g., incomplete Freund's adjuvant.
  • a particularly effective immunogenic composition comprises palmitic acid attached to ⁇ - and ⁇ -amino groups of Lys, which is attached via linkage, e.g., Ser-Ser, to the amino terminus of the immunogenic peptide.
  • E. coli lipoproteins such as tripalmitoyl-S-glycerylcysteinlyseryl-serine (P 3 CSS) can be used to prime virus specific CTL when covalently attached to an appropriate peptide (see, e.g., Deres, et al., Nature 342:561, 1989).
  • Peptides of the invention can be coupled to P 3 CSS, for example, and the lipopeptide administered to an individual to prime specifically an immune response to the target antigen.
  • P 3 CSS-conjugated epitopes two such compositions can be combined to more effectively elicit both humoral and cell-mediated responses.
  • Vaccine Compositions Comprising DC Pulsed with CTL and/or HTL Peptides
  • An embodiment of a vaccine composition in accordance with the invention comprises ex vivo administration of a cocktail of epitope-bearing peptides to PBMC, or isolated DC therefrom, from the patient's blood.
  • a pharmaceutical to facilitate harvesting of DC can be used, such as ProgenipoietinTM (Pharmacia-Monsanto, St. Louis, Mo.) or GM-CSF/IL-4. After pulsing the DC with peptides and prior to reinfusion into patients, the DC are washed to remove unbound peptides.
  • a vaccine comprises peptide-pulsed DCs which present the pulsed peptide epitopes complexed with HLA molecules on their surfaces.
  • the DC can be pulsed ex vivo with a cocktail of peptides, some of which stimulate CTL responses to 191P4D12(b).
  • a helper T cell (HTL) peptide such as a natural or artificial loosely restricted HLA Class II peptide, can be included to facilitate the CTL response.
  • HTL helper T cell
  • a vaccine in accordance with the invention is used to treat a cancer which expresses or overexpresses 191P4D12(b).
  • Antigenic 191P4D12(b)-related peptides are used to elicit a CTL and/or HTL response ex vivo, as well.
  • the resulting CTL or HTL cells can be used to treat tumors in patients that do not respond to other conventional forms of therapy, or will not respond to a therapeutic vaccine peptide or nucleic acid in accordance with the invention.
  • Ex vivo CTL or HTL responses to a particular antigen are induced by incubating in tissue culture the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of antigen-presenting cells (APC), such as dendritic cells, and the appropriate immunogenic peptide.
  • APC antigen-presenting cells
  • the cells After an appropriate incubation time (typically about 7-28 days), in which the precursor cells are activated and expanded into effector cells, the cells are infused back into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cell (e.g., a tumor cell).
  • CTL destroy
  • HTL facilitate destruction
  • Transfected dendritic cells may also be used as antigen presenting cells.
  • compositions of the invention are typically used to treat and/or prevent a cancer that expresses or overexpresses 191P4D12(b).
  • peptide and/or nucleic acid compositions are administered to a patient in an amount sufficient to elicit an effective B cell, CTL and/or HTL response to the antigen and to cure or at least partially arrest or slow symptoms and/or complications.
  • An amount adequate to accomplish this is defined as “therapeutically effective dose.” Amounts effective for this use will depend on, e.g., the particular composition administered, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician.
  • the immunogenic peptides of the invention are generally administered to an individual already bearing a tumor that expresses 191P4D12(b).
  • the peptides or DNA encoding them can be administered individually or as fusions of one or more peptide sequences.
  • Patients can be treated with the immunogenic peptides separately or in conjunction with other treatments, such as surgery, as appropriate.
  • administration should generally begin at the first diagnosis of 191P4D12(b)-associated cancer. This is followed by boosting doses until at least symptoms are substantially abated and for a period thereafter.
  • the embodiment of the vaccine composition i.e., including, but not limited to embodiments such as peptide cocktails, polyepitopic polypeptides, minigenes, or TAA-specific CTLs or pulsed dendritic cells
  • delivered to the patient may vary according to the stage of the disease or the patient's health status. For example, in a patient with a tumor that expresses 191P4D12(b), a vaccine comprising 191P4D12(b)-specific CTL may be more efficacious in killing tumor cells in patient with advanced disease than alternative embodiments.
  • compositions which stimulate helper T cell responses can also be given in accordance with this embodiment of the invention.
  • the dosage for an initial therapeutic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1,000 ⁇ g and the higher value is about 10,000; 20,000; 30,000; or 50,000 ⁇ g.
  • Dosage values for a human typically range from about 500 ⁇ g to about 50,000 ⁇ g per 70 kilogram patient.
  • Boosting dosages of between about 1.0 ⁇ g to about 50,000 ⁇ g of peptide pursuant to a boosting regimen over weeks to months may be administered depending upon the patient's response and condition as determined by measuring the specific activity of CTL and HTL obtained from the patient's blood. Administration should continue until at least clinical symptoms or laboratory tests indicate that the neoplasia, has been eliminated or reduced and for a period thereafter.
  • the dosages, routes of administration, and dose schedules are adjusted in accordance with methodologies known in the art.
  • the peptides and compositions of the present invention are employed in serious disease states, that is, life-threatening or potentially life threatening situations.
  • life-threatening or potentially life threatening situations in certain embodiments, it is possible and may be felt desirable by the treating physician to administer substantial excesses of these peptide compositions relative to these stated dosage amounts.
  • the vaccine compositions of the invention can also be used purely as prophylactic agents.
  • the dosage for an initial prophylactic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1000 ⁇ g and the higher value is about 10,000; 20,000; 30,000; or 50,000 ⁇ g.
  • Dosage values for a human typically range from about 500 ⁇ g to about 50,000 ⁇ g per 70 kilogram patient. This is followed by boosting dosages of between about 1.0 ⁇ g to about 50,000 ⁇ g of peptide administered at defined intervals from about four weeks to six months after the initial administration of vaccine.
  • the immunogenicity of the vaccine can be assessed by measuring the specific activity of CTL and HTL obtained from a sample of the patient's blood.
  • compositions for therapeutic treatment are intended for parenteral, topical, oral, nasal, intrathecal, or local (e.g. as a cream or topical ointment) administration.
  • the pharmaceutical compositions are administered parentally, e.g., intravenously, subcutaneously, intradermally, or intramuscularly.
  • compositions for parenteral administration which comprise a solution of the immunogenic peptides dissolved or suspended in an acceptable carrier, preferably an aqueous carrier.
  • aqueous carriers may be used, e.g., water, buffered water, 0.8% saline, 0.3% glycine, hyaluronic acid and the like. These compositions may be sterilized by conventional, well-known sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration.
  • compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservatives, and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, etc.
  • auxiliary substances such as pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservatives, and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, etc.
  • concentration of peptides of the invention in the pharmaceutical formulations can vary widely, i.e., from less than about 0.1%, usually at or at least about 2% to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected.
  • a human unit dose form of a composition is typically included in a pharmaceutical composition that comprises a human unit dose of an acceptable carrier, in one embodiment an aqueous carrier, and is administered in a volume/quantity that is known by those of skill in the art to be used for administration of such compositions to humans (see, e.g., Remington's Pharmaceutical Sciences, 17 th Edition, A. Gennaro, Editor, Mack Publishing Co., Easton, Pa., 1985).
  • a peptide dose for initial immunization can be from about 1 to about 50,000 ⁇ g, generally 100-5,000 ⁇ g, for a 70 kg patient.
  • an initial immunization may be performed using an expression vector in the form of naked nucleic acid administered IM (or SC or ID) in the amounts of 0.5-5 mg at multiple sites.
  • the nucleic acid (0.1 to 1000 ⁇ g) can also be administered using a gene gun.
  • a booster dose is then administered.
  • the booster can be recombinant fowlpox virus administered at a dose of 5-10 7 to 5 ⁇ 10 9 pfu.
  • a treatment generally involves repeated administration of the anti-191P4D12(b) antibody preparation, via an acceptable route of administration such as intravenous injection (IV), typically at a dose in the range of about 0.1 to about 10 mg/kg body weight.
  • IV intravenous injection
  • doses in the range of 10-500 mg mAb per week are effective and well tolerated.
  • an initial loading dose of approximately 4 mg/kg patient body weight IV, followed by weekly doses of about 2 mg/kg IV of the anti-191P4D12(b) mAb preparation represents an acceptable dosing regimen.
  • various factors can influence the ideal dose in a particular case.
  • Such factors include, for example, half life of a composition, the binding affinity of an Ab, the immunogenicity of a substance, the degree of 191P4D12(b) expression in the patient, the extent of circulating shed 191P4D12(b) antigen, the desired steady-state concentration level, frequency of treatment, and the influence of chemotherapeutic or other agents used in combination with the treatment method of the invention, as well as the health status of a particular patient.
  • Non-limiting preferred human unit doses are, for example, 500 ⁇ g-1 mg, 1 mg-50 mg, 50 mg-100 mg, 100 mg-200 mg, 200 mg-300 mg, 400 mg-500 mg, 500 mg-600 mg, 600 mg-700 mg, 700 mg-800 mg, 800 mg-900 mg, 900 mg-1 g, or 1 mg-700 mg.
  • the dose is in a range of 2-5 mg/kg body weight, e.g., with follow on weekly doses of 1-3 mg/kg; 0.5 mg, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 mg/kg body weight followed, e.g., in two, three or four weeks by weekly doses; 0.5-10 mg/kg body weight, e.g., followed in two, three or four weeks by weekly doses; 225, 250, 275, 300, 325, 350, 375, 400 mg m 2 of body area weekly; 1-600 mg m 2 of body area weekly; 225-400 mg m 2 of body area weekly; these does can be followed by weekly doses for 2, 3, 4, 5, 6, 7, 8, 9, 19, 11, 12 or more weeks.
  • human unit dose forms of polynucleotides comprise a suitable dosage range or effective amount that provides any therapeutic effect.
  • a therapeutic effect depends on a number of factors, including the sequence of the polynucleotide, molecular weight of the polynucleotide and route of administration. Dosages are generally selected by the physician or other health care professional in accordance with a variety of parameters known in the art, such as severity of symptoms, history of the patient and the like.
  • a dosage range may be selected from, for example, an independently selected lower limit such as about 0.1, 0.25, 0.5, 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400 or 500 mg/kg up to an independently selected upper limit, greater than the lower limit, of about 60, 80, 100, 200, 300, 400, 500, 750, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 or 10,000 mg/kg.
  • an independently selected lower limit such as about 0.1, 0.25, 0.5, 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400 or 500 mg/kg up to an independently selected upper limit, greater than the lower limit, of about 60, 80, 100, 200, 300, 400, 500, 750, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 or 10,000 mg/kg.
  • a dose may be about any of the following: 0.1 to 100 mg/kg, 0.1 to 50 mg/kg, 0.1 to 25 mg/kg, 0.1 to 10 mg/kg, 1 to 500 mg/kg, 100 to 400 mg/kg, 200 to 300 mg/kg, 1 to 100 mg/kg, 100 to 200 mg/kg, 300 to 400 mg/kg, 400 to 500 mg/kg, 500 to 1000 mg/kg, 500 to 5000 mg/kg, or 500 to 10,000 mg/kg.
  • parenteral routes of administration may require higher doses of polynucleotide compared to more direct application to the nucleotide to diseased tissue, as do polynucleotides of increasing length.
  • human unit dose forms of T-cells comprise a suitable dosage range or effective amount that provides any therapeutic effect.
  • a therapeutic effect depends on a number of factors. Dosages are generally selected by the physician or other health care professional in accordance with a variety of parameters known in the art, such as severity of symptoms, history of the patient and the like.
  • a dose may be about 10 4 cells to about 10 6 cells, about 10 6 cells to about 10 8 cells, about 10 8 to about 10 11 cells, or about 10 8 to about 5 ⁇ 10 10 cells.
  • a dose may also about 10 6 cells/m 2 to about 10 10 cells/m 2 , or about 10 6 cells/m 2 to about 10 8 cells/m 2 .
  • Proteins(s) of the invention, and/or nucleic acids encoding the protein(s), can also be administered via liposomes, which may also serve to: 1) target the proteins(s) to a particular tissue, such as lymphoid tissue; 2) to target selectively to diseases cells; or, 3) to increase the half-life of the peptide composition.
  • liposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like.
  • the peptide to be delivered is incorporated as part of a liposome, alone or in conjunction with a molecule which binds to a receptor prevalent among lymphoid cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions.
  • liposomes either filled or decorated with a desired peptide of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the peptide compositions.
  • Liposomes for use in accordance with the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol.
  • lipids are generally guided by consideration of, e.g., liposome size, acid lability and stability of the liposomes in the blood stream.
  • a variety of methods are available for preparing liposomes, as described in, e.g., Szoka, et al., Ann. Rev. Biophys. Bioeng. 9:467 (1980), and U.S. Pat. Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369.
  • a ligand to be incorporated into the liposome can include, e.g., antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells.
  • a liposome suspension containing a peptide may be administered intravenously, locally, topically, etc. in a dose which varies according to, inter alia, the manner of administration, the peptide being delivered, and the stage of the disease being treated.
  • nontoxic solid carriers include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like.
  • a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed, and generally 10-95% of active ingredient, that is, one or more peptides of the invention, and more preferably at a concentration of 25%-75%.
  • immunogenic peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of peptides are about 0.01%-20% by weight, preferably about 1%-10%.
  • the surfactant must, of course, be nontoxic, and preferably soluble in the propellant.
  • Representative of such agents are the esters or partial esters of fatty acids containing from about 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride.
  • the surfactant may constitute about 0.1%-20% by weight of the composition, preferably about 0.25-5%.
  • the balance of the composition is ordinarily propellant.
  • a carrier can also be included, as desired, as with, e.g., lecithin for intranasal delivery.
  • 191P4D12(b) polynucleotides, polypeptides, reactive cytotoxic T cells (CTL), reactive helper T cells (HTL) and anti-polypeptide antibodies are used in well known diagnostic, prognostic and therapeutic assays that examine conditions associated with dysregulated cell growth such as cancer, in particular the cancers listed in Table I (see, e.g., both its specific pattern of tissue expression as well as its overexpression in certain cancers as described for example in the Example entitled “Expression analysis of 191P4D12(b) in normal tissues, and patient specimens”).
  • 191P4D12(b) can be analogized to a prostate associated antigen PSA, the archetypal marker that has been used by medical practitioners for years to identify and monitor the presence of prostate cancer (see, e.g., Merrill et al., J. Urol. 163 (2): 503-5120 (2000); Polascik et al., J. Urol. August; 162 (2):293-306 (1999) and Fortier et al., J. Nat. Cancer Inst. 91 (19): 1635-1640 (1999)).
  • a variety of other diagnostic markers are also used in similar contexts including p53 and K-ras (see, e.g., Tulchinsky et al., Int J Mol Med 1999 Jul.
  • Typical embodiments of diagnostic methods which utilize the 191P4D12(b) polynucleotides, polypeptides, reactive T cells and antibodies are analogous to those methods from well-established diagnostic assays, which employ, e.g., PSA polynucleotides, polypeptides, reactive T cells and antibodies.
  • PSA polynucleotides are used as probes (for example in Northern analysis, see, e.g., Sharief et al., Biochem. Mol. Biol. Int. 33 (3):567-74 (1994)) and primers (for example in PCR analysis, see, e.g., Okegawa et al., J. Urol.
  • the 191P4D12(b) polynucleotides described herein can be utilized in the same way to detect 191P4D12(b) overexpression or the metastasis of prostate and other cancers expressing this gene.
  • PSA polypeptides are used to generate antibodies specific for PSA which can then be used to observe the presence and/or the level of PSA proteins in methods to monitor PSA protein overexpression (see, e.g., Stephan et al., Urology 55 (4):560-3 (2000)) or the metastasis of prostate cells (see, e.g., Alanen et al., Pathol. Res. Pract. 192 (3):233-7 (1996)), the 191P4D12(b) polypeptides described herein can be utilized to generate antibodies for use in detecting 191P4D12(b) overexpression or the metastasis of prostate cells and cells of other cancers expressing this gene.
  • metastases involves the movement of cancer cells from an organ of origin (such as the lung or prostate gland etc.) to a different area of the body (such as a lymph node)
  • assays which examine a biological sample for the presence of cells expressing 191P4D12(b) polynucleotides and/or polypeptides can be used to provide evidence of metastasis.
  • lymph node a biological sample from tissue that does not normally contain 191P4D12(b)-expressing cells
  • 191P4D12(b)-expressing cells such as the 191P4D12(b) expression seen in LAPC4 and LAPC9
  • xenografts isolated from lymph node and bone metastasis this finding is indicative of metastasis.
  • 191P4D12(b) polynucleotides and/or polypeptides can be used to provide evidence of cancer, for example, when cells in a biological sample that do not normally express 191P4D12(b) or express 191P4D12(b) at a different level are found to express 191P4D12(b) or have an increased expression of 191P4D12(b) (see, e.g., the 191P4D12(b) expression in the cancers listed in Table I and in patient samples etc. shown in the accompanying Figures).
  • immunohistochemistry to identify the presence of a 191P4D12(b) polypeptide within a tissue section can indicate an altered state of certain cells within that tissue. It is well understood in the art that the ability of an antibody to localize to a polypeptide that is expressed in cancer cells is a way of diagnosing presence of disease, disease stage, progression and/or tumor aggressiveness. Such an antibody can also detect an altered distribution of the polypeptide within the cancer cells, as compared to corresponding non-malignant tissue.
  • the 191P4D12(b) polypeptide and immunogenic compositions are also useful in view of the phenomena of altered subcellular protein localization in disease states. Alteration of cells from normal to diseased state causes changes in cellular morphology and is often associated with changes in subcellular protein localization/distribution. For example, cell membrane proteins that are expressed in a polarized manner in normal cells can be altered in disease, resulting in distribution of the protein in a non-polar manner over the whole cell surface.
  • normal breast epithelium is either negative for Her2 protein or exhibits only a basolateral distribution whereas malignant cells can express the protein over the whole cell surface (De Potter, et al, International Journal of Cancer, 44; 969-974 (1989): McCormick, et al, 117; 935-943 (2002)).
  • distribution of the protein may be altered from a surface only localization to include diffuse cytoplasmic expression in the diseased state. Such an example can be seen with MUC1 (Diaz, et al, The Breast Journal, 7: 40-45 (2001)).
  • the 191P4D12(b) protein and immune responses related thereto are very useful.
  • the ability to determine whether alteration of subcellular protein localization occurred for 24P4C12 make the 191P4D12(b) protein and immune responses related thereto very useful.
  • Use of the 191P4D12(b) compositions allows those skilled in the art to make important diagnostic and therapeutic decisions.
  • Immunohistochemical reagents specific to 191P4D12(b) are also useful to detect metastases of tumors expressing 191P4D12(b) when the polypeptide appears in tissues where 191P4D12(b) is not normally produced.
  • 191P4D12(b) polypeptides and antibodies resulting from immune responses thereto are useful in a variety of important contexts such as diagnostic, prognostic, preventative and/or therapeutic purposes known to those skilled in the art.
  • PSA polynucleotide fragments and polynucleotide variants are employed by skilled artisans for use in methods of monitoring PSA
  • 191P4D12(b) polynucleotide fragments and polynucleotide variants are used in an analogous manner.
  • typical PSA polynucleotides used in methods of monitoring PSA are probes or primers which consist of fragments of the PSA cDNA sequence.
  • primers used to PCR amplify a PSA polynucleotide must include less than the whole PSA sequence to function in the polymerase chain reaction.
  • PCR reactions In the context of such PCR reactions, skilled artisans generally create a variety of different polynucleotide fragments that can be used as primers in order to amplify different portions of a polynucleotide of interest or to optimize amplification reactions (see, e.g., Caetano-Anolles, G. Biotechniques 25 (3): 472-476, 478-480 (1998); Robertson et al., Methods Mol. Biol. 98:121-154 (1998)).
  • variant polynucleotide sequences are typically used as primers and probes for the corresponding mRNAs in PCR and Northern analyses (see, e.g., Sawai et al., Fetal Diagn. Ther. 1996 November-December 11 (6):407-13 and Current Protocols In Molecular Biology, Volume 2, Unit 2, Frederick M. Ausubel et al.
  • Polynucleotide fragments and variants are useful in this context where they are capable of binding to a target polynucleotide sequence (e.g., a 191P4D12(b) polynucleotide shown in FIG. 2 or variant thereof) under conditions of high stringency.
  • a target polynucleotide sequence e.g., a 191P4D12(b) polynucleotide shown in FIG. 2 or variant thereof
  • PSA polypeptides which contain an epitope that can be recognized by an antibody or T cell that specifically binds to that epitope are used in methods of monitoring PSA.
  • 191P4D12(b) polypeptide fragments and polypeptide analogs or variants can also be used in an analogous manner. This practice of using polypeptide fragments or polypeptide variants to generate antibodies (such as anti-PSA antibodies or T cells) is typical in the art with a wide variety of systems such as fusion proteins being used by practitioners (see, e.g., Current Protocols In Molecular Biology, Volume 2, Unit 16, Frederick M. Ausubel et al. eds., 1995).
  • each epitope(s) functions to provide the architecture with which an antibody or T cell is reactive.
  • skilled artisans create a variety of different polypeptide fragments that can be used in order to generate immune responses specific for different portions of a polypeptide of interest (see, e.g., U.S. Pat. No. 5,840,501 and U.S. Pat. No. 5,939,533).
  • a polypeptide comprising one of the 191P4D12(b) biological motifs discussed herein or a motif-bearing subsequence which is readily identified by one of skill in the art based on motifs available in the art.
  • Polypeptide fragments, variants or analogs are typically useful in this context as long as they comprise an epitope capable of generating an antibody or T cell specific for a target polypeptide sequence (e.g. a 191P4D12(b) polypeptide shown in FIG. 3 ).
  • a target polypeptide sequence e.g. a 191P4D12(b) polypeptide shown in FIG. 3 .
  • the 191P4D12(b) polynucleotides and polypeptides exhibit specific properties that make them useful in diagnosing cancers such as those listed in Table I.
  • Diagnostic assays that measure the presence of 191P4D12(b) gene products in order to evaluate the presence or onset of a disease condition described herein, such as prostate cancer, are used to identify patients for preventive measures or further monitoring, as has been done so successfully with PSA.
  • these materials satisfy a need in the art for molecules having similar or complementary characteristics to PSA in situations where, for example, a definite diagnosis of metastasis of prostatic origin cannot be made on the basis of a test for PSA alone (see, e.g., Alanen et al., Pathol. Res. Pract. 192 (3): 233-237 (1996)), and consequently, materials such as 191P4D12(b) polynucleotides and polypeptides (as well as the 191P4D12(b) polynucleotide probes and anti-191P4D12(b) antibodies used to identify the presence of these molecules) need to be employed to confirm a metastases of prostatic origin.
  • the 191P4D12(b) polynucleotides disclosed herein have a number of other utilities such as their use in the identification of oncogenetic associated chromosomal abnormalities in the chromosomal region to which the 191P4D12(b) gene maps (see the Example entitled “Chromosomal Mapping of 191P4D12(b)” below).
  • the 191P4D12(b)-related proteins and polynucleotides disclosed herein have other utilities such as their use in the forensic analysis of tissues of unknown origin (see, e.g., Takahama K Forensic Sci Int 1996 Jun. 28; 80 (1-2): 63-9).
  • 191P4D12(b)-related proteins or polynucleotides of the invention can be used to treat a pathologic condition characterized by the over-expression of 191P4D12(b).
  • the amino acid or nucleic acid sequence of FIG. 2 or FIG. 3 , or fragments of either can be used to generate an immune response to a 191P4D12(b) antigen.
  • Antibodies or other molecules that react with 191P4D12(b) can be used to modulate the function of this molecule, and thereby provide a therapeutic benefit.
  • the invention includes various methods and compositions for inhibiting the binding of 191P4D12(b) to its binding partner or its association with other protein(s) as well as methods for inhibiting 191P4D12(b) function.
  • a recombinant vector that encodes single chain antibodies that specifically bind to 191P4D12(b) are introduced into 191P4D12(b) expressing cells via gene transfer technologies. Accordingly, the encoded single chain anti-191P4D12(b) antibody is expressed intracellularly, binds to 191P4D12(b) protein, and thereby inhibits its function.
  • Methods for engineering such intracellular single chain antibodies are well known.
  • intracellular antibodies also known as “intrabodies”, are specifically targeted to a particular compartment within the cell, providing control over where the inhibitory activity of the treatment is focused. This technology has been successfully applied in the art (for review, see Richardson and Marasco, 1995, TIBTECH vol. 13).
  • Intrabodies have been shown to virtually eliminate the expression of otherwise abundant cell surface receptors (see, e.g., Richardson et al., 1995, Proc. Natl. Acad. Sci. USA 92: 3137-3141; Beerli et al., 1994, J. Biol. Chem. 289: 23931-23936; Deshane et al., 1994, Gene Ther. 1: 332-337).
  • Single chain antibodies comprise the variable domains of the heavy and light chain joined by a flexible linker polypeptide, and are expressed as a single polypeptide.
  • single chain antibodies are expressed as a single chain variable region fragment joined to the light chain constant region.
  • Well-known intracellular trafficking signals are engineered into recombinant polynucleotide vectors encoding such single chain antibodies in order to target precisely the intrabody to the desired intracellular compartment.
  • intrabodies targeted to the endoplasmic reticulum (ER) are engineered to incorporate a leader peptide and, optionally, a C-terminal ER retention signal, such as the KDEL amino acid motif.
  • Intrabodies intended to exert activity in the nucleus are engineered to include a nuclear localization signal.
  • Lipid moieties are joined to intrabodies in order to tether the intrabody to the cytosolic side of the plasma membrane.
  • Intrabodies can also be targeted to exert function in the cytosol.
  • cytosolic intrabodies are used to sequester factors within the cytosol, thereby preventing them from being transported to their natural cellular destination.
  • intrabodies are used to capture 191P4D12(b) in the nucleus, thereby preventing its activity within the nucleus.
  • Nuclear targeting signals are engineered into such 191P4D12(b) intrabodies in order to achieve the desired targeting.
  • Such 191P4D12(b) intrabodies are designed to bind specifically to a particular 191P4D12(b) domain.
  • cytosolic intrabodies that specifically bind to a 191P4D12(b) protein are used to prevent 191P4D12(b) from gaining access to the nucleus, thereby preventing it from exerting any biological activity within the nucleus (e.g., preventing 191P4D12(b) from forming transcription complexes with other factors).
  • the transcription of the intrabody is placed under the regulatory control of an appropriate tumor-specific promoter and/or enhancer.
  • an appropriate tumor-specific promoter and/or enhancer In order to target intrabody expression specifically to prostate, for example, the PSA promoter and/or promoter/enhancer can be utilized (See, for example, U.S. Pat. No. 5,919,652 issued 6 Jul. 1999).
  • recombinant molecules bind to 191P4D12(b) and thereby inhibit 191P4D12(b) function.
  • these recombinant molecules prevent or inhibit 191P4D12(b) from accessing/binding to its binding partner(s) or associating with other protein(s).
  • Such recombinant molecules can, for example, contain the reactive part(s) of a 191P4D12(b) specific antibody molecule.
  • the 191P4D12(b) binding domain of a 191P4D12(b) binding partner is engineered into a dimeric fusion protein, whereby the fusion protein comprises two 191P4D12(b) ligand binding domains linked to the Fc portion of a human IgG, such as human IgG1.
  • a human IgG such as human IgG1.
  • IgG portion can contain, for example, the C H 2 and C H 3 domains and the hinge region, but not the C H 1 domain.
  • Such dimeric fusion proteins are administered in soluble form to patients suffering from a cancer associated with the expression of 191P4D12(b), whereby the dimeric fusion protein specifically binds to 191P4D12(b) and blocks 191P4D12(b) interaction with a binding partner.
  • Such dimeric fusion proteins are further combined into multimeric proteins using known antibody linking technologies.
  • the present invention also comprises various methods and compositions for inhibiting the transcription of the 191P4D12(b) gene. Similarly, the invention also provides methods and compositions for inhibiting the translation of 191P4D12(b) mRNA into protein.
  • a method of inhibiting the transcription of the 191P4D12(b) gene comprises contacting the 191P4D12(b) gene with a 191P4D12(b) antisense polynucleotide.
  • a method of inhibiting 191P4D12(b) mRNA translation comprises contacting a 191P4D12(b) mRNA with an antisense polynucleotide.
  • a 191P4D12(b) specific ribozyme is used to cleave a 191P4D12(b) message, thereby inhibiting translation.
  • Such antisense and ribozyme based methods can also be directed to the regulatory regions of the 191P4D12(b) gene, such as 191P4D12(b) promoter and/or enhancer elements.
  • proteins capable of inhibiting a 191P4D12(b) gene transcription factor are used to inhibit 191P4D12(b) mRNA transcription.
  • the various polynucleotides and compositions useful in the aforementioned methods have been described above.
  • the use of antisense and ribozyme molecules to inhibit transcription and translation is well known in the art.
  • Gene transfer and gene therapy technologies can be used to deliver therapeutic polynucleotide molecules to tumor cells synthesizing 191P4D12(b) (i.e., antisense, ribozyme, polynucleotides encoding intrabodies and other 191P4D12(b) inhibitory molecules).
  • 191P4D12(b) i.e., antisense, ribozyme, polynucleotides encoding intrabodies and other 191P4D12(b) inhibitory molecules.
  • a number of gene therapy approaches are known in the art.
  • Recombinant vectors encoding 191P4D12(b) antisense polynucleotides, ribozymes, factors capable of interfering with 191P4D12(b) transcription, and so forth, can be delivered to target tumor cells using such gene therapy approaches.
  • the above therapeutic approaches can be combined with any one of a wide variety of surgical, chemotherapy or radiation therapy regimens.
  • the therapeutic approaches of the invention can enable the use of reduced dosages of chemotherapy (or other therapies) and/or less frequent administration, an advantage for all patients and particularly for those that do not tolerate the toxicity of the chemotherapeutic agent well.
  • the anti-tumor activity of a particular composition can be evaluated using various in vitro and in vivo assay systems.
  • In vitro assays that evaluate therapeutic activity include cell growth assays, soft agar assays and other assays indicative of tumor promoting activity, binding assays capable of determining the extent to which a therapeutic composition will inhibit the binding of 191P4D12(b) to a binding partner, etc.
  • a 191P4D12(b) therapeutic composition can be evaluated in a suitable animal model.
  • xenogenic prostate cancer models can be used, wherein human prostate cancer explants or passaged xenograft tissues are introduced into immune compromised animals, such as nude or SCID mice (Klein et al., 1997, Nature Medicine 3: 402-408).
  • PCT Patent Application WO98/16628 and U.S. Pat. No. 6,107,540 describe various xenograft models of human prostate cancer capable of recapitulating the development of primary tumors, micrometastasis, and the formation of osteoblastic metastases characteristic of late stage disease. Efficacy can be predicted using assays that measure inhibition of tumor formation, tumor regression or metastasis, and the like.
  • xenografts from tumor bearing mice treated with the therapeutic composition can be examined for the presence of apoptotic foci and compared to untreated control xenograft-bearing mice. The extent to which apoptotic foci are found in the tumors of the treated mice provides an indication of the therapeutic efficacy of the composition.
  • Suitable carriers include any material that when combined with the therapeutic composition retains the anti-tumor function of the therapeutic composition and is generally non-reactive with the patient's immune system. Examples include, but are not limited to, any of a number of standard pharmaceutical carriers such as sterile phosphate buffered saline solutions, bacteriostatic water, and the like (see, generally, Remington's Pharmaceutical Sciences 16 th Edition, A. Osal., Ed., 1980).
  • Therapeutic formulations can be solubilized and administered via any route capable of delivering the therapeutic composition to the tumor site.
  • Potentially effective routes of administration include, but are not limited to, intravenous, parenteral, intraperitoneal, intramuscular, intratumor, intradermal, intraorgan, orthotopic, and the like.
  • a preferred formulation for intravenous injection comprises the therapeutic composition in a solution of preserved bacteriostatic water, sterile unpreserved water, and/or diluted in polyvinylchloride or polyethylene bags containing 0.9% sterile Sodium Chloride for Injection, USP.
  • Therapeutic protein preparations can be lyophilized and stored as sterile powders, preferably under vacuum, and then reconstituted in bacteriostatic water (containing for example, benzyl alcohol preservative) or in sterile water prior to injection.
  • Dosages and administration protocols for the treatment of cancers using the foregoing methods will vary with the method and the target cancer, and will generally depend on a number of other factors appreciated in the art.
  • screening is performed to identify modulators that induce or suppress a particular expression profile, suppress or induce specific pathways, preferably generating the associated phenotype thereby.
  • having identified differentially expressed genes important in a particular state screens are performed to identify modulators that alter expression of individual genes, either increase or decrease.
  • screening is performed to identify modulators that alter a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gene in a particular state, screens are performed to identify agents that bind and/or modulate the biological activity of the gene product.
  • screens are done for genes that are induced in response to a candidate agent.
  • identifying a modulator one that suppresses a cancer expression pattern leading to a normal expression pattern, or a modulator of a cancer gene that leads to expression of the gene as in normal tissue
  • a screen is performed to identify genes that are specifically modulated in response to the agent. Comparing expression profiles between normal tissue and agent-treated cancer tissue reveals genes that are not expressed in normal tissue or cancer tissue, but are expressed in agent treated tissue, and vice versa.
  • agent-specific sequences are identified and used by methods described herein for cancer genes or proteins. In particular these sequences and the proteins they encode are used in marking or identifying agent-treated cells.
  • antibodies are raised against the agent-induced proteins and used to target novel therapeutics to the treated cancer tissue sample.
  • Proteins, nucleic acids, and antibodies of the invention are used in screening assays.
  • the cancer-associated proteins, antibodies, nucleic acids, modified proteins and cells containing these sequences are used in screening assays, such as evaluating the effect of drug candidates on a “gene expression profile,” expression profile of polypeptides or alteration of biological function.
  • the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent (e.g., Davis, G F, et al, J Biol Screen 7:69 (2002); Zlokarnik, et al., Science 279:84-8 (1998); Heid, Genome Res 6:986-94, 1996).
  • the cancer proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified cancer proteins or genes are used in screening assays. That is, the present invention comprises methods for screening for compositions which modulate the cancer phenotype or a physiological function of a cancer protein of the invention. This is done on a gene itself or by evaluating the effect of drug candidates on a “gene expression profile” or biological function. In one embodiment, expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring after treatment with a candidate agent, see Zlokarnik, supra.
  • assays are executed directed to the genes and proteins of the invention. Assays are run on an individual nucleic acid or protein level. That is, having identified a particular gene as up regulated in cancer, test compounds are screened for the ability to modulate gene expression or for binding to the cancer protein of the invention. “Modulation” in this context includes an increase or a decrease in gene expression. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tissue undergoing cancer, with changes of at least 10%, preferably 50%, more preferably 100-300%, and in some embodiments 300-1000% or greater.
  • a gene exhibits a 4-fold increase in cancer tissue compared to normal tissue, a decrease of about four-fold is often desired; similarly, a 10-fold decrease in cancer tissue compared to normal tissue a target value of a 10-fold increase in expression by the test compound is often desired.
  • Modulators that exacerbate the type of gene expression seen in cancer are also useful, e.g., as an upregulated target in further analyses.
  • the amount of gene expression is monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, a gene product itself is monitored, e.g., through the use of antibodies to the cancer protein and standard immunoassays. Proteomics and separation techniques also allow for quantification of expression.
  • gene expression monitoring i.e., an expression profile
  • Such profiles will typically involve one or more of the genes of FIG. 2 .
  • cancer nucleic acid probes are attached to biochips to detect and quantify cancer sequences in a particular cell.
  • PCR can be used.
  • a series e.g., wells of a microtiter plate, can be used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well.
  • Expression monitoring is performed to identify compounds that modify the expression of one or more cancer-associated sequences, e.g., a polynucleotide sequence set out in FIG. 2 .
  • a test modulator is added to the cells prior to analysis.
  • screens are also provided to identify agents that modulate cancer, modulate cancer proteins of the invention, bind to a cancer protein of the invention, or interfere with the binding of a cancer protein of the invention and an antibody or other binding partner.
  • high throughput screening methods involve providing a library containing a large number of potential therapeutic compounds (candidate compounds). Such “combinatorial chemical libraries” are then screened in one or more assays to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional “lead compounds,” as compounds for screening, or as therapeutics.
  • combinatorial libraries of potential modulators are screened for an ability to bind to a cancer polypeptide or to modulate activity.
  • new chemical entities with useful properties are generated by identifying a chemical compound (called a “lead compound”) with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds.
  • HTS high throughput screening
  • gene expression monitoring is conveniently used to test candidate modulators (e.g., protein, nucleic acid or small molecule).
  • candidate modulators e.g., protein, nucleic acid or small molecule.
  • the target sequence is prepared using known techniques. For example, a sample is treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR performed as appropriate. For example, an in vitro transcription with labels covalently attached to the nucleotides is performed. Generally, the nucleic acids are labeled with biotin-FITC or PE, or with cy3 or cy5.
  • the target sequence can be labeled with, e.g., a fluorescent, a chemiluminescent, a chemical, or a radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe.
  • the label also can be an enzyme, such as alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that is detected.
  • the label is a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme.
  • the label also can be a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin.
  • the streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typically removed prior to analysis.
  • these assays can be direct hybridization assays or can comprise “sandwich assays”, which include the use of multiple probes, as is generally outlined in U.S. Pat. Nos. 5,681,702; 5,597,909; 5,545,730; 5,594,117; 5,591,584; 5,571,670; 5,580,731; 5,571,670; 5,591,584; 5,624,802; 5,635,352; 5,594,118; 5,359,100; 5,124,246; and 5,681,697.
  • the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.
  • hybridization conditions are used in the present invention, including high, moderate and low stringency conditions as outlined above.
  • the assays are generally run under stringency conditions which allow formation of the label probe hybridization complex only in the presence of target.
  • Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration pH, organic solvent concentration, etc. These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Pat. No. 5,681,697. Thus, it can be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.
  • the reactions outlined herein can be accomplished in a variety of ways. Components of the reaction can be added simultaneously, or sequentially, in different orders, with preferred embodiments outlined below.
  • the reaction may include a variety of other reagents. These include salts, buffers, neutral proteins, e.g. albumin, detergents, etc. which can be used to facilitate optimal hybridization and detection, and/or reduce nonspecific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may also be used as appropriate, depending on the sample preparation methods and purity of the target.
  • the assay data are analyzed to determine the expression levels of individual genes, and changes in expression levels as between states, forming a gene expression profile.
  • the invention provides methods identify or screen for a compound that modulates the activity of a cancer-related gene or protein of the invention.
  • the methods comprise adding a test compound, as defined above, to a cell comprising a cancer protein of the invention.
  • the cells contain a recombinant nucleic acid that encodes a cancer protein of the invention.
  • a library of candidate agents is tested on a plurality of cells.
  • the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, e.g. hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiation, carcinogenics, or other cells (i.e., cell-cell contacts).
  • physiological signals e.g. hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiation, carcinogenics, or other cells (i.e., cell-cell contacts).
  • the determinations are made at different stages of the cell cycle process. In this way, compounds that modulate genes or proteins of the invention are identified. Compounds with pharmacological activity are able to enhance or interfere with the activity of the cancer protein of the invention. Once identified, similar structures are evaluated to identify critical structural features of the compound.
  • a method of modulating (e.g., inhibiting) cancer cell division comprises administration of a cancer modulator.
  • a method of modulating (e.g., inhibiting) cancer is provided; the method comprises administration of a cancer modulator.
  • methods of treating cells or individuals with cancer are provided; the method comprises administration of a cancer modulator.
  • a method for modulating the status of a cell that expresses a gene of the invention comprises such art-accepted parameters such as growth, proliferation, survival, function, apoptosis, senescence, location, enzymatic activity, signal transduction, etc. of a cell.
  • a cancer inhibitor is an antibody as discussed above.
  • the cancer inhibitor is an antisense molecule.
  • a variety of cell growth, proliferation, and metastasis assays are known to those of skill in the art, as described herein.
  • the assays to identify suitable modulators are amenable to high throughput screening. Preferred assays thus detect enhancement or inhibition of cancer gene transcription, inhibition or enhancement of polypeptide expression, and inhibition or enhancement of polypeptide activity.
  • modulators evaluated in high throughput screening methods are proteins, often naturally occurring proteins or fragments of naturally occurring proteins.
  • proteins e.g., cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, are used.
  • libraries of proteins are made for screening in the methods of the invention.
  • Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred.
  • Particularly useful test compound will be directed to the class of proteins to which the target belongs, e.g., substrates for enzymes, or ligands and receptors.
  • Normal cells require a solid substrate to attach and grow. When cells are transformed, they lose this phenotype and grow detached from the substrate. For example, transformed cells can grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft agar. The transformed cells, when transfected with tumor suppressor genes, can regenerate normal phenotype and once again require a solid substrate to attach to and grow. Soft agar growth or colony formation in assays are used to identify modulators of cancer sequences, which when expressed in host cells, inhibit abnormal cellular proliferation and transformation. A modulator reduces or eliminates the host cells' ability to grow suspended in solid or semisolid media, such as agar.
  • Normal cells typically grow in a flat and organized pattern in cell culture until they touch other cells. When the cells touch one another, they are contact inhibited and stop growing. Transformed cells, however, are not contact inhibited and continue to grow to high densities in disorganized foci. Thus, transformed cells grow to a higher saturation density than corresponding normal cells. This is detected morphologically by the formation of a disoriented monolayer of cells or cells in foci.
  • labeling index with (3H)-thymidine at saturation density is used to measure density limitation of growth, similarly an MTT or Alamar blue assay will reveal proliferation capacity of cells and the ability of modulators to affect same. See Freshney (1994), supra.
  • Transformed cells when transfected with tumor suppressor genes, can regenerate a normal phenotype and become contact inhibited and would grow to a lower density.
  • labeling index with 3 H)-thymidine at saturation density is a preferred method of measuring density limitation of growth.
  • Transformed host cells are transfected with a cancer-associated sequence and are grown for 24 hours at saturation density in non-limiting medium conditions.
  • the percentage of cells labeling with ( 3 H)-thymidine is determined by incorporated cpm.
  • a modulator reduces or eliminates contact independent growth, and returns the cells to a normal phenotype.
  • Transformed cells have lower serum dependence than their normal counterparts (see, e.g., Temin, J. Natl. Cancer Inst. 37:167-175 (1966); Eagle et al., J. Exp. Med. 131:836-879 (1970)); Freshney, supra. This is in part due to release of various growth factors by the transformed cells.
  • the degree of growth factor or serum dependence of transformed host cells can be compared with that of control. For example, growth factor or serum dependence of a cell is monitored in methods to identify and characterize compounds that modulate cancer-associated sequences of the invention.
  • Tumor cells release an increased amount of certain factors (hereinafter “tumor specific markers”) than their normal counterparts.
  • plasminogen activator PA
  • PA plasminogen activator
  • Tumor Angiogenesis Factor TAF
  • TAF Tumor Angiogenesis Factor
  • the degree of invasiveness into Matrigel or an extracellular matrix constituent can be used as an assay to identify and characterize compounds that modulate cancer associated sequences.
  • Tumor cells exhibit a positive correlation between malignancy and invasiveness of cells into Matrigel or some other extracellular matrix constituent.
  • tumorigenic cells are typically used as host cells. Expression of a tumor suppressor gene in these host cells would decrease invasiveness of the host cells. Techniques described in Cancer Res. 1999; 59:6010; Freshney (1994), supra, can be used. Briefly, the level of invasion of host cells is measured by using filters coated with Matrigel or some other extracellular matrix constituent.
  • Penetration into the gel, or through to the distal side of the filter, is rated as invasiveness, and rated histologically by number of cells and distance moved, or by prelabeling the cells with 125 I and counting the radioactivity on the distal side of the filter or bottom of the dish. See, e.g., Freshney (1984), supra.
  • Transgenic organisms are prepared in a variety of art-accepted ways. For example, knock-out transgenic organisms, e.g., mammals such as mice, are made, in which a cancer gene is disrupted or in which a cancer gene is inserted. Knock-out transgenic mice are made by insertion of a marker gene or other heterologous gene into the endogenous cancer gene site in the mouse genome via homologous recombination. Such mice can also be made by substituting the endogenous cancer gene with a mutated version of the cancer gene, or by mutating the endogenous cancer gene, e.g., by exposure to carcinogens.
  • transgenic chimeric animals e.g., mice
  • a DNA construct is introduced into the nuclei of embryonic stem cells.
  • Cells containing the newly engineered genetic lesion are injected into a host mouse embryo, which is re-implanted into a recipient female. Some of these embryos develop into chimeric mice that possess germ cells some of which are derived from the mutant cell line. Therefore, by breeding the chimeric mice it is possible to obtain a new line of mice containing the introduced genetic lesion (see, e.g., Capecchi et al., Science 244:1288 (1989)).
  • Chimeric mice can be derived according to U.S. Pat. No. 6,365,797, issued 2 Apr. 2002; U.S. Pat. No.
  • various immune-suppressed or immune-deficient host animals can be used.
  • a genetically athymic “nude” mouse see, e.g., Giovanella et al., J. Natl. Cancer Inst. 52:921 (1974)
  • SCID mouse see, e.g., Giovanella et al., J. Natl. Cancer Inst. 52:921 (1974)
  • SCID mouse e.g., a thymectornized mouse
  • an irradiated mouse see, e.g., Bradley et al., Br. J. Cancer 38:263 (1978); Selby et al., Br. J. Cancer 41:52 (1980)
  • Transplantable tumor cells typically about 10 6 cells injected into isogenic hosts produce invasive tumors in a high proportion of cases, while normal cells of similar origin will not.
  • cells expressing cancer-associated sequences are injected subcutaneously or orthotopically. Mice are then separated into groups, including control groups and treated experimental groups) e.g. treated with a modulator). After a suitable length of time, preferably 4-8 weeks, tumor growth is measured (e.g., by volume or by its two largest dimensions, or weight) and compared to the control. Tumors that have statistically significant reduction (using, e.g., Student's T test) are said to have inhibited growth.
  • Assays to identify compounds with modulating activity can be performed in vitro.
  • a cancer polypeptide is first contacted with a potential modulator and incubated for a suitable amount of time, e.g., from 0.5 to 48 hours.
  • the cancer polypeptide levels are determined in vitro by measuring the level of protein or mRNA.
  • the level of protein is measured using immunoassays such as Western blotting, ELISA and the like with an antibody that selectively binds to the cancer polypeptide or a fragment thereof.
  • amplification e.g., using PCR, LCR, or hybridization assays, e.g., Northern hybridization, RNAse protection, dot blotting, are preferred.
  • the level of protein or mRNA is detected using directly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein.
  • a reporter gene system can be devised using a cancer protein promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or P-gal.
  • the reporter construct is typically transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art (Davis G F, supra; Gonzalez, J. & Negulescu, P. Curr. Opin. Biotechnol. 1998: 9:624).
  • in vitro screens are done on individual genes and gene products. That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene or the gene product itself is performed.
  • screening for modulators of expression of specific gene(s) is performed. Typically, the expression of only one or a few genes is evaluated. In another embodiment, screens are designed to first find compounds that bind to differentially expressed proteins. These compounds are then evaluated for the ability to modulate differentially expressed activity. Moreover, once initial candidate compounds are identified, variants can be further screened to better evaluate structure activity relationships.
  • a purified or isolated gene product of the invention is generally used.
  • antibodies are generated to a protein of the invention, and immunoassays are run to determine the amount and/or location of protein.
  • cells comprising the cancer proteins are used in the assays.
  • the methods comprise combining a cancer protein of the invention and a candidate compound such as a ligand, and determining the binding of the compound to the cancer protein of the invention.
  • a cancer protein of the invention utilizes the human cancer protein; animal models of human disease of can also be developed and used.
  • other analogous mammalian proteins also can be used as appreciated by those of skill in the art.
  • variant or derivative cancer proteins are used.
  • the cancer protein of the invention, or the ligand is non-diffusibly bound to an insoluble support.
  • the support can, e.g., be one having isolated sample receiving areas (a microtiter plate, an array, etc.).
  • the insoluble supports can be made of any composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening.
  • the surface of such supports can be solid or porous and of any convenient shape.
  • suitable insoluble supports include microtiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharide, nylon, nitrocellulose, or TeflonTM, etc. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition to the support is not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition and is nondiffusable.
  • Preferred methods of binding include the use of antibodies which do not sterically block either the ligand binding site or activation sequence when attaching the protein to the support, direct binding to “sticky” or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or ligand/binding agent to the support, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.
  • BSA bovine serum albumin
  • Binding agents include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc.
  • assays to identify agents that have a low toxicity for human cells.
  • a wide variety of assays can be used for this purpose, including proliferation assays, cAMP assays, labeled in vitro protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.
  • a determination of binding of the test compound (ligand, binding agent, modulator, etc.) to a cancer protein of the invention can be done in a number of ways.
  • the test compound can be labeled, and binding determined directly, e.g., by attaching all or a portion of the cancer protein of the invention to a solid support, adding a labeled candidate compound (e.g., a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support.
  • a labeled candidate compound e.g., a fluorescent label
  • only one of the components is labeled, e.g., a protein of the invention or ligands labeled.
  • more than one component is labeled with different labels, e.g., I 125 , for the proteins and a fluorophor for the compound.
  • Proximity reagents e.g., quenching or energy transfer reagents are also useful.
  • the binding of the “test compound” is determined by competitive binding assay with a “competitor.”
  • the competitor is a binding moiety that binds to the target molecule (e.g., a cancer protein of the invention). Competitors include compounds such as antibodies, peptides, binding partners, ligands, etc. Under certain circumstances, the competitive binding between the test compound and the competitor displaces the test compound.
  • the test compound is labeled. Either the test compound, the competitor, or both, is added to the protein for a time sufficient to allow binding. Incubations are performed at a temperature that facilitates optimal activity, typically between four and 40° C.
  • Incubation periods are typically optimized, e.g., to facilitate rapid high throughput screening; typically between zero and one hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.
  • the competitor is added first, followed by the test compound.
  • Displacement of the competitor is an indication that the test compound is binding to the cancer protein and thus is capable of binding to, and potentially modulating, the activity of the cancer protein.
  • either component can be labeled.
  • the presence of label in the post-test compound wash solution indicates displacement by the test compound.
  • the presence of the label on the support indicates displacement.
  • the test compound is added first, with incubation and washing, followed by the competitor.
  • the absence of binding by the competitor indicates that the test compound binds to the cancer protein with higher affinity than the competitor.
  • the presence of the label on the support, coupled with a lack of competitor binding indicates that the test compound binds to and thus potentially modulates the cancer protein of the invention.
  • the competitive binding methods comprise differential screening to identity agents that are capable of modulating the activity of the cancer proteins of the invention.
  • the methods comprise combining a cancer protein and a competitor in a first sample.
  • a second sample comprises a test compound, the cancer protein, and a competitor.
  • the binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the cancer protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the cancer protein.
  • differential screening is used to identify drug candidates that bind to the native cancer protein, but cannot bind to modified cancer proteins.
  • the structure of the cancer protein is modeled and used in rational drug design to synthesize agents that interact with that site, agents which generally do not bind to site-modified proteins.
  • drug candidates that affect the activity of a native cancer protein are also identified by screening drugs for the ability to either enhance or reduce the activity of such proteins.
  • Positive controls and negative controls can be used in the assays.
  • control and test samples are performed in at least triplicate to obtain statistically significant results. Incubation of all samples occurs for a time sufficient to allow for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples can be counted in a scintillation counter to determine the amount of bound compound.
  • reagents can be included in the screening assays. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc. which are used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., can be used. The mixture of components is added in an order that provides for the requisite binding.
  • Polynucleotide modulators of cancer can be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand-binding molecule, as described in WO 91/04753.
  • Suitable ligand-binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors.
  • conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell.
  • a polynucleotide modulator of cancer can be introduced into a cell containing the target nucleic acid sequence, e.g., by formation of a polynucleotide-lipid complex, as described in WO 90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.
  • the activity of a cancer-associated protein is down-regulated, or entirely inhibited, by the use of antisense polynucleotide or inhibitory small nuclear RNA (snRNA), i.e., a nucleic acid complementary to, and which can preferably hybridize specifically to, a coding mRNA nucleic acid sequence, e.g., a cancer protein of the invention, mRNA, or a subsequence thereof. Binding of the antisense polynucleotide to the mRNA reduces the translation and/or stability of the mRNA.
  • snRNA inhibitory small nuclear RNA
  • antisense polynucleotides can comprise naturally occurring nucleotides, or synthetic species formed from naturally occurring subunits or their close homologs. Antisense polynucleotides may also have altered sugar moieties or inter-sugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species which are known for use in the art. Analogs are comprised by this invention so long as they function effectively to hybridize with nucleotides of the invention. See, e.g., Isis Pharmaceuticals, Carlsbad, Calif.; Sequitor, Inc., Natick, Mass.
  • antisense polynucleotides can readily be synthesized using recombinant means, or can be synthesized in vitro. Equipment for such synthesis is sold by several vendors, including Applied Biosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated derivatives is also well known to those of skill in the art.
  • Antisense molecules as used herein include antisense or sense oligonucleotides.
  • Sense oligonucleotides can, e.g., be employed to block transcription by binding to the anti-sense strand.
  • the antisense and sense oligonucleotide comprise a single stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for cancer molecules.
  • Antisense or sense oligonucleotides, according to the present invention comprise a fragment generally at least about 12 nucleotides, preferably from about 12 to 30 nucleotides.
  • ribozymes can be used to target and inhibit transcription of cancer-associated nucleotide sequences.
  • a ribozyme is an RNA molecule that catalytically cleaves other RNA molecules.
  • Different kinds of ribozymes have been described, including group I ribozymes, hammerhead ribozymes, hairpin ribozymes, RNase P, and axhead ribozymes (see, e.g., Castanotto et al., Adv. in Pharmacology 25: 289-317 (1994) for a general review of the properties of different ribozymes).
  • hairpin ribozymes are described, e.g., in Hampel et al., Nucl. Acids Res. 18:299-304 (1990); European Patent Publication No. 0360257; U.S. Pat. No. 5,254,678.
  • Methods of preparing are well known to those of skill in the art (see, e.g., WO 94/26877; Ojwang et al., Proc. Natl. Acad. Sci. USA 90:6340-6344 (1993); Yamada et al., Human Gene Therapy 1:39-45 (1994); Leavitt et al., Proc. Natl. Acad. Sci. USA 92:699-703 (1995); Leavitt et al., Human Gene Therapy 5: 1151-120 (1994); and Yamada et al., Virology 205: 121-126 (1994)).
  • a test compound is administered to a population of cancer cells, which have an associated cancer expression profile.
  • administration or “contacting” herein is meant that the modulator is added to the cells in such a manner as to allow the modulator to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface.
  • a nucleic acid encoding a proteinaceous agent i.e., a peptide
  • a viral construct such as an adenoviral or retroviral construct
  • expression of the peptide agent is accomplished, e.g., PCT US97/01019.
  • Regulatable gene therapy systems can also be used.
  • the cells are washed if desired and are allowed to incubate under preferably physiological conditions for some period.
  • the cells are then harvested and a new gene expression profile is generated.
  • cancer tissue is screened for agents that modulate, e.g., induce or suppress, the cancer phenotype.
  • a change in at least one gene, preferably many, of the expression profile indicates that the agent has an effect on cancer activity.
  • altering a biological function or a signaling pathway is indicative of modulator activity.
  • screens are done to assess genes or gene products. That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of either the expression of the gene or the gene product itself is performed.
  • Measurements of cancer polypeptide activity, or of the cancer phenotype are performed using a variety of assays. For example, the effects of modulators upon the function of a cancer polypeptide(s) are measured by examining parameters described above. A physiological change that affects activity is used to assess the influence of a test compound on the polypeptides of this invention.
  • a variety of effects can be assesses such as, in the case of a cancer associated with solid tumors, tumor growth, tumor metastasis, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., by Northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGNIP.
  • the invention provides methods for identifying cells containing variant cancer genes, e.g., determining the presence of, all or part, the sequence of at least one endogenous cancer gene in a cell. This is accomplished using any number of sequencing techniques.
  • the invention comprises methods of identifying the cancer genotype of an individual, e.g., determining all or part of the sequence of at least one gene of the invention in the individual. This is generally done in at least one tissue of the individual, e.g., a tissue set forth in Table I, and may include the evaluation of a number of tissues or different samples of the same tissue.
  • the method may include comparing the sequence of the sequenced gene to a known cancer gene, i.e., a wild-type gene to determine the presence of family members, homologies, mutations or variants.
  • the sequence of all or part of the gene can then be compared to the sequence of a known cancer gene to determine if any differences exist. This is done using any number of known homology programs, such as BLAST, Bestfit, etc.
  • the presence of a difference in the sequence between the cancer gene of the patient and the known cancer gene correlates with a disease state or a propensity for a disease state, as outlined herein.
  • the cancer genes are used as probes to determine the number of copies of the cancer gene in the genome.
  • the cancer genes are used as probes to determine the chromosomal localization of the cancer genes.
  • Information such as chromosomal localization finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in the cancer gene locus.
  • kits are also within the scope of the invention.
  • Such kits can comprise a carrier, package, or container that is compartmentalized to receive one or more containers such as vials, tubes, and the like, each of the container(s) comprising one of the separate elements to be used in the method.
  • the container(s) can comprise a probe that is or can be detectably labeled.
  • probe can be an antibody or polynucleotide specific for a FIG. 2-related protein or a FIG. 2 gene or message, respectively.
  • the kit can also have containers containing nucleotide(s) for amplification of the target nucleic acid sequence and/or a container comprising a reporter-means, such as a biotin-binding protein, such as avidin or streptavidin, bound to a reporter molecule, such as an enzymatic, florescent, or radioisotope label.
  • a reporter-means such as a biotin-binding protein, such as avidin or streptavidin
  • the kit can include all or part of the amino acid sequences in FIG. 2 or FIG. 3 or analogs thereof, or a nucleic acid molecules that encodes such amino acid sequences.
  • the kit of the invention will typically comprise the container described above and one or more other containers comprising materials desirable from a commercial and user standpoint, including buffers, diluents, filters, needles, syringes; carrier, package, container, vial and/or tube labels listing contents and/or instructions for use, and package inserts with instructions for use.
  • a label can be present on the container to indicate that the composition is used for a specific therapy or non-therapeutic application, such as a diagnostic or laboratory application, and can also indicate directions for either in vivo or in vitro use, such as those described herein. Directions and or other information can also be included on an insert(s) or label(s) which is included with or on the kit.
  • an article(s) of manufacture containing compositions such as amino acid sequence(s), small molecule(s), nucleic acid sequence(s), and/or antibody(s), e.g., materials useful for the diagnosis, prognosis, prophylaxis and/or treatment of neoplasias of tissues such as those set forth in Table I is provided.
  • the article of manufacture typically comprises at least one container and at least one label. Suitable containers include, for example, bottles, vials, syringes, and test tubes. The containers can be formed from a variety of materials such as glass or plastic.
  • the container can hold amino acid sequence(s), small molecule(s), nucleic acid sequence(s), and/or antibody(s), in one embodiment the container holds a polynucleotide for use in examining the mRNA expression profile of a cell, together with reagents used for this purpose.
  • the container can alternatively hold a composition which is effective for treating, diagnosis, prognosing or prophylaxing a condition and can have a sterile access port (for example the container can be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle).
  • the active agents in the composition can be an antibody capable of specifically binding 191P4D12(b) and modulating the function of 191P4D12(b).
  • the label can be on or associated with the container.
  • a label a can be on a container when letters, numbers or other characters forming the label are molded or etched into the container itself; a label can be associated with a container when it is present within a receptacle or carrier that also holds the container, e.g., as a package insert.
  • the label can indicate that the composition is used for diagnosing, treating, prophylaxing or prognosing a condition, such as a neoplasia of a tissue set forth in Table I.
  • the article of manufacture can further comprise a second container comprising a pharmaceutically-acceptable buffer, such as phosphate-buffered saline, Ringer's solution and/ordextrose solution. It can further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, stirrers, needles, syringes, and/or package inserts with indications and/or instructions for use.
  • SSH Suppression Subtractive Hybridization
  • the patient cancer and normal tissues were purchased from different sources such as the NDRI (Philadelphia, Pa.). mRNA for some normal tissues were purchased from Clontech, Palo Alto, Calif.
  • Tissues were homogenized in Trizol reagent (Life Technologies, Gibco BRL) using 10 ml/g tissue isolate total RNA. Poly A RNA was purified from total RNA using Qiagen's Oligotex mRNA Mini and Midi kits. Total and mRNA were quantified by spectrophotometric analysis (O.D. 260/280 nm) and analyzed by gel electrophoresis.
  • SSH Suppression Subtractive Hybridization
  • the gene 191P4D12(b) sequence was derived from bladder cancer minus normal tissue cDNA subtraction.
  • the SSH DNA sequence ( FIG. 1 ) was identified.
  • the cDNA derived from of pool of normal tissues was used as the source of the “driver” cDNA, while the cDNA from bladder cancer was used as the source of the “tester” cDNA.
  • Double stranded cDNAs corresponding to tester and driver cDNAs were synthesized from 2 ⁇ g of poly(A) + RNA isolated from the relevant xenograft tissue, as described above, using CLONTECH's PCR-Select cDNA Subtraction Kit and 1 ng of oligonucleotide DPNCDN as primer. First- and second-strand synthesis were carried out as described in the Kit's user manual protocol (CLONTECH Protocol No. PT1117-1, Catalog No. K1804-1). The resulting cDNA was digested with Dpn II for 3 hrs at 37° C. Digested cDNA was extracted with phenol/chloroform (1:1) and ethanol precipitated.
  • Driver cDNA was generated by combining in a 1:1 ratio Dpn II digested cDNA from the relevant tissue source (see above) with a mix of digested cDNAs derived from the nine normal tissues: stomach, skeletal muscle, lung, brain, liver, kidney, pancreas, small intestine, and heart.
  • Tester cDNA was generated by diluting 1 ⁇ l of Dpn II digested cDNA from the relevant tissue source (see above) (400 ng) in 5 ⁇ l of water. The diluted cDNA (2 ⁇ l, 160 ng) was then ligated to 2 ⁇ l of Adaptor 1 and Adaptor 2 (10 ⁇ M), in separate ligation reactions, in a total volume of 10 ⁇ l at 16° C. overnight, using 400 u of T4 DNA ligase (CLONTECH). Ligation was terminated with 1 ⁇ l of 0.2 M EDTA and heating at 72° C. for 5 min.
  • the first hybridization was performed by adding 1.5 ⁇ l (600 ng) of driver cDNA to each of two tubes containing 1.5 ⁇ l (20 ng) Adaptor 1- and Adaptor 2-ligated tester cDNA. In a final volume of 4 ⁇ l, the samples were overlaid with mineral oil, denatured in an MJ Research thermal cycler at 98° C. for 1.5 minutes, and then were allowed to hybridize for 8 hrs at 68° C. The two hybridizations were then mixed together with an additional 1 ⁇ l of fresh denatured driver cDNA and were allowed to hybridize overnight at 68° C. The second hybridization was then diluted in 200 ⁇ l of 20 mM Hepes, pH 8.3, 50 mM NaCl, 0.2 mM EDTA, heated at 70° C. for 7 min. and stored at ⁇ 20° C.
  • PCR 1 was conducted using the following conditions: 75° C. for 5 min., 94° C. for 25 sec., then 27 cycles of 94° C. for 10 sec, 66° C. for 30 sec, 72° C. for 1.5 min. Five separate primary PCR reactions were performed for each experiment.
  • PCR 2 was performed using 10-12 cycles of 94° C. for 10 sec, 68° C. for 30 sec, and 72° C. for 1.5 minutes.
  • the PCR products were analyzed using 2% agarose gel electrophoresis.
  • PCR products were inserted into pCR2.1 using the T/A vector cloning kit (Invitrogen). Transformed E. coli were subjected to blue/white and ampicillin selection. White colonies were picked and arrayed into 96 well plates and were grown in liquid culture overnight. To identify inserts, PCR amplification was performed on 1 ⁇ l of bacterial culture using the conditions of PCR1 and NP1 and NP2 as primers. PCR products were analyzed using 2% agarose gel electrophoresis.
  • Bacterial clones were stored in 20% glycerol in a 96 well format. Plasmid DNA was prepared, sequenced, and subjected to nucleic acid homology searches of the GenBank, dBest, and NCI-CGAP databases.
  • First strand cDNAs can be generated from 1 ⁇ g of mRNA with oligo (dT)12-18 priming using the Gibco-BRL Superscript Preamplification system. The manufacturer's protocol was used which included an incubation for 50 min at 42° C. with reverse transcriptase followed by RNAse H treatment at 37° C. for 20 min. After completing the reaction, the volume can be increased to 200 ⁇ l with water prior to normalization. First strand cDNAs from 16 different normal human tissues can be obtained from Clontech.
  • Normalization of the first strand cDNAs from multiple tissues was performed by using the primers 5′ atatcgccgcgctcgtcgtcgacaa3′ (SEQ ID NO:56) and 5′ agccacacgcagctcattgtagaagg 3′ (SEQ ID NO:57) to amplify ⁇ -actin.
  • First strand cDNA (5 ⁇ l) were amplified in a total volume of 50 ⁇ l containing 0.4 ⁇ M primers, 0.2 ⁇ M each dNTPs, 1 ⁇ PCR buffer (Clontech, 10 mM Tris-HCL, 1.5 mM MgCl 2 , 50 mM KCl, pH8.3) and 1 ⁇ Klentaq DNA polymerase (Clontech).
  • Five ⁇ l of the PCR reaction can be removed at 18, 20, and 22 cycles and used for agarose gel electrophoresis.
  • PCR was performed using an MJ Research thermal cycler under the following conditions: Initial denaturation can be at 94° C. for 15 sec, followed by a 18, 20, and 22 cycles of 94° C. for 15, 65° C.
  • First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), normal kidney, prostate cancer pool, bladder cancer pool, colon cancer pool, lung cancer pool, breast cancer pool and cancer metastasis pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 191P4D12(b), was performed at 26 and 30 cycles of amplification. Results show strong expression of 191P4D12(b) in bladder cancer pool. Expression of 191P4D12(b) was also detected in prostate cancer pool, colon cancer pool, lung cancer pool, breast cancer pool and cancer metastasis pool but very weakly in vital pool 1 and vital pool 2.
  • the 191P4D12(b) SSH cDNA sequence was derived from a subtraction consisting of bladder cancer minus a mixture of 9 normal tissues: stomach, skeletal muscle, lung, brain, liver, kidney, pancreas, small intestine and heart.
  • the SSH cDNA sequence of 223 by ( FIG. 1 ) was designated 191P4D12(b).
  • 191P4D12(b) v.1 (clone 1A1) of 3464 by was cloned from bladder cancer cDNA library, revealing an ORF of 510 amino acids ( FIG. 2 and FIG. 3 ).
  • Other variants of 191P4D12(b) were also identified and these are listed in FIGS. 2 and 3 .
  • 191P4D12(b) v.1, v.2, v.10, v.11, and v.12 proteins are 510 amino acids in length and differ from each other by one amino acid as shown in FIG. 11 .
  • 191P4D12(b) v.6 and v.7 are splice variants and code for proteins of 295 and 485 amino acids, respectively.
  • 191P4D12(b) v.13 clone 9C was cloned from bladder cancer cDNA and has one amino acid insertion at position 334 compared to 191P4D12(b) v.1.
  • 191P4D12(b) v.9 clone BCP1 is a splice variant of 191P4D12(b) v.1 and was cloned from a bladder cancer cDNA library.
  • 191P4D12(b) v.14 is a SNP variant and differs from 191P4D12(b) v.9 by one amino acid as shown in FIG. 2 .
  • 191P4D12(b) v.1 shows 99% identity over 2744 to the Ig superfamily receptor LNIR (nectin-4), accession number NM — 030916.
  • 191P4D12(b) v.9 protein is 100% identical to clone AF218028 with function of inhibiting cancer cell growth.
  • Chromosomal localization can implicate genes in disease pathogenesis.
  • chromosome mapping approaches include fluorescent in situ hybridization (FISH), human/hamster radiation hybrid (RH) panels (Walter et al., 1994; Nature Genetics 7:22; Research Genetics, Huntsville Ala.), human-rodent somatic cell hybrid panels such as is available from the Cornell Institute (Camden, N.J.), and genomic viewers utilizing BLAST homologies to sequenced and mapped genomic clones (NCBI, Bethesda, Md.).
  • 191P4D12(b) maps to chromosome 1q22-q23.2 using 191P4D12(b) sequence and the NCBI BLAST tool located on the World Wide Web.
  • First strand cDNA was prepared from (A) vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), normal kidney, prostate cancer pool, bladder cancer pool, colon cancer pool, lung cancer pool, breast cancer pool and cancer metastasis pool; (B) prostate cancer metastasis to lymph node, prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, cancer metastasis pool, pancreas cancer pool, and LAPC prostate xenograft pool. Normalization was performed by PCR using primers to actin and GAPDH.
  • Northern blot analysis is a technique known to those skilled in the art to detect protein production.
  • Northern blotting detects relative levels of mRNA expressed from a gene. Specific mRNA is measured using a nucleic acid hybridization technique and the signal is detected on an autoradiogram. The stronger the signal, the more abundant is the mRNA. For genes that produce mRNA that contains an open reading frame flanked by a good Kozak translation initiation site and a stop codon, in the vast majority of cases the synthesized mRNA is expressed as a protein.
  • the level of expression of the gene is determined in various normal tissues and in various tumor tissues and tumor cell lines using the technique of Northern blotting, which detects production of messenger RNA. It is well known in the art that the production of messenger RNA, that encodes the protein, is a necessary step in the production of the protein itself. Thus, detection of high levels of messenger RNA by, for example, Northern blot, is a way of determining that the protein itself is produced.
  • the Northern blot technique is used as a routine procedure because it does not require the time delays (as compared to Western blotting, immunoblotting or immunohistochemistry) involved in isolating or synthesizing the protein, preparing an immunological composition of the protein, eliciting a humoral immune response, harvesting the antibodies, and verifying the specificity thereof.
  • the Kozak consensus sequence for translation initiation CCACCATGG is the sequence with the highest established probability of initiating translation. This was confirmed by Peri and Pandey Trends in Genetics (2001) 17: 685-687. The conclusion is consistent with the general knowledge in the art that, with rare exceptions, expression of an mRNA is predictive of expression of its encoded protein. This is particularly true for mRNA with an open reading frame and a Kozak consensus sequence for translation initiation.
  • the absolute levels of messenger RNA present and the amounts of protein produced do not always provide a 1:1 correlation.
  • the Northern blot has shown mRNA to be present, it is almost always possible to detect the presence of the corresponding protein in the tissue which provided a positive result in the Northern blot.
  • the levels of the protein compared to the levels of the mRNA may be differential, but generally, cells that exhibit detectable mRNA also exhibit detectable corresponding protein and vice versa. This is particularly true where the mRNA has an open reading frame and a good Kozak sequence (See, Peri and Pandey, supra.).
  • FIG. 15 Extensive expression of 191P4D12(b) in normal tissues is shown in FIG. 15 .
  • FIG. 19 shows expression of 191P4D12(b) in cervical cancer patient specimens.
  • RNA was extracted from normal cervix, Hela cancer cell line, and 3 cervix cancer patient tumors (T).
  • Northern blots with 10 ug of total RNA were probed with the 191P4D12(b) SSH fragment. Size standards in kilobases are on the side.
  • Results show expression of the approximately 4 kb 191P4D12(b) transcript in 2 out of 3 cervix tumors tested but not in normal cervix nor in the Hela cell line.
  • 191P4D12(b) was also expressed in lung cancer patient specimens ( FIG. 20 ).
  • RNA was extracted from lung cancer cell lines (CL), normal lung (N), bladder cancer patient tumors (T), and normal adjacent tissue (Nat).
  • Northern blots with 10 ug of total RNA were probed with the 191P4D12(b). Size standards in kilobases are on the side. Results show expression of the approximately 4 kb 191P4D12(b) transcript in the lung tumor tissues but not in normal lung nor in the cell lines tested.
  • 191P4D12(b) expression was tested in a panel of individual patient cancer specimens ( FIG. 21 ).
  • Results show expression of 191P4D12(b) in 97% of the 31 lung cancer patient specimens tested, 94% of 18 bladder cancer patient specimens, 100% of 20 prostate cancer patient specimens, 100% of 22 colon cancer patient specimens, 100% of 12 uterus cancer patient specimens, and 100% of 14 cervix cancer patient specimens tested.
  • 191P4D12(b) is a potential therapeutic target and a diagnostic marker for human cancers.
  • Transcript variants are variants of mature mRNA from the same gene which arise by alternative transcription or alternative splicing.
  • Alternative transcripts are transcripts from the same gene but start transcription at different points.
  • Splice variants are mRNA variants spliced differently from the same transcript.
  • a given gene can have zero to many alternative transcripts and each transcript can have zero to many splice variants.
  • Each transcript variant has a unique exon makeup, and can have different coding and/or non-coding (5′ or 3′ end) portions, from the original transcript.
  • Transcript variants can code for similar or different proteins with the same or a similar function or can encode proteins with different functions, and can be expressed in the same tissue at the same time, or in different tissues at the same time, or in the same tissue at different times, or in different tissues at different times. Proteins encoded by transcript variants can have similar or different cellular or extracellular localizations, e.g., secreted versus intracellular.
  • Transcript variants are identified by a variety of art-accepted methods. For example, alternative transcripts and splice variants are identified by full-length cloning experiment, or by use of full-length transcript and EST sequences. First, all human ESTs were grouped into clusters which show direct or indirect identity with each other. Second, ESTs in the same cluster were further grouped into sub-clusters and assembled into a consensus sequence. The original gene sequence is compared to the consensus sequence(s) or other full-length sequences. Each consensus sequence is a potential splice variant for that gene. Even when a variant is identified that is not a full-length clone, that portion of the variant is very useful for antigen generation and for further cloning of the full-length splice variant, using techniques known in the art.
  • Genomic-based transcript variant identification programs include FgenesH (A. Salamov and V. Solovyev, “Ab initio gene finding in Drosophila genomic DNA,” Genome Research. 2000 April; 10 (4):516-22); Grail and GenScan.
  • FgenesH A. Salamov and V. Solovyev, “Ab initio gene finding in Drosophila genomic DNA,” Genome Research. 2000 April; 10 (4):516-22
  • Grail and GenScan GenScan.
  • splice variant identification protocols see, e.g., Southan, C., A genomic perspective on human proteases, FEBS Lett. 2001 Jun. 8; 498 (2-3):214-8; de Souza, S. J., et al., Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags, Proc. Natl. Acad Sci USA. 2000 Nov. 7; 97 (23):12690-3.
  • PCR-based Validation Wellmann S, et al., Specific reverse transcription-PCR quantification of vascular endothelial growth factor (VEGF) splice variants by LightCycler technology, Clin Chem. 2001 April; 47 (4):654-60; Jia, H. P., et al., Discovery of new human beta-defensins using a genomics-based approach, Gene. 2001 Jan. 24; 263 (1-2):211-8.
  • PCR-based and 5′ RACE Validation Brigle, K. E., et al., Organization of the murine reduced folate carrier gene and identification of variant splice forms, Biochem Biophys Acta. 1997 Aug. 7; 1353 (2): 191-8).
  • genomic regions are modulated in cancers.
  • the alternative transcripts or splice variants of the gene are modulated as well.
  • 191P4D12(b) has a particular expression profile related to cancer.
  • Alternative transcripts and splice variants of 191P4D12(b) may also be involved in cancers in the same or different tissues, thus serving as tumor-associated markers/antigens.
  • Tables LII (a)-(d) through LV (a)-(d) are set forth on a variant-by-variant bases.
  • Tables LII (a)-(d) shows nucleotide sequence of the transcript variants.
  • Tables LIII (a)-(d) shows the alignment of the transcript variant with nucleic acid sequence of 191P4D12(b) v.1.
  • Tables LIV (a)-(d) lays out amino acid translation of the transcript variant for the identified reading frame orientation.
  • Tables LV (a)-(d) displays alignments of the amino acid sequence encoded by the splice variant with that of 191P4D12(b) v.1.
  • a Single Nucleotide Polymorphism is a single base pair variation in a nucleotide sequence at a specific location.
  • SNP Single Nucleotide Polymorphism
  • A/T refers to the specific base pair sequence of one or more locations in the genome of an individual.
  • Haplotype refers to the base pair sequence of more than one location on the same DNA molecule (or the same chromosome in higher organisms), often in the context of one gene or in the context of several tightly linked genes.
  • SNP that occurs on a cDNA is called cSNP. This cSNP may change amino acids of the protein encoded by the gene and thus change the functions of the protein.
  • SNP and/or combinations of alleles have many applications, including diagnosis of inherited diseases, determination of drug reactions and dosage, identification of genes responsible for diseases, and analysis of the genetic relationship between individuals (P. Nowotny, J. M. Kwon and A. M. Goate, “SNP analysis to dissect human traits,” Curr. Opin. Neurobiol. 2001 October; 11 (5):637-641; M. Pirmohamed and B. K. Park, “Genetic susceptibility to adverse drug reactions,” Trends Pharmacol. Sci. 2001 June; 22 (6):298-305; J. H. Riley, C.
  • SNP are identified by a variety of art-accepted methods (P. Bean, “The promising voyage of SNP target discovery,” Am. Clin. Lab. 2001 October-November; 20 (9):18-20; K. M. Weiss, “In search of human variation,” Genome Res. 1998 July; 8 (7):691-697; M. M. She, “Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies,” Clin. Chem. 2001 February; 47 (2):164-172).
  • SNP can be identified by sequencing DNA fragments that show polymorphism by gel-based methods such as restriction fragment length polymorphism (RFLP) and denaturing gradient gel electrophoresis (DGGE).
  • RFLP restriction fragment length polymorphism
  • DGGE denaturing gradient gel electrophoresis
  • FIG. 11 shows the schematic alignment of protein variants, corresponding to nucleotide variants.
  • Nucleotide variants that code for the same amino acid sequence as v.1 are not shown in FIG. 11 . These alleles of the SNP, though shown separately here, can occur in different combinations (haplotypes) and in any one of the transcript variants (such as 191P4D12(b) v.9) that contains the site of the SNP.
  • the SNP at 2688 of v.1 occurs also in transcript variant v.9 and contributed to one codon change of v.9 at amino acid 64 from Ala to Asp ( FIG. 11 ).
  • 191P4D12(b) and 191P4D12(b) variants are cloned into any one of a variety of expression vectors known in the art.
  • One or more of the following regions of 191P4D12(b) variants are expressed: the full length sequence presented in FIGS. 2 and 3 , or any 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more contiguous amino acids from 191P4D12(b), variants, or analogs thereof.
  • pCRII constructs (Invitrogen, Carlsbad Calif.) are generated encoding either all or fragments of the 191P4D12(b) cDNA.
  • the pCRII vector has Sp6 and T7 promoters flanking the insert to drive the transcription of 191P4D12(b) RNA for use as probes in RNA in situ hybridization experiments. These probes are used to analyze the cell and tissue expression of 191P4D12(b) at the RNA level.
  • Transcribed 191P4D12(b) RNA representing the cDNA amino acid coding region of the 191P4D12(b) gene is used in in vitro translation systems such as the TnTTM Coupled Reticulolysate System (Promega, Corp., Madison, Wis.) to synthesize 191P4D12(b) protein.
  • TnTTM Coupled Reticulolysate System Promega, Corp., Madison, Wis.
  • pGEX Constructs To generate recombinant 191P4D12(b) proteins in bacteria that are fused to the Glutathione S-transferase (GST) protein, all or parts of the 191P4D12(b) cDNA protein coding sequence are cloned into the pGEX family of GST-fusion vectors (Amersham Pharmacia Biotech, Piscataway, N.J.). These constructs allow controlled expression of recombinant 191P4D12(b) protein sequences with GST fused at the amino-terminus and a six histidine epitope (6 ⁇ His) at the carboxyl-terminus.
  • GST-fusion vectors Amersham Pharmacia Biotech, Piscataway, N.J.
  • the GST and 6 ⁇ His tags permit purification of the recombinant fusion protein from induced bacteria with the appropriate affinity matrix and allow recognition of the fusion protein with anti-GST and anti-His antibodies.
  • the 6 ⁇ His tag is generated by adding 6 histidine codons to the cloning primer at the 3′ end, e.g., of the open reading frame (ORF).
  • a proteolytic cleavage site such as the PreScissionTM recognition site in pGEX-6P-1, may be employed such that it permits cleavage of the GST tag from 191P4D12(b)-related protein.
  • the ampicillin resistance gene and pBR322 origin permits selection and maintenance of the pGEX plasmids in E. coli.
  • pMAL Constructs To generate, in bacteria, recombinant 191P4D12(b) proteins that are fused to maltose-binding protein (MBP), all or parts of the 191P4D12(b) cDNA protein coding sequence are fused to the MBP gene by cloning into the pMAL-c2X and pMAL-p2X vectors (New England Biolabs, Beverly, Mass.). These constructs allow controlled expression of recombinant 191P4D12(b) protein sequences with MBP fused at the amino-terminus and a 6 ⁇ His epitope tag at the carboxyl-terminus.
  • MBP maltose-binding protein
  • the MBP and 6 ⁇ His tags permit purification of the recombinant protein from induced bacteria with the appropriate affinity matrix and allow recognition of the fusion protein with anti-MBP and anti-His antibodies.
  • the 6 ⁇ His epitope tag is generated by adding 6 histidine codons to the 3′ cloning primer.
  • a Factor Xa recognition site permits cleavage of the pMAL tag from 191P4D12(b).
  • the pMAL-c2X and pMAL-p2X vectors are optimized to express the recombinant protein in the cytoplasm or periplasm respectively. Periplasm expression enhances folding of proteins with disulfide bonds.
  • pET Constructs To express 191P4D12(b) in bacterial cells, all or parts of the 191P4D12(b) cDNA protein coding sequence are cloned into the pET family of vectors (Novagen, Madison, Wis.). These vectors allow tightly controlled expression of recombinant 191P4D12(b) protein in bacteria with and without fusion to proteins that enhance solubility, such as NusA and thioredoxin (Trx), and epitope tags, such as 6 ⁇ His and S-TagTM that aid purification and detection of the recombinant protein. For example, constructs are made utilizing pET NusA fusion system 43.1 such that regions of the 191P4D12(b) protein are expressed as amino-terminal fusions to NusA.
  • pESC Constructs To express 191P4D12(b) in the yeast species Saccharomyces cerevisiae for generation of recombinant protein and functional studies, all or parts of the 191P4D12(b) cDNA protein coding sequence are cloned into the pESC family of vectors each of which contain 1 of 4 selectable markers, HIS3, TRP1, LEU2, and URA3 (Stratagene, La Jolla, Calif.). These vectors allow controlled expression from the same plasmid of up to 2 different genes or cloned sequences containing either FlagTM or Myc epitope tags in the same yeast cell. This system is useful to confirm protein-protein interactions of 191P4D12(b). In addition, expression in yeast yields similar post-translational modifications, such as glycosylations and phosphorylations, that are found when expressed in eukaryotic cells.
  • pESP Constructs To express 191P4D12(b) in the yeast species Saccharomyces pombe , all or parts of the 191P4D12(b) cDNA protein coding sequence are cloned into the pESP family of vectors. These vectors allow controlled high level of expression of a 191P4D12(b) protein sequence that is fused at either the amino terminus or at the carboxyl terminus to GST which aids purification of the recombinant protein. A FlagTM epitope tag allows detection of the recombinant protein with anti-FlagTM antibody.
  • the full or partial length 191P4D12(b) cDNA sequences can be cloned into any one of a variety of expression vectors known in the art.
  • one or more of the following regions of 191P4D12(b) are expressed in these constructs, amino acids 1 to 510, or any 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more contiguous amino acids from 191P4D12(b) v.1, v.2, v.10, v.11, v.12; amino acids 1 to 511, or any 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more contiguous amino acids from 191P4D12(b) v.13, variants, or analogs thereof.
  • constructs can be transfected into any one of a wide variety of mammalian cells such as 293T cells.
  • Transfected 293T cell lysates can be probed with the anti-191P4D12(b) polyclonal serum, described herein.
  • pcDNA4/HisMax Constructs To express 191P4D12(b) in mammalian cells, a 191P4D12(b) ORF, or portions thereof, of 191P4D12(b) were cloned into pcDNA4/HisMax Version A (Invitrogen, Carlsbad, Calif.). Protein expression is driven from the cytomegalovirus (CMV) promoter and the SP16 translational enhancer. The recombinant protein has XpressTM and six histidine (6 ⁇ His) epitopes fused to the amino-terminus.
  • CMV cytomegalovirus
  • SP16 translational enhancer The recombinant protein has XpressTM and six histidine (6 ⁇ His) epitopes fused to the amino-terminus.
  • the pcDNA4/HisMax vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large T antigen.
  • BGH bovine growth hormone
  • the Zeocin resistance gene allows for selection of mammalian cells expressing the protein and the ampicillin resistance gene and ColE1 origin permits selection and maintenance of the plasmid in E. coli.
  • pcDNA3.1/MycHis Constructs To express 191P4D12(b) in mammalian cells, a 191P4D12(b) ORF, or portions thereof, of 191P4D12(b) with a consensus Kozak translation initiation site was cloned into pcDNA3.1/MycHis Version A (Invitrogen, Carlsbad, Calif.). Protein expression is driven from the cytomegalovirus (CMV) promoter. The recombinant proteins have the myc epitope and 6 ⁇ His epitope fused to the carboxyl-terminus.
  • CMV cytomegalovirus
  • the pcDNA3.1/MycHis vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability, along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large T antigen.
  • BGH bovine growth hormone
  • the Neomycin resistance gene can be used, as it allows for selection of mammalian cells expressing the protein and the ampicillin resistance gene and ColE1 origin permits selection and maintenance of the plasmid in E. coli .
  • FIG. 22 shows expression of 191P4D12(b).pcDNA3.1/MycHis following vector transfection into 293T cells.
  • 293T cells were transfected with either 191P4D12(b).pcDNA3.1/mychis or pcDNA3.1/mychis vector control. Forty hours later cell lysates were collected. Samples were run on an SDS-PAGE acrylamide gel, blotted and stained with anti-his antibody. The blot was developed using the ECL chemiluminescence kit and visualized by autoradiography. Results show expression of 191P4D12(b) in the lysates of 191P4D12(b).pcDNA3.1/mychis transfected cells (Lane 3), but not from the control pcDNA3.1/mychis (Lane 4).
  • pcDNA3.1/CT-GFP-TOPO Construct To express 191P4D12(b) in mammalian cells and to allow detection of the recombinant proteins using fluorescence, a 191P4D12(b) ORF, or portions thereof, with a consensus Kozak translation initiation site are cloned into pcDNA3.1/CT-GFP-TOPO (Invitrogen, CA). Protein expression is driven from the cytomegalovirus (CMV) promoter. The recombinant proteins have the Green Fluorescent Protein (GFP) fused to the carboxyl-terminus facilitating non-invasive, in vivo detection and cell biology studies.
  • GFP Green Fluorescent Protein
  • the pcDNA3.1CT-GFP-TOPO vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large T antigen.
  • BGH bovine growth hormone
  • the Neomycin resistance gene allows for selection of mammalian cells that express the protein, and the ampicillin resistance gene and ColE1 origin permits selection and maintenance of the plasmid in E. coli .
  • Additional constructs with an amino-terminal GFP fusion are made in pcDNA3.1/NT-GFP-TOPO spanning the entire length of a 191P4D12(b) protein.
  • PAPtag A 191P4D12(b) ORF, or portions thereof, is cloned into pAPtag-5 (GenHunter Corp. Nashville, Tenn.). This construct generates an alkaline phosphatase fusion at the carboxyl-terminus of a 191P4D12(b) protein while fusing the IgGK signal sequence to the amino-terminus. Constructs are also generated in which alkaline phosphatase with an amino-terminal IgGK signal sequence is fused to the amino-terminus of a 191P4D12(b) protein.
  • the resulting recombinant 191P4D12(b) proteins are optimized for secretion into the media of transfected mammalian cells and can be used to identify proteins such as ligands or receptors that interact with 191P4D12(b) proteins.
  • Protein expression is driven from the CMV promoter and the recombinant proteins also contain myc and 6 ⁇ His epitopes fused at the carboxyl-terminus that facilitates detection and purification.
  • the Zeocin resistance gene present in the vector allows for selection of mammalian cells expressing the recombinant protein and the ampicillin resistance gene permits selection of the plasmid in E. coli.
  • pTag5 A 191P4D12(b) v.1 extracellular domain was cloned into pTag-5 plasmid. This vector is similar to pAPtag but without the alkaline phosphatase fusion. This construct generates 191P4D12(b) protein with an amino-terminal IgGK signal sequence and myc and 6 ⁇ His epitope tags at the carboxyl-terminus that facilitate detection and affinity purification. The resulting recombinant 191P4D12(b) protein is optimized for secretion into the media of transfected mammalian cells, and is used as immunogen or ligand to identify proteins such as ligands or receptors that interact with the 191P4D12(b) proteins.
  • FIG. 22 shows expression and secretion of the extracellular domain of 191P4D12(b) following 191P4D12(b).pTag5 vector transfection into 293T cells. 293T cells were transfected with 191P4D12(b) pTag5. Forty hours later, cell lysate and supernatant were collected. Samples were run on an SDS-PAGE acrylamide gel, blotted and stained with anti-his antibody.
  • the blot was developed using the ECL chemiluminescence kit and visualized by autoradiography. Results show expression from 191P4D12(b).pTag5 plasmid of 191P4D12(b) extracellular domain in the lysate (Lane 2) and secretion in the culture supernatant (Lane 1).
  • 191P4D12(b) ORF, or portions thereof, is also cloned into pTag-5 plasmid.
  • PsecFc A 191P4D12(b) ORF, or portions thereof, is also cloned into psecFc.
  • the psecFc vector was assembled by cloning the human immunoglobulin G1 (IgG) Fc (hinge, CH2, CH3 regions) into pSecTag2 (Invitrogen, California). This construct generates an IgG1 Fc fusion at the carboxyl-terminus of the 191P4D12(b) proteins, while fusing the IgGK signal sequence to N-terminus.
  • IgG human immunoglobulin G1
  • 191P4D12(b) fusions utilizing the murine IgG1 Fc region are also used.
  • the resulting recombinant 191P4D12(b) proteins are optimized for secretion into the media of transfected mammalian cells, and can be used as immunogens or to identify proteins such as ligands or receptors that interact with 191P4D12(b) protein. Protein expression is driven from the CMV promoter.
  • the hygromycin resistance gene present in the vector allows for selection of mammalian cells that express the recombinant protein, and the ampicillin resistance gene permits selection of the plasmid in E. coli.
  • pSR ⁇ Constructs To generate mammalian cell lines that express 191P4D12(b) constitutively, 191P4D12(b) ORF, or portions thereof, of 191P4D12(b) were cloned into pSR ⁇ constructs. Amphotropic and ecotropic retroviruses were generated by transfection of pSR ⁇ constructs into the 293T-10A1 packaging line or co-transfection of pSR ⁇ and a helper plasmid (containing deleted packaging sequences) into the 293 cells, respectively. The retrovirus is used to infect a variety of mammalian cell lines, resulting in the integration of the cloned gene, 191P4D12(b), into the host cell-lines.
  • Protein expression is driven from a long terminal repeat (LTR).
  • LTR long terminal repeat
  • the Neomycin resistance gene present in the vector allows for selection of mammalian cells that express the protein, and the ampicillin resistance gene and ColE1 origin permit selection and maintenance of the plasmid in E. coli .
  • the retroviral vectors can thereafter be used for infection and generation of various cell lines using, for example, PC3, NIH 3T3, TsuPr1, 293 or rat-1 cells.
  • FIG. 23 shows stable expression of 191P4D12(b) following 191P4D12(b).pSRa transduction into 3T3 cells.
  • 3T3 cells were transduced with the pSRa retroviral vector encoding the 191P4D12(b) gene.
  • the cells were expanded and RNA was extracted.
  • Northern blot with 10 ug of total RNA/lane was probed with the 191P4D12(b) SSH sequence. Size standards in kilobases (kb) are indicated on the side.
  • Results show expression of the 191P4D12(b) transcript driven from the retroviral LTR, which migrates slower than the endogenous 4 kb 191P4D12(b) transcript detected in the positive control LAPC-4AD.
  • Additional pSR ⁇ constructs are made that fuse an epitope tag such as the FLAGTM tag to the carboxyl-terminus of 191P4D12(b) sequences to allow detection using anti-Flag antibodies.
  • the FLAGTM sequence 5′ gat tac aag gat gac gac gat aag 3′ (SEQ ID NO:60) is added to cloning primer at the 3′ end of the ORF.
  • Additional pSR ⁇ constructs are made to produce both amino-terminal and carboxyl-terminal GFP and myc/6 ⁇ His fusion proteins of the full-length 191P4D12(b) proteins.
  • Additional Viral Vectors Additional constructs are made for viral-mediated delivery and expression of 191P4D12(b). High virus titer leading to high level expression of 191P4D12(b) is achieved in viral delivery systems such as adenoviral vectors and herpes amplicon vectors. A 191P4D12(b) coding sequences or fragments thereof are amplified by PCR and subcloned into the AdEasy shuttle vector (Stratagene). Recombination and virus packaging are performed according to the manufacturer's instructions to generate adenoviral vectors.
  • 191P4D12(b) coding sequences or fragments thereof are cloned into the HSV-1 vector (Imgenex) to generate herpes viral vectors.
  • the viral vectors are thereafter used for infection of various cell lines such as PC3, NIH 3T3, 293 or rat-1 cells.
  • coding sequences of 191P4D12(b), or portions thereof are cloned into regulated mammalian expression systems such as the T-Rex System (Invitrogen), the GeneSwitch System (Invitrogen) and the tightly-regulated Ecdysone System (Sratagene). These systems allow the study of the temporal and concentration dependent effects of recombinant 191P4D12(b). These vectors are thereafter used to control expression of 191P4D12(b) in various cell lines such as PC3, NIH 3T3, 293 or rat-1 cells.
  • regulated mammalian expression systems such as the T-Rex System (Invitrogen), the GeneSwitch System (Invitrogen) and the tightly-regulated Ecdysone System (Sratagene). These systems allow the study of the temporal and concentration dependent effects of recombinant 191P4D12(b). These vectors are thereafter used to control expression of 191P4D12(b) in various cell lines such as PC3, NI
  • 191P4D12(b) ORF To generate recombinant 191P4D12(b) proteins in a baculovirus expression system, 191P4D12(b) ORF, or portions thereof, are cloned into the baculovirus transfer vector pBlueBac 4.5 (Invitrogen), which provides a His-tag at the N-terminus.
  • pBlueBac-191P4D12(b) is co-transfected with helper plasmid pBac-N-Blue (Invitrogen) into SF9 ( Spodoptera frugiperda ) insect cells to generate recombinant baculovirus (see Invitrogen instruction manual for details). Baculovirus is then collected from cell supernatant and purified by plaque assay.
  • Recombinant 191P4D12(b) protein is then generated by infection of HighFive insect cells (Invitrogen) with purified baculovirus.
  • Recombinant 191P4D12(b) protein can be detected using anti-191P4D12(b) or anti-His-tag antibody.
  • 191P4D12(b) protein can be purified and used in various cell-based assays or as immunogen to generate polyclonal and monoclonal antibodies specific for 191P4D12(b).
  • FIG. 5(A-C) , FIG. 6(A-C) , FIG. 7(A-E) , FIG. 8(A-C) , and FIG. 9(A-C) depict graphically five amino acid profiles of 191P4D12(b) variants 1, 7, and 9, each assessment available by accessing the ProtScale website located on the World Wide Web at (.expasy.ch/cgi-bin/protscale.pl) on the ExPasy molecular biology server.
  • FIG. 5 Hydrophilicity, (Hopp T. P., Woods K. R., 1981. Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828);
  • FIG. 6 Hydropathicity, (Kyte J., Doolittle R. F., 1982. J. Mol. Biol. 157:105-132);
  • FIG. 7 Percentage Accessible Residues (Janin J., 1979 Nature 277:491-492);
  • FIG. 8 Average Flexibility, (Bhaskaran R., and Ponnuswamy P. K., 1988. Int. J. Pept. Protein Res. 32:242-255);
  • FIG. 5 Hydrophilicity, (Hopp T. P., Woods K. R., 1981. Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828);
  • FIG. 6 Hydropathicity, (Kyte J., Doolittle R. F., 1982. J
  • Beta-turn (Deleage, G., Roux B. 1987 Protein Engineering 1:289-294); and optionally others available in the art, such as on the ProtScale website, were used to identify antigenic regions of each of the 191P4D12(b) variant proteins.
  • Each of the above amino acid profiles of 191P4D12(b) variants were generated using the following ProtScale parameters for analysis: 1) A window size of 9; 2) 100% weight of the window edges compared to the window center; and, 3) amino acid profile values normalized to lie between 0 and 1.
  • Hydrophilicity ( FIG. 5 ), Hydropathicity ( FIG. 6 ) and Percentage Accessible Residues ( FIG. 7 ) profiles were used to determine stretches of hydrophilic amino acids (i.e., values greater than 0.5 on the Hydrophilicity and Percentage Accessible Residues profile, and values less than 0.5 on the Hydropathicity profile). Such regions are likely to be exposed to the aqueous environment, be present on the surface of the protein, and thus available for immune recognition, such as by antibodies.
  • Average Flexibility ( FIG. 8 ) and Beta-turn ( FIG. 9 ) profiles determine stretches of amino acids (i.e., values greater than 0.5 on the Beta-turn profile and the Average Flexibility profile) that are not constrained in secondary structures such as beta sheets and alpha helices. Such regions are also more likely to be exposed on the protein and thus accessible to immune recognition, such as by antibodies.
  • Antigenic sequences of the 191P4D12(b) variant proteins indicated, e.g., by the profiles set forth in FIG. 5(A-C) , FIG. 6(A-C) , FIG. 7(A-C) , FIG. 8(A-C) , and/or FIG. 9(A-C) are used to prepare immunogens, either peptides or nucleic acids that encode them, to generate therapeutic and diagnostic anti-191P4D12(b) antibodies.
  • the immunogen can be any 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50 or more than 50 contiguous amino acids, or the corresponding nucleic acids that encode them, from the 191P4D12(b) protein variants listed in FIGS. 2 and 3 , of which the amino acid profiles are shown in FIG. 9 , or are identical to the variant sequences that are the same as a variant depicted in FIG. 9 .
  • peptide immunogens of the invention can comprise, a peptide region of at least 5 amino acids of FIGS. 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the Hydrophilicity profiles of FIG.
  • Peptide immunogens of the invention can also comprise nucleic acids that encode any of the forgoing.
  • All immunogens of the invention, peptide or nucleic acid can be embodied in human unit dose form, or comprised by a composition that includes a pharmaceutical excipient compatible with human physiology.
  • 191P4D12(b) protein variants 1, 7, and 9, namely the predicted presence and location of alpha helices, extended strands, and random coils, is predicted from the primary amino acid sequence using the HNN—Hierarchical Neural Network method (Guermeur, 1997) accessed from the ExPasy molecular biology server located on the World Wide Web.
  • the analysis indicates that 191P4D12(b) variant 1 is composed of 24.90% alpha helix, 18.63% extended strand, and 56.47% random coil ( FIG. 13A ).
  • Variant 6 is composed of 28.47% alpha helix, 19.32% extended strand, and 52.20% random coil ( FIG. 13B ).
  • Variant 7 is composed of 26.19% alpha helix, 18.76% extended strand, and 55.05% random coil ( FIG. 13C ). Variant 7 is composed of 56.20% alpha helix, 8.76% extended strand, and 35.04% random coil ( FIG. 13D ).
  • FIGS. 13E and 13F are the results of analysis of variant 1 depicting the presence and location of 1 transmembrane domain using the TMpred program ( FIG. 13E ) and 1 transmembrane domain using the TMHMM program ( FIG. 13F ).
  • FIGS. 13G and 13H are the results of analysis of variant 6 depicting the presence and location of 1 transmembrane domains using the TMpred program ( FIG.
  • FIGS. 13G and 13H shown graphically in FIGS. 13I and 13J are the results of analysis of variant 7 depicting the presence and location of 1 transmembrane domain using the TMpred program ( FIG. 13I ) and 1 transmembrane domain using the TMHMM program ( FIG. 13J ).
  • FIGS. 13K and 13L Shown graphically in FIGS. 13K and 13L are the results of analysis of variant 9 depicting the presence and location of 2 transmembrane domains using the TMpred program ( FIG. 1K ) and 1 transmembrane domain using the TMHMM program ( FIG. 13L ).
  • the results of each program, namely the amino acids encoding the transmembrane domains are summarized in Table VI and Table L.
  • Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant.
  • the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections.
  • computer algorithms are employed in design of immunogens that, based on amino acid sequence analysis contain characteristics of being antigenic and available for recognition by the immune system of the immunized host (see the Example entitled “Antigenicity Profiles and Secondary Structures”).
  • Such regions would be predicted to be hydrophilic, flexible, in beta-turn conformations, and be exposed on the surface of the protein (see, e.g., FIG. 5(A-C) , FIGS. 6(A & C), FIG. 7(A-C) , FIG. 8(A-C) , or FIG. 9(A-C) for amino acid profiles that indicate such regions of 191P4D12(b) protein variants).
  • recombinant bacterial fusion proteins or peptides containing hydrophilic, flexible, beta-turn regions of 191P4D12(b) protein variants are used as antigens to generate polyclonal antibodies in New Zealand White rabbits or monoclonal antibodies as described in Example 11.
  • such regions include, but are not limited to, amino acids 27-39, amino acids 93-109, and amino acids 182-204.
  • sequence unique to variant 7 such regions include, but are not limited to, amino acids 400-420.
  • sequence specific for variant 9 such regions include, but are not limited to, amino acids 80-94. It is useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized.
  • immunogenic proteins examples include, but are not limited to, keyhole limpet hemocyanin (KLH), serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor.
  • KLH keyhole limpet hemocyanin
  • serum albumin serum albumin
  • bovine thyroglobulin bovine thyroglobulin
  • soybean trypsin inhibitor soybean trypsin inhibitor.
  • a peptide encoding amino acids 52-63 of 191P4D12(b) variant 1 and amino acids 179-197 were each conjugated to KLH and used to immunize separate rabbits.
  • the immunizing agent may include all or portions of the 191P4D12(b) variant proteins, analogs or fusion proteins thereof.
  • the 191P4D12(b) variant 1 amino acid sequence can be fused using recombinant DNA techniques to any one of a variety of fusion protein partners that are well known in the art, such as glutathione-S-transferase (GST) and HIS tagged fusion proteins.
  • GST glutathione-S-transferase
  • amino acids 2-349 of 191P4D12(b) variant 1 was fused to GST using recombinant techniques and the pGEX expression vector, expressed, purified and used to immunize a rabbit.
  • Such fusion proteins are purified from induced bacteria using the appropriate affinity matrix.
  • recombinant bacterial fusion proteins that may be employed include maltose binding protein, LacZ, thioredoxin, NusA, or an immunoglobulin constant region (see the section entitled “Production of 191P4D12(b) in Prokaryotic Systems” and Current Protocols In Molecular Biology, Volume 2, Unit 16, Frederick M. Ausubul et al. eds., 1995; Linsley, P. S., Brady, W., Urnes, M., Grosmaire, L., Damle, N., and Ledbetter, L. (1991) J. Exp. Med. 174, 561-566).
  • mammalian expressed protein antigens are also used. These antigens are expressed from mammalian expression vectors such as the Tag5 and Fc-fusion vectors (see the section entitled “Production of Recombinant 191P4D12(b) in Eukaryotic Systems”), and retain post-translational modifications such as glycosylations found in native protein.
  • mammalian expression vectors such as the Tag5 and Fc-fusion vectors (see the section entitled “Production of Recombinant 191P4D12(b) in Eukaryotic Systems”), and retain post-translational modifications such as glycosylations found in native protein.
  • amino acids 31-347 of variant 1 encoding the extracellular domain, was cloned into the Tag5 mammalian secretion vector, and expressed in 293T cells resulting in a soluble secreted protein ( FIG. 22 ).
  • the recombinant protein is purified by metal chelate chromatography from tissue culture supernatants of 293T cells stably expressing the recombinant vector.
  • the purified Tag5 191P4D12(b) protein is then used as immunogen.
  • adjuvants include, but are not limited to, complete Freund's adjuvant (CFA) and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).
  • CFA complete Freund's adjuvant
  • MPL-TDM adjuvant monophosphoryl Lipid A, synthetic trehalose dicorynomycolate
  • rabbits are initially immunized subcutaneously with up to 200 ⁇ g, typically 100-200 ⁇ g, of fusion protein or peptide conjugated to KLH mixed in complete Freund's adjuvant (CFA). Rabbits are then injected subcutaneously every two weeks with up to 200 ⁇ g, typically 100-200 ⁇ g, of the immunogen in incomplete Freund's adjuvant (IFA). Test bleeds are taken approximately 7-10 days following each immunization and used to monitor the titer of the antiserum by ELISA.
  • CFA complete Freund's adjuvant
  • the full-length 191P4D12(b) variant 1 cDNA is cloned into pcDNA 3.1 myc-his expression vector (Invitrogen, see the Example entitled “Production of Recombinant 191P4D12(b) in Eukaryotic Systems”).
  • cell lysates are probed with the anti-191P4D12(b) serum and with anti-His antibody (Santa Cruz Biotechnologies, Santa Cruz, Calif.) to determine specific reactivity to denatured 191P4D12(b) protein using the Western blot technique.
  • the immune serum is tested by fluorescence microscopy, flow cytometry and immunoprecipitation against 293T ( FIG. 22 ) and other recombinant 191P4D12(b)-expressing cells to determine specific recognition of native protein.
  • Western blot, immunoprecipitation, fluorescent microscopy, and flow cytometric techniques using cells that endogenously express 191P4D12(b) are also carried out to test reactivity and specificity.
  • Anti-serum from rabbits immunized with 191P4D12(b) variant fusion proteins are purified by depletion of antibodies reactive to the fusion partner sequence by passage over an affinity column containing the fusion partner either alone or in the context of an irrelevant fusion protein.
  • antiserum derived from a GST-191P4D12(b) variant 1 fusion protein is first purified by passage over a column of GST protein covalently coupled to AffiGel matrix (BioRad, Hercules, Calif.). The antiserum is then affinity purified by passage over a column composed of a MBP-191P4D12(b) fusion protein covalently coupled to Affigel matrix.
  • the serum is then further purified by protein G affinity chromatography to isolate the IgG fraction.
  • Sera from other His-tagged antigens and peptide immunized rabbits as well as fusion partner depleted sera are affinity purified by passage over a column matrix composed of the original protein immunogen or free peptide.
  • therapeutic mAbs to 191P4D12(b) variants comprise those that react with epitopes specific for each variant protein or specific to sequences in common between the variants that would disrupt or modulate the biological function of the 191P4D12(b) variants, for example those that would disrupt the interaction with ligands and binding partners.
  • Immunogens for generation of such mAbs include those designed to encode or contain the entire 191P4D12(b) protein variant sequence, regions of the 191P4D12(b) protein variants predicted to be antigenic from computer analysis of the amino acid sequence (see, e.g., FIG. 5(A-C) , FIG. 6(A-C) , FIG. 7(A-C) , FIG.
  • Immunogens include peptides, recombinant bacterial proteins, and mammalian expressed Tag 5 proteins and human and murine IgG FC fusion proteins.
  • cells engineered to express high levels of a respective 191P4D12(b) variant such as 293T-191P4D12(b) variant 1 or 300.19-191P4D12(b) variant 1 murine Pre-B cells, are used to immunize mice.
  • mice are first immunized intraperitoneally (IP) with, typically, 10-50 ⁇ g of protein immunogen or 10 7 191P4D12(b)-expressing cells mixed in complete Freund's adjuvant. Mice are then subsequently immunized IP every 2-4 weeks with, typically, 10-50 ⁇ g of protein immunogen or 10 7 cells mixed in incomplete Freund's adjuvant.
  • IP intraperitoneally
  • MPL-TDM adjuvant is used in immunizations.
  • a DNA-based immunization protocol is employed in which a mammalian expression vector encoding a 191P4D12(b) variant sequence is used to immunize mice by direct injection of the plasmid DNA.
  • amino acids 31-347 was cloned into the Tag5 mammalian secretion vector and the recombinant vector will then be used as immunogen.
  • test bleeds are taken 7-10 days following an injection to monitor titer and specificity of the immune response. Once appropriate reactivity and specificity is obtained as determined by ELISA, Western blotting, immunoprecipitation, fluorescence microscopy, and flow cytometric analyses, fusion and hybridoma generation is then carried out with established procedures well known in the art (see, e.g., Harlow and Lane, 1988).
  • a Tag1-191P4D12(b) variant 1 antigen encoding amino acids 31-347 was expressed ( FIG. 22 ) and then purified from stably transfected 293T cells.
  • Balb C mice are initially immunized intraperitoneally with 25 ⁇ g of the Tag1-191P4D12(b) variant 1 protein mixed in complete Freund's adjuvant. Mice are subsequently immunized every two weeks with 25 ⁇ g of the antigen mixed in incomplete Freund's adjuvant for a total of three immunizations.
  • ELISA using the Tag1 antigen determines the titer of serum from immunized mice.
  • Reactivity and specificity of serum to full length 191P4D12(b) variant 1 protein is monitored by Western blotting, immunoprecipitation and flow cytometry using 293T cells transfected with an expression vector encoding the 191P4D12(b) variant 1 cDNA (see e.g., the Example entitled “Production of Recombinant 191P4D12(b) (a) & (b) in Eukaryotic Systems” and FIG. 22 ).
  • Other recombinant 191P4D12(b) variant 1-expressing cells or cells endogenously expressing 191P4D12(b) variant 1 are also used.
  • mice showing the strongest reactivity are rested and given a final injection of Tag1 antigen in PBS and then sacrificed four days later.
  • the spleens of the sacrificed mice are harvested and fused to SPO/2 myeloma cells using standard procedures (Harlow and Lane, 1988).
  • Supernatants from HAT selected growth wells are screened by ELISA, Western blot, immunoprecipitation, fluorescent microscopy, and flow cytometry to identify 191P4D12(b) specific antibody-producing clones.

Abstract

A novel gene 191P4D12(b) and its encoded protein, and variants thereof, are described wherein 191P4D12(b) exhibits tissue specific expression in normal adult tissue, and is aberrantly expressed in the cancers listed in Table I. Consequently, 191P4D12(b) provides a diagnostic, prognostic, prophylactic and/or therapeutic target for cancer. The 191P4D12(b) gene or fragment thereof, or its encoded protein, or variants thereof, or a fragment thereof, can be used to elicit a humoral or cellular immune response; antibodies or T cells reactive with 191P4D12(b) can be used in active or passive immunization.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. Ser. No. 10/422,571, filed Apr. 23, 2003, which claims the benefit of priority of United States provisional patent application U.S. Ser. No. 60/404,306, filed Aug. 16, 2002 and United States provisional patent application U.S. Ser. No. 60/423,290, filed Nov. 1, 2002. The contents of which are hereby incorporated by reference in their entirety.
  • STATEMENT OF RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH
  • Not applicable.
  • REFERENCE TO SEQUENCE LISTING SUBMITTED VIA EFS-WEB
  • The content of the following electronic submission of the sequence listing via the USPTO EFS-WEB server, as authorized and set forth in MPEP §1730 II.B.2(a)(C), is incorporated herein by reference in its entirety for all purposes. The sequence listing is identified on the electronically filed text file as follows:
  • File Name Date of Creation Size (bytes)
    511582008210Seqlist.txt Jun. 18, 2010 319,849 bytes
  • FIELD OF THE INVENTION
  • The invention described herein relates to genes and their encoded proteins, termed 191P4D12(b), expressed in certain cancers, and to diagnostic and therapeutic methods and compositions useful in the management of cancers that express 191P4D12(b).
  • BACKGROUND OF THE INVENTION
  • Cancer is the second leading cause of human death next to coronary disease. Worldwide, millions of people die from cancer every year. In the United States alone, as reported by the American Cancer Society, cancer causes the death of well over a half-million people annually, with over 1.2 million new cases diagnosed per year. While deaths from heart disease have been declining significantly, those resulting from cancer generally are on the rise. In the early part of the next century, cancer is predicted to become the leading cause of death.
  • Worldwide, several cancers stand out as the leading killers. In particular, carcinomas of the lung, prostate, breast, colon, pancreas, and ovary represent the primary causes of cancer death. These and virtually all other carcinomas share a common lethal feature. With very few exceptions, metastatic disease from a carcinoma is fatal. Moreover, even for those cancer patients who initially survive their primary cancers, common experience has shown that their lives are dramatically altered. Many cancer patients experience strong anxieties driven by the awareness of the potential for recurrence or treatment failure. Many cancer patients experience physical debilitations following treatment. Furthermore, many cancer patients experience a recurrence.
  • Worldwide, prostate cancer is the fourth most prevalent cancer in men. In North America and Northern Europe, it is by far the most common cancer in males and is the second leading cause of cancer death in men. In the United States alone, well over 30,000 men die annually of this disease—second only to lung cancer. Despite the magnitude of these figures, there is still no effective treatment for metastatic prostate cancer. Surgical prostatectomy, radiation therapy, hormone ablation therapy, surgical castration and chemotherapy continue to be the main treatment modalities. Unfortunately, these treatments are ineffective for many and are often associated with undesirable consequences.
  • On the diagnostic front, the lack of a prostate tumor marker that can accurately detect early-stage, localized tumors remains a significant limitation in the diagnosis and management of this disease. Although the serum prostate specific antigen (PSA) assay has been a very useful tool, however its specificity and general utility is widely regarded as lacking in several important respects.
  • Progress in identifying additional specific markers for prostate cancer has been improved by the generation of prostate cancer xenografts that can recapitulate different stages of the disease in mice. The LAPC (Los Angeles Prostate Cancer) xenografts are prostate cancer xenografts that have survived passage in severe combined immune deficient (SCID) mice and have exhibited the capacity to mimic the transition from androgen dependence to androgen independence (Klein et al., 1997, Nat. Med. 3:402). More recently identified prostate cancer markers include PCTA-1 (Su et al., 1996, Proc. Natl. Acad. Sci. USA 93: 7252), prostate-specific membrane (PSM) antigen (Pinto et al., Clin Cancer Res 1996 Sep. 2 (9): 1445-51), STEAP (Hubert, et al., Proc Natl Acad Sci USA. 1999 Dec. 7; 96 (25): 14523-8) and prostate stem cell antigen (PSCA) (Reiter et al., 1998, Proc. Natl. Acad. Sci. USA 95: 1735).
  • While previously identified markers such as PSA, PSM, PCTA and PSCA have facilitated efforts to diagnose and treat prostate cancer, there is need for the identification of additional markers and therapeutic targets for prostate and related cancers in order to further improve diagnosis and therapy.
  • Renal cell carcinoma (RCC) accounts for approximately 3 percent of adult malignancies. Once adenomas reach a diameter of 2 to 3 cm, malignant potential exists. In the adult, the two principal malignant renal tumors are renal cell adenocarcinoma and transitional cell carcinoma of the renal pelvis or ureter. The incidence of renal cell adenocarcinoma is estimated at more than 29,000 cases in the United States, and more than 11,600 patients died of this disease in 1998. Transitional cell carcinoma is less frequent, with an incidence of approximately 500 cases per year in the United States.
  • Surgery has been the primary therapy for renal cell adenocarcinoma for many decades. Until recently, metastatic disease has been refractory to any systemic therapy. With recent developments in systemic therapies, particularly immunotherapies, metastatic renal cell carcinoma may be approached aggressively in appropriate patients with a possibility of durable responses. Nevertheless, there is a remaining need for effective therapies for these patients.
  • Of all new cases of cancer in the United States, bladder cancer represents approximately 5 percent in men (fifth most common neoplasm) and 3 percent in women (eighth most common neoplasm). The incidence is increasing slowly, concurrent with an increasing older population. In 1998, there was an estimated 54,500 cases, including 39,500 in men and 15,000 in women. The age-adjusted incidence in the United States is 32 per 100,000 for men and eight per 100,000 in women. The historic male/female ratio of 3:1 may be decreasing related to smoking patterns in women. There were an estimated 11,000 deaths from bladder cancer in 1998 (7,800 in men and 3,900 in women). Bladder cancer incidence and mortality strongly increase with age and will be an increasing problem as the population becomes more elderly.
  • Most bladder cancers recur in the bladder. Bladder cancer is managed with a combination of transurethral resection of the bladder (TUR) and intravesical chemotherapy or immunotherapy. The multifocal and recurrent nature of bladder cancer points out the limitations of TUR. Most muscle-invasive cancers are not cured by TUR alone. Radical cystectomy and urinary diversion is the most effective means to eliminate the cancer but carry an undeniable impact on urinary and sexual function. There continues to be a significant need for treatment modalities that are beneficial for bladder cancer patients.
  • An estimated 130,200 cases of colorectal cancer occurred in 2000 in the United States, including 93,800 cases of colon cancer and 36,400 of rectal cancer. Colorectal cancers are the third most common cancers in men and women. Incidence rates declined significantly during 1992-1996 (−2.1% per year). Research suggests that these declines have been due to increased screening and polyp removal, preventing progression of polyps to invasive cancers. There were an estimated 56,300 deaths (47,700 from colon cancer, 8,600 from rectal cancer) in 2000, accounting for about 11% of all U.S. cancer deaths.
  • At present, surgery is the most common form of therapy for colorectal cancer, and for cancers that have not spread, it is frequently curative. Chemotherapy, or chemotherapy plus radiation, is given before or after surgery to most patients whose cancer has deeply perforated the bowel wall or has spread to the lymph nodes. A permanent colostomy (creation of an abdominal opening for elimination of body wastes) is occasionally needed for colon cancer and is infrequently required for rectal cancer. There continues to be a need for effective diagnostic and treatment modalities for colorectal cancer.
  • There were an estimated 164,100 new cases of lung and bronchial cancer in 2000, accounting for 14% of all U.S. cancer diagnoses. The incidence rate of lung and bronchial cancer is declining significantly in men, from a high of 86.5 per 100,000 in 1984 to 70.0 in 1996. In the 1990s, the rate of increase among women began to slow. In 1996, the incidence rate in women was 42.3 per 100,000.
  • Lung and bronchial cancer caused an estimated 156,900 deaths in 2000, accounting for 28% of all cancer deaths. During 1992-1996, mortality from lung cancer declined significantly among men (−1.7% per year) while rates for women were still significantly increasing (0.9% per year). Since 1987, more women have died each year of lung cancer than breast cancer, which, for over 40 years, was the major cause of cancer death in women. Decreasing lung cancer incidence and mortality rates most likely resulted from decreased smoking rates over the previous 30 years; however, decreasing smoking patterns among women lag behind those of men. Of concern, although the declines in adult tobacco use have slowed, tobacco use in youth is increasing again.
  • Treatment options for lung and bronchial cancer are determined by the type and stage of the cancer and include surgery, radiation therapy, and chemotherapy. For many localized cancers, surgery is usually the treatment of choice. Because the disease has usually spread by the time it is discovered, radiation therapy and chemotherapy are often needed in combination with surgery. Chemotherapy alone or combined with radiation is the treatment of choice for small cell lung cancer; on this regimen, a large percentage of patients experience remission, which in some cases is long lasting. There is however, an ongoing need for effective treatment and diagnostic approaches for lung and bronchial cancers.
  • An estimated 182,800 new invasive cases of breast cancer were expected to occur among women in the United States during 2000. Additionally, about 1,400 new cases of breast cancer were expected to be diagnosed in men in 2000. After increasing about 4% per year in the 1980s, breast cancer incidence rates in women have leveled off in the 1990s to about 110.6 cases per 100,000.
  • In the U.S. alone, there were an estimated 41,200 deaths (40,800 women, 400 men) in 2000 due to breast cancer. Breast cancer ranks second among cancer deaths in women. According to the most recent data, mortality rates declined significantly during 1992-1996 with the largest decreases in younger women, both white and black. These decreases were probably the result of earlier detection and improved treatment.
  • Taking into account the medical circumstances and the patient's preferences, treatment of breast cancer may involve lumpectomy (local removal of the tumor) and removal of the lymph nodes under the arm; mastectomy (surgical removal of the breast) and removal of the lymph nodes under the arm; radiation therapy; chemotherapy; or hormone therapy. Often, two or more methods are used in combination. Numerous studies have shown that, for early stage disease, long-term survival rates after lumpectomy plus radiotherapy are similar to survival rates after modified radical mastectomy. Significant advances in reconstruction techniques provide several options for breast reconstruction after mastectomy. Recently, such reconstruction has been done at the same time as the mastectomy.
  • Local excision of ductal carcinoma in situ (DCIS) with adequate amounts of surrounding normal breast tissue may prevent the local recurrence of the DCIS. Radiation to the breast and/or tamoxifen may reduce the chance of DCIS occurring in the remaining breast tissue. This is important because DCIS, if left untreated, may develop into invasive breast cancer. Nevertheless, there are serious side effects or sequelae to these treatments. There is, therefore, a need for efficacious breast cancer treatments.
  • There were an estimated 23,100 new cases of ovarian cancer in the United States in 2000. It accounts for 4% of all cancers among women and ranks second among gynecologic cancers. During 1992-1996, ovarian cancer incidence rates were significantly declining. Consequent to ovarian cancer, there were an estimated 14,000 deaths in 2000. Ovarian cancer causes more deaths than any other cancer of the female reproductive system.
  • Surgery, radiation therapy, and chemotherapy are treatment options for ovarian cancer. Surgery usually includes the removal of one or both ovaries, the fallopian tubes (salpingo-oophorectomy), and the uterus (hysterectomy). In some very early tumors, only the involved ovary will be removed, especially in young women who wish to have children. In advanced disease, an attempt is made to remove all intra-abdominal disease to enhance the effect of chemotherapy. There continues to be an important need for effective treatment options for ovarian cancer.
  • There were an estimated 28,300 new cases of pancreatic cancer in the United States in 2000. Over the past 20 years, rates of pancreatic cancer have declined in men. Rates among women have remained approximately constant but may be beginning to decline. Pancreatic cancer caused an estimated 28,200 deaths in 2000 in the United States. Over the past 20 years, there has been a slight but significant decrease in mortality rates among men (about −0.9% per year) while rates have increased slightly among women.
  • Surgery, radiation therapy, and chemotherapy are treatment options for pancreatic cancer. These treatment options can extend survival and/or relieve symptoms in many patients but are not likely to produce a cure for most. There is a significant need for additional therapeutic and diagnostic options for pancreatic cancer.
  • SUMMARY OF THE INVENTION
  • The present invention relates to a gene, designated 191P4D12(b), that has now been found to be over-expressed in the cancer(s) listed in Table I. Northern blot expression analysis of 191P4D12(b) gene expression in normal tissues shows a restricted expression pattern in adult tissues. The nucleotide (FIG. 2) and amino acid (FIG. 2, and FIG. 3) sequences of 191P4D12(b) are provided. The tissue-related profile of 191P4D12(b) in normal adult tissues, combined with the over-expression observed in the tissues listed in Table I, shows that 191P4D12(b) is aberrantly over-expressed in at least some cancers, and thus serves as a useful diagnostic, prophylactic, prognostic, and/or therapeutic target for cancers of the tissue(s) such as those listed in Table I.
  • The invention provides polynucleotides corresponding or complementary to all or part of the 191P4D12(b) genes, mRNAs, and/or coding sequences, preferably in isolated form, including polynucleotides encoding 191P4D12(b)-related proteins and fragments of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more than 25 contiguous amino acids; at least 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 85, 90, 95, 100 or more than 100 contiguous amino acids of a 191P4D12(b)-related protein, as well as the peptides/proteins themselves; DNA, RNA, DNA/RNA hybrids, and related molecules, polynucleotides or oligonucleotides complementary or having at least a 90% homology to the 191P4D12(b) genes or mRNA sequences or parts thereof, and polynucleotides or oligonucleotides that hybridize to the 191P4D12(b) genes, mRNAs, or to 191P4D12(b)-encoding polynucleotides. Also provided are means for isolating cDNAs and the genes encoding 191P4D12(b). Recombinant DNA molecules containing 191P4D12(b) polynucleotides, cells transformed or transduced with such molecules, and host-vector systems for the expression of 191P4D12(b) gene products are also provided. The invention further provides antibodies that bind to 191P4D12(b) proteins and polypeptide fragments thereof, including polyclonal and monoclonal antibodies, murine and other mammalian antibodies, chimeric antibodies, humanized and fully human antibodies, and antibodies labeled with a detectable marker or therapeutic agent. In certain embodiments, there is a proviso that the entire nucleic acid sequence of FIG. 2 is not encoded and/or the entire amino acid sequence of FIG. 2 is not prepared. In certain embodiments, the entire nucleic acid sequence of FIG. 2 is encoded and/or the entire amino acid sequence of FIG. 2 is prepared, either of which are in respective human unit dose forms.
  • The invention further provides methods for detecting the presence and status of 191P4D12(b) polynucleotides and proteins in various biological samples, as well as methods for identifying cells that express 191P4D12(b). A typical embodiment of this invention provides methods for monitoring 191P4D12(b) gene products in a tissue or hematology sample having or suspected of having some form of growth dysregulation such as cancer.
  • The invention further provides various immunogenic or therapeutic compositions and strategies for treating cancers that express 191P4D12(b) such as cancers of tissues listed in Table I, including therapies aimed at inhibiting the transcription, translation, processing or function of 191P4D12(b) as well as cancer vaccines. In one aspect, the invention provides compositions, and methods comprising them, for treating a cancer that expresses 191P4D12(b) in a human subject wherein the composition comprises a carrier suitable for human use and a human unit dose of one or more than one agent that inhibits the production or function of 191P4D12(b). Preferably, the carrier is a uniquely human carrier. In another aspect of the invention, the agent is a moiety that is immunoreactive with 191P4D12(b) protein. Non-limiting examples of such moieties include, but are not limited to, antibodies (such as single chain, monoclonal, polyclonal, humanized, chimeric, or human antibodies), functional equivalents thereof (whether naturally occurring or synthetic), and combinations thereof. The antibodies can be conjugated to a diagnostic or therapeutic moiety. In another aspect, the agent is a small molecule as defined herein.
  • In another aspect, the agent comprises one or more than one peptide which comprises a cytotoxic T lymphocyte (CTL) epitope that binds an HLA class I molecule in a human to elicit a CTL response to 191P4D12(b) and/or one or more than one peptide which comprises a helper T lymphocyte (HTL) epitope which binds an HLA class II molecule in a human to elicit an HTL response. The peptides of the invention may be on the same or on one or more separate polypeptide molecules. In a further aspect of the invention, the agent comprises one or more than one nucleic acid molecule that expresses one or more than one of the CTL or HTL response stimulating peptides as described above. In yet another aspect of the invention, the one or more than one nucleic acid molecule may express a moiety that is immunologically reactive with 191P4D12(b) as described above. The one or more than one nucleic acid molecule may also be, or encodes, a molecule that inhibits production of 191P4D12(b). Non-limiting examples of such molecules include, but are not limited to, those complementary to a nucleotide sequence essential for production of 191P4D12(b) (e.g. antisense sequences or molecules that form a triple helix with a nucleotide double helix essential for 191P4D12(b) production) or a ribozyme effective to lyse 191P4D12(b) mRNA.
  • Note that to determine the starting position of any peptide set forth in Tables VIII-XXI and XXII to XLIX (collectively HLA Peptide Tables) respective to its parental protein, e.g., variant 1, variant 2, etc., reference is made to three factors: the particular variant, the length of the peptide in an HLA Peptide Table, and the Search Peptides in Table VII. Generally, a unique Search Peptide is used to obtain HLA peptides of a particular for a particular variant. The position of each Search Peptide relative to its respective parent molecule is listed in Table VII. Accordingly, if a Search Peptide begins at position “X”, one must add the value “X−1” to each position in Tables VIII-XXI and XXII to XLIX to obtain the actual position of the HLA peptides in their parental molecule. For example, if a particular Search Peptide begins at position 150 of its parental molecule, one must add 150−1, i.e., 149 to each HLA peptide amino acid position to calculate the position of that amino acid in the parent molecule.
  • One embodiment of the invention comprises an HLA peptide, that occurs at least twice in Tables VIII-XXI and XXII to XLIX collectively, or an oligonucleotide that encodes the HLA peptide. Another embodiment of the invention comprises an HLA peptide that occurs at least once in Tables VIII-XXI and at least once in tables XXII to XLIX, or an oligonucleotide that encodes the HLA peptide.
  • Another embodiment of the invention is antibody epitopes, which comprise a peptide regions, or an oligonucleotide encoding the peptide region, that has one two, three, four, or five of the following characteristics:
  • i) a peptide region of at least 5 amino acids of a particular peptide of FIG. 3, in any whole number increment up to the full length of that protein in FIG. 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Hydrophilicity profile of FIG. 5;
  • ii) a peptide region of at least 5 amino acids of a particular peptide of FIG. 3, in any whole number increment up to the full length of that protein in FIG. 3, that includes an amino acid position having a value equal to or less than 0.5, 0.4, 0.3, 0.2, 0.1, or having a value equal to 0.0, in the Hydropathicity profile of FIG. 6;
  • iii) a peptide region of at least 5 amino acids of a particular peptide of FIG. 3, in any whole number increment up to the full length of that protein in FIG. 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Percent Accessible Residues profile of FIG. 7;
  • iv) a peptide region of at least 5 amino acids of a particular peptide of FIG. 3, in any whole number increment up to the full length of that protein in FIG. 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Average Flexibility profile of FIG. 8; or
  • v) a peptide region of at least 5 amino acids of a particular peptide of FIG. 3, in any whole number increment up to the full length of that protein in FIG. 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Beta-turn profile of FIG. 9.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1. The 191P4D12(b) SSH sequence of 223 nucleotides.
  • FIG. 2. A) The cDNA and amino acid sequence of 191P4D12(b) variant 1 (also called “191P4D12(b) v.1” or “191P4D12(b) variant 1”) is shown in FIG. 2A. The start methionine is underlined. The open reading frame extends from nucleic acid 264-1796 including the stop codon.
  • B) The cDNA and amino acid sequence of 191P4D12(b) variant 2 (also called “191P4D12(b) v.2”) is shown in FIG. 2B. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 264-1796 including the stop codon.
  • C) The cDNA and amino acid sequence of 191P4D12(b) variant 3 (also called “191P4D12(b) v.3”) is shown in FIG. 2C. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 264-1796 including the stop codon.
  • D) The cDNA and amino acid sequence of 191P4D12(b) variant 4 (also called “191P4D12(b) v.4”) is shown in FIG. 2D. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 264-1796 including the stop codon.
  • E) The cDNA and amino acid sequence of 191P4D12(b) variant 5 (also called “191P4D12(b) v.5”) is shown in FIG. 2E. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 264-1796 including the stop codon.
  • F) The cDNA and amino acid sequence of 191P4D12(b) variant 6 (also called “191P4D12(b) v.6”) is shown in FIG. 2F. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 789-1676 including the stop codon.
  • G) The cDNA and amino acid sequence of 191P4D12(b) variant 7 (also called “191P4D12(b) v.7”) is shown in FIG. 2G. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 264-1721 including the stop codon.
  • H) The cDNA and amino acid sequence of 191P4D12(b) variant 8 (also called “191P4D12(b) v.8”) is shown in FIG. 2H. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 264-1796 including the stop codon.
  • I) The cDNA and amino acid sequence of 191P4D12(b) variant 9 (also called “191P4D12(b) v.9”) is shown in FIG. 2I. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 708-1121 including the stop codon.
  • J) The cDNA and amino acid sequence of 191P4D12(b) variant 10 (also called “191P4D12(b) v.10”) is shown in FIG. 2J. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 264-1796 including the stop codon.
  • K) The cDNA and amino acid sequence of 191P4D12(b) variant 11 (also called “191P4D12(b) v.11”) is shown in FIG. 2K. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 264-1796 including the stop codon.
  • L) The cDNA and amino acid sequence of 191P4D12(b) variant 12 (also called “191P4D12(b) v.12”) is shown in FIG. 2L. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 264-1796 including the stop codon.
  • M) The cDNA and amino acid sequence of 191P4D12(b) variant 13 (also called “191P4D12(b) v.13”) is shown in FIG. 2M. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 264-1799 including the stop codon.
  • N) The cDNA and amino acid sequence of 191P4D12(b) variant 14 (also called “191P4D12(b) v.14”) is shown in FIG. 2N. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 708-1121 including the stop codon.
  • FIG. 3.
  • A) The amino acid sequence of 191P4D12(b) v.1 is shown in FIG. 3A; it has 510 amino acids.
  • B) The amino acid sequence of 191P4D12(b) v.2 is shown in FIG. 3B; it has 510 amino acids.
  • C) The amino acid sequence of 191P4D12(b) v.6 is shown in FIG. 3C; it has 295 amino acids.
  • D) The amino acid sequence of 191P4D12(b) v.7 is shown in FIG. 3D; it has 485 amino acids.
  • E) The amino acid sequence of 191P4D12(b) v.10 is shown in FIG. 3E; it has 510 amino acids.
  • F) The amino acid sequence of 191P4D12(b) v.11 is shown in FIG. 3F; it has 510 amino acids.
  • G) The amino acid sequence of 191P4D12(b) v.12 is shown in FIG. 3G; it has 510 amino acids.
  • H) The amino acid sequence of 191P4D12(b) v.13 is shown in FIG. 3H; it has 511 amino acids.
  • I) The amino acid sequence of 191P4D12(b) v.9 is shown in FIG. 3I; it has 137 amino acids.
  • J) The amino acid sequence of 191P4D12(b) v.14 is shown in FIG. 3J; it has 137 amino acids.
  • As used herein, a reference to 191P4D12(b) includes all variants thereof, including those shown in FIGS. 2, 3, 10, and 11, unless the context clearly indicates otherwise.
  • FIG. 4-B. Alignment of 191P4D12(b) with known homologs. FIG. 4(A) Alignment of 191P4D12(b) with human Ig superfamily receptor LNIR (gi 14714574). FIG. 4(B) Alignment of 191P4D12(b) with mouse nectin 4 (gi 18874521).
  • FIGS. 5A-C. Hydrophilicity amino acid profile of 191P4D12(b)v.1, v.7, and v.9 determined by computer algorithm sequence analysis using the method of Hopp and Woods (Hopp T. P., Woods K. R., 1981. Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828) accessed on the Protscale website located on the World Wide Web through the ExPasy molecular biology server.
  • FIGS. 6A-C. Hydropathicity amino acid profile of 191P4D12(b)v.1, v.7, and v.9 determined by computer algorithm sequence analysis using the method of Kyte and Doolittle (Kyte J., Doolittle R. F., 1982. J. Mol. Biol. 157:105-132) accessed on the ProtScale website located on the World Wide Web through the ExPasy molecular biology server.
  • FIGS. 7A-C. Percent accessible residues amino acid profile of 191P4D12(b)v.1, v.7, and v.9 determined by computer algorithm sequence analysis using the method of Janin (Janin J., 1979 Nature 277:491-492) accessed on the ProtScale website located on the World Wide Web at through the ExPasy molecular biology server.
  • FIGS. 8A-C. Average flexibility amino acid profile of 191P4D12(b)v.1, v.7, and v.9 determined by computer algorithm sequence analysis using the method of Bhaskaran and Ponnuswamy (Bhaskaran R., and Ponnuswamy P. K., 1988. Int. J. Pept. Protein Res. 32:242-255) accessed on the ProtScale website located on the World Wide Web at through the ExPasy molecular biology server.
  • FIGS. 9A-C. Beta-turn amino acid profile of 191P4D12(b)v.1, v.7, and v.9 determined by computer algorithm sequence analysis using the method of Deleage and Roux (Deleage, G., Roux B. 1987 Protein Engineering 1:289-294) accessed on the ProtScale website located on the World Wide Web through the ExPasy molecular biology server.
  • FIG. 10. Schematic alignment of SNP variants of 191P4D12(b). Variants 191P4D12(b) v.2 through v.5 and v.10 through v.12 are variants with single nucleotide differences. Compared with v.1, v.13 had an insertion of three bases (GCA) between 1262 and 1263 and added one amino acid “A” to the protein. Variant v.14 was a SNP variant of transcript variant v.9, corresponding to the SNP at 2688 of v.1. Though these SNP variants were shown separately, they could also occur in any combinations and in any transcript variants, as shown in FIG. 12, that contained the base pairs. Numbers correspond to those of 191P4D12(b) v.1. Black box shows the same sequence as 191P4D12(b) v.1. SNPs are indicated above the box.
  • FIG. 11. Schematic alignment of protein variants of 191P4D12(b). Protein variants correspond to nucleotide variants. Nucleotide variants 191P4D12(b) v.3, v.4, v.5 and v.8 coded for the same protein as v.1. Nucleotide variants 191P4D12(b) v.6, v.7, v.8 and v.9 were splice variants of v.1, as shown in FIG. 12. Variant v.9 translated to a totally different protein than other variants, with two isoforms that different from each other by one amino acid at 64: A or D. Variant v.13 had an insertion of one amino acid “A” at 334. Single amino acid differences were indicated above the boxes. Black boxes represent the same sequence as 191P4D12(b) v.1. Numbers underneath the box correspond to 191P4D12(b) v.1.
  • FIG. 12. Exon compositions of transcript variants of 191P4D12(b). Variant 191P4D12(b) v.6, v.7, v.8 and v.9 are transcript variants of v.1. Variants v.6, v.7 and v.8 spliced out 202-321, 1497-1571 and 2951-3013 of v.1, respectively. Variant v.9 was part of the last exon of v.1. The order of the potential exons on the human genome is shown at the bottom. Poly A tails were not shown in the figure. Ends of exons are shown above the boxes. Numbers in “( )” underneath the boxes correspond to those of 191P4D12(b) v.1. Lengths of introns and exons are not proportional.
  • FIG. 13A-L. Secondary structure and transmembrane domains prediction for 191P4D12(b) protein variants (FIGS. 13A-D).
  • The secondary structure of 191P4D12(b) protein variants 1 (SEQ ID NO:127), v6 (SEQ ID NO:128), v7 (SEQ ID NO:129), and v9 (SEQ ID NO:130) (FIGS. 13A-D respectively) were predicted using the HNN—Hierarchical Neural Network method (Guermeur, 1997), accessed from the ExPasy molecular biology server located on the World Wide Web. This method predicts the presence and location of alpha helices, extended strands, and random coils from the primary protein sequence.
  • The percent of the protein in a given secondary structure is also listed. (FIGS. 13E, 13G, 13I, 13K): Schematic representations of the probability of existence of transmembrane regions and orientation of 191P4D12(b) variants 1, 6, 7, and 9, respectively, based on the TMpred algorithm of Hofmann and Stoffel which utilizes TMBASE (K. Hofmann, W. Stoffel. TMBASE—A database of membrane spanning protein segments Biol. Chem. Hoppe-Seyler 374:166, 1993). (FIGS. 13F, 13H, 13J, 13L). Schematic representations of the probability of the existence of transmembrane regions and the extracellular and intracellular orientation of 191P4D12(b) variants 1, 6, 7, and 9, respectively, based on the TMHMM algorithm of Sonnhammer, von Heijne, and Krogh (Erik L. L. Sonnhammer, Gunnar von Heijne, and Anders Krogh: A hidden Markov model for predicting transmembrane helices in protein sequences. In Proc. of Sixth Int. Conf. on Intelligent Systems for Molecular Biology, p 175-182 Ed J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen Menlo Park, Calif.: AAAI Press, 1998). The TMpred and TMHMM algorithms are accessed from the ExPasy molecular biology server located on the World Wide Web at (.expasy.ch/tools/).
  • FIG. 14. 191P4D12(b) Expression by RT-PCR. First strand cDNA was prepared from (A) vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), normal kidney, prostate cancer pool, bladder cancer pool, colon cancer pool, lung cancer pool, breast cancer pool and cancer metastasis pool; (B) prostate cancer metastasis to lymph node, prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, cancer metastasis pool, pancreas cancer pool, and LAPC prostate xenograft pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 191P4D12(b), was performed at 26 and 30 cycles of amplification. In (A) results show strong expression of 191P4D12(b) in bladder cancer pool. Expression of 191P4D12(b) was also detected in prostate cancer pool, colon cancer pool, lung cancer pool, breast cancer pool and cancer metastasis pool but very weakly in vital pool 1 and vital pool 2. In (B) results show strong expression of 191P4D12(b) in prostate, bladder, kidney, colon, lung, ovary, breast, cancer metastasis, and pancreas cancer specimens.
  • FIG. 15. Expression of 191P4D12(b) in normal tissues. Two multiple tissue northern blots (Clontech) both with 2 ug of mRNA/lane were probed with the 191P4D12(b) sequence. Size standards in kilobases (kb) are indicated on the side. Results show expression of an approximately 4 kb transcript in placenta and very weakly in prostate but not in any other normal tissue tested. A smaller 191P4D12(b) transcript of approximately 2.5 kb was detected in heart and skeletal muscle.
  • FIG. 16. Expression of 191P4D12(b) in Patient Cancer Specimens and Normal Tissues. RNA was extracted from a pool of 3 bladder cancer patient specimens, as well as from normal prostate (NP), normal bladder (NB), normal kidney (NK), normal colon (NC), normal lung (NL), normal breast (NBr), normal ovary (NO), and normal pancreas (NPa). Northern blot with 10 ug of total RNA/lane was probed with 191P4D12(b) SSH sequence. Size standards in kilobases (kb) are indicated on the side. The 191P4D12(b) transcript was detected in the bladder cancer specimens, but not in the normal tissues tested.
  • FIG. 17. Expression of 191P4D12(b) in Bladder Cancer Patient Specimens. RNA was extracted from bladder cancer cell lines (CL), normal bladder (N), and bladder cancer patient tumors (T). Northern blots with 10 ug of total RNA were probed with the 191P4D12(b) SSH fragment. Size standards in kilobases are on the side. Results show expression of the approximately 4 kb 191P4D12(b) transcript in the bladder tumor tissues but not in normal bladder. A smaller transcript was detected in the HT1197 cell line but not in the other cancer cell lines tested.
  • FIG. 18. Expression of 191P4D12(b) in Prostate Cancer Xenografts. RNA was extracted from normal prostate, and from the prostate cancer xenografts LAPC-4AD, LAPC-4AI, LAPC-9AD, and LAPC-9AI. Northern blots with 10 ug of total RNA were probed with the 191P4D12(b) SSH fragment. Size standards in kilobases are on the side. Results show expression of the approximately 4 kb 191P4D12(b) transcript in all the LAPC xenograft tissues but not in normal prostate.
  • FIG. 19. Expression of 191P4D12(b) in Cervical Cancer Patient Specimens. RNA was extracted from normal cervix, Hela cancer cell line, and 3 cervix cancer patient tumors (T). Northern blots with 10 ug of total RNA were probed with the 191P4D12(b) SSH fragment. Size standards in kilobases are on the side. Results show expression of the approximately 4 kb 191P4D12(b) transcript in 2 out of 3 cervix tumors but not in normal cervix nor in the Hela cell line.
  • FIG. 20. Expression of 191P4D12(b) in Lung Cancer Patient Specimens. RNA was extracted from lung cancer cell lines (CL), normal lung (N), bladder cancer patient tumors (T), and normal adjacent tissue (Nat). Northern blots with 10 ug of total RNA were probed with the 191P4D12(b). Size standards in kilobases are on the side. Results show expression of the approximately 4 kb 191P4D12(b) transcript in the lung tumor tissues but not in normal lung nor in the cell lines tested.
  • FIGS. 21A-F. (FIG. 21A) 191P4D12(b) Expression in Lung Cancer. First strand cDNA was prepared from a panel of lung cancer specimens. Normalization was performed by PCR using primers to actin. Semi-quantitative PCR, using primers to 191P4D12(b) SSH fragment, was performed at 26 and 30 cycles of amplification. Expression level was recorded as 0=no expression detected; 1=weak expression, 2=moderate expression; 3=strong expression. Results show expression of 191P4D12(b) in 97% of the 31 lung cancer patient specimens tested. (FIG. 21B) 191P4D12(b) Expression in Bladder Cancer. First strand cDNA was prepared from a panel of bladder cancer specimens. Normalization was performed by PCR using primers to actin. Semi-quantitative PCR, using primers to 191P4D12(b) SSH fragment, was performed at 26 and 30 cycles of amplification. Expression level was recorded as 0=no expression detected; 1=weak expression, 2=moderate expression; 3=strong expression. Results show expression of 191P4D12(b) in 94% of the 18 bladder cancer patient specimens tested. (FIG. 21C) 191P4D12(b) Expression in Prostate Cancer. First strand cDNA was prepared from a panel of prostate cancer specimens, and four LAPC prostate cancer xenografts. Normalization was performed by PCR using primers to actin. Semi-quantitative PCR, using primers to 191P4D12(b) SSH fragment, was performed at 26 and 30 cycles of amplification. Expression level was recorded as 0=no expression detected; 1=weak expression, 2=moderate expression; 3=strong expression. Results show expression of 191P4D12(b) in 100% of the 20 prostate cancer patient specimens tested, and in all 4 prostate cancer xenografts. (FIG. 21D) 191P4D12(b) Expression in Colon Cancer. First strand cDNA was prepared from a panel of colon cancer specimens. Normalization was performed by PCR using primers to actin. Semi-quantitative PCR, using primers to 191P4D12(b) SSH fragment, was performed at 26 and 30 cycles of amplification. Expression level was recorded as 0=no expression detected; 1=weak expression, 2=moderate expression; 3=strong expression. Results show expression of 191P4D12(b) in 100% of the 22 colon cancer patient specimens tested. (FIG. 21E) 191P4D12(b) Expression in Uterus Cancer. First strand cDNA was prepared from a panel of uterus cancer specimens. Normalization was performed by PCR using primers to actin. Semi-quantitative PCR, using primers to 191P4D12(b) SSH fragment, was performed at 26 and 30 cycles of amplification. Expression level was recorded as 0=no expression detected; 1=weak expression, 2=moderate expression; 3=strong expression. Results show expression of 191P4D12(b) in 100% of the 12 uterus cancer patient specimens tested. (FIG. 21F) 191P4D12(b) Expression in Cervical Cancer. First strand cDNA was prepared from a panel of cervix cancer specimens. Normalization was performed by PCR using primers to actin. Semi-quantitative PCR, using primers to 191P4D12(b) SSH fragment, was performed at 26 and 30 cycles of amplification. Expression level was recorded as 0=no expression detected; 1=weak expression, 2=moderate expression; 3=strong expression. Results show expression of 191P4D12(b) in 100% of the 14 cervix cancer patient specimens tested.
  • FIG. 22. Transient Expression of 191P4D12(b) in Transfected 293T Cells. 293T cells were transfected with either 191P4D12(b) pTag5, 191P4D12(b).pcDNA3.1/mychis or pcDNA3.1/mychis vector control. Forty hours later, cell lysates and supernatant were collected. Samples were run on an SDS-PAGE acrylamide gel, blotted and stained with anti-his antibody. The blot was developed using the ECL chemiluminescence kit and visualized by autoradiography. Results show expression from 191P4D12(b).pTag5 plasmid of 191P4D12(b) extracellular domain in the lysate (Lane 2) and secretion in the culture supernatant (Lane 1). Also, expression of 191P4D12(b) was detected from in the lysates of 191P4D12(b).pcDNA3.1/mychis transfected cells (Lane 3), but not from the control pcDNA3.1/mychis (Lane 4).
  • FIG. 23. Expression of 191P4D12(b) in Transduced Cells Following Retroviral Gene Transfer. 3T3 cells were transduced with the pSRa retroviral vector encoding the 191P4D12(b) gene. Following selection with neomycin, the cells were expanded and RNA was extracted. Northern blot with 10 ug of total RNA/lane was probed with the 191P4D12(b) SSH sequence. Size standards in kilobases (kb) are indicated on the side. Results show expression of the 191P4D12(b) transcript driven from the retroviral LTR, which migrates slower than the endogenous 4 kb 191P4D12(b) transcript detected in the positive control LAPC-4AD.
  • DETAILED DESCRIPTION OF THE INVENTION Outline of Sections
  • I.) Definitions
  • II.) 191P4D12(b) Polynucleotides
  • II.A.) Uses of 191P4D12(b) Polynucleotides
  • II.A.1.) Monitoring of Genetic Abnormalities
  • II.A.2.) Antisense Embodiments
  • II.A.3.) Primers and Primer Pairs
  • II.A.4.) Isolation of 191P4D12(b)-Encoding Nucleic Acid Molecules
  • II.A.5.) Recombinant Nucleic Acid Molecules and Host-Vector Systems
  • III.) 191P4D12(b)-related Proteins
  • III.A.) Motif-bearing Protein Embodiments
  • III.B.) Expression of 191P4D12(b)-related Proteins
  • III.C.) Modifications of 191P4D12(b)-related Proteins
  • III.D.) Uses of 191P4D12(b)-related Proteins
  • IV.) 191P4D12(b) Antibodies
  • V.) 191P4D12(b) Cellular Immune Responses
  • VI.) 191P4D12(b) Transgenic Animals
  • VII.) Methods for the Detection of 191P4D12(b)
  • VIII.) Methods for Monitoring the Status of 191P4D12(b)-related Genes and Their Products
  • IX.) Identification of Molecules That Interact With 191P4D12(b)
  • X.) Therapeutic Methods and Compositions
  • X.A.) Anti-Cancer Vaccines
  • X.B.) 191P4D12(b) as a Target for Antibody-Based Therapy
  • X.C.) 191P4D12(b) as a Target for Cellular Immune Responses
  • X.C.1. Minigene Vaccines
  • X.C.2. Combinations of CTL Peptides with Helper Peptides
  • X.C.3. Combinations of CTL Peptides with T Cell Priming Agents
  • X.C.4. Vaccine Compositions Comprising DC Pulsed with CTL and/or HTL Peptides
  • X.D.) Adoptive Immunotherapy
  • X.E.) Administration of Vaccines for Therapeutic or Prophylactic Purposes
  • XI.) Diagnostic and Prognostic Embodiments of 191P4D12(b).
  • XII.) Inhibition of 191P4D12(b) Protein Function
  • XII.A.) Inhibition of 191P4D12(b) With Intracellular Antibodies
  • XII.B.) Inhibition of 191P4D12(b) with Recombinant Proteins
  • XII.C.) Inhibition of 191P4D12(b) Transcription or Translation
  • XII.D.) General Considerations for Therapeutic Strategies
  • XIII.) Identification, Characterization and Use of Modulators of 191P4D12(b)
  • XIV.) KITS/Articles of Manufacture
  • I.) Definitions
  • Unless otherwise defined, all terms of art, notations and other scientific terms or terminology used herein are intended to have the meanings commonly understood by those of skill in the art to which this invention pertains. In some cases, terms with commonly understood meanings are defined herein for clarity and/or for ready reference, and the inclusion of such definitions herein should not necessarily be construed to represent a substantial difference over what is generally understood in the art. Many of the techniques and procedures described or referenced herein are well understood and commonly employed using conventional methodology by those skilled in the art, such as, for example, the widely utilized molecular cloning methodologies described in Sambrook, et al., Molecular Cloning: A Laboratory Manual 2nd. edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. As appropriate, procedures involving the use of commercially available kits and reagents are generally carried out in accordance with manufacturer defined protocols and/or parameters unless otherwise noted.
  • The terms “advanced prostate cancer”, “locally advanced prostate cancer”, “advanced disease” and “locally advanced disease” mean prostate cancers that have extended through the prostate capsule, and are meant to include stage C disease under the American Urological Association (AUA) system, stage C1-C2 disease under the Whitmore-Jewett system, and stage T3-T4 and N+ disease under the TNM (tumor, node, metastasis) system. In general, surgery is not recommended for patients with locally advanced disease, and these patients have substantially less favorable outcomes compared to patients having clinically localized (organ-confined) prostate cancer. Locally advanced disease is clinically identified by palpable evidence of induration beyond the lateral border of the prostate, or asymmetry or induration above the prostate base. Locally advanced prostate cancer is presently diagnosed pathologically following radical prostatectomy if the tumor invades or penetrates the prostatic capsule, extends into the surgical margin, or invades the seminal vesicles.
  • “Altering the native glycosylation pattern” is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence 191P4D12(b) (either by removing the underlying glycosylation site or by deleting the glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence 191P4D12(b). In addition, the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moieties present.
  • The term “analog” refers to a molecule which is structurally similar or shares similar or corresponding attributes with another molecule (e.g. a 191P4D12(b)-related protein). For example, an analog of a 191P4D12(b) protein can be specifically bound by an antibody or T cell that specifically binds to 191P4D12(b).
  • The term “antibody” is used in the broadest sense. Therefore, an “antibody” can be naturally occurring or man-made such as monoclonal antibodies produced by conventional hybridoma technology. Anti-191P4D12(b) antibodies comprise monoclonal and polyclonal antibodies as well as fragments containing the antigen-binding domain and/or one or more complementarity determining regions of these antibodies.
  • An “antibody fragment” is defined as at least a portion of the variable region of the immunoglobulin molecule that binds to its target, i.e., the antigen-binding region. In one embodiment it specifically covers single anti-191P4D12(b) antibodies and clones thereof (including agonist, antagonist and neutralizing antibodies) and anti-191P4D12(b) antibody compositions with polyepitopic specificity.
  • The term “codon optimized sequences” refers to nucleotide sequences that have been optimized for a particular host species by replacing any codons having a usage frequency of less than about 20%. Nucleotide sequences that have been optimized for expression in a given host species by elimination of spurious polyadenylation sequences, elimination of exon/intron splicing signals, elimination of transposon-like repeats and/or optimization of GC content in addition to codon optimization are referred to herein as an “expression enhanced sequences.”
  • A “combinatorial library” is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical “building blocks” such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide (e.g., mutein) library, is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound). Numerous chemical compounds are synthesized through such combinatorial mixing of chemical building blocks (Gallop et al., J. Med. Chem. 37 (9): 1233-1251 (1994)).
  • Preparation and screening of combinatorial libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Pat. No. 5,010,175, Furka, Pept. Prot. Res. 37:487-493 (1991), Houghton et al., Nature, 354:84-88 (1991)), peptoids (PCT Publication No WO 91/19735), encoded peptides (PCT Publication WO 93/20242), random bio-oligomers (PCT Publication WO 92/00091), benzodiazepines (U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs et al., Proc. Nat. Acad. Sci. USA 90:6909-6913 (1993)), vinylogous polypeptides (Hagihara et al., J. Amer. Chem. Soc. 114:6568 (1992)), nonpeptidal peptidomimetics with a Beta-D-Glucose scaffolding (Hirschmann et al., J. Amer. Chem. Soc. 114:9217-9218 (1992)), analogous organic syntheses of small compound libraries (Chen et al., J. Amer. Chem. Soc. 116:2661 (1994)), oligocarbamates (Cho, et al., Science 261:1303 (1993)), and/or peptidyl phosphonates (Campbell et al., J. Org. Chem. 59:658 (1994)). See, generally, Gordon et al., J. Med. Chem. 37:1385 (1994), nucleic acid libraries (see, e.g., Stratagene, Corp.), peptide nucleic acid libraries (see, e.g., U.S. Pat. No. 5,539,083), antibody libraries (see, e.g., Vaughn et al., Nature Biotechnology 14 (3): 309-314 (1996), and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang et al., Science 274:1520-1522 (1996), and U.S. Pat. No. 5,593,853), and small organic molecule libraries (see, e.g., benzodiazepines, Baum, C&EN, January 18, page 33 (1993); isoprenoids, U.S. Pat. No. 5,569,588; thiazolidinones and metathiazanones, U.S. Pat. No. 5,549,974; pyrrolidines, U.S. Pat. Nos. 5,525,735 and 5,519,134; morpholino compounds, U.S. Pat. No. 5,506,337; benzodiazepines, U.S. Pat. No. 5,288,514; and the like).
  • Devices for the preparation of combinatorial libraries are commercially available (see, e.g., 357 NIPS, 390 NIPS, Advanced Chem Tech, Louisville Ky.; Symphony, Rainin, Woburn, Mass.; 433A, Applied Biosystems, Foster City, Calif.; 9050, Plus, Millipore, Bedford, NIA). A number of well-known robotic systems have also been developed for solution phase chemistries. These systems include automated workstations such as the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate H, Zymark Corporation, Hopkinton, Mass.; Orca, Hewlett-Packard, Palo Alto, Calif.), which mimic the manual synthetic operations performed by a chemist. Any of the above devices are suitable for use with the present invention. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art. In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, N.J.; Asinex, Moscow, RU; Tripos, Inc., St. Louis, Mo.; ChemStar, Ltd, Moscow, RU; 3D Pharmaceuticals, Exton, Pa.; Martek Biosciences, Columbia, Md.; etc.).
  • The term “cytotoxic agent” refers to a substance that inhibits or prevents the expression activity of cells, function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes chemotherapeutic agents, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof. Examples of cytotoxic agents include, but are not limited to auristatins, auromycins, maytansinoids, yttrium, bismuth, ricin, ricin A-chain, combrestatin, duocarmycins, dolostatins, doxorubicin, daunorubicin, taxol, cisplatin, cc1065, ethidium bromide, mitomycin, etoposide, tenopo side, vincristine, vinblastine, colchicine, dihydroxy anthracin dione, actinomycin, diphtheria toxin, Pseudomonas exotoxin (PE) A, PE40, abrin, abrin A chain, modeccin A chain, alpha-sarcin, gelonin, mitogellin, retstrictocin, phenomycin, enomycin, curicin, crotin, calicheamicin, Sapaonaria officinalis inhibitor, and glucocorticoid and other chemotherapeutic agents, as well as radioisotopes such as At211, I131, I125, Y90, Re186, Re188, Sm153, Bi212 or 213, P32 and radioactive isotopes of Lu including Lu177. Antibodies may also be conjugated to an anti-cancer pro-drug activating enzyme capable of converting the pro-drug to its active form.
  • The “gene product” is sometimes referred to herein as a protein or mRNA. For example, a “gene product of the invention” is sometimes referred to herein as a “cancer amino acid sequence”, “cancer protein”, “protein of a cancer listed in Table I”, a “cancer mRNA”, “mRNA of a cancer listed in Table I”, etc. In one embodiment, the cancer protein is encoded by a nucleic acid of FIG. 2. The cancer protein can be a fragment, or alternatively, be the full-length protein to the fragment encoded by the nucleic acids of FIG. 2. In one embodiment, a cancer amino acid sequence is used to determine sequence identity or similarity. In another embodiment, the sequences are naturally occurring allelic variants of a protein encoded by a nucleic acid of FIG. 2. In another embodiment, the sequences are sequence variants as further described herein.
  • “High throughput screening” assays for the presence, absence, quantification, or other properties of particular nucleic acids or protein products are well known to those of skill in the art. Similarly, binding assays and reporter gene assays are similarly well known. Thus, e.g., U.S. Pat. No. 5,559,410 discloses high throughput screening methods for proteins; U.S. Pat. No. 5,585,639 discloses high throughput screening methods for nucleic acid binding (i.e., in arrays); while U.S. Pat. Nos. 5,576,220 and 5,541,061 disclose high throughput methods of screening for ligand/antibody binding.
  • In addition, high throughput screening systems are commercially available (see, e.g., Amersham Biosciences, Piscataway, N.J.; Zymark Corp., Hopkinton, Mass.; Air Technical Industries, Mentor, Ohio; Beckman Instruments, Inc. Fullerton, Calif.; Precision Systems, Inc., Natick, Mass.; etc.). These systems typically automate entire procedures, including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. The manufacturers of such systems provide detailed protocols for various high throughput systems. Thus, e.g., Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.
  • The term “homolog” refers to a molecule which exhibits homology to another molecule, by for example, having sequences of chemical residues that are the same or similar at corresponding positions. “Human Leukocyte Antigen” or “HLA” is a human class I or class II Major Histocompatibility Complex (MHC) protein (see, e.g., Stites, et al., IMMUNOLOGY, 8TH ED., Lange Publishing, Los Altos, Calif. (1994).
  • The terms “hybridize”, “hybridizing”, “hybridizes” and the like, used in the context of polynucleotides, are meant to refer to conventional hybridization conditions, preferably such as hybridization in 50% formamide/6×SSC/0.1% SDS/100 μg/ml ssDNA, in which temperatures for hybridization are above 37 degrees C. and temperatures for washing in 0.1×SSC/0.1% SDS are above 55 degrees C.
  • The phrases “isolated” or “biologically pure” refer to material which is substantially or essentially free from components which normally accompany the material as it is found in its native state. Thus, isolated peptides in accordance with the invention preferably do not contain materials normally associated with the peptides in their in situ environment. For example, a polynucleotide is said to be “isolated” when it is substantially separated from contaminant polynucleotides that correspond or are complementary to genes other than the 191P4D12(b) genes or that encode polypeptides other than 191P4D12(b) gene product or fragments thereof. A skilled artisan can readily employ nucleic acid isolation procedures to obtain an isolated 191P4D12(b) polynucleotide. A protein is said to be “isolated,” for example, when physical, mechanical or chemical methods are employed to remove the 191P4D12(b) proteins from cellular constituents that are normally associated with the protein. A skilled artisan can readily employ standard purification methods to obtain an isolated 191P4D12(b) protein. Alternatively, an isolated protein can be prepared by chemical means.
  • The term “mammal” refers to any organism classified as a mammal, including mice, rats, rabbits, dogs, cats, cows, horses and humans. In one embodiment of the invention, the mammal is a mouse. In another embodiment of the invention, the mammal is a human.
  • The terms “metastatic prostate cancer” and “metastatic disease” mean prostate cancers that have spread to regional lymph nodes or to distant sites, and are meant to include stage D disease under the AUA system and stage T×N×M+ under the TNM system. As is the case with locally advanced prostate cancer, surgery is generally not indicated for patients with metastatic disease, and hormonal (androgen ablation) therapy is a preferred treatment modality. Patients with metastatic prostate cancer eventually develop an androgen-refractory state within 12 to 18 months of treatment initiation. Approximately half of these androgen-refractory patients die within 6 months after developing that status. The most common site for prostate cancer metastasis is bone. Prostate cancer bone metastases are often osteoblastic rather than osteolytic (i.e., resulting in net bone formation). Bone metastases are found most frequently in the spine, followed by the femur, pelvis, rib cage, skull and humerus. Other common sites for metastasis include lymph nodes, lung, liver and brain. Metastatic prostate cancer is typically diagnosed by open or laparoscopic pelvic lymphadenectomy, whole body radionuclide scans, skeletal radiography, and/or bone lesion biopsy.
  • The term “modulator” or “test compound” or “drug candidate” or grammatical equivalents as used herein describe any molecule, e.g., protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, etc., to be tested for the capacity to directly or indirectly alter the cancer phenotype or the expression of a cancer sequence, e.g., a nucleic acid or protein sequences, or effects of cancer sequences (e.g., signaling, gene expression, protein interaction, etc.) In one aspect, a modulator will neutralize the effect of a cancer protein of the invention. By “neutralize” is meant that an activity of a protein is inhibited or blocked, along with the consequent effect on the cell. In another aspect, a modulator will neutralize the effect of a gene, and its corresponding protein, of the invention by normalizing levels of said protein. In preferred embodiments, modulators alter expression profiles, or expression profile nucleic acids or proteins provided herein, or downstream effector pathways. In one embodiment, the modulator suppresses a cancer phenotype, e.g. to a normal tissue fingerprint. In another embodiment, a modulator induced a cancer phenotype. Generally, a plurality of assay mixtures is run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration or below the level of detection.
  • Modulators, drug candidates or test compounds encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 100 and less than about 2,500 Daltons. Preferred small molecules are less than 2000, or less than 1500 or less than 1000 or less than 500 D. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Modulators also comprise biomolecules such as peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Particularly preferred are peptides. One class of modulators are peptides, for example of from about five to about 35 amino acids, with from about five to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. Preferably, the cancer modulatory protein is soluble, includes a non-transmembrane region, and/or, has an N-terminal Cys to aid in solubility. In one embodiment, the C-terminus of the fragment is kept as a free acid and the N-terminus is a free amine to aid in coupling, i.e., to cysteine. In one embodiment, a cancer protein of the invention is conjugated to an immunogenic agent as discussed herein. In one embodiment, the cancer protein is conjugated to BSA. The peptides of the invention, e.g., of preferred lengths, can be linked to each other or to other amino acids to create a longer peptide/protein. The modulatory peptides can be digests of naturally occurring proteins as is outlined above, random peptides, or “biased” random peptides. In a preferred embodiment, peptide/protein-based modulators are antibodies, and fragments thereof, as defined herein.
  • Modulators of cancer can also be nucleic acids. Nucleic acid modulating agents can be naturally occurring nucleic acids, random nucleic acids, or “biased” random nucleic acids. For example, digests of prokaryotic or eukaryotic genomes can be used in an approach analogous to that outlined above for proteins.
  • The term “monoclonal antibody” refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the antibodies comprising the population are identical except for possible naturally occurring mutations that are present in minor amounts.
  • A “motif”, as in biological motif of a 191P4D12(b)-related protein, refers to any pattern of amino acids forming part of the primary sequence of a protein, that is associated with a particular function (e.g. protein-protein interaction, protein-DNA interaction, etc) or modification (e.g. that is phosphorylated, glycosylated or amidated), or localization (e.g. secretory sequence, nuclear localization sequence, etc.) or a sequence that is correlated with being immunogenic, either humorally or cellularly. A motif can be either contiguous or capable of being aligned to certain positions that are generally correlated with a certain function or property. In the context of HLA motifs, “motif” refers to the pattern of residues in a peptide of defined length, usually a peptide of from about 8 to about 13 amino acids for a class I HLA motif and from about 6 to about 25 amino acids for a class II HLA motif, which is recognized by a particular HLA molecule. Peptide motifs for HLA binding are typically different for each protein encoded by each human HLA allele and differ in the pattern of the primary and secondary anchor residues.
  • A “pharmaceutical excipient” comprises a material such as an adjuvant, a carrier, pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservative, and the like.
  • “Pharmaceutically acceptable” refers to a non-toxic, inert, and/or composition that is physiologically compatible with humans or other mammals.
  • The term “polynucleotide” means a polymeric form of nucleotides of at least 10 bases or base pairs in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide, and is meant to include single and double stranded forms of DNA and/or RNA. In the art, this term if often used interchangeably with “oligonucleotide”. A polynucleotide can comprise a nucleotide sequence disclosed herein wherein thymidine (T), as shown for example in FIG. 2, can also be uracil (U); this definition pertains to the differences between the chemical structures of DNA and RNA, in particular the observation that one of the four major bases in RNA is uracil (U) instead of thymidine (T).
  • The term “polypeptide” means a polymer of at least about 4, 5, 6, 7, or 8 amino acids. Throughout the specification, standard three letter or single letter designations for amino acids are used. In the art, this term is often used interchangeably with “peptide” or “protein”.
  • An HLA “primary anchor residue” is an amino acid at a specific position along a peptide sequence which is understood to provide a contact point between the immunogenic peptide and the HLA molecule. One to three, usually two, primary anchor residues within a peptide of defined length generally defines a “motif” for an immunogenic peptide. These residues are understood to fit in close contact with peptide binding groove of an HLA molecule, with their side chains buried in specific pockets of the binding groove. In one embodiment, for example, the primary anchor residues for an HLA class I molecule are located at position 2 (from the amino terminal position) and at the carboxyl terminal position of a 8, 9, 10, 11, or 12 residue peptide epitope in accordance with the invention. Alternatively, in another embodiment, the primary anchor residues of a peptide binds an HLA class II molecule are spaced relative to each other, rather than to the termini of a peptide, where the peptide is generally of at least 9 amino acids in length. The primary anchor positions for each motif and supermotif are set forth in Table IV. For example, analog peptides can be created by altering the presence or absence of particular residues in the primary and/or secondary anchor positions shown in Table IV. Such analogs are used to modulate the binding affinity and/or population coverage of a peptide comprising a particular HLA motif or supermotif.
  • “Radioisotopes” include, but are not limited to the following (non-limiting exemplary uses are also set forth):
  • Examples of Medical Isotopes
  • Isotope Description of use
    Actinium-225 See Thorium-229 (Th-229)
    (AC-225)
    Actinium-227 Parent of Radium-223 (Ra-223) which is an alpha emitter used to treat
    (AC-227) metastases in the skeleton resulting from cancer (i.e., breast and prostate
    cancers), and cancer radioimmunotherapy
    Bismuth-212 See Thorium-228 (Th-228)
    (Bi-212)
    Bismuth-213 See Thorium-229 (Th-229)
    (Bi-213)
    Cadmium-109 Cancer detection
    (Cd-109)
    Cobalt-60 Radiation source for radiotherapy of cancer, for food irradiators, and for
    (Co-60) sterilization of medical supplies
    Copper-64 A positron emitter used for cancer therapy and SPECT imaging
    (Cu-64)
    Copper-67 Beta/gamma emitter used in cancer radioimmunotherapy and diagnostic
    (Cu-67) studies (i.e., breast and colon cancers, and lymphoma)
    Dysprosium-166 Cancer radioimmunotherapy
    (Dy-166)
    Erbium-169 Rheumatoid arthritis treatment, particularly for the small joints associated
    (Er-169) with fingers and toes
    Europium-152 Radiation source for food irradiation and for sterilization of medical
    (Eu-152) supplies
    Europium-154 Radiation source for food irradiation and for sterilization of medical
    (Eu-154) supplies
    Gadolinium-153 Osteoporosis detection and nuclear medical quality assurance devices
    (Gd-153)
    Gold-198 Implant and intracavity therapy of ovarian, prostate, and brain cancers
    (Au-198)
    Holmium-166 Multiple myeloma treatment in targeted skeletal therapy, cancer
    (Ho-166) radioimmunotherapy, bone marrow ablation, and rheumatoid arthritis
    treatment
    Iodine-125 Osteoporosis detection, diagnostic imaging, tracer drugs, brain cancer
    (I-125) treatment, radiolabeling, tumor imaging, mapping of receptors in the
    brain, interstitial radiation therapy, brachytherapy for treatment of
    prostate cancer, determination of glomerular filtration rate (GFR),
    determination of plasma volume, detection of deep vein thrombosis of
    the legs
    Iodine-131 Thyroid function evaluation, thyroid disease detection, treatment of
    (I-131) thyroid cancer as well as other non-malignant thyroid diseases (i.e.,
    Graves disease, goiters, and hyperthyroidism), treatment of leukemia,
    lymphoma, and other forms of cancer (e.g., breast cancer) using
    radioimmunotherapy
    Iridium-192 Brachytherapy, brain and spinal cord tumor treatment, treatment of
    (Ir-192) blocked arteries (i.e., arteriosclerosis and restenosis), and implants for
    breast and prostate tumors
    Lutetium-177 Cancer radioimmunotherapy and treatment of blocked arteries (i.e.,
    (Lu-177) arteriosclerosis and restenosis)
    Molybdenum-99 Parent of Technetium-99m (Tc-99m) which is used for imaging the brain,
    (Mo-99) liver, lungs, heart, and other organs. Currently, Tc-99m is the most
    widely used radioisotope used for diagnostic imaging of various cancers
    and diseases involving the brain, heart, liver, lungs; also used in detection
    of deep vein thrombosis of the legs
    Osmium-194 Cancer radioimmunotherapy
    (Os-194)
    Palladium-103 Prostate cancer treatment
    (Pd-103)
    Platinum-195m Studies on biodistribution and metabolism of cisplatin, a
    (Pt-195m) chemotherapeutic drug
    Phosphorus-32 Polycythemia rubra vera (blood cell disease) and leukemia treatment,
    (P-32) bone cancer diagnosis/treatment; colon, pancreatic, and liver cancer
    treatment; radiolabeling nucleic acids for in vitro research, diagnosis of
    superficial tumors, treatment of blocked arteries (i.e., arteriosclerosis and
    restenosis), and intracavity therapy
    Phosphorus-33 Leukemia treatment, bone disease diagnosis/treatment, radiolabeling, and
    (P-33) treatment of blocked arteries (i.e., arteriosclerosis and restenosis)
    Radium-223 See Actinium-227 (Ac-227)
    (Ra-223)
    Rhenium-186 Bone cancer pain relief, rheumatoid arthritis treatment, and diagnosis and
    (Re-186) treatment of lymphoma and bone, breast, colon, and liver cancers using
    radioimmunotherapy
    Rhenium-188 Cancer diagnosis and treatment using radioimmunotherapy, bone cancer
    (Re-188) pain relief, treatment of rheumatoid arthritis, and treatment of prostate
    cancer
    Rhodium-105 Cancer radioimmunotherapy
    (Rh-105)
    Samarium-145 Ocular cancer treatment
    (Sm-145)
    Samarium-153 Cancer radioimmunotherapy and bone cancer pain relief
    (Sm-153)
    Scandium-47 Cancer radioimmunotherapy and bone cancer pain relief
    (Sc-47)
    Selenium-75 Radiotracer used in brain studies, imaging of adrenal cortex by gamma-
    (Se-75) scintigraphy, lateral locations of steroid secreting tumors, pancreatic
    scanning, detection of hyperactive parathyroid glands, measure rate of
    bile acid loss from the endogenous pool
    Strontium-85 Bone cancer detection and brain scans
    (Sr-85)
    Strontium-89 Bone cancer pain relief, multiple myeloma treatment, and osteoblastic
    (Sr-89) therapy
    Technetium-99m See Molybdenum-99 (Mo-99)
    (Tc-99m)
    Thorium-228 Parent of Bismuth-212 (Bi-212) which is an alpha emitter used in cancer
    (Th-228) radioimmunotherapy
    Thorium-229 Parent of Actinium-225 (Ac-225) and grandparent of Bismuth-213 (Bi-
    (Th-229) 213) which are alpha emitters used in cancer radioimmunotherapy
    Thulium-170 Gamma source for blood irradiators, energy source for implanted medical
    (Tm-170) devices
    Tin-117m Cancer immunotherapy and bone cancer pain relief
    (Sn-117m)
    Tungsten-188 Parent for Rhenium-188 (Re-188) which is used for cancer
    (W-188) diagnostics/treatment, bone cancer pain relief, rheumatoid arthritis
    treatment, and treatment of blocked arteries (i.e., arteriosclerosis and
    restenosis)
    Xenon-127 Neuroimaging of brain disorders, high resolution SPECT studies,
    (Xe-127) pulmonary function tests, and cerebral blood flow studies
    Ytterbium-175 Cancer radioimmunotherapy
    (Yb-175)
    Yttrium-90 Microseeds obtained from irradiating Yttrium-89 (Y-89) for liver cancer
    (Y-90) treatment
    Yttrium-91 A gamma-emitting label for Yttrium-90 (Y-90) which is used for cancer
    (Y-91) radioimmunotherapy (i.e., lymphoma, breast, colon, kidney, lung,
    ovarian, prostate, pancreatic, and inoperable liver cancers)
  • By “randomized” or grammatical equivalents as herein applied to nucleic acids and proteins is meant that each nucleic acid and peptide consists of essentially random nucleotides and amino acids, respectively. These random peptides (or nucleic acids, discussed herein) can incorporate any nucleotide or amino acid at any position. The synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.
  • In one embodiment, a library is “fully randomized,” with no sequence preferences or constants at any position. In another embodiment, the library is a “biased random” library. That is, some positions within the sequence either are held constant, or are selected from a limited number of possibilities. For example, the nucleotides or amino acid residues are randomized within a defined class, e.g., of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc., or to purines, etc.
  • A “recombinant” DNA or RNA molecule is a DNA or RNA molecule that has been subjected to molecular manipulation in vitro.
  • Non-limiting examples of small molecules include compounds that bind or interact with 191P4D12(b), ligands including hormones, neuropeptides, chemokines, odorants, phospholipids, and functional equivalents thereof that bind and preferably inhibit 191P4D12(b) protein function. Such non-limiting small molecules preferably have a molecular weight of less than about 10 kDa, more preferably below about 9, about 8, about 7, about 6, about 5 or about 4 kDa. In certain embodiments, small molecules physically associate with, or bind, 191P4D12(b) protein; are not found in naturally occurring metabolic pathways; and/or are more soluble in aqueous than non-aqueous solutions
  • “Stringency” of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured nucleic acid sequences to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature that can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).
  • “Stringent conditions” or “high stringency conditions”, as defined herein, are identified by, but not limited to, those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50° C.; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42° C.; or (3) employ 50% formamide, 5×SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5×Denhardt's solution, sonicated salmon sperm DNA (50 μg/ml), 0.1% SDS, and 10% dextran sulfate at 42° C., with washes at 42° C. in 0.2×SSC (sodium chloride/sodium. citrate) and 50% formamide at 55° C., followed by a high-stringency wash consisting of 0.1×SSC containing EDTA at 55° C. “Moderately stringent conditions” are described by, but not limited to, those in Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and % SDS) less stringent than those described above. An example of moderately stringent conditions is overnight incubation at 37° C. in a solution comprising: 20% formamide, 5×SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5×Denhardt's solution, 10% dextran sulfate, and 20 mg/mL denatured sheared salmon sperm DNA, followed by washing the filters in 1×SSC at about 37-50° C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.
  • An HLA “supermotif” is a peptide binding specificity shared by HLA molecules encoded by two or more HLA alleles. Overall phenotypic frequencies of HLA-supertypes in different ethnic populations are set forth in Table IV (F). The non-limiting constituents of various supetypes are as follows:
      • A2: A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*6802, A*6901, A*0207
      • A3: A3, A11, A31, A*3301, A*6801, A*0301, A*1101, A*3101
      • B7: B7, B*3501-03, B*51, B*5301, B*5401, B*5501, B*5502, B*5601, B*6701, B*7801, B*0702, B*5101, B*5602
      • B44: B*3701, B*4402, B*4403, B*60 (B*4001), B61 (B*4006)
      • A1: A*0102, A*2604, A*3601, A*4301, A*8001
      • A24: A*24, A*30, A*2403, A*2404, A*3002, A*3003
      • B27: B*1401-02, B*1503, B*1509, B*1510, B*1518, B*3801-02, B*3901, B*3902, B*3903-04, B*4801-02, B*7301, B*2701-08
      • B58: B*1516, B*1517, B*5701, B*5702, B58
      • B62: B*4601, B52, B*1501 (B62), B*1502 (B75), B*1513 (B77)
  • Calculated population coverage afforded by different HLA-supertype combinations are set forth in Table IV (G).
  • As used herein “to treat” or “therapeutic” and grammatically related terms, refer to any improvement of any consequence of disease, such as prolonged survival, less morbidity, and/or a lessening of side effects which are the byproducts of an alternative therapeutic modality; full eradication of disease is not required.
  • A “transgenic animal” (e.g., a mouse or rat) is an animal having cells that contain a transgene, which transgene was introduced into the animal or an ancestor of the animal at a prenatal, e.g., an embryonic stage. A “transgene” is a DNA that is integrated into the genome of a cell from which a transgenic animal develops.
  • As used herein, an HLA or cellular immune response “vaccine” is a composition that contains or encodes one or more peptides of the invention. There are numerous embodiments of such vaccines, such as a cocktail of one or more individual peptides; one or more peptides of the invention comprised by a polyepitopic peptide; or nucleic acids that encode such individual peptides or polypeptides, e.g., a minigene that encodes a polyepitopic peptide. The “one or more peptides” can include any whole unit integer from 1-150 or more, e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, or 150 or more peptides of the invention. The peptides or polypeptides can optionally be modified, such as by lipidation, addition of targeting or other sequences. HLA class I peptides of the invention can be admixed with, or linked to, HLA class II peptides, to facilitate activation of both cytotoxic T lymphocytes and helper T lymphocytes. HLA vaccines can also comprise peptide-pulsed antigen presenting cells, e.g., dendritic cells.
  • The term “variant” refers to a molecule that exhibits a variation from a described type or norm, such as a protein that has one or more different amino acid residues in the corresponding position(s) of a specifically described protein (e.g. the 191P4D12(b) protein shown in FIG. 2 or FIG. 3. An analog is an example of a variant protein. Splice isoforms and single nucleotides polymorphisms (SNPs) are further examples of variants.
  • The “191P4D12(b)-related proteins” of the invention include those specifically identified herein, as well as allelic variants, conservative substitution variants, analogs and homologs that can be isolated/generated and characterized without undue experimentation following the methods outlined herein or readily available in the art. Fusion proteins that combine parts of different 191P4D12(b) proteins or fragments thereof, as well as fusion proteins of a 191P4D12(b) protein and a heterologous polypeptide are also included. Such 191P4D12(b) proteins are collectively referred to as the 191P4D12(b)-related proteins, the proteins of the invention, or 191P4D12(b). The term “191P4D12(b)-related protein” refers to a polypeptide fragment or a 191P4D12(b) protein sequence of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more than 25 amino acids; or, at least 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, or 576 or more amino acids.
  • II.) 191P4D12(b) Polynucleotides
  • One aspect of the invention provides polynucleotides corresponding or complementary to all or part of a 191P4D12(b) gene, mRNA, and/or coding sequence, preferably in isolated form, including polynucleotides encoding a 191P4D12(b)-related protein and fragments thereof, DNA, RNA, DNA/RNA hybrid, and related molecules, polynucleotides or oligonucleotides complementary to a 191P4D12(b) gene or mRNA sequence or a part thereof, and polynucleotides or oligonucleotides that hybridize to a 191P4D12(b) gene, mRNA, or to a 191P4D12(b) encoding polynucleotide (collectively, “191P4D12(b) polynucleotides”). In all instances when referred to in this section, T can also be U in FIG. 2.
  • Embodiments of a 191P4D12(b) polynucleotide include: a 191P4D12(b) polynucleotide having the sequence shown in FIG. 2, the nucleotide sequence of 191P4D12(b) as shown in FIG. 2 wherein T is U; at least 10 contiguous nucleotides of a polynucleotide having the sequence as shown in FIG. 2; or, at least 10 contiguous nucleotides of a polynucleotide having the sequence as shown in FIG. 2 where T is U. For example, embodiments of 191P4D12(b) nucleotides comprise, without limitation:
  • (I) a polynucleotide comprising, consisting essentially of, or consisting of a sequence as shown in FIG. 2, wherein T can also be U;
  • (II) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2A, from nucleotide residue number 264 through nucleotide residue number 1796, including the stop codon, wherein T can also be U;
  • (III) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2B, from nucleotide residue number 264 through nucleotide residue number 1796, including the stop codon, wherein T can also be U;
  • (IV) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2C, from nucleotide residue number 264 through nucleotide residue number 1796, including the a stop codon, wherein T can also be U;
  • (V) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2D, from nucleotide residue number 264 through nucleotide residue number 1796, including the stop codon, wherein T can also be U;
  • (VI) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2E, from nucleotide residue number 264 through nucleotide residue number 1796, including the stop codon, wherein T can also be U;
  • (VII) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2F, from nucleotide residue number 789 through nucleotide residue number 1676, including the stop codon, wherein T can also be U;
  • (VIII) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2G, from nucleotide residue number 264 through nucleotide residue number 1721, including the stop codon, wherein T can also be U;
  • (IX) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2H, from nucleotide residue number 264 through nucleotide residue number 1796, including the stop codon, wherein T can also be U;
  • (X) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2I, from nucleotide residue number 708 through nucleotide residue number 1121, including the stop codon, wherein T can also be U;
  • (XI) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2J, from nucleotide residue number 264 through nucleotide residue number 1796, including the stop codon, wherein T can also be U;
  • (XII) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2K, from nucleotide residue number 264 through nucleotide residue number 1796, including the stop codon, wherein T can also be U;
  • (XIII) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2L, from nucleotide residue number 264 through nucleotide residue number 1796, including the stop codon, wherein T can also be U;
  • (XIV) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2M, from nucleotide residue number 264 through nucleotide residue number 1799, including the stop codon, wherein T can also be U;
  • (XV) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in FIG. 2N, from nucleotide residue number 708 through nucleotide residue number 1121, including the stop codon, wherein T can also be U;
  • (XVI) a polynucleotide that encodes a 191P4D12(b)-related protein that is at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% homologous to an entire amino acid sequence shown in FIG. 2A-N;
  • (XVII) a polynucleotide that encodes a 191P4D12(b)-related protein that is at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identical to an entire amino acid sequence shown in FIG. 2A-N;
  • (XVIII) a polynucleotide that encodes at least one peptide set forth in Tables VIII-XXI and XXII-XLIX;
  • (XIX) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIGS. 3A-B and 3E-G in any whole number increment up to 510 that includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5;
  • (XX) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIGS. 3A-B and 3E-G in any whole number increment up to 510 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6;
  • (XXI) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIGS. 3A-B and 3E-G in any whole number increment up to 510 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7;
  • (XXII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIGS. 3A-B and 3E-G in any whole number increment up to 510 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8;
  • (XXIII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIGS. 3A-B and 3E-G in any whole number increment up to 510 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9;
  • (XXIV) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3C in any whole number increment up to 295 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5;
  • (XXV) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3C in any whole number increment up to 295 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6;
  • (XXVI) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3C in any whole number increment up to 295 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7;
  • (XXVII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3C in any whole number increment up to 295 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8;
  • (XXVIII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3C in any whole number increment up to 295 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9
  • (XXIX) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3D in any whole number increment up to 485 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5;
  • (XXX) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3D in any whole number increment up to 485 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6;
  • (XXXI) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3D in any whole number increment up to 485 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7;
  • (XXXII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3D in any whole number increment up to 485 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8;
  • (XXXIII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3D in any whole number increment up to 485 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9
  • (XXXIV) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3H in any whole number increment up to 511 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5;
  • (XXXV) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3H in any whole number increment up to 511 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6;
  • (XXXVI) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3H in any whole number increment up to 511 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7;
  • (XXXVII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3H in any whole number increment up to 511 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8;
  • (XXXVIII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3H in any whole number increment up to 511 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9
  • (XXXIX) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3I-J in any whole number increment up to 137 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5;
  • (XL) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3I-J in any whole number increment up to 137 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6;
  • (XLI) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3I-J in any whole number increment up to 137 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7;
  • (XLII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3I-J in any whole number increment up to 137 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8;
  • (XLIII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of FIG. 3I-J in any whole number increment up to 137 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9
  • (XLIV) a polynucleotide that is fully complementary to a polynucleotide of any one of (I)-(XLIII).
  • (XLV) a peptide that is encoded by any of (I) to (XLIV); and
  • (XLVI) a composition comprising a polynucleotide of any of (I)-(XLIII) or peptide of (XLV) together with a pharmaceutical excipient and/or in a human unit dose form.
  • (XLVII) a method of using a polynucleotide of any (I)-(XLIV) or peptide of (XLV) or a composition of (XLVI) in a method to modulate a cell expressing 191P4D12(b),
  • (XLVIII) a method of using a polynucleotide of any (I)-(XLIV) or peptide of (XLV) or a composition of (XLVI) in a method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 191P4D12(b)
  • (XLIX) a method of using a polynucleotide of any (I)-(XLIV) or peptide of (XLV) or a composition of (XLVI) in a method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 191P4D12(b), said cell from a cancer of a tissue listed in Table I;
  • (L) a method of using a polynucleotide of any (I)-(XLIV) or peptide of (XLV) or a composition of (XLVI) in a method to diagnose, prophylax, prognose, or treat a cancer;
  • (LI) a method of using a polynucleotide of any (I)-(XLIV) or peptide of (XLV) or a composition of (XLVI) in a method to diagnose, prophylax, prognose, or treat a cancer of a tissue listed in Table I; and,
  • (LII) a method of using a polynucleotide of any (I)-(XLIV) or peptide of (XLV) or a composition of (XLVI) in a method to identify or characterize a modulator of a cell expressing 191P4D12(b).
  • As used herein, a range is understood to disclose specifically all whole unit positions thereof.
  • Typical embodiments of the invention disclosed herein include 191P4D12(b) polynucleotides that encode specific portions of 191P4D12(b) mRNA sequences (and those which are complementary to such sequences) such as those that encode the proteins and/or fragments thereof, for example:
  • (a) 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 505 or 510 more contiguous amino acids of 191P4D12(b) variant 1; the maximal lengths relevant for other variants are: variant 2, 510 amino acids; variant 6, 295 amino acids, variant 7, 485 amino acids, variant 10, 510 amino acids, variant 11, 510 amino acids, variant 12, 510 amino acids, variant 13, 511 amino acids, variant 9, 137 amino acids, and variant 14, 137 amino acids.
  • For example, representative embodiments of the invention disclosed herein include: polynucleotides and their encoded peptides themselves encoding about amino acid 1 to about amino acid 10 of the 191P4D12(b) protein shown in FIG. 2 or FIG. 3, polynucleotides encoding about amino acid 10 to about amino acid 20 of the 191P4D12(b) protein shown in FIG. 2 or FIG. 3, polynucleotides encoding about amino acid 20 to about amino acid 30 of the 191P4D12(b) protein shown in FIG. 2 or FIG. 3, polynucleotides encoding about amino acid 30 to about amino acid 40 of the 191P4D12(b) protein shown in FIG. 2 or FIG. 3, polynucleotides encoding about amino acid 40 to about amino acid 50 of the 191P4D12(b) protein shown in FIG. 2 or FIG. 3, polynucleotides encoding about amino acid 50 to about amino acid 60 of the 191P4D12(b) protein shown in FIG. 2 or FIG. 3, polynucleotides encoding about amino acid 60 to about amino acid 70 of the 191P4D12(b) protein shown in FIG. 2 or FIG. 3, polynucleotides encoding about amino acid 70 to about amino acid 80 of the 191P4D12(b) protein shown in FIG. 2 or FIG. 3, polynucleotides encoding about amino acid 80 to about amino acid 90 of the 191P4D12(b) protein shown in FIG. 2 or FIG. 3, polynucleotides encoding about amino acid 90 to about amino acid 100 of the 191P4D12(b) protein shown in FIG. 2 or FIG. 3, in increments of about 10 amino acids, ending at the carboxyl terminal amino acid set forth in FIG. 2 or FIG. 3. Accordingly, polynucleotides encoding portions of the amino acid sequence (of about 10 amino acids), of amino acids, 100 through the carboxyl terminal amino acid of the 191P4D12(b) protein are embodiments of the invention. Wherein it is understood that each particular amino acid position discloses that position plus or minus five amino acid residues.
  • Polynucleotides encoding relatively long portions of a 191P4D12(b) protein are also within the scope of the invention. For example, polynucleotides encoding from about amino acid 1 (or 20 or 30 or 40 etc.) to about amino acid 20, (or 30, or 40 or 50 etc.) of the 191P4D12(b) protein “or variant” shown in FIG. 2 or FIG. 3 can be generated by a variety of techniques well known in the art. These polynucleotide fragments can include any portion of the 191P4D12(b) sequence as shown in FIG. 2.
  • Additional illustrative embodiments of the invention disclosed herein include 191P4D12(b) polynucleotide fragments encoding one or more of the biological motifs contained within a 191P4D12(b) protein “or variant” sequence, including one or more of the motif-bearing subsequences of a 191P4D12(b) protein “or variant” set forth in Tables VIII-XXI and XXII-XLIX. In another embodiment, typical polynucleotide fragments of the invention encode one or more of the regions of 191P4D12(b) protein or variant that exhibit homology to a known molecule. In another embodiment of the invention, typical polynucleotide fragments can encode one or more of the 191P4D12(b) protein or variant N-glycosylation sites, cAMP and cGMP-dependent protein kinase phosphorylation sites, casein kinase II phosphorylation sites or N-myristoylation site and amidation sites.
  • Note that to determine the starting position of any peptide set forth in Tables VIII-XXI and Tables XXII to XLIX (collectively HLA Peptide Tables) respective to its parental protein, e.g., variant 1, variant 2, etc., reference is made to three factors: the particular variant, the length of the peptide in an HLA Peptide Table, and the Search Peptides listed in Table VII. Generally, a unique Search Peptide is used to obtain HLA peptides for a particular variant. The position of each Search Peptide relative to its respective parent molecule is listed in Table VII. Accordingly, if a Search Peptide begins at position “X”, one must add the value “X minus 1” to each position in Tables VIII-XXI and Tables XXII-IL to obtain the actual position of the HLA peptides in their parental molecule. For example if a particular Search Peptide begins at position 150 of its parental molecule, one must add 150−1, i.e., 149 to each HLA peptide amino acid position to calculate the position of that amino acid in the parent molecule.
  • II.A.) Uses of 191P4D12(b) Polynucleotides II.A.1.) Monitoring of Genetic Abnormalities
  • The polynucleotides of the preceding paragraphs have a number of different specific uses. The human 191P4D12(b) gene maps to the chromosomal location set forth in the Example entitled “Chromosomal Mapping of 191P4D12(b).” For example, because the 191P4D12(b) gene maps to this chromosome, polynucleotides that encode different regions of the 191P4D12(b) proteins are used to characterize cytogenetic abnormalities of this chromosomal locale, such as abnormalities that are identified as being associated with various cancers. In certain genes, a variety of chromosomal abnormalities including rearrangements have been identified as frequent cytogenetic abnormalities in a number of different cancers (see e.g. Krajinovic et al., Mutat. Res. 382 (3-4): 81-83 (1998); Johansson et al., Blood 86 (10): 3905-3914 (1995) and Finger et al., P.N.A.S. 85 (23): 9158-9162 (1988)). Thus, polynucleotides encoding specific regions of the 191P4D12(b) proteins provide new tools that can be used to delineate, with greater precision than previously possible, cytogenetic abnormalities in the chromosomal region that encodes 191P4D12(b) that may contribute to the malignant phenotype. In this context, these polynucleotides satisfy a need in the art for expanding the sensitivity of chromosomal screening in order to identify more subtle and less common chromosomal abnormalities (see e.g. Evans et al., Am. J. Obstet. Gynecol 171 (4): 1055-1057 (1994)).
  • Furthermore, as 191P4D12(b) was shown to be highly expressed in prostate and other cancers, 191P4D12(b) polynucleotides are used in methods assessing the status of 191P4D12(b) gene products in normal versus cancerous tissues. Typically, polynucleotides that encode specific regions of the 191P4D12(b) proteins are used to assess the presence of perturbations (such as deletions, insertions, point mutations, or alterations resulting in a loss of an antigen etc.) in specific regions of the 191P4D12(b) gene, such as regions containing one or more motifs. Exemplary assays include both RT-PCR assays as well as single-strand conformation polymorphism (SSCP) analysis (see, e.g., Marrogi et al., J. Cutan. Pathol. 26 (8): 369-378 (1999), both of which utilize polynucleotides encoding specific regions of a protein to examine these regions within the protein.
  • II.A.2.) Antisense Embodiments
  • Other specifically contemplated nucleic acid related embodiments of the invention disclosed herein are genomic DNA, cDNAs, ribozymes, and antisense molecules, as well as nucleic acid molecules based on an alternative backbone, or including alternative bases, whether derived from natural sources or synthesized, and include molecules capable of inhibiting the RNA or protein expression of 191P4D12(b). For example, antisense molecules can be RNAs or other molecules, including peptide nucleic acids (PNAs) or non-nucleic acid molecules such as phosphorothioate derivatives that specifically bind DNA or RNA in a base pair-dependent manner. A skilled artisan can readily obtain these classes of nucleic acid molecules using the 191P4D12(b) polynucleotides and polynucleotide sequences disclosed herein.
  • Antisense technology entails the administration of exogenous oligonucleotides that bind to a target polynucleotide located within the cells. The term “antisense” refers to the fact that such oligonucleotides are complementary to their intracellular targets, e.g., 191P4D12(b). See for example, Jack Cohen, Oligodeoxynucleotides, Antisense Inhibitors of Gene Expression, CRC Press, 1989; and Synthesis 1:1-5 (1988). The 191P4D12(b) antisense oligonucleotides of the present invention include derivatives such as S-oligonucleotides (phosphorothioate derivatives or S-oligos, see, Jack Cohen, supra), which exhibit enhanced cancer cell growth inhibitory action. S-oligos (nucleoside phosphorothioates) are isoelectronic analogs of an oligonucleotide (O-oligo) in which a nonbridging oxygen atom of the phosphate group is replaced by a sulfur atom. The S-oligos of the present invention can be prepared by treatment of the corresponding O-oligos with 3H-1,2-benzodithiol-3-one-1,1-dioxide, which is a sulfur transfer reagent. See, e.g., Iyer, R. P. et al., J. Org. Chem. 55:4693-4698 (1990); and Iyer, R. P. et al., J. Am. Chem. Soc. 112:1253-1254 (1990). Additional 191P4D12(b) antisense oligonucleotides of the present invention include morpholino antisense oligonucleotides known in the art (see, e.g., Partridge et al., 1996, Antisense & Nucleic Acid Drug Development 6: 169-175).
  • The 191P4D12(b) antisense oligonucleotides of the present invention typically can be RNA or DNA that is complementary to and stably hybridizes with the first 100 5′ codons or last 100 3′ codons of a 191P4D12(b) genomic sequence or the corresponding mRNA. Absolute complementarity is not required, although high degrees of complementarity are preferred. Use of an oligonucleotide complementary to this region allows for the selective hybridization to 191P4D12(b) mRNA and not to mRNA specifying other regulatory subunits of protein kinase. In one embodiment, 191P4D12(b) antisense oligonucleotides of the present invention are 15 to 30-mer fragments of the antisense DNA molecule that have a sequence that hybridizes to 191P4D12(b) mRNA. Optionally, 191P4D12(b) antisense oligonucleotide is a 30-mer oligonucleotide that is complementary to a region in the first 10 5′ codons or last 10 3′ codons of 191P4D12(b). Alternatively, the antisense molecules are modified to employ ribozymes in the inhibition of 191P4D12(b) expression, see, e.g., L. A. Couture & D. T. Stinchcomb; Trends Genet. 12: 510-515 (1996).
  • II.A.3.) Primers and Primer Pairs
  • Further specific embodiments of these nucleotides of the invention include primers and primer pairs, which allow the specific amplification of polynucleotides of the invention or of any specific parts thereof, and probes that selectively or specifically hybridize to nucleic acid molecules of the invention or to any part thereof. Probes can be labeled with a detectable marker, such as, for example, a radioisotope, fluorescent compound, bioluminescent compound, a chemiluminescent compound, metal chelator or enzyme. Such probes and primers are used to detect the presence of a 191P4D12(b) polynucleotide in a sample and as a means for detecting a cell expressing a 191P4D12(b) protein.
  • Examples of such probes include polypeptides comprising all or part of the human 191P4D12(b) cDNA sequence shown in FIG. 2. Examples of primer pairs capable of specifically amplifying 191P4D12(b) mRNAs are also described in the Examples. As will be understood by the skilled artisan, a great many different primers and probes can be prepared based on the sequences provided herein and used effectively to amplify and/or detect a 191P4D12(b) mRNA.
  • The 191P4D12(b) polynucleotides of the invention are useful for a variety of purposes, including but not limited to their use as probes and primers for the amplification and/or detection of the 191P4D12(b) gene(s), mRNA(s), or fragments thereof; as reagents for the diagnosis and/or prognosis of prostate cancer and other cancers; as coding sequences capable of directing the expression of 191P4D12(b) polypeptides; as tools for modulating or inhibiting the expression of the 191P4D12(b) gene(s) and/or translation of the 191P4D12(b) transcript(s); and as therapeutic agents.
  • The present invention includes the use of any probe as described herein to identify and isolate a 191P4D12(b) or 191P4D12(b) related nucleic acid sequence from a naturally occurring source, such as humans or other mammals, as well as the isolated nucleic acid sequence per se, which would comprise all or most of the sequences found in the probe used.
  • II.A.4.) Isolation of 191P4D12(b)-Encoding Nucleic Acid Molecules
  • The 191P4D12(b) cDNA sequences described herein enable the isolation of other polynucleotides encoding 191P4D12(b) gene product(s), as well as the isolation of polynucleotides encoding 191P4D12(b) gene product homologs, alternatively spliced isoforms, allelic variants, and mutant forms of a 191P4D12(b) gene product as well as polynucleotides that encode analogs of 191P4D12(b)-related proteins. Various molecular cloning methods that can be employed to isolate full length cDNAs encoding a 191P4D12(b) gene are well known (see, for example, Sambrook, J. et al., Molecular Cloning: A Laboratory Manual, 2d edition, Cold Spring Harbor Press, New York, 1989; Current Protocols in Molecular Biology. Ausubel et al., Eds., Wiley and Sons, 1995). For example, lambda phage cloning methodologies can be conveniently employed, using commercially available cloning systems (e.g., Lambda ZAP Express, Stratagene). Phage clones containing 191P4D12(b) gene cDNAs can be identified by probing with a labeled 191P4D12(b) cDNA or a fragment thereof. For example, in one embodiment, a 191P4D12(b) cDNA (e.g., FIG. 2) or a portion thereof can be synthesized and used as a probe to retrieve overlapping and full-length cDNAs corresponding to a 191P4D12(b) gene. A 191P4D12(b) gene itself can be isolated by screening genomic DNA libraries, bacterial artificial chromosome libraries (BACs), yeast artificial chromosome libraries (YACs), and the like, with 191P4D12(b) DNA probes or primers.
  • II.A.5.) Recombinant Nucleic Acid Molecules and Host-Vector Systems
  • The invention also provides recombinant DNA or RNA molecules containing a 191P4D12(b) polynucleotide, a fragment, analog or homologue thereof, including but not limited to phages, plasmids, phagemids, cosmids, YACs, BACs, as well as various viral and non-viral vectors well known in the art, and cells transformed or transfected with such recombinant DNA or RNA molecules. Methods for generating such molecules are well known (see, for example, Sambrook et al., 1989, supra).
  • The invention further provides a host-vector system comprising a recombinant DNA molecule containing a 191P4D12(b) polynucleotide, fragment, analog or homologue thereof within a suitable prokaryotic or eukaryotic host cell. Examples of suitable eukaryotic host cells include a yeast cell, a plant cell, or an animal cell, such as a mammalian cell or an insect cell (e.g., a baculovirus-infectible cell such as an Sf9 or HighFive cell). Examples of suitable mammalian cells include various prostate cancer cell lines such as DU145 and TsuPr1, other transfectable or transducible prostate cancer cell lines, primary cells (PrEC), as well as a number of mammalian cells routinely used for the expression of recombinant proteins (e.g., COS, CHO, 293, 293T cells). More particularly, a polynucleotide comprising the coding sequence of 191P4D12(b) or a fragment, analog or homolog thereof can be used to generate 191P4D12(b) proteins or fragments thereof using any number of host-vector systems routinely used and widely known in the art.
  • A wide range of host-vector systems suitable for the expression of 191P4D12(b) proteins or fragments thereof are available, see for example, Sambrook et al., 1989, supra; Current Protocols in Molecular Biology, 1995, supra). Preferred vectors for mammalian expression include but are not limited to pcDNA 3.1 myc-His-tag (Invitrogen) and the retroviral vector pSRαtkneo (Muller et al., 1991, MCB 11:1785). Using these expression vectors, 191P4D12(b) can be expressed in several prostate cancer and non-prostate cell lines, including for example 293, 293T, rat-1, NIH 3T3 and TsuPr1. The host-vector systems of the invention are useful for the production of a 191P4D12(b) protein or fragment thereof. Such host-vector systems can be employed to study the functional properties of 191P4D12(b) and 191P4D12(b) mutations or analogs.
  • Recombinant human 191P4D12(b) protein or an analog or homolog or fragment thereof can be produced by mammalian cells transfected with a construct encoding a 191P4D12(b)-related nucleotide. For example, 293T cells can be transfected with an expression plasmid encoding 191P4D12(b) or fragment, analog or homolog thereof, a 191P4D12(b)-related protein is expressed in the 293T cells, and the recombinant 191P4D12(b) protein is isolated using standard purification methods (e.g., affinity purification using anti-191P4D12(b) antibodies). In another embodiment, a 191P4D12(b) coding sequence is subcloned into the retroviral vector pSRαMSVtkneo and used to infect various mammalian cell lines, such as NIH 3T3, TsuPr1, 293 and rat-1 in order to establish 191P4D12(b) expressing cell lines. Various other expression systems well known in the art can also be employed. Expression constructs encoding a leader peptide joined in frame to a 191P4D12(b) coding sequence can be used for the generation of a secreted form of recombinant 191P4D12(b) protein.
  • As discussed herein, redundancy in the genetic code permits variation in 191P4D12(b) gene sequences. In particular, it is known in the art that specific host species often have specific codon preferences, and thus one can adapt the disclosed sequence as preferred for a desired host. For example, preferred analog codon sequences typically have rare codons (i.e., codons having a usage frequency of less than about 20% in known sequences of the desired host) replaced with higher frequency codons. Codon preferences for a specific species are calculated, for example, by utilizing codon usage tables available on the INTERNET.
  • Additional sequence modifications are known to enhance protein expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon/intron splice site signals, transposon-like repeats, and/or other such well-characterized sequences that are deleterious to gene expression. The GC content of the sequence is adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. Where possible, the sequence is modified to avoid predicted hairpin secondary mRNA structures. Other useful modifications include the addition of a translational initiation consensus sequence at the start of the open reading frame, as described in Kozak, Mol. Cell. Biol., 9:5073-5080 (1989) Skilled artisans understand that the general rule that eukaryotic ribosomes initiate translation exclusively at the 5′ proximal AUG codon is abrogated only under rare conditions (see, e.g., Kozak PNAS 92 (7): 2662-2666, (1995) and Kozak NAR 15 (20): 8125-8148 (1987)).
  • III.) 191P4D12(b)-Related Proteins
  • Another aspect of the present invention provides 191P4D12(b)-related proteins. Specific embodiments of 191P4D12(b) proteins comprise a polypeptide having all or part of the amino acid sequence of human 191P4D12(b) as shown in FIG. 2 or FIG. 3. Alternatively, embodiments of 191P4D12(b) proteins comprise variant, homolog or analog polypeptides that have alterations in the amino acid sequence of 191P4D12(b) shown in FIG. 2 or FIG. 3.
  • Embodiments of a 191P4D12(b) polypeptide include: a 191P4D12(b) polypeptide having a sequence shown in FIG. 2, a peptide sequence of a 191P4D12(b) as shown in FIG. 2 wherein T is U; at least 10 contiguous nucleotides of a polypeptide having the sequence as shown in FIG. 2; or, at least 10 contiguous peptides of a polypeptide having the sequence as shown in FIG. 2 where T is U. For example, embodiments of 191P4D12(b) peptides comprise, without limitation:
  • (I) a protein comprising, consisting essentially of, or consisting of an amino acid sequence as shown in FIG. 2A-N or FIG. 3A-J;
  • (II) a 191P4D12(b)-related protein that is at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% homologous to an entire amino acid sequence shown in FIG. 2A-N or 3A-J;
  • (III) a 191P4D12(b)-related protein that is at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identical to an entire amino acid sequence shown in FIG. 2A-N or 3A-J;
  • (IV) a protein that comprises at least one peptide set forth in Tables VIII to XLIX, optionally with a proviso that it is not an entire protein of FIG. 2;
  • (V) a protein that comprises at least one peptide set forth in Tables VIII-XXI, collectively, which peptide is also set forth in Tables XXII to XLIX, collectively, optionally with a proviso that it is not an entire protein of FIG. 2;
  • (VI) a protein that comprises at least two peptides selected from the peptides set forth in Tables VIII-XLIX, optionally with a proviso that it is not an entire protein of FIG. 2;
  • (VII) a protein that comprises at least two peptides selected from the peptides set forth in Tables VIII to XLIX collectively, with a proviso that the protein is not a contiguous sequence from an amino acid sequence of FIG. 2;
  • (VIII) a protein that comprises at least one peptide selected from the peptides set forth in Tables VIII-XXI; and at least one peptide selected from the peptides set forth in Tables XXII to XLIX, with a proviso that the protein is not a contiguous sequence from an amino acid sequence of FIG. 2;
  • (IX) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3A-B or 3E-G, in any whole number increment up to 510 respectively that includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5;
  • (X) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3A-B or 3E-G, in any whole number increment up to 510 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6;
  • (XI) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3A-B or 3E-G, in any whole number increment up to 510 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7;
  • (XII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3A-B or 3E-G, in any whole number increment up to 510 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8;
  • (XIII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, amino acids of a protein of FIG. 3A-B or 3E-G in any whole number increment up to 510 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9;
  • (XIV) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3C, in any whole number increment up to 295 respectively that includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5;
  • (XV) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3C, in any whole number increment up to 295 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6;
  • (XVI) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3C, in any whole number increment up to 295 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7;
  • (XVII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3C, in any whole number increment up to 295 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8;
  • (XVIII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, amino acids of a protein of FIG. 3C in any whole number increment up to 295 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9;
  • (XIX) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3D, in any whole number increment up to 485 respectively that includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5;
  • (XX) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3D, in any whole number increment up to 485 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6;
  • (XXI) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3D, in any whole number increment up to 485 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7;
  • (XXII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3D, in any whole number increment up to 485 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8;
  • (XXIII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, amino acids of a protein of FIG. 3D in any whole number increment up to 485 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9;
  • (XXIV) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3H, in any whole number increment up to 511 respectively that includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5;
  • (XXV) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3H, in any whole number increment up to 511 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6;
  • (XXVI) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3H, in any whole number increment up to 511 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7;
  • (XXVII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3H, in any whole number increment up to 511 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8;
  • (XXVIII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, amino acids of a protein of FIG. 3H in any whole number increment up to 511 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9;
  • (XXIX) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3I-J, in any whole number increment up to 137 respectively that includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of FIG. 5;
  • (XXX) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3I-J, in any whole number increment up to 137 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of FIG. 6;
  • (XXXI) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3I-J, in any whole number increment up to 137 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of FIG. 7;
  • (XXXII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of FIG. 3I-J, in any whole number increment up to 137 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of FIG. 8;
  • (XXXIII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, amino acids of a protein of FIG. 3I-J in any whole number increment up to 137 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of FIG. 9;
  • (XXXIV) a peptide that occurs at least twice in Tables VIII-XXI and XXII to XLIX, collectively;
  • (XXXV) a peptide that occurs at least three times in Tables VIII-XXI and XXII to XLIX, collectively;
  • (XXXVI) a peptide that occurs at least four times in Tables VIII-XXI and XXII to XLIX, collectively;
  • (XXXVII) a peptide that occurs at least five times in Tables VIII-XXI and XXII to XLIX, collectively;
  • (XXXVIII) a peptide that occurs at least once in Tables VIII-XXI, and at least once in tables XXII to XLIX;
  • (XXXIX) a peptide that occurs at least once in Tables VIII-XXI, and at least twice in tables XXII to XLIX;
  • (XL) a peptide that occurs at least twice in Tables VIII-XXI, and at least once in tables XXII to XLIX;
  • (XLI) a peptide that occurs at least twice in Tables VIII-XXI, and at least twice in tables XXII to XLIX;
  • (XLII) a peptide which comprises one two, three, four, or five of the following characteristics, or an oligonucleotide encoding such peptide:
  • i) a region of at least 5 amino acids of a particular peptide of FIG. 3, in any whole number increment up to the full length of that protein in FIG. 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Hydrophilicity profile of FIG. 5;
  • ii) a region of at least 5 amino acids of a particular peptide of FIG. 3, in any whole number increment up to the full length of that protein in FIG. 3, that includes an amino acid position having a value equal to or less than 0.5, 0.4, 0.3, 0.2, 0.1, or having a value equal to 0.0, in the Hydropathicity profile of FIG. 6;
  • iii) a region of at least 5 amino acids of a particular peptide of FIG. 3, in any whole number increment up to the full length of that protein in FIG. 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Percent Accessible Residues profile of FIG. 7;
  • iv) a region of at least 5 amino acids of a particular peptide of FIG. 3, in any whole number increment up to the full length of that protein in FIG. 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Average Flexibility profile of FIG. 8; or,
  • v) a region of at least 5 amino acids of a particular peptide of FIG. 3, in any whole number increment up to the full length of that protein in FIG. 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Beta-turn profile of FIG. 9;
  • (XLIII) a composition comprising a peptide of (I)-(XLII) or an antibody or binding region thereof together with a pharmaceutical excipient and/or in a human unit dose form;
  • (XLIV) a method of using a peptide of (I)-(XLII), or an antibody or binding region thereof or a composition of (XLIII) in a method to modulate a cell expressing 191P4D12(b);
  • (XLV) a method of using a peptide of (I)-(XLII) or an antibody or binding region thereof or a composition of (XLIII) in a method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 191P4D12(b);
  • (XLVI) a method of using a peptide of (I)-(XLII) or an antibody or binding region thereof or a composition (XlIII) in a method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 191P4D12(b), said cell from a cancer of a tissue listed in Table I;
  • (XLVII) a method of using a peptide of (I)-(XLII) or an antibody or binding region thereof or a composition of (XLIII) in a method to diagnose, prophylax, prognose, or treat a cancer;
  • (XLVIII) a method of using a peptide of (I)-(XLII) or an antibody or binding region thereof or a composition of (XLIII) in a method to diagnose, prophylax, prognose, or treat a cancer of a tissue listed in Table I; and,
  • (XLIX) a method of using a peptide of (I)-(XLII) or an antibody or binding region thereof or a composition (XLIII) in a method to identify or characterize a modulator of a cell expressing 191P4D12(b).
  • As used herein, a range is understood to specifically disclose all whole unit positions thereof.
  • Typical embodiments of the invention disclosed herein include 191P4D12(b) polynucleotides that encode specific portions of 191P4D12(b) mRNA sequences (and those which are complementary to such sequences) such as those that encode the proteins and/or fragments thereof, for example:
  • (a) 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 505, or 510 or more contiguous amino acids of 191P4D12(b) variant 1; the maximal lengths relevant for other variants are: variant 2, 510 amino acids; variant 6, 295 amino acids, variant 7, 485 amino acids, variant 10, 510 amino acids, variant 11, 510 amino acids, variant 12, 510 amino acids, variant 13, 511 amino acids, variant 9, 137 amino acids, and variant 14, 137 amino acids.
  • In general, naturally occurring allelic variants of human 191P4D12(b) share a high degree of structural identity and homology (e.g., 90% or more homology). Typically, allelic variants of a 191P4D12(b) protein contain conservative amino acid substitutions within the 191P4D12(b) sequences described herein or contain a substitution of an amino acid from a corresponding position in a homologue of 191P4D12(b). One class of 191P4D12(b) allelic variants are proteins that share a high degree of homology with at least a small region of a particular 191P4D12(b) amino acid sequence, but further contain a radical departure from the sequence, such as a non-conservative substitution, truncation, insertion or frame shift. In comparisons of protein sequences, the terms, similarity, identity, and homology each have a distinct meaning as appreciated in the field of genetics. Moreover, orthology and paralogy can be important concepts describing the relationship of members of a given protein family in one organism to the members of the same family in other organisms.
  • Amino acid abbreviations are provided in Table II. Conservative amino acid substitutions can frequently be made in a protein without altering either the conformation or the function of the protein. Proteins of the invention can comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 conservative substitutions. Such changes include substituting any of isoleucine (I), valine (V), and leucine (L) for any other of these hydrophobic amino acids; aspartic acid (D) for glutamic acid (E) and vice versa; glutamine (Q) for asparagine (N) and vice versa; and serine (S) for threonine (T) and vice versa. Other substitutions can also be considered conservative, depending on the environment of the particular amino acid and its role in the three-dimensional structure of the protein. For example, glycine (G) and alanine (A) can frequently be interchangeable, as can alanine (A) and valine (V). Methionine (M), which is relatively hydrophobic, can frequently be interchanged with leucine and isoleucine, and sometimes with valine. Lysine (K) and arginine (R) are frequently interchangeable in locations in which the significant feature of the amino acid residue is its charge and the differing pK's of these two amino acid residues are not significant. Still other changes can be considered “conservative” in particular environments (see, e.g. Table III herein; pages 13-15 “Biochemistry” 2nd ED. Lubert Stryer ed (Stanford University); Henikoff et al., PNAS 1992 Vol 89 10915-10919; Lei et al., J Biol Chem 1995 May 19; 270 (20):11882-6).
  • Embodiments of the invention disclosed herein include a wide variety of art-accepted variants or analogs of 191P4D12(b) proteins such as polypeptides having amino acid insertions, deletions and substitutions. 191P4D12(b) variants can be made using methods known in the art such as site-directed mutagenesis, alanine scanning, and PCR mutagenesis. Site-directed mutagenesis (Carter et al., Nucl. Acids Res., 13:4331 (1986); Zoller et al., Nucl. Acids Res., 10:6487 (1987)), cassette mutagenesis (Wells et al., Gene, 34:315 (1985)), restriction selection mutagenesis (Wells et al., Philos. Trans. R. Soc. London SerA, 317:415 (1986)) or other known techniques can be performed on the cloned DNA to produce the 191P4D12(b) variant DNA.
  • Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence that is involved in a specific biological activity such as a protein-protein interaction. Among the preferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, glycine, serine, and cysteine. Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta-carbon and is less likely to alter the main-chain conformation of the variant. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions (Creighton, The Proteins, (W.H. Freeman & Co., N.Y.); Chothia, J. Mol. Biol., 150:1 (1976)). If alanine substitution does not yield adequate amounts of variant, an isosteric amino acid can be used.
  • As defined herein, 191P4D12(b) variants, analogs or homologs, have the distinguishing attribute of having at least one epitope that is “cross reactive” with a 191P4D12(b) protein having an amino acid sequence of FIG. 3. As used in this sentence, “cross reactive” means that an antibody or T cell that specifically binds to a 191P4D12(b) variant also specifically binds to a 191P4D12(b) protein having an amino acid sequence set forth in FIG. 3. A polypeptide ceases to be a variant of a protein shown in FIG. 3, when it no longer contains any epitope capable of being recognized by an antibody or T cell that specifically binds to the starting 191P4D12(b) protein. Those skilled in the art understand that antibodies that recognize proteins bind to epitopes of varying size, and a grouping of the order of about four or five amino acids, contiguous or not, is regarded as a typical number of amino acids in a minimal epitope. See, e.g., Nair et al., J. Immunol. 2000 165 (12): 6949-6955; Hebbes et al., Mol Immunol (1989) 26 (9):865-73; Schwartz et al., J Immunol (1985) 135 (4):2598-608.
  • Other classes of 191P4D12(b)-related protein variants share 70%, 75%, 80%, 85% or 90% or more similarity with an amino acid sequence of FIG. 3, or a fragment thereof. Another specific class of 191P4D12(b) protein variants or analogs comprises one or more of the 191P4D12(b) biological motifs described herein or presently known in the art. Thus, encompassed by the present invention are analogs of 191P4D12(b) fragments (nucleic or amino acid) that have altered functional (e.g. immunogenic) properties relative to the starting fragment. It is to be appreciated that motifs now or which become part of the art are to be applied to the nucleic or amino acid sequences of FIG. 2 or FIG. 3.
  • As discussed herein, embodiments of the claimed invention include polypeptides containing less than the full amino acid sequence of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3. For example, representative embodiments of the invention comprise peptides/proteins having any 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more contiguous amino acids of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3.
  • Moreover, representative embodiments of the invention disclosed herein include polypeptides consisting of about amino acid 1 to about amino acid 10 of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3, polypeptides consisting of about amino acid 10 to about amino acid 20 of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3, polypeptides consisting of about amino acid 20 to about amino acid 30 of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3, polypeptides consisting of about amino acid 30 to about amino acid 40 of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3, polypeptides consisting of about amino acid 40 to about amino acid 50 of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3, polypeptides consisting of about amino acid 50 to about amino acid 60 of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3, polypeptides consisting of about amino acid 60 to about amino acid 70 of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3, polypeptides consisting of about amino acid 70 to about amino acid 80 of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3, polypeptides consisting of about amino acid 80 to about amino acid 90 of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3, polypeptides consisting of about amino acid 90 to about amino acid 100 of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3, etc. throughout the entirety of a 191P4D12(b) amino acid sequence. Moreover, polypeptides consisting of about amino acid 1 (or 20 or 30 or 40 etc.) to about amino acid 20, (or 130, or 140 or 150 etc.) of a 191P4D12(b) protein shown in FIG. 2 or FIG. 3 are embodiments of the invention. It is to be appreciated that the starting and stopping positions in this paragraph refer to the specified position as well as that position plus or minus 5 residues.
  • 191P4D12(b)-related proteins are generated using standard peptide synthesis technology or using chemical cleavage methods well known in the art. Alternatively, recombinant methods can be used to generate nucleic acid molecules that encode a 191P4D12(b)-related protein. In one embodiment, nucleic acid molecules provide a means to generate defined fragments of a 191P4D12(b) protein (or variants, homologs or analogs thereof).
  • III.A.) Motif-Bearing Protein Embodiments
  • Additional illustrative embodiments of the invention disclosed herein include 191P4D12(b) polypeptides comprising the amino acid residues of one or more of the biological motifs contained within a 191P4D12(b) polypeptide sequence set forth in FIG. 2 or FIG. 3. Various motifs are known in the art, and a protein can be evaluated for the presence of such motifs by a number of publicly available Internet sites (see, e.g., Epimatrix™ and Epimer™ Brown University, and BIMAS).
  • Motif bearing subsequences of all 191P4D12(b) variant proteins are set forth and identified in Tables VIII-XXI and XXII-XLIX.
  • Table V sets forth several frequently occurring motifs based on pfam searches. The columns of Table V list (1) motif name abbreviation, (2) percent identity found amongst the different member of the motif family, (3) motif name or description and (4) most common function; location information is included if the motif is relevant for location.
  • Polypeptides comprising one or more of the 191P4D12(b) motifs discussed above are useful in elucidating the specific characteristics of a malignant phenotype in view of the observation that the 191P4D12(b) motifs discussed above are associated with growth dysregulation and because 191P4D12(b) is overexpressed in certain cancers (See, e.g., Table I). Casein kinase II, cAMP and camp-dependent protein kinase, and Protein Kinase C, for example, are enzymes known to be associated with the development of the malignant phenotype (see e.g. Chen et al., Lab Invest., 78 (2): 165-174 (1998); Gaiddon et al., Endocrinology 136 (10): 4331-4338 (1995); Hall et al., Nucleic Acids Research 24 (6): 1119-1126 (1996); Peterziel et al., Oncogene 18 (46): 6322-6329 (1999) and O'Brian, Oncol. Rep. 5 (2): 305-309 (1998)). Moreover, both glycosylation and myristoylation are protein modifications also associated with cancer and cancer progression (see e.g. Dennis et al., Biochem. Biophys. Acta 1473 (1):21-34 (1999); Raju et al., Exp. Cell Res. 235 (1): 145-154 (1997)). Amidation is another protein modification also associated with cancer and cancer progression (see e.g. Treston et al., J. Natl. Cancer Inst. Monogr. (13): 169-175 (1992)).
  • In another embodiment, proteins of the invention comprise one or more of the immunoreactive epitopes identified in accordance with art-accepted methods, such as the peptides set forth in Tables VIII-XXI and XXII-XLIX. CTL epitopes can be determined using specific algorithms to identify peptides within a 191P4D12(b) protein that are capable of optimally binding to specified HLA alleles (e.g., Table IV; Epimatrix™ and Epimer™, Brown University). Moreover, processes for identifying peptides that have sufficient binding affinity for HLA molecules and which are correlated with being immunogenic epitopes, are well known in the art, and are carried out without undue experimentation. In addition, processes for identifying peptides that are immunogenic epitopes, are well known in the art, and are carried out without undue experimentation either in vitro or in vivo.
  • Also known in the art are principles for creating analogs of such epitopes in order to modulate immunogenicity. For example, one begins with an epitope that bears a CTL or HTL motif (see, e.g., the HLA Class I and HLA Class II motifs/supermotifs of Table IV). The epitope is analoged by substituting out an amino acid at one of the specified positions, and replacing it with another amino acid specified for that position. For example, on the basis of residues defined in Table IV, one can substitute out a deleterious residue in favor of any other residue, such as a preferred residue; substitute a less-preferred residue with a preferred residue; or substitute an originally-occurring preferred residue with another preferred residue. Substitutions can occur at primary anchor positions or at other positions in a peptide; see, e.g., Table IV.
  • A variety of references reflect the art regarding the identification and generation of epitopes in a protein of interest as well as analogs thereof. See, for example, WO 97/33602 to Chesnut et al.; Sette, Immunogenetics 1999 50 (3-4): 201-212; Sette et al., J. Immunol. 2001 166 (2): 1389-1397; Sidney et al., Hum. Immunol. 1997 58 (1): 12-20; Kondo et al., Immunogenetics 1997 45 (4): 249-258; Sidney et al., J. Immunol. 1996 157 (8): 3480-90; and Falk et al., Nature 351: 290-6 (1991); Hunt et al., Science 255:1261-3 (1992); Parker et al., J. Immunol. 149:3580-7 (1992); Parker et al., J. Immunol. 152:163-75 (1994)); Kast et al., 1994 152 (8): 3904-12; Borras-Cuesta et al., Hum. Immunol. 2000 61 (3): 266-278; Alexander et al., J. Immunol. 2000 164 (3); 164 (3): 1625-1633; Alexander et al., PMID: 7895164, UI: 95202582; O'Sullivan et al., J. Immunol. 1991 147 (8): 2663-2669; Alexander et al., Immunity 1994 1 (9): 751-761 and Alexander et al., Immunol. Res. 1998 18 (2): 79-92.
  • Related embodiments of the invention include polypeptides comprising combinations of the different motifs set forth in Table VI, and/or, one or more of the predicted CTL epitopes of Tables VIII-XXI and XXII-XLIX, and/or, one or more of the predicted HTL epitopes of Tables XLVI-XLIX, and/or, one or more of the T cell binding motifs known in the art. Preferred embodiments contain no insertions, deletions or substitutions either within the motifs or within the intervening sequences of the polypeptides. In addition, embodiments which include a number of either N-terminal and/or C-terminal amino acid residues on either side of these motifs may be desirable (to, for example, include a greater portion of the polypeptide architecture in which the motif is located). Typically, the number of N-terminal and/or C-terminal amino acid residues on either side of a motif is between about 1 to about 100 amino acid residues, preferably 5 to about 50 amino acid residues.
  • 191P4D12(b)-related proteins are embodied in many forms, preferably in isolated form. A purified 191P4D12(b) protein molecule will be substantially free of other proteins or molecules that impair the binding of 191P4D12(b) to antibody, T cell or other ligand. The nature and degree of isolation and purification will depend on the intended use. Embodiments of a 191P4D12(b)-related proteins include purified 191P4D12(b)-related proteins and functional, soluble 191P4D12(b)-related proteins. In one embodiment, a functional, soluble 191P4D12(b) protein or fragment thereof retains the ability to be bound by antibody, T cell or other ligand.
  • The invention also provides 191P4D12(b) proteins comprising biologically active fragments of a 191P4D12(b) amino acid sequence shown in FIG. 2 or FIG. 3. Such proteins exhibit properties of the starting 191P4D12(b) protein, such as the ability to elicit the generation of antibodies that specifically bind an epitope associated with the starting 191P4D12(b) protein; to be bound by such antibodies; to elicit the activation of HTL or CTL; and/or, to be recognized by HTL or CTL that also specifically bind to the starting protein.
  • 191P4D12(b)-related polypeptides that contain particularly interesting structures can be predicted and/or identified using various analytical techniques well known in the art, including, for example, the methods of Chou-Fasman, Garnier-Robson, Kyte-Doolittle, Eisenberg, Karplus-Schultz or Jameson-Wolf analysis, or based on immunogenicity. Fragments that contain such structures are particularly useful in generating subunit-specific anti-191P4D12(b) antibodies or T cells or in identifying cellular factors that bind to 191P4D12(b). For example, hydrophilicity profiles can be generated, and immunogenic peptide fragments identified, using the method of Hopp, T. P. and Woods, K. R., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828. Hydropathicity profiles can be generated, and immunogenic peptide fragments identified, using the method of Kyte, J. and Doolittle, R. F., 1982, J. Mol. Biol. 157:105-132. Percent (%) Accessible Residues profiles can be generated, and immunogenic peptide fragments identified, using the method of Janin J., 1979, Nature 277:491-492. Average Flexibility profiles can be generated, and immunogenic peptide fragments identified, using the method of Bhaskaran R., Ponnuswamy P. K., 1988, Int. J. Pept. Protein Res. 32:242-255. Beta-turn profiles can be generated, and immunogenic peptide fragments identified, using the method of Deleage, G., Roux B., 1987, Protein Engineering 1:289-294.
  • CTL epitopes can be determined using specific algorithms to identify peptides within a 191P4D12(b) protein that are capable of optimally binding to specified HLA alleles (e.g., by using the listings in Table IV(A)-(E); Epimatrix™ and Epimer™, Brown University, and BIMAS). Illustrating this, peptide epitopes from 191P4D12(b) that are presented in the context of human MHC Class I molecules, e.g., HLA-A1, A2, A3, All, A24, B7 and B35 were predicted (see, e.g., Tables VIII-XXI, XXII-XLIX). Specifically, the complete amino acid sequence of the 191P4D12(b) protein and relevant portions of other variants, i.e., for HLA Class I predictions 9 flanking residues on either side of a point mutation or exon junction, and for HLA Class II predictions 14 flanking residues on either side of a point mutation or exon junction corresponding to that variant, were entered into the HLA Peptide Motif Search algorithm found in the Bioinformatics and Molecular Analysis Section (BIMAS) in addition to the site SYFPEITHI.
  • The HLA peptide motif search algorithm was developed by Dr. Ken Parker based on binding of specific peptide sequences in the groove of HLA Class I molecules, in particular HLA-A2 (see, e.g., Falk et al., Nature 351: 290-6 (1991); Hunt et al., Science 255:1261-3 (1992); Parker et al., J. Immunol. 149:3580-7 (1992); Parker et al., J. Immunol. 152:163-75 (1994)). This algorithm allows location and ranking of 8-mer, 9-mer, and 10-mer peptides from a complete protein sequence for predicted binding to HLA-A2 as well as numerous other HLA Class I molecules. Many HLA class I binding peptides are 8-, 9-, 10 or 11-mers. For example, for Class I HLA-A2, the epitopes preferably contain a leucine (L) or methionine (M) at position 2 and a valine (V) or leucine (L) at the C-terminus (see, e.g., Parker et al., J. Immunol. 149:3580-7 (1992)). Selected results of 191P4D12(b) predicted binding peptides are shown in Tables VIII-XXI and XXII-XLIX herein. In Tables VIII-XXI and XXII-XLVII, selected candidates, 9-mers and 10-mers, for each family member are shown along with their location, the amino acid sequence of each specific peptide, and an estimated binding score. In Tables XLVI-XLIX, selected candidates, 15-mers, for each family member are shown along with their location, the amino acid sequence of each specific peptide, and an estimated binding score. The binding score corresponds to the estimated half time of dissociation of complexes containing the peptide at 37° C. at pH 6.5. Peptides with the highest binding score are predicted to be the most tightly bound to HLA Class I on the cell surface for the greatest period of time and thus represent the best immunogenic targets for T-cell recognition.
  • Actual binding of peptides to an HLA allele can be evaluated by stabilization of HLA expression on the antigen-processing defective cell line T2 (see, e.g., Xue et al., Prostate 30:73-8 (1997) and Peshwa et al., Prostate 36:129-38 (1998)). Immunogenicity of specific peptides can be evaluated in vitro by stimulation of CD8+ cytotoxic T lymphocytes (CTL) in the presence of antigen presenting cells such as dendritic cells.
  • It is to be appreciated that every epitope predicted by the BIMAS site, Epimer™ and Epimatrix™ sites, or specified by the HLA class I or class II motifs available in the art or which become part of the art such as set forth in Table IV (or determined using World Wide Web for SYFPEITHI or BIMAS) are to be “applied” to a 191P4D12(b) protein in accordance with the invention. As used in this context “applied” means that a 191P4D12(b) protein is evaluated, e.g., visually or by computer-based patterns finding methods, as appreciated by those of skill in the relevant art. Every subsequence of a 191P4D12(b) protein of 8, 9, 10, or 11 amino acid residues that bears an HLA Class I motif, or a subsequence of 9 or more amino acid residues that bear an HLA Class II motif are within the scope of the invention.
  • III.B.) Expression of 191P4D12(b)-Related Proteins
  • In an embodiment described in the examples that follow, 191P4D12(b) can be conveniently expressed in cells (such as 293T cells) transfected with a commercially available expression vector such as a CMV-driven expression vector encoding 191P4D12(b) with a C-terminal 6×His and MYC tag (pcDNA3.1/mycHIS, Invitrogen or Tag5, GenHunter Corporation, Nashville Tenn.). The Tag5 vector provides an IgGK secretion signal that can be used to facilitate the production of a secreted 191P4D12(b) protein in transfected cells. The secreted HIS-tagged 191P4D12(b) in the culture media can be purified, e.g., using a nickel column using standard techniques.
  • III.C.) Modifications of 191P4D12(b)-Related Proteins
  • Modifications of 191P4D12(b)-related proteins such as covalent modifications are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a 191P4D12(b) polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues of a 191P4D12(b) protein. Another type of covalent modification of a 191P4D12(b) polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of a protein of the invention. Another type of covalent modification of 191P4D12(b) comprises linking a 191P4D12(b) polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol (PEG), polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Pat. No. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.
  • The 191P4D12(b)-related proteins of the present invention can also be modified to form a chimeric molecule comprising 191P4D12(b) fused to another, heterologous polypeptide or amino acid sequence. Such a chimeric molecule can be synthesized chemically or recombinantly. A chimeric molecule can have a protein of the invention fused to another tumor-associated antigen or fragment thereof. Alternatively, a protein in accordance with the invention can comprise a fusion of fragments of a 191P4D12(b) sequence (amino or nucleic acid) such that a molecule is created that is not, through its length, directly homologous to the amino or nucleic acid sequences shown in FIG. 2 or FIG. 3. Such a chimeric molecule can comprise multiples of the same subsequence of 191P4D12(b). A chimeric molecule can comprise a fusion of a 191P4D12(b)-related protein with a polyhistidine epitope tag, which provides an epitope to which immobilized nickel can selectively bind, with cytokines or with growth factors. The epitope tag is generally placed at the amino- or carboxyl-terminus of a 191P4D12(b) protein. In an alternative embodiment, the chimeric molecule can comprise a fusion of a 191P4D12(b)-related protein with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule (also referred to as an “immunoadhesin”), such a fusion could be to the Fc region of an IgG molecule. The Ig fusions preferably include the substitution of a soluble (transmembrane domain deleted or inactivated) form of a 191P4D12(b) polypeptide in place of at least one variable region within an Ig molecule. In a preferred embodiment, the immunoglobulin fusion includes the hinge, CH2 and CH3, or the hinge, CHI, CH2 and CH3 regions of an IgGI molecule. For the production of immunoglobulin fusions see, e.g., U.S. Pat. No. 5,428,130 issued Jun. 27, 1995.
  • III.D.) Uses of 191P4D12(b)-Related Proteins
  • The proteins of the invention have a number of different specific uses. As 191P4D12(b) is highly expressed in prostate and other cancers, 191P4D12(b)-related proteins are used in methods that assess the status of 191P4D12(b) gene products in normal versus cancerous tissues, thereby elucidating the malignant phenotype. Typically, polypeptides from specific regions of a 191P4D12(b) protein are used to assess the presence of perturbations (such as deletions, insertions, point mutations etc.) in those regions (such as regions containing one or more motifs). Exemplary assays utilize antibodies or T cells targeting 191P4D12(b)-related proteins comprising the amino acid residues of one or more of the biological motifs contained within a 191P4D12(b) polypeptide sequence in order to evaluate the characteristics of this region in normal versus cancerous tissues or to elicit an immune response to the epitope. Alternatively, 191P4D12(b)-related proteins that contain the amino acid residues of one or more of the biological motifs in a 191P4D12(b) protein are used to screen for factors that interact with that region of 191P4D12(b).
  • 191P4D12(b) protein fragments/subsequences are particularly useful in generating and characterizing domain-specific antibodies (e.g., antibodies recognizing an extracellular or intracellular epitope of a 191P4D12(b) protein), for identifying agents or cellular factors that bind to 191P4D12(b) or a particular structural domain thereof, and in various therapeutic and diagnostic contexts, including but not limited to diagnostic assays, cancer vaccines and methods of preparing such vaccines.
  • Proteins encoded by the 191P4D12(b) genes, or by analogs, homologs or fragments thereof, have a variety of uses, including but not limited to generating antibodies and in methods for identifying ligands and other agents and cellular constituents that bind to a 191P4D12(b) gene product. Antibodies raised against a 191P4D12(b) protein or fragment thereof are useful in diagnostic and prognostic assays, and imaging methodologies in the management of human cancers characterized by expression of 191P4D12(b) protein, such as those listed in Table I. Such antibodies can be expressed intracellularly and used in methods of treating patients with such cancers. 191P4D12(b)-related nucleic acids or proteins are also used in generating HTL or CTL responses.
  • Various immunological assays useful for the detection of 191P4D12(b) proteins are used, including but not limited to various types of radioimmunoassays, enzyme-linked immunosorbent assays (ELISA), enzyme-linked immunofluorescent assays (ELIFA), immunocytochemical methods, and the like. Antibodies can be labeled and used as immunological imaging reagents capable of detecting 191P4D12(b)-expressing cells (e.g., in radioscintigraphic imaging methods). 191P4D12(b) proteins are also particularly useful in generating cancer vaccines, as further described herein.
  • IV.) 191P4D12(b) Antibodies
  • Another aspect of the invention provides antibodies that bind to 191P4D12(b)-related proteins. Preferred antibodies specifically bind to a 191P4D12(b)-related protein and do not bind (or bind weakly) to peptides or proteins that are not 191P4D12(b)-related proteins under physiological conditions. In this context, examples of physiological conditions include: 1) phosphate buffered saline; 2) Tris-buffered saline containing 25 mM Tris and 150 mM NaCl; or normal saline (0.9% NaCl); 4) animal serum such as human serum; or, 5) a combination of any of 1) through 4); these reactions preferably taking place at pH 7.5, alternatively in a range of pH 7.0 to 8.0, or alternatively in a range of pH 6.5 to 8.5; also, these reactions taking place at a temperature between 4° C. to 37° C. For example, antibodies that bind 191P4D12(b) can bind 191P4D12(b)-related proteins such as the homologs or analogs thereof.
  • 191P4D12(b) antibodies of the invention are particularly useful in cancer (see, e.g., Table I) diagnostic and prognostic assays, and imaging methodologies. Similarly, such antibodies are useful in the treatment, diagnosis, and/or prognosis of other cancers, to the extent 191P4D12(b) is also expressed or overexpressed in these other cancers. Moreover, intracellularly expressed antibodies (e.g., single chain antibodies) are therapeutically useful in treating cancers in which the expression of 191P4D12(b) is involved, such as advanced or metastatic prostate cancers.
  • The invention also provides various immunological assays useful for the detection and quantification of 191P4D12(b) and mutant 191P4D12(b)-related proteins. Such assays can comprise one or more 191P4D12(b) antibodies capable of recognizing and binding a 191P4D12(b)-related protein, as appropriate. These assays are performed within various immunological assay formats well known in the art, including but not limited to various types of radioimmunoassays, enzyme-linked immunosorbent assays (ELISA), enzyme-linked immunofluorescent assays (ELIFA), and the like.
  • Immunological non-antibody assays of the invention also comprise T cell immunogenicity assays (inhibitory or stimulatory) as well as major histocompatibility complex (MHC) binding assays.
  • In addition, immunological imaging methods capable of detecting prostate cancer and other cancers expressing 191P4D12(b) are also provided by the invention, including but not limited to radioscintigraphic imaging methods using labeled 191P4D12(b) antibodies. Such assays are clinically useful in the detection, monitoring, and prognosis of 191P4D12(b) expressing cancers such as prostate cancer.
  • 191P4D12(b) antibodies are also used in methods for purifying a 191P4D12(b)-related protein and for isolating 191P4D12(b) homologues and related molecules. For example, a method of purifying a 191P4D12(b)-related protein comprises incubating a 191P4D12(b) antibody, which has been coupled to a solid matrix, with a lysate or other solution containing a 191P4D12(b)-related protein under conditions that permit the 191P4D12(b) antibody to bind to the 191P4D12(b)-related protein; washing the solid matrix to eliminate impurities; and eluting the 191P4D12(b)-related protein from the coupled antibody. Other uses of 191P4D12(b) antibodies in accordance with the invention include generating anti-idiotypic antibodies that mimic a 191P4D12(b) protein.
  • Various methods for the preparation of antibodies are well known in the art. For example, antibodies can be prepared by immunizing a suitable mammalian host using a 191P4D12(b)-related protein, peptide, or fragment, in isolated or immunoconjugated form (Antibodies: A Laboratory Manual, CSH Press, Eds., Harlow, and Lane (1988); Harlow, Antibodies, Cold Spring Harbor Press, NY (1989)). In addition, fusion proteins of 191P4D12(b) can also be used, such as a 191P4D12(b) GST-fusion protein. In a particular embodiment, a GST fusion protein comprising all or most of the amino acid sequence of FIG. 2 or FIG. 3 is produced, then used as an immunogen to generate appropriate antibodies. In another embodiment, a 191P4D12(b)-related protein is synthesized and used as an immunogen.
  • In addition, naked DNA immunization techniques known in the art are used (with or without purified 191P4D12(b)-related protein or 191P4D12(b) expressing cells) to generate an immune response to the encoded immunogen (for review, see Donnelly et al., 1997, Ann. Rev. Immunol. 15: 617-648).
  • The amino acid sequence of a 191P4D12(b) protein as shown in FIG. 2 or FIG. 3 can be analyzed to select specific regions of the 191P4D12(b) protein for generating antibodies. For example, hydrophobicity and hydrophilicity analyses of a 191P4D12(b) amino acid sequence are used to identify hydrophilic regions in the 191P4D12(b) structure. Regions of a 191P4D12(b) protein that show immunogenic structure, as well as other regions and domains, can readily be identified using various other methods known in the art, such as Chou-Fasman, Garnier-Robson, Kyte-Doolittle, Eisenberg, Karplus-Schultz or Jameson-Wolf analysis. Hydrophilicity profiles can be generated using the method of Hopp, T. P. and Woods, K. R., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828. Hydropathicity profiles can be generated using the method of Kyte, J. and Doolittle, R. F., 1982, J. Mol. Biol. 157:105-132. Percent (%) Accessible Residues profiles can be generated using the method of Janin J., 1979, Nature 277:491-492. Average Flexibility profiles can be generated using the method of Bhaskaran R., Ponnuswamy P. K., 1988, Int. J. Pept. Protein Res. 32:242-255. Beta-turn profiles can be generated using the method of Deleage, G., Roux B., 1987, Protein Engineering 1:289-294. Thus, each region identified by any of these programs or methods is within the scope of the present invention. Methods for the generation of 191P4D12(b) antibodies are further illustrated by way of the examples provided herein. Methods for preparing a protein or polypeptide for use as an immunogen are well known in the art. Also well known in the art are methods for preparing immunogenic conjugates of a protein with a carrier, such as BSA, KLH or other carrier protein. In some circumstances, direct conjugation using, for example, carbodiimide reagents are used; in other instances linking reagents such as those supplied by Pierce Chemical Co., Rockford, Ill., are effective. Administration of a 191P4D12(b) immunogen is often conducted by injection over a suitable time period and with use of a suitable adjuvant, as is understood in the art. During the immunization schedule, titers of antibodies can be taken to determine adequacy of antibody formation.
  • 191P4D12(b) monoclonal antibodies can be produced by various means well known in the art. For example, immortalized cell lines that secrete a desired monoclonal antibody are prepared using the standard hybridoma technology of Kohler and Milstein or modifications that immortalize antibody-producing B cells, as is generally known. Immortalized cell lines that secrete the desired antibodies are screened by immunoassay in which the antigen is a 191P4D12(b)-related protein. When the appropriate immortalized cell culture is identified, the cells can be expanded and antibodies produced either from in vitro cultures or from ascites fluid.
  • The antibodies or fragments of the invention can also be produced, by recombinant means. Regions that bind specifically to the desired regions of a 191P4D12(b) protein can also be produced in the context of chimeric or complementarity-determining region (CDR) grafted antibodies of multiple species origin. Humanized or human 191P4D12(b) antibodies can also be produced, and are preferred for use in therapeutic contexts. Methods for humanizing murine and other non-human antibodies, by substituting one or more of the non-human antibody CDRs for corresponding human antibody sequences, are well known (see for example, Jones et al., 1986, Nature 321: 522-525; Riechmann et al., 1988, Nature 332: 323-327; Verhoeyen et al., 1988, Science 239: 1534-1536). See also, Carter et al., 1993, Proc. Natl. Acad. Sci. USA 89: 4285 and Sims et al., 1993, J. Immunol. 151: 2296.
  • Methods for producing fully human monoclonal antibodies include phage display and transgenic methods (for review, see Vaughan et al., 1998, Nature Biotechnology 16: 535-539). Fully human 191P4D12(b) monoclonal antibodies can be generated using cloning technologies employing large human Ig gene combinatorial libraries (i.e., phage display) (Griffiths and Hoogenboom, Building an in vitro immune system: human antibodies from phage display libraries. In: Protein Engineering of Antibody Molecules for Prophylactic and Therapeutic Applications in Man, Clark, M. (Ed.), Nottingham Academic, pp 45-64 (1993); Burton and Barbas, Human Antibodies from combinatorial libraries. Id., pp 65-82). Fully human 191P4D12(b) monoclonal antibodies can also be produced using transgenic mice engineered to contain human immunoglobulin gene loci as described in PCT Patent Application WO98/24893, Kucherlapati and Jakobovits et al., published Dec. 3, 1997 (see also, Jakobovits, 1998, Exp. Opin. Invest. Drugs 7 (4): 607-614; U.S. Pat. Nos. 6,162,963 issued 19 Dec. 2000; 6,150,584 issued 12 Nov. 2000; and, 6,114,598 issued 5 Sep. 2000). This method avoids the in vitro manipulation required with phage display technology and efficiently produces high affinity authentic human antibodies.
  • Reactivity of 191P4D12(b) antibodies with a 191P4D12(b)-related protein can be established by a number of well known means, including Western blot, immunoprecipitation, ELISA, and FACS analyses using, as appropriate, 191P4D12(b)-related proteins, 191P4D12(b)-expressing cells or extracts thereof. A 191P4D12(b) antibody or fragment thereof can be labeled with a detectable marker or conjugated to a second molecule. Suitable detectable markers include, but are not limited to, a radioisotope, a fluorescent compound, a bioluminescent compound, chemiluminescent compound, a metal chelator or an enzyme. Further, bi-specific antibodies specific for two or more 191P4D12(b) epitopes are generated using methods generally known in the art. Homodimeric antibodies can also be generated by cross-linking techniques known in the art (e.g., Wolff et al., Cancer Res. 53: 2560-2565).
  • V.) 191P4D12(b) Cellular Immune Responses
  • The mechanism by which T cells recognize antigens has been delineated. Efficacious peptide epitope vaccine compositions of the invention induce a therapeutic or prophylactic immune responses in very broad segments of the world-wide population. For an understanding of the value and efficacy of compositions of the invention that induce cellular immune responses, a brief review of immunology-related technology is provided.
  • A complex of an HLA molecule and a peptidic antigen acts as the ligand recognized by HLA-restricted T cells (Buus, S. et al., Cell 47:1071, 1986; Babbitt, B. P. et al., Nature 317:359, 1985; Townsend, A. and Bodmer, H., Annu. Rev. Immunol. 7:601, 1989; Germain, R. N., Annu. Rev. Immunol. 11:403, 1993). Through the study of single amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed peptides, critical residues that correspond to motifs required for specific binding to HLA antigen molecules have been identified and are set forth in Table IV (see also, e.g., Southwood, et al., J. Immunol. 160:3363, 1998; Rammensee, et al., Immunogenetics 41:178, 1995; Rammensee et al., SYFPEITHI, Sette, A. and Sidney, J. Curr. Opin. Immunol. 10:478, 1998; Engelhard, V. H., Curr. Opin. Immunol. 6:13, 1994; Sette, A. and Grey, H. M., Curr. Opin. Immunol. 4:79, 1992; Sinigaglia, F. and Hammer, J. Curr. Biol. 6:52, 1994; Ruppert et al., Cell 74:929-937, 1993; Kondo et al., J. Immunol. 155:4307-4312, 1995; Sidney et al., J. Immunol. 157:3480-3490, 1996; Sidney et al., Human Immunol. 45:79-93, 1996; Sette, A. and Sidney, J. Immunogenetics 1999 November; 50 (3-4):201-12, Review).
  • Furthermore, x-ray crystallographic analyses of HLA-peptide complexes have revealed pockets within the peptide binding cleft/groove of HLA molecules which accommodate, in an allele-specific mode, residues borne by peptide ligands; these residues in turn determine the HLA binding capacity of the peptides in which they are present. (See, e.g., Madden, D. R. Annu. Rev. Immunol. 13:587, 1995; Smith, et al., Immunity 4:203, 1996; Fremont et al., Immunity 8:305, 1998; Stern et al., Structure 2:245, 1994; Jones, E. Y. Curr. Opin. Immunol. 9:75, 1997; Brown, J. H. et al., Nature 364:33, 1993; Guo, H. C. et al., Proc. Natl. Acad. Sci. USA 90:8053, 1993; Guo, H. C. et al., Nature 360:364, 1992; Silver, M. L. et al., Nature 360:367, 1992; Matsumura, M. et al., Science 257:927, 1992; Madden et al., Cell 70:1035, 1992; Fremont, D. H. et al., Science 257:919, 1992; Saper, M. A., Bjorkman, P. J. and Wiley, D. C., J. Mol. Biol. 219:277, 1991.)
  • Accordingly, the definition of class I and class II allele-specific HLA binding motifs, or class I or class II supermotifs allows identification of regions within a protein that are correlated with binding to particular HLA antigen(s).
  • Thus, by a process of HLA motif identification, candidates for epitope-based vaccines have been identified; such candidates can be further evaluated by HLA-peptide binding assays to determine binding affinity and/or the time period of association of the epitope and its corresponding HLA molecule. Additional confirmatory work can be performed to select, amongst these vaccine candidates, epitopes with preferred characteristics in terms of population coverage, and/or immunogenicity.
  • Various strategies can be utilized to evaluate cellular immunogenicity, including:
  • 1) Evaluation of primary T cell cultures from normal individuals (see, e.g., Wentworth, P. A. et al., Mol. Immunol. 32:603, 1995; Celis, E. et al., Proc. Natl. Acad. Sci. USA 91:2105, 1994; Tsai, V. et al., J. Immunol. 158:1796, 1997; Kawashima, I. et al., Human Immunol. 59:1, 1998). This procedure involves the stimulation of peripheral blood lymphocytes (PBL) from normal subjects with a test peptide in the presence of antigen presenting cells in vitro over a period of several weeks. T cells specific for the peptide become activated during this time and are detected using, e.g., a lymphokine- or 51Cr-release assay involving peptide sensitized target cells.
  • 2) Immunization of HLA transgenic mice (see, e.g., Wentworth, P. A. et al., J. Immunol. 26:97, 1996; Wentworth, P. A. et al., Int. Immunol. 8:651, 1996; Alexander, J. et al., J. Immunol. 159:4753, 1997). For example, in such methods peptides in incomplete Freund's adjuvant are administered subcutaneously to HLA transgenic mice. Several weeks following immunization, splenocytes are removed and cultured in vitro in the presence of test peptide for approximately one week. Peptide-specific T cells are detected using, e.g., a 51Cr-release assay involving peptide sensitized target cells and target cells expressing endogenously generated antigen.
  • 3) Demonstration of recall T cell responses from immune individuals who have been either effectively vaccinated and/or from chronically ill patients (see, e.g., Rehermann, B. et al., J. Exp. Med. 181:1047, 1995; Doolan, D. L. et al., Immunity 7:97, 1997; Bertoni, R. et al., J. Clin. Invest. 100:503, 1997; Threlkeld, S. C. et al., J. Immunol. 159:1648, 1997; Diepolder, H. M. et al., J. Virol. 71:6011, 1997). Accordingly, recall responses are detected by culturing PBL from subjects that have been exposed to the antigen due to disease and thus have generated an immune response “naturally”, or from patients who were vaccinated against the antigen. PBL from subjects are cultured in vitro for 1-2 weeks in the presence of test peptide plus antigen presenting cells (APC) to allow activation of “memory” T cells, as compared to “naive” T cells. At the end of the culture period, T cell activity is detected using assays including 51Cr release involving peptide-sensitized targets, T cell proliferation, or lymphokine release.
  • VI.) 191P4D12(b) Transgenic Animals
  • Nucleic acids that encode a 191P4D12(b)-related protein can also be used to generate either transgenic animals or “knock out” animals that, in turn, are useful in the development and screening of therapeutically useful reagents. In accordance with established techniques, cDNA encoding 191P4D12(b) can be used to clone genomic DNA that encodes 191P4D12(b). The cloned genomic sequences can then be used to generate transgenic animals containing cells that express DNA that encode 191P4D12(b). Methods for generating transgenic animals, particularly animals such as mice or rats, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866 issued 12 Apr. 1988, and 4,870,009 issued 26 Sep. 1989. Typically, particular cells would be targeted for 191P4D12(b) transgene incorporation with tissue-specific enhancers.
  • Transgenic animals that include a copy of a transgene encoding 191P4D12(b) can be used to examine the effect of increased expression of DNA that encodes 191P4D12(b). Such animals can be used as tester animals for reagents thought to confer protection from, for example, pathological conditions associated with its overexpression. In accordance with this aspect of the invention, an animal is treated with a reagent and a reduced incidence of a pathological condition, compared to untreated animals that bear the transgene, would indicate a potential therapeutic intervention for the pathological condition.
  • Alternatively, non-human homologues of 191P4D12(b) can be used to construct a 191P4D12(b) “knock out” animal that has a defective or altered gene encoding 191P4D12(b) as a result of homologous recombination between the endogenous gene encoding 191P4D12(b) and altered genomic DNA encoding 191P4D12(b) introduced into an embryonic cell of the animal. For example, cDNA that encodes 191P4D12(b) can be used to clone genomic DNA encoding 191P4D12(b) in accordance with established techniques. A portion of the genomic DNA encoding 191P4D12(b) can be deleted or replaced with another gene, such as a gene encoding a selectable marker that can be used to monitor integration. Typically, several kilobases of unaltered flanking DNA (both at the 5′ and 3′ ends) are included in the vector (see, e.g., Thomas and Capecchi, Cell, 51:503 (1987) for a description of homologous recombination vectors). The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected (see, e.g., Li et al., Cell, 69:915 (1992)). The selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras (see, e.g., Bradley, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, E. J. Robertson, ed. (IRL, Oxford, 1987), pp. 113-152). A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal, and the embryo brought to term to create a “knock out” animal. Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain the homologously recombined DNA. Knock out animals can be characterized, for example, for their ability to defend against certain pathological conditions or for their development of pathological conditions due to absence of a 191P4D12(b) polypeptide.
  • VII.) Methods for the Detection of 191P4D12(b)
  • Another aspect of the present invention relates to methods for detecting 191P4D12(b) polynucleotides and 191P4D12(b)-related proteins, as well as methods for identifying a cell that expresses 191P4D12(b). The expression profile of 191P4D12(b) makes it a diagnostic marker for metastasized disease. Accordingly, the status of 191P4D12(b) gene products provides information useful for predicting a variety of factors including susceptibility to advanced stage disease, rate of progression, and/or tumor aggressiveness. As discussed in detail herein, the status of 191P4D12(b) gene products in patient samples can be analyzed by a variety protocols that are well known in the art including immunohistochemical analysis, the variety of Northern blotting techniques including in situ hybridization, RT-PCR analysis (for example on laser capture micro-dissected samples), Western blot analysis and tissue array analysis.
  • More particularly, the invention provides assays for the detection of 191P4D12(b) polynucleotides in a biological sample, such as serum, bone, prostate, and other tissues, urine, semen, cell preparations, and the like. Detectable 191P4D12(b) polynucleotides include, for example, a 191P4D12(b) gene or fragment thereof, 191P4D12(b) mRNA, alternative splice variant 191P4D12(b) mRNAs, and recombinant DNA or RNA molecules that contain a 191P4D12(b) polynucleotide. A number of methods for amplifying and/or detecting the presence of 191P4D12(b) polynucleotides are well known in the art and can be employed in the practice of this aspect of the invention.
  • In one embodiment, a method for detecting a 191P4D12(b) mRNA in a biological sample comprises producing cDNA from the sample by reverse transcription using at least one primer; amplifying the cDNA so produced using a 191P4D12(b) polynucleotides as sense and antisense primers to amplify 191P4D12(b) cDNAs therein; and detecting the presence of the amplified 191P4D12(b) cDNA. Optionally, the sequence of the amplified 191P4D12(b) cDNA can be determined.
  • In another embodiment, a method of detecting a 191P4D12(b) gene in a biological sample comprises first isolating genomic DNA from the sample; amplifying the isolated genomic DNA using 191P4D12(b) polynucleotides as sense and antisense primers; and detecting the presence of the amplified 191P4D12(b) gene. Any number of appropriate sense and antisense probe combinations can be designed from a 191P4D12(b) nucleotide sequence (see, e.g., FIG. 2) and used for this purpose.
  • The invention also provides assays for detecting the presence of a 191P4D12(b) protein in a tissue or other biological sample such as serum, semen, bone, prostate, urine, cell preparations, and the like. Methods for detecting a 191P4D12(b)-related protein are also well known and include, for example, immunoprecipitation, immunohistochemical analysis, Western blot analysis, molecular binding assays, ELISA, ELIFA and the like. For example, a method of detecting the presence of a 191P4D12(b)-related protein in a biological sample comprises first contacting the sample with a 191P4D12(b) antibody, a 191P4D12(b)-reactive fragment thereof, or a recombinant protein containing an antigen-binding region of a 191P4D12(b) antibody; and then detecting the binding of 191P4D12(b)-related protein in the sample.
  • Methods for identifying a cell that expresses 191P4D12(b) are also within the scope of the invention. In one embodiment, an assay for identifying a cell that expresses a 191P4D12(b) gene comprises detecting the presence of 191P4D12(b) mRNA in the cell. Methods for the detection of particular mRNAs in cells are well known and include, for example, hybridization assays using complementary DNA probes (such as in situ hybridization using labeled 191P4D12(b) riboprobes, Northern blot and related techniques) and various nucleic acid amplification assays (such as RT-PCR using complementary primers specific for 191P4D12(b), and other amplification type detection methods, such as, for example, branched DNA, SISBA, TMA and the like). Alternatively, an assay for identifying a cell that expresses a 191P4D12(b) gene comprises detecting the presence of 191P4D12(b)-related protein in the cell or secreted by the cell. Various methods for the detection of proteins are well known in the art and are employed for the detection of 191P4D12(b)-related proteins and cells that express 191P4D12(b)-related proteins.
  • 191P4D12(b) expression analysis is also useful as a tool for identifying and evaluating agents that modulate 191P4D12(b) gene expression. For example, 191P4D12(b) expression is significantly upregulated in prostate cancer, and is expressed in cancers of the tissues listed in Table I. Identification of a molecule or biological agent that inhibits 191P4D12(b) expression or over-expression in cancer cells is of therapeutic value. For example, such an agent can be identified by using a screen that quantifies 191P4D12(b) expression by RT-PCR, nucleic acid hybridization or antibody binding.
  • VIII.) Methods for Monitoring the Status of 191P4D12(b)-Related Genes and Their Products
  • Oncogenesis is known to be a multistep process where cellular growth becomes progressively dysregulated and cells progress from a normal physiological state to precancerous and then cancerous states (see, e.g., Alers et al., Lab Invest. 77 (5): 437-438 (1997) and Isaacs et al., Cancer Surv. 23: 19-32 (1995)). In this context, examining a biological sample for evidence of dysregulated cell growth (such as aberrant 191P4D12(b) expression in cancers) allows for early detection of such aberrant physiology, before a pathologic state such as cancer has progressed to a stage that therapeutic options are more limited and or the prognosis is worse. In such examinations, the status of 191P4D12(b) in a biological sample of interest can be compared, for example, to the status of 191P4D12(b) in a corresponding normal sample (e.g. a sample from that individual or alternatively another individual that is not affected by a pathology). An alteration in the status of 191P4D12(b) in the biological sample (as compared to the normal sample) provides evidence of dysregulated cellular growth. In addition to using a biological sample that is not affected by a pathology as a normal sample, one can also use a predetermined normative value such as a predetermined normal level of mRNA expression (see, e.g., Grever et al., J. Comp. Neurol. 1996 Dec. 9; 376 (2): 306-14 and U.S. Pat. No. 5,837,501) to compare 191P4D12(b) status in a sample.
  • The term “status” in this context is used according to its art accepted meaning and refers to the condition or state of a gene and its products. Typically, skilled artisans use a number of parameters to evaluate the condition or state of a gene and its products. These include, but are not limited to the location of expressed gene products (including the location of 191P4D12(b) expressing cells) as well as the level, and biological activity of expressed gene products (such as 191P4D12(b) mRNA, polynucleotides and polypeptides). Typically, an alteration in the status of 191P4D12(b) comprises a change in the location of 191P4D12(b) and/or 191P4D12(b) expressing cells and/or an increase in 191P4D12(b) mRNA and/or protein expression.
  • 191P4D12(b) status in a sample can be analyzed by a number of means well known in the art, including without limitation, immunohistochemical analysis, in situ hybridization, RT-PCR analysis on laser capture micro-dissected samples, Western blot analysis, and tissue array analysis. Typical protocols for evaluating the status of a 191P4D12(b) gene and gene products are found, for example in Ausubel et al. eds., 1995, Current Protocols In Molecular Biology, Units 2 (Northern Blotting), 4 (Southern Blotting), 15 (Immunoblotting) and 18 (PCR Analysis). Thus, the status of 191P4D12(b) in a biological sample is evaluated by various methods utilized by skilled artisans including, but not limited to genomic Southern analysis (to examine, for example perturbations in a 191P4D12(b) gene), Northern analysis and/or PCR analysis of 191P4D12(b) mRNA (to examine, for example alterations in the polynucleotide sequences or expression levels of 191P4D12(b) mRNAs), and, Western and/or immunohistochemical analysis (to examine, for example alterations in polypeptide sequences, alterations in polypeptide localization within a sample, alterations in expression levels of 191P4D12(b) proteins and/or associations of 191P4D12(b) proteins with polypeptide binding partners). Detectable 191P4D12(b) polynucleotides include, for example, a 191P4D12(b) gene or fragment thereof, 191P4D12(b) mRNA, alternative splice variants, 191P4D12(b) mRNAs, and recombinant DNA or RNA molecules containing a 191P4D12(b) polynucleotide.
  • The expression profile of 191P4D12(b) makes it a diagnostic marker for local and/or metastasized disease, and provides information on the growth or oncogenic potential of a biological sample. In particular, the status of 191P4D12(b) provides information useful for predicting susceptibility to particular disease stages, progression, and/or tumor aggressiveness. The invention provides methods and assays for determining 191P4D12(b) status and diagnosing cancers that express 191P4D12(b), such as cancers of the tissues listed in Table I. For example, because 191P4D12(b) mRNA is so highly expressed in prostate and other cancers relative to normal prostate tissue, assays that evaluate the levels of 191P4D12(b) mRNA transcripts or proteins in a biological sample can be used to diagnose a disease associated with 191P4D12(b) dysregulation, and can provide prognostic information useful in defining appropriate therapeutic options.
  • The expression status of 191P4D12(b) provides information including the presence, stage and location of dysplastic, precancerous and cancerous cells, predicting susceptibility to various stages of disease, and/or for gauging tumor aggressiveness. Moreover, the expression profile makes it useful as an imaging reagent for metastasized disease. Consequently, an aspect of the invention is directed to the various molecular prognostic and diagnostic methods for examining the status of 191P4D12(b) in biological samples such as those from individuals suffering from, or suspected of suffering from a pathology characterized by dysregulated cellular growth, such as cancer.
  • As described above, the status of 191P4D12(b) in a biological sample can be examined by a number of well-known procedures in the art. For example, the status of 191P4D12(b) in a biological sample taken from a specific location in the body can be examined by evaluating the sample for the presence or absence of 191P4D12(b) expressing cells (e.g. those that express 191P4D12(b) mRNAs or proteins). This examination can provide evidence of dysregulated cellular growth, for example, when 191P4D12(b)-expressing cells are found in a biological sample that does not normally contain such cells (such as a lymph node), because such alterations in the status of 191P4D12(b) in a biological sample are often associated with dysregulated cellular growth. Specifically, one indicator of dysregulated cellular growth is the metastases of cancer cells from an organ of origin (such as the prostate) to a different area of the body (such as a lymph node). In this context, evidence of dysregulated cellular growth is important for example because occult lymph node metastases can be detected in a substantial proportion of patients with prostate cancer, and such metastases are associated with known predictors of disease progression (see, e.g., Murphy et al., Prostate 42 (4): 315-317 (2000); Su et al., Semin. Surg. Oncol. 18 (1): 17-28 (2000) and Freeman et al., J Urol 1995 August 154 (2 Pt 1):474-8).
  • In one aspect, the invention provides methods for monitoring 191P4D12(b) gene products by determining the status of 191P4D12(b) gene products expressed by cells from an individual suspected of having a disease associated with dysregulated cell growth (such as hyperplasia or cancer) and then comparing the status so determined to the status of 191P4D12(b) gene products in a corresponding normal sample. The presence of aberrant 191P4D12(b) gene products in the test sample relative to the normal sample provides an indication of the presence of dysregulated cell growth within the cells of the individual.
  • In another aspect, the invention provides assays useful in determining the presence of cancer in an individual, comprising detecting a significant increase in 191P4D12(b) mRNA or protein expression in a test cell or tissue sample relative to expression levels in the corresponding normal cell or tissue. The presence of 191P4D12(b) mRNA can, for example, be evaluated in tissues including but not limited to those listed in Table I. The presence of significant 191P4D12(b) expression in any of these tissues is useful to indicate the emergence, presence and/or severity of a cancer, since the corresponding normal tissues do not express 191P4D12(b) mRNA or express it at lower levels.
  • In a related embodiment, 191P4D12(b) status is determined at the protein level rather than at the nucleic acid level. For example, such a method comprises determining the level of 191P4D12(b) protein expressed by cells in a test tissue sample and comparing the level so determined to the level of 191P4D12(b) expressed in a corresponding normal sample. In one embodiment, the presence of 191P4D12(b) protein is evaluated, for example, using immunohistochemical methods. 191P4D12(b) antibodies or binding partners capable of detecting 191P4D12(b) protein expression are used in a variety of assay formats well known in the art for this purpose.
  • In a further embodiment, one can evaluate the status of 191P4D12(b) nucleotide and amino acid sequences in a biological sample in order to identify perturbations in the structure of these molecules. These perturbations can include insertions, deletions, substitutions and the like. Such evaluations are useful because perturbations in the nucleotide and amino acid sequences are observed in a large number of proteins associated with a growth dysregulated phenotype (see, e.g., Marrogi et al., 1999, J. Cutan. Pathol. 26 (8):369-378). For example, a mutation in the sequence of 191P4D12(b) may be indicative of the presence or promotion of a tumor. Such assays therefore have diagnostic and predictive value where a mutation in 191P4D12(b) indicates a potential loss of function or increase in tumor growth.
  • A wide variety of assays for observing perturbations in nucleotide and amino acid sequences are well known in the art. For example, the size and structure of nucleic acid or amino acid sequences of 191P4D12(b) gene products are observed by the Northern, Southern, Western, PCR and DNA sequencing protocols discussed herein. In addition, other methods for observing perturbations in nucleotide and amino acid sequences such as single strand conformation polymorphism analysis are well known in the art (see, e.g., U.S. Pat. Nos. 5,382,510 issued 7 Sep. 1999, and 5,952,170 issued 17 Jan. 1995).
  • Additionally, one can examine the methylation status of a 191P4D12(b) gene in a biological sample. Aberrant demethylation and/or hypermethylation of CpG islands in gene 5′ regulatory regions frequently occurs in immortalized and transformed cells, and can result in altered expression of various genes. For example, promoter hypermethylation of the pi-class glutathione S-transferase (a protein expressed in normal prostate but not expressed in >90% of prostate carcinomas) appears to permanently silence transcription of this gene and is the most frequently detected genomic alteration in prostate carcinomas (De Marzo et al., Am. J. Pathol. 155 (6): 1985-1992 (1999)). In addition, this alteration is present in at least 70% of cases of high-grade prostatic intraepithelial neoplasia (PIN) (Brooks et al., Cancer Epidemiol. Biomarkers Prev., 1998, 7:531-536). In another example, expression of the LAGE-I tumor specific gene (which is not expressed in normal prostate but is expressed in 25-50% of prostate cancers) is induced by deoxy-azacytidine in lymphoblastoid cells, suggesting that tumoral expression is due to demethylation (Lethe et al., Int. J. Cancer 76 (6): 903-908 (1998)). A variety of assays for examining methylation status of a gene are well known in the art. For example, one can utilize, in Southern hybridization approaches, methylation-sensitive restriction enzymes that cannot cleave sequences that contain methylated CpG sites to assess the methylation status of CpG islands. In addition, MSP (methylation specific PCR) can rapidly profile the methylation status of all the CpG sites present in a CpG island of a given gene. This procedure involves initial modification of DNA by sodium bisulfite (which will convert all unmethylated cytosines to uracil) followed by amplification using primers specific for methylated versus unmethylated DNA. Protocols involving methylation interference can also be found for example in Current Protocols In Molecular Biology, Unit 12, Frederick M. Ausubel et al. eds., 1995.
  • Gene amplification is an additional method for assessing the status of 191P4D12(b). Gene amplification is measured in a sample directly, for example, by conventional Southern blotting or Northern blotting to quantitate the transcription of mRNA (Thomas, 1980, Proc. Natl. Acad. Sci. USA, 77:5201-5205), dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies are employed that recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn are labeled and the assay carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.
  • Biopsied tissue or peripheral blood can be conveniently assayed for the presence of cancer cells using for example, Northern, dot blot or RT-PCR analysis to detect 191P4D12(b) expression. The presence of RT-PCR amplifiable 191P4D12(b) mRNA provides an indication of the presence of cancer. RT-PCR assays are well known in the art. RT-PCR detection assays for tumor cells in peripheral blood are currently being evaluated for use in the diagnosis and management of a number of human solid tumors. In the prostate cancer field, these include RT-PCR assays for the detection of cells expressing PSA and PSM (Verkaik et al., 1997, Urol. Res. 25:373-384; Ghossein et al., 1995, J. Clin. Oncol. 13:1195-2000; Heston et al., 1995, Clin. Chem. 41:1687-1688).
  • A further aspect of the invention is an assessment of the susceptibility that an individual has for developing cancer. In one embodiment, a method for predicting susceptibility to cancer comprises detecting 191P4D12(b) mRNA or 191P4D12(b) protein in a tissue sample, its presence indicating susceptibility to cancer, wherein the degree of 191P4D12(b) mRNA expression correlates to the degree of susceptibility. In a specific embodiment, the presence of 191P4D12(b) in prostate or other tissue is examined, with the presence of 191P4D12(b) in the sample providing an indication of prostate cancer susceptibility (or the emergence or existence of a prostate tumor). Similarly, one can evaluate the integrity 191P4D12(b) nucleotide and amino acid sequences in a biological sample, in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions and the like. The presence of one or more perturbations in 191P4D12(b) gene products in the sample is an indication of cancer susceptibility (or the emergence or existence of a tumor).
  • The invention also comprises methods for gauging tumor aggressiveness. In one embodiment, a method for gauging aggressiveness of a tumor comprises determining the level of 191P4D12(b) mRNA or 191P4D12(b) protein expressed by tumor cells, comparing the level so determined to the level of 191P4D12(b) mRNA or 191P4D12(b) protein expressed in a corresponding normal tissue taken from the same individual or a normal tissue reference sample, wherein the degree of 191P4D12(b) mRNA or 191P4D12(b) protein expression in the tumor sample relative to the normal sample indicates the degree of aggressiveness. In a specific embodiment, aggressiveness of a tumor is evaluated by determining the extent to which 191P4D12(b) is expressed in the tumor cells, with higher expression levels indicating more aggressive tumors. Another embodiment is the evaluation of the integrity of 191P4D12(b) nucleotide and amino acid sequences in a biological sample, in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions and the like. The presence of one or more perturbations indicates more aggressive tumors.
  • Another embodiment of the invention is directed to methods for observing the progression of a malignancy in an individual over time. In one embodiment, methods for observing the progression of a malignancy in an individual over time comprise determining the level of 191P4D12(b) mRNA or 191P4D12(b) protein expressed by cells in a sample of the tumor, comparing the level so determined to the level of 191P4D12(b) mRNA or 191P4D12(b) protein expressed in an equivalent tissue sample taken from the same individual at a different time, wherein the degree of 191P4D12(b) mRNA or 191P4D12(b) protein expression in the tumor sample over time provides information on the progression of the cancer. In a specific embodiment, the progression of a cancer is evaluated by determining 191P4D12(b) expression in the tumor cells over time, where increased expression over time indicates a progression of the cancer. Also, one can evaluate the integrity 191P4D12(b) nucleotide and amino acid sequences in a biological sample in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions and the like, where the presence of one or more perturbations indicates a progression of the cancer.
  • The above diagnostic approaches can be combined with any one of a wide variety of prognostic and diagnostic protocols known in the art. For example, another embodiment of the invention is directed to methods for observing a coincidence between the expression of 191P4D12(b) gene and 191P4D12(b) gene products (or perturbations in 191P4D12(b) gene and 191P4D12(b) gene products) and a factor that is associated with malignancy, as a means for diagnosing and prognosticating the status of a tissue sample. A wide variety of factors associated with malignancy can be utilized, such as the expression of genes associated with malignancy (e.g. PSA, PSCA and PSM expression for prostate cancer etc.) as well as gross cytological observations (see, e.g., Bocking et al., 1984, Anal. Quant. Cytol. 6 (2):74-88; Epstein, 1995, Hum. Pathol. 26 (2):223-9; Thorson et al., 1998, Mod. Pathol. 11 (6):543-51; Baisden et al., 1999, Am. J. Surg. Pathol. 23 (8):918-24). Methods for observing a coincidence between the expression of 191P4D12(b) gene and 191P4D12(b) gene products (or perturbations in 191P4D12(b) gene and 191P4D12(b) gene products) and another factor that is associated with malignancy are useful, for example, because the presence of a set of specific factors that coincide with disease provides information crucial for diagnosing and prognosticating the status of a tissue sample.
  • In one embodiment, methods for observing a coincidence between the expression of 191P4D12(b) gene and 191P4D12(b) gene products (or perturbations in 191P4D12(b) gene and 191P4D12(b) gene products) and another factor associated with malignancy entails detecting the overexpression of 191P4D12(b) mRNA or protein in a tissue sample, detecting the overexpression of PSA mRNA or protein in a tissue sample (or PSCA or PSM expression), and observing a coincidence of 191P4D12(b) mRNA or protein and PSA mRNA or protein overexpression (or PSCA or PSM expression). In a specific embodiment, the expression of 191P4D12(b) and PSA mRNA in prostate tissue is examined, where the coincidence of 191P4D12(b) and PSA mRNA overexpression in the sample indicates the existence of prostate cancer, prostate cancer susceptibility or the emergence or status of a prostate tumor.
  • Methods for detecting and quantifying the expression of 191P4D12(b) mRNA or protein are described herein, and standard nucleic acid and protein detection and quantification technologies are well known in the art. Standard methods for the detection and quantification of 191P4D12(b) mRNA include in situ hybridization using labeled 191P4D12(b) riboprobes, Northern blot and related techniques using 191P4D12(b) polynucleotide probes, RT-PCR analysis using primers specific for 191P4D12(b), and other amplification type detection methods, such as, for example, branched DNA, SISBA, TMA and the like. In a specific embodiment, semi-quantitative RT-PCR is used to detect and quantify 191P4D12(b) mRNA expression. Any number of primers capable of amplifying 191P4D12(b) can be used for this purpose, including but not limited to the various primer sets specifically described herein. In a specific embodiment, polyclonal or monoclonal antibodies specifically reactive with the wild-type 191P4D12(b) protein can be used in an immunohistochemical assay of biopsied tissue.
  • IX.) Identification of Molecules that Interact with 191P4D12(b)
  • The 191P4D12(b) protein and nucleic acid sequences disclosed herein allow a skilled artisan to identify proteins, small molecules and other agents that interact with 191P4D12(b), as well as pathways activated by 191P4D12(b) via any one of a variety of art accepted protocols. For example, one can utilize one of the so-called interaction trap systems (also referred to as the “two-hybrid assay”). In such systems, molecules interact and reconstitute a transcription factor which directs expression of a reporter gene, whereupon the expression of the reporter gene is assayed. Other systems identify protein-protein interactions in vivo through reconstitution of a eukaryotic transcriptional activator, see, e.g., U.S. Pat. Nos. 5,955,280 issued 21 Sep. 1999, 5,925,523 issued 20 Jul. 1999, 5,846,722 issued 8 Dec. 1998 and 6,004,746 issued 21 Dec. 1999. Algorithms are also available in the art for genome-based predictions of protein function (see, e.g., Marcotte, et al., Nature 402: 4 Nov. 1999, 83-86).
  • Alternatively one can screen peptide libraries to identify molecules that interact with 191P4D12(b) protein sequences. In such methods, peptides that bind to 191P4D12(b) are identified by screening libraries that encode a random or controlled collection of amino acids. Peptides encoded by the libraries are expressed as fusion proteins of bacteriophage coat proteins, the bacteriophage particles are then screened against the 191P4D12(b) protein(s).
  • Accordingly, peptides having a wide variety of uses, such as therapeutic, prognostic or diagnostic reagents, are thus identified without any prior information on the structure of the expected ligand or receptor molecule. Typical peptide libraries and screening methods that can be used to identify molecules that interact with 191P4D12(b) protein sequences are disclosed for example in U.S. Pat. Nos. 5,723,286 issued 3 Mar. 1998 and 5,733,731 issued 31 Mar. 1998.
  • Alternatively, cell lines that express 191P4D12(b) are used to identify protein-protein interactions mediated by 191P4D12(b). Such interactions can be examined using immunoprecipitation techniques (see, e.g., Hamilton B. J., et al. Biochem. Biophys. Res. Commun. 1999, 261:646-51). 191P4D12(b) protein can be immunoprecipitated from 191P4D12(b)-expressing cell lines using anti-191P4D12(b) antibodies. Alternatively, antibodies against His-tag can be used in a cell line engineered to express fusions of 191P4D12(b) and a His-tag (vectors mentioned above). The immunoprecipitated complex can be examined for protein association by procedures such as Western blotting, 35S-methionine labeling of proteins, protein microsequencing, silver staining and two-dimensional gel electrophoresis.
  • Small molecules and ligands that interact with 191P4D12(b) can be identified through related embodiments of such screening assays. For example, small molecules can be identified that interfere with protein function, including molecules that interfere with 191P4D12(b)'s ability to mediate phosphorylation and de-phosphorylation, interaction with DNA or RNA molecules as an indication of regulation of cell cycles, second messenger signaling or tumorigenesis. Similarly, small molecules that modulate 191P4D12(b)-related ion channel, protein pump, or cell communication functions are identified and used to treat patients that have a cancer that expresses 191P4D12(b) (see, e.g., Hille, B., Ionic Channels of Excitable Membranes 2nd Ed., Sinauer Assoc., Sunderland, Mass., 1992). Moreover, ligands that regulate 191P4D12(b) function can be identified based on their ability to bind 191P4D12(b) and activate a reporter construct. Typical methods are discussed for example in U.S. Pat. No. 5,928,868 issued 27 Jul. 1999, and include methods for forming hybrid ligands in which at least one ligand is a small molecule. In an illustrative embodiment, cells engineered to express a fusion protein of 191P4D12(b) and a DNA-binding protein are used to co-express a fusion protein of a hybrid ligand/small molecule and a cDNA library transcriptional activator protein. The cells further contain a reporter gene, the expression of which is conditioned on the proximity of the first and second fusion proteins to each other, an event that occurs only if the hybrid ligand binds to target sites on both hybrid proteins. Those cells that express the reporter gene are selected and the unknown small molecule or the unknown ligand is identified. This method provides a means of identifying modulators, which activate or inhibit 191P4D12(b).
  • An embodiment of this invention comprises a method of screening for a molecule that interacts with a 191P4D12(b) amino acid sequence shown in FIG. 2 or FIG. 3, comprising the steps of contacting a population of molecules with a 191P4D12(b) amino acid sequence, allowing the population of molecules and the 191P4D12(b) amino acid sequence to interact under conditions that facilitate an interaction, determining the presence of a molecule that interacts with the 191P4D12(b) amino acid sequence, and then separating molecules that do not interact with the 191P4D12(b) amino acid sequence from molecules that do. In a specific embodiment, the method further comprises purifying, characterizing and identifying a molecule that interacts with the 191P4D12(b) amino acid sequence. The identified molecule can be used to modulate a function performed by 191P4D12(b). In a preferred embodiment, the 191P4D12(b) amino acid sequence is contacted with a library of peptides.
  • X.) Therapeutic Methods and Compositions
  • The identification of 191P4D12(b) as a protein that is normally expressed in a restricted set of tissues, but which is also expressed in cancers such as those listed in Table I, opens a number of therapeutic approaches to the treatment of such cancers.
  • Of note, targeted antitumor therapies have been useful even when the targeted protein is expressed on normal tissues, even vital normal organ tissues. A vital organ is one that is necessary to sustain life, such as the heart or colon. A non-vital organ is one that can be removed whereupon the individual is still able to survive. Examples of non-vital organs are ovary, breast, and prostate.
  • For example, Herceptin® is an FDA approved pharmaceutical that has as its active ingredient an antibody which is immunoreactive with the protein variously known as HER2, HER2/neu, and erb-b-2. It is marketed by Genentech and has been a commercially successful antitumor agent. Herceptin sales reached almost $400 million in 2002. Herceptin is a treatment for HER2 positive metastatic breast cancer. However, the expression of HER2 is not limited to such tumors. The same protein is expressed in a number of normal tissues. In particular, it is known that HER2/neu is present in normal kidney and heart, thus these tissues are present in all human recipients of Herceptin. The presence of HER2/neu in normal kidney is also confirmed by Latif, Z., et al., B.J.U. International (2002) 89:5-9. As shown in this article (which evaluated whether renal cell carcinoma should be a preferred indication for anti-HER2 antibodies such as Herceptin) both protein and mRNA are produced in benign renal tissues. Notably, HER2/neu protein was strongly overexpressed in benign renal tissue.
  • Despite the fact that HER2/neu is expressed in such vital tissues as heart and kidney, Herceptin is a very useful, FDA approved, and commercially successful drug. The effect of Herceptin on cardiac tissue, i.e., “cardiotoxicity,” has merely been a side effect to treatment. When patients were treated with Herceptin alone, significant cardiotoxicity occurred in a very low percentage of patients.
  • Of particular note, although kidney tissue is indicated to exhibit normal expression, possibly even higher expression than cardiac tissue, kidney has no appreciable Herceptin side effect whatsoever. Moreover, of the diverse array of normal tissues in which HER2 is expressed, there is very little occurrence of any side effect. Only cardiac tissue has manifested any appreciable side effect at all. A tissue such as kidney, where HER2/neu expression is especially notable, has not been the basis for any side effect.
  • Furthermore, favorable therapeutic effects have been found for antitumor therapies that target epidermal growth factor receptor (EGFR). EGFR is also expressed in numerous normal tissues. There have been very limited side effects in normal tissues following use of anti-EGFR therapeutics.
  • Thus, expression of a target protein in normal tissue, even vital normal tissue, does not defeat the utility of a targeting agent for the protein as a therapeutic for certain tumors in which the protein is also overexpressed.
  • Accordingly, therapeutic approaches that inhibit the activity of a 191P4D12(b) protein are useful for patients suffering from a cancer that expresses 191P4D12(b). These therapeutic approaches generally fall into two classes. One class comprises various methods for inhibiting the binding or association of a 191P4D12(b) protein with its binding partner or with other proteins. Another class comprises a variety of methods for inhibiting the transcription of a 191P4D12(b) gene or translation of 191P4D12(b) mRNA.
  • X.A.) Anti-Cancer Vaccines
  • The invention provides cancer vaccines comprising a 191P4D12(b)-related protein or 191P4D12(b)-related nucleic acid. In view of the expression of 191P4D12(b), cancer vaccines prevent and/or treat 191P4D12(b)-expressing cancers with minimal or no effects on non-target tissues. The use of a tumor antigen in a vaccine that generates humoral and/or cell-mediated immune responses as anti-cancer therapy is well known in the art and has been employed in prostate cancer using human PSMA and rodent PAP immunogens (Hodge et al., 1995, Int. J. Cancer 63:231-237; Fong et al., 1997, J. Immunol. 159:3113-3117).
  • Such methods can be readily practiced by employing a 191P4D12(b)-related protein, or a 191P4D12(b)-encoding nucleic acid molecule and recombinant vectors capable of expressing and presenting the 191P4D12(b) immunogen (which typically comprises a number of antibody or T cell epitopes). Skilled artisans understand that a wide variety of vaccine systems for delivery of immunoreactive epitopes are known in the art (see, e.g., Heryln et al., Ann Med 1999 February 31 (1):66-78; Maruyama et al., Cancer Immunol Immunother 2000 June 49 (3):123-32) Briefly, such methods of generating an immune response (e.g. humoral and/or cell-mediated) in a mammal, comprise the steps of: exposing the mammal's immune system to an immunoreactive epitope (e.g. an epitope present in a 191P4D12(b) protein shown in FIG. 3 or analog or homolog thereof) so that the mammal generates an immune response that is specific for that epitope (e.g. generates antibodies that specifically recognize that epitope). In a preferred method, a 191P4D12(b) immunogen contains a biological motif, see e.g., Tables VIII-XXI and XXII-XLIX, or a peptide of a size range from 191P4D12(b) indicated in FIG. 5, FIG. 6, FIG. 7, FIG. 8, and FIG. 9.
  • The entire 191P4D12(b) protein, immunogenic regions or epitopes thereof can be combined and delivered by various means. Such vaccine compositions can include, for example, lipopeptides (e.g., Vitiello, A. et al., J. Clin. Invest. 95:341, 1995), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) (“PLG”) microspheres (see, e.g., Eldridge, et al., Molec. Immunol. 28:287-294, 1991: Alonso et al., Vaccine 12:299-306, 1994; Jones et al., Vaccine 13:675-681, 1995), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi et al., Nature 344:873-875, 1990; Hu et al., Clin Exp Immunol. 113:235-243, 1998), multiple antigen peptide systems (MAPs) (see e.g., Tam, J. P., Proc. Natl. Acad. Sci. U.S.A. 85:5409-5413, 1988; Tam, J. P., J. Immunol. Methods 196:17-32, 1996), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, M. E. et al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 379, 1996; Chakrabarti, S. et al., Nature 320:535, 1986; Hu, S. L. et al., Nature 320:537, 1986; Kieny, M.-P. et al., AIDS Bio/Technology 4:790, 1986; Top, F. H. et al., J. Infect. Dis. 124:148, 1971; Chanda, P. K. et al., Virology 175:535, 1990), particles of viral or synthetic origin (e.g., Kofler, N. et al., J. Immunol. Methods. 192:25, 1996; Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993; Falo, L. D., Jr. et al., Nature Med. 7:649, 1995), adjuvants (Warren, H. S., Vogel, F. R., and Chedid, L. A. Annu. Rev. Immunol. 4:369, 1986; Gupta, R. K. et al., Vaccine 11:293, 1993), liposomes (Reddy, R. et al., J. Immunol. 148:1585, 1992; Rock, K. L., Immunol. Today 17:131, 1996), or, naked or particle absorbed cDNA (Ulmer, J. B. et al., Science 259:1745, 1993; Robinson, H. L., Hunt, L. A., and Webster, R. G., Vaccine 11:957, 1993; Shiver, J. W. et al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 423, 1996; Cease, K. B., and Berzofsky, J. A., Annu. Rev. Immunol. 12:923, 1994 and Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993). Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Mass.) may also be used.
  • In patients with 191P4D12(b)-associated cancer, the vaccine compositions of the invention can also be used in conjunction with other treatments used for cancer, e.g., surgery, chemotherapy, drug therapies, radiation therapies, etc. including use in combination with immune adjuvants such as IL-2, IL-12, GM-CSF, and the like.
  • Cellular Vaccines:
  • CTL epitopes can be determined using specific algorithms to identify peptides within 191P4D12(b) protein that bind corresponding HLA alleles (see e.g., Table IV; Epimer™ and Epimatrix™, Brown University, and BIMAS. In a preferred embodiment, a 191P4D12(b) immunogen contains one or more amino acid sequences identified using techniques well known in the art, such as the sequences shown in Tables VIII-XXI and XXII-XLIX or a peptide of 8, 9, 10 or 11 amino acids specified by an HLA Class I motif/supermotif (e.g., Table IV (A), Table IV (D), or Table IV (E)) and/or a peptide of at least 9 amino acids that comprises an HLA Class II motif/supermotif (e.g., Table IV (B) or Table IV (C)). As is appreciated in the art, the HLA Class I binding groove is essentially closed ended so that peptides of only a particular size range can fit into the groove and be bound, generally HLA Class I epitopes are 8, 9, 10, or 11 amino acids long. In contrast, the HLA Class II binding groove is essentially open ended; therefore a peptide of about 9 or more amino acids can be bound by an HLA Class II molecule. Due to the binding groove differences between HLA Class I and II, HLA Class I motifs are length specific, i.e., position two of a Class I motif is the second amino acid in an amino to carboxyl direction of the peptide. The amino acid positions in a Class II motif are relative only to each other, not the overall peptide, i.e., additional amino acids can be attached to the amino and/or carboxyl termini of a motif-bearing sequence. HLA Class II epitopes are often 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 amino acids long, or longer than 25 amino acids.
  • Antibody-Based Vaccines
  • A wide variety of methods for generating an immune response in a mammal are known in the art (for example as the first step in the generation of hybridomas). Methods of generating an immune response in a mammal comprise exposing the mammal's immune system to an immunogenic epitope on a protein (e.g. a 191P4D12(b) protein) so that an immune response is generated. A typical embodiment consists of a method for generating an immune response to 191P4D12(b) in a host, by contacting the host with a sufficient amount of at least one 191P4D12(b) B cell or cytotoxic T-cell epitope or analog thereof; and at least one periodic interval thereafter re-contacting the host with the 191P4D12(b) B cell or cytotoxic T-cell epitope or analog thereof. A specific embodiment consists of a method of generating an immune response against a 191P4D12(b)-related protein or a man-made multiepitopic peptide comprising: administering 191P4D12(b) immunogen (e.g. a 191P4D12(b) protein or a peptide fragment thereof, a 191P4D12(b) fusion protein or analog etc.) in a vaccine preparation to a human or another mammal. Typically, such vaccine preparations further contain a suitable adjuvant (see, e.g., U.S. Pat. No. 6,146,635) or a universal helper epitope such as a PADRE™ peptide (Epimmune Inc., San Diego, Calif.; see, e.g., Alexander et al., J. Immunol. 2000 164 (3); 164 (3): 1625-1633; Alexander et al., Immunity 1994 1 (9): 751-761 and Alexander et al., Immunol. Res. 1998 18 (2): 79-92). An alternative method comprises generating an immune response in an individual against a 191P4D12(b) immunogen by: administering in vivo to muscle or skin of the individual's body a DNA molecule that comprises a DNA sequence that encodes a 191P4D12(b) immunogen, the DNA sequence operatively linked to regulatory sequences which control the expression of the DNA sequence; wherein the DNA molecule is taken up by cells, the DNA sequence is expressed in the cells and an immune response is generated against the immunogen (see, e.g., U.S. Pat. No. 5,962,428). Optionally a genetic vaccine facilitator such as anionic lipids; saponins; lectins; estrogenic compounds; hydroxylated lower alkyls; dimethyl sulfoxide; and urea is also administered. In addition, an antiidiotypic antibody can be administered that mimics 191P4D12(b), in order to generate a response to the target antigen.
  • Nucleic Acid Vaccines:
  • Vaccine compositions of the invention include nucleic acid-mediated modalities. DNA or RNA that encode protein(s) of the invention can be administered to a patient. Genetic immunization methods can be employed to generate prophylactic or therapeutic humoral and cellular immune responses directed against cancer cells expressing 191P4D12(b). Constructs comprising DNA encoding a 191P4D12(b)-related protein/immunogen and appropriate regulatory sequences can be injected directly into muscle or skin of an individual, such that the cells of the muscle or skin take-up the construct and express the encoded 191P4D12(b) protein/immunogen. Alternatively, a vaccine comprises a 191P4D12(b)-related protein. Expression of the 191P4D12(b)-related protein immunogen results in the generation of prophylactic or therapeutic humoral and cellular immunity against cells that bear a 191P4D12(b) protein. Various prophylactic and therapeutic genetic immunization techniques known in the art can be used (for review, see information and references published at Internet address genweb.com). Nucleic acid-based delivery is described, for instance, in Wolff et. al., Science 247:1465 (1990) as well as U.S. Pat. Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720. Examples of DNA-based delivery technologies include “naked DNA”, facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated (“gene gun”) or pressure-mediated delivery (see, e.g., U.S. Pat. No. 5,922,687).
  • For therapeutic or prophylactic immunization purposes, proteins of the invention can be expressed via viral or bacterial vectors. Various viral gene delivery systems that can be used in the practice of the invention include, but are not limited to, vaccinia, fowlpox, canarypox, adenovirus, influenza, poliovirus, adeno-associated virus, lentivirus, and sindbis virus (see, e.g., Restifo, 1996, Curr. Opin. Immunol. 8:658-663; Tsang et al. J. Natl. Cancer Inst. 87:982-990 (1995)). Non-viral delivery systems can also be employed by introducing naked DNA encoding a 191P4D12(b)-related protein into the patient (e.g., intramuscularly or intradermally) to induce an anti-tumor response.
  • Vaccinia virus is used, for example, as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into a host, the recombinant vaccinia virus expresses the protein immunogenic peptide, and thereby elicits a host immune response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Pat. No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al., Nature 351:456-460 (1991). A wide variety of other vectors useful for therapeutic administration or immunization of the peptides of the invention, e.g. adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein.
  • Thus, gene delivery systems are used to deliver a 191P4D12(b)-related nucleic acid molecule. In one embodiment, the full-length human 191P4D12(b) cDNA is employed. In another embodiment, 191P4D12(b) nucleic acid molecules encoding specific cytotoxic T lymphocyte (CTL) and/or antibody epitopes are employed.
  • Ex Vivo Vaccines
  • Various ex vivo strategies can also be employed to generate an immune response. One approach involves the use of antigen presenting cells (APCs) such as dendritic cells (DC) to present 191P4D12(b) antigen to a patient's immune system. Dendritic cells express MHC class I and II molecules, B7 co-stimulator, and IL-12, and are thus highly specialized antigen presenting cells. In prostate cancer, autologous dendritic cells pulsed with peptides of the prostate-specific membrane antigen (PSMA) are being used in a Phase I clinical trial to stimulate prostate cancer patients' immune systems (Tjoa et al., 1996, Prostate 28:65-69; Murphy et al., 1996, Prostate 29:371-380). Thus, dendritic cells can be used to present 191P4D12(b) peptides to T cells in the context of MHC class I or II molecules. In one embodiment, autologous dendritic cells are pulsed with 191P4D12(b) peptides capable of binding to MHC class I and/or class II molecules. In another embodiment, dendritic cells are pulsed with the complete 191P4D12(b) protein. Yet another embodiment involves engineering the overexpression of a 191P4D12(b) gene in dendritic cells using various implementing vectors known in the art, such as adenovirus (Arthur et al., 1997, Cancer Gene Ther. 4:17-25), retrovirus (Henderson et al., 1996, Cancer Res. 56:3763-3770), lentivirus, adeno-associated virus, DNA transfection (Ribas et al., 1997, Cancer Res. 57:2865-2869), or tumor-derived RNA transfection (Ashley et al., 1997, J. Exp. Med. 186:1177-1182). Cells that express 191P4D12(b) can also be engineered to express immune modulators, such as GM-CSF, and used as immunizing agents.
  • X.B.) 191P4D12(b) as a Target for Antibody-Based Therapy
  • 191P4D12(b) is an attractive target for antibody-based therapeutic strategies. A number of antibody strategies are known in the art for targeting both extracellular and intracellular molecules (see, e.g., complement and ADCC mediated killing as well as the use of intrabodies). Because 191P4D12(b) is expressed by cancer cells of various lineages relative to corresponding normal cells, systemic administration of 191P4D12(b)-immunoreactive compositions are prepared that exhibit excellent sensitivity without toxic, non-specific and/or non-target effects caused by binding of the immunoreactive composition to non-target organs and tissues. Antibodies specifically reactive with domains of 191P4D12(b) are useful to treat 191P4D12(b)-expressing cancers systemically, either as conjugates with a toxin or therapeutic agent, or as naked antibodies capable of inhibiting cell proliferation or function.
  • 191P4D12(b) antibodies can be introduced into a patient such that the antibody binds to 191P4D12(b) and modulates a function, such as an interaction with a binding partner, and consequently mediates destruction of the tumor cells and/or inhibits the growth of the tumor cells. Mechanisms by which such antibodies exert a therapeutic effect can include complement-mediated cytolysis, antibody-dependent cellular cytotoxicity, modulation of the physiological function of 191P4D12(b), inhibition of ligand binding or signal transduction pathways, modulation of tumor cell differentiation, alteration of tumor angiogenesis factor profiles, and/or apoptosis.
  • Those skilled in the art understand that antibodies can be used to specifically target and bind immunogenic molecules such as an immunogenic region of a 191P4D12(b) sequence shown in FIG. 2 or FIG. 3. In addition, skilled artisans understand that it is routine to conjugate antibodies to cytotoxic agents (see, e.g., Slevers et al. Blood 93:11 3678-3684 (Jun. 1, 1999)). When cytotoxic and/or therapeutic agents are delivered directly to cells, such as by conjugating them to antibodies specific for a molecule expressed by that cell (e.g. 191P4D12(b)), the cytotoxic agent will exert its known biological effect (i.e. cytotoxicity) on those cells.
  • A wide variety of compositions and methods for using antibody-cytotoxic agent conjugates to kill cells are known in the art. In the context of cancers, typical methods entail administering to an animal having a tumor a biologically effective amount of a conjugate comprising a selected cytotoxic and/or therapeutic agent linked to a targeting agent (e.g. an anti-191P4D12(b) antibody) that binds to a marker (e.g. 191P4D12(b)) expressed, accessible to binding or localized on the cell surfaces. A typical embodiment is a method of delivering a cytotoxic and/or therapeutic agent to a cell expressing 191P4D12(b), comprising conjugating the cytotoxic agent to an antibody that immunospecifically binds to a 191P4D12(b) epitope, and, exposing the cell to the antibody-agent conjugate. Another illustrative embodiment is a method of treating an individual suspected of suffering from metastasized cancer, comprising a step of administering parenterally to said individual a pharmaceutical composition comprising a therapeutically effective amount of an antibody conjugated to a cytotoxic and/or therapeutic agent.
  • Cancer immunotherapy using anti-191P4D12(b) antibodies can be done in accordance with various approaches that have been successfully employed in the treatment of other types of cancer, including but not limited to colon cancer (Arlen et al., 1998, Crit. Rev. Immunol. 18:133-138), multiple myeloma (Ozaki et al., 1997, Blood 90:3179-3186, Tsunenari et al., 1997, Blood 90:2437-2444), gastric cancer (Kasprzyk et al., 1992, Cancer Res. 52:2771-2776), B-cell lymphoma (Funakoshi et al., 1996, J. Immunother. Emphasis Tumor Immunol. 19:93-101), leukemia (Zhong et al., 1996, Leuk. Res. 20:581-589), colorectal cancer (Moun et al., 1994, Cancer Res. 54:6160-6166; Velders et al., 1995, Cancer Res. 55:4398-4403), and breast cancer (Shepard et al., 1991, J. Clin. Immunol. 11:117-127). Some therapeutic approaches involve conjugation of naked antibody to a toxin or radioisotope, such as the conjugation of Y91 or I131 to anti-CD20 antibodies (e.g., Zevalin™, IDEC Pharmaceuticals Corp. or Bexxar™, Coulter Pharmaceuticals), while others involve co-administration of antibodies and other therapeutic agents, such as Herceptin™ (trastuzumab) with paclitaxel (Genentech, Inc.). The antibodies can be conjugated to a therapeutic agent. To treat prostate cancer, for example, 191P4D12(b) antibodies can be administered in conjunction with radiation, chemotherapy or hormone ablation. Also, antibodies can be conjugated to a toxin such as calicheamicin (e.g., Mylotarg™, Wyeth-Ayerst, Madison, N.J., a recombinant humanized IgG4 kappa antibody conjugated to antitumor antibiotic calicheamicin) or a maytansinoid (e.g., taxane-based Tumor-Activated Prodrug, TAP, platform, ImmunoGen, Cambridge, Mass., also see e.g., U.S. Pat. No. 5,416,064).
  • Although 191P4D12(b) antibody therapy is useful for all stages of cancer, antibody therapy can be particularly appropriate in advanced or metastatic cancers. Treatment with the antibody therapy of the invention is indicated for patients who have received one or more rounds of chemotherapy. Alternatively, antibody therapy of the invention is combined with a chemotherapeutic or radiation regimen for patients who have not received chemotherapeutic treatment. Additionally, antibody therapy can enable the use of reduced dosages of concomitant chemotherapy, particularly for patients who do not tolerate the toxicity of the chemotherapeutic agent very well. Fan et al. (Cancer Res. 53:4637-4642, 1993), Prewett et al. (International J. of Onco. 9:217-224, 1996), and Hancock et al. (Cancer Res. 51:4575-4580, 1991) describe the use of various antibodies together with chemotherapeutic agents.
  • Although 191P4D12(b) antibody therapy is useful for all stages of cancer, antibody therapy can be particularly appropriate in advanced or metastatic cancers. Treatment with the antibody therapy of the invention is indicated for patients who have received one or more rounds of chemotherapy. Alternatively, antibody therapy of the invention is combined with a chemotherapeutic or radiation regimen for patients who have not received chemotherapeutic treatment. Additionally, antibody therapy can enable the use of reduced dosages of concomitant chemotherapy, particularly for patients who do not tolerate the toxicity of the chemotherapeutic agent very well.
  • Cancer patients can be evaluated for the presence and level of 191P4D12(b) expression, preferably using immunohistochemical assessments of tumor tissue, quantitative 191P4D12(b) imaging, or other techniques that reliably indicate the presence and degree of 191P4D12(b) expression. Immunohistochemical analysis of tumor biopsies or surgical specimens is preferred for this purpose. Methods for immunohistochemical analysis of tumor tissues are well known in the art.
  • Anti-191P4D12(b) monoclonal antibodies that treat prostate and other cancers include those that initiate a potent immune response against the tumor or those that are directly cytotoxic. In this regard, anti-191P4D12(b) monoclonal antibodies (mAbs) can elicit tumor cell lysis by either complement-mediated or antibody-dependent cell cytotoxicity (ADCC) mechanisms, both of which require an intact Fc portion of the immunoglobulin molecule for interaction with effector cell Fc receptor sites on complement proteins. In addition, anti-191P4D12(b) mAbs that exert a direct biological effect on tumor growth are useful to treat cancers that express 191P4D12(b). Mechanisms by which directly cytotoxic mAbs act include: inhibition of cell growth, modulation of cellular differentiation, modulation of tumor angiogenesis factor profiles, and the induction of apoptosis. The mechanism(s) by which a particular anti-191P4D12(b) mAb exerts an anti-tumor effect is evaluated using any number of in vitro assays that evaluate cell death such as ADCC, ADMMC, complement-mediated cell lysis, and so forth, as is generally known in the art.
  • In some patients, the use of murine or other non-human monoclonal antibodies, or human/mouse chimeric mAbs can induce moderate to strong immune responses against the non-human antibody. This can result in clearance of the antibody from circulation and reduced efficacy. In the most severe cases, such an immune response can lead to the extensive formation of immune complexes which, potentially, can cause renal failure. Accordingly, preferred monoclonal antibodies used in the therapeutic methods of the invention are those that are either fully human or humanized and that bind specifically to the target 191P4D12(b) antigen with high affinity but exhibit low or no antigenicity in the patient.
  • Therapeutic methods of the invention contemplate the administration of single anti-191P4D12(b) mAbs as well as combinations, or cocktails, of different mAbs. Such mAb cocktails can have certain advantages inasmuch as they contain mAbs that target different epitopes, exploit different effector mechanisms or combine directly cytotoxic mAbs with mAbs that rely on immune effector functionality. Such mAbs in combination can exhibit synergistic therapeutic effects. In addition, anti-191P4D12(b) mAbs can be administered concomitantly with other therapeutic modalities, including but not limited to various chemotherapeutic agents, androgen-blockers, immune modulators (e.g., IL-2, GM-CSF), surgery or radiation. The anti-191P4D12(b) mAbs are administered in their “naked” or unconjugated form, or can have a therapeutic agent(s) conjugated to them.
  • Anti-191P4D12(b) antibody formulations are administered via any route capable of delivering the antibodies to a tumor cell. Routes of administration include, but are not limited to, intravenous, intraperitoneal, intramuscular, intratumor, intradermal, and the like. Treatment generally involves repeated administration of the anti-191P4D12(b) antibody preparation, via an acceptable route of administration such as intravenous injection (IV), typically at a dose in the range of about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25 mg/kg body weight. In general, doses in the range of 10-1000 mg mAb per week are effective and well tolerated.
  • Based on clinical experience with the Herceptin™ mAb in the treatment of metastatic breast cancer, an initial loading dose of approximately 4 mg/kg patient body weight IV, followed by weekly doses of about 2 mg/kg IV of the anti-191P4D12(b) mAb preparation represents an acceptable dosing regimen. Preferably, the initial loading dose is administered as a 90-minute or longer infusion. The periodic maintenance dose is administered as a 30 minute or longer infusion, provided the initial dose was well tolerated. As appreciated by those of skill in the art, various factors can influence the ideal dose regimen in a particular case. Such factors include, for example, the binding affinity and half life of the Ab or mAbs used, the degree of 191P4D12(b) expression in the patient, the extent of circulating shed 191P4D12(b) antigen, the desired steady-state antibody concentration level, frequency of treatment, and the influence of chemotherapeutic or other agents used in combination with the treatment method of the invention, as well as the health status of a particular patient.
  • Optionally, patients should be evaluated for the levels of 191P4D12(b) in a given sample (e.g. the levels of circulating 191P4D12(b) antigen and/or 191P4D12(b) expressing cells) in order to assist in the determination of the most effective dosing regimen, etc. Such evaluations are also used for monitoring purposes throughout therapy, and are useful to gauge therapeutic success in combination with the evaluation of other parameters (for example, urine cytology and/or ImmunoCyt levels in bladder cancer therapy, or by analogy, serum PSA levels in prostate cancer therapy).
  • Anti-idiotypic anti-191P4D12(b) antibodies can also be used in anti-cancer therapy as a vaccine for inducing an immune response to cells expressing a 191P4D12(b)-related protein. In particular, the generation of anti-idiotypic antibodies is well known in the art; this methodology can readily be adapted to generate anti-idiotypic anti-191P4D12(b) antibodies that mimic an epitope on a 191P4D12(b)-related protein (see, for example, Wagner et al., 1997, Hybridoma 16: 33-40; Foon et al., 1995, J. Clin. Invest. 96:334-342; Herlyn et al., 1996, Cancer Immunol. Immunother. 43:65-76). Such an anti-idiotypic antibody can be used in cancer vaccine strategies.
  • X.C.) 191P4D12(b) as a Target for Cellular Immune Responses
  • Vaccines and methods of preparing vaccines that contain an immunogenically effective amount of one or more HLA-binding peptides as described herein are further embodiments of the invention. Furthermore, vaccines in accordance with the invention encompass compositions of one or more of the claimed peptides. A peptide can be present in a vaccine individually. Alternatively, the peptide can exist as a homopolymer comprising multiple copies of the same peptide, or as a heteropolymer of various peptides. Polymers have the advantage of increased immunological reaction and, where different peptide epitopes are used to make up the polymer, the additional ability to induce antibodies and/or CTLs that react with different antigenic determinants of the pathogenic organism or tumor-related peptide targeted for an immune response. The composition can be a naturally occurring region of an antigen or can be prepared, e.g., recombinantly or by chemical synthesis.
  • Carriers that can be used with vaccines of the invention are well known in the art, and include, e.g., thyroglobulin, albumins such as human serum albumin, tetanus toxoid, polyamino acids such as poly L-lysine, poly L-glutamic acid, influenza, hepatitis B virus core protein, and the like. The vaccines can contain a physiologically tolerable (i.e., acceptable) diluent such as water, or saline, preferably phosphate buffered saline. The vaccines also typically include an adjuvant. Adjuvants such as incomplete Freund's adjuvant, aluminum phosphate, aluminum hydroxide, or alum are examples of materials well known in the art. Additionally, as disclosed herein, CTL responses can be primed by conjugating peptides of the invention to lipids, such as tripalmitoyl-S-glycerylcysteinlyseryl-serine (P3CSS). Moreover, an adjuvant such as a synthetic cytosine-phosphorothiolated-guanine-containing (CpG) oligonucleotides has been found to increase CTL responses 10- to 100-fold. (see, e.g. Davila and Celis, J. Immunol. 165:539-547 (2000))
  • Upon immunization with a peptide composition in accordance with the invention, via injection, aerosol, oral, transdermal, transmucosal, intrapleural, intrathecal, or other suitable routes, the immune system of the host responds to the vaccine by producing large amounts of CTLs and/or HTLs specific for the desired antigen. Consequently, the host becomes at least partially immune to later development of cells that express or overexpress 191P4D12(b) antigen, or derives at least some therapeutic benefit when the antigen was tumor-associated.
  • In some embodiments, it may be desirable to combine the class I peptide components with components that induce or facilitate neutralizing antibody and or helper T cell responses directed to the target antigen. A preferred embodiment of such a composition comprises class I and class II epitopes in accordance with the invention. An alternative embodiment of such a composition comprises a class I and/or class II epitope in accordance with the invention, along with a cross reactive HTL epitope such as PADRE™ (Epimmune, San Diego, Calif.) molecule (described e.g., in U.S. Pat. No. 5,736,142).
  • A vaccine of the invention can also include antigen-presenting cells (APC), such as dendritic cells (DC), as a vehicle to present peptides of the invention. Vaccine compositions can be created in vitro, following dendritic cell mobilization and harvesting, whereby loading of dendritic cells occurs in vitro. For example, dendritic cells are transfected, e.g., with a minigene in accordance with the invention, or are pulsed with peptides. The dendritic cell can then be administered to a patient to elicit immune responses in vivo. Vaccine compositions, either DNA- or peptide-based, can also be administered in vivo in combination with dendritic cell mobilization whereby loading of dendritic cells occurs in vivo.
  • Preferably, the following principles are utilized when selecting an array of epitopes for inclusion in a polyepitopic composition for use in a vaccine, or for selecting discrete epitopes to be included in a vaccine and/or to be encoded by nucleic acids such as a minigene. It is preferred that each of the following principles be balanced in order to make the selection. The multiple epitopes to be incorporated in a given vaccine composition may be, but need not be, contiguous in sequence in the native antigen from which the epitopes are derived.
  • 1.) Epitopes are selected which, upon administration, mimic immune responses that have been observed to be correlated with tumor clearance. For HLA Class I this includes 3-4 epitopes that come from at least one tumor associated antigen (TAA). For HLA Class II a similar rationale is employed; again 3-4 epitopes are selected from at least one TAA (see, e.g., Rosenberg et al., Science 278:1447-1450). Epitopes from one TAA may be used in combination with epitopes from one or more additional TAAs to produce a vaccine that targets tumors with varying expression patterns of frequently-expressed TAAs.
  • 2.) Epitopes are selected that have the requisite binding affinity established to be correlated with immunogenicity: for HLA Class I an IC50 of 500 nM or less, often 200 nM or less; and for Class II an IC50 of 1000 nM or less.
  • 3.) Sufficient supermotif bearing-peptides, or a sufficient array of allele-specific motif-bearing peptides, are selected to give broad population coverage. For example, it is preferable to have at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess the breadth, or redundancy of, population coverage.
  • 4.) When selecting epitopes from cancer-related antigens it is often useful to select analogs because the patient may have developed tolerance to the native epitope.
  • 5.) Of particular relevance are epitopes referred to as “nested epitopes.” Nested epitopes occur where at least two epitopes overlap in a given peptide sequence. A nested peptide sequence can comprise B cell, HLA class I and/or HLA class II epitopes. When providing nested epitopes, a general objective is to provide the greatest number of epitopes per sequence. Thus, an aspect is to avoid providing a peptide that is any longer than the amino terminus of the amino terminal epitope and the carboxyl terminus of the carboxyl terminal epitope in the peptide. When providing a multi-epitopic sequence, such as a sequence comprising nested epitopes, it is generally important to screen the sequence in order to insure that it does not have pathological or other deleterious biological properties.
  • 6.) If a polyepitopic protein is created, or when creating a minigene, an objective is to generate the smallest peptide that encompasses the epitopes of interest. This principle is similar, if not the same as that employed when selecting a peptide comprising nested epitopes. However, with an artificial polyepitopic peptide, the size minimization objective is balanced against the need to integrate any spacer sequences between epitopes in the polyepitopic protein. Spacer amino acid residues can, for example, be introduced to avoid junctional epitopes (an epitope recognized by the immune system, not present in the target antigen, and only created by the man-made juxtaposition of epitopes), or to facilitate cleavage between epitopes and thereby enhance epitope presentation. Junctional epitopes are generally to be avoided because the recipient may generate an immune response to that non-native epitope. Of particular concern is a junctional epitope that is a “dominant epitope.” A dominant epitope may lead to such a zealous response that immune responses to other epitopes are diminished or suppressed.
  • 7.) Where the sequences of multiple variants of the same target protein are present, potential peptide epitopes can also be selected on the basis of their conservancy. For example, a criterion for conservancy may define that the entire sequence of an HLA class I binding peptide or the entire 9-mer core of a class II binding peptide be conserved in a designated percentage of the sequences evaluated for a specific protein antigen.
  • X.C.1. Minigene Vaccines
  • A number of different approaches are available which allow simultaneous delivery of multiple epitopes. Nucleic acids encoding the peptides of the invention are a particularly useful embodiment of the invention. Epitopes for inclusion in a minigene are preferably selected according to the guidelines set forth in the previous section. A preferred means of administering nucleic acids encoding the peptides of the invention uses minigene constructs encoding a peptide comprising one or multiple epitopes of the invention.
  • The use of multi-epitope minigenes is described below and in, Ishioka et al., J. Immunol. 162:3915-3925, 1999; An, L. and Whitton, J. L., J. Virol. 71:2292, 1997; Thomson, S. A. et al., J. Immunol. 157:822, 1996; Whitton, J. L. et al., J. Virol. 67:348, 1993; Hanke, R. et al., Vaccine 16:426, 1998. For example, a multi-epitope DNA plasmid encoding supermotif- and/or motif-bearing epitopes derived 191P4D12(b), the PADRE® universal helper T cell epitope or multiple HTL epitopes from 191P4D12(b) (see e.g., Tables VIII-XXI and XXII to XLIX), and an endoplasmic reticulum-translocating signal sequence can be engineered. A vaccine may also comprise epitopes that are derived from other TAAs.
  • The immunogenicity of a multi-epitopic minigene can be confirmed in transgenic mice to evaluate the magnitude of CTL induction responses against the epitopes tested. Further, the immunogenicity of DNA-encoded epitopes in vivo can be correlated with the in vitro responses of specific CTL lines against target cells transfected with the DNA plasmid. Thus, these experiments can show that the minigene serves to both: 1.) generate a CTL response and 2.) that the induced CTLs recognized cells expressing the encoded epitopes.
  • For example, to create a DNA sequence encoding the selected epitopes (minigene) for expression in human cells, the amino acid sequences of the epitopes may be reverse translated. A human codon usage table can be used to guide the codon choice for each amino acid. These epitope-encoding DNA sequences may be directly adjoined, so that when translated, a continuous polypeptide sequence is created. To optimize expression and/or immunogenicity, additional elements can be incorporated into the minigene design. Examples of amino acid sequences that can be reverse translated and included in the minigene sequence include: HLA class I epitopes, HLA class II epitopes, antibody epitopes, a ubiquitination signal sequence, and/or an endoplasmic reticulum targeting signal. In addition, HLA presentation of CTL and HTL epitopes may be improved by including synthetic (e.g. poly-alanine) or naturally-occurring flanking sequences adjacent to the CTL or HTL epitopes; these larger peptides comprising the epitope(s) are within the scope of the invention.
  • The minigene sequence may be converted to DNA by assembling oligonucleotides that encode the plus and minus strands of the minigene. Overlapping oligonucleotides (30-100 bases long) may be synthesized, phosphorylated, purified and annealed under appropriate conditions using well known techniques. The ends of the oligonucleotides can be joined, for example, using T4 DNA ligase. This synthetic minigene, encoding the epitope polypeptide, can then be cloned into a desired expression vector.
  • Standard regulatory sequences well known to those of skill in the art are preferably included in the vector to ensure expression in the target cells. Several vector elements are desirable: a promoter with a down-stream cloning site for minigene insertion; a polyadenylation signal for efficient transcription termination; an E. coli origin of replication; and an E. coli selectable marker (e.g. ampicillin or kanamycin resistance). Numerous promoters can be used for this purpose, e.g., the human cytomegalovirus (hCMV) promoter. See, e.g., U.S. Pat. Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences.
  • Additional vector modifications may be desired to optimize minigene expression and immunogenicity. In some cases, introns are required for efficient gene expression, and one or more synthetic or naturally-occurring introns could be incorporated into the transcribed region of the minigene. The inclusion of mRNA stabilization sequences and sequences for replication in mammalian cells may also be considered for increasing minigene expression.
  • Once an expression vector is selected, the minigene is cloned into the polylinker region downstream of the promoter. This plasmid is transformed into an appropriate E. coli strain, and DNA is prepared using standard techniques. The orientation and DNA sequence of the minigene, as well as all other elements included in the vector, are confirmed using restriction mapping and DNA sequence analysis. Bacterial cells harboring the correct plasmid can be stored as a master cell bank and a working cell bank.
  • In addition, immunostimulatory sequences (ISSs or CpGs) appear to play a role in the immunogenicity of DNA vaccines. These sequences may be included in the vector, outside the minigene coding sequence, if desired to enhance immunogenicity.
  • In some embodiments, a bi-cistronic expression vector which allows production of both the minigene-encoded epitopes and a second protein (included to enhance or decrease immunogenicity) can be used. Examples of proteins or polypeptides that could beneficially enhance the immune response if co-expressed include cytokines (e.g., IL-2, IL-12, GM-CSF), cytokine-inducing molecules (e.g., LeIF), costimulatory molecules, or for HTL responses, pan-DR binding proteins (PADRE™, Epimmune, San Diego, Calif.). Helper (HTL) epitopes can be joined to intracellular targeting signals and expressed separately from expressed CTL epitopes; this allows direction of the HTL epitopes to a cell compartment different than that of the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the HLA class II pathway, thereby improving HTL induction. In contrast to HTL or CTL induction, specifically decreasing the immune response by co-expression of immunosuppressive molecules (e.g. TGF-β) may be beneficial in certain diseases.
  • Therapeutic quantities of plasmid DNA can be produced for example, by fermentation in E. coli, followed by purification. Aliquots from the working cell bank are used to inoculate growth medium, and grown to saturation in shaker flasks or a bioreactor according to well-known techniques. Plasmid DNA can be purified using standard bioseparation technologies such as solid phase anion-exchange resins supplied by QIAGEN, Inc. (Valencia, Calif.). If required, supercoiled DNA can be isolated from the open circular and linear forms using gel electrophoresis or other methods.
  • Purified plasmid DNA can be prepared for injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffer saline (PBS). This approach, known as “naked DNA,” is currently being used for intramuscular (IM) administration in clinical trials. To maximize the immunotherapeutic effects of minigene DNA vaccines, an alternative method for formulating purified plasmid DNA may be desirable. A variety of methods have been described, and new techniques may become available. Cationic lipids, glycolipids, and fusogenic liposomes can also be used in the formulation (see, e.g., as described by WO 93/24640; Mannino & Gould-Fogerite, BioTechniques 6 (7): 682 (1988); U.S. Pat. No. 5,279,833; WO 91/06309; and Felgner, et al., Proc. Nat'l Acad. Sci. USA 84:7413 (1987). In addition, peptides and compounds referred to collectively as protective, interactive, non-condensing compounds (PINC) could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types.
  • Target cell sensitization can be used as a functional assay for expression and HLA class I presentation of minigene-encoded CTL epitopes. For example, the plasmid DNA is introduced into a mammalian cell line that is suitable as a target for standard CTL chromium release assays. The transfection method used will be dependent on the final formulation. Electroporation can be used for “naked” DNA, whereas cationic lipids allow direct in vitro transfection. A plasmid expressing green fluorescent protein (GFP) can be co-transfected to allow enrichment of transfected cells using fluorescence activated cell sorting (FACS). These cells are then chromium-51 (51Cr) labeled and used as target cells for epitope-specific CTL lines; cytolysis, detected by 51Cr release, indicates both production of, and HLA presentation of, minigene-encoded CTL epitopes. Expression of HTL epitopes may be evaluated in an analogous manner using assays to assess HTL activity.
  • In vivo immunogenicity is a second approach for functional testing of minigene DNA formulations. Transgenic mice expressing appropriate human HLA proteins are immunized with the DNA product. The dose and route of administration are formulation dependent (e.g., IM for DNA in PBS, intraperitoneal (i.p.) for lipid-complexed DNA). Twenty-one days after immunization, splenocytes are harvested and restimulated for one week in the presence of peptides encoding each epitope being tested. Thereafter, for CTL effector cells, assays are conducted for cytolysis of peptide-loaded, 51Cr-labeled target cells using standard techniques. Lysis of target cells that were sensitized by HLA loaded with peptide epitopes, corresponding to minigene-encoded epitopes, demonstrates DNA vaccine function for in vivo induction of CTLs. Immunogenicity of HTL epitopes is confirmed in transgenic mice in an analogous manner.
  • Alternatively, the nucleic acids can be administered using ballistic delivery as described, for instance, in U.S. Pat. No. 5,204,253. Using this technique, particles comprised solely of DNA are administered. In a further alternative embodiment, DNA can be adhered to particles, such as gold particles.
  • Minigenes can also be delivered using other bacterial or viral delivery systems well known in the art, e.g., an expression construct encoding epitopes of the invention can be incorporated into a viral vector such as vaccinia.
  • X.C.2. Combinations of CTL Peptides with Helper Peptides
  • Vaccine compositions comprising CTL peptides of the invention can be modified, e.g., analoged, to provide desired attributes, such as improved serum half life, broadened population coverage or enhanced immunogenicity.
  • For instance, the ability of a peptide to induce CTL activity can be enhanced by linking the peptide to a sequence which contains at least one epitope that is capable of inducing a T helper cell response. Although a CTL peptide can be directly linked to a T helper peptide, often CTL epitope/HTL epitope conjugates are linked by a spacer molecule. The spacer is typically comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions. The spacers are typically selected from, e.g., Ala, Gly, or other neutral spacers of nonpolar amino acids or neutral polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo-oligomer. When present, the spacer will usually be at least one or two residues, more usually three to six residues and sometimes 10 or more residues. The CTL peptide epitope can be linked to the T helper peptide epitope either directly or via a spacer either at the amino or carboxy terminus of the CTL peptide. The amino terminus of either the immunogenic peptide or the T helper peptide may be acylated.
  • In certain embodiments, the T helper peptide is one that is recognized by T helper cells present in a majority of a genetically diverse population. This can be accomplished by selecting peptides that bind to many, most, or all of the HLA class II molecules. Examples of such amino acid bind many HLA Class II molecules include sequences from antigens such as tetanus toxoid at positions 830-843 (QYIKANSKFIGITE; SEQ ID NO:44), Plasmodium falciparum circumsporozoite (CS) protein at positions 378-398 (DIEKKIAKMEKASSVFNVVNS; SEQ ID NO:45), and Streptococcus 18 kD protein at positions 116-131 (GAVDSILGGVATYGAA; SEQ ID NO:46). Other examples include peptides bearing a DR 1-4-7 supermotif, or either of the DR3 motifs.
  • Alternatively, it is possible to prepare synthetic peptides capable of stimulating T helper lymphocytes, in a loosely HLA-restricted fashion, using amino acid sequences not found in nature (see, e.g., PCT publication WO 95/07707). These synthetic compounds called Pan-DR-binding epitopes (e.g., PADRE™, Epimmune, Inc., San Diego, Calif.) are designed, most preferably, to bind most HLA-DR (human HLA class II) molecules. For instance, a pan-DR-binding epitope peptide having the formula: XKXVAAWTLKAAX (SEQ ID NO:47), where “X” is either cyclohexylalanine, phenylalanine, or tyrosine, and a is either D-alanine or L-alanine, has been found to bind to most HLA-DR alleles, and to stimulate the response of T helper lymphocytes from most individuals, regardless of their HLA type. An alternative of a pan-DR binding epitope comprises all “L” natural amino acids and can be provided in the form of nucleic acids that encode the epitope.
  • HTL peptide epitopes can also be modified to alter their biological properties. For example, they can be modified to include D-amino acids to increase their resistance to proteases and thus extend their serum half life, or they can be conjugated to other molecules such as lipids, proteins, carbohydrates, and the like to increase their biological activity. For example, a T helper peptide can be conjugated to one or more palmitic acid chains at either the amino or carboxyl termini.
  • X.C.3. Combinations of CTL Peptides with T Cell Priming Agents
  • In some embodiments it may be desirable to include in the pharmaceutical compositions of the invention at least one component which primes B lymphocytes or T lymphocytes. Lipids have been identified as agents capable of priming CTL in vivo. For example, palmitic acid residues can be attached to the ε- and α-amino groups of a lysine residue and then linked, e.g., via one or more linking residues such as Gly, Gly-Gly-, Ser, Ser-Ser, or the like, to an immunogenic peptide. The lipidated peptide can then be administered either directly in a micelle or particle, incorporated into a liposome, or emulsified in an adjuvant, e.g., incomplete Freund's adjuvant. In a preferred embodiment, a particularly effective immunogenic composition comprises palmitic acid attached to ε- and α-amino groups of Lys, which is attached via linkage, e.g., Ser-Ser, to the amino terminus of the immunogenic peptide.
  • As another example of lipid priming of CTL responses, E. coli lipoproteins, such as tripalmitoyl-S-glycerylcysteinlyseryl-serine (P3CSS) can be used to prime virus specific CTL when covalently attached to an appropriate peptide (see, e.g., Deres, et al., Nature 342:561, 1989). Peptides of the invention can be coupled to P3CSS, for example, and the lipopeptide administered to an individual to prime specifically an immune response to the target antigen. Moreover, because the induction of neutralizing antibodies can also be primed with P3CSS-conjugated epitopes, two such compositions can be combined to more effectively elicit both humoral and cell-mediated responses.
  • X.C.4. Vaccine Compositions Comprising DC Pulsed with CTL and/or HTL Peptides
  • An embodiment of a vaccine composition in accordance with the invention comprises ex vivo administration of a cocktail of epitope-bearing peptides to PBMC, or isolated DC therefrom, from the patient's blood. A pharmaceutical to facilitate harvesting of DC can be used, such as Progenipoietin™ (Pharmacia-Monsanto, St. Louis, Mo.) or GM-CSF/IL-4. After pulsing the DC with peptides and prior to reinfusion into patients, the DC are washed to remove unbound peptides. In this embodiment, a vaccine comprises peptide-pulsed DCs which present the pulsed peptide epitopes complexed with HLA molecules on their surfaces.
  • The DC can be pulsed ex vivo with a cocktail of peptides, some of which stimulate CTL responses to 191P4D12(b). Optionally, a helper T cell (HTL) peptide, such as a natural or artificial loosely restricted HLA Class II peptide, can be included to facilitate the CTL response. Thus, a vaccine in accordance with the invention is used to treat a cancer which expresses or overexpresses 191P4D12(b).
  • X.D. Adoptive Immunotherapy
  • Antigenic 191P4D12(b)-related peptides are used to elicit a CTL and/or HTL response ex vivo, as well. The resulting CTL or HTL cells, can be used to treat tumors in patients that do not respond to other conventional forms of therapy, or will not respond to a therapeutic vaccine peptide or nucleic acid in accordance with the invention. Ex vivo CTL or HTL responses to a particular antigen are induced by incubating in tissue culture the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of antigen-presenting cells (APC), such as dendritic cells, and the appropriate immunogenic peptide. After an appropriate incubation time (typically about 7-28 days), in which the precursor cells are activated and expanded into effector cells, the cells are infused back into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cell (e.g., a tumor cell). Transfected dendritic cells may also be used as antigen presenting cells.
  • X.E. Administration of Vaccines for Therapeutic or Prophylactic Purposes
  • Pharmaceutical and vaccine compositions of the invention are typically used to treat and/or prevent a cancer that expresses or overexpresses 191P4D12(b). In therapeutic applications, peptide and/or nucleic acid compositions are administered to a patient in an amount sufficient to elicit an effective B cell, CTL and/or HTL response to the antigen and to cure or at least partially arrest or slow symptoms and/or complications. An amount adequate to accomplish this is defined as “therapeutically effective dose.” Amounts effective for this use will depend on, e.g., the particular composition administered, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician.
  • For pharmaceutical compositions, the immunogenic peptides of the invention, or DNA encoding them, are generally administered to an individual already bearing a tumor that expresses 191P4D12(b). The peptides or DNA encoding them can be administered individually or as fusions of one or more peptide sequences. Patients can be treated with the immunogenic peptides separately or in conjunction with other treatments, such as surgery, as appropriate.
  • For therapeutic use, administration should generally begin at the first diagnosis of 191P4D12(b)-associated cancer. This is followed by boosting doses until at least symptoms are substantially abated and for a period thereafter. The embodiment of the vaccine composition (i.e., including, but not limited to embodiments such as peptide cocktails, polyepitopic polypeptides, minigenes, or TAA-specific CTLs or pulsed dendritic cells) delivered to the patient may vary according to the stage of the disease or the patient's health status. For example, in a patient with a tumor that expresses 191P4D12(b), a vaccine comprising 191P4D12(b)-specific CTL may be more efficacious in killing tumor cells in patient with advanced disease than alternative embodiments.
  • It is generally important to provide an amount of the peptide epitope delivered by a mode of administration sufficient to stimulate effectively a cytotoxic T cell response; compositions which stimulate helper T cell responses can also be given in accordance with this embodiment of the invention.
  • The dosage for an initial therapeutic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1,000 μg and the higher value is about 10,000; 20,000; 30,000; or 50,000 μg. Dosage values for a human typically range from about 500 μg to about 50,000 μg per 70 kilogram patient. Boosting dosages of between about 1.0 μg to about 50,000 μg of peptide pursuant to a boosting regimen over weeks to months may be administered depending upon the patient's response and condition as determined by measuring the specific activity of CTL and HTL obtained from the patient's blood. Administration should continue until at least clinical symptoms or laboratory tests indicate that the neoplasia, has been eliminated or reduced and for a period thereafter. The dosages, routes of administration, and dose schedules are adjusted in accordance with methodologies known in the art.
  • In certain embodiments, the peptides and compositions of the present invention are employed in serious disease states, that is, life-threatening or potentially life threatening situations. In such cases, as a result of the minimal amounts of extraneous substances and the relative nontoxic nature of the peptides in preferred compositions of the invention, it is possible and may be felt desirable by the treating physician to administer substantial excesses of these peptide compositions relative to these stated dosage amounts.
  • The vaccine compositions of the invention can also be used purely as prophylactic agents. Generally the dosage for an initial prophylactic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1000 μg and the higher value is about 10,000; 20,000; 30,000; or 50,000 μg. Dosage values for a human typically range from about 500 μg to about 50,000 μg per 70 kilogram patient. This is followed by boosting dosages of between about 1.0 μg to about 50,000 μg of peptide administered at defined intervals from about four weeks to six months after the initial administration of vaccine. The immunogenicity of the vaccine can be assessed by measuring the specific activity of CTL and HTL obtained from a sample of the patient's blood.
  • The pharmaceutical compositions for therapeutic treatment are intended for parenteral, topical, oral, nasal, intrathecal, or local (e.g. as a cream or topical ointment) administration. Preferably, the pharmaceutical compositions are administered parentally, e.g., intravenously, subcutaneously, intradermally, or intramuscularly. Thus, the invention provides compositions for parenteral administration which comprise a solution of the immunogenic peptides dissolved or suspended in an acceptable carrier, preferably an aqueous carrier.
  • A variety of aqueous carriers may be used, e.g., water, buffered water, 0.8% saline, 0.3% glycine, hyaluronic acid and the like. These compositions may be sterilized by conventional, well-known sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration.
  • The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservatives, and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, etc.
  • The concentration of peptides of the invention in the pharmaceutical formulations can vary widely, i.e., from less than about 0.1%, usually at or at least about 2% to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected.
  • A human unit dose form of a composition is typically included in a pharmaceutical composition that comprises a human unit dose of an acceptable carrier, in one embodiment an aqueous carrier, and is administered in a volume/quantity that is known by those of skill in the art to be used for administration of such compositions to humans (see, e.g., Remington's Pharmaceutical Sciences, 17th Edition, A. Gennaro, Editor, Mack Publishing Co., Easton, Pa., 1985). For example a peptide dose for initial immunization can be from about 1 to about 50,000 μg, generally 100-5,000 μg, for a 70 kg patient. For example, for nucleic acids an initial immunization may be performed using an expression vector in the form of naked nucleic acid administered IM (or SC or ID) in the amounts of 0.5-5 mg at multiple sites. The nucleic acid (0.1 to 1000 μg) can also be administered using a gene gun. Following an incubation period of 3-4 weeks, a booster dose is then administered. The booster can be recombinant fowlpox virus administered at a dose of 5-107 to 5×109 pfu.
  • For antibodies, a treatment generally involves repeated administration of the anti-191P4D12(b) antibody preparation, via an acceptable route of administration such as intravenous injection (IV), typically at a dose in the range of about 0.1 to about 10 mg/kg body weight. In general, doses in the range of 10-500 mg mAb per week are effective and well tolerated. Moreover, an initial loading dose of approximately 4 mg/kg patient body weight IV, followed by weekly doses of about 2 mg/kg IV of the anti-191P4D12(b) mAb preparation represents an acceptable dosing regimen. As appreciated by those of skill in the art, various factors can influence the ideal dose in a particular case. Such factors include, for example, half life of a composition, the binding affinity of an Ab, the immunogenicity of a substance, the degree of 191P4D12(b) expression in the patient, the extent of circulating shed 191P4D12(b) antigen, the desired steady-state concentration level, frequency of treatment, and the influence of chemotherapeutic or other agents used in combination with the treatment method of the invention, as well as the health status of a particular patient. Non-limiting preferred human unit doses are, for example, 500 μg-1 mg, 1 mg-50 mg, 50 mg-100 mg, 100 mg-200 mg, 200 mg-300 mg, 400 mg-500 mg, 500 mg-600 mg, 600 mg-700 mg, 700 mg-800 mg, 800 mg-900 mg, 900 mg-1 g, or 1 mg-700 mg. In certain embodiments, the dose is in a range of 2-5 mg/kg body weight, e.g., with follow on weekly doses of 1-3 mg/kg; 0.5 mg, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 mg/kg body weight followed, e.g., in two, three or four weeks by weekly doses; 0.5-10 mg/kg body weight, e.g., followed in two, three or four weeks by weekly doses; 225, 250, 275, 300, 325, 350, 375, 400 mg m2 of body area weekly; 1-600 mg m2 of body area weekly; 225-400 mg m2 of body area weekly; these does can be followed by weekly doses for 2, 3, 4, 5, 6, 7, 8, 9, 19, 11, 12 or more weeks.
  • In one embodiment, human unit dose forms of polynucleotides comprise a suitable dosage range or effective amount that provides any therapeutic effect. As appreciated by one of ordinary skill in the art a therapeutic effect depends on a number of factors, including the sequence of the polynucleotide, molecular weight of the polynucleotide and route of administration. Dosages are generally selected by the physician or other health care professional in accordance with a variety of parameters known in the art, such as severity of symptoms, history of the patient and the like. Generally, for a polynucleotide of about 20 bases, a dosage range may be selected from, for example, an independently selected lower limit such as about 0.1, 0.25, 0.5, 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400 or 500 mg/kg up to an independently selected upper limit, greater than the lower limit, of about 60, 80, 100, 200, 300, 400, 500, 750, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 or 10,000 mg/kg. For example, a dose may be about any of the following: 0.1 to 100 mg/kg, 0.1 to 50 mg/kg, 0.1 to 25 mg/kg, 0.1 to 10 mg/kg, 1 to 500 mg/kg, 100 to 400 mg/kg, 200 to 300 mg/kg, 1 to 100 mg/kg, 100 to 200 mg/kg, 300 to 400 mg/kg, 400 to 500 mg/kg, 500 to 1000 mg/kg, 500 to 5000 mg/kg, or 500 to 10,000 mg/kg. Generally, parenteral routes of administration may require higher doses of polynucleotide compared to more direct application to the nucleotide to diseased tissue, as do polynucleotides of increasing length.
  • In one embodiment, human unit dose forms of T-cells comprise a suitable dosage range or effective amount that provides any therapeutic effect. As appreciated by one of ordinary skill in the art, a therapeutic effect depends on a number of factors. Dosages are generally selected by the physician or other health care professional in accordance with a variety of parameters known in the art, such as severity of symptoms, history of the patient and the like. A dose may be about 104 cells to about 106 cells, about 106 cells to about 108 cells, about 108 to about 1011 cells, or about 108 to about 5×1010 cells. A dose may also about 106 cells/m2 to about 1010 cells/m2, or about 106 cells/m2 to about 108 cells/m2.
  • Proteins(s) of the invention, and/or nucleic acids encoding the protein(s), can also be administered via liposomes, which may also serve to: 1) target the proteins(s) to a particular tissue, such as lymphoid tissue; 2) to target selectively to diseases cells; or, 3) to increase the half-life of the peptide composition. Liposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. In these preparations, the peptide to be delivered is incorporated as part of a liposome, alone or in conjunction with a molecule which binds to a receptor prevalent among lymphoid cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes either filled or decorated with a desired peptide of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the peptide compositions. Liposomes for use in accordance with the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, e.g., liposome size, acid lability and stability of the liposomes in the blood stream. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka, et al., Ann. Rev. Biophys. Bioeng. 9:467 (1980), and U.S. Pat. Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369.
  • For targeting cells of the immune system, a ligand to be incorporated into the liposome can include, e.g., antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells. A liposome suspension containing a peptide may be administered intravenously, locally, topically, etc. in a dose which varies according to, inter alia, the manner of administration, the peptide being delivered, and the stage of the disease being treated.
  • For solid compositions, conventional nontoxic solid carriers may be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like. For oral administration, a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed, and generally 10-95% of active ingredient, that is, one or more peptides of the invention, and more preferably at a concentration of 25%-75%.
  • For aerosol administration, immunogenic peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of peptides are about 0.01%-20% by weight, preferably about 1%-10%. The surfactant must, of course, be nontoxic, and preferably soluble in the propellant. Representative of such agents are the esters or partial esters of fatty acids containing from about 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constitute about 0.1%-20% by weight of the composition, preferably about 0.25-5%. The balance of the composition is ordinarily propellant. A carrier can also be included, as desired, as with, e.g., lecithin for intranasal delivery.
  • XI.) Diagnostic and Prognostic Embodiments of 191P4D12(b)
  • As disclosed herein, 191P4D12(b) polynucleotides, polypeptides, reactive cytotoxic T cells (CTL), reactive helper T cells (HTL) and anti-polypeptide antibodies are used in well known diagnostic, prognostic and therapeutic assays that examine conditions associated with dysregulated cell growth such as cancer, in particular the cancers listed in Table I (see, e.g., both its specific pattern of tissue expression as well as its overexpression in certain cancers as described for example in the Example entitled “Expression analysis of 191P4D12(b) in normal tissues, and patient specimens”).
  • 191P4D12(b) can be analogized to a prostate associated antigen PSA, the archetypal marker that has been used by medical practitioners for years to identify and monitor the presence of prostate cancer (see, e.g., Merrill et al., J. Urol. 163 (2): 503-5120 (2000); Polascik et al., J. Urol. August; 162 (2):293-306 (1999) and Fortier et al., J. Nat. Cancer Inst. 91 (19): 1635-1640 (1999)). A variety of other diagnostic markers are also used in similar contexts including p53 and K-ras (see, e.g., Tulchinsky et al., Int J Mol Med 1999 Jul. 4 (1):99-102 and Minimoto et al., Cancer Detect Prev 2000; 24 (1):1-12). Therefore, this disclosure of 191P4D12(b) polynucleotides and polypeptides (as well as 191P4D12(b) polynucleotide probes and anti-191P4D12(b) antibodies used to identify the presence of these molecules) and their properties allows skilled artisans to utilize these molecules in methods that are analogous to those used, for example, in a variety of diagnostic assays directed to examining conditions associated with cancer.
  • Typical embodiments of diagnostic methods which utilize the 191P4D12(b) polynucleotides, polypeptides, reactive T cells and antibodies are analogous to those methods from well-established diagnostic assays, which employ, e.g., PSA polynucleotides, polypeptides, reactive T cells and antibodies. For example, just as PSA polynucleotides are used as probes (for example in Northern analysis, see, e.g., Sharief et al., Biochem. Mol. Biol. Int. 33 (3):567-74 (1994)) and primers (for example in PCR analysis, see, e.g., Okegawa et al., J. Urol. 163 (4): 1189-1190 (2000)) to observe the presence and/or the level of PSA mRNAs in methods of monitoring PSA overexpression or the metastasis of prostate cancers, the 191P4D12(b) polynucleotides described herein can be utilized in the same way to detect 191P4D12(b) overexpression or the metastasis of prostate and other cancers expressing this gene. Alternatively, just as PSA polypeptides are used to generate antibodies specific for PSA which can then be used to observe the presence and/or the level of PSA proteins in methods to monitor PSA protein overexpression (see, e.g., Stephan et al., Urology 55 (4):560-3 (2000)) or the metastasis of prostate cells (see, e.g., Alanen et al., Pathol. Res. Pract. 192 (3):233-7 (1996)), the 191P4D12(b) polypeptides described herein can be utilized to generate antibodies for use in detecting 191P4D12(b) overexpression or the metastasis of prostate cells and cells of other cancers expressing this gene.
  • Specifically, because metastases involves the movement of cancer cells from an organ of origin (such as the lung or prostate gland etc.) to a different area of the body (such as a lymph node), assays which examine a biological sample for the presence of cells expressing 191P4D12(b) polynucleotides and/or polypeptides can be used to provide evidence of metastasis. For example, when a biological sample from tissue that does not normally contain 191P4D12(b)-expressing cells (lymph node) is found to contain 191P4D12(b)-expressing cells such as the 191P4D12(b) expression seen in LAPC4 and LAPC9, xenografts isolated from lymph node and bone metastasis, respectively, this finding is indicative of metastasis.
  • Alternatively 191P4D12(b) polynucleotides and/or polypeptides can be used to provide evidence of cancer, for example, when cells in a biological sample that do not normally express 191P4D12(b) or express 191P4D12(b) at a different level are found to express 191P4D12(b) or have an increased expression of 191P4D12(b) (see, e.g., the 191P4D12(b) expression in the cancers listed in Table I and in patient samples etc. shown in the accompanying Figures). In such assays, artisans may further wish to generate supplementary evidence of metastasis by testing the biological sample for the presence of a second tissue restricted marker (in addition to 191P4D12(b)) such as PSA, PSCA etc. (see, e.g., Alanen et al., Pathol. Res. Pract. 192 (3): 233-237 (1996)).
  • The use of immunohistochemistry to identify the presence of a 191P4D12(b) polypeptide within a tissue section can indicate an altered state of certain cells within that tissue. It is well understood in the art that the ability of an antibody to localize to a polypeptide that is expressed in cancer cells is a way of diagnosing presence of disease, disease stage, progression and/or tumor aggressiveness. Such an antibody can also detect an altered distribution of the polypeptide within the cancer cells, as compared to corresponding non-malignant tissue.
  • The 191P4D12(b) polypeptide and immunogenic compositions are also useful in view of the phenomena of altered subcellular protein localization in disease states. Alteration of cells from normal to diseased state causes changes in cellular morphology and is often associated with changes in subcellular protein localization/distribution. For example, cell membrane proteins that are expressed in a polarized manner in normal cells can be altered in disease, resulting in distribution of the protein in a non-polar manner over the whole cell surface.
  • The phenomenon of altered subcellular protein localization in a disease state has been demonstrated with MUC1 and Her2 protein expression by use of immunohistochemical means. Normal epithelial cells have a typical apical distribution of MUC1, in addition to some supranuclear localization of the glycoprotein, whereas malignant lesions often demonstrate an apolar staining pattern (Diaz et al, The Breast Journal, 7; 40-45 (2001); Zhang et al, Clinical Cancer Research, 4; 2669-2676 (1998): Cao, et al, The Journal of Histochemistry and Cytochemistry, 45: 1547-1557 (1997)). In addition, normal breast epithelium is either negative for Her2 protein or exhibits only a basolateral distribution whereas malignant cells can express the protein over the whole cell surface (De Potter, et al, International Journal of Cancer, 44; 969-974 (1989): McCormick, et al, 117; 935-943 (2002)). Alternatively, distribution of the protein may be altered from a surface only localization to include diffuse cytoplasmic expression in the diseased state. Such an example can be seen with MUC1 (Diaz, et al, The Breast Journal, 7: 40-45 (2001)).
  • Alteration in the localization/distribution of a protein in the cell, as detected by immunohistochemical methods, can also provide valuable information concerning the favorability of certain treatment modalities. This last point is illustrated by a situation where a protein may be intracellular in normal tissue, but cell surface in malignant cells; the cell surface location makes the cells favorably amenable to antibody-based diagnostic and treatment regimens. When such an alteration of protein localization occurs for 191P4D12(b), the 191P4D12(b) protein and immune responses related thereto are very useful. Accordingly, the ability to determine whether alteration of subcellular protein localization occurred for 24P4C12 make the 191P4D12(b) protein and immune responses related thereto very useful. Use of the 191P4D12(b) compositions allows those skilled in the art to make important diagnostic and therapeutic decisions.
  • Immunohistochemical reagents specific to 191P4D12(b) are also useful to detect metastases of tumors expressing 191P4D12(b) when the polypeptide appears in tissues where 191P4D12(b) is not normally produced.
  • Thus, 191P4D12(b) polypeptides and antibodies resulting from immune responses thereto are useful in a variety of important contexts such as diagnostic, prognostic, preventative and/or therapeutic purposes known to those skilled in the art.
  • Just as PSA polynucleotide fragments and polynucleotide variants are employed by skilled artisans for use in methods of monitoring PSA, 191P4D12(b) polynucleotide fragments and polynucleotide variants are used in an analogous manner. In particular, typical PSA polynucleotides used in methods of monitoring PSA are probes or primers which consist of fragments of the PSA cDNA sequence. Illustrating this, primers used to PCR amplify a PSA polynucleotide must include less than the whole PSA sequence to function in the polymerase chain reaction. In the context of such PCR reactions, skilled artisans generally create a variety of different polynucleotide fragments that can be used as primers in order to amplify different portions of a polynucleotide of interest or to optimize amplification reactions (see, e.g., Caetano-Anolles, G. Biotechniques 25 (3): 472-476, 478-480 (1998); Robertson et al., Methods Mol. Biol. 98:121-154 (1998)). An additional illustration of the use of such fragments is provided in the Example entitled “Expression analysis of 191P4D12(b) in normal tissues, and patient specimens,” where a 191P4D12(b) polynucleotide fragment is used as a probe to show the expression of 191P4D12(b) RNAs in cancer cells. In addition, variant polynucleotide sequences are typically used as primers and probes for the corresponding mRNAs in PCR and Northern analyses (see, e.g., Sawai et al., Fetal Diagn. Ther. 1996 November-December 11 (6):407-13 and Current Protocols In Molecular Biology, Volume 2, Unit 2, Frederick M. Ausubel et al. eds., 1995)). Polynucleotide fragments and variants are useful in this context where they are capable of binding to a target polynucleotide sequence (e.g., a 191P4D12(b) polynucleotide shown in FIG. 2 or variant thereof) under conditions of high stringency.
  • Furthermore, PSA polypeptides which contain an epitope that can be recognized by an antibody or T cell that specifically binds to that epitope are used in methods of monitoring PSA. 191P4D12(b) polypeptide fragments and polypeptide analogs or variants can also be used in an analogous manner. This practice of using polypeptide fragments or polypeptide variants to generate antibodies (such as anti-PSA antibodies or T cells) is typical in the art with a wide variety of systems such as fusion proteins being used by practitioners (see, e.g., Current Protocols In Molecular Biology, Volume 2, Unit 16, Frederick M. Ausubel et al. eds., 1995). In this context, each epitope(s) functions to provide the architecture with which an antibody or T cell is reactive. Typically, skilled artisans create a variety of different polypeptide fragments that can be used in order to generate immune responses specific for different portions of a polypeptide of interest (see, e.g., U.S. Pat. No. 5,840,501 and U.S. Pat. No. 5,939,533). For example it may be preferable to utilize a polypeptide comprising one of the 191P4D12(b) biological motifs discussed herein or a motif-bearing subsequence which is readily identified by one of skill in the art based on motifs available in the art. Polypeptide fragments, variants or analogs are typically useful in this context as long as they comprise an epitope capable of generating an antibody or T cell specific for a target polypeptide sequence (e.g. a 191P4D12(b) polypeptide shown in FIG. 3).
  • As shown herein, the 191P4D12(b) polynucleotides and polypeptides (as well as the 191P4D12(b) polynucleotide probes and anti-191P4D12(b) antibodies or T cells used to identify the presence of these molecules) exhibit specific properties that make them useful in diagnosing cancers such as those listed in Table I. Diagnostic assays that measure the presence of 191P4D12(b) gene products, in order to evaluate the presence or onset of a disease condition described herein, such as prostate cancer, are used to identify patients for preventive measures or further monitoring, as has been done so successfully with PSA. Moreover, these materials satisfy a need in the art for molecules having similar or complementary characteristics to PSA in situations where, for example, a definite diagnosis of metastasis of prostatic origin cannot be made on the basis of a test for PSA alone (see, e.g., Alanen et al., Pathol. Res. Pract. 192 (3): 233-237 (1996)), and consequently, materials such as 191P4D12(b) polynucleotides and polypeptides (as well as the 191P4D12(b) polynucleotide probes and anti-191P4D12(b) antibodies used to identify the presence of these molecules) need to be employed to confirm a metastases of prostatic origin.
  • Finally, in addition to their use in diagnostic assays, the 191P4D12(b) polynucleotides disclosed herein have a number of other utilities such as their use in the identification of oncogenetic associated chromosomal abnormalities in the chromosomal region to which the 191P4D12(b) gene maps (see the Example entitled “Chromosomal Mapping of 191P4D12(b)” below). Moreover, in addition to their use in diagnostic assays, the 191P4D12(b)-related proteins and polynucleotides disclosed herein have other utilities such as their use in the forensic analysis of tissues of unknown origin (see, e.g., Takahama K Forensic Sci Int 1996 Jun. 28; 80 (1-2): 63-9).
  • Additionally, 191P4D12(b)-related proteins or polynucleotides of the invention can be used to treat a pathologic condition characterized by the over-expression of 191P4D12(b). For example, the amino acid or nucleic acid sequence of FIG. 2 or FIG. 3, or fragments of either, can be used to generate an immune response to a 191P4D12(b) antigen. Antibodies or other molecules that react with 191P4D12(b) can be used to modulate the function of this molecule, and thereby provide a therapeutic benefit.
  • XII.) Inhibition of 191P4D12(b) Protein Function
  • The invention includes various methods and compositions for inhibiting the binding of 191P4D12(b) to its binding partner or its association with other protein(s) as well as methods for inhibiting 191P4D12(b) function.
  • XII.A.) Inhibition of 191P4D12(b) with Intracellular Antibodies
  • In one approach, a recombinant vector that encodes single chain antibodies that specifically bind to 191P4D12(b) are introduced into 191P4D12(b) expressing cells via gene transfer technologies. Accordingly, the encoded single chain anti-191P4D12(b) antibody is expressed intracellularly, binds to 191P4D12(b) protein, and thereby inhibits its function. Methods for engineering such intracellular single chain antibodies are well known. Such intracellular antibodies, also known as “intrabodies”, are specifically targeted to a particular compartment within the cell, providing control over where the inhibitory activity of the treatment is focused. This technology has been successfully applied in the art (for review, see Richardson and Marasco, 1995, TIBTECH vol. 13). Intrabodies have been shown to virtually eliminate the expression of otherwise abundant cell surface receptors (see, e.g., Richardson et al., 1995, Proc. Natl. Acad. Sci. USA 92: 3137-3141; Beerli et al., 1994, J. Biol. Chem. 289: 23931-23936; Deshane et al., 1994, Gene Ther. 1: 332-337).
  • Single chain antibodies comprise the variable domains of the heavy and light chain joined by a flexible linker polypeptide, and are expressed as a single polypeptide. Optionally, single chain antibodies are expressed as a single chain variable region fragment joined to the light chain constant region. Well-known intracellular trafficking signals are engineered into recombinant polynucleotide vectors encoding such single chain antibodies in order to target precisely the intrabody to the desired intracellular compartment. For example, intrabodies targeted to the endoplasmic reticulum (ER) are engineered to incorporate a leader peptide and, optionally, a C-terminal ER retention signal, such as the KDEL amino acid motif. Intrabodies intended to exert activity in the nucleus are engineered to include a nuclear localization signal. Lipid moieties are joined to intrabodies in order to tether the intrabody to the cytosolic side of the plasma membrane. Intrabodies can also be targeted to exert function in the cytosol. For example, cytosolic intrabodies are used to sequester factors within the cytosol, thereby preventing them from being transported to their natural cellular destination.
  • In one embodiment, intrabodies are used to capture 191P4D12(b) in the nucleus, thereby preventing its activity within the nucleus. Nuclear targeting signals are engineered into such 191P4D12(b) intrabodies in order to achieve the desired targeting. Such 191P4D12(b) intrabodies are designed to bind specifically to a particular 191P4D12(b) domain. In another embodiment, cytosolic intrabodies that specifically bind to a 191P4D12(b) protein are used to prevent 191P4D12(b) from gaining access to the nucleus, thereby preventing it from exerting any biological activity within the nucleus (e.g., preventing 191P4D12(b) from forming transcription complexes with other factors).
  • In order to specifically direct the expression of such intrabodies to particular cells, the transcription of the intrabody is placed under the regulatory control of an appropriate tumor-specific promoter and/or enhancer. In order to target intrabody expression specifically to prostate, for example, the PSA promoter and/or promoter/enhancer can be utilized (See, for example, U.S. Pat. No. 5,919,652 issued 6 Jul. 1999).
  • XII.B.) Inhibition of 191P4D12(b) with Recombinant Proteins
  • In another approach, recombinant molecules bind to 191P4D12(b) and thereby inhibit 191P4D12(b) function. For example, these recombinant molecules prevent or inhibit 191P4D12(b) from accessing/binding to its binding partner(s) or associating with other protein(s). Such recombinant molecules can, for example, contain the reactive part(s) of a 191P4D12(b) specific antibody molecule. In a particular embodiment, the 191P4D12(b) binding domain of a 191P4D12(b) binding partner is engineered into a dimeric fusion protein, whereby the fusion protein comprises two 191P4D12(b) ligand binding domains linked to the Fc portion of a human IgG, such as human IgG1. Such IgG portion can contain, for example, the C H2 and C H3 domains and the hinge region, but not the C H1 domain. Such dimeric fusion proteins are administered in soluble form to patients suffering from a cancer associated with the expression of 191P4D12(b), whereby the dimeric fusion protein specifically binds to 191P4D12(b) and blocks 191P4D12(b) interaction with a binding partner. Such dimeric fusion proteins are further combined into multimeric proteins using known antibody linking technologies.
  • XII.C.) Inhibition of 191P4D12(b) Transcription or Translation
  • The present invention also comprises various methods and compositions for inhibiting the transcription of the 191P4D12(b) gene. Similarly, the invention also provides methods and compositions for inhibiting the translation of 191P4D12(b) mRNA into protein.
  • In one approach, a method of inhibiting the transcription of the 191P4D12(b) gene comprises contacting the 191P4D12(b) gene with a 191P4D12(b) antisense polynucleotide. In another approach, a method of inhibiting 191P4D12(b) mRNA translation comprises contacting a 191P4D12(b) mRNA with an antisense polynucleotide. In another approach, a 191P4D12(b) specific ribozyme is used to cleave a 191P4D12(b) message, thereby inhibiting translation. Such antisense and ribozyme based methods can also be directed to the regulatory regions of the 191P4D12(b) gene, such as 191P4D12(b) promoter and/or enhancer elements. Similarly, proteins capable of inhibiting a 191P4D12(b) gene transcription factor are used to inhibit 191P4D12(b) mRNA transcription. The various polynucleotides and compositions useful in the aforementioned methods have been described above. The use of antisense and ribozyme molecules to inhibit transcription and translation is well known in the art.
  • Other factors that inhibit the transcription of 191P4D12(b) by interfering with 191P4D12(b) transcriptional activation are also useful to treat cancers expressing 191P4D12(b). Similarly, factors that interfere with 191P4D12(b) processing are useful to treat cancers that express 191P4D12(b). Cancer treatment methods utilizing such factors are also within the scope of the invention.
  • XII.D.) General Considerations for Therapeutic Strategies
  • Gene transfer and gene therapy technologies can be used to deliver therapeutic polynucleotide molecules to tumor cells synthesizing 191P4D12(b) (i.e., antisense, ribozyme, polynucleotides encoding intrabodies and other 191P4D12(b) inhibitory molecules). A number of gene therapy approaches are known in the art. Recombinant vectors encoding 191P4D12(b) antisense polynucleotides, ribozymes, factors capable of interfering with 191P4D12(b) transcription, and so forth, can be delivered to target tumor cells using such gene therapy approaches.
  • The above therapeutic approaches can be combined with any one of a wide variety of surgical, chemotherapy or radiation therapy regimens. The therapeutic approaches of the invention can enable the use of reduced dosages of chemotherapy (or other therapies) and/or less frequent administration, an advantage for all patients and particularly for those that do not tolerate the toxicity of the chemotherapeutic agent well.
  • The anti-tumor activity of a particular composition (e.g., antisense, ribozyme, intrabody), or a combination of such compositions, can be evaluated using various in vitro and in vivo assay systems. In vitro assays that evaluate therapeutic activity include cell growth assays, soft agar assays and other assays indicative of tumor promoting activity, binding assays capable of determining the extent to which a therapeutic composition will inhibit the binding of 191P4D12(b) to a binding partner, etc.
  • In vivo, the effect of a 191P4D12(b) therapeutic composition can be evaluated in a suitable animal model. For example, xenogenic prostate cancer models can be used, wherein human prostate cancer explants or passaged xenograft tissues are introduced into immune compromised animals, such as nude or SCID mice (Klein et al., 1997, Nature Medicine 3: 402-408). For example, PCT Patent Application WO98/16628 and U.S. Pat. No. 6,107,540 describe various xenograft models of human prostate cancer capable of recapitulating the development of primary tumors, micrometastasis, and the formation of osteoblastic metastases characteristic of late stage disease. Efficacy can be predicted using assays that measure inhibition of tumor formation, tumor regression or metastasis, and the like.
  • In vivo assays that evaluate the promotion of apoptosis are useful in evaluating therapeutic compositions. In one embodiment, xenografts from tumor bearing mice treated with the therapeutic composition can be examined for the presence of apoptotic foci and compared to untreated control xenograft-bearing mice. The extent to which apoptotic foci are found in the tumors of the treated mice provides an indication of the therapeutic efficacy of the composition.
  • The therapeutic compositions used in the practice of the foregoing methods can be formulated into pharmaceutical compositions comprising a carrier suitable for the desired delivery method. Suitable carriers include any material that when combined with the therapeutic composition retains the anti-tumor function of the therapeutic composition and is generally non-reactive with the patient's immune system. Examples include, but are not limited to, any of a number of standard pharmaceutical carriers such as sterile phosphate buffered saline solutions, bacteriostatic water, and the like (see, generally, Remington's Pharmaceutical Sciences 16th Edition, A. Osal., Ed., 1980).
  • Therapeutic formulations can be solubilized and administered via any route capable of delivering the therapeutic composition to the tumor site. Potentially effective routes of administration include, but are not limited to, intravenous, parenteral, intraperitoneal, intramuscular, intratumor, intradermal, intraorgan, orthotopic, and the like. A preferred formulation for intravenous injection comprises the therapeutic composition in a solution of preserved bacteriostatic water, sterile unpreserved water, and/or diluted in polyvinylchloride or polyethylene bags containing 0.9% sterile Sodium Chloride for Injection, USP. Therapeutic protein preparations can be lyophilized and stored as sterile powders, preferably under vacuum, and then reconstituted in bacteriostatic water (containing for example, benzyl alcohol preservative) or in sterile water prior to injection.
  • Dosages and administration protocols for the treatment of cancers using the foregoing methods will vary with the method and the target cancer, and will generally depend on a number of other factors appreciated in the art.
  • XIII.) Identification, Characterization and Use of Modulators of 191P4D12(b)
  • Methods to Identify and Use Modulators
  • In one embodiment, screening is performed to identify modulators that induce or suppress a particular expression profile, suppress or induce specific pathways, preferably generating the associated phenotype thereby. In another embodiment, having identified differentially expressed genes important in a particular state; screens are performed to identify modulators that alter expression of individual genes, either increase or decrease. In another embodiment, screening is performed to identify modulators that alter a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gene in a particular state, screens are performed to identify agents that bind and/or modulate the biological activity of the gene product.
  • In addition, screens are done for genes that are induced in response to a candidate agent. After identifying a modulator (one that suppresses a cancer expression pattern leading to a normal expression pattern, or a modulator of a cancer gene that leads to expression of the gene as in normal tissue) a screen is performed to identify genes that are specifically modulated in response to the agent. Comparing expression profiles between normal tissue and agent-treated cancer tissue reveals genes that are not expressed in normal tissue or cancer tissue, but are expressed in agent treated tissue, and vice versa. These agent-specific sequences are identified and used by methods described herein for cancer genes or proteins. In particular these sequences and the proteins they encode are used in marking or identifying agent-treated cells. In addition, antibodies are raised against the agent-induced proteins and used to target novel therapeutics to the treated cancer tissue sample.
  • Modulator-Related Identification and Screening Assays:
  • Gene Expression-Related Assays
  • Proteins, nucleic acids, and antibodies of the invention are used in screening assays. The cancer-associated proteins, antibodies, nucleic acids, modified proteins and cells containing these sequences are used in screening assays, such as evaluating the effect of drug candidates on a “gene expression profile,” expression profile of polypeptides or alteration of biological function. In one embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent (e.g., Davis, G F, et al, J Biol Screen 7:69 (2002); Zlokarnik, et al., Science 279:84-8 (1998); Heid, Genome Res 6:986-94, 1996).
  • The cancer proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified cancer proteins or genes are used in screening assays. That is, the present invention comprises methods for screening for compositions which modulate the cancer phenotype or a physiological function of a cancer protein of the invention. This is done on a gene itself or by evaluating the effect of drug candidates on a “gene expression profile” or biological function. In one embodiment, expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring after treatment with a candidate agent, see Zlokarnik, supra.
  • A variety of assays are executed directed to the genes and proteins of the invention. Assays are run on an individual nucleic acid or protein level. That is, having identified a particular gene as up regulated in cancer, test compounds are screened for the ability to modulate gene expression or for binding to the cancer protein of the invention. “Modulation” in this context includes an increase or a decrease in gene expression. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tissue undergoing cancer, with changes of at least 10%, preferably 50%, more preferably 100-300%, and in some embodiments 300-1000% or greater. Thus, if a gene exhibits a 4-fold increase in cancer tissue compared to normal tissue, a decrease of about four-fold is often desired; similarly, a 10-fold decrease in cancer tissue compared to normal tissue a target value of a 10-fold increase in expression by the test compound is often desired. Modulators that exacerbate the type of gene expression seen in cancer are also useful, e.g., as an upregulated target in further analyses.
  • The amount of gene expression is monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, a gene product itself is monitored, e.g., through the use of antibodies to the cancer protein and standard immunoassays. Proteomics and separation techniques also allow for quantification of expression.
  • Expression Monitoring to Identify Compounds that Modify Gene Expression
  • In one embodiment, gene expression monitoring, i.e., an expression profile, is monitored simultaneously for a number of entities. Such profiles will typically involve one or more of the genes of FIG. 2. In this embodiment, e.g., cancer nucleic acid probes are attached to biochips to detect and quantify cancer sequences in a particular cell. Alternatively, PCR can be used. Thus, a series, e.g., wells of a microtiter plate, can be used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well.
  • Expression monitoring is performed to identify compounds that modify the expression of one or more cancer-associated sequences, e.g., a polynucleotide sequence set out in FIG. 2. Generally, a test modulator is added to the cells prior to analysis. Moreover, screens are also provided to identify agents that modulate cancer, modulate cancer proteins of the invention, bind to a cancer protein of the invention, or interfere with the binding of a cancer protein of the invention and an antibody or other binding partner.
  • In one embodiment, high throughput screening methods involve providing a library containing a large number of potential therapeutic compounds (candidate compounds). Such “combinatorial chemical libraries” are then screened in one or more assays to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional “lead compounds,” as compounds for screening, or as therapeutics.
  • In certain embodiments, combinatorial libraries of potential modulators are screened for an ability to bind to a cancer polypeptide or to modulate activity. Conventionally, new chemical entities with useful properties are generated by identifying a chemical compound (called a “lead compound”) with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis.
  • As noted above, gene expression monitoring is conveniently used to test candidate modulators (e.g., protein, nucleic acid or small molecule). After the candidate agent has been added and the cells allowed to incubate for a period, the sample containing a target sequence to be analyzed is, e.g., added to a biochip.
  • If required, the target sequence is prepared using known techniques. For example, a sample is treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR performed as appropriate. For example, an in vitro transcription with labels covalently attached to the nucleotides is performed. Generally, the nucleic acids are labeled with biotin-FITC or PE, or with cy3 or cy5.
  • The target sequence can be labeled with, e.g., a fluorescent, a chemiluminescent, a chemical, or a radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also can be an enzyme, such as alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that is detected. Alternatively, the label is a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also can be a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typically removed prior to analysis.
  • As will be appreciated by those in the art, these assays can be direct hybridization assays or can comprise “sandwich assays”, which include the use of multiple probes, as is generally outlined in U.S. Pat. Nos. 5,681,702; 5,597,909; 5,545,730; 5,594,117; 5,591,584; 5,571,670; 5,580,731; 5,571,670; 5,591,584; 5,624,802; 5,635,352; 5,594,118; 5,359,100; 5,124,246; and 5,681,697. In this embodiment, in general, the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.
  • A variety of hybridization conditions are used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allow formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration pH, organic solvent concentration, etc. These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Pat. No. 5,681,697. Thus, it can be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.
  • The reactions outlined herein can be accomplished in a variety of ways. Components of the reaction can be added simultaneously, or sequentially, in different orders, with preferred embodiments outlined below. In addition, the reaction may include a variety of other reagents. These include salts, buffers, neutral proteins, e.g. albumin, detergents, etc. which can be used to facilitate optimal hybridization and detection, and/or reduce nonspecific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may also be used as appropriate, depending on the sample preparation methods and purity of the target. The assay data are analyzed to determine the expression levels of individual genes, and changes in expression levels as between states, forming a gene expression profile.
  • Biological Activity-Related Assays
  • The invention provides methods identify or screen for a compound that modulates the activity of a cancer-related gene or protein of the invention. The methods comprise adding a test compound, as defined above, to a cell comprising a cancer protein of the invention. The cells contain a recombinant nucleic acid that encodes a cancer protein of the invention. In another embodiment, a library of candidate agents is tested on a plurality of cells.
  • In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, e.g. hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiation, carcinogenics, or other cells (i.e., cell-cell contacts). In another example, the determinations are made at different stages of the cell cycle process. In this way, compounds that modulate genes or proteins of the invention are identified. Compounds with pharmacological activity are able to enhance or interfere with the activity of the cancer protein of the invention. Once identified, similar structures are evaluated to identify critical structural features of the compound.
  • In one embodiment, a method of modulating (e.g., inhibiting) cancer cell division is provided; the method comprises administration of a cancer modulator. In another embodiment, a method of modulating (e.g., inhibiting) cancer is provided; the method comprises administration of a cancer modulator. In a further embodiment, methods of treating cells or individuals with cancer are provided; the method comprises administration of a cancer modulator.
  • In one embodiment, a method for modulating the status of a cell that expresses a gene of the invention is provided. As used herein status comprises such art-accepted parameters such as growth, proliferation, survival, function, apoptosis, senescence, location, enzymatic activity, signal transduction, etc. of a cell. In one embodiment, a cancer inhibitor is an antibody as discussed above. In another embodiment, the cancer inhibitor is an antisense molecule. A variety of cell growth, proliferation, and metastasis assays are known to those of skill in the art, as described herein.
  • High Throughput Screening to Identify Modulators
  • The assays to identify suitable modulators are amenable to high throughput screening. Preferred assays thus detect enhancement or inhibition of cancer gene transcription, inhibition or enhancement of polypeptide expression, and inhibition or enhancement of polypeptide activity.
  • In one embodiment, modulators evaluated in high throughput screening methods are proteins, often naturally occurring proteins or fragments of naturally occurring proteins. Thus, e.g., cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, are used. In this way, libraries of proteins are made for screening in the methods of the invention. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred. Particularly useful test compound will be directed to the class of proteins to which the target belongs, e.g., substrates for enzymes, or ligands and receptors.
  • Use of Soft Agar Growth and Colony Formation to Identify and Characterize Modulators
  • Normal cells require a solid substrate to attach and grow. When cells are transformed, they lose this phenotype and grow detached from the substrate. For example, transformed cells can grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft agar. The transformed cells, when transfected with tumor suppressor genes, can regenerate normal phenotype and once again require a solid substrate to attach to and grow. Soft agar growth or colony formation in assays are used to identify modulators of cancer sequences, which when expressed in host cells, inhibit abnormal cellular proliferation and transformation. A modulator reduces or eliminates the host cells' ability to grow suspended in solid or semisolid media, such as agar.
  • Techniques for soft agar growth or colony formation in suspension assays are described in Freshney, Culture of Animal Cells a Manual of Basic Technique (3rd ed., 1994). See also, the methods section of Garkavtsev et al. (1996), supra.
  • Evaluation of Contact Inhibition and Growth Density Limitation to Identify and Characterize Modulators
  • Normal cells typically grow in a flat and organized pattern in cell culture until they touch other cells. When the cells touch one another, they are contact inhibited and stop growing. Transformed cells, however, are not contact inhibited and continue to grow to high densities in disorganized foci. Thus, transformed cells grow to a higher saturation density than corresponding normal cells. This is detected morphologically by the formation of a disoriented monolayer of cells or cells in foci. Alternatively, labeling index with (3H)-thymidine at saturation density is used to measure density limitation of growth, similarly an MTT or Alamar blue assay will reveal proliferation capacity of cells and the ability of modulators to affect same. See Freshney (1994), supra. Transformed cells, when transfected with tumor suppressor genes, can regenerate a normal phenotype and become contact inhibited and would grow to a lower density.
  • In this assay, labeling index with 3H)-thymidine at saturation density is a preferred method of measuring density limitation of growth. Transformed host cells are transfected with a cancer-associated sequence and are grown for 24 hours at saturation density in non-limiting medium conditions. The percentage of cells labeling with (3H)-thymidine is determined by incorporated cpm.
  • Contact independent growth is used to identify modulators of cancer sequences, which had led to abnormal cellular proliferation and transformation. A modulator reduces or eliminates contact independent growth, and returns the cells to a normal phenotype.
  • Evaluation of Growth Factor or Serum Dependence to Identify and Characterize Modulators
  • Transformed cells have lower serum dependence than their normal counterparts (see, e.g., Temin, J. Natl. Cancer Inst. 37:167-175 (1966); Eagle et al., J. Exp. Med. 131:836-879 (1970)); Freshney, supra. This is in part due to release of various growth factors by the transformed cells. The degree of growth factor or serum dependence of transformed host cells can be compared with that of control. For example, growth factor or serum dependence of a cell is monitored in methods to identify and characterize compounds that modulate cancer-associated sequences of the invention.
  • Use of Tumor-Specific Marker Levels to Identify and Characterize Modulators
  • Tumor cells release an increased amount of certain factors (hereinafter “tumor specific markers”) than their normal counterparts. For example, plasminogen activator (PA) is released from human glioma at a higher level than from normal brain cells (see, e.g., Gullino, Angiogenesis, Tumor Vascularization, and Potential Interference with Tumor Growth, in Biological Responses in Cancer, pp. 178-184 (Mihich (ed.) 1985)). Similarly, Tumor Angiogenesis Factor (TAF) is released at a higher level in tumor cells than their normal counterparts. See, e.g., Folkman, Angiogenesis and Cancer, Sem Cancer Biol. (1992)), while bFGF is released from endothelial tumors (Ensoli, B et al).
  • Various techniques which measure the release of these factors are described in Freshney (1994), supra. Also, see, Unkless et al., J. Biol. Chem. 249:4295-4305 (1974); Strickland & Beers, J. Biol. Chem. 251:5694-5702 (1976); Whur et al., Br. J. Cancer 42:305 312 (1980); Gullino, Angiogenesis, Tumor Vascularization, and Potential Interference with Tumor Growth, in Biological Responses in Cancer, pp. 178-184 (Mihich (ed.) 1985); Freshney, Anticancer Res. 5:111-130 (1985). For example, tumor specific marker levels are monitored in methods to identify and characterize compounds that modulate cancer-associated sequences of the invention.
  • Invasiveness into Matrigel to Identify and Characterize Modulators
  • The degree of invasiveness into Matrigel or an extracellular matrix constituent can be used as an assay to identify and characterize compounds that modulate cancer associated sequences. Tumor cells exhibit a positive correlation between malignancy and invasiveness of cells into Matrigel or some other extracellular matrix constituent. In this assay, tumorigenic cells are typically used as host cells. Expression of a tumor suppressor gene in these host cells would decrease invasiveness of the host cells. Techniques described in Cancer Res. 1999; 59:6010; Freshney (1994), supra, can be used. Briefly, the level of invasion of host cells is measured by using filters coated with Matrigel or some other extracellular matrix constituent. Penetration into the gel, or through to the distal side of the filter, is rated as invasiveness, and rated histologically by number of cells and distance moved, or by prelabeling the cells with 125I and counting the radioactivity on the distal side of the filter or bottom of the dish. See, e.g., Freshney (1984), supra.
  • Evaluation of Tumor Growth In Vivo to Identify and Characterize Modulators
  • Effects of cancer-associated sequences on cell growth are tested in transgenic or immune-suppressed organisms. Transgenic organisms are prepared in a variety of art-accepted ways. For example, knock-out transgenic organisms, e.g., mammals such as mice, are made, in which a cancer gene is disrupted or in which a cancer gene is inserted. Knock-out transgenic mice are made by insertion of a marker gene or other heterologous gene into the endogenous cancer gene site in the mouse genome via homologous recombination. Such mice can also be made by substituting the endogenous cancer gene with a mutated version of the cancer gene, or by mutating the endogenous cancer gene, e.g., by exposure to carcinogens.
  • To prepare transgenic chimeric animals, e.g., mice, a DNA construct is introduced into the nuclei of embryonic stem cells. Cells containing the newly engineered genetic lesion are injected into a host mouse embryo, which is re-implanted into a recipient female. Some of these embryos develop into chimeric mice that possess germ cells some of which are derived from the mutant cell line. Therefore, by breeding the chimeric mice it is possible to obtain a new line of mice containing the introduced genetic lesion (see, e.g., Capecchi et al., Science 244:1288 (1989)). Chimeric mice can be derived according to U.S. Pat. No. 6,365,797, issued 2 Apr. 2002; U.S. Pat. No. 6,107,540 issued 22 Aug. 2000; Hogan et al., Manipulating the Mouse Embryo: A laboratory Manual, Cold Spring Harbor Laboratory (1988) and Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, ed., IRL Press, Washington, D.C., (1987).
  • Alternatively, various immune-suppressed or immune-deficient host animals can be used. For example, a genetically athymic “nude” mouse (see, e.g., Giovanella et al., J. Natl. Cancer Inst. 52:921 (1974)), a SCID mouse, a thymectornized mouse, or an irradiated mouse (see, e.g., Bradley et al., Br. J. Cancer 38:263 (1978); Selby et al., Br. J. Cancer 41:52 (1980)) can be used as a host. Transplantable tumor cells (typically about 106 cells) injected into isogenic hosts produce invasive tumors in a high proportion of cases, while normal cells of similar origin will not. In hosts which developed invasive tumors, cells expressing cancer-associated sequences are injected subcutaneously or orthotopically. Mice are then separated into groups, including control groups and treated experimental groups) e.g. treated with a modulator). After a suitable length of time, preferably 4-8 weeks, tumor growth is measured (e.g., by volume or by its two largest dimensions, or weight) and compared to the control. Tumors that have statistically significant reduction (using, e.g., Student's T test) are said to have inhibited growth.
  • In Vitro Assays to Identify and Characterize Modulators
  • Assays to identify compounds with modulating activity can be performed in vitro. For example, a cancer polypeptide is first contacted with a potential modulator and incubated for a suitable amount of time, e.g., from 0.5 to 48 hours. In one embodiment, the cancer polypeptide levels are determined in vitro by measuring the level of protein or mRNA. The level of protein is measured using immunoassays such as Western blotting, ELISA and the like with an antibody that selectively binds to the cancer polypeptide or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e.g., Northern hybridization, RNAse protection, dot blotting, are preferred. The level of protein or mRNA is detected using directly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein.
  • Alternatively, a reporter gene system can be devised using a cancer protein promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or P-gal. The reporter construct is typically transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art (Davis G F, supra; Gonzalez, J. & Negulescu, P. Curr. Opin. Biotechnol. 1998: 9:624).
  • As outlined above, in vitro screens are done on individual genes and gene products. That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene or the gene product itself is performed.
  • In one embodiment, screening for modulators of expression of specific gene(s) is performed. Typically, the expression of only one or a few genes is evaluated. In another embodiment, screens are designed to first find compounds that bind to differentially expressed proteins. These compounds are then evaluated for the ability to modulate differentially expressed activity. Moreover, once initial candidate compounds are identified, variants can be further screened to better evaluate structure activity relationships.
  • Binding Assays to Identify and Characterize Modulators
  • In binding assays in accordance with the invention, a purified or isolated gene product of the invention is generally used. For example, antibodies are generated to a protein of the invention, and immunoassays are run to determine the amount and/or location of protein. Alternatively, cells comprising the cancer proteins are used in the assays.
  • Thus, the methods comprise combining a cancer protein of the invention and a candidate compound such as a ligand, and determining the binding of the compound to the cancer protein of the invention. Preferred embodiments utilize the human cancer protein; animal models of human disease of can also be developed and used. Also, other analogous mammalian proteins also can be used as appreciated by those of skill in the art. Moreover, in some embodiments variant or derivative cancer proteins are used.
  • Generally, the cancer protein of the invention, or the ligand, is non-diffusibly bound to an insoluble support. The support can, e.g., be one having isolated sample receiving areas (a microtiter plate, an array, etc.). The insoluble supports can be made of any composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports can be solid or porous and of any convenient shape.
  • Examples of suitable insoluble supports include microtiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharide, nylon, nitrocellulose, or Teflon™, etc. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition to the support is not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition and is nondiffusable. Preferred methods of binding include the use of antibodies which do not sterically block either the ligand binding site or activation sequence when attaching the protein to the support, direct binding to “sticky” or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or ligand/binding agent to the support, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.
  • Once a cancer protein of the invention is bound to the support, and a test compound is added to the assay. Alternatively, the candidate binding agent is bound to the support and the cancer protein of the invention is then added. Binding agents include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc.
  • Of particular interest are assays to identify agents that have a low toxicity for human cells. A wide variety of assays can be used for this purpose, including proliferation assays, cAMP assays, labeled in vitro protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.
  • A determination of binding of the test compound (ligand, binding agent, modulator, etc.) to a cancer protein of the invention can be done in a number of ways. The test compound can be labeled, and binding determined directly, e.g., by attaching all or a portion of the cancer protein of the invention to a solid support, adding a labeled candidate compound (e.g., a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps can be utilized as appropriate.
  • In certain embodiments, only one of the components is labeled, e.g., a protein of the invention or ligands labeled. Alternatively, more than one component is labeled with different labels, e.g., I125, for the proteins and a fluorophor for the compound. Proximity reagents, e.g., quenching or energy transfer reagents are also useful.
  • Competitive Binding to Identify and Characterize Modulators
  • In one embodiment, the binding of the “test compound” is determined by competitive binding assay with a “competitor.” The competitor is a binding moiety that binds to the target molecule (e.g., a cancer protein of the invention). Competitors include compounds such as antibodies, peptides, binding partners, ligands, etc. Under certain circumstances, the competitive binding between the test compound and the competitor displaces the test compound. In one embodiment, the test compound is labeled. Either the test compound, the competitor, or both, is added to the protein for a time sufficient to allow binding. Incubations are performed at a temperature that facilitates optimal activity, typically between four and 40° C. Incubation periods are typically optimized, e.g., to facilitate rapid high throughput screening; typically between zero and one hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.
  • In one embodiment, the competitor is added first, followed by the test compound. Displacement of the competitor is an indication that the test compound is binding to the cancer protein and thus is capable of binding to, and potentially modulating, the activity of the cancer protein. In this embodiment, either component can be labeled. Thus, e.g., if the competitor is labeled, the presence of label in the post-test compound wash solution indicates displacement by the test compound. Alternatively, if the test compound is labeled, the presence of the label on the support indicates displacement.
  • In an alternative embodiment, the test compound is added first, with incubation and washing, followed by the competitor. The absence of binding by the competitor indicates that the test compound binds to the cancer protein with higher affinity than the competitor. Thus, if the test compound is labeled, the presence of the label on the support, coupled with a lack of competitor binding, indicates that the test compound binds to and thus potentially modulates the cancer protein of the invention.
  • Accordingly, the competitive binding methods comprise differential screening to identity agents that are capable of modulating the activity of the cancer proteins of the invention. In this embodiment, the methods comprise combining a cancer protein and a competitor in a first sample. A second sample comprises a test compound, the cancer protein, and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the cancer protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the cancer protein.
  • Alternatively, differential screening is used to identify drug candidates that bind to the native cancer protein, but cannot bind to modified cancer proteins. For example the structure of the cancer protein is modeled and used in rational drug design to synthesize agents that interact with that site, agents which generally do not bind to site-modified proteins. Moreover, such drug candidates that affect the activity of a native cancer protein are also identified by screening drugs for the ability to either enhance or reduce the activity of such proteins.
  • Positive controls and negative controls can be used in the assays. Preferably control and test samples are performed in at least triplicate to obtain statistically significant results. Incubation of all samples occurs for a time sufficient to allow for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples can be counted in a scintillation counter to determine the amount of bound compound.
  • A variety of other reagents can be included in the screening assays. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc. which are used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., can be used. The mixture of components is added in an order that provides for the requisite binding.
  • Use of Polynucleotides to Down-Regulate or Inhibit a Protein of the Invention.
  • Polynucleotide modulators of cancer can be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand-binding molecule, as described in WO 91/04753. Suitable ligand-binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a polynucleotide modulator of cancer can be introduced into a cell containing the target nucleic acid sequence, e.g., by formation of a polynucleotide-lipid complex, as described in WO 90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.
  • Inhibitory and Antisense Nucleotides
  • In certain embodiments, the activity of a cancer-associated protein is down-regulated, or entirely inhibited, by the use of antisense polynucleotide or inhibitory small nuclear RNA (snRNA), i.e., a nucleic acid complementary to, and which can preferably hybridize specifically to, a coding mRNA nucleic acid sequence, e.g., a cancer protein of the invention, mRNA, or a subsequence thereof. Binding of the antisense polynucleotide to the mRNA reduces the translation and/or stability of the mRNA.
  • In the context of this invention, antisense polynucleotides can comprise naturally occurring nucleotides, or synthetic species formed from naturally occurring subunits or their close homologs. Antisense polynucleotides may also have altered sugar moieties or inter-sugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species which are known for use in the art. Analogs are comprised by this invention so long as they function effectively to hybridize with nucleotides of the invention. See, e.g., Isis Pharmaceuticals, Carlsbad, Calif.; Sequitor, Inc., Natick, Mass.
  • Such antisense polynucleotides can readily be synthesized using recombinant means, or can be synthesized in vitro. Equipment for such synthesis is sold by several vendors, including Applied Biosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated derivatives is also well known to those of skill in the art.
  • Antisense molecules as used herein include antisense or sense oligonucleotides. Sense oligonucleotides can, e.g., be employed to block transcription by binding to the anti-sense strand. The antisense and sense oligonucleotide comprise a single stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for cancer molecules. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 12 nucleotides, preferably from about 12 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, e.g., Stein &Cohen (Cancer Res. 48:2659 (1988 and van der Krol et al. (BioTechniques 6:958 (1988)).
  • Ribozymes
  • In addition to antisense polynucleotides, ribozymes can be used to target and inhibit transcription of cancer-associated nucleotide sequences. A ribozyme is an RNA molecule that catalytically cleaves other RNA molecules. Different kinds of ribozymes have been described, including group I ribozymes, hammerhead ribozymes, hairpin ribozymes, RNase P, and axhead ribozymes (see, e.g., Castanotto et al., Adv. in Pharmacology 25: 289-317 (1994) for a general review of the properties of different ribozymes).
  • The general features of hairpin ribozymes are described, e.g., in Hampel et al., Nucl. Acids Res. 18:299-304 (1990); European Patent Publication No. 0360257; U.S. Pat. No. 5,254,678. Methods of preparing are well known to those of skill in the art (see, e.g., WO 94/26877; Ojwang et al., Proc. Natl. Acad. Sci. USA 90:6340-6344 (1993); Yamada et al., Human Gene Therapy 1:39-45 (1994); Leavitt et al., Proc. Natl. Acad. Sci. USA 92:699-703 (1995); Leavitt et al., Human Gene Therapy 5: 1151-120 (1994); and Yamada et al., Virology 205: 121-126 (1994)).
  • Use of Modulators in Phenotypic Screening
  • In one embodiment, a test compound is administered to a population of cancer cells, which have an associated cancer expression profile. By “administration” or “contacting” herein is meant that the modulator is added to the cells in such a manner as to allow the modulator to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, a nucleic acid encoding a proteinaceous agent (i.e., a peptide) is put into a viral construct such as an adenoviral or retroviral construct, and added to the cell, such that expression of the peptide agent is accomplished, e.g., PCT US97/01019. Regulatable gene therapy systems can also be used. Once the modulator has been administered to the cells, the cells are washed if desired and are allowed to incubate under preferably physiological conditions for some period. The cells are then harvested and a new gene expression profile is generated. Thus, e.g., cancer tissue is screened for agents that modulate, e.g., induce or suppress, the cancer phenotype. A change in at least one gene, preferably many, of the expression profile indicates that the agent has an effect on cancer activity. Similarly, altering a biological function or a signaling pathway is indicative of modulator activity. By defining such a signature for the cancer phenotype, screens for new drugs that alter the phenotype are devised. With this approach, the drug target need not be known and need not be represented in the original gene/protein expression screening platform, nor does the level of transcript for the target protein need to change. The modulator inhibiting function will serve as a surrogate marker
  • As outlined above, screens are done to assess genes or gene products. That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of either the expression of the gene or the gene product itself is performed.
  • Use of Modulators to Affect Peptides of the Invention
  • Measurements of cancer polypeptide activity, or of the cancer phenotype are performed using a variety of assays. For example, the effects of modulators upon the function of a cancer polypeptide(s) are measured by examining parameters described above. A physiological change that affects activity is used to assess the influence of a test compound on the polypeptides of this invention. When the functional outcomes are determined using intact cells or animals, a variety of effects can be assesses such as, in the case of a cancer associated with solid tumors, tumor growth, tumor metastasis, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., by Northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGNIP.
  • Methods of Identifying Characterizing Cancer-Associated Sequences
  • Expression of various gene sequences is correlated with cancer. Accordingly, disorders based on mutant or variant cancer genes are determined. In one embodiment, the invention provides methods for identifying cells containing variant cancer genes, e.g., determining the presence of, all or part, the sequence of at least one endogenous cancer gene in a cell. This is accomplished using any number of sequencing techniques. The invention comprises methods of identifying the cancer genotype of an individual, e.g., determining all or part of the sequence of at least one gene of the invention in the individual. This is generally done in at least one tissue of the individual, e.g., a tissue set forth in Table I, and may include the evaluation of a number of tissues or different samples of the same tissue. The method may include comparing the sequence of the sequenced gene to a known cancer gene, i.e., a wild-type gene to determine the presence of family members, homologies, mutations or variants. The sequence of all or part of the gene can then be compared to the sequence of a known cancer gene to determine if any differences exist. This is done using any number of known homology programs, such as BLAST, Bestfit, etc. The presence of a difference in the sequence between the cancer gene of the patient and the known cancer gene correlates with a disease state or a propensity for a disease state, as outlined herein.
  • In a preferred embodiment, the cancer genes are used as probes to determine the number of copies of the cancer gene in the genome. The cancer genes are used as probes to determine the chromosomal localization of the cancer genes. Information such as chromosomal localization finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in the cancer gene locus.
  • XIV.) Kits/Articles of Manufacture
  • For use in the diagnostic and therapeutic applications described herein, kits are also within the scope of the invention. Such kits can comprise a carrier, package, or container that is compartmentalized to receive one or more containers such as vials, tubes, and the like, each of the container(s) comprising one of the separate elements to be used in the method. For example, the container(s) can comprise a probe that is or can be detectably labeled. Such probe can be an antibody or polynucleotide specific for a FIG. 2-related protein or a FIG. 2 gene or message, respectively. Where the method utilizes nucleic acid hybridization to detect the target nucleic acid, the kit can also have containers containing nucleotide(s) for amplification of the target nucleic acid sequence and/or a container comprising a reporter-means, such as a biotin-binding protein, such as avidin or streptavidin, bound to a reporter molecule, such as an enzymatic, florescent, or radioisotope label. The kit can include all or part of the amino acid sequences in FIG. 2 or FIG. 3 or analogs thereof, or a nucleic acid molecules that encodes such amino acid sequences.
  • The kit of the invention will typically comprise the container described above and one or more other containers comprising materials desirable from a commercial and user standpoint, including buffers, diluents, filters, needles, syringes; carrier, package, container, vial and/or tube labels listing contents and/or instructions for use, and package inserts with instructions for use.
  • A label can be present on the container to indicate that the composition is used for a specific therapy or non-therapeutic application, such as a diagnostic or laboratory application, and can also indicate directions for either in vivo or in vitro use, such as those described herein. Directions and or other information can also be included on an insert(s) or label(s) which is included with or on the kit.
  • The terms “kit” and “article of manufacture” can be used as synonyms.
  • In another embodiment of the invention, an article(s) of manufacture containing compositions, such as amino acid sequence(s), small molecule(s), nucleic acid sequence(s), and/or antibody(s), e.g., materials useful for the diagnosis, prognosis, prophylaxis and/or treatment of neoplasias of tissues such as those set forth in Table I is provided. The article of manufacture typically comprises at least one container and at least one label. Suitable containers include, for example, bottles, vials, syringes, and test tubes. The containers can be formed from a variety of materials such as glass or plastic. The container can hold amino acid sequence(s), small molecule(s), nucleic acid sequence(s), and/or antibody(s), in one embodiment the container holds a polynucleotide for use in examining the mRNA expression profile of a cell, together with reagents used for this purpose.
  • The container can alternatively hold a composition which is effective for treating, diagnosis, prognosing or prophylaxing a condition and can have a sterile access port (for example the container can be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). The active agents in the composition can be an antibody capable of specifically binding 191P4D12(b) and modulating the function of 191P4D12(b).
  • The label can be on or associated with the container. A label a can be on a container when letters, numbers or other characters forming the label are molded or etched into the container itself; a label can be associated with a container when it is present within a receptacle or carrier that also holds the container, e.g., as a package insert. The label can indicate that the composition is used for diagnosing, treating, prophylaxing or prognosing a condition, such as a neoplasia of a tissue set forth in Table I. The article of manufacture can further comprise a second container comprising a pharmaceutically-acceptable buffer, such as phosphate-buffered saline, Ringer's solution and/ordextrose solution. It can further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, stirrers, needles, syringes, and/or package inserts with indications and/or instructions for use.
  • EXAMPLES
  • Various aspects of the invention are further described and illustrated by way of the several examples that follow, none of which are intended to limit the scope of the invention.
  • Example 1 SSH-Generated Isolation of cDNA Fragment of the 191P4D12(b) Gene
  • To isolate genes that are over-expressed in prostate cancer we used the Suppression Subtractive Hybridization (SSH) procedure using cDNA derived from prostate cancer tissues. The 191P4D12(b) SSH cDNA sequence was derived from bladder tumor minus cDNAs derived from a pool of 9 normal tissues. The 191P4D12(b) cDNA was identified as highly expressed in the bladder cancer.
  • Materials and Methods
  • Human Tissues:
  • The patient cancer and normal tissues were purchased from different sources such as the NDRI (Philadelphia, Pa.). mRNA for some normal tissues were purchased from Clontech, Palo Alto, Calif.
  • RNA Isolation:
  • Tissues were homogenized in Trizol reagent (Life Technologies, Gibco BRL) using 10 ml/g tissue isolate total RNA. Poly A RNA was purified from total RNA using Qiagen's Oligotex mRNA Mini and Midi kits. Total and mRNA were quantified by spectrophotometric analysis (O.D. 260/280 nm) and analyzed by gel electrophoresis.
  • Oligonucleotides:
  • The following HPLC purified oligonucleotides were used.
  • DPNCDN (cDNA Synthesis Primer):
  • 5′TTTTGATCAAGCTT 303′ (SEQ ID NO: 48)
  • Adaptor 1:
  • (SEQ ID NO: 49)
    5′CTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGCAG3′
    (SEQ ID NO: 50)
    3′GGCCCGTCCTAG5′
  • Adaptor 2:
  • (SEQ ID NO: 51)
    5′GTAATACGACTCACTATAGGGCAGCGTGGTCGCGGCCGAG3′
    (SEQ ID NO: 52)
    3′CGGCTCCTAG5′
  • PCR Primer 1:
  • 5′CTAATACGACTCACTATAGGGC3′ (SEQ ID NO: 53)
  • Nested Primer (NP)1:
  • 5′TCGAGCGGCCGCCCGGGCAGGA3′ (SEQ ID NO: 54)
  • Nested Primer (NP)2:
  • 5′AGCGTGGTCGCGGCCGAGGA3′ (SEQ ID NO: 55)
  • Suppression Subtractive Hybridization:
  • Suppression Subtractive Hybridization (SSH) was used to identify cDNAs corresponding to genes that may be differentially expressed in bladder cancer. The SSH reaction utilized cDNA from bladder cancer and normal tissues.
  • The gene 191P4D12(b) sequence was derived from bladder cancer minus normal tissue cDNA subtraction. The SSH DNA sequence (FIG. 1) was identified.
  • The cDNA derived from of pool of normal tissues was used as the source of the “driver” cDNA, while the cDNA from bladder cancer was used as the source of the “tester” cDNA. Double stranded cDNAs corresponding to tester and driver cDNAs were synthesized from 2 μg of poly(A)+ RNA isolated from the relevant xenograft tissue, as described above, using CLONTECH's PCR-Select cDNA Subtraction Kit and 1 ng of oligonucleotide DPNCDN as primer. First- and second-strand synthesis were carried out as described in the Kit's user manual protocol (CLONTECH Protocol No. PT1117-1, Catalog No. K1804-1). The resulting cDNA was digested with Dpn II for 3 hrs at 37° C. Digested cDNA was extracted with phenol/chloroform (1:1) and ethanol precipitated.
  • Driver cDNA was generated by combining in a 1:1 ratio Dpn II digested cDNA from the relevant tissue source (see above) with a mix of digested cDNAs derived from the nine normal tissues: stomach, skeletal muscle, lung, brain, liver, kidney, pancreas, small intestine, and heart.
  • Tester cDNA was generated by diluting 1 μl of Dpn II digested cDNA from the relevant tissue source (see above) (400 ng) in 5 μl of water. The diluted cDNA (2 μl, 160 ng) was then ligated to 2 μl of Adaptor 1 and Adaptor 2 (10 μM), in separate ligation reactions, in a total volume of 10 μl at 16° C. overnight, using 400 u of T4 DNA ligase (CLONTECH). Ligation was terminated with 1 μl of 0.2 M EDTA and heating at 72° C. for 5 min.
  • The first hybridization was performed by adding 1.5 μl (600 ng) of driver cDNA to each of two tubes containing 1.5 μl (20 ng) Adaptor 1- and Adaptor 2-ligated tester cDNA. In a final volume of 4 μl, the samples were overlaid with mineral oil, denatured in an MJ Research thermal cycler at 98° C. for 1.5 minutes, and then were allowed to hybridize for 8 hrs at 68° C. The two hybridizations were then mixed together with an additional 1 μl of fresh denatured driver cDNA and were allowed to hybridize overnight at 68° C. The second hybridization was then diluted in 200 μl of 20 mM Hepes, pH 8.3, 50 mM NaCl, 0.2 mM EDTA, heated at 70° C. for 7 min. and stored at −20° C.
  • PCR Amplification, Cloning and Sequencing of Gene Fragments Generated from SSH:
  • To amplify gene fragments resulting from SSH reactions, two PCR amplifications were performed. In the primary PCR reaction 1 μl of the diluted final hybridization mix was added to 1 μl of PCR primer 1 (10 μM), 0.5 μl dNTP mix (10 μM), 2.5 μl 10× reaction buffer (CLONTECH) and 0.5 μl 50× Advantage cDNA polymerase Mix (CLONTECH) in a final volume of 25 μl. PCR 1 was conducted using the following conditions: 75° C. for 5 min., 94° C. for 25 sec., then 27 cycles of 94° C. for 10 sec, 66° C. for 30 sec, 72° C. for 1.5 min. Five separate primary PCR reactions were performed for each experiment. The products were pooled and diluted 1:10 with water. For the secondary PCR reaction, 1 μl from the pooled and diluted primary PCR reaction was added to the same reaction mix as used for PCR 1, except that primers NP1 and NP2 (10 μM) were used instead of PCR primer 1. PCR 2 was performed using 10-12 cycles of 94° C. for 10 sec, 68° C. for 30 sec, and 72° C. for 1.5 minutes. The PCR products were analyzed using 2% agarose gel electrophoresis.
  • The PCR products were inserted into pCR2.1 using the T/A vector cloning kit (Invitrogen). Transformed E. coli were subjected to blue/white and ampicillin selection. White colonies were picked and arrayed into 96 well plates and were grown in liquid culture overnight. To identify inserts, PCR amplification was performed on 1 μl of bacterial culture using the conditions of PCR1 and NP1 and NP2 as primers. PCR products were analyzed using 2% agarose gel electrophoresis.
  • Bacterial clones were stored in 20% glycerol in a 96 well format. Plasmid DNA was prepared, sequenced, and subjected to nucleic acid homology searches of the GenBank, dBest, and NCI-CGAP databases.
  • RT-PCR Expression Analysis:
  • First strand cDNAs can be generated from 1 μg of mRNA with oligo (dT)12-18 priming using the Gibco-BRL Superscript Preamplification system. The manufacturer's protocol was used which included an incubation for 50 min at 42° C. with reverse transcriptase followed by RNAse H treatment at 37° C. for 20 min. After completing the reaction, the volume can be increased to 200 μl with water prior to normalization. First strand cDNAs from 16 different normal human tissues can be obtained from Clontech.
  • Normalization of the first strand cDNAs from multiple tissues was performed by using the primers 5′ atatcgccgcgctcgtcgtcgacaa3′ (SEQ ID NO:56) and 5′ agccacacgcagctcattgtagaagg 3′ (SEQ ID NO:57) to amplify β-actin. First strand cDNA (5 μl) were amplified in a total volume of 50 μl containing 0.4 μM primers, 0.2 μM each dNTPs, 1×PCR buffer (Clontech, 10 mM Tris-HCL, 1.5 mM MgCl2, 50 mM KCl, pH8.3) and 1×Klentaq DNA polymerase (Clontech). Five μl of the PCR reaction can be removed at 18, 20, and 22 cycles and used for agarose gel electrophoresis. PCR was performed using an MJ Research thermal cycler under the following conditions: Initial denaturation can be at 94° C. for 15 sec, followed by a 18, 20, and 22 cycles of 94° C. for 15, 65° C. for 2 min, 72° C. for 5 sec. A final extension at 72° C. was carried out for 2 min. After agarose gel electrophoresis, the band intensities of the 283 b.p. β-actin bands from multiple tissues were compared by visual inspection. Dilution factors for the first strand cDNAs were calculated to result in equal β-actin band intensities in all tissues after 22 cycles of PCR. Three rounds of normalization can be required to achieve equal band intensities in all tissues after 22 cycles of PCR.
  • To determine expression levels of the 191P4D12(b) gene, 5 μl of normalized first strand cDNA were analyzed by PCR using 26, and 30 cycles of amplification. Semi-quantitative expression analysis can be achieved by comparing the PCR products at cycle numbers that give light band intensities. The primers used for RT-PCR were designed using the 191P4D12(b) SSH sequence and are listed below:
  • 191P4D12(b).1
  • 5′-GGCTGGAGTTCAATGAGGTTTATTT-3′ (SEQ ID NO: 58)
  • 191P4D12(b).2
  • 5′-TCCAGCAGATTTCAGACTAAGAAGA-3′ (SEQ ID NO: 59)
  • A typical RT-PCR expression analysis is shown in FIG. 14. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), normal kidney, prostate cancer pool, bladder cancer pool, colon cancer pool, lung cancer pool, breast cancer pool and cancer metastasis pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 191P4D12(b), was performed at 26 and 30 cycles of amplification. Results show strong expression of 191P4D12(b) in bladder cancer pool. Expression of 191P4D12(b) was also detected in prostate cancer pool, colon cancer pool, lung cancer pool, breast cancer pool and cancer metastasis pool but very weakly in vital pool 1 and vital pool 2.
  • Example 2 Isolation of Full Length 191P4D12(b) Encoding cDNA
  • The 191P4D12(b) SSH cDNA sequence was derived from a subtraction consisting of bladder cancer minus a mixture of 9 normal tissues: stomach, skeletal muscle, lung, brain, liver, kidney, pancreas, small intestine and heart. The SSH cDNA sequence of 223 by (FIG. 1) was designated 191P4D12(b).
  • 191P4D12(b) v.1 (clone 1A1) of 3464 by was cloned from bladder cancer cDNA library, revealing an ORF of 510 amino acids (FIG. 2 and FIG. 3). Other variants of 191P4D12(b) were also identified and these are listed in FIGS. 2 and 3.
  • 191P4D12(b) v.1, v.2, v.10, v.11, and v.12 proteins are 510 amino acids in length and differ from each other by one amino acid as shown in FIG. 11. 191P4D12(b) v.3, v.4, v.5, and v.8 code for the same protein as 191P4D12(b) v.1. 191P4D12(b) v.6 and v.7 are splice variants and code for proteins of 295 and 485 amino acids, respectively. 191P4D12(b) v.13 clone 9C was cloned from bladder cancer cDNA and has one amino acid insertion at position 334 compared to 191P4D12(b) v.1. 191P4D12(b) v.9 clone BCP1 is a splice variant of 191P4D12(b) v.1 and was cloned from a bladder cancer cDNA library. 191P4D12(b) v.14 is a SNP variant and differs from 191P4D12(b) v.9 by one amino acid as shown in FIG. 2.
  • 191P4D12(b) v.1 shows 99% identity over 2744 to the Ig superfamily receptor LNIR (nectin-4), accession number NM030916. 191P4D12(b) v.9 protein is 100% identical to clone AF218028 with function of inhibiting cancer cell growth.
  • Example 3 Chromosomal Mapping of 191P4D12(b)
  • Chromosomal localization can implicate genes in disease pathogenesis. Several chromosome mapping approaches are available including fluorescent in situ hybridization (FISH), human/hamster radiation hybrid (RH) panels (Walter et al., 1994; Nature Genetics 7:22; Research Genetics, Huntsville Ala.), human-rodent somatic cell hybrid panels such as is available from the Cornell Institute (Camden, N.J.), and genomic viewers utilizing BLAST homologies to sequenced and mapped genomic clones (NCBI, Bethesda, Md.).
  • 191P4D12(b) maps to chromosome 1q22-q23.2 using 191P4D12(b) sequence and the NCBI BLAST tool located on the World Wide Web.
  • Example 4 Expression Analysis of 191P4D12(b) in Normal Tissues and Patient Specimens
  • Expression analysis by RT-PCR demonstrated that 191P4D12(b) is strongly expressed in bladder cancer patient specimens (FIG. 14). First strand cDNA was prepared from (A) vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), normal kidney, prostate cancer pool, bladder cancer pool, colon cancer pool, lung cancer pool, breast cancer pool and cancer metastasis pool; (B) prostate cancer metastasis to lymph node, prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, cancer metastasis pool, pancreas cancer pool, and LAPC prostate xenograft pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 191P4D12(b), was performed at 26 and 30 cycles of amplification. In (A), results show strong expression of 191P4D12(b) in bladder cancer pool. Expression of 191P4D12(b) was also detected in prostate cancer pool, colon cancer pool, lung cancer pool, breast cancer pool and cancer metastasis pool but very weakly in vital pool 1 and vital pool 2. In (B), results show strong expression of 191P4D12(b) in prostate, bladder, kidney, colon, lung, ovary, breast, cancer metastasis, and pancreas cancer specimens.
  • Northern blot analysis is a technique known to those skilled in the art to detect protein production. Northern blotting detects relative levels of mRNA expressed from a gene. Specific mRNA is measured using a nucleic acid hybridization technique and the signal is detected on an autoradiogram. The stronger the signal, the more abundant is the mRNA. For genes that produce mRNA that contains an open reading frame flanked by a good Kozak translation initiation site and a stop codon, in the vast majority of cases the synthesized mRNA is expressed as a protein.
  • The level of expression of the gene is determined in various normal tissues and in various tumor tissues and tumor cell lines using the technique of Northern blotting, which detects production of messenger RNA. It is well known in the art that the production of messenger RNA, that encodes the protein, is a necessary step in the production of the protein itself. Thus, detection of high levels of messenger RNA by, for example, Northern blot, is a way of determining that the protein itself is produced. The Northern blot technique is used as a routine procedure because it does not require the time delays (as compared to Western blotting, immunoblotting or immunohistochemistry) involved in isolating or synthesizing the protein, preparing an immunological composition of the protein, eliciting a humoral immune response, harvesting the antibodies, and verifying the specificity thereof.
  • The Kozak consensus sequence for translation initiation CCACCATGG, where the ATG start codon is noted, is the sequence with the highest established probability of initiating translation. This was confirmed by Peri and Pandey Trends in Genetics (2001) 17: 685-687. The conclusion is consistent with the general knowledge in the art that, with rare exceptions, expression of an mRNA is predictive of expression of its encoded protein. This is particularly true for mRNA with an open reading frame and a Kozak consensus sequence for translation initiation.
  • It is understood in the art that the absolute levels of messenger RNA present and the amounts of protein produced do not always provide a 1:1 correlation. In those instances where the Northern blot has shown mRNA to be present, it is almost always possible to detect the presence of the corresponding protein in the tissue which provided a positive result in the Northern blot. The levels of the protein compared to the levels of the mRNA may be differential, but generally, cells that exhibit detectable mRNA also exhibit detectable corresponding protein and vice versa. This is particularly true where the mRNA has an open reading frame and a good Kozak sequence (See, Peri and Pandey, supra.).
  • Occasionally those skilled in the art encounter a rare occurrence where there is no detectable protein in the presence of corresponding mRNA. (See, Fu, L., et al., Embo. Journal, 15:4392-4401 (1996)). In many cases, a reported lack of protein expression is due to technical limitations of the protein detection assay. These limitations are readily known to those skilled in the art. These limitations include but are not limited to, available antibodies that only detect denatured protein and not native protein present in a cell and unstable proteins with very short half-life. Short-lived proteins are still functional and have been previously described to induce tumor formation. (See, e.g., Reinstein, et al., Oncogene, 19: 5944-5950). In such situations, when more sensitive detection techniques are performed and/or other antibodies are generated, protein expression is detected. When studies fail to take these principles into account, they are likely to report artifactually lowered correlations of mRNA to protein. Outside of these rare exceptions the use of Northern blot analysis is recognized to those skilled in the art to be predictive and indicative of the detection of protein production.
  • Extensive expression of 191P4D12(b) in normal tissues is shown in FIG. 15. Two multiple tissue northern blots (Clontech) both with 2 ug of mRNA/lane were probed with the 191P4D12(b) sequence. Size standards in kilobases (kb) are indicated on the side. Results show expression of an approximately 4 kb transcript in placenta and very weakly in prostate but not in any other normal tissue tested. A smaller 191P4D12(b) transcript of approximately 2.5 kb was detected in heart and skeletal muscle.
  • Expression of 191P4D12(b) in bladder cancer patient specimens and human normal tissues is shown in FIG. 16. RNA was extracted from a pool of 3 bladder cancer patient specimens, as well as from normal prostate (NP), normal bladder (NB), normal kidney (NK), normal colon (NC), normal lung (NL), normal breast (NBr), normal ovary (NO), and normal pancreas (NPa). Northern blot with 10 ug of total RNA/lane was probed with 191P4D12(b) SSH sequence. Size standards in kilobases (kb) are indicated on the side. The 191P4D12(b) transcript was detected in the bladder cancer specimens, but not in the normal tissues tested.
  • Analysis of individual bladder cancer patient specimens is depicted in FIG. 17. RNA was extracted from bladder cancer cell lines (CL), normal bladder (N), and bladder cancer patient tumors (T). Northern blots with 10 ug of total RNA were probed with the 191P4D12(b) SSH fragment. Size standards in kilobases are on the side. Results show expression of the approximately 4 kb 191P4D12(b) transcript in the bladder tumor tissues but not in normal bladder. A smaller transcript was detected in the HT1197 cell line but not in the other cancer cell lines tested.
  • Expression of 191P4D12(b) was also detected in prostate cancer xenograft tissues (FIG. 18). RNA was extracted from normal prostate, and from the prostate cancer xenografts LAPC-4AD, LAPC-4AI, LAPC-9AD, and LAPC-9AI. Northern blots with 10 ug of total RNA were probed with the 191P4D12(b) SSH fragment. Size standards in kilobases are on the side. Results show expression of the approximately 4 kb 191P4D12(b) transcript in all the LAPC xenograft tissues but not in normal prostate.
  • FIG. 19 shows expression of 191P4D12(b) in cervical cancer patient specimens. RNA was extracted from normal cervix, Hela cancer cell line, and 3 cervix cancer patient tumors (T). Northern blots with 10 ug of total RNA were probed with the 191P4D12(b) SSH fragment. Size standards in kilobases are on the side. Results show expression of the approximately 4 kb 191P4D12(b) transcript in 2 out of 3 cervix tumors tested but not in normal cervix nor in the Hela cell line.
  • 191P4D12(b) was also expressed in lung cancer patient specimens (FIG. 20). RNA was extracted from lung cancer cell lines (CL), normal lung (N), bladder cancer patient tumors (T), and normal adjacent tissue (Nat). Northern blots with 10 ug of total RNA were probed with the 191P4D12(b). Size standards in kilobases are on the side. Results show expression of the approximately 4 kb 191P4D12(b) transcript in the lung tumor tissues but not in normal lung nor in the cell lines tested.
  • 191P4D12(b) expression was tested in a panel of individual patient cancer specimens (FIG. 21). First strand cDNA was prepared from a panel of lung cancer specimens (A), bladder cancer specimens (B), prostate cancer specimens (C), colon cancer specimens (D), uterus cancer specimens (E), and cervix cancer specimens (F). Normalization was performed by PCR using primers to actin. Semi-quantitative PCR, using primers to 191P4D12(b) SSH fragment, was performed at 26 and 30 cycles of amplification. Expression level was recorded as 0=no expression detected; 1=weak expression, 2=moderate expression; 3=strong expression. Results show expression of 191P4D12(b) in 97% of the 31 lung cancer patient specimens tested, 94% of 18 bladder cancer patient specimens, 100% of 20 prostate cancer patient specimens, 100% of 22 colon cancer patient specimens, 100% of 12 uterus cancer patient specimens, and 100% of 14 cervix cancer patient specimens tested.
  • The restricted expression of 191P4D12(b) in normal tissues and the expression detected in cancer patient specimens suggest that 191P4D12(b) is a potential therapeutic target and a diagnostic marker for human cancers.
  • Example 5 Transcript Variants of 191P4D12(b)
  • Transcript variants are variants of mature mRNA from the same gene which arise by alternative transcription or alternative splicing. Alternative transcripts are transcripts from the same gene but start transcription at different points. Splice variants are mRNA variants spliced differently from the same transcript. In eukaryotes, when a multi-exon gene is transcribed from genomic DNA, the initial RNA is spliced to produce functional mRNA, which has only exons and is used for translation into an amino acid sequence. Accordingly, a given gene can have zero to many alternative transcripts and each transcript can have zero to many splice variants. Each transcript variant has a unique exon makeup, and can have different coding and/or non-coding (5′ or 3′ end) portions, from the original transcript. Transcript variants can code for similar or different proteins with the same or a similar function or can encode proteins with different functions, and can be expressed in the same tissue at the same time, or in different tissues at the same time, or in the same tissue at different times, or in different tissues at different times. Proteins encoded by transcript variants can have similar or different cellular or extracellular localizations, e.g., secreted versus intracellular.
  • Transcript variants are identified by a variety of art-accepted methods. For example, alternative transcripts and splice variants are identified by full-length cloning experiment, or by use of full-length transcript and EST sequences. First, all human ESTs were grouped into clusters which show direct or indirect identity with each other. Second, ESTs in the same cluster were further grouped into sub-clusters and assembled into a consensus sequence. The original gene sequence is compared to the consensus sequence(s) or other full-length sequences. Each consensus sequence is a potential splice variant for that gene. Even when a variant is identified that is not a full-length clone, that portion of the variant is very useful for antigen generation and for further cloning of the full-length splice variant, using techniques known in the art.
  • Moreover, computer programs are available in the art that identify transcript variants based on genomic sequences. Genomic-based transcript variant identification programs include FgenesH (A. Salamov and V. Solovyev, “Ab initio gene finding in Drosophila genomic DNA,” Genome Research. 2000 April; 10 (4):516-22); Grail and GenScan. For a general discussion of splice variant identification protocols see, e.g., Southan, C., A genomic perspective on human proteases, FEBS Lett. 2001 Jun. 8; 498 (2-3):214-8; de Souza, S. J., et al., Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags, Proc. Natl. Acad Sci USA. 2000 Nov. 7; 97 (23):12690-3.
  • To further confirm the parameters of a transcript variant, a variety of techniques are available in the art, such as full-length cloning, proteomic validation, PCR-based validation, and 5′ RACE validation, etc. (see e.g., Proteomic Validation: Brennan, S. O., et al., Albumin banks peninsula: a new termination variant characterized by electrospray mass spectrometry, Biochem Biophys Acta. 1999 Aug. 17; 1433 (1-2):321-6; Ferranti P, et al., Differential splicing of pre-messenger RNA produces multiple forms of mature caprine alpha(s1)-casein, Eur J. Biochem. 1997 Oct. 1; 249 (1):1-7. For PCR-based Validation: Wellmann S, et al., Specific reverse transcription-PCR quantification of vascular endothelial growth factor (VEGF) splice variants by LightCycler technology, Clin Chem. 2001 April; 47 (4):654-60; Jia, H. P., et al., Discovery of new human beta-defensins using a genomics-based approach, Gene. 2001 Jan. 24; 263 (1-2):211-8. For PCR-based and 5′ RACE Validation: Brigle, K. E., et al., Organization of the murine reduced folate carrier gene and identification of variant splice forms, Biochem Biophys Acta. 1997 Aug. 7; 1353 (2): 191-8).
  • It is known in the art that genomic regions are modulated in cancers. When the genomic region to which a gene maps is modulated in a particular cancer, the alternative transcripts or splice variants of the gene are modulated as well. Disclosed herein is that 191P4D12(b) has a particular expression profile related to cancer. Alternative transcripts and splice variants of 191P4D12(b) may also be involved in cancers in the same or different tissues, thus serving as tumor-associated markers/antigens.
  • Using the full-length gene and EST sequences, four additional transcript variants were identified, designated as 191P4D12(b) v.6, v.7, v.8 and v.9 as shown in FIG. 12. The boundaries of exons in the original transcript, 191P4D12(b) v.1 were shown in Table LI. Compared with 191P4D12(b) v.1, variant v.6 spliced out 202-321 from the first exon of v.1 while variant v.8 spliced out 63 bases from the last exon of v.1. Variant v.7 spliced out exon 8 of v.1. Variant 9 was part of the last exon of v.1. Theoretically, each different combination of exons in spatial order, e.g. exons 2, 3, 5, 7 and 9 of v.1, is a potential splice variant.
  • Tables LII (a)-(d) through LV (a)-(d) are set forth on a variant-by-variant bases. Tables LII (a)-(d) shows nucleotide sequence of the transcript variants. Tables LIII (a)-(d) shows the alignment of the transcript variant with nucleic acid sequence of 191P4D12(b) v.1. Tables LIV (a)-(d) lays out amino acid translation of the transcript variant for the identified reading frame orientation. Tables LV (a)-(d) displays alignments of the amino acid sequence encoded by the splice variant with that of 191P4D12(b) v.1.
  • Example 6 Single Nucleotide Polymorphisms of 191P4D12(b)
  • A Single Nucleotide Polymorphism (SNP) is a single base pair variation in a nucleotide sequence at a specific location. At any given point of the genome, there are four possible nucleotide base pairs: A/T, C/G, G/C and T/A. Genotype refers to the specific base pair sequence of one or more locations in the genome of an individual. Haplotype refers to the base pair sequence of more than one location on the same DNA molecule (or the same chromosome in higher organisms), often in the context of one gene or in the context of several tightly linked genes. SNP that occurs on a cDNA is called cSNP. This cSNP may change amino acids of the protein encoded by the gene and thus change the functions of the protein. Some SNP cause inherited diseases; others contribute to quantitative variations in phenotype and reactions to environmental factors including diet and drugs among individuals. Therefore, SNP and/or combinations of alleles (called haplotypes) have many applications, including diagnosis of inherited diseases, determination of drug reactions and dosage, identification of genes responsible for diseases, and analysis of the genetic relationship between individuals (P. Nowotny, J. M. Kwon and A. M. Goate, “SNP analysis to dissect human traits,” Curr. Opin. Neurobiol. 2001 October; 11 (5):637-641; M. Pirmohamed and B. K. Park, “Genetic susceptibility to adverse drug reactions,” Trends Pharmacol. Sci. 2001 June; 22 (6):298-305; J. H. Riley, C. J. Allan, E. Lai and A. Roses, “The use of single nucleotide polymorphisms in the isolation of common disease genes,” Pharmacogenomics. 2000 February; 1 (1):39-47; R. Judson, J. C. Stephens and A. Windemuth, “The predictive power of haplotypes in clinical response,” Pharmacogenomics. 2000 February; 1 (1):15-26).
  • SNP are identified by a variety of art-accepted methods (P. Bean, “The promising voyage of SNP target discovery,” Am. Clin. Lab. 2001 October-November; 20 (9):18-20; K. M. Weiss, “In search of human variation,” Genome Res. 1998 July; 8 (7):691-697; M. M. She, “Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies,” Clin. Chem. 2001 February; 47 (2):164-172). For example, SNP can be identified by sequencing DNA fragments that show polymorphism by gel-based methods such as restriction fragment length polymorphism (RFLP) and denaturing gradient gel electrophoresis (DGGE). They can also be discovered by direct sequencing of DNA samples pooled from different individuals or by comparing sequences from different DNA samples. With the rapid accumulation of sequence data in public and private databases, one can discover SNP by comparing sequences using computer programs (Z. Gu, L. Hillier and P. Y. Kwok, “Single nucleotide polymorphism hunting in cyberspace,” Hum. Mutat. 1998; 12 (4):221-225). SNP can be verified and genotype or haplotype of an individual can be determined by a variety of methods including direct sequencing and high throughput microarrays (P. Y. Kwok, “Methods for genotyping single nucleotide polymorphisms,” Annu. Rev. Genomics Hum. Genet. 2001; 2:235-258; M. Kokoris, K. Dix, K. Moynihan, J. Mathis, B. Erwin, P. Grass, B. Hines and A. Duesterhoeft, “High-throughput SNP genotyping with the Masscode system,” Mol. Diagn. 2000 December; 5 (4):329-340).
  • Using the methods described above, seven SNP and one insertion/deletion of three bases were identified in the original transcript, 191P4D12(b) v.1, at positions 420 (T/C), 2184 (G/T), 2341 (G/A), 2688 (C/A), 367 (A/G), 699 (C/A), 1590 (C/T), and insertion of GCA in between 1262 and 12631. The transcripts or proteins with alternative allele were designated as variant 191P4D12(b) v.2 through v.5 and v.10 through v.13, as shown in FIG. 10. FIG. 11 shows the schematic alignment of protein variants, corresponding to nucleotide variants. Nucleotide variants that code for the same amino acid sequence as v.1 are not shown in FIG. 11. These alleles of the SNP, though shown separately here, can occur in different combinations (haplotypes) and in any one of the transcript variants (such as 191P4D12(b) v.9) that contains the site of the SNP. The SNP at 2688 of v.1 occurs also in transcript variant v.9 and contributed to one codon change of v.9 at amino acid 64 from Ala to Asp (FIG. 11).
  • Example 7 Production of Recombinant 191P4D12(b) in Prokaryotic Systems
  • To express recombinant 191P4D12(b) and 191P4D12(b) variants in prokaryotic cells, the full or partial length 191P4D12(b) and 191P4D12(b) variant cDNA sequences are cloned into any one of a variety of expression vectors known in the art. One or more of the following regions of 191P4D12(b) variants are expressed: the full length sequence presented in FIGS. 2 and 3, or any 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more contiguous amino acids from 191P4D12(b), variants, or analogs thereof.
  • A. In Vitro Transcription and Translation Constructs:
  • pCRII: To generate 191P4D12(b) sense and anti-sense RNA probes for RNA in situ investigations, pCRII constructs (Invitrogen, Carlsbad Calif.) are generated encoding either all or fragments of the 191P4D12(b) cDNA. The pCRII vector has Sp6 and T7 promoters flanking the insert to drive the transcription of 191P4D12(b) RNA for use as probes in RNA in situ hybridization experiments. These probes are used to analyze the cell and tissue expression of 191P4D12(b) at the RNA level. Transcribed 191P4D12(b) RNA representing the cDNA amino acid coding region of the 191P4D12(b) gene is used in in vitro translation systems such as the TnT™ Coupled Reticulolysate System (Promega, Corp., Madison, Wis.) to synthesize 191P4D12(b) protein.
  • B. Bacterial Constructs:
  • pGEX Constructs: To generate recombinant 191P4D12(b) proteins in bacteria that are fused to the Glutathione S-transferase (GST) protein, all or parts of the 191P4D12(b) cDNA protein coding sequence are cloned into the pGEX family of GST-fusion vectors (Amersham Pharmacia Biotech, Piscataway, N.J.). These constructs allow controlled expression of recombinant 191P4D12(b) protein sequences with GST fused at the amino-terminus and a six histidine epitope (6×His) at the carboxyl-terminus. The GST and 6×His tags permit purification of the recombinant fusion protein from induced bacteria with the appropriate affinity matrix and allow recognition of the fusion protein with anti-GST and anti-His antibodies. The 6×His tag is generated by adding 6 histidine codons to the cloning primer at the 3′ end, e.g., of the open reading frame (ORF). A proteolytic cleavage site, such as the PreScission™ recognition site in pGEX-6P-1, may be employed such that it permits cleavage of the GST tag from 191P4D12(b)-related protein. The ampicillin resistance gene and pBR322 origin permits selection and maintenance of the pGEX plasmids in E. coli.
  • pMAL Constructs: To generate, in bacteria, recombinant 191P4D12(b) proteins that are fused to maltose-binding protein (MBP), all or parts of the 191P4D12(b) cDNA protein coding sequence are fused to the MBP gene by cloning into the pMAL-c2X and pMAL-p2X vectors (New England Biolabs, Beverly, Mass.). These constructs allow controlled expression of recombinant 191P4D12(b) protein sequences with MBP fused at the amino-terminus and a 6×His epitope tag at the carboxyl-terminus. The MBP and 6×His tags permit purification of the recombinant protein from induced bacteria with the appropriate affinity matrix and allow recognition of the fusion protein with anti-MBP and anti-His antibodies. The 6×His epitope tag is generated by adding 6 histidine codons to the 3′ cloning primer. A Factor Xa recognition site permits cleavage of the pMAL tag from 191P4D12(b). The pMAL-c2X and pMAL-p2X vectors are optimized to express the recombinant protein in the cytoplasm or periplasm respectively. Periplasm expression enhances folding of proteins with disulfide bonds.
  • pET Constructs: To express 191P4D12(b) in bacterial cells, all or parts of the 191P4D12(b) cDNA protein coding sequence are cloned into the pET family of vectors (Novagen, Madison, Wis.). These vectors allow tightly controlled expression of recombinant 191P4D12(b) protein in bacteria with and without fusion to proteins that enhance solubility, such as NusA and thioredoxin (Trx), and epitope tags, such as 6×His and S-Tag™ that aid purification and detection of the recombinant protein. For example, constructs are made utilizing pET NusA fusion system 43.1 such that regions of the 191P4D12(b) protein are expressed as amino-terminal fusions to NusA.
  • C. Yeast Constructs:
  • pESC Constructs: To express 191P4D12(b) in the yeast species Saccharomyces cerevisiae for generation of recombinant protein and functional studies, all or parts of the 191P4D12(b) cDNA protein coding sequence are cloned into the pESC family of vectors each of which contain 1 of 4 selectable markers, HIS3, TRP1, LEU2, and URA3 (Stratagene, La Jolla, Calif.). These vectors allow controlled expression from the same plasmid of up to 2 different genes or cloned sequences containing either Flag™ or Myc epitope tags in the same yeast cell. This system is useful to confirm protein-protein interactions of 191P4D12(b). In addition, expression in yeast yields similar post-translational modifications, such as glycosylations and phosphorylations, that are found when expressed in eukaryotic cells.
  • pESP Constructs: To express 191P4D12(b) in the yeast species Saccharomyces pombe, all or parts of the 191P4D12(b) cDNA protein coding sequence are cloned into the pESP family of vectors. These vectors allow controlled high level of expression of a 191P4D12(b) protein sequence that is fused at either the amino terminus or at the carboxyl terminus to GST which aids purification of the recombinant protein. A Flag™ epitope tag allows detection of the recombinant protein with anti-Flag™ antibody.
  • Example 8 Production of Recombinant 191P4D12(b) in Higher Eukaryotic Systems
  • A. Mammalian Constructs
  • To express recombinant 191P4D12(b) in eukaryotic cells, the full or partial length 191P4D12(b) cDNA sequences can be cloned into any one of a variety of expression vectors known in the art. One or more of the following regions of 191P4D12(b) are expressed in these constructs, amino acids 1 to 510, or any 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more contiguous amino acids from 191P4D12(b) v.1, v.2, v.10, v.11, v.12; amino acids 1 to 511, or any 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more contiguous amino acids from 191P4D12(b) v.13, variants, or analogs thereof.
  • The constructs can be transfected into any one of a wide variety of mammalian cells such as 293T cells. Transfected 293T cell lysates can be probed with the anti-191P4D12(b) polyclonal serum, described herein.
  • pcDNA4/HisMax Constructs: To express 191P4D12(b) in mammalian cells, a 191P4D12(b) ORF, or portions thereof, of 191P4D12(b) were cloned into pcDNA4/HisMax Version A (Invitrogen, Carlsbad, Calif.). Protein expression is driven from the cytomegalovirus (CMV) promoter and the SP16 translational enhancer. The recombinant protein has Xpress™ and six histidine (6×His) epitopes fused to the amino-terminus. The pcDNA4/HisMax vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large T antigen. The Zeocin resistance gene allows for selection of mammalian cells expressing the protein and the ampicillin resistance gene and ColE1 origin permits selection and maintenance of the plasmid in E. coli.
  • pcDNA3.1/MycHis Constructs: To express 191P4D12(b) in mammalian cells, a 191P4D12(b) ORF, or portions thereof, of 191P4D12(b) with a consensus Kozak translation initiation site was cloned into pcDNA3.1/MycHis Version A (Invitrogen, Carlsbad, Calif.). Protein expression is driven from the cytomegalovirus (CMV) promoter. The recombinant proteins have the myc epitope and 6×His epitope fused to the carboxyl-terminus. The pcDNA3.1/MycHis vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability, along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large T antigen. The Neomycin resistance gene can be used, as it allows for selection of mammalian cells expressing the protein and the ampicillin resistance gene and ColE1 origin permits selection and maintenance of the plasmid in E. coli. FIG. 22 shows expression of 191P4D12(b).pcDNA3.1/MycHis following vector transfection into 293T cells. 293T cells were transfected with either 191P4D12(b).pcDNA3.1/mychis or pcDNA3.1/mychis vector control. Forty hours later cell lysates were collected. Samples were run on an SDS-PAGE acrylamide gel, blotted and stained with anti-his antibody. The blot was developed using the ECL chemiluminescence kit and visualized by autoradiography. Results show expression of 191P4D12(b) in the lysates of 191P4D12(b).pcDNA3.1/mychis transfected cells (Lane 3), but not from the control pcDNA3.1/mychis (Lane 4).
  • pcDNA3.1/CT-GFP-TOPO Construct: To express 191P4D12(b) in mammalian cells and to allow detection of the recombinant proteins using fluorescence, a 191P4D12(b) ORF, or portions thereof, with a consensus Kozak translation initiation site are cloned into pcDNA3.1/CT-GFP-TOPO (Invitrogen, CA). Protein expression is driven from the cytomegalovirus (CMV) promoter. The recombinant proteins have the Green Fluorescent Protein (GFP) fused to the carboxyl-terminus facilitating non-invasive, in vivo detection and cell biology studies. The pcDNA3.1CT-GFP-TOPO vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large T antigen. The Neomycin resistance gene allows for selection of mammalian cells that express the protein, and the ampicillin resistance gene and ColE1 origin permits selection and maintenance of the plasmid in E. coli. Additional constructs with an amino-terminal GFP fusion are made in pcDNA3.1/NT-GFP-TOPO spanning the entire length of a 191P4D12(b) protein.
  • PAPtag: A 191P4D12(b) ORF, or portions thereof, is cloned into pAPtag-5 (GenHunter Corp. Nashville, Tenn.). This construct generates an alkaline phosphatase fusion at the carboxyl-terminus of a 191P4D12(b) protein while fusing the IgGK signal sequence to the amino-terminus. Constructs are also generated in which alkaline phosphatase with an amino-terminal IgGK signal sequence is fused to the amino-terminus of a 191P4D12(b) protein. The resulting recombinant 191P4D12(b) proteins are optimized for secretion into the media of transfected mammalian cells and can be used to identify proteins such as ligands or receptors that interact with 191P4D12(b) proteins. Protein expression is driven from the CMV promoter and the recombinant proteins also contain myc and 6×His epitopes fused at the carboxyl-terminus that facilitates detection and purification. The Zeocin resistance gene present in the vector allows for selection of mammalian cells expressing the recombinant protein and the ampicillin resistance gene permits selection of the plasmid in E. coli.
  • pTag5: A 191P4D12(b) v.1 extracellular domain was cloned into pTag-5 plasmid. This vector is similar to pAPtag but without the alkaline phosphatase fusion. This construct generates 191P4D12(b) protein with an amino-terminal IgGK signal sequence and myc and 6×His epitope tags at the carboxyl-terminus that facilitate detection and affinity purification. The resulting recombinant 191P4D12(b) protein is optimized for secretion into the media of transfected mammalian cells, and is used as immunogen or ligand to identify proteins such as ligands or receptors that interact with the 191P4D12(b) proteins. Protein expression is driven from the CMV promoter. The Zeocin resistance gene present in the vector allows for selection of mammalian cells expressing the protein, and the ampicillin resistance gene permits selection of the plasmid in E. coli. FIG. 22 shows expression and secretion of the extracellular domain of 191P4D12(b) following 191P4D12(b).pTag5 vector transfection into 293T cells. 293T cells were transfected with 191P4D12(b) pTag5. Forty hours later, cell lysate and supernatant were collected. Samples were run on an SDS-PAGE acrylamide gel, blotted and stained with anti-his antibody. The blot was developed using the ECL chemiluminescence kit and visualized by autoradiography. Results show expression from 191P4D12(b).pTag5 plasmid of 191P4D12(b) extracellular domain in the lysate (Lane 2) and secretion in the culture supernatant (Lane 1).
  • 191P4D12(b) ORF, or portions thereof, is also cloned into pTag-5 plasmid.
  • PsecFc: A 191P4D12(b) ORF, or portions thereof, is also cloned into psecFc. The psecFc vector was assembled by cloning the human immunoglobulin G1 (IgG) Fc (hinge, CH2, CH3 regions) into pSecTag2 (Invitrogen, California). This construct generates an IgG1 Fc fusion at the carboxyl-terminus of the 191P4D12(b) proteins, while fusing the IgGK signal sequence to N-terminus. 191P4D12(b) fusions utilizing the murine IgG1 Fc region are also used. The resulting recombinant 191P4D12(b) proteins are optimized for secretion into the media of transfected mammalian cells, and can be used as immunogens or to identify proteins such as ligands or receptors that interact with 191P4D12(b) protein. Protein expression is driven from the CMV promoter. The hygromycin resistance gene present in the vector allows for selection of mammalian cells that express the recombinant protein, and the ampicillin resistance gene permits selection of the plasmid in E. coli.
  • pSRα Constructs: To generate mammalian cell lines that express 191P4D12(b) constitutively, 191P4D12(b) ORF, or portions thereof, of 191P4D12(b) were cloned into pSRα constructs. Amphotropic and ecotropic retroviruses were generated by transfection of pSRα constructs into the 293T-10A1 packaging line or co-transfection of pSRα and a helper plasmid (containing deleted packaging sequences) into the 293 cells, respectively. The retrovirus is used to infect a variety of mammalian cell lines, resulting in the integration of the cloned gene, 191P4D12(b), into the host cell-lines. Protein expression is driven from a long terminal repeat (LTR). The Neomycin resistance gene present in the vector allows for selection of mammalian cells that express the protein, and the ampicillin resistance gene and ColE1 origin permit selection and maintenance of the plasmid in E. coli. The retroviral vectors can thereafter be used for infection and generation of various cell lines using, for example, PC3, NIH 3T3, TsuPr1, 293 or rat-1 cells.
  • FIG. 23 shows stable expression of 191P4D12(b) following 191P4D12(b).pSRa transduction into 3T3 cells. 3T3 cells were transduced with the pSRa retroviral vector encoding the 191P4D12(b) gene. Following selection with neomycin, the cells were expanded and RNA was extracted. Northern blot with 10 ug of total RNA/lane was probed with the 191P4D12(b) SSH sequence. Size standards in kilobases (kb) are indicated on the side. Results show expression of the 191P4D12(b) transcript driven from the retroviral LTR, which migrates slower than the endogenous 4 kb 191P4D12(b) transcript detected in the positive control LAPC-4AD.
  • Additional pSRα constructs are made that fuse an epitope tag such as the FLAG™ tag to the carboxyl-terminus of 191P4D12(b) sequences to allow detection using anti-Flag antibodies. For example, the FLAG™ sequence 5′ gat tac aag gat gac gac gat aag 3′ (SEQ ID NO:60) is added to cloning primer at the 3′ end of the ORF. Additional pSRα constructs are made to produce both amino-terminal and carboxyl-terminal GFP and myc/6×His fusion proteins of the full-length 191P4D12(b) proteins.
  • Additional Viral Vectors: Additional constructs are made for viral-mediated delivery and expression of 191P4D12(b). High virus titer leading to high level expression of 191P4D12(b) is achieved in viral delivery systems such as adenoviral vectors and herpes amplicon vectors. A 191P4D12(b) coding sequences or fragments thereof are amplified by PCR and subcloned into the AdEasy shuttle vector (Stratagene). Recombination and virus packaging are performed according to the manufacturer's instructions to generate adenoviral vectors. Alternatively, 191P4D12(b) coding sequences or fragments thereof are cloned into the HSV-1 vector (Imgenex) to generate herpes viral vectors. The viral vectors are thereafter used for infection of various cell lines such as PC3, NIH 3T3, 293 or rat-1 cells.
  • Regulated Expression Systems: To control expression of 191P4D12(b) in mammalian cells, coding sequences of 191P4D12(b), or portions thereof, are cloned into regulated mammalian expression systems such as the T-Rex System (Invitrogen), the GeneSwitch System (Invitrogen) and the tightly-regulated Ecdysone System (Sratagene). These systems allow the study of the temporal and concentration dependent effects of recombinant 191P4D12(b). These vectors are thereafter used to control expression of 191P4D12(b) in various cell lines such as PC3, NIH 3T3, 293 or rat-1 cells.
  • B. Baculovirus Expression Systems
  • To generate recombinant 191P4D12(b) proteins in a baculovirus expression system, 191P4D12(b) ORF, or portions thereof, are cloned into the baculovirus transfer vector pBlueBac 4.5 (Invitrogen), which provides a His-tag at the N-terminus. Specifically, pBlueBac-191P4D12(b) is co-transfected with helper plasmid pBac-N-Blue (Invitrogen) into SF9 (Spodoptera frugiperda) insect cells to generate recombinant baculovirus (see Invitrogen instruction manual for details). Baculovirus is then collected from cell supernatant and purified by plaque assay.
  • Recombinant 191P4D12(b) protein is then generated by infection of HighFive insect cells (Invitrogen) with purified baculovirus. Recombinant 191P4D12(b) protein can be detected using anti-191P4D12(b) or anti-His-tag antibody. 191P4D12(b) protein can be purified and used in various cell-based assays or as immunogen to generate polyclonal and monoclonal antibodies specific for 191P4D12(b).
  • Example 9 Antigenicity Profiles and Secondary Structure
  • FIG. 5(A-C), FIG. 6(A-C), FIG. 7(A-E), FIG. 8(A-C), and FIG. 9(A-C) depict graphically five amino acid profiles of 191P4D12(b) variants 1, 7, and 9, each assessment available by accessing the ProtScale website located on the World Wide Web at (.expasy.ch/cgi-bin/protscale.pl) on the ExPasy molecular biology server.
  • These profiles: FIG. 5, Hydrophilicity, (Hopp T. P., Woods K. R., 1981. Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828); FIG. 6, Hydropathicity, (Kyte J., Doolittle R. F., 1982. J. Mol. Biol. 157:105-132); FIG. 7, Percentage Accessible Residues (Janin J., 1979 Nature 277:491-492); FIG. 8, Average Flexibility, (Bhaskaran R., and Ponnuswamy P. K., 1988. Int. J. Pept. Protein Res. 32:242-255); FIG. 9, Beta-turn (Deleage, G., Roux B. 1987 Protein Engineering 1:289-294); and optionally others available in the art, such as on the ProtScale website, were used to identify antigenic regions of each of the 191P4D12(b) variant proteins. Each of the above amino acid profiles of 191P4D12(b) variants were generated using the following ProtScale parameters for analysis: 1) A window size of 9; 2) 100% weight of the window edges compared to the window center; and, 3) amino acid profile values normalized to lie between 0 and 1.
  • Hydrophilicity (FIG. 5), Hydropathicity (FIG. 6) and Percentage Accessible Residues (FIG. 7) profiles were used to determine stretches of hydrophilic amino acids (i.e., values greater than 0.5 on the Hydrophilicity and Percentage Accessible Residues profile, and values less than 0.5 on the Hydropathicity profile). Such regions are likely to be exposed to the aqueous environment, be present on the surface of the protein, and thus available for immune recognition, such as by antibodies.
  • Average Flexibility (FIG. 8) and Beta-turn (FIG. 9) profiles determine stretches of amino acids (i.e., values greater than 0.5 on the Beta-turn profile and the Average Flexibility profile) that are not constrained in secondary structures such as beta sheets and alpha helices. Such regions are also more likely to be exposed on the protein and thus accessible to immune recognition, such as by antibodies.
  • Antigenic sequences of the 191P4D12(b) variant proteins indicated, e.g., by the profiles set forth in FIG. 5(A-C), FIG. 6(A-C), FIG. 7(A-C), FIG. 8(A-C), and/or FIG. 9(A-C) are used to prepare immunogens, either peptides or nucleic acids that encode them, to generate therapeutic and diagnostic anti-191P4D12(b) antibodies. The immunogen can be any 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50 or more than 50 contiguous amino acids, or the corresponding nucleic acids that encode them, from the 191P4D12(b) protein variants listed in FIGS. 2 and 3, of which the amino acid profiles are shown in FIG. 9, or are identical to the variant sequences that are the same as a variant depicted in FIG. 9. In particular, peptide immunogens of the invention can comprise, a peptide region of at least 5 amino acids of FIGS. 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the Hydrophilicity profiles of FIG. 5; a peptide region of at least 5 amino acids of FIGS. 2 and 3 in any whole number increment that includes an amino acid position having a value less than 0.5 in the Hydropathicity profile of FIG. 6; a peptide region of at least 5 amino acids of FIGS. 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the Percent Accessible Residues profiles of FIG. 7; a peptide region of at least 5 amino acids of FIGS. 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the Average Flexibility profiles on FIG. 8; and, a peptide region of at least 5 amino acids of FIGS. 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the Beta-turn profile of FIG. 9. Peptide immunogens of the invention can also comprise nucleic acids that encode any of the forgoing.
  • All immunogens of the invention, peptide or nucleic acid, can be embodied in human unit dose form, or comprised by a composition that includes a pharmaceutical excipient compatible with human physiology.
  • The secondary structure of 191P4D12(b) protein variants 1, 7, and 9, namely the predicted presence and location of alpha helices, extended strands, and random coils, is predicted from the primary amino acid sequence using the HNN—Hierarchical Neural Network method (Guermeur, 1997) accessed from the ExPasy molecular biology server located on the World Wide Web. The analysis indicates that 191P4D12(b) variant 1 is composed of 24.90% alpha helix, 18.63% extended strand, and 56.47% random coil (FIG. 13A). Variant 6 is composed of 28.47% alpha helix, 19.32% extended strand, and 52.20% random coil (FIG. 13B). Variant 7 is composed of 26.19% alpha helix, 18.76% extended strand, and 55.05% random coil (FIG. 13C). Variant 7 is composed of 56.20% alpha helix, 8.76% extended strand, and 35.04% random coil (FIG. 13D).
  • Analysis for the potential presence of transmembrane domains in the 191P4D12(b) variant proteins was carried out using a variety of transmembrane prediction algorithms accessed from the ExPasy molecular biology server located on the World Wide Web at (.expasy.ch/tools/). Shown graphically in FIGS. 13E and 13F are the results of analysis of variant 1 depicting the presence and location of 1 transmembrane domain using the TMpred program (FIG. 13E) and 1 transmembrane domain using the TMHMM program (FIG. 13F). Shown graphically in FIGS. 13G and 13H are the results of analysis of variant 6 depicting the presence and location of 1 transmembrane domains using the TMpred program (FIG. 13G) and 1 transmembrane domain using the TMHMM program (FIG. 13H). Shown graphically in FIGS. 13I and 13J are the results of analysis of variant 7 depicting the presence and location of 1 transmembrane domain using the TMpred program (FIG. 13I) and 1 transmembrane domain using the TMHMM program (FIG. 13J). Shown graphically in FIGS. 13K and 13L are the results of analysis of variant 9 depicting the presence and location of 2 transmembrane domains using the TMpred program (FIG. 1K) and 1 transmembrane domain using the TMHMM program (FIG. 13L). The results of each program, namely the amino acids encoding the transmembrane domains are summarized in Table VI and Table L.
  • Example 10 Generation of 191P4D12(b) Polyclonal Antibodies
  • Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. In addition to immunizing with a full length 191P4D12(b) protein variant, computer algorithms are employed in design of immunogens that, based on amino acid sequence analysis contain characteristics of being antigenic and available for recognition by the immune system of the immunized host (see the Example entitled “Antigenicity Profiles and Secondary Structures”). Such regions would be predicted to be hydrophilic, flexible, in beta-turn conformations, and be exposed on the surface of the protein (see, e.g., FIG. 5(A-C), FIGS. 6(A & C), FIG. 7(A-C), FIG. 8(A-C), or FIG. 9(A-C) for amino acid profiles that indicate such regions of 191P4D12(b) protein variants).
  • For example, recombinant bacterial fusion proteins or peptides containing hydrophilic, flexible, beta-turn regions of 191P4D12(b) protein variants are used as antigens to generate polyclonal antibodies in New Zealand White rabbits or monoclonal antibodies as described in Example 11. For example, in 191P4D12(b) variant 1, such regions include, but are not limited to, amino acids 27-39, amino acids 93-109, and amino acids 182-204. In sequence unique to variant 7, such regions include, but are not limited to, amino acids 400-420. In sequence specific for variant 9, such regions include, but are not limited to, amino acids 80-94. It is useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include, but are not limited to, keyhole limpet hemocyanin (KLH), serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. In one embodiment, a peptide encoding amino acids 52-63 of 191P4D12(b) variant 1 and amino acids 179-197 were each conjugated to KLH and used to immunize separate rabbits. Alternatively the immunizing agent may include all or portions of the 191P4D12(b) variant proteins, analogs or fusion proteins thereof. For example, the 191P4D12(b) variant 1 amino acid sequence can be fused using recombinant DNA techniques to any one of a variety of fusion protein partners that are well known in the art, such as glutathione-S-transferase (GST) and HIS tagged fusion proteins. In another embodiment, amino acids 2-349 of 191P4D12(b) variant 1 was fused to GST using recombinant techniques and the pGEX expression vector, expressed, purified and used to immunize a rabbit. Such fusion proteins are purified from induced bacteria using the appropriate affinity matrix.
  • Other recombinant bacterial fusion proteins that may be employed include maltose binding protein, LacZ, thioredoxin, NusA, or an immunoglobulin constant region (see the section entitled “Production of 191P4D12(b) in Prokaryotic Systems” and Current Protocols In Molecular Biology, Volume 2, Unit 16, Frederick M. Ausubul et al. eds., 1995; Linsley, P. S., Brady, W., Urnes, M., Grosmaire, L., Damle, N., and Ledbetter, L. (1991) J. Exp. Med. 174, 561-566).
  • In addition to bacterial derived fusion proteins, mammalian expressed protein antigens are also used. These antigens are expressed from mammalian expression vectors such as the Tag5 and Fc-fusion vectors (see the section entitled “Production of Recombinant 191P4D12(b) in Eukaryotic Systems”), and retain post-translational modifications such as glycosylations found in native protein. In one embodiment, amino acids 31-347 of variant 1, encoding the extracellular domain, was cloned into the Tag5 mammalian secretion vector, and expressed in 293T cells resulting in a soluble secreted protein (FIG. 22). The recombinant protein is purified by metal chelate chromatography from tissue culture supernatants of 293T cells stably expressing the recombinant vector. The purified Tag5 191P4D12(b) protein is then used as immunogen.
  • During the immunization protocol, it is useful to mix or emulsify the antigen in adjuvants that enhance the immune response of the host animal. Examples of adjuvants include, but are not limited to, complete Freund's adjuvant (CFA) and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).
  • In a typical protocol, rabbits are initially immunized subcutaneously with up to 200 μg, typically 100-200 μg, of fusion protein or peptide conjugated to KLH mixed in complete Freund's adjuvant (CFA). Rabbits are then injected subcutaneously every two weeks with up to 200 μg, typically 100-200 μg, of the immunogen in incomplete Freund's adjuvant (IFA). Test bleeds are taken approximately 7-10 days following each immunization and used to monitor the titer of the antiserum by ELISA.
  • To test reactivity and specificity of immune serum, such as the rabbit serum derived from immunization with the Tag5-191P4D12(b) variant 1 protein, the full-length 191P4D12(b) variant 1 cDNA is cloned into pcDNA 3.1 myc-his expression vector (Invitrogen, see the Example entitled “Production of Recombinant 191P4D12(b) in Eukaryotic Systems”). After transfection of the constructs into 293T cells, cell lysates are probed with the anti-191P4D12(b) serum and with anti-His antibody (Santa Cruz Biotechnologies, Santa Cruz, Calif.) to determine specific reactivity to denatured 191P4D12(b) protein using the Western blot technique. In addition, the immune serum is tested by fluorescence microscopy, flow cytometry and immunoprecipitation against 293T (FIG. 22) and other recombinant 191P4D12(b)-expressing cells to determine specific recognition of native protein. Western blot, immunoprecipitation, fluorescent microscopy, and flow cytometric techniques using cells that endogenously express 191P4D12(b) are also carried out to test reactivity and specificity.
  • Anti-serum from rabbits immunized with 191P4D12(b) variant fusion proteins, such as GST and MBP fusion proteins, are purified by depletion of antibodies reactive to the fusion partner sequence by passage over an affinity column containing the fusion partner either alone or in the context of an irrelevant fusion protein. For example, antiserum derived from a GST-191P4D12(b) variant 1 fusion protein is first purified by passage over a column of GST protein covalently coupled to AffiGel matrix (BioRad, Hercules, Calif.). The antiserum is then affinity purified by passage over a column composed of a MBP-191P4D12(b) fusion protein covalently coupled to Affigel matrix. The serum is then further purified by protein G affinity chromatography to isolate the IgG fraction. Sera from other His-tagged antigens and peptide immunized rabbits as well as fusion partner depleted sera are affinity purified by passage over a column matrix composed of the original protein immunogen or free peptide.
  • Example 11 Generation of 191P4D12(b) Monoclonal Antibodies (mAbs)
  • In one embodiment, therapeutic mAbs to 191P4D12(b) variants comprise those that react with epitopes specific for each variant protein or specific to sequences in common between the variants that would disrupt or modulate the biological function of the 191P4D12(b) variants, for example those that would disrupt the interaction with ligands and binding partners. Immunogens for generation of such mAbs include those designed to encode or contain the entire 191P4D12(b) protein variant sequence, regions of the 191P4D12(b) protein variants predicted to be antigenic from computer analysis of the amino acid sequence (see, e.g., FIG. 5(A-C), FIG. 6(A-C), FIG. 7(A-C), FIG. 8(A-C), or FIG. 9(A-C), and the Example entitled “Antigenicity Profiles”). Immunogens include peptides, recombinant bacterial proteins, and mammalian expressed Tag 5 proteins and human and murine IgG FC fusion proteins. In addition, cells engineered to express high levels of a respective 191P4D12(b) variant, such as 293T-191P4D12(b) variant 1 or 300.19-191P4D12(b) variant 1 murine Pre-B cells, are used to immunize mice.
  • To generate mAbs to a 191P4D12(b) variant, mice are first immunized intraperitoneally (IP) with, typically, 10-50 μg of protein immunogen or 107 191P4D12(b)-expressing cells mixed in complete Freund's adjuvant. Mice are then subsequently immunized IP every 2-4 weeks with, typically, 10-50 μg of protein immunogen or 107 cells mixed in incomplete Freund's adjuvant. Alternatively, MPL-TDM adjuvant is used in immunizations. In addition to the above protein and cell-based immunization strategies, a DNA-based immunization protocol is employed in which a mammalian expression vector encoding a 191P4D12(b) variant sequence is used to immunize mice by direct injection of the plasmid DNA. For example, amino acids 31-347 was cloned into the Tag5 mammalian secretion vector and the recombinant vector will then be used as immunogen. In another example the same amino acids are cloned into an Fc-fusion secretion vector in which the 191P4D12(b) variant 1 sequence is fused at the amino-terminus to an IgK leader sequence and at the carboxyl-terminus to the coding sequence of the human or murine IgG Fc region. This recombinant vector is then used as immunogen. The plasmid immunization protocols are used in combination with purified proteins expressed from the same vector and with cells expressing the respective 191P4D12(b) variant.
  • During the immunization protocol, test bleeds are taken 7-10 days following an injection to monitor titer and specificity of the immune response. Once appropriate reactivity and specificity is obtained as determined by ELISA, Western blotting, immunoprecipitation, fluorescence microscopy, and flow cytometric analyses, fusion and hybridoma generation is then carried out with established procedures well known in the art (see, e.g., Harlow and Lane, 1988).
  • In one embodiment for generating 191P4D12(b) monoclonal antibodies, a Tag1-191P4D12(b) variant 1 antigen encoding amino acids 31-347, was expressed (FIG. 22) and then purified from stably transfected 293T cells. Balb C mice are initially immunized intraperitoneally with 25 μg of the Tag1-191P4D12(b) variant 1 protein mixed in complete Freund's adjuvant. Mice are subsequently immunized every two weeks with 25 μg of the antigen mixed in incomplete Freund's adjuvant for a total of three immunizations. ELISA using the Tag1 antigen determines the titer of serum from immunized mice. Reactivity and specificity of serum to full length 191P4D12(b) variant 1 protein is monitored by Western blotting, immunoprecipitation and flow cytometry using 293T cells transfected with an expression vector encoding the 191P4D12(b) variant 1 cDNA (see e.g., the Example entitled “Production of Recombinant 191P4D12(b) (a) & (b) in Eukaryotic Systems” and FIG. 22). Other recombinant 191P4D12(b) variant 1-expressing cells or cells endogenously expressing 191P4D12(b) variant 1 are also used. Mice showing the strongest reactivity are rested and given a final injection of Tag1 antigen in PBS and then sacrificed four days later. The spleens of the sacrificed mice are harvested and fused to SPO/2 myeloma cells using standard procedures (Harlow and Lane, 1988). Supernatants from HAT selected growth wells are screened by ELISA, Western blot, immunoprecipitation, fluorescent microscopy, and flow cytometry to identify 191P4D12(b) specific antibody-producing clones.
  • To generate monoclonal antibodies that are specific for each 191P4D12(b) variant protein, immunogens are designed to encode sequences unique for each variant. In one embodiment, a GST-fusion antigen encoding the full sequence of 191P4D12(b) variant 9 (AA 1-137) is produced, purified, and used as immunogen to derive monoclonal antibodies specific to 191P4D12(b) variant 2. In another embodiment, an antigenic peptide composed of amino acids 400-420 of 191P4D12(b) variant 7 is coupled to KLH and used as immunogen. Hybridoma supernatants are then screened on the respective antigen and then further screened on cells expressing the specific variant and cross-screened on cells expressing the other variants to derive variant-specific monoclonal antibodies.
  • The binding affinity of a 191P4D12(b) variant monoclonal antibody is determined using standard technologies. Affinity measurements quantify the strength of antibody to epitope binding and are used to help define which 191P4D12(b) variant monoclonal antibodies preferred for diagnostic or therapeutic use, as appreciated by one of skill in the art. The BIAcore system (Uppsala, Sweden) is a preferred method for determining binding affinity. The BIAcore system uses surface plasmon resonance (SPR, Welford K. 1991, Opt. Quant. Elect. 23:1; Morton and Myszka, 1998, Methods in Enzymology 295: 268) to monitor biomolecular interactions in real time. BIAcore analysis conveniently generates association rate constants, dissociation rate constants, equilibrium dissociation constants, and affinity constants.
  • Example 12 HLA Class I and Class II Binding Assays
  • HLA class I and class II binding assays using purified HLA molecules are performed in accordance with disclosed protocols (e.g., PCT publications WO 94/20127 and WO 94/03205; Sidney et al., Current Protocols in Immunology 18.3.1 (1998); Sidney, et al., J. Immunol. 154:247 (1995); Sette, et al., Mol. Immunol. 31:813 (1994)). Briefly, purified MHC molecules (5 to 500 nM) are incubated with various unlabeled peptide inhibitors and 1-10 nM 125I-radiolabeled probe peptides as described. Following incubation, MHC-peptide complexes are separated from free peptide by gel filtration and the fraction of peptide bound is determined. Typically, in preliminary experiments, each MHC preparation is titered in the presence of fixed amounts of radiolabeled peptides to determine the concentration of HLA molecules necessary to bind 10-20% of the total radioactivity. All subsequent inhibition and direct binding assays are performed using these HLA concentrations.
  • Since under these conditions [label]<[HLA] and IC50≧[HLA], the measured IC50 values are reasonable approximations of the true KD values. Peptide inhibitors are typically tested at concentrations ranging from 120 μg/ml to 1.2 ng/ml, and are tested in two to four completely independent experiments. To allow comparison of the data obtained in different experiments, a relative binding figure is calculated for each peptide by dividing the IC50 of a positive control for inhibition by the IC50 for each tested peptide (typically unlabeled versions of the radiolabeled probe peptide). For database purposes, and inter-experiment comparisons, relative binding values are compiled. These values can subsequently be converted back into IC50 nM values by dividing the IC50 nM of the positive controls for inhibition by the relative binding of the peptide of interest. This method of data compilation is accurate and consistent for comparing peptides that have been tested on different days, or with different lots of purified MHC.
  • Binding assays as outlined above may be used to analyze HLA supermotif and/or HLA motif-bearing peptides (see Table IV).
  • Example 13 Identification of HLA Supermotif- and Motif-Bearing CTL Candidate Epitopes
  • HLA vaccine compositions of the invention can include multiple epitopes. The multiple epitopes can comprise multiple HLA supermotifs or motifs to achieve broad population coverage. This example illustrates the identification and confirmation of supermotif- and motif-bearing epitopes for the inclusion in such a vaccine composition. Calculation of population coverage is performed using the strategy described below.
  • Computer Searches and Algorithms for Identification of Supermotif and/or Motif-Bearing Epitopes
  • The searches performed to identify the motif-bearing peptide sequences in the Example entitled “Antigenicity Profiles” and Tables VIII-XXI and XXII-XLIX employ the protein sequence data from the gene product of 191P4D12(b) set forth in FIGS. 2 and 3, the specific search peptides used to generate the tables are listed in Table VII.
  • Computer searches for epitopes bearing HLA Class I or Class II supermotifs or motifs are performed as follows. All translated 191P4D12(b) protein sequences are analyzed using a text string search software program to identify potential peptide sequences containing appropriate HLA binding motifs; such programs are readily produced in accordance with information in the art in view of known motif/supermotif disclosures. Furthermore, such calculations can be made mentally.
  • Identified A2-, A3-, and DR-supermotif sequences are scored using polynomial algorithms to predict their capacity to bind to specific HLA-Class I or Class II molecules. These polynomial algorithms account for the impact of different amino acids at different positions, and are essentially based on the premise that the overall affinity (or AG) of peptide-HLA molecule interactions can be approximated as a linear polynomial function of the type:

  • “ΔG”=a 1i ×a 2i ×a 3i . . . ×a ni
  • where aji is a coefficient which represents the effect of the presence of a given amino acid (j) at a given position (i) along the sequence of a peptide of n amino acids. The crucial assumption of this method is that the effects at each position are essentially independent of each other (i.e., independent binding of individual side-chains). When residue j occurs at position i in the peptide, it is assumed to contribute a constant amount ji to the free energy of binding of the peptide irrespective of the sequence of the rest of the peptide.
  • The method of derivation of specific algorithm coefficients has been described in Gulukota et al., J. Mol. Biol. 267:1258-126, 1997; (see also Sidney et al., Human Immunol. 45:79-93, 1996; and Southwood et al., J. Immunol. 160:3363-3373, 1998). Briefly, for all i positions, anchor and non-anchor alike, the geometric mean of the average relative binding (ARB) of all peptides carrying j is calculated relative to the remainder of the group, and used as the estimate of ji. For Class II peptides, if multiple alignments are possible, only the highest scoring alignment is utilized, following an iterative procedure. To calculate an algorithm score of a given peptide in a test set, the ARB values corresponding to the sequence of the peptide are multiplied. If this product exceeds a chosen threshold, the peptide is predicted to bind. Appropriate thresholds are chosen as a function of the degree of stringency of prediction desired.
  • Selection of HLA-A2 Supertype Cross-Reactive Peptides
  • Protein sequences from 191P4D12(b) are scanned utilizing motif identification software, to identify 8-, 9-10- and 11-mer sequences containing the HLA-A2-supermotif main anchor specificity. Typically, these sequences are then scored using the protocol described above and the peptides corresponding to the positive-scoring sequences are synthesized and tested for their capacity to bind purified HLA-A*0201 molecules in vitro (HLA-A*0201 is considered a prototype A2 supertype molecule).
  • These peptides are then tested for the capacity to bind to additional A2-supertype molecules (A*0202, A*0203, A*0206, and A*6802). Peptides that bind to at least three of the five A2-supertype alleles tested are typically deemed A2-supertype cross-reactive binders. Preferred peptides bind at an affinity equal to or less than 500 nM to three or more HLA-A2 supertype molecules.
  • Selection of HLA-A3 Supermotif-Bearing Epitopes
  • The 191P4D12(b) protein sequence(s) scanned above is also examined for the presence of peptides with the HLA-A3-supermotif primary anchors. Peptides corresponding to the HLA A3 supermotif-bearing sequences are then synthesized and tested for binding to HLA-A*0301 and HLA-A*1101 molecules, the molecules encoded by the two most prevalent A3-supertype alleles. The peptides that bind at least one of the two alleles with binding affinities of ≦500 nM, often ≦200 nM, are then tested for binding cross-reactivity to the other common A3-supertype alleles (e.g., A*3101, A*3301, and A*6801) to identify those that can bind at least three of the five HLA-A3-supertype molecules tested.
  • Selection of HLA-B7 Supermotif Bearing Epitopes
  • The 191P4D12(b) protein(s) scanned above is also analyzed for the presence of 8-, 9-10-, or 11-mer peptides with the HLA-B7-supermotif. Corresponding peptides are synthesized and tested for binding to HLA-B*0702, the molecule encoded by the most common B7-supertype allele (i.e., the prototype B7 supertype allele). Peptides binding B*0702 with IC50 of ≦500 nM are identified using standard methods. These peptides are then tested for binding to other common B7-supertype molecules (e.g., B*3501, B*5101, B*5301, and B*5401). Peptides capable of binding to three or more of the five B7-supertype alleles tested are thereby identified.
  • Selection of A1 and A24 Motif-Bearing Epitopes
  • To further increase population coverage, HLA-A1 and -A24 epitopes can also be incorporated into vaccine compositions. An analysis of the 191P4D12(b) protein can also be performed to identify HLA-A1- and A24-motif-containing sequences.
  • High affinity and/or cross-reactive binding epitopes that bear other motif and/or supermotifs are identified using analogous methodology.
  • Example 14 Confirmation of Immunogenicity
  • Cross-reactive candidate CTL A2-supermotif-bearing peptides that are identified as described herein are selected to confirm in vitro immunogenicity. Confirmation is performed using the following methodology:
  • Target Cell Lines for Cellular Screening:
  • The 221A2.1 cell line, produced by transferring the HLA-A2.1 gene into the HLA-A, -B, -C null mutant human B-lymphoblastoid cell line 721.221, is used as the peptide-loaded target to measure activity of HLA-A2.1-restricted CTL. This cell line is grown in RPMI-1640 medium supplemented with antibiotics, sodium pyruvate, nonessential amino acids and 10% (v/v) heat inactivated FCS. Cells that express an antigen of interest, or transfectants comprising the gene encoding the antigen of interest, can be used as target cells to confirm the ability of peptide-specific CTLs to recognize endogenous antigen.
  • Primary CTL Induction Cultures:
  • Generation of Dendritic Cells (DC): PBMCs are thawed in RPMI with 30 μg/ml DNAse, washed twice and resuspended in complete medium (RPMI-1640 plus 5% AB human serum, non-essential amino acids, sodium pyruvate, L-glutamine and penicillin/streptomycin). The monocytes are purified by plating 10×106 PBMC/well in a 6-well plate. After 2 hours at 37° C., the non-adherent cells are removed by gently shaking the plates and aspirating the supernatants. The wells are washed a total of three times with 3 ml RPMI to remove most of the non-adherent and loosely adherent cells. Three ml of complete medium containing 50 ng/ml of GM-CSF and 1,000 U/ml of IL-4 are then added to each well. TNFα is added to the DCs on day 6 at 75 ng/ml and the cells are used for CTL induction cultures on day 7.
  • Induction of CTL with DC and Peptide: CD8+ T-cells are isolated by positive selection with Dynal immunomagnetic beads (Dynabeads® M-450) and the Detacha-Bead® reagent. Typically about 200-250×106 PBMC are processed to obtain 24×106 CD8+ T-cells (enough for a 48-well plate culture). Briefly, the PBMCs are thawed in RPMI with 30 μg/ml DNAse, washed once with PBS containing 1% human AB serum and resuspended in PBS/1% AB serum at a concentration of 20×106 cells/ml. The magnetic beads are washed 3 times with PBS/AB serum, added to the cells (140 μl beads/20×106 cells) and incubated for 1 hour at 4° C. with continuous mixing. The beads and cells are washed 4× with PBS/AB serum to remove the nonadherent cells and resuspended at 100×106 cells/ml (based on the original cell number) in PBS/AB serum containing 100 μl/ml Detacha-Bead® reagent and 30 μg/ml DNAse. The mixture is incubated for 1 hour at room temperature with continuous mixing. The beads are washed again with PBS/AB/DNAse to collect the CD8+ T-cells. The DC are collected and centrifuged at 1300 rpm for 5-7 minutes, washed once with PBS with 1% BSA, counted and pulsed with 40 μg/ml of peptide at a cell concentration of 1-2×106/ml in the presence of 3 μg/ml β2-microglobulin for 4 hours at 20° C. The DC are then irradiated (4,200 rads), washed 1 time with medium and counted again.
  • Setting up induction cultures: 0.25 ml cytokine-generated DC (at 1×105 cells/ml) are co-cultured with 0.25 ml of CD8+ T-cells (at 2×106 cell/ml) in each well of a 48-well plate in the presence of 10 ng/ml of IL-7. Recombinant human IL-10 is added the next day at a final concentration of 10 ng/ml and rhuman IL-2 is added 48 hours later at 10 IU/ml.
  • Restimulation of the induction cultures with peptide-pulsed adherent cells: Seven and fourteen days after the primary induction, the cells are restimulated with peptide-pulsed adherent cells. The PBMCs are thawed and washed twice with RPMI and DNAse. The cells are resuspended at 5×106 cells/ml and irradiated at ˜4200 rads. The PBMCs are plated at 2×106 in 0.5 ml complete medium per well and incubated for 2 hours at 37° C. The plates are washed twice with RPMI by tapping the plate gently to remove the nonadherent cells and the adherent cells pulsed with 10 μg/ml of peptide in the presence of 3 μg/ml β2 microglobulin in 0.25 ml RPMI/5% AB per well for 2 hours at 37° C. Peptide solution from each well is aspirated and the wells are washed once with RPMI. Most of the media is aspirated from the induction cultures (CD8+ cells) and brought to 0.5 ml with fresh media. The cells are then transferred to the wells containing the peptide-pulsed adherent cells. Twenty four hours later recombinant human IL-10 is added at a final concentration of 10 ng/ml and recombinant human IL2 is added the next day and again 2-3 days later at 50 IU/ml (Tsai et al., Critical Reviews in Immunology 18 (1-2):65-75, 1998). Seven days later, the cultures are assayed for CTL activity in a 51Cr release assay. In some experiments the cultures are assayed for peptide-specific recognition in the in situ IFNγ ELISA at the time of the second restimulation followed by assay of endogenous recognition 7 days later. After expansion, activity is measured in both assays for a side-by-side comparison.
  • Measurement of CTL Lytic Activity by 51Cr Release.
  • Seven days after the second restimulation, cytotoxicity is determined in a standard (5 hr) 51Cr release assay by assaying individual wells at a single E:T. Peptide-pulsed targets are prepared by incubating the cells with 10 μg/ml peptide overnight at 37° C.
  • Adherent target cells are removed from culture flasks with trypsin-EDTA. Target cells are labeled with 200 μCi of 51Cr sodium chromate (Dupont, Wilmington, Del.) for 1 hour at 37° C. Labeled target cells are resuspended at 106 per ml and diluted 1:10 with K562 cells at a concentration of 3.3×106/ml (an NK-sensitive erythroblastoma cell line used to reduce non-specific lysis). Target cells (100 μl) and effectors (100 μl) are plated in 96 well round-bottom plates and incubated for 5 hours at 37° C. At that time, 100 μl of supernatant are collected from each well and percent lysis is determined according to the formula:

  • [(cpm of the test sample−cpm of the spontaneous 51Cr release sample)/(cpm of the maximal 51Cr release sample−cpm of the spontaneous 51Cr release sample)]×100
  • Maximum and spontaneous release are determined by incubating the labeled targets with 1% Triton X-100 and media alone, respectively. A positive culture is defined as one in which the specific lysis (sample-background) is 10% or higher in the case of individual wells and is 15% or more at the two highest E:T ratios when expanded cultures are assayed.
  • In Situ Measurement of Human IFNγ Production as an Indicator of Peptide-Specific and Endogenous Recognition
  • Immulon 2 plates are coated with mouse anti-human IFNγ monoclonal antibody (4 μg/ml 0.1M NaHCO3, pH8.2) overnight at 4° C. The plates are washed with Ca2+, Mg2+-free PBS/0.05% Tween 20 and blocked with PBS/10% FCS for two hours, after which the CTLs (100 μl/well) and targets (100 μl/well) are added to each well, leaving empty wells for the standards and blanks (which received media only). The target cells, either peptide-pulsed or endogenous targets, are used at a concentration of 1×106 cells/ml. The plates are incubated for 48 hours at 37° C. with 5% CO2.
  • Recombinant human IFN-gamma is added to the standard wells starting at 400 pg or 1200 pg/100 microliter/well and the plate incubated for two hours at 37° C. The plates are washed and 100 μl of biotinylated mouse anti-human IFN-gamma monoclonal antibody (2 microgram/ml in PBS/3% FCS/0.05% Tween 20) are added and incubated for 2 hours at room temperature. After washing again, 100 microliter HRP-streptavidin (1:4000) are added and the plates incubated for one hour at room temperature. The plates are then washed 6× with wash buffer, 100 microliter/well developing solution (TMB 1:1) are added, and the plates allowed to develop for 5-15 minutes. The reaction is stopped with 50 microliter/well 1M H3PO4 and read at OD450. A culture is considered positive if it measured at least 50 pg of IFN-gamma/well above background and is twice the background level of expression.
  • CTL Expansion.
  • Those cultures that demonstrate specific lytic activity against peptide-pulsed targets and/or tumor targets are expanded over a two week period with anti-CD3. Briefly, 5×104 CD8+ cells are added to a T25 flask containing the following: 1×106 irradiated (4,200 rad) PBMC (autologous or allogeneic) per ml, 2×105 irradiated (8,000 rad) EBV-transformed cells per ml, and OKT3 (anti-CD3) at 30 ng per ml in RPMI-1640 containing 10% (v/v) human AB serum, non-essential amino acids, sodium pyruvate, 25 μM 2-mercaptoethanol, L-glutamine and penicillin/streptomycin. Recombinant human IL2 is added 24 hours later at a final concentration of 200 IU/ml and every three days thereafter with fresh media at 50 IU/ml. The cells are split if the cell concentration exceeds 1×106/ml and the cultures are assayed between days 13 and 15 at E:T ratios of 30, 10, 3 and 1:1 in the 51Cr release assay or at 1×106/ml in the in situ IFNγ assay using the same targets as before the expansion.
  • Cultures are expanded in the absence of anti-CD3+ as follows. Those cultures that demonstrate specific lytic activity against peptide and endogenous targets are selected and 5×104 CD8+ cells are added to a T25 flask containing the following: 1×106 autologous PBMC per ml which have been peptide-pulsed with 10 μg/ml peptide for two hours at 37° C. and irradiated (4,200 rad); 2×105 irradiated (8,000 rad) EBV-transformed cells per ml RPMI-1640 containing 10% (v/v) human AB serum, non-essential AA, sodium pyruvate, 25 mM 2-ME, L-glutamine and gentamicin.
  • Immunogenicity of A2 Supermotif-Bearing Peptides
  • A2-supermotif cross-reactive binding peptides are tested in the cellular assay for the ability to induce peptide-specific CTL in normal individuals. In this analysis, a peptide is typically considered to be an epitope if it induces peptide-specific CTLs in at least individuals, and preferably, also recognizes the endogenously expressed peptide.
  • Immunogenicity can also be confirmed using PBMCs isolated from patients bearing a tumor that expresses 191P4D12(b). Briefly, PBMCs are isolated from patients, re-stimulated with peptide-pulsed monocytes and assayed for the ability to recognize peptide-pulsed target cells as well as transfected cells endogenously expressing the antigen.
  • Evaluation of A*03/A11 Immunogenicity
  • HLA-A3 supermotif-bearing cross-reactive binding peptides are also evaluated for immunogenicity using methodology analogous for that used to evaluate the immunogenicity of the HLA-A2 supermotif peptides.
  • Evaluation of B7 Immunogenicity
  • Immunogenicity screening of the B7-supertype cross-reactive binding peptides identified as set forth herein are confirmed in a manner analogous to the confirmation of A2- and A3-supermotif-bearing peptides.
  • Peptides bearing other supermotifs/motifs, e.g., HLA-A1, HLA-A24 etc. are also confirmed using similar methodology
  • Example 15 Implementation of the Extended Supermotif to Improve the Binding Capacity of Native Epitopes by Creating Analogs
  • HLA motifs and supermotifs (comprising primary and/or secondary residues) are useful in the identification and preparation of highly cross-reactive native peptides, as demonstrated herein. Moreover, the definition of HLA motifs and supermotifs also allows one to engineer highly cross-reactive epitopes by identifying residues within a native peptide sequence which can be analoged to confer upon the peptide certain characteristics, e.g. greater cross-reactivity within the group of HLA molecules that comprise a supertype, and/or greater binding affinity for some or all of those HLA molecules. Examples of analoging peptides to exhibit modulated binding affinity are set forth in this example.
  • Analoging at Primary Anchor Residues
  • Peptide engineering strategies are implemented to further increase the cross-reactivity of the epitopes. For example, the main anchors of A2-supermotif-bearing peptides are altered, for example, to introduce a preferred L, I, V, or M at position 2, and I or V at the C-terminus.
  • To analyze the cross-reactivity of the analog peptides, each engineered analog is initially tested for binding to the prototype A2 supertype allele A*0201, then, if A*0201 binding capacity is maintained, for A2-supertype cross-reactivity.
  • Alternatively, a peptide is confirmed as binding one or all supertype members and then analoged to modulate binding affinity to any one (or more) of the supertype members to add population coverage.
  • The selection of analogs for immunogenicity in a cellular screening analysis is typically further restricted by the capacity of the parent wild type (WT) peptide to bind at least weakly, i.e., bind at an IC50 of 5000 nM or less, to three of more A2 supertype alleles. The rationale for this requirement is that the WT peptides must be present endogenously in sufficient quantity to be biologically relevant. Analoged peptides have been shown to have increased immunogenicity and cross-reactivity by T cells specific for the parent epitope (see, e.g., Parkhurst et al., J. Immunol. 157:2539, 1996; and Pogue et al., Proc. Natl. Acad. Sci. USA 92:8166, 1995).
  • In the cellular screening of these peptide analogs, it is important to confirm that analog-specific CTLs are also able to recognize the wild-type peptide and, when possible, target cells that endogenously express the epitope.
  • Analoging of HLA-A3 and B7-Supermotif-Bearing Peptides
  • Analogs of HLA-A3 supermotif-bearing epitopes are generated using strategies similar to those employed in analoging HLA-A2 supermotif-bearing peptides. For example, peptides binding to 3/5 of the A3-supertype molecules are engineered at primary anchor residues to possess a preferred residue (V, S, M, or A) at position 2.
  • The analog peptides are then tested for the ability to bind A*03 and A*11 (prototype A3 supertype alleles). Those peptides that demonstrate ≦500 nM binding capacity are then confirmed as having A3-supertype cross-reactivity.
  • Similarly to the A2- and A3-motif bearing peptides, peptides binding 3 or more B7-supertype alleles can be improved, where possible, to achieve increased cross-reactive binding or greater binding affinity or binding half life. B7 supermotif-bearing peptides are, for example, engineered to possess a preferred residue (V, I, L, or F) at the C-terminal primary anchor position, as demonstrated by Sidney et al. (J. Immunol. 157:3480-3490, 1996).
  • Analoging at primary anchor residues of other motif and/or supermotif-bearing epitopes is performed in a like manner.
  • The analog peptides are then be confirmed for immunogenicity, typically in a cellular screening assay. Again, it is generally important to demonstrate that analog-specific CTLs are also able to recognize the wild-type peptide and, when possible, targets that endogenously express the epitope.
  • Analoging at Secondary Anchor Residues
  • Moreover, HLA supermotifs are of value in engineering highly cross-reactive peptides and/or peptides that bind HLA molecules with increased affinity by identifying particular residues at secondary anchor positions that are associated with such properties. For example, the binding capacity of a B7 supermotif-bearing peptide with an F residue at position 1 is analyzed. The peptide is then analoged to, for example, substitute L for F at position 1. The analoged peptide is evaluated for increased binding affinity, binding half life and/or increased cross-reactivity. Such a procedure identifies analoged peptides with enhanced properties.
  • Engineered analogs with sufficiently improved binding capacity or cross-reactivity can also be tested for immunogenicity in HLA-B7-transgenic mice, following for example, IFA immunization or lipopeptide immunization. Analoged peptides are additionally tested for the ability to stimulate a recall response using PBMC from patients with 191P4D12(b)-expressing tumors.
  • Other Analoging Strategies
  • Another form of peptide analoging, unrelated to anchor positions, involves the substitution of a cysteine with α-amino butyric acid. Due to its chemical nature, cysteine has the propensity to form disulfide bridges and sufficiently alter the peptide structurally so as to reduce binding capacity. Substitution of α-amino butyric acid for cysteine not only alleviates this problem, but has been shown to improve binding and crossbinding capabilities in some instances (see, e.g., the review by Sette et al., In: Persistent Viral Infections, Eds. R. Ahmed and I. Chen, John Wiley & Sons, England, 1999).
  • Thus, by the use of single amino acid substitutions, the binding properties and/or cross-reactivity of peptide ligands for HLA supertype molecules can be modulated.
  • Example 16 Identification and Confirmation of 191P4D12(b)-Derived Sequences with HLA-DR Binding Motifs
  • Peptide epitopes bearing an HLA class II supermotif or motif are identified and confirmed as outlined below using methodology similar to that described for HLA Class I peptides.
  • Selection of HLA-DR-Supermotif-Bearing Epitopes.
  • To identify 191P4D12(b)-derived, HLA class II HTL epitopes, a 191P4D12(b) antigen is analyzed for the presence of sequences bearing an HLA-DR-motif or supermotif. Specifically, 15-mer sequences are selected comprising a DR-supermotif, comprising a 9-mer core, and three-residue N- and C-terminal flanking regions (15 amino acids total).
  • Protocols for predicting peptide binding to DR molecules have been developed (Southwood et al., J. Immunol. 160:3363-3373, 1998). These protocols, specific for individual DR molecules, allow the scoring, and ranking, of 9-mer core regions. Each protocol not only scores peptide sequences for the presence of DR-supermotif primary anchors (i.e., at position 1 and position 6) within a 9-mer core, but additionally evaluates sequences for the presence of secondary anchors. Using allele-specific selection tables (see, e.g., Southwood et al., ibid.), it has been found that these protocols efficiently select peptide sequences with a high probability of binding a particular DR molecule. Additionally, it has been found that performing these protocols in tandem, specifically those for DR1, DR4w4, and DR7, can efficiently select DR cross-reactive peptides.
  • The 191P4D12(b)-derived peptides identified above are tested for their binding capacity for various common HLA-DR molecules. All peptides are initially tested for binding to the DR molecules in the primary panel: DR1, DR4w4, and DR7. Peptides binding at least two of these three DR molecules are then tested for binding to DR2w2 β1, DR2w2 β2, DR6w19, and DR9 molecules in secondary assays. Finally, peptides binding at least two of the four secondary panel DR molecules, and thus cumulatively at least four of seven different DR molecules, are screened for binding to DR4w15, DR5w11, and DR8w2 molecules in tertiary assays. Peptides binding at least seven of the ten DR molecules comprising the primary, secondary, and tertiary screening assays are considered cross-reactive DR binders. 191P4D12(b)-derived peptides found to bind common HLA-DR alleles are of particular interest.
  • Selection of DR3 Motif Peptides
  • Because HLA-DR3 is an allele that is prevalent in Caucasian, Black, and Hispanic populations, DR3 binding capacity is a relevant criterion in the selection of HTL epitopes. Thus, peptides shown to be candidates may also be assayed for their DR3 binding capacity. However, in view of the binding specificity of the DR3 motif, peptides binding only to DR3 can also be considered as candidates for inclusion in a vaccine formulation.
  • To efficiently identify peptides that bind DR3, target 191P4D12(b) antigens are analyzed for sequences carrying one of the two DR3-specific binding motifs reported by Geluk et al. (J. Immunol. 152:5742-5748, 1994). The corresponding peptides are then synthesized and confirmed as having the ability to bind DR3 with an affinity of 1 μM or better, i.e., less than 1 μM. Peptides are found that meet this binding criterion and qualify as HLA class II high affinity binders.
  • DR3 binding epitopes identified in this manner are included in vaccine compositions with DR supermotif-bearing peptide epitopes.
  • Similarly to the case of HLA class I motif-bearing peptides, the class II motif-bearing peptides are analoged to improve affinity or cross-reactivity. For example, aspartic acid at position 4 of the 9-mer core sequence is an optimal residue for DR3 binding, and substitution for that residue often improves DR 3 binding.
  • Example 17 Immunogenicity of 191P4D12(b)-Derived HTL Epitopes
  • This example determines immunogenic DR supermotif- and DR3 motif-bearing epitopes among those identified using the methodology set forth herein.
  • Immunogenicity of HTL epitopes are confirmed in a manner analogous to the determination of immunogenicity of CTL epitopes, by assessing the ability to stimulate HTL responses and/or by using appropriate transgenic mouse models. Immunogenicity is determined by screening for: 1.) in vitro primary induction using normal PBMC or 2.) recall responses from patients who have 191P4D12(b)-expressing tumors.
  • Example 18 Calculation of Phenotypic Frequencies of HLA-Supertypes in Various Ethnic Backgrounds to Determine Breadth of Population Coverage
  • This example illustrates the assessment of the breadth of population coverage of a vaccine composition comprised of multiple epitopes comprising multiple supermotifs and/or motifs.
  • In order to analyze population coverage, gene frequencies of HLA alleles are determined. Gene frequencies for each HLA allele are calculated from antigen or allele frequencies utilizing the binomial distribution formulae gf=1−(SQRT(1−af)) (see, e.g., Sidney et al., Human Immunol. 45:79-93, 1996). To obtain overall phenotypic frequencies, cumulative gene frequencies are calculated, and the cumulative antigen frequencies derived by the use of the inverse formula [af=1−(1−Cgf)2].
  • Where frequency data is not available at the level of DNA typing, correspondence to the serologically defined antigen frequencies is assumed. To obtain total potential supertype population coverage no linkage disequilibrium is assumed, and only alleles confirmed to belong to each of the supertypes are included (minimal estimates). Estimates of total potential coverage achieved by inter-loci combinations are made by adding to the A coverage the proportion of the non-A covered population that could be expected to be covered by the B alleles considered (e.g., total=A+B*(1−A)). Confirmed members of the A3-like supertype are A3, A11, A31, A*3301, and A*6801. Although the A3-like supertype may also include A34, A66, and A*7401, these alleles were not included in overall frequency calculations Likewise, confirmed members of the A2-like supertype family are A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207, A*6802, and A*6901. Finally, the B7-like supertype-confirmed alleles are: B7, B*3501-03, B51, B*5301, B*5401, B*5501-2, B*5601, B*6701, and B*7801 (potentially also B*1401, B*3504-06, B*4201, and B*5602).
  • Population coverage achieved by combining the A2-, A3- and B7-supertypes is approximately 86% in five major ethnic groups. Coverage may be extended by including peptides bearing the A1 and A24 motifs. On average, A1 is present in 12% and A24 in 29% of the population across five different major ethnic groups (Caucasian, North American Black, Chinese, Japanese, and Hispanic). Together, these alleles are represented with an average frequency of 39% in these same ethnic populations. The total coverage across the major ethnicities when A1 and A24 are combined with the coverage of the A2-, A3- and B7-supertype alleles is >95%, see, e.g., Table IV (G). An analogous approach can be used to estimate population coverage achieved with combinations of class II motif-bearing epitopes.
  • Immunogenicity studies in humans (e.g., Bertoni et al., J. Clin. Invest. 100:503, 1997; Doolan et al., Immunity 7:97, 1997; and Threlkeld et al., J. Immunol. 159:1648, 1997) have shown that highly cross-reactive binding peptides are almost always recognized as epitopes. The use of highly cross-reactive binding peptides is an important selection criterion in identifying candidate epitopes for inclusion in a vaccine that is immunogenic in a diverse population.
  • With a sufficient number of epitopes (as disclosed herein and from the art), an average population coverage is predicted to be greater than 95% in each of five major ethnic populations. The game theory Monte Carlo simulation analysis, which is known in the art (see e.g., Osborne, M. J. and Rubinstein, A. “A course in game theory” MIT Press, 1994), can be used to estimate what percentage of the individuals in a population comprised of the Caucasian, North American Black, Japanese, Chinese, and Hispanic ethnic groups would recognize the vaccine epitopes described herein. A preferred percentage is 90%. A more preferred percentage is 95%.
  • Example 19 CTL Recognition of Endogenously Processed Antigens after Priming
  • This example confirms that CTL induced by native or analoged peptide epitopes identified and selected as described herein recognize endogenously synthesized, i.e., native antigens.
  • Effector cells isolated from transgenic mice that are immunized with peptide epitopes, for example HLA-A2 supermotif-bearing epitopes, are re-stimulated in vitro using peptide-coated stimulator cells. Six days later, effector cells are assayed for cytotoxicity and the cell lines that contain peptide-specific cytotoxic activity are further re-stimulated. An additional six days later, these cell lines are tested for cytotoxic activity on 51Cr labeled Jurkat-A2.1/Kb target cells in the absence or presence of peptide, and also tested on 51Cr labeled target cells bearing the endogenously synthesized antigen, i.e. cells that are stably transfected with 191P4D12(b) expression vectors.
  • The results demonstrate that CTL lines obtained from animals primed with peptide epitope recognize endogenously synthesized 191P4D12(b) antigen. The choice of transgenic mouse model to be used for such an analysis depends upon the epitope(s) that are being evaluated. In addition to HLA-A*0201/Kb transgenic mice, several other transgenic mouse models including mice with human All, which may also be used to evaluate A3 epitopes, and B7 alleles have been characterized and others (e.g., transgenic mice for HLA-A1 and A24) are being developed. HLA-DR1 and HLA-DR3 mouse models have also been developed, which may be used to evaluate HTL epitopes.
  • Example 20 Activity of CTL-HTL Conjugated Epitopes in Transgenic Mice
  • This example illustrates the induction of CTLs and HTLs in transgenic mice, by use of a 191P4D12(b)-derived CTL and HTL peptide vaccine compositions. The vaccine composition used herein comprise peptides to be administered to a patient with a 191P4D12(b)-expressing tumor. The peptide composition can comprise multiple CTL and/or HTL epitopes. The epitopes are identified using methodology as described herein. This example also illustrates that enhanced immunogenicity can be achieved by inclusion of one or more HTL epitopes in a CTL vaccine composition; such a peptide composition can comprise an HTL epitope conjugated to a CTL epitope. The CTL epitope can be one that binds to multiple HLA family members at an affinity of 500 nM or less, or analogs of that epitope. The peptides may be lipidated, if desired.
  • Immunization procedures: Immunization of transgenic mice is performed as described (Alexander et al., J. Immunol. 159:4753-4761, 1997). For example, A2/Kb mice, which are transgenic for the human HLA A2.1 allele and are used to confirm the immunogenicity of HLA-A*0201 motif- or HLA-A2 supermotif-bearing epitopes, and are primed subcutaneously (base of the tail) with a 0.1 ml of peptide in Incomplete Freund's Adjuvant, or if the peptide composition is a lipidated CTL/HTL conjugate, in DMSO/saline, or if the peptide composition is a polypeptide, in PBS or Incomplete Freund's Adjuvant. Seven days after priming, splenocytes obtained from these animals are restimulated with syngenic irradiated LPS-activated lymphoblasts coated with peptide.
  • Cell lines: Target cells for peptide-specific cytotoxicity assays are Jurkat cells transfected with the HLA-A2.1/Kb chimeric gene (e.g., Vitiello et al., J. Exp. Med. 173:1007, 1991)
  • In vitro CTL activation: One week after priming, spleen cells (30×106 cells/flask) are co-cultured at 37° C. with syngeneic, irradiated (3000 rads), peptide coated lymphoblasts (10×106 cells/flask) in 10 ml of culture medium/T25 flask. After six days, effector cells are harvested and assayed for cytotoxic activity.
  • Assay for cytotoxic activity: Target cells (1.0 to 1.5×106) are incubated at 37° C. in the presence of 200 μl of 51Cr. After 60 minutes, cells are washed three times and resuspended in R10 medium. Peptide is added where required at a concentration of 1 μg/ml. For the assay, 104 51Cr-labeled target cells are added to different concentrations of effector cells (final volume of 200 μl) in U-bottom 96-well plates. After a six hour incubation period at 37° C., a 0.1 ml aliquot of supernatant is removed from each well and radioactivity is determined in a Micromedic automatic gamma counter. The percent specific lysis is determined by the formula: percent specific release=100×(experimental release−spontaneous release)/(maximum release−spontaneous release). To facilitate comparison between separate CTL assays run under the same conditions, % 51Cr release data is expressed as lytic units/106 cells. One lytic unit is arbitrarily defined as the number of effector cells required to achieve 30% lysis of 10,000 target cells in a six hour 51Cr release assay. To obtain specific lytic units/106, the lytic units/106 obtained in the absence of peptide is subtracted from the lytic units/106 obtained in the presence of peptide. For example, if 30% 51Cr release is obtained at the effector (E): target (T) ratio of 50:1 (i.e., 5×105 effector cells for 10,000 targets) in the absence of peptide and 5:1 (i.e., 5×104 effector cells for 10,000 targets) in the presence of peptide, the specific lytic units would be: [(1/50,000)−(1/500,000)]×106=18 LU.
  • The results are analyzed to assess the magnitude of the CTL responses of animals injected with the immunogenic CTL/HTL conjugate vaccine preparation and are compared to the magnitude of the CTL response achieved using, for example, CTL epitopes as outlined above in the Example entitled “Confirmation of Immunogenicity.” Analyses similar to this may be performed to confirm the immunogenicity of peptide conjugates containing multiple CTL epitopes and/or multiple HTL epitopes. In accordance with these procedures, it is found that a CTL response is induced, and concomitantly that an HTL response is induced upon administration of such compositions.
  • Example 21 Selection of CTL and HTL Epitopes for Inclusion in a 191P4D12(b)-Specific Vaccine
  • This example illustrates a procedure for selecting peptide epitopes for vaccine compositions of the invention. The peptides in the composition can be in the form of a nucleic acid sequence, either single or one or more sequences (i.e., minigene) that encodes peptide(s), or can be single and/or polyepitopic peptides.
  • The following principles are utilized when selecting a plurality of epitopes for inclusion in a vaccine composition. Each of the following principles is balanced in order to make the selection.
  • Epitopes are selected which, upon administration, mimic immune responses that are correlated with 191P4D12(b) clearance. The number of epitopes used depends on observations of patients who spontaneously clear 191P4D12(b). For example, if it has been observed that patients who spontaneously clear 191P4D12(b)-expressing cells generate an immune response to at least three (3) epitopes from 191P4D12(b) antigen, then at least three epitopes should be included for HLA class I. A similar rationale is used to determine HLA class II epitopes.
  • Epitopes are often selected that have a binding affinity of an IC50 of 500 nM or less for an HLA class I molecule, or for class II, an IC50 of 1000 nM or less; or HLA Class I peptides with high binding scores from the BIMAS web site.
  • In order to achieve broad coverage of the vaccine through out a diverse population, sufficient supermotif bearing peptides, or a sufficient array of allele-specific motif bearing peptides, are selected to give broad population coverage. In one embodiment, epitopes are selected to provide at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess breadth, or redundancy, of population coverage.
  • When creating polyepitopic compositions, or a minigene that encodes same, it is typically desirable to generate the smallest peptide possible that encompasses the epitopes of interest. The principles employed are similar, if not the same, as those employed when selecting a peptide comprising nested epitopes. For example, a protein sequence for the vaccine composition is selected because it has maximal number of epitopes contained within the sequence, i.e., it has a high concentration of epitopes. Epitopes may be nested or overlapping (i.e., frame shifted relative to one another). For example, with overlapping epitopes, two 9-mer epitopes and one 10-mer epitope can be present in a 10 amino acid peptide. Each epitope can be exposed and bound by an HLA molecule upon administration of such a peptide. A multi-epitopic, peptide can be generated synthetically, recombinantly, or via cleavage from the native source. Alternatively, an analog can be made of this native sequence, whereby one or more of the epitopes comprise substitutions that alter the cross-reactivity and/or binding affinity properties of the polyepitopic peptide. Such a vaccine composition is administered for therapeutic or prophylactic purposes. This embodiment provides for the possibility that an as yet undiscovered aspect of immune system processing will apply to the native nested sequence and thereby facilitate the production of therapeutic or prophylactic immune response-inducing vaccine compositions. Additionally such an embodiment provides for the possibility of motif-bearing epitopes for an HLA makeup that is presently unknown. Furthermore, this embodiment (absent the creating of any analogs) directs the immune response to multiple peptide sequences that are actually present in 191P4D12(b), thus avoiding the need to evaluate any junctional epitopes. Lastly, the embodiment provides an economy of scale when producing nucleic acid vaccine compositions. Related to this embodiment, computer programs can be derived in accordance with principles in the art, which identify in a target sequence, the greatest number of epitopes per sequence length.
  • A vaccine composition comprised of selected peptides, when administered, is safe, efficacious, and elicits an immune response similar in magnitude to an immune response that controls or clears cells that bear or overexpress 191P4D12(b).
  • Example 22 Construction of “Minigene” Multi-Epitope DNA Plasmids
  • This example discusses the construction of a minigene expression plasmid. Minigene plasmids may, of course, contain various configurations of B cell, CTL and/or HTL epitopes or epitope analogs as described herein.
  • A minigene expression plasmid typically includes multiple CTL and HTL peptide epitopes. In the present example, HLA-A2, -A3, -B7 supermotif-bearing peptide epitopes and HLA-A1 and -A24 motif-bearing peptide epitopes are used in conjunction with DR supermotif-bearing epitopes and/or DR3 epitopes. HLA class I supermotif or motif-bearing peptide epitopes derived 191P4D12(b), are selected such that multiple supermotifs/motifs are represented to ensure broad population coverage. Similarly, HLA class II epitopes are selected from 191P4D12(b) to provide broad population coverage, i.e. both HLA DR-1-4-7 supermotif-bearing epitopes and HLA DR-3 motif-bearing epitopes are selected for inclusion in the minigene construct. The selected CTL and HTL epitopes are then incorporated into a minigene for expression in an expression vector.
  • Such a construct may additionally include sequences that direct the HTL epitopes to the endoplasmic reticulum. For example, the Ii protein may be fused to one or more HTL epitopes as described in the art, wherein the CLIP sequence of the Ii protein is removed and replaced with an HLA class II epitope sequence so that HLA class II epitope is directed to the endoplasmic reticulum, where the epitope binds to an HLA class II molecules.
  • This example illustrates the methods to be used for construction of a minigene-bearing expression plasmid. Other expression vectors that may be used for minigene compositions are available and known to those of skill in the art.
  • The minigene DNA plasmid of this example contains a consensus Kozak sequence and a consensus murine kappa Ig-light chain signal sequence followed by CTL and/or HTL epitopes selected in accordance with principles disclosed herein. The sequence encodes an open reading frame fused to the Myc and His antibody epitope tag coded for by the pcDNA 3.1 Myc-His vector.
  • Overlapping oligonucleotides that can, for example, average about 70 nucleotides in length with 15 nucleotide overlaps, are synthesized and HPLC-purified. The oligonucleotides encode the selected peptide epitopes as well as appropriate linker nucleotides, Kozak sequence, and signal sequence. The final multiepitope minigene is assembled by extending the overlapping oligonucleotides in three sets of reactions using PCR. A Perkin/Elmer 9600 PCR machine is used and a total of 30 cycles are performed using the following conditions: 95° C. for 15 sec, annealing temperature (5° below the lowest calculated Tm of each primer pair) for 30 sec, and 72° C. for 1 min.
  • For example, a minigene is prepared as follows. For a first PCR reaction, 5 μg of each of two oligonucleotides are annealed and extended: In an example using eight oligonucleotides, i.e., four pairs of primers, oligonucleotides 1+2, 3+4, 5+6, and 7+8 are combined in 100 μl reactions containing Pfu polymerase buffer (1×=10 mM KCL, 10 mM (NH4)2SO4, 20 mM Tris-chloride, pH 8.75, 2 mM MgSO4, 0.1% Triton X-100, 100 μg/ml BSA), 0.25 mM each dNTP, and 2.5 U of Pfu polymerase. The full-length dimer products are gel-purified, and two reactions containing the product of 1+2 and 3+4, and the product of 5+6 and 7+8 are mixed, annealed, and extended for 10 cycles. Half of the two reactions are then mixed, and 5 cycles of annealing and extension carried out before flanking primers are added to amplify the full length product. The full-length product is gel-purified and cloned into pCR-blunt (Invitrogen) and individual clones are screened by sequencing.
  • Example 23 The Plasmid Construct and the Degree to which it Induces Immunogenicity
  • The degree to which a plasmid construct, for example a plasmid constructed in accordance with the previous Example, is able to induce immunogenicity is confirmed in vitro by determining epitope presentation by APC following transduction or transfection of the APC with an epitope-expressing nucleic acid construct. Such a study determines “antigenicity” and allows the use of human APC. The assay determines the ability of the epitope to be presented by the APC in a context that is recognized by a T cell by quantifying the density of epitope-HLA class I complexes on the cell surface. Quantitation can be performed by directly measuring the amount of peptide eluted from the APC (see, e.g., Sijts et al., J. Immunol. 156:683-692, 1996; Demotz et al., Nature 342:682-684, 1989); or the number of peptide-HLA class I complexes can be estimated by measuring the amount of lysis or lymphokine release induced by diseased or transfected target cells, and then determining the concentration of peptide necessary to obtain equivalent levels of lysis or lymphokine release (see, e.g., Kageyama et al., J. Immunol. 154:567-576, 1995).
  • Alternatively, immunogenicity is confirmed through in vivo injections into mice and subsequent in vitro assessment of CTL and HTL activity, which are analyzed using cytotoxicity and proliferation assays, respectively, as detailed e.g., in Alexander et al., Immunity 1:751-761, 1994.
  • For example, to confirm the capacity of a DNA minigene construct containing at least one HLA-A2 supermotif peptide to induce CTLs in vivo, HLA-A2.1/Kb transgenic mice, for example, are immunized intramuscularly with 100 μg of naked cDNA. As a means of comparing the level of CTLs induced by cDNA immunization, a control group of animals is also immunized with an actual peptide composition that comprises multiple epitopes synthesized as a single polypeptide as they would be encoded by the minigene.
  • Splenocytes from immunized animals are stimulated twice with each of the respective compositions (peptide epitopes encoded in the minigene or the polyepitopic peptide), then assayed for peptide-specific cytotoxic activity in a 51Cr release assay. The results indicate the magnitude of the CTL response directed against the A2-restricted epitope, thus indicating the in vivo immunogenicity of the minigene vaccine and polyepitopic vaccine.
  • It is, therefore, found that the minigene elicits immune responses directed toward the HLA-A2 supermotif peptide epitopes as does the polyepitopic peptide vaccine. A similar analysis is also performed using other HLA-A3 and HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 and HLA-B7 motif or supermotif epitopes, whereby it is also found that the minigene elicits appropriate immune responses directed toward the provided epitopes.
  • To confirm the capacity of a class II epitope-encoding minigene to induce HTLs in vivo, DR transgenic mice, or for those epitopes that cross react with the appropriate mouse MHC molecule, I-Ab-restricted mice, for example, are immunized intramuscularly with 100 μg of plasmid DNA. As a means of comparing the level of HTLs induced by DNA immunization, a group of control animals is also immunized with an actual peptide composition emulsified in complete Freund's adjuvant. CD4+ T cells, i.e. HTLs, are purified from splenocytes of immunized animals and stimulated with each of the respective compositions (peptides encoded in the minigene). The HTL response is measured using a 3H-thymidine incorporation proliferation assay, (see, e.g., Alexander et al. Immunity 1:751-761, 1994). The results indicate the magnitude of the HTL response, thus demonstrating the in vivo immunogenicity of the minigene.
  • DNA minigenes, constructed as described in the previous Example, can also be confirmed as a vaccine in combination with a boosting agent using a prime boost protocol. The boosting agent can consist of recombinant protein (e.g., Barnett et al., Aids Res. and Human Retroviruses 14, Supplement 3:S299-S309, 1998) or recombinant vaccinia, for example, expressing a minigene or DNA encoding the complete protein of interest (see, e.g., Hanke et al., Vaccine 16:439-445, 1998; Sedegah et al., Proc. Natl. Acad. Sci. USA 95:7648-53, 1998; Hanke and McMichael, Immunol. Letters 66:177-181, 1999; and Robinson et al., Nature Med. 5:526-34, 1999).
  • For example, the efficacy of the DNA minigene used in a prime boost protocol is initially evaluated in transgenic mice. In this example, A2.1/Kb transgenic mice are immunized IM with 100 μg of a DNA minigene encoding the immunogenic peptides including at least one HLA-A2 supermotif-bearing peptide. After an incubation period (ranging from 3-9 weeks), the mice are boosted IP with 107 pfu/mouse of a recombinant vaccinia virus expressing the same sequence encoded by the DNA minigene. Control mice are immunized with 100 μg of DNA or recombinant vaccinia without the minigene sequence, or with DNA encoding the minigene, but without the vaccinia boost. After an additional incubation period of two weeks, splenocytes from the mice are immediately assayed for peptide-specific activity in an ELISPOT assay. Additionally, splenocytes are stimulated in vitro with the A2-restricted peptide epitopes encoded in the minigene and recombinant vaccinia, then assayed for peptide-specific activity in an alpha, beta and/or gamma IFN ELISA.
  • It is found that the minigene utilized in a prime-boost protocol elicits greater immune responses toward the HLA-A2 supermotif peptides than with DNA alone. Such an analysis can also be performed using HLA-A11 or HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 or HLA-B7 motif or supermotif epitopes. The use of prime boost protocols in humans is described below in the Example entitled “Induction of CTL Responses Using a Prime Boost Protocol.”
  • Example 24 Peptide Compositions for Prophylactic Uses
  • Vaccine compositions of the present invention can be used to prevent 191P4D12(b) expression in persons who are at risk for tumors that bear this antigen. For example, a polyepitopic peptide epitope composition (or a nucleic acid comprising the same) containing multiple CTL and HTL epitopes such as those selected in the above Examples, which are also selected to target greater than 80% of the population, is administered to individuals at risk for a 191P4D12(b)-associated tumor.
  • For example, a peptide-based composition is provided as a single polypeptide that encompasses multiple epitopes. The vaccine is typically administered in a physiological solution that comprises an adjuvant, such as Incomplete Freunds Adjuvant. The dose of peptide for the initial immunization is from about 1 to about 50,000 μg, generally 100-5,000 μg, for a 70 kg patient. The initial administration of vaccine is followed by booster dosages at 4 weeks followed by evaluation of the magnitude of the immune response in the patient, by techniques that determine the presence of epitope-specific CTL populations in a PBMC sample. Additional booster doses are administered as required. The composition is found to be both safe and efficacious as a prophylaxis against 191P4D12(b)-associated disease.
  • Alternatively, a composition typically comprising transfecting agents is used for the administration of a nucleic acid-based vaccine in accordance with methodologies known in the art and disclosed herein.
  • Example 25 Polyepitopic Vaccine Compositions Derived from Native 191P4D12(b) Sequences
  • A native 191P4D12(b) polyprotein sequence is analyzed, preferably using computer algorithms defined for each class I and/or class II supermotif or motif, to identify “relatively short” regions of the polyprotein that comprise multiple epitopes. The “relatively short” regions are preferably less in length than an entire native antigen. This relatively short sequence that contains multiple distinct or overlapping, “nested” epitopes can be used to generate a minigene construct. The construct is engineered to express the peptide, which corresponds to the native protein sequence. The “relatively short” peptide is generally less than 250 amino acids in length, often less than 100 amino acids in length, preferably less than 75 amino acids in length, and more preferably less than 50 amino acids in length. The protein sequence of the vaccine composition is selected because it has maximal number of epitopes contained within the sequence, i.e., it has a high concentration of epitopes. As noted herein, epitope motifs may be nested or overlapping (i.e., frame shifted relative to one another). For example, with overlapping epitopes, two 9-mer epitopes and one 10-mer epitope can be present in a 10 amino acid peptide. Such a vaccine composition is administered for therapeutic or prophylactic purposes.
  • The vaccine composition will include, for example, multiple CTL epitopes from 191P4D12(b) antigen and at least one HTL epitope. This polyepitopic native sequence is administered either as a peptide or as a nucleic acid sequence which encodes the peptide. Alternatively, an analog can be made of this native sequence, whereby one or more of the epitopes comprise substitutions that alter the cross-reactivity and/or binding affinity properties of the polyepitopic peptide.
  • The embodiment of this example provides for the possibility that an as yet undiscovered aspect of immune system processing will apply to the native nested sequence and thereby facilitate the production of therapeutic or prophylactic immune response-inducing vaccine compositions. Additionally, such an embodiment provides for the possibility of motif-bearing epitopes for an HLA makeup(s) that is presently unknown. Furthermore, this embodiment (excluding an analoged embodiment) directs the immune response to multiple peptide sequences that are actually present in native 191P4D12(b), thus avoiding the need to evaluate any junctional epitopes. Lastly, the embodiment provides an economy of scale when producing peptide or nucleic acid vaccine compositions.
  • Related to this embodiment, computer programs are available in the art which can be used to identify in a target sequence, the greatest number of epitopes per sequence length.
  • Example 26 Polyepitopic Vaccine Compositions from Multiple Antigens
  • The 191P4D12(b) peptide epitopes of the present invention are used in conjunction with epitopes from other target tumor-associated antigens, to create a vaccine composition that is useful for the prevention or treatment of cancer that expresses 191P4D12(b) and such other antigens. For example, a vaccine composition can be provided as a single polypeptide that incorporates multiple epitopes from 191P4D12(b) as well as tumor-associated antigens that are often expressed with a target cancer associated with 191P4D12(b) expression, or can be administered as a composition comprising a cocktail of one or more discrete epitopes. Alternatively, the vaccine can be administered as a minigene construct or as dendritic cells which have been loaded with the peptide epitopes in vitro.
  • Example 27 Use of Peptides to Evaluate an Immune Response
  • Peptides of the invention may be used to analyze an immune response for the presence of specific antibodies, CTL or HTL directed to 191P4D12(b). Such an analysis can be performed in a manner described by Ogg et al., Science 279:2103-2106, 1998. In this Example, peptides in accordance with the invention are used as a reagent for diagnostic or prognostic purposes, not as an immunogen.
  • In this example highly sensitive human leukocyte antigen tetrameric complexes (“tetramers”) are used for a cross-sectional analysis of, for example, 191P4D12(b) HLA-A*0201-specific CTL frequencies from HLA A*0201-positive individuals at different stages of disease or following immunization comprising a 191P4D12(b) peptide containing an A*0201 motif. Tetrameric complexes are synthesized as described (Musey et al., N. Engl. J. Med. 337:1267, 1997). Briefly, purified HLA heavy chain (A*0201 in this example) and β2-microglobulin are synthesized by means of a prokaryotic expression system. The heavy chain is modified by deletion of the transmembrane-cytosolic tail and COOH-terminal addition of a sequence containing a BirA enzymatic biotinylation site. The heavy chain, β2-microglobulin, and peptide are refolded by dilution. The 45-kD refolded product is isolated by fast protein liquid chromatography and then biotinylated by BirA in the presence of biotin (Sigma, St. Louis, Mo.), adenosine 5′ triphosphate and magnesium. Streptavidin-phycoerythrin conjugate is added in a 1:4 molar ratio, and the tetrameric product is concentrated to 1 mg/ml. The resulting product is referred to as tetramer-phycoerythrin.
  • For the analysis of patient blood samples, approximately one million PBMCs are centrifuged at 300 g for 5 minutes and resuspended in 50 μl of cold phosphate-buffered saline. Tri-color analysis is performed with the tetramer-phycoerythrin, along with anti-CD8-Tricolor, and anti-CD38. The PBMCs are incubated with tetramer and antibodies on ice for 30 to 60 min and then washed twice before formaldehyde fixation. Gates are applied to contain>99.98% of control samples. Controls for the tetramers include both A*0201-negative individuals and A*0201-positive non-diseased donors. The percentage of cells stained with the tetramer is then determined by flow cytometry. The results indicate the number of cells in the PBMC sample that contain epitope-restricted CTLs, thereby readily indicating the extent of immune response to the 191P4D12(b) epitope, and thus the status of exposure to 191P4D12(b), or exposure to a vaccine that elicits a protective or therapeutic response.
  • Example 28 Use of Peptide Epitopes to Evaluate Recall Responses
  • The peptide epitopes of the invention are used as reagents to evaluate T cell responses, such as acute or recall responses, in patients. Such an analysis may be performed on patients who have recovered from 191P4D12(b)-associated disease or who have been vaccinated with a 191P4D12(b) vaccine.
  • For example, the class I restricted CTL response of persons who have been vaccinated may be analyzed. The vaccine may be any 191P4D12(b) vaccine. PBMC are collected from vaccinated individuals and HLA typed. Appropriate peptide epitopes of the invention that, optimally, bear supermotifs to provide cross-reactivity with multiple HLA supertype family members, are then used for analysis of samples derived from individuals who bear that HLA type.
  • PBMC from vaccinated individuals are separated on Ficoll-Histopaque density gradients (Sigma Chemical Co., St. Louis, Mo.), washed three times in HBSS (GIBCO Laboratories), resuspended in RPMI-1640 (GIBCO Laboratories) supplemented with L-glutamine (2 mM), penicillin (50 U/ml), streptomycin (50 μg/ml), and Hepes (10 mM) containing 10% heat-inactivated human AB serum (complete RPMI) and plated using microculture formats. A synthetic peptide comprising an epitope of the invention is added at 10 μg/ml to each well and HBV core 128-140 epitope is added at 1 μg/ml to each well as a source of T cell help during the first week of stimulation.
  • In the microculture format, 4×105 PBMC are stimulated with peptide in 8 replicate cultures in 96-well round bottom plate in 100 μl/well of complete RPMI. On days 3 and 10, 100 μl of complete RPMI and 20 U/ml final concentration of rIL-2 are added to each well. On day 7 the cultures are transferred into a 96-well flat-bottom plate and restimulated with peptide, rIL-2 and 105 irradiated (3,000 rad) autologous feeder cells. The cultures are tested for cytotoxic activity on day 14. A positive CTL response requires two or more of the eight replicate cultures to display greater than 10% specific 51Cr release, based on comparison with non-diseased control subjects as previously described (Rehermann, et al., Nature Med. 2:1104, 1108, 1996; Rehermann et al., J. Clin. Invest. 97:1655-1665, 1996; and Rehermann et al. J. Clin. Invest. 98:1432-1440, 1996).
  • Target cell lines are autologous and allogeneic EBV-transformed B-LCL that are either purchased from the American Society for Histocompatibility and Immunogenetics (ASHI, Boston, Mass.) or established from the pool of patients as described (Guilhot, et al. J. Virol. 66:2670-2678, 1992).
  • Cytotoxicity assays are performed in the following manner. Target cells consist of either allogeneic HLA-matched or autologous EBV-transformed B lymphoblastoid cell line that are incubated overnight with the synthetic peptide epitope of the invention at 10 μM, and labeled with 100 μCi of 51Cr (Amersham Corp., Arlington Heights, Ill.) for 1 hour after which they are washed four times with HBSS.
  • Cytolytic activity is determined in a standard 4-h, split well 51Cr release assay using U-bottomed 96 well plates containing 3,000 targets/well. Stimulated PBMC are tested at effector/target (E/T) ratios of 20-50:1 on day 14. Percent cytotoxicity is determined from the formula: 100×[(experimental release−spontaneous release)/maximum release−spontaneous release)]. Maximum release is determined by lysis of targets by detergent (2% Triton X-100; Sigma Chemical Co., St. Louis, Mo.). Spontaneous release is <25% of maximum release for all experiments.
  • The results of such an analysis indicate the extent to which HLA-restricted CTL populations have been stimulated by previous exposure to 191P4D12(b) or a 191P4D12(b) vaccine.
  • Similarly, Class II restricted HTL responses may also be analyzed. Purified PBMC are cultured in a 96-well flat bottom plate at a density of 1.5×105 cells/well and are stimulated with 10 μg/ml synthetic peptide of the invention, whole 191P4D12(b) antigen, or PHA. Cells are routinely plated in replicates of 4-6 wells for each condition. After seven days of culture, the medium is removed and replaced with fresh medium containing 10 U/ml IL-2. Two days later, 1 μCi 3H-thymidine is added to each well and incubation is continued for an additional 18 hours. Cellular DNA is then harvested on glass fiber mats and analyzed for 3H-thymidine incorporation. Antigen-specific T cell proliferation is calculated as the ratio of 3H-thymidine incorporation in the presence of antigen divided by the 3H-thymidine incorporation in the absence of antigen.
  • Example 29 Induction of Specific CTL Response in Humans
  • A human clinical trial for an immunogenic composition comprising CTL and HTL epitopes of the invention is set up as an IND Phase I, dose escalation study and carried out as a randomized, double-blind, placebo-controlled trial. Such a trial is designed, for example, as follows:
  • A total of about 27 individuals are enrolled and divided into 3 groups:
  • Group I: 3 subjects are injected with placebo and 6 subjects are injected with 5 μg of peptide composition;
  • Group II: 3 subjects are injected with placebo and 6 subjects are injected with 50 μg peptide composition;
  • Group III: 3 subjects are injected with placebo and 6 subjects are injected with 500 μg of peptide composition.
  • After 4 weeks following the first injection, all subjects receive a booster inoculation at the same dosage.
  • The endpoints measured in this study relate to the safety and tolerability of the peptide composition as well as its immunogenicity. Cellular immune responses to the peptide composition are an index of the intrinsic activity of this the peptide composition, and can therefore be viewed as a measure of biological efficacy. The following summarize the clinical and laboratory data that relate to safety and efficacy endpoints.
  • Safety: The incidence of adverse events is monitored in the placebo and drug treatment group and assessed in terms of degree and reversibility.
  • Evaluation of Vaccine Efficacy: For evaluation of vaccine efficacy, subjects are bled before and after injection. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.
  • The vaccine is found to be both safe and efficacious.
  • Example 30 Phase II Trials in Patients Expressing 191P4D12(b)
  • Phase II trials are performed to study the effect of administering the CTL-HTL peptide compositions to patients having cancer that expresses 191P4D12(b). The main objectives of the trial are to determine an effective dose and regimen for inducing CTLs in cancer patients that express 191P4D12(b), to establish the safety of inducing a CTL and HTL response in these patients, and to see to what extent activation of CTLs improves the clinical picture of these patients, as manifested, e.g., by the reduction and/or shrinking of lesions. Such a study is designed, for example, as follows:
  • The studies are performed in multiple centers. The trial design is an open-label, uncontrolled, dose escalation protocol wherein the peptide composition is administered as a single dose followed six weeks later by a single booster shot of the same dose. The dosages are 50, 500 and 5,000 micrograms per injection. Drug-associated adverse effects (severity and reversibility) are recorded.
  • There are three patient groupings. The first group is injected with 50 micrograms of the peptide composition and the second and third groups with 500 and 5,000 micrograms of peptide composition, respectively. The patients within each group range in age from 21-65 and represent diverse ethnic backgrounds. All of them have a tumor that expresses 191P4D12(b).
  • Clinical manifestations or antigen-specific T-cell responses are monitored to assess the effects of administering the peptide compositions. The vaccine composition is found to be both safe and efficacious in the treatment of 191P4D12(b)-associated disease.
  • Example 31 Induction of CTL Responses Using a Prime Boost Protocol
  • A prime boost protocol similar in its underlying principle to that used to confirm the efficacy of a DNA vaccine in transgenic mice, such as described above in the Example entitled “The Plasmid Construct and the Degree to Which It Induces Immunogenicity,” can also be used for the administration of the vaccine to humans. Such a vaccine regimen can include an initial administration of, for example, naked DNA followed by a boost using recombinant virus encoding the vaccine, or recombinant protein/polypeptide or a peptide mixture administered in an adjuvant.
  • For example, the initial immunization may be performed using an expression vector, such as that constructed in the Example entitled “Construction of “Minigene” Multi-Epitope DNA Plasmids” in the form of naked nucleic acid administered IM (or SC or ID) in the amounts of 0.5-5 mg at multiple sites. The nucleic acid (0.1 to 1000 μg) can also be administered using a gene gun. Following an incubation period of 3-4 weeks, a booster dose is then administered. The booster can be recombinant fowlpox virus administered at a dose of 5-107 to 5×109 pfu. An alternative recombinant virus, such as an MVA, canarypox, adenovirus, or adeno-associated virus, can also be used for the booster, or the polyepitopic protein or a mixture of the peptides can be administered. For evaluation of vaccine efficacy, patient blood samples are obtained before immunization as well as at intervals following administration of the initial vaccine and booster doses of the vaccine. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.
  • Analysis of the results indicates that a magnitude of response sufficient to achieve a therapeutic or protective immunity against 191P4D12(b) is generated.
  • Example 32 Administration of Vaccine Compositions Using Dendritic Cells (DC)
  • Vaccines comprising peptide epitopes of the invention can be administered using APCs, or “professional” APCs such as DC. In this example, peptide-pulsed DC are administered to a patient to stimulate a CTL response in vivo. In this method, dendritic cells are isolated, expanded, and pulsed with a vaccine comprising peptide CTL and HTL epitopes of the invention. The dendritic cells are infused back into the patient to elicit CTL and HTL responses in vivo. The induced CTL and HTL then destroy or facilitate destruction, respectively, of the target cells that bear the 191P4D12(b) protein from which the epitopes in the vaccine are derived.
  • For example, a cocktail of epitope-comprising peptides is administered ex vivo to PBMC, or isolated DC therefrom. A pharmaceutical to facilitate harvesting of DC can be used, such as Progenipoietin™ (Monsanto, St. Louis, Mo.) or GM-CSF/IL-4. After pulsing the DC with peptides, and prior to reinfusion into patients, the DC are washed to remove unbound peptides.
  • As appreciated clinically, and readily determined by one of skill based on clinical outcomes, the number of DC reinfused into the patient can vary (see, e.g., Nature Med. 4:328, 1998; Nature Med. 2:52, 1996 and Prostate 32:272, 1997). Although 2-50×106 DC per patient are typically administered, larger number of DC, such as 107 or 108 can also be provided. Such cell populations typically contain between 50-90% DC.
  • In some embodiments, peptide-loaded PBMC are injected into patients without purification of the DC. For example, PBMC generated after treatment with an agent such as Progenipoietin™ are injected into patients without purification of the DC. The total number of PBMC that are administered often ranges from 108 to 1010. Generally, the cell doses injected into patients is based on the percentage of DC in the blood of each patient, as determined, for example, by immunofluorescence analysis with specific anti-DC antibodies. Thus, for example, if Progenipoietin™ mobilizes 2% DC in the peripheral blood of a given patient, and that patient is to receive 5×106 DC, then the patient will be injected with a total of 2.5×108 peptide-loaded PBMC. The percent DC mobilized by an agent such as Progenipoietin™ is typically estimated to be between 2-10%, but can vary as appreciated by one of skill in the art.
  • Ex Vivo Activation of CTL/HTL Responses
  • Alternatively, ex vivo CTL or HTL responses to 191P4D12(b) antigens can be induced by incubating, in tissue culture, the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of APC, such as DC, and immunogenic peptides. After an appropriate incubation time (typically about 7-28 days), in which the precursor cells are activated and expanded into effector cells, the cells are infused into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cells, i.e., tumor cells.
  • Example 33 An Alternative Method of Identifying and Confirming Motif-Bearing Peptides
  • Another method of identifying and confirming motif-bearing peptides is to elute them from cells bearing defined MHC molecules. For example, EBV transformed B cell lines used for tissue typing have been extensively characterized to determine which HLA molecules they express. In certain cases these cells express only a single type of HLA molecule. These cells can be transfected with nucleic acids that express the antigen of interest, e.g. 191P4D12(b). Peptides produced by endogenous antigen processing of peptides produced as a result of transfection will then bind to HLA molecules within the cell and be transported and displayed on the cell's surface. Peptides are then eluted from the HLA molecules by exposure to mild acid conditions and their amino acid sequence determined, e.g., by mass spectral analysis (e.g., Kubo et al., J. Immunol. 152:3913, 1994). Because the majority of peptides that bind a particular HLA molecule are motif-bearing, this is an alternative modality for obtaining the motif-bearing peptides correlated with the particular HLA molecule expressed on the cell.
  • Alternatively, cell lines that do not express endogenous HLA molecules can be transfected with an expression construct encoding a single HLA allele. These cells can then be used as described, i.e., they can then be transfected with nucleic acids that encode 191P4D12(b) to isolate peptides corresponding to 191P4D12(b) that have been presented on the cell surface. Peptides obtained from such an analysis will bear motif(s) that correspond to binding to the single HLA allele that is expressed in the cell.
  • As appreciated by one in the art, one can perform a similar analysis on a cell bearing more than one HLA allele and subsequently determine peptides specific for each HLA allele expressed. Moreover, one of skill would also recognize that means other than transfection, such as loading with a protein antigen, can be used to provide a source of antigen to the cell.
  • Example 34 Complementary Polynucleotides
  • Sequences complementary to the 191P4D12(b)-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring 191P4D12(b). Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using, e.g., OLIGO 4.06 software (National Biosciences) and the coding sequence of 191P4D12(b). To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5′ sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to a 191P4D12(b)-encoding transcript.
  • Example 35 Purification of Naturally-occurring or Recombinant 191P4D12(b) Using 191P4D12(b)-Specific Antibodies
  • Naturally occurring or recombinant 191P4D12(b) is substantially purified by immunoaffinity chromatography using antibodies specific for 191P4D12(b). An immunoaffinity column is constructed by covalently coupling anti-191P4D12(b) antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.
  • Media containing 191P4D12(b) are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of 191P4D12(b) (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/191P4D12(b) binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and GCR.P is collected.
  • Example 36 Identification of Molecules which Interact with 191P4D12(b)
  • 191P4D12(b), or biologically active fragments thereof, are labeled with 121 1 Bolton-Hunter reagent. (See, e.g., Bolton et al. (1973) Biochem. J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled 191P4D12(b), washed, and any wells with labeled 191P4D12(b) complex are assayed. Data obtained using different concentrations of 191P4D12(b) are used to calculate values for the number, affinity, and association of 191P4D12(b) with the candidate molecules.
  • Example 37 In Vivo Assay for 191P4D12(b) Tumor Growth Promotion
  • The effect of the 191P4D12(b) protein on tumor cell growth is evaluated in vivo by evaluating tumor development and growth of cells expressing or lacking 191P4D12(b). For example, SCID mice are injected subcutaneously on each flank with 1×106 of either 3T3, prostate (e.g. PC3 cells), bladder (e.g. UM-UC3 cells), kidney (e.g. CaKi cells), or lung (e.g. A427 cells) cancer cell lines containing tkNeo empty vector or 191P4D12(b). At least two strategies may be used: (1) Constitutive 191P4D12(b) expression under regulation of a promoter such as a constitutive promoter obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 Jul. 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40), or from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, provided such promoters are compatible with the host cell systems, and (2) Regulated expression under control of an inducible vector system, such as ecdysone, tetracycline, etc., provided such promoters are compatible with the host cell systems. Tumor volume is then monitored by caliper measurement at the appearance of palpable tumors and followed over time to determine if 191P4D12(b)-expressing cells grow at a faster rate and whether tumors produced by 191P4D12(b)-expressing cells demonstrate characteristics of altered aggressiveness (e.g. enhanced metastasis, vascularization, reduced responsiveness to chemotherapeutic drugs).
  • Additionally, mice can be implanted with 1×105 of the same cells orthotopically to determine if 191P4D12(b) has an effect on local growth in the prostate, and whether 191P4D12(b) affects the ability of the cells to metastasize, specifically to lymph nodes, and bone (Miki T et al, Oncol Res. 2001; 12:209; Fu X et al, Int J. Cancer. 1991, 49:938). The effect of 191P4D12(b) on bone tumor formation and growth may be assessed by injecting tumor cells intratibially.
  • The assay is also useful to determine the 191P4D12(b) inhibitory effect of candidate therapeutic compositions, such as for example, 191P4D12(b) intrabodies, 191P4D12(b) antisense molecules and ribozymes.
  • Example 38 191P4D12(b) Monoclonal Antibody-Mediated Inhibition of Tumors In Vivo
  • The significant expression of 191P4D12(b) in cancer tissues and surface localization, together with its restrictive expression in normal tissues makes 191P4D12(b) a good target for antibody therapy. Similarly, 191P4D12(b) is a target for T cell-based immunotherapy. Thus, the therapeutic efficacy of anti-191P4D12(b) mAbs in human cancer xenograft mouse models, including prostate, lung, bladder, kidney and other -191P4D12(b) cancers listed in table 1, is evaluated by using recombinant cell lines such as PC3-191P4D12(b), UM-UC3-191P4D12(b), CaKi-191P4D12(b), A427-191P4D12(b) and 3T3-191P4D12(b) (see, e.g., Kaighn, M. E., et al., Invest Urol, 1979. 17 (1): 16-23), as well as human prostate, kidney and bladder xenograft models such as LAPC 9AD, AGS-K3 and AGS-B1 (Saffran et al PNAS 1999, 10:1073-1078).
  • Antibody efficacy on tumor growth and metastasis formation is studied, e.g., in a mouse orthotopic prostate, kidney, bladder, and lung cancer xenograft models. The antibodies can be unconjugated, as discussed in this Example, or can be conjugated to a therapeutic modality, as appreciated in the art. Anti-191P4D12(b) mAbs inhibit formation of tumors in prostate kidney, bladder and lung xenografts. Anti-191P4D12(b) mAbs also retard the growth of established orthotopic tumors and prolonged survival of tumor-bearing mice. These results indicate the utility of anti-191P4D12(b) mAbs in the treatment of local and advanced stages several solid tumors. (See, e.g., Saffran, D., et al., PNAS 10:1073-1078).
  • Administration of the anti-191P4D12(b) mAbs led to retardation of established orthotopic tumor growth and inhibition of metastasis to distant sites, resulting in a significant prolongation in the survival of tumor-bearing mice. These studies indicate that 191P4D12(b) as an attractive target for immunotherapy and demonstrate the therapeutic potential of anti-191P4D12(b) mAbs for the treatment of local and metastatic prostate cancer. This example indicates that unconjugated 191P4D12(b) monoclonal antibodies are effective to inhibit the growth of human prostate, kidney, bladder and lung tumor xenografts grown in SCID mice; accordingly a combination of such efficacious monoclonal antibodies is also effective.
  • Tumor Inhibition Using Multiple Unconjugated 191P4D12(b) mAbs
  • Materials and Methods
  • 191P4D12(b) Monoclonal Antibodies:
  • Monoclonal antibodies are raised against 191P4D12(b) as described in the Example entitled “Generation of 191P4D12(b) Monoclonal Antibodies (mAbs).” The antibodies are characterized by ELISA, Western blot, FACS, and immunoprecipitation for their capacity to bind 191P4D12(b). Epitope mapping data for the anti-191P4D12(b) mAbs, as determined by ELISA and Western analysis, recognize epitopes on the 191P4D12(b) protein. Immunohistochemical analysis of prostate, kidney, bladder and lung cancer tissues and cells with these antibodies is performed.
  • The monoclonal antibodies are purified from ascites or hybridoma tissue culture supernatants by Protein-G Sepharose chromatography, dialyzed against PBS, filter sterilized, and stored at −20° C. Protein determinations are performed by a Bradford assay (Bio-Rad, Hercules, Calif.). A therapeutic monoclonal antibody or a cocktail comprising a mixture of individual monoclonal antibodies is prepared and used for the treatment of mice receiving subcutaneous or orthotopic injections of PC3, UM-UC3, CaKi and A427 tumor xenografts.
  • Cell Lines and Xenografts
  • The cancer cell lines, PC3, UM-UC3, CaKi, and A427 cell line as well as the fibroblast line NIH 3T3 (American Type Culture Collection) are maintained in RPMI (PC3) and DMEM (UM-UC3, CaKi, and A427, 3T3) respectively, supplemented with L-glutamine and 10% FBS.
  • PC3-191P4D12(b), UM-UC3-191P4D12(b), CaKi-191P4D12(b), A427-191P4D12(b) and 3T3-191P4D12(b) cell populations are generated by retroviral gene transfer as described in Hubert, R. S., et al., Proc Natl Acad Sci USA, 1999. 96 (25): 14523.
  • The LAPC-9 xenograft, which expresses a wild-type androgen receptor and produces prostate-specific antigen (PSA), is passaged in 6- to 8-week-old male ICR-severe combined immunodeficient (SCID) mice (Taconic Farms) by s.c. trocar implant (Craft, N., et al., Nat. Med. 1999, 5:280). Single-cell suspensions of LAPC-9 tumor cells are prepared as described in Craft, et al. Similarly, kidney (AGS-K3) and bladder (AGS-B1) patient-derived xenografts are passaged in 6- to 8-week-old male ICR-SCID mice.
  • Xenograft Mouse Models.
  • Subcutaneous (s.c.) tumors are generated by injection of 2×106 cancer cells mixed at a 1:1 dilution with Matrigel (Collaborative Research) in the right flank of male SCID mice. To test antibody efficacy on tumor formation, i.e. antibody injections are started on the same day as tumor-cell injections. As a control, mice are injected with either purified mouse IgG (ICN) or PBS; or a purified monoclonal antibody that recognizes an irrelevant antigen not expressed in human cells. In preliminary studies, no difference is found between mouse IgG or PBS on tumor growth. Tumor sizes are determined by caliper measurements, and the tumor volume is calculated as length×width×height. Mice with Subcutaneous tumors greater than 1.5 cm in diameter are sacrificed.
  • Orthotopic injections are performed under anesthesia by using ketamine/xylazine. For prostate orthotopic studies, an incision is made through the abdomen to expose the prostate and LAPC or PC3 tumor cells (5×105) mixed with Matrigel are injected into the prostate capsule in a 10-μl volume. To monitor tumor growth, mice are palpated and blood is collected on a weekly basis to measure PSA levels. For kidney orthotopic models, an incision is made through the abdominal muscles to expose the kidney. AGS-K3 cells mixed with Matrigel are injected under the kidney capsule. The mice are segregated into groups for the appropriate treatments, with anti-191P4D12(b) or control mAbs being injected i.p.
  • Anti-191P4D12(b) mAbs Inhibit Growth of 191P4D12(b)-Expressing Xenograft-Cancer Tumors
  • The effect of anti-191P4D12(b) mAbs on tumor formation is tested by using cell line (e.g. PC3, UM-UC3, CaKi, A427, and 3T3) and patient-derived tumor (e.g. LAPC9, AGS-K3, AGS-B1) orthotopic models. As compared with the s.c. tumor model, the orthotopic model, which requires injection of tumor cells directly in the mouse organ, such as prostate, bladder, kidney or lung, results in a local tumor growth, development of metastasis in distal sites, deterioration of mouse health, and subsequent death (Saffran, D., et al., PNAS supra). The features make the orthotopic model more representative of human disease progression and allowed us to follow the therapeutic effect of mAbs on clinically relevant end points.
  • For example, tumor cells are injected into the mouse prostate, and 2 days later, the mice are segregated into two groups and treated with either: a) 200-500 μg, of anti-191P4D12(b) Ab, or b) PBS three times per week for two to five weeks.
  • A major advantage of the orthotopic cancer models is the ability to study the development of metastases. Formation of metastasis in mice bearing established orthotopic tumors is studies by IHC analysis on lung sections using an antibody against a tumor-specific cell-surface protein such as anti-CK20 for prostate cancer (Lin S et al, Cancer Detect Prev. 2001; 25:202).
  • Another advantage of xenograft cancer models is the ability to study neovascularization and angiogenesis. Tumor growth is partly dependent on new blood vessel development. Although the capillary system and developing blood network is of host origin, the initiation and architecture of the neovascular is regulated by the xenograft tumor (Davidoff A M et al, Clin Cancer Res. 2001; 7:2870; Solesvik O et al., Eur J Cancer Clin Oncol. 1984, 20:1295). The effect of antibody and small molecule on neovascularization is studied in accordance with procedures known in the art, such as by IHC analysis of tumor tissues and their surrounding microenvironment.
  • Mice bearing established orthotopic tumors are administered 1000 μg injections of either anti-191P4D12(b) mAb or PBS over a 4-week period. Mice in both groups are allowed to establish a high tumor burden, to ensure a high frequency of metastasis formation in mouse lungs. Mice then are killed and their bladders, livers, bone and lungs are analyzed for the presence of tumor cells by IHC analysis. These studies demonstrate a broad anti-tumor efficacy of anti-191P4D12(b) antibodies on initiation and progression of prostate cancer in xenograft mouse models. Anti-191P4D12(b) antibodies inhibit tumor formation of tumors as well as retarding the growth of already established tumors and prolong the survival of treated mice. Moreover, anti-191P4D12(b) mAbs demonstrate a dramatic inhibitory effect on the spread of local prostate tumor to distal sites, even in the presence of a large tumor burden. Thus, anti-191P4D12(b) mAbs are efficacious on major clinically relevant end points (tumor growth), prolongation of survival, and health.
  • Example 39 Therapeutic and Diagnostic use of Anti-191P4D12(b) Antibodies in Humans
  • Anti-191P4D12(b) monoclonal antibodies are safely and effectively used for diagnostic, prophylactic, prognostic and/or therapeutic purposes in humans. Western blot and immunohistochemical analysis of cancer tissues and cancer xenografts with anti-191P4D12(b) mAb show strong extensive staining in carcinoma but significantly lower or undetectable levels in normal tissues. Detection of 191P4D12(b) in carcinoma and in metastatic disease demonstrates the usefulness of the mAb as a diagnostic and/or prognostic indicator. Anti-191P4D12(b) antibodies are therefore used in diagnostic applications such as immunohistochemistry of kidney biopsy specimens to detect cancer from suspect patients.
  • As determined by flow cytometry, anti-191P4D12(b) mAb specifically binds to carcinoma cells. Thus, anti-191P4D12(b) antibodies are used in diagnostic whole body imaging applications, such as radioimmunoscintigraphy and radioimmunotherapy, (see, e.g., Potamianos S., et. al. Anticancer Res 20 (2A):925-948 (2000)) for the detection of localized and metastatic cancers that exhibit expression of 191P4D12(b). Shedding or release of an extracellular domain of 191P4D12(b) into the extracellular milieu, such as that seen for alkaline phosphodiesterase B10 (Meerson, N. R., Hepatology 27:563-568 (1998)), allows diagnostic detection of 191P4D12(b) by anti-191P4D12(b) antibodies in serum and/or urine samples from suspect patients.
  • Anti-191P4D12(b) antibodies that specifically bind 191P4D12(b) are used in therapeutic applications for the treatment of cancers that express 191P4D12(b). Anti-191P4D12(b) antibodies are used as an unconjugated modality and as conjugated form in which the antibodies are attached to one of various therapeutic or imaging modalities well known in the art, such as a prodrugs, enzymes or radioisotopes. In preclinical studies, unconjugated and conjugated anti-191P4D12(b) antibodies are tested for efficacy of tumor prevention and growth inhibition in the SCID mouse cancer xenograft models, e.g., kidney cancer models AGS-K3 and AGS-K6, (see, e.g., the Example entitled “191P4D12(b) Monoclonal Antibody-mediated Inhibition of Bladder and Lung Tumors In Vivo”). Either conjugated and unconjugated anti-191P4D12(b) antibodies are used as a therapeutic modality in human clinical trials either alone or in combination with other treatments as described in following Examples.
  • Example 40 Human Clinical Trials for the Treatment and Diagnosis of Human Carcinomas Through Use of Human Anti-191P4D12(b) Antibodies In Vivo
  • Antibodies are used in accordance with the present invention which recognize an epitope on 191P4D12(b), and are used in the treatment of certain tumors such as those listed in Table I. Based upon a number of factors, including 191P4D12(b) expression levels, tumors such as those listed in Table I are presently preferred indications. In connection with each of these indications, three clinical approaches are successfully pursued.
  • I.) Adjunctive therapy: In adjunctive therapy, patients are treated with anti-191P4D12(b) antibodies in combination with a chemotherapeutic or antineoplastic agent and/or radiation therapy. Primary cancer targets, such as those listed in Table I, are treated under standard protocols by the addition anti-191P4D12(b) antibodies to standard first and second line therapy. Protocol designs address effectiveness as assessed by reduction in tumor mass as well as the ability to reduce usual doses of standard chemotherapy. These dosage reductions allow additional and/or prolonged therapy by reducing dose-related toxicity of the chemotherapeutic agent. Anti-191P4D12(b) antibodies are utilized in several adjunctive clinical trials in combination with the chemotherapeutic or antineoplastic agents adriamycin (advanced prostrate carcinoma), cisplatin (advanced head and neck and lung carcinomas), taxol (breast cancer), and doxorubicin (preclinical).
  • II.) Monotherapy: In connection with the use of the anti-191P4D12(b) antibodies in monotherapy of tumors, the antibodies are administered to patients without a chemotherapeutic or antineoplastic agent. In one embodiment, monotherapy is conducted clinically in end stage cancer patients with extensive metastatic disease. Patients show some disease stabilization. Trials demonstrate an effect in refractory patients with cancerous tumors.
  • III.) Imaging Agent: Through binding a radionuclide (e.g., iodine or yttrium (I131, Y90) to anti-191P4D12(b) antibodies, the radiolabeled antibodies are utilized as a diagnostic and/or imaging agent. In such a role, the labeled antibodies localize to both solid tumors, as well as, metastatic lesions of cells expressing 191P4D12(b). In connection with the use of the anti-191P4D12(b) antibodies as imaging agents, the antibodies are used as an adjunct to surgical treatment of solid tumors, as both a pre-surgical screen as well as a post-operative follow-up to determine what tumor remains and/or returns. In one embodiment, a (111In)-191P4D12(b) antibody is used as an imaging agent in a Phase I human clinical trial in patients having a carcinoma that expresses 191P4D12(b) (by analogy see, e.g., Divgi et al. J. Natl. Cancer Inst. 83:97-104 (1991)). Patients are followed with standard anterior and posterior gamma camera. The results indicate that primary lesions and metastatic lesions are identified.
  • Dose and Route of Administration
  • As appreciated by those of ordinary skill in the art, dosing considerations can be determined through comparison with the analogous products that are in the clinic. Thus, anti-191P4D12(b) antibodies can be administered with doses in the range of 5 to 400 mg/m2, with the lower doses used, e.g., in connection with safety studies. The affinity of anti-191P4D12(b) antibodies relative to the affinity of a known antibody for its target is one parameter used by those of skill in the art for determining analogous dose regimens. Further, anti-191P4D12(b) antibodies that are fully human antibodies, as compared to the chimeric antibody, have slower clearance; accordingly, dosing in patients with such fully human anti-191P4D12(b) antibodies can be lower, perhaps in the range of 50 to 300 mg/m2, and still remain efficacious. Dosing in mg/m2, as opposed to the conventional measurement of dose in mg/kg, is a measurement based on surface area and is a convenient dosing measurement that is designed to include patients of all sizes from infants to adults.
  • Three distinct delivery approaches are useful for delivery of anti-191P4D12(b) antibodies. Conventional intravenous delivery is one standard delivery technique for many tumors. However, in connection with tumors in the peritoneal cavity, such as tumors of the ovaries, biliary duct, other ducts, and the like, intraperitoneal administration may prove favorable for obtaining high dose of antibody at the tumor and to also minimize antibody clearance. In a similar manner, certain solid tumors possess vasculature that is appropriate for regional perfusion. Regional perfusion allows for a high dose of antibody at the site of a tumor and minimizes short term clearance of the antibody.
  • Clinical Development Plan (CDP)
  • Overview: The CDP follows and develops treatments of anti-191P4D12(b) antibodies in connection with adjunctive therapy, monotherapy, and as an imaging agent. Trials initially demonstrate safety and thereafter confirm efficacy in repeat doses. Trails are open label comparing standard chemotherapy with standard therapy plus anti-191P4D12(b) antibodies. As will be appreciated, one criteria that can be utilized in connection with enrollment of patients is 191P4D12(b) expression levels in their tumors as determined by biopsy.
  • As with any protein or antibody infusion-based therapeutic, safety concerns are related primarily to (i) cytokine release syndrome, i.e., hypotension, fever, shaking, chills; (ii) the development of an immunogenic response to the material (i.e., development of human antibodies by the patient to the antibody therapeutic, or HAHA response); and, (iii) toxicity to normal cells that express 191P4D12(b). Standard tests and follow-up are utilized to monitor each of these safety concerns. Anti-191P4D12(b) antibodies are found to be safe upon human administration.
  • Example 41 Human Clinical Trial Adjunctive Therapy with Human Anti-191P4D12(b) Antibody and Chemotherapeutic Agent
  • A phase I human clinical trial is initiated to assess the safety of six intravenous doses of a human anti-191P4D12(b) antibody in connection with the treatment of a solid tumor, e.g., a cancer of a tissue listed in Table I. In the study, the safety of single doses of anti-191P4D12(b) antibodies when utilized as an adjunctive therapy to an antineoplastic or chemotherapeutic agent as defined herein, such as, without limitation: cisplatin, topotecan, doxorubicin, adriamycin, taxol, or the like, is assessed. The trial design includes delivery of six single doses of an anti-191P4D12(b) antibody with dosage of antibody escalating from approximately about 25 mg/m2 to about 275 mg/m2 over the course of the treatment in accordance with the following schedule:
  • Day 0 Day 7 Day 14 Day 21 Day 28 Day 35
    mAb Dose 25 mg/m2 75 mg/m2 125 mg/m2 175 mg/m2 225 mg/m2 275 mg/m2
    Chemotherapy + + + + + +
    (standard dose)
  • Patients are closely followed for one-week following each administration of antibody and chemotherapy. In particular, patients are assessed for the safety concerns mentioned above: (i) cytokine release syndrome, i.e., hypotension, fever, shaking, chills; (ii) the development of an immunogenic response to the material (i.e., development of human antibodies by the patient to the human antibody therapeutic, or HAHA response); and, (iii) toxicity to normal cells that express 191P4D12(b). Standard tests and follow-up are utilized to monitor each of these safety concerns. Patients are also assessed for clinical outcome, and particularly reduction in tumor mass as evidenced by MRI or other imaging.
  • The anti-191P4D12(b) antibodies are demonstrated to be safe and efficacious, Phase II trials confirm the efficacy and refine optimum dosing.
  • Example 42 Human Clinical Trial: Monotherapy with Human Anti-191P4D12(b) Antibody
  • Anti-191P4D12(b) antibodies are safe in connection with the above-discussed adjunctive trial, a Phase II human clinical trial confirms the efficacy and optimum dosing for monotherapy. Such trial is accomplished, and entails the same safety and outcome analyses, to the above-described adjunctive trial with the exception being that patients do not receive chemotherapy concurrently with the receipt of doses of anti-191P4D12(b) antibodies.
  • Example 43 Human Clinical Trial: Diagnostic Imaging with Anti-191P4D12(b) Antibody
  • Once again, as the adjunctive therapy discussed above is safe within the safety criteria discussed above, a human clinical trial is conducted concerning the use of anti-191P4D12(b) antibodies as a diagnostic imaging agent. The protocol is designed in a substantially similar manner to those described in the art, such as in Divgi et al. J. Natl. Cancer Inst. 83:97-104 (1991). The antibodies are found to be both safe and efficacious when used as a diagnostic modality.
  • Example 44 Homology Comparison of 191P4D12(b) to Known Sequences
  • The human 191P4D12(b) protein exhibit a high degree of homology to a known human protein, namely Ig superfamily receptor LNIR (gi 14714574), also known as human nectin 4 (gi 16506807). Human LNIR shows 100% identity to 191P4D12(b) at the protein level. The mouse homolog of 191P4D12(b) has been identified as murine nectin 4 (gi 18874521). It shows strong homology to 191P4D12(b), exhibiting 92% identity and 95% homology to 191P4D12(b). (See, FIG. 4).
  • The prototype member of the 191P4D12(b) family, 191P4D12(b)v.1, is a 510 amino acids protein, with the N-terminus located extracellulary and intracellular C-terminus. Initial bioinformatics analysis using topology prediction programs suggested that 191P2D14 may contain 2 transmembranes based on hydrophobicity profile. However, the first hydrophobic domain was identified as a signal sequence, rendering 191P2D12 a type I membrane protein, with an extracellular N-terminus.
  • The 191P4D12(b) gene has several variants, including one SNP represented in 191P4D12(b) v.2, an N-terminal deletion variant represented in 191P4D12(b) v.6 and 191P4D12(b) v.7 which lacks 25 amino acids between amino acids 411 and 412 of 191P4D12(b) v.1.
  • Motif analysis revealed the presence of several protein functional motifs in the 191P4D12(b) protein (Table L). Two immunoglobulin domains have been identified at positions 45-129 and 263-317. In addition, 191P4D12(b) contains a cadherin signature which includes and RGD sequence. Immunoglobulin domains are found in numerous proteins and participate in protein-protein such including protein-ligand interactions (Weismann et al, J Mol Med 2000, 78:247). In addition, Ig-domains function in cell adhesion, allowing the interaction of leukocytes and blood-born cells with the endothelium (Wang and Springer, Immunol Rev 1998, 163:197). Cadherins are single transmembrane proteins containing immunoglobulin like domains, and are involved in cell adhesion and sorting (Shan et al, Biophys Chem 1999, 82:157). They mediate tissue-specific cell adhesion, such as adhesion of lymphocytes to the surface of epithelial cells. Finally, the closest homolog to 191P4D12(b) is Nectin4, a known adhesion molecule that regulates epithelial and endothelial junctions, strongly suggesting that 191P4D12(b) participates in cell adhesion (Reymond N et al, J Biol Chem 2001, 276:43205).
  • The motifs found in 191P4D12(b) can participate in tumor growth and progression by enhancing the initial stages of tumorigenesis, such as tumor take or establishment of a tumor, by allowing adhesion to basement membranes and surrounding cells, by mediating cell communication and survival.
  • Accordingly, when 191P4D12(b) functions as a regulator of tumor establishment, tumor formation, tumor growth, cell signaling or as a modulator of transcription involved in activating genes associated with survival, invasion, tumorigenesis or proliferation, 191P4D12(b) is used for therapeutic, diagnostic, prognostic and/or preventative purposes. In addition, when a molecule, such as a variant or SNP of 191P4D12(b) is expressed in cancerous tissues, such as those listed in Table I, they are used for therapeutic, diagnostic, prognostic and/or preventative purposes.
  • Example 45 Regulation of Transcription
  • The cell surface localization of 191P4D12(b) coupled to the presence of Ig-domains within its sequence indicate that 191P4D12(b) modulates signal transduction and the transcriptional regulation of eukaryotic genes. Regulation of gene expression is confirmed, e.g., by studying gene expression in cells expressing or lacking 191P4D12(b). For this purpose, two types of experiments are performed.
  • In the first set of experiments, RNA from parental and 191P4D12(b)-expressing cells are extracted and hybridized to commercially available gene arrays (Clontech) (Smid-Koopman E et al. Br J. Cancer. 2000. 83:246). Resting cells as well as cells treated with FBS, androgen or growth factors are compared. Differentially expressed genes are identified in accordance with procedures known in the art. The differentially expressed genes are then mapped to biological pathways (Chen K et al. Thyroid. 2001. 11:41).
  • In the second set of experiments, specific transcriptional pathway activation is evaluated using commercially available (Stratagene) luciferase reporter constructs including: NFkB-luc, SRE-luc, ELK1-luc, ARE-luc, p53-luc, and CRE-luc. These transcriptional reporters contain consensus binding sites for known transcription factors that lie downstream of well-characterized signal transduction pathways, and represent a good tool to ascertain pathway activation and screen for positive and negative modulators of pathway activation.
  • Thus, 191P4D12(b) plays a role in gene regulation, and it is used as a target for diagnostic, prognostic, preventative and/or therapeutic purposes.
  • Example 46 Identification and Confirmation of Potential Signal Transduction Pathways
  • Many mammalian proteins have been reported to interact with signaling molecules and to participate in regulating signaling pathways. (J. Neurochem. 2001; 76:217-223). Immunoglobulin-like molecules in particular has been associated with several tyrpsine kinases including Lyc, Blk, syk ( ), the MAPK signaling cascade that control cell mitogenesis and calcium flux (Vilen J et al, J Immunol 1997, 159:231; Jiang F, Jia Y, Cohen I. Blood. 2002, 99:3579). In addition, the 191P4D12(b) protein contains several phosphorylation sites (see Table VI) indicating an association with specific signaling cascades. Using immunoprecipitation and Western blotting techniques, proteins are identified that associate with 191P4D12(b) and mediate signaling events. Several pathways known to play a role in cancer biology can be regulated by 191P4D12(b), including phospholipid pathways such as PI3K, AKT, etc, adhesion and migration pathways, including FAK, Rho, Rac-1, {tilde over (□)}catenin, etc, as well as mitogenic/survival cascades such as ERK, p38, etc (Cell Growth Differ. 2000, 11:279; J Biol. Chem. 1999, 274:801; Oncogene. 2000, 19:3003, J. Cell Biol. 1997, 138:913)). In order to determine whether expression of 191P4D12(b) is sufficient to regulate specific signaling pathways not otherwise active in resting PC3 cells, the effect of these genes on the activation of the p38 MAPK cascade was investigated in the prostate cancer cell line PC3 (FIG. 21A-B). Activation of the p38 kinase is dependent on its phosphorylation on tyrosine and serine residues. Phosphorylated p38 can be distinguished from the non-phosphorylated state by a Phospho-p38 mAb. This phospho-specific Ab was used to study the phosphorylation state of p38 in engineered PC3 cell lines.
  • PC3 cells stably expressing 191P4D12(b) neo were grown overnight in either 1% or 10% FBS. Whole cell lysates were analyzed by western blotting. PC3 cells treated with the known p38 activators, NaSaI or TNF, were used as a positive control. The results show that while expression of the control neo gene has no effect on p38 phosphorylation, expression of 191P4D12(b) in PC3 cells is sufficient to induce the activation of the p38 pathway (FIG. 21A). The results were verified using western blotting with an anti-p38 Ab, which shows equal protein loading on the gels (FIG. 21B).
  • In another set of experiments, the sufficiency of expression of 191P4D12(b) in the prostate cancer cell line PC3 to activate the mitogenic MAPK pathway, namely the ERK cascade, was examined (FIG. 22A-B). Activation of ERK is dependent on its phosphorylation on tyrosine and serine residues. Phosphorylated ERK can be distinguished from the non-phosphorylated state by a Phospho-ERK mAb. This phospho-specific Ab was used to study the phosphorylation state of ERK in engineered PC3 cell lines. PC3 cells, expressing an activated form of Ras, were used as a positive control.
  • The results show that while expression of the control neo gene has no effect on ERK phosphorylation, expression of 191P4D12(b) in PC3 cells is sufficient to induce an increase in ERK phosphorylation (FIG. 22A). These results were verified using anti-ERK western blotting (FIG. 22B) and confirm the activation of the ERK pathway by 191P4D12(b) and STEAP-2.
  • Since FBS contains several components that may contribute to receptor-mediated ERK activation, we examined the effect of 191P4D12(b) in low and optimal levels of FBS. PC3 cells expressing neo or 191P4D12(b) were grown in either 0.1% or 10% FBS overnight. The cells were analyzed by anti-Phospho-ERK western blotting. This experiment shows that 191P4D12(b) induces the phosphorylation of ERK in 0.1% FBS, and confirms that expression of 191P4D12(b) is sufficient to induce activation of the ERK signaling cascade in the absence of additional stimuli.
  • To confirm that 191P4D12(b) directly or indirectly activates known signal transduction pathways in cells, luciferase (luc) based transcriptional reporter assays are carried out in cells expressing individual genes. These transcriptional reporters contain consensus-binding sites for known transcription factors that lie downstream of well-characterized signal transduction pathways. The reporters and examples of these associated transcription factors, signal transduction pathways, and activation stimuli are listed below.
  • 1. NFkB-luc, NFkB/Rel; Ik-kinase/SAPK; growth/apoptosis/stress
  • 2. SRE-luc, SRF/TCF/ELK1; MAPK/SAPK; growth/differentiation
  • 3. AP-1-luc, FOS/JUN; MAPK/SAPK/PKC; growth/apoptosis/stress
  • 4. ARE-luc, androgen receptor; steroids/MAPK; growth/differentiation/apoptosis
  • 5. p53-luc, p53; SAPK; growth/differentiation/apoptosis
  • 6. CRE-luc, CREB/ATF2; PKA/p38; growth/apoptosis/stress
  • 7. TCF-luc, TCF/Lef; □-catenin, Adhesion/invasion
  • Gene-mediated effects can be assayed in cells showing mRNA expression. Luciferase reporter plasmids can be introduced by lipid-mediated transfection (TFX-50, Promega). Luciferase activity, an indicator of relative transcriptional activity, is measured by incubation of cell extracts with luciferin substrate and luminescence of the reaction is monitored in a luminometer.
  • Signaling pathways activated by 191P4D12(b) are mapped and used for the identification and validation of therapeutic targets. When 191P4D12(b) is involved in cell signaling, it is used as target for diagnostic, prognostic, preventative and/or therapeutic purposes.
  • Example 47 Involvement in Tumor Progression
  • Based on the role of Ig-domains and cadherin motifs in cell growth and signal transduction, the 191P4D12(b) gene can contribute to the growth, invasion and transformation of cancer cells. The role of 191P4D12(b) in tumor growth is confirmed in a variety of primary and transfected cell lines including prostate cell lines, as well as NIH 3T3 cells engineered to stably express 191P4D12(b). Parental cells lacking 191P4D12(b) and cells expressing 191P4D12(b) are evaluated for cell growth using a well-documented proliferation assay (Fraser S P, Grimes J A, Djamgoz M B. Prostate. 2000; 44:61, Johnson D E, Ochieng J, Evans S L. Anticancer Drugs. 1996, 7:288).
  • To confirm the role of 191P4D12(b) in the transformation process, its effect in colony forming assays is investigated. Parental NIH-3T3 cells lacking 191P4D12(b) are compared to NIH-3T3 cells expressing 191P4D12(b), using a soft agar assay under stringent and more permissive conditions (Song Z. et al. Cancer Res. 2000; 60:6730).
  • To confirm the role of 191P4D12(b) in invasion and metastasis of cancer cells, a well-established assay is used, e.g., a Transwell Insert System assay (Becton Dickinson) (Cancer Res. 1999; 59:6010). Control cells, including prostate, breast and kidney cell lines lacking 191P4D12(b) are compared to cells expressing 191P4D12(b). Cells are loaded with the fluorescent dye, calcein, and plated in the top well of the Transwell insert coated with a basement membrane analog. Invasion is determined by fluorescence of cells in the lower chamber relative to the fluorescence of the entire cell population.
  • 191P4D12(b) can also play a role in cell cycle and apoptosis. Parental cells and cells expressing 191P4D12(b) are compared for differences in cell cycle regulation using a well-established BrdU assay (Abdel-Malek Z A. J Cell Physiol. 1988, 136:247). In short, cells are grown under both optimal (full serum) and limiting (low serum) conditions are labeled with BrdU and stained with anti-BrdU Ab and propidium iodide. Cells are analyzed for entry into the G1, S, and G2M phases of the cell cycle. Alternatively, the effect of stress on apoptosis is evaluated in control parental cells and cells expressing 191P4D12(b), including normal and tumor prostate cells. Engineered and parental cells are treated with various chemotherapeutic agents, such as etoposide, taxol, etc, and protein synthesis inhibitors, such as cycloheximide. Cells are stained with annexin V-FITC and cell death is measured by FACS analysis. The modulation of cell death by 191P4D12(b) can play a critical role in regulating tumor progression and tumor load.
  • When 191P4D12(b) plays a role in cell growth, transformation, invasion or apoptosis, it is used as a target for diagnostic, prognostic, preventative and/or therapeutic purposes.
  • Example 48 Involvement in Angiogenesis
  • Angiogenesis or new capillary blood vessel formation is necessary for tumor growth (Hanahan D, Folkman J. Cell. 1996, 86:353; Folkman J. Endocrinology. 1998 139:441). Based on the effect of cadherins on tumor cell adhesion and their interaction with endothelial cells, 191P4D12(b) plays a role in angiogenesis (Mareel and Leroy: Physiol Rev, 83:337; DeFouw L et al, Microvasc Res 2001, 62:263). Several assays have been developed to measure angiogenesis in vitro and in vivo, such as the tissue culture assays endothelial cell tube formation and endothelial cell proliferation. Using these assays as well as in vitro neo-vascularization, the role of 191P4D12(b) in angiogenesis, enhancement or inhibition, is confirmed.
  • For example, endothelial cells engineered to express 191P4D12(b) are evaluated using tube formation and proliferation assays. The effect of 191P4D12(b) is also confirmed in animal models in vivo. For example, cells either expressing or lacking 191P4D12(b) are implanted subcutaneously in immunocompromised mice. Endothelial cell migration and angiogenesis are evaluated 5-15 days later using immunohistochemistry techniques. 191P4D12(b) affects angiogenesis, and it is used as a target for diagnostic, prognostic, preventative and/or therapeutic purposes.
  • Example 49 Involvement in Protein-Protein Interactions
  • Ig-domains and cadherin motifs have been shown to mediate interaction with other proteins, including cell surface protein. Using immunoprecipitation techniques as well as two yeast hybrid systems, proteins are identified that associate with 191P4D12(b). Immunoprecipitates from cells expressing 191P4D12(b) and cells lacking 191P4D12(b) are compared for specific protein-protein associations.
  • Studies are performed to confirm the extent of association of 191P4D12(b) with effector molecules, such as nuclear proteins, transcription factors, kinases, phosphates etc. Studies comparing 191P4D12(b) positive and 191P4D12(b) negative cells as well as studies comparing unstimulated/resting cells and cells treated with epithelial cell activators, such as cytokines, growth factors, androgen and anti-integrin Ab reveal unique interactions.
  • In addition, protein-protein interactions are confirmed using two yeast hybrid methodology (Curr. Opin. Chem. Biol. 1999, 3:64). A vector carrying a library of proteins fused to the activation domain of a transcription factor is introduced into yeast expressing a 191P4D12(b)-DNA-binding domain fusion protein and a reporter construct. Protein-protein interaction is detected by colorimetric reporter activity. Specific association with effector molecules and transcription factors directs one of skill to the mode of action of 191P4D12(b), and thus identifies therapeutic, prognostic, preventative and/or diagnostic targets for cancer. This and similar assays are also used to identify and screen for small molecules that interact with 191P4D12(b).
  • Thus it is found that 191P4D12(b) associates with proteins and small molecules. Accordingly, 191P4D12(b) and these proteins and small molecules are used for diagnostic, prognostic, preventative and/or therapeutic purposes.
  • Example 50 Involvement of 191P4D12(b) in Cell-Cell Communication
  • Cell-cell communication is essential in maintaining organ integrity and homeostasis, both of which become deregulated during tumor formation and progression. Based on the presence of a cadherin motif in 191P4D12(b), a motif known to be involved in cell interaction and cell-cell adhesion, 191P4D12(b) can regulate cell communication. Intercellular communications can be measured using two types of assays (J. Biol. Chem. 2000, 275:25207). In the first assay, cells loaded with a fluorescent dye are incubated in the presence of unlabeled recipient cells and the cell populations are examined under fluorescent microscopy. This qualitative assay measures the exchange of dye between adjacent cells. In the second assay system, donor and recipient cell populations are treated as above and quantitative measurements of the recipient cell population are performed by FACS analysis. Using these two assay systems, cells expressing 191P4D12(b) are compared to controls that do not express 191P4D12(b), and it is found that 191P4D12(b) enhances cell communications. FIG. 19 and FIG. 20 demonstrate that 191P4D12(b) mediates the transfer of the small molecule calcein between adjacent cells, and thereby regulates cell-cell communication in prostate cancer cells. In this experiment, recipient PC3 cells were labeled with dextran-Texas Red and donor PC3 cells were labeled with calcein AM (green). The donor (green) and recipient (red) cells were co-cultured at 37° C. and analyzed by microscopy for the co-localization of Texas red and calcein. The results demonstrated that while PC3 control cells (no detectable 191P4D12(b) protein expression) exhibit little calcein transfer, the expression of 191P4D12(b) allows the transfer of small molecules between cells (FIG. 19), whereby the initially red recipient cells take on a brownish color, and co-localize the red and green molecules. Small molecules and/or antibodies that modulate cell-cell communication mediated by 191P4D12(b) are used as therapeutics for cancers that express 191P4D12(b). When 191P4D12(b) functions in cell-cell communication and small molecule transport, it is used as a target or marker for diagnostic, prognostic, preventative and/or therapeutic purposes.
  • Example 51 Modulation of 191P4D12(b) Function
  • Knock Down of 191P4D12(b) Expression
  • Several techniques can be used to knock down or knock out 191P4D12(b) expression in vitro and in-vivo, including RNA interference (RNAi) and other anti-sense technologies. RNAi makes use of sequence specific double stranded RNA to prevent gene expression. Small interfering RNA (siRNA) are transfected into mammalian cells and thereby mediate sequence specific mRNA degradation. (Elbashir, et al, Nature, 2001; vol. 411: 494-498). Using this approach, 191P4D12(b)-specific RNAi is introduced in 191P4D12(b)-expressing cells by transfection. The effect of knocking down the expression of 191P4D12(b) protein is evaluated using the biological assays mentioned in examples 44 to 50 above.
  • Reduction of 191P4D12(b) Protein expression is detected 24-48 hours after transfection by immunostaining and flow cytometry. The introduction of 191P4D12(b) specific RNAi reduced the expression of 191P4D12(b) positive cells and reduce the biological effect of 191P4D12(b) on tumor growth and progression.
  • Accordingly, the RNA oligonucleotide sequences are used in therapeutic and prophylactic applications. Moreover, the RNA oligonucleotide sequences are used to assess how modulating the expression of a 191P4D12(b) gene affects function of cancer cells and/or tissues.
  • Inhibition Using Small Molecule and Antibodies
  • Using control cell lines and cell lines expressing 191P4D12(b), inhibitors of 191P4D12(b) function are identified. For example, PC3 and PC3-191P4D12(b) cells can be incubated in the presence and absence of mAb or small molecule inhibitors. The effect of these mAb or small molecule inhibitors are investigated using the cell communication, proliferation and signaling assays described above.
  • Signal transduction and biological output mediated by cadherins can be modulated through various mechanisms, including inhibition of receptor binding, prevention of protein interactions, or affecting the expression of co-receptors and binding partners (Kamei et al, Oncogene 1999, 18:6776). Using control cell lines and cell lines expressing 191P4D12(b), modulators (inhibitors or enhancers) of 191P4D12(b) function are identified. For example, PC3 and PC3-191P4D12(b) cells are incubated in the presence and absence of mAb or small molecule modulators. When mAb and small molecules modulate, e.g., inhibit, the transport and tumorigenic function of 191P4D12(b), they are used for preventative, prognostic, diagnostic and/or therapeutic purposes.
  • Throughout this application, various data content found on the Internet, publications, patent applications and patents are referenced. The disclosures of each of these references are hereby incorporated by reference herein in their entireties.
  • The present invention is not to be limited in scope by the embodiments disclosed herein, which are intended as single illustrations of individual aspects of the invention, and any that are functionally equivalent are within the scope of the invention. Various modifications to the models and methods of the invention, in addition to those described herein, will become apparent to those skilled in the art from the foregoing description and teachings, and are similarly intended to fall within the scope of the invention. Such modifications or other embodiments can be practiced without departing from the true scope and spirit of the invention.
  • Tables
  • TABLE I
    Tissues that Express 191P4D12(b):
    Malignant Tissues
    Prostate
    Bladder
    Kidney
    Colon
    Lung
    Pancreas
    Ovary
    Breast
    Uterus
    Cervix
  • TABLE II
    Amino Acid Abbreviations
    SINGLE LETTER THREE LETTER FULL NAME
    F Phe phenylalanine
    L Leu leucine
    S Ser serine
    Y Tyr tyrosine
    C Cys cysteine
    W Trp tryptophan
    P Pro proline
    H His histidine
    Q Gln glutamine
    R Arg arginine
    I Ile isoleucine
    M Met methionine
    T Thr threonine
    N Asn asparagine
    K Lys lysine
    V Val valine
    A Ala alanine
    D Asp aspartic acid
    E Glu glutamic acid
    G Gly glycine
  • TABLE III
    Amino Acid Substitution Matrix
    Adapted from the GCG Software 9.0 BLOSUM62 amino acid substitution matrix
    (block substitution matrix). The higher the value, the more likely a substitution is found in
    related, natural proteins.
    A C D E F G H I K L M N P Q R S T V W Y .
    4 0 −2 −1 −2 0 −2 −1 −1 −1 −1 −2 −1 −1 −1 1 0 0 −3 −2 A
    9 −3 −4 −2 −3 −3 −1 −3 −1 −1 −3 −3 −3 −3 −1 −1 −1 −2 −2 C
    6 2 −3 −1 −1 −3 −1 −4 −3 1 −1 0 −2 0 −1 −3 −4 −3 D
    5 −3 −2 0 −3 1 −3 −2 0 −1 2 0 0 −1 −2 −3 −2 E
    6 −3 −1 0 −3 0 0 −3 −4 −3 −3 −2 −2 −1 1 3 F
    6 −2 −4 −2 −4 −3 0 −2 −2 −2 0 −2 −3 −2 −3 G
    8 −3 −1 −3 −2 1 −2 0 0 −1 −2 −3 −2 2 H
    4 −3 2 1 −3 −3 −3 −3 −2 −1 3 −3 −1 I
    5 −2 −1 0 −1 1 2 0 −1 −2 −3 −2 K
    4 2 −3 −3 −2 −2 −2 −1 1 −2 −1 L
    5 −2 −2 0 −1 −1 −1 1 −1 −1 M
    6 −2 0 0 1 0 −3 −4 −2 N
    7 −1 −2 −1 −1 −2 −4 −3 P
    5 1 0 −1 −2 −2 −1 Q
    5 −1 −1 −3 −3 −2 R
    4 1 −2 −3 −2 S
    5 0 −2 −2 T
    4 −3 −1 V
    11 2 W
    7 Y
  • Table IV: HLA Class I/II Motifs/Supermotifs
  • TABLE IV (A)
    HLA Class I Supermotifs/Motifs
    POSITION POSITION
    3 POSITION
    2 (Primary C Terminus
    (Primary Anchor) Anchor) (Primary Anchor)
    SUPERMOTIF
    A1 TI LVMS FWY
    A2 LIVM ATQ IV MATL
    A3 VSMA TLI RK
    A24 YF WIVLMT FI YWLM
    B7 P VILF MWYA
    B27 RHK FYL WMIVA
    B44 E D FWYLIMVA
    B58 ATS FWY LIVMA
    B62 QL IVMP FWY MIVLA
    MOTIFS
    A1 TSM Y
    A1 DE AS Y
    A2.1 LM VQIAT V LIMAT
    A3 LMVISATF CGD KYR HFA
    A11 VTMLISAGN CDF K RYH
    A24 YF WM FLIW
    A*3101 MVT ALIS R K
    A*3301 MVALF IST RK
    A*6801 AVT MSLI RK
    B*0702 P LMF WYAIV
    B*3501 P LMFWY IVA
    B51 P LIVF WYAM
    B*5301 P IMFWY ALV
    B*5401 P ATIV LMFWY
    Bolded residues are preferred, italized residues are less preferred. A peptide is considered motif-bearing if it has primary anchors at each primary anchor position for a motif or supermotif as specified in the above table.
  • Bolded residues are preferred, italicized residues are less preferred: A peptide is considered motif-bearing if it has primary anchors at each primary anchor position for a motif or supermotif as specified in the above table.
  • TABLE IV (B)
    HLA Class II Supermotif
    1 6 9
    W, F, Y, V, I, L A, V, I, L, P, C, S, T A, V, I, L, C, S, T, M, Y
  • TABLE IV (C)
    HLA Class II Motifs
    MOTIFS
    anchor 1 2 3 4 5 anchor 6 7 8 9
    DR4 preferred FMYLIVW M T I VSTCPALIM MH MH
    deleterious W R WDE
    DR1 preferred MFLIVWY PAMQ VMATSPLIC M AVM
    deleterious C CH FD CWD GDE D
    DR7 preferred MFLIVWY M W A IVMSACTPL M IV
    deleterious C G GRD N G
    DR3 MOTIFS
    anchor 1 2 3 anchor 4 5 anchor 6
    Motif a LIVMFY D
    preferred
    Motif b LIVMFAY DNQEST KRH
    preferred
    DR MFLIVWY VMSTACPLI
    Supermotif
    Italicized residues indicate less preferred or “tolerated” residues
  • TABLE IV (D)
    HLA Class I Supermotifs
    SUPER- POSITION:
    MOTIFS 1 2 3 4 5 6 7 8 C-terminus
    A1
    Anchor 1° Anchor
    TILVMS FWY
    A2
    Anchor 1° Anchor
    LIVMATQ LIVMAT
    A3 Preferred
    1° Anchor YFW YFW YFW P 1° Anchor
    VSMATLI (4/5) (3/5) (4/5) (4/5) RK
    deleterious DE (3/5); DE
    P (5/5) (4/5)
    A24 Anchor 1° Anchor
    YFWIVLMT FIYWLM
    B7 Preferred FWY (5/5) Anchor FWY FWY 1° Anchor
    LIVM (3/5) P (4/5) (3/5) VILFMWYA
    deleterious DE (3/5); DE G QN DE
    P (5/5); (3/5) (4/5) (4/5) (4/5)
    G (4/5);
    A (3/5);
    QN (3/5)
    B27 Anchor 1° Anchor
    RHK FYLWMIVA
    B44
    Anchor 1° Anchor
    ED FWYLIMVA
    B58
    Anchor 1° Anchor
    ATS FWYLIVMA
    B62
    Anchor 1° Anchor
    QLIVMP FWYMIVLA
    Italicized residues indicate less preferred or “tolerated” residues
  • TABLE IV (E)
    HLA Class I Motifs
    POSITION
    9 or C-
    1 2 3 4 5 6 7 8 terminus C-terminus
    A1 preferred GFYW 1° Anchor DEA YFW P DEQN YFW 1° Anchor
    9-mer STM Y
    deleterious DE RHKLIV A G A
    MP
    A1 preferred GR ASTCLI 1° Anchor GSTC ASTC LIVM DE 1° Anchor
    9-mer HK VM DEAS Y
    deleterious A RHKDEP DE PQN RHK PG GP
    YFW
    A1 preferred YFW 1° Anchor DEAQN A YFW PASTC GDE P 1° Anchor
    10-mer STM QN Y
    deleterious GP RHKGLI DE RHK QNA RHKY RHK A
    VM FW
    A1 preferred YFW STCLIVM 1° Anchor A YFW PG G YFW 1° Anchor
    10-mer DEAS Y
    deleterious RHK RHKDEP P G PRHK QN
    YFW
    A2.1 preferred YFW 1° Anchor YFW STC YFW A P 1° Anchor
    9-mer LMIVQAT VLIMAT
    deleterious DEP DERKH RKH DERKH
    A2.1 preferred AYFW 1° Anchor LVIM G G FY 1° Anchor
    10-mer LMIVQAT WL VLIMAT
    VIM
    deleterious DEP DE RKHA P RKH DER RKH
    KH
    A3 preferred RHK 1° Anchor YFW PRHK A YFW P 1° Anchor
    LMVISA YFW KYRHFA
    TFCGD
    deleterious DEP DE
    A11 preferred A 1° Anchor YFW YFW A YFW YFW P 1° Anchor
    VTLMIS KRYH
    AGNCDF
    deleterious DEP A G
    A24 preferred YF 1° Anchor STC YFW YFW 1° Anchor
    9-mer WR YFWM FLIW
    HK
    deleterious DEG DE G QNP DER G AQN
    HK
    A24 preferred 1° Anchor P YFWP P 1° Anchor
    10-mer YFWM FLIW
    deleterious GDE QN RHK DE A QN DEA
    A3101 preferred RHK 1° Anchor YFW P YFW YFW AP 1° Anchor
    MVTALIS RK
    deleterious DEP DE ADE DE DE DE
    A3301 preferred 1° Anchor YFW AYFW 1° Anchor
    MVALFI RK
    ST
    deleterious GP DE
    A6801 preferred YF 1° Anchor YFWL YFW P 1° Anchor
    WS AVTMSLI IVM RK
    TC
    deleterious GP DEG RHK A
    B0702 preferred RH 1° Anchor RHK RHK RHK RHK PA 1° Anchor
    KF P LMFWY
    WY AIV
    deleterious DEQ DEP DE DE GDE QN DE
    NP
    B3501 preferred FW 1° Anchor FWY FWY 1° Anchor
    YLI P LMFWY
    VM IVA
    deleterious AGP G G
    B51 preferred LIV 1° Anchor FWY STC FWY G FWY 1° Anchor
    MF P LIVFWY
    WY AM
    deleterious AGP DE G DEQN GDE
    DER
    HKS
    TC
    B5301 preferred LIV 1° Anchor FWY STC FWY LIVM FWY 1° Anchor
    MF P FWY IMFWY
    WY ALV
    deleterious AGP G RHKQN DE
    QN
    B5401 preferred FWY 1° Anchor FWYLIVM LIVM ALIVM FW 1° Anchor
    P YAP ATIVLM
    FWY
    deleterious GPQ GDESTC RHKDE DE QNDGE DE
    NDE
  • TABLE IV (F)
    Summary of HLA-supertypes
    Overall phenotypic frequencies of HLA-supertypes in different ethnic populations
    Specificity Phenotypic frequency
    Supertype Position 2 C-Terminus Caucasian N.A. Black Japanese Chinese Hispanic Average
    B7 P AILMVFWY 43.2 55.1 57.1 43.0 49.3 49.5
    A3 AILMVST RK 37.5 42.1 45.8 52.7 43.1 44.2
    A2 AILMVT AILMVT 45.8 39.0 42.4 45.9 43.0 42.2
    A24 YF (WIVLMT) FI (YWLM) 23.9 38.9 58.6 40.1 38.3 40.0
    B44 E (D) FWYLIMVA 43.0 21.2 42.9 39.1 39.0 37.0
    A1 TI (LVMS) FWY 47.1 16.1 21.8 14.7 26.3 25.2
    B27 RHK FYL (WMI) 28.4 26.1 13.3 13.9 35.3 23.4
    B62 QL (IVMP) FWY (MIV) 12.6 4.8 36.5 25.4 11.1 18.1
    B58 ATS FWY (LIV) 10.0 25.1 1.6 9.0 5.9 10.3
  • TABLE IV (G)
    Calculated population coverage afforded by different HLA-supertype combinations
    Phenotypic frequency
    HLA-supertypes Caucasian N.A Blacks Japanese Chinese Hispanic Average
    A2, A3 and B7 83.0 86.1 87.5 88.4 86.3 86.2
    A2, A3, B7, 99.5 98.1 100.0 99.5 99.4 99.3
    A24, B44 and
    A1
    A2, A3, B7, 99.9 99.6 100.0 99.8 99.9 99.8
    A24, B44, A1,
    B27, B62, and
    B58
  • Motifs indicate the residues defining supertype specificites. The motifs incorporate residues determined on the basis of published data to be recognized by multiple alleles within the supertype. Residues within brackets are additional residues also predicted to be tolerated by multiple alleles within the supertype.
  • TABLE V
    Frequently Occurring Motifs
    avrg. %
    Name identity Description Potential Function
    zf-C2H2 34% Zinc finger, C2H2 type Nucleic acid-binding protein functions
    as transcription factor, nuclear location
    probable
    cytochrome_b_N 68% Cytochrome b(N- membrane bound oxidase, generate
    terminal)/b6/petB superoxide
    Ig
    19% Immunoglobulin domain domains are one hundred amino acids
    long and include a conserved
    intradomain disulfide bond.
    WD40 18% WD domain, G-beta tandem repeats of about 40 residues,
    repeat each containing a Trp-Asp motif.
    Function in signal transduction and
    protein interaction
    PDZ
    23% PDZ domain may function in targeting signaling
    molecules to sub-membranous sites
    LRR
    28% Leucine Rich Repeat short sequence motifs involved in
    protein-protein interactions
    Pkinase 23% Protein kinase domain conserved catalytic core common to
    both serine/threonine and tyrosine
    protein kinases containing an ATP
    binding site and a catalytic site
    PH
    16% PH domain pleckstrin homology involved in
    intracellular signaling or as
    constituents of the cytoskeleton
    EGF
    34% EGF-like domain 30-40 amino-acid long found in the
    extracellular domain of membrane-
    bound proteins or in secreted proteins
    Rvt 49% Reverse transcriptase
    (RNA-dependent DNA
    polymerase)
    Ank 25% Ank repeat Cytoplasmic protein, associates
    integral membrane proteins to the
    cytoskeleton
    Oxidored_q1 32% NADH- membrane associated. Involved in
    Ubiquinone/plastoquinone proton translocation across the
    (complex I), various membrane
    chains
    Efhand 24% EF hand calcium-binding domain, consists of
    a12 residue loop flanked on both sides
    by a 12 residue alpha-helical domain
    Rvp
    79% Retroviral aspartyl Aspartyl or acid proteases, centered on
    protease a catalytic aspartyl residue
    Collagen 42% Collagen triple helix extracellular structural proteins
    repeat (20 copies) involved in formation of connective
    tissue. The sequence consists of the G-
    X-Y and the polypeptide chains forms
    a triple helix.
    Fn3 20% Fibronectin type III Located in the extracellular ligand-
    domain binding region of receptors and is
    about 200 amino acid residues long
    with two pairs of cysteines involved in
    disulfide bonds
    7tm_1 19% 7 transmembrane receptor seven hydrophobic transmembrane
    (rhodopsin family) regions, with the N-terminus located
    extracellularly while the C-terminus is
    cytoplasmic. Signal through G proteins
  • TABLE VI
    Motifs and Post-translational Modifications
    of 191P4D12(b)
    N-glycosylation site
    281-284 NWTR (SEQ ID NO: 61)
    430-433 NSSC (SEQ ID NO: 62)
    489-492 NGTL (SEQ ID NO: 63)
    Tyrosine sulfation site
    118-132 VQADEGEYECRVSTF (SEQ ID NO: 64)
    Protein kinase C phosphorylation site
    26-28 TGR
    192-194 SSR
    195-197 SFK
    249-251 SVR
    322-324 SSR
    339-341 SGK
    383-385 TQK
    397-399 SIR
    426-428 SLK
    450-452 TVR
    465-467 SGR
    491-493 TLR
    Casein kinase II phosphorylation site
    283-286 TRLD (SEQ ID NO: 65)
    322-325 SSRD (SEQ ID NO: 66)
    410-413 SQPE (SEQ ID NO: 67)
    426-429 SLKD (SEQ ID NO: 68)
    450-453 TVRE (SEQ ID NO: 69)
    456-459 TQTE (SEQ ID NO: 70)
    N-myristoylation site
    135-140 GSFQAR (SEQ ID NO: 71)
    162-167 GQGLTL (SEQ ID NO: 72)
    164-169 GLTLAA (SEQ ID NO: 73)
    189-194 GTTSSR (SEQ ID NO: 74)
    218-223 GQPLTC (SEQ ID NO: 75)
    311-316 GIYVCH (SEQ ID NO: 76)
    354-359 GVIAAL (SEQ ID NO: 77)
    464-469 GSGRAE (SEQ ID NO: 78)
    477-482 GIKQAM (SEQ ID NO: 79)
    490-495 GTLRAK (SEQ ID NO: 80)
    500-505 GIYING (SEQ ID NO: 81)
    RGD Cell attachment sequence
    55-57 RGD
  • TABLE VII
    Search Peptides
    191P4D12(b) v.1 aa1-510
    9-mers, 10-mers and 15-mers (SEQ ID NO: 82)
    MPLSLGAEMW GPEAWLLLLL LLASFTGRCP AGELETSDVV TVVLGQDAKL PCFYRGDSGE
    QVGQVAWARV DAGEGAQELA LLHSKYGLHV SPAYEGRVEQ PPPPRNPLDG SVLLRNAVQA
    DEGEYECRVS TFPAGSFQAR LRLRVLVPPL PSLNPGPALE EGQGLTLAAS CTAEGSPAPS
    VTWDTEVKGT TSSRSFKHSR SAAVTSEFHL VPSRSMNGQP LTCVVSHPGL LQDQRITHIL
    HVSFLAEASV RGLEDQNLWH IGREGAMLKC LSEGQPPPSY NWTRLDGPLP SGVRVDGDTL
    GFPPLTTEHS GIYVCHVSNE FSSRDSQVTV DVLDPQEDSG KQVDLVSASV VVVGVIAALL
    FCLLVVVVVL MSRYHRRKAQ QMTQKYEEEL TLTRENSIRR LHSHHTDPRS QPEESVGLRA
    EGHPDSLKDN SSCSVMSEEP EGRSYSTLTT VREIETQTEL LSPGSGRAEE EEDQDEGIKQ
    AMNHFVQENG TLRAKPTGNG IYINGRGHLV
    v.2 aa1-510
    9-mers 45-61 GQDAKLPCLYRGDSGEQ (SEQ ID NO: 83)
    10-mers 44-62 LGQDAKLPCLYRGDSGEQV (SEQ ID NO: 84)
    15-mers 39-67 VVTVVLGQDAKLPCLYRGDSGEQVGQVAW (SEQ ID NO: 85)
    v.7 ORF:  264..1721 Frame +3
    9-mers 403-418 SHHTDPRSQSEEPEGR (SEQ ID NO: 86)
    10-mers 402-419 HSHHTDPRSQSEEPEGRS (SEQ ID NO: 87)
    15-mers 397-424 SIRRLHSHHTDPRSQSEEPEGRSYSTLT (SEQ ID NO: 88)
    V.9: AA 1-137; 9-mers, 10-mers, 15-mers (SEQ ID NO: 89)
    MRRELLAGIL LRITFNFFLF FFLPFPLVVF FIYFYFYFFL EMESHYVAQA GLELLGSSNP
    PASASLVAGT LSVHHCACFE SFTKRKKKLK KAFRFIQCLL LGLLKVRPLQ HQGVNSCDCE
    RGYFQGIFMQ AAPWEGT
    v.10 SNP variant
    9-mers 27-43 GRCPAGELGTSDVVTVV (SEQ ID NO: 90)
    10-mers 26-44 TGRCPAGELGTSDVVTVVL (SEQ ID NO: 91)
    15-mers 21-49 LLASFTGRCPAGELGTSDVVTVVLGQDAK (SEQ ID NO: 92)
    v.11 SNP variant
    9-mers 138-154 QARLRLRVMVPPLPSLN (SEQ ID NO: 93)
    10-mers 137-155 FQARLRLRVMVPPLPSLNP (SEQ ID NO: 94)
    15-mers 132-160 FPAGSFQARLRLRVMVPPLPSLNPGPALE (SEQ ID NO: 95)
    v.12 SNP variant
    9-mers 435-451 VMSEEPEGCSYSTLTTV (SEQ ID NO: 96)
    10-mers 434-452 SVMSEEPEGCSYSTLTTVRE (SEQ ID NO: 97)
    15-mers 429-457 DNSSCSVMSEEPEGCSYSTLTTVREIETQ (SEQ ID NO: 98)
    v.13 insertion of one AA at 333-4
    9-mers 426-442 SQVTVDVLADPQEDSGK (SEQ ID NO: 99)
    10-mers 425-443 DSQVTVDVLADPQEDSGKQ (SEQ ID NO: 100)
    15-mers 420-448 EFSSRDSQVTVDVLADPQEDSGKQVDLVS (SEQ ID NO: 101)
    191P4D12(b) v.14: AA56-72; 9-mers
    GSSNPPASASLVAGTLS (SEQ ID NO: 102)
    191P4D12(b) v.14: AA55-73; 10-mers
    LGSSNPPASASLVAGTLSV (SEQ ID NO: 103)
    191P4D12(b) v.14: AA50-78; 15-mers
    AGLELLGSSNPPASASLVAGTLSVHHCAC (SEQ ID NO: 104)
  • Tables VIII-XXI:
  • TABLE VIII
    V1-HLA-A1-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the length
    of peptide is 9 amino acids,
    and the end position for each
    peptide is the start position
    plus eight.
    Start Subsequence Score
    294 RVDGDTLGF 25.000
    437 SEEPEGRSY 22.500
    97 RVEQPPPPR 18.000
    306 TTEHSGIYV 11.250
    332 VLDPQEDSG 5.000
    252 GLEDQNLWH 4.500
    457 QTELLSPGS 4.500
    271 LSEGQPPPS 2.700
    205 TSEFHLVPS 2.700
    107 PLDGSVLLR 2.500
    386 YEEELTLTR 2.250
    411 QPEESVGLR 2.250
    184 DTEVKGTTS 2.250
    172 TAEGSPAPS 1.800
    6 GAEMWGPEA 1.800
    33 ELETSDVVT 1.800
    36 TSDVVTVVL 1.500
    45 GQDAKLPCF 1.500
    436 MSEEPEGRS 1.350
    305 LTTEHSGIY 1.250
    405 HTDPRSQPE 1.250
    11 GPEAWLLLL 1.125
    119 QADEGEYEC 1.000
    89 HVSPAYEGR 1.000
    284 RLDGPLPSG 1.000
    342 QVDLVSASV 1.000
    158 ALEEGQGLT 0.900
    245 LAEASVRGL 0.900
    419 RAEGHPDSL 0.900
    453 EIETQTELL 0.900
    486 VQENGTLRA 0.675
    76 AQELALLHS 0.675
    117 AVQADEGEY 0.500
    471 EEDQDEGIK 0.500
    236 ITHILHVSF 0.500
    365 VVVVVLMSR 0.500
    366 VVVVLMSRY 0.500
    189 GTTSSRSFK 0.500
    78 ELALLHSKY 0.500
    69 RVDAGEGAQ 0.500
    378 KAQQMTQKY 0.500
    124 EYECRVSTF 0.450
    120 ADEGEYECR 0.450
    439 EPEGRSYST 0.450
    130 STFPAGSFQ 0.250
    86 YGLHVSPAY 0.250
    318 SNEFSSRDS 0.225
    72 AGEGAQELA 0.225
    122 EGEYECRVS 0.225
    159 LEEGQGLTL 0.225
    262 GREGAMLKC 0.225
    58 SGEQVGQVA 0.225
    31 AGELETSDV 0.225
    145 VLVPPLPSL 0.200
    180 SVTWDTEVK 0.200
    368 VVLMSRYHR 0.200
    41 TVVLGQDAK 0.200
    17 LLLLLLASF 0.200
    409 RSQPEESVG 0.150
    129 VSTFPAGSF 0.150
    200 RSAAVTSEF 0.150
    423 HPDSLKDNS 0.125
    392 LTRENSIRR 0.125
    448 LTTVREIET 0.125
    55 RGDSGEQVG 0.125
    190 TTSSRSFKH 0.125
    353 VGVIAALLF 0.125
    146 LVPPLPSLN 0.100
    369 VLMSRYHRR 0.100
    313 YVCHVSNEF 0.100
    61 QVGQVAWAR 0.100
    459 ELLSPGSGR 0.100
    329 TVDVLDPQE 0.100
    20 LLLASFTGR 0.100
    316 HVSNEFSSR 0.100
    209 HLVPSRSMN 0.100
    460 LLSPGSGRA 0.100
    485 FVQENGTLR 0.100
    467 RAEEEEDQD 0.090
    3 LSLGAEMWG 0.075
    225 VSHPGLLQD 0.075
    255 DQNLWHIGR 0.075
    135 GSFQARLRL 0.075
    231 LQDQRITHI 0.075
    473 DQDEGIKQA 0.075
    296 DGDTLGFPP 0.062
    364 LVVVVVLMS 0.050
    354 GVIAALLFC 0.050
    224 VVSHPGLLQ 0.050
    202 AAVTSEFHL 0.050
    210 LVPSRSMNG 0.050
    19 LLLLASFTG 0.050
    355 VIAALLFCL 0.050
    299 TLGFPPLTT 0.050
    15 WLLLLLLLA 0.050
    298 DTLGFPPLT 0.050
    287 GPLPSGVRV 0.050
    28 RCPAGELET 0.050
    435 VMSEEPEGR 0.050
    357 AALLFCLLV 0.050
    V2-HLA-A1-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 5; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    1 GQDAKLPCL 0.150
    3 DAKLPCLYR 0.050
    4 AKLPCLYRG 0.010
    2 QDAKLPCLY 0.003
    6 LPCLYRGDS 0.003
    7 PCLYRGDSG 0.001
    5 KLPCLYRGD 0.001
    8 CLYRGDSGE 0.000
    9 LYRGDSGEQ 0.000
    V7-HLA-A1-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 15; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    3 HTDPRSQSE 1.250
    7 RSQSEEPEG 0.030
    8 SQSEEPEGR 0.015
    1 SHHTDPRSQ 0.001
    2 HHTDPRSQS 0.001
    5 DPRSQSEEP 0.000
    4 TDPRSQSEE 0.000
    6 PRSQSEEPE 0.000
    V9-HLA-A1-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 19; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position for
    each peptide is the start
    position plus eight.
    Start Subsequence Score
    116 SCDCERGYF 5.000
    13 ITFNFFLFF 1.250
    76 CACFESFTK 1.000
    27 LVVFFIYFY 1.000
    97 QCLLLGLLK 1.000
    39 FLEMESHYV 0.900
    41 EMESHYVAQ 0.900
    78 CFESFTKRK 0.900
    51 GLELLGSSN 0.900
    115 NSCDCERGY 0.750
    25 FPLVVFFIY 0.625
    23 LPFPLVVFF 0.500
    4 ELLAGILLR 0.500
    12 RITFNFFLF 0.500
    28 VVFFIYFYF 0.500
    118 DCERGYFQG 0.450
    71 LSVHHCACF 0.300
    80 ESFTKRKKK 0.300
    22 FLPFPLVVF 0.200
    31 FIYFYFYFF 0.200
    57 SSNPPASAS 0.150
    7 AGILLRITF 0.125
    99 LLLGLLKVR 0.100
    113 GVNSCDCER 0.100
    77 ACFESFTKR 0.100
    95 FIQCLLLGL 0.050
    9 ILLRITFNF 0.050
    98 CLLLGLLKV 0.050
    5 LLAGILLRI 0.050
    26 PLVVFFIYF 0.050
    46 YVAQAGLEL 0.050
    49 QAGLELLGS 0.050
    29 VFFIYFYFY 0.050
    58 SNPPASASL 0.050
    65 SLVAGTLSV 0.050
    2 RRELLAGIL 0.045
    56 GSSNPPASA 0.030
    62 ASASLVAGT 0.030
    14 TFNFFLFFF 0.025
    69 GTLSVHHCA 0.025
    30 FFIYFYFYF 0.025
    21 FFLPFPLVV 0.025
    17 FFLFFFLPF 0.025
    38 FFLEMESHY 0.025
    67 VAGTLSVHH 0.020
    126 GIFMQAAPW 0.020
    54 LLGSSNPPA 0.020
    43 ESHYVAQAG 0.015
    64 ASLVAGTLS 0.015
    15 FNFFLFFFL 0.013
    121 RGYFQGIFM 0.013
    79 FESFTKRKK 0.010
    70 TLSVHHCAC 0.010
    105 KVRPLQHQG 0.010
    66 LVAGTLSVH 0.010
    63 SASLVAGTL 0.010
    6 LAGILLRIT 0.010
    47 VAQAGLELL 0.010
    10 LLRITFNFF 0.010
    75 HCACFESFT 0.010
    8 GILLRITFN 0.010
    48 AQAGLELLG 0.007
    103 LLKVRPLQH 0.005
    128 FMQAAPWEG 0.005
    55 LGSSNPPAS 0.005
    120 ERGYFQGIF 0.005
    74 HHCACFESF 0.005
    82 FTKRKKKLK 0.005
    87 KKLKKAFRF 0.003
    90 KKAFRFIQC 0.003
    11 LRITFNFFL 0.003
    59 NPPASASLV 0.003
    101 LGLLKVRPL 0.003
    123 YFQGIFMQA 0.003
    36 FYFFLEMES 0.003
    34 FYFYFFLEM 0.003
    19 LFFFLPFPL 0.003
    68 AGTLSVHHC 0.003
    93 FRFIQCLLL 0.003
    114 VNSCDCERG 0.003
    122 GYFQGIFMQ 0.003
    50 AGLELLGSS 0.003
    32 IYFYFYFFL 0.003
    3 RELLAGILL 0.003
    107 RPLQHQGVN 0.003
    73 VHHCACFES 0.003
    94 RFIQCLLLG 0.003
    18 FLFFFLPFP 0.002
    102 GLLKVRPLQ 0.002
    100 LLGLLKVRP 0.002
    108 PLQHQGVNS 0.002
    61 PASASLVAG 0.002
    96 IQCLLLGLL 0.002
    111 HQGVNSCDC 0.002
    109 LQHQGVNSC 0.002
    124 FQGIFMQAA 0.002
    129 MQAAPWEGT 0.002
    60 PPASASLVA 0.001
    86 KKKLKKAFR 0.001
    20 FFFLPFPLV 0.001
    V10-HLA-A1-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 21; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    5 AGELGTSDV 0.225
    2 RCPAGELGT 0.050
    9 GTSDVVTVV 0.025
    7 ELGTSDVVT 0.020
    1 GRCPAGELG 0.005
    8 LGTSDVVTV 0.005
    3 CPAGELGTS 0.003
    6 GELGTSDVV 0.001
    4 PAGELGTSD 0.000
    V11-HLA-A1-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 23; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    9 MVPPLPSLN 0.100
    8 VMVPPLPSL 0.100
    7 RVMVPPLPS 0.050
    5 RLRVMVPPL 0.002
    1 QARLRLRVM 0.001
    3 RLRLRVMVP 0.001
    6 LRVMVPPLP 0.000
    2 ARLRLRVMV 0.000
    4 LRLRVMVPP 0.000
    V12-HLA-A1-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 25; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position for
    each peptide is the start
    position plus eight.
    Start Subsequence Score
    3 SEEPEGCSY 22.500
    2 MSEEPEGCS 1.350
    5 EPEGCSYST 0.450
    8 GCSYSTLTT 0.050
    9 CSYSTLTTV 0.015
    1 VMSEEPEGC 0.005
    7 EGCSYSTLT 0.003
    4 EEPEGCSYS 0.001
    6 PEGCSYSTL 0.000
    V13-HLA-A1-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 27; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position for
    each peptide is the start
    position plus eight.
    Start Subsequence Score
    8 LADPQEDSG 5.000
    4 TVDVLADPQ 0.500
    9 ADPQEDSGK 0.010
    7 VLADPQEDS 0.010
    3 VTVDVLADP 0.005
    2 QVTVDVLAD 0.005
    1 SQVTVDVLA 0.003
    6 DVLADPQED 0.001
    5 VDVLADPQE 0.000
    V14-HLA-A1-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 29; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position for
    each peptide is the start
    position plus eight.
    Start Subsequence Score
    2 SSNPPASAS 0.150
    3 SNPPASASL 0.050
    1 GSSNPPASA 0.030
    7 ASASLVAGT 0.030
    9 ASLVAGTLS 0.015
    8 SASLVAGTL 0.010
    4 NPPASASLV 0.003
    6 PASASLVAG 0.002
    5 PPASASLVA 0.001
  • TABLE IX
    V1-HLA-A1-10mers-
    191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the length
    of peptide is 10 amino acids,
    and the end position for each
    peptide is the start position plus
    nine.
    Start Subsequence Score
    271 LSEGQPPPSY 135.000
    332 VLDPQEDSGK 100.000
    436 MSEEPEGRSY 67.500
    205 TSEFHLVPSR 27.000
    419 RAEGHPDSLK 18.000
    119 QADEGEYECR 5.000
    453 EIETQTELLS 4.500
    306 TTEHSGIYVC 4.500
    158 ALEEGQGLTL 4.500
    45 GQDAKLPCFY 3.750
    486 VQENGTLRAK 2.700
    76 AQELALLHSK 2.700
    405 HTDPRSQPEE 2.500
    385 KYEEELTLTR 2.250
    457 QTELLSPGSG 2.250
    184 DTEVKGTTSS 2.250
    33 ELETSDVVTV 1.800
    97 RVEQPPPPRN 1.800
    172 TAEGSPAPSV 1.800
    36 TSDVVTVVLG 1.500
    130 STFPAGSFQA 1.250
    411 QPEESVGLRA 1.125
    11 GPEAWLLLLL 1.125
    72 AGEGAQELAL 1.125
    470 EEEDQDEGIK 0.900
    252 GLEDQNLWHI 0.900
    6 GAEMWGPEAW 0.900
    116 NAVQADEGEY 0.500
    40 VTVVLGQDAK 0.500
    493 RAKPTGNGIY 0.500
    365 VVVVVLMSRY 0.500
    352 VVGVIAALLF 0.500
    342 QVDLVSASVV 0.500
    209 HLVPSRSMNG 0.500
    364 LVVVVVLMSR 0.500
    284 RLDGPLPSGV 0.500
    122 EGEYECRVST 0.450
    437 SEEPEGRSYS 0.450
    58 SGEQVGQVAW 0.450
    409 RSQPEESVGL 0.300
    296 DGDTLGFPPL 0.250
    107 PLDGSVLLRN 0.250
    390 LTLTRENSIR 0.250
    275 QPPPSYNWTR 0.250
    55 RGDSGEQVGQ 0.250
    318 SNEFSSRDSQ 0.225
    31 AGELETSDVV 0.225
    439 EPEGRSYSTL 0.225
    235 RITHILHVSF 0.200
    16 LLLLLLLASF 0.200
    367 VVVLMSRYHR 0.200
    369 VLMSRYHRRK 0.200
    242 VSFLAEASVR 0.150
    225 VSHPGLLQDQ 0.150
    135 GSFQARLRLR 0.150
    443 RSYSTLTTVR 0.150
    298 DTLGFPPLTT 0.125
    189 GTTSSRSFKH 0.125
    423 HPDSLKDNSS 0.125
    106 NPLDGSVLLR 0.125
    305 LTTEHSGIYV 0.125
    471 EEDQDEGIKQ 0.125
    400 RLHSHHTDPR 0.100
    69 RVDAGEGAQE 0.100
    145 VLVPPLPSLN 0.100
    434 SVMSEEPEGR 0.100
    260 HIGREGAMLK 0.100
    89 HVSPAYEGRV 0.100
    368 VVLMSRYHRR 0.100
    128 RVSTFPAGSF 0.100
    19 LLLLASFTGR 0.100
    474 QDEGIKQAMN 0.090
    467 RAEEEEDQDE 0.090
    245 LAEASVRGLE 0.090
    473 DQDEGIKQAM 0.075
    214 RSMNGQPLTC 0.075
    231 LQDQRITHIL 0.075
    357 AALLFCLLVV 0.050
    43 VLGQDAKLPC 0.050
    188 KGTTSSRSFK 0.050
    44 LGQDAKLPCF 0.050
    217 NGQPLTCVVS 0.050
    201 SAAVTSEFHL 0.050
    294 RVDGDTLGFP 0.050
    18 LLLLLASFTG 0.050
    35 ETSDVVTVVL 0.050
    171 CTAEGSPAPS 0.050
    447 TLTTVREIET 0.050
    221 LTCVVSHPGL 0.050
    354 GVIAALLFCL 0.050
    81 LLHSKYGLHV 0.050
    323 SRDSQVTVDV 0.050
    329 TVDVLDPQED 0.050
    304 PLTTEHSGIY 0.050
    273 EGQPPPSYNW 0.050
    15 WLLLLLLLAS 0.050
    363 LLVVVVVLMS 0.050
    85 KYGLHVSPAY 0.050
    146 LVPPLPSLNP 0.050
    485 FVQENGTLRA 0.050
    V2-HLA-A1-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 5; each start
    position is specified, the length
    of peptide is 10 amino acids,
    and the end position for each
    peptide is the start position
    plus nine.
    Start Subsequence Score
    2 GQDAKLPCLY 3.750
    6 KLPCLYRGDS 0.010
    1 LGQDAKLPCL 0.005
    3 QDAKLPCLYR 0.003
    7 LPCLYRGDSG 0.003
    4 DAKLPCLYRG 0.002
    9 CLYRGDSGEQ 0.001
    5 AKLPCLYRGD 0.001
    8 PCLYRGDSGE 0.000
    10 LYRGDSGEQV 0.000
    V7-HLA-A1-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 15; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Start Subsequence Score
    4 HTDPRSQSEE 1.250
    8 RSQSEEPEGR 0.150
    1 HSHHTDPRSQ 0.015
    9 SQSEEPEGRS 0.002
    2 SHHTDPRSQS 0.001
    7 PRSQSEEPEG 0.000
    3 HHTDPRSQSE 0.000
    6 DPRSQSEEPE 0.000
    5 TDPRSQSEEP 0.000
    V9-HLA-A1-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 19; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Start Subsequence Score
    39 FLEMESHYVA 1.800
    13 ITFNFFLFFF 1.250
    28 VVFFIYFYFY 1.000
    116 SCDCERGYFQ 1.000
    75 HCACFESFTK 1.000
    78 CFESFTKRKK 0.900
    41 EMESHYVAQA 0.900
    12 RITFNFFLFF 0.500
    27 LVVFFIYFYF 0.500
    8 GILLRITFNF 0.500
    6 LAGILLRITF 0.500
    57 SSNPPASASL 0.300
    2 RRELLAGILL 0.225
    22 FLPFPLVVFF 0.200
    70 TLSVHHCACF 0.200
    77 ACFESFTKRK 0.200
    96 IQCLLLGLLK 0.150
    115 NSCDCERGYF 0.150
    114 VNSCDCERGY 0.125
    23 LPFPLVVFFI 0.125
    25 FPLVVFFIYF 0.125
    76 CACFESFTKR 0.100
    26 PLVVFFIYFY 0.100
    21 FFLPFPLVVF 0.100
    98 CLLLGLLKVR 0.100
    118 DCERGYFQGI 0.090
    51 GLELLGSSNP 0.090
    64 ASLVAGTLSV 0.075
    31 FIYFYFYFFL 0.050
    47 VAQAGLELLG 0.050
    72 SVHHCACFES 0.050
    4 ELLAGILLRI 0.050
    97 QCLLLGLLKV 0.050
    18 FLFFFLPFPL 0.050
    43 ESHYVAQAGL 0.030
    58 SNPPASASLV 0.025
    3 RELLAGILLR 0.025
    112 QGVNSCDCER 0.025
    69 GTLSVHHCAC 0.025
    11 LRITFNFFLF 0.025
    82 FTKRKKKLKK 0.025
    29 VFFIYFYFYF 0.025
    16 NFFLFFFLPF 0.025
    37 YFFLEMESHY 0.025
    66 LVAGTLSVHH 0.020
    54 LLGSSNPPAS 0.020
    53 ELLGSSNPPA 0.020
    56 GSSNPPASAS 0.015
    62 ASASLVAGTL 0.015
    80 ESFTKRKKKL 0.015
    24 PFPLVVFFIY 0.013
    59 NPPASASLVA 0.013
    121 RGYFQGIFMQ 0.013
    67 VAGTLSVHHC 0.010
    105 KVRPLQHQGV 0.010
    9 ILLRITFNFF 0.010
    79 FESFTKRKKK 0.010
    49 QAGLELLGSS 0.010
    46 YVAQAGLELL 0.010
    63 SASLVAGTLS 0.010
    113 GVNSCDCERG 0.010
    95 FIQCLLLGLL 0.010
    30 FFIYFYFYFF 0.010
    5 LLAGILLRIT 0.010
    65 SLVAGTLSVH 0.010
    100 LLGLLKVRPL 0.010
    48 AQAGLELLGS 0.007
    102 GLLKVRPLQH 0.005
    55 LGSSNPPASA 0.005
    101 LGLLKVRPLQ 0.005
    73 VHHCACFESF 0.005
    125 QGIFMQAAPW 0.005
    10 LLRITFNFFL 0.005
    107 RPLQHQGVNS 0.005
    128 FMQAAPWEGT 0.005
    86 KKKLKKAFRF 0.003
    117 CDCERGYFQG 0.003
    93 FRFIQCLLLG 0.003
    14 TFNFFLFFFL 0.003
    33 YFYFYFFLEM 0.003
    120 ERGYFQGIFM 0.003
    122 GYFQGIFMQA 0.003
    35 YFYFFLEMES 0.003
    68 AGTLSVHHCA 0.003
    45 HYVAQAGLEL 0.003
    50 AGLELLGSSN 0.003
    7 AGILLRITFN 0.003
    20 FFFLPFPLVV 0.003
    94 RFIQCLLLGL 0.003
    126 GIFMQAAPWE 0.002
    99 LLLGLLKVRP 0.002
    61 PASASLVAGT 0.002
    71 LSVHHCACFE 0.002
    15 FNFFLFFFLP 0.001
    81 SFTKRKKKLK 0.001
    103 LLKVRPLQHQ 0.001
    108 PLQHQGVNSC 0.001
    40 LEMESHYVAQ 0.001
    91 KAFRFIQCLL 0.001
    19 LFFFLPFPLV 0.001
    V10-HLA-A1-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 21; each start
    position is specified, the length
    of peptide is 10 amino acids,
    and the end position for each
    peptide is the start position
    plus nine.
    Start Subsequence Score
    6 AGELGTSDVV 0.225
    10 GTSDVVTVVL 0.050
    2 GRCPAGELGT 0.025
    8 ELGTSDVVTV 0.020
    3 RCPAGELGTS 0.010
    9 LGTSDVVTVV 0.003
    7 GELGTSDVVT 0.001
    5 PAGELGTSDV 0.001
    4 CPAGELGTSD 0.000
    1 TGRCPAGELG 0.000
    V11-HLA-A1-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 23; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    9 VMVPPLPSLN 0.050
    10 MVPPLPSLNP 0.050
    8 RVMVPPLPSL 0.020
    7 LRVMVPPLPS 0.003
    2 QARLRLRVMV 0.002
    6 RLRVMVPPLP 0.000
    4 RLRLRVMVPP 0.000
    1 FQARLRLRVM 0.000
    5 LRLRVMVPPL 0.000
    3 ARLRLRVMVP 0.000
    V12-HLA-A1-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 25; each start
    position is specified, the length
    of peptide is 10 amino acids,
    and the end position for each
    peptide is the start position
    plus nine.
    Start Subsequence Score
    3 MSEEPEGCSY 67.500
    4 SEEPEGCSYS 0.450
    6 EPEGCSYSTL 0.225
    10 CSYSTLTTVR 0.150
    8 EGCSYSTLTT 0.013
    9 GCSYSTLTTV 0.010
    1 SVMSEEPEGC 0.010
    2 VMSEEPEGCS 0.005
    5 EEPEGCSYST 0.001
    11 SYSTLTTVRE 0.000
    7 PEGCSYSTLT 0.000
    V13-HLA-A1-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 27; each start
    position is specified, the length
    of peptide is 10 amino acids,
    and the end position for each
    peptide is the start position plus
    nine.
    Start Subsequence Score
    9 LADPQEDSGK 100.000
    5 TVDVLADPQE 0.100
    1 DSQVTVDVLA 0.030
    4 VTVDVLADPQ 0.025
    8 VLADPQEDSG 0.010
    7 DVLADPQEDS 0.010
    3 QVTVDVLADP 0.002
    2 SQVTVDVLAD 0.001
    10 ADPQEDSGKQ 0.001
    6 VDVLADPQED 0.000
    V14-HLA-A1-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 29; each start
    position is specified, the
    length of peptide is 10
    amino acids, and the end
    position for each peptide is
    the start position plus nine.
    Start Subsequence Score
    3 SSNPPASASL 0.300
    10 ASLVAGTLSV 0.075
    4 SNPPASASLV 0.025
    8 ASASLVAGTL 0.015
    2 GSSNPPASAS 0.015
    5 NPPASASLVA 0.013
    9 SASLVAGTLS 0.010
    1 LGSSNPPASA 0.005
    7 PASASLVAGT 0.002
    6 PPASASLVAG 0.001
  • TABLE X
    V1-HLA-A201-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position for
    each peptide is the start
    position plus eight.
    Start Subsequence Score
    384 QKYEEELTL 0.389
    306 TTEHSGIYV 0.340
    35 ETSDVVTVV 0.280
    4 SLGAEMWGP 0.257
    158 ALEEGQGLT 0.254
    341 KQVDLVSAS 0.249
    343 VDLVSASVV 0.249
    382 MTQKYEEEL 0.247
    446 STLTTVREI 0.247
    223 CVVSHPGLL 0.243
    304 PLTTEHSGI 0.230
    44 LGQDAKLPC 0.226
    1 MPLSLGAEM 0.204
    450 TVREIETQT 0.203
    237 THILHVSFL 0.188
    217 NGQPLTCVV 0.186
    214 RSMNGQPLT 0.180
    349 SVVVVGVIA 0.178
    20 LLLASFTGR 0.178
    448 LTTVREIET 0.176
    285 LDGPLPSGV 0.164
    473 DQDEGIKQA 0.142
    322 SSRDSQVTV 0.141
    369 VLMSRYHRR 0.141
    100 QPPPPRNPL 0.139
    222 TCVVSHPGL 0.139
    257 NLWHIGREG 0.124
    163 QGLTLAASC 0.120
    23 ASFTGRCPA 0.120
    V2-HLA-A201-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 5; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position for
    each peptide is the start
    position plus eight.
    Start Subsequence Score
    1 GQDAKLPCL 1.993
    8 CLYRGDSGE 0.048
    5 KLPCLYRGD 0.016
    4 AKLPCLYRG 0.001
    6 LPCLYRGDS 0.000
    2 QDAKLPCLY 0.000
    7 PCLYRGDSG 0.000
    3 DAKLPCLYR 0.000
    9 LYRGDSGEQ 0.000
    V7-HLA-A201-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 15; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position for
    each peptide is the start
    position plus eight.
    Start Subsequence Score
    8 SQSEEPEGR 0.003
    7 RSQSEEPEG 0.000
    4 TDPRSQSEE 0.000
    2 HHTDPRSQS 0.000
    3 HTDPRSQSE 0.000
    1 SHHTDPRSQ 0.000
    5 DPRSQSEEP 0.000
    6 PRSQSEEPE 0.000
    V9-HLA-A201-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 19; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position for
    each peptide is the start
    position plus eight.
    Start Subsequence Score
    98 CLLLGLLKV 591.888
    15 FNFFLFFFL 143.853
    39 FLEMESHYV 112.619
    65 SLVAGTLSV 69.552
    5 LLAGILLRI 40.792
    91 KAFRFIQCL 33.581
    95 FIQCLLLGL 31.077
    124 FQGIFMQAA 20.251
    18 FLFFFLPFP 12.194
    46 YVAQAGLEL 8.598
    54 LLGSSNPPA 8.446
    70 TLSVHHCAC 4.968
    32 IYFYFYFFL 3.393
    9 ILLRITFNF 2.719
    88 KLKKAFRFI 2.671
    109 LQHQGVNSC 1.969
    28 VVFFIYFYF 1.963
    128 FMQAAPWEG 1.857
    31 FIYFYFYFF 1.576
    20 FFFLPFPLV 1.562
    3 RELLAGILL 1.537
    21 FFLPFPLVV 1.281
    96 IQCLLLGLL 1.101
    129 MQAAPWEGT 1.070
    40 LEMESHYVA 1.021
    11 LRITFNFFL 0.611
    121 RGYFQGIFM 0.571
    47 VAQAGLELL 0.568
    19 LFFFLPFPL 0.541
    27 LVVFFIYFY 0.533
    8 GILLRITFN 0.480
    59 NPPASASLV 0.454
    101 LGLLKVRPL 0.403
    42 MESHYVAQA 0.378
    22 FLPFPLVVF 0.323
    13 ITFNFFLFF 0.259
    69 GTLSVHHCA 0.255
    58 SNPPASASL 0.139
    12 RITFNFFLF 0.113
    62 ASASLVAGT 0.112
    10 LLRITFNFF 0.101
    99 LLLGLLKVR 0.088
    34 FYFYFFLEM 0.085
    68 AGTLSVHHC 0.075
    26 PLVVFFIYF 0.065
    102 GLLKVRPLQ 0.055
    93 FRFIQCLLL 0.050
    44 SHYVAQAGL 0.047
    90 KKAFRFIQC 0.046
    30 FFIYFYFYF 0.043
    23 LPFPLVVFF 0.039
    63 SASLVAGTL 0.039
    126 GIFMQAAPW 0.038
    25 FPLVVFFIY 0.037
    75 HCACFESFT 0.035
    6 LAGILLRIT 0.033
    56 GSSNPPASA 0.032
    123 YFQGIFMQA 0.030
    119 CERGYFQGI 0.029
    100 LLGLLKVRP 0.025
    111 HQGVNSCDC 0.017
    106 VRPLQHQGV 0.016
    81 SFTKRKKKL 0.015
    14 TFNFFLFFF 0.014
    24 PFPLVVFFI 0.012
    66 LVAGTLSVH 0.010
    4 ELLAGILLR 0.010
    87 KKLKKAFRF 0.008
    48 AQAGLELLG 0.008
    72 SVHHCACFE 0.007
    17 FFLFFFLPF 0.006
    51 GLELLGSSN 0.005
    103 LLKVRPLQH 0.004
    53 ELLGSSNPP 0.004
    38 FFLEMESHY 0.004
    29 VFFIYFYFY 0.003
    77 ACFESFTKR 0.003
    49 QAGLELLGS 0.002
    50 AGLELLGSS 0.002
    52 LELLGSSNP 0.002
    64 ASLVAGTLS 0.002
    1 MRRELLAGI 0.002
    67 VAGTLSVHH 0.002
    105 KVRPLQHQG 0.002
    33 YFYFYFFLE 0.002
    108 PLQHQGVNS 0.002
    16 NFFLFFFLP 0.002
    113 GVNSCDCER 0.001
    76 CACFESFTK 0.001
    92 AFRFIQCLL 0.001
    37 YFFLEMESH 0.001
    71 LSVHHCACF 0.001
    55 LGSSNPPAS 0.001
    35 YFYFFLEME 0.001
    73 VHHCACFES 0.001
    7 AGILLRITF 0.000
    57 SSNPPASAS 0.000
    117 CDCERGYFQ 0.000
    114 VNSCDCERG 0.000
    115 NSCDCERGY 0.000
    V10-HLA-A201-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 21; each start
    position is specified, the length
    of peptide is 9 amino acids,
    and the end position for each
    peptide is the start position
    plus eight.
    Start Subsequence Score
    8 VMVPPLPSL 60.325
    5 RLRVMVPPL 3.734
    2 ARLRLRVMV 0.036
    7 RVMVPPLPS 0.024
    9 MVPPLPSLN 0.011
    3 RLRLRVMVP 0.001
    1 QARLRLRVM 0.001
    4 LRLRVMVPP 0.000
    6 LRVMVPPLP 0.000
    V11-HLA-A201-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 23; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position for
    each peptide is the start
    position plus eight.
    Start Subsequence Score
    9 GTSDVVTVV 3.735
    8 LGTSDVVTV 1.775
    6 GELGTSDVV 1.005
    7 ELGTSDVVT 0.229
    2 RCPAGELGT 0.049
    5 AGELGTSDV 0.029
    3 CPAGELGTS 0.000
    4 PAGELGTSD 0.000
    1 GRCPAGELG 0.000
    V12-HLA-A201-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 25; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    1 VMSEEPEGC 12.254
    9 CSYSTLTTV 3.342
    8 GCSYSTLTT 0.049
    6 PEGCSYSTL 0.014
    7 EGCSYSTLT 0.004
    4 EEPEGCSYS 0.002
    5 EPEGCSYST 0.000
    3 SEEPEGCSY 0.000
    2 MSEEPEGCS 0.000
    V13-HLA-A201-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 27; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    1 SQVTVDVLA 0.504
    7 VLADPQEDS 0.255
    3 VTVDVLADP 0.003
    2 QVTVDVLAD 0.003
    6 DVLADPQED 0.000
    8 LADPQEDSG 0.000
    4 TVDVLADPQ 0.000
    5 VDVLADPQE 0.000
    9 ADPQEDSGK 0.000
    V14-HLA-A201-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 29; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    4 NPPASASLV 0.454
    3 SNPPASASL 0.139
    7 ASASLVAGT 0.112
    8 SASLVAGTL 0.039
    1 GSSNPPASA 0.032
    9 ASLVAGTLS 0.002
    2 SSNPPASAS 0.000
    5 PPASASLVA 0.000
    6 PASASLVAG 0.000
  • TABLE XI
    V1-HLA-A201-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    359 LLFCLLVVVV 412.546
    17 LLLLLLASFT 257.802
    358 ALLFCLLVVV 242.674
    244 FLAEASVRGL 185.332
    230 LLQDQRITHI 167.248
    81 LLHSKYGLHV 118.238
    215 SMNGQPLTCV 115.534
    341 KQVDLVSASV 101.193
    239 ILHVSFLAEA 73.815
    8 EMWGPEAWLL 72.031
    252 GLEDQNLWHI 47.223
    362 CLLVVVVVLM 42.278
    305 LTTEHSGIYV 37.032
    284 RLDGPLPSGV 27.821
    354 GVIAALLFCL 24.935
    257 NLWHIGREGA 20.205
    144 RVLVPPLPSL 15.907
    20 LLLASFTGRC 15.437
    181 VTWDTEVKGT 13.771
    61 QVGQVAWARV 10.346
    426 SLKDNSSCSV 9.981
    355 VIAALLFCLL 9.488
    7 AEMWGPEAWL 8.453
    43 VLGQDAKLPC 8.446
    485 FVQENGTLRA 8.198
    381 QMTQKYEEEL 7.560
    447 TLTTVREIET 7.452
    350 VVVVGVIAAL 7.309
    236 ITHILHVSFL 6.381
    356 IAALLFCLLV 6.240
    274 GQPPPSYNWT 6.233
    10 WGPEAWLLLL 6.049
    158 ALEEGQGLTL 5.605
    319 NEFSSRDSQV 5.004
    164 GLTLAASCTA 4.968
    344 DLVSASVVVV 4.919
    118 VQADEGEYEC 3.511
    357 AALLFCLLVV 3.370
    351 VVVGVIAALL 3.178
    15 WLLLLLLLAS 2.917
    18 LLLLLASFTG 2.719
    125 YECRVSTFPA 2.577
    132 FPAGSFQARL 2.438
    361 FCLLVVVVVL 2.238
    34 LETSDVVTVV 2.168
    321 FSSRDSQVTV 2.088
    137 FQARLRLRVL 1.879
    41 TVVLGQDAKL 1.869
    79 LALLHSKYGL 1.866
    477 GIKQAMNHFV 1.841
    202 AAVTSEFHLV 1.835
    346 VSASVVVVGV 1.775
    201 SAAVTSEFHL 1.721
    111 SVLLRNAVQA 1.608
    130 STFPAGSFQA 1.481
    59 GEQVGQVAWA 1.222
    500 GIYINGRGHL 1.222
    370 LMSRYHRRKA 1.220
    16 LLLLLLLASF 1.078
    349 SVVVVGVIAA 1.000
    342 QVDLVSASVV 0.998
    73 GEGAQELALL 0.955
    32 GELETSDVVT 0.901
    452 REIETQTELL 0.834
    389 ELTLTRENSI 0.782
    33 ELETSDVVTV 0.768
    39 VVTVVLGQDA 0.739
    353 VGVIAALLFC 0.697
    280 YNWTRLDGPL 0.692
    231 LQDQRITHIL 0.604
    221 LTCVVSHPGL 0.504
    63 GQVAWARVDA 0.504
    162 GQGLTLAASC 0.504
    178 APSVTWDTEV 0.454
    13 EAWLLLLLLL 0.425
    176 SPAPSVTWDT 0.365
    216 MNGQPLTCVV 0.316
    384 QKYEEELTLT 0.312
    270 CLSEGQPPPS 0.306
    363 LLVVVVVLMS 0.291
    229 GLLQDQRITH 0.276
    343 VDLVSASVVV 0.249
    150 LPSLNPGPAL 0.237
    5 LGAEMWGPEA 0.226
    112 VLLRNAVQAD 0.216
    241 HVSFLAEASV 0.207
    163 QGLTLAASCT 0.180
    459 ELLSPGSGRA 0.179
    19 LLLLASFTGR 0.178
    25 FTGRCPAGEL 0.177
    336 QEDSGKQVDL 0.166
    99 EQPPPPRNPL 0.162
    445 YSTLTTVREI 0.144
    249 SVRGLEDQNL 0.142
    334 DPQEDSGKQV 0.140
    105 RNPLDGSVLL 0.139
    409 RSQPEESVGL 0.139
    134 AGSFQARLRL 0.139
    156 GPALEEGQGL 0.139
    145 VLVPPLPSLN 0.127
    V2-HLA-A201-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 5; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Start Subsequence Score
    1 LGQDAKLPCL 2.236
    6 KLPCLYRGDS 0.034
    9 CLYRGDSGEQ 0.006
    2 GQDAKLPCLY 0.003
    10 LYRGDSGEQV 0.001
    7 LPCLYRGDSG 0.000
    3 QDAKLPCLYR 0.000
    5 AKLPCLYRGD 0.000
    8 PCLYRGDSGE 0.000
    4 DAKLPCLYRG 0.000
    V7-HLA-A201-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 15; each start
    position is specified, the
    length of peptide is 10
    amino acids, and the end
    position for each peptide is
    the start position plus nine.
    Start Subsequence Score
    9 SQSEEPEGRS 0.004
    2 SHHTDPRSQS 0.000
    8 RSQSEEPEGR 0.000
    5 TDPRSQSEEP 0.000
    4 HTDPRSQSEE 0.000
    3 HHTDPRSQSE 0.000
    1 HSHHTDPRSQ 0.000
    6 DPRSQSEEPE 0.000
    7 PRSQSEEPEG 0.000
    V9-HLA-A201-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 19; each start
    position is specified, the length
    of peptide is 10 amino acids,
    and the end position for each
    peptide is the start position plus
    nine.
    Start Subsequence Score
    31 FIYFYFYFFL 7861.874
    18 FLFFFLPFPL 2108.811
    10 LLRITFNFFL 334.570
    23 LPFPLVVFFI 31.429
    128 FMQAAPWEGT 20.623
    38 FFLEMESHYV 18.538
    100 LLGLLKVRPL 16.705
    46 YVAQAGLELL 9.690
    4 ELLAGILLRI 6.659
    9 ILLRITFNFF 4.898
    22 FLPFPLVVFF 4.336
    95 FIQCLLLGLL 4.040
    97 QCLLLGLLKV 3.864
    91 KAFRFIQCLL 3.842
    5 LLAGILLRIT 2.389
    13 ITFNFFLFFF 1.815
    64 ASLVAGTLSV 1.680
    105 KVRPLQHQGV 1.619
    53 ELLGSSNPPA 1.379
    20 FFFLPFPLVV 1.281
    90 KKAFRFIQCL 0.908
    14 TFNFFLFFFL 0.899
    39 FLEMESHYVA 0.600
    19 LFFFLPFPLV 0.577
    27 LVVFFIYFYF 0.530
    58 SNPPASASLV 0.454
    28 VVFFIYFYFY 0.429
    12 RITFNFFLFF 0.407
    87 KKLKKAFRFI 0.392
    33 YFYFYFFLEM 0.367
    25 FPLVVFFIYF 0.329
    102 GLLKVRPLQH 0.276
    67 VAGTLSVHHC 0.270
    69 GTLSVHHCAC 0.255
    108 PLQHQGVNSC 0.251
    8 GILLRITFNF 0.220
    57 SSNPPASASL 0.139
    123 YFQGIFMQAA 0.139
    54 LLGSSNPPAS 0.127
    99 LLLGLLKVRP 0.094
    26 PLVVFFIYFY 0.079
    70 TLSVHHCACF 0.075
    65 SLVAGTLSVH 0.070
    15 FNFFLFFFLP 0.069
    29 VFFIYFYFYF 0.059
    55 LGSSNPPASA 0.055
    98 CLLLGLLKVR 0.052
    126 GIFMQAAPWE 0.042
    41 EMESHYVAQA 0.040
    80 ESFTKRKKKL 0.039
    72 SVHHCACFES 0.038
    94 RFIQCLLLGL 0.034
    68 AGTLSVHHCA 0.032
    62 ASASLVAGTL 0.018
    48 AQAGLELLGS 0.017
    88 KLKKAFRFIQ 0.016
    59 NPPASASLVA 0.013
    40 LEMESHYVAQ 0.011
    66 LVAGTLSVHH 0.011
    43 ESHYVAQAGL 0.010
    17 FFLFFFLPFP 0.008
    50 AGLELLGSSN 0.007
    124 FQGIFMQAAP 0.007
    7 AGILLRITFN 0.006
    77 ACFESFTKRK 0.006
    61 PASASLVAGT 0.005
    122 GYFQGIFMQA 0.005
    121 RGYFQGIFMQ 0.004
    117 CDCERGYFQG 0.004
    74 HHCACFESFT 0.004
    110 QHQGVNSCDC 0.003
    113 GVNSCDCERG 0.003
    96 IQCLLLGLLK 0.003
    109 LQHQGVNSCD 0.003
    30 FFIYFYFYFF 0.002
    3 RELLAGILLR 0.002
    42 MESHYVAQAG 0.002
    127 IFMQAAPWEG 0.002
    103 LLKVRPLQHQ 0.002
    52 LELLGSSNPP 0.002
    107 RPLQHQGVNS 0.002
    6 LAGILLRITF 0.002
    47 VAQAGLELLG 0.002
    115 NSCDCERGYF 0.001
    16 NFFLFFFLPF 0.001
    79 FESFTKRKKK 0.001
    83 TKRKKKLKKA 0.001
    92 AFRFIQCLLL 0.001
    63 SASLVAGTLS 0.001
    51 GLELLGSSNP 0.001
    71 LSVHHCACFE 0.001
    37 YFFLEMESHY 0.001
    21 FFLPFPLVVF 0.001
    89 LKKAFRFIQC 0.001
    35 YFYFFLEMES 0.001
    118 DCERGYFQGI 0.001
    101 LGLLKVRPLQ 0.001
    125 QGIFMQAAPW 0.000
    56 GSSNPPASAS 0.000
    93 FRFIQCLLLG 0.000
    V10-HLA-A201-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 21; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Start Subsequence Score
    8 ELGTSDVVTV 11.998
    9 LGTSDVVTVV 0.728
    10 GTSDVVTVVL 0.499
    7 GELGTSDVVT 0.220
    5 PAGELGTSDV 0.087
    6 AGELGTSDVV 0.006
    2 GRCPAGELGT 0.001
    3 RCPAGELGTS 0.000
    4 CPAGELGTSD 0.000
    1 TGRCPAGELG 0.000
    V11-HLA-A201-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 23; each start
    position is specified, the length
    of peptide is 10 amino acids,
    and the end position for each
    peptide is the start position plus
    nine.
    Start Subsequence Score
    8 RVMVPPLPSL 15.907
    1 FQARLRLRVM 0.437
    9 VMVPPLPSLN 0.091
    2 QARLRLRVMV 0.073
    5 LRLRVMVPPL 0.043
    4 RLRLRVMVPP 0.003
    10 MVPPLPSLNP 0.002
    6 RLRVMVPPLP 0.001
    7 LRVMVPPLPS 0.000
    3 ARLRLRVMVP 0.000
    V12-HLA-A201-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 25; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    9 GCSYSTLTTV 1.044
    1 SVMSEEPEGC 0.788
    2 VMSEEPEGCS 0.049
    5 EEPEGCSYST 0.045
    8 EGCSYSTLTT 0.004
    7 PEGCSYSTLT 0.003
    6 EPEGCSYSTL 0.001
    4 SEEPEGCSYS 0.001
    3 MSEEPEGCSY 0.000
    10 CSYSTLTTVR 0.000
    11 SYSTLTTVRE 0.000
    V13-HLA-A201-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 27; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    8 VLADPQEDSG 0.255
    2 SQVTVDVLAD 0.003
    3 QVTVDVLADP 0.003
    1 DSQVTVDVLA 0.002
    7 DVLADPQEDS 0.001
    4 VTVDVLADPQ 0.001
    5 TVDVLADPQE 0.001
    9 LADPQEDSGK 0.000
    6 VDVLADPQED 0.000
    10 ADPQEDSGKQ 0.000
    V14-HLA-A201-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 29; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Start Subsequence Score
    10 ASLVAGTLSV 1.680
    4 SNPPASASLV 0.454
    3 SSNPPASASL 0.139
    1 LGSSNPPASA 0.055
    8 ASASLVAGTL 0.018
    5 NPPASASLVA 0.013
    7 PASASLVAGT 0.005
    9 SASLVAGTLS 0.001
    2 GSSNPPASAS 0.000
    6 PPASASLVAG 0.000
  • TABLE XII
    V1-HLA-A3-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position for
    each peptide is the start
    position plus eight.
    Start Subsequence Score
    20 LLLASFTGR 18.000
    435 VMSEEPEGR 6.000
    369 VLMSRYHRR 6.000
    370 LMSRYHRRK 6.000
    17 LLLLLLASF 4.500
    362 CLLVVVVVL 4.050
    391 TLTRENSIR 4.000
    107 PLDGSVLLR 3.600
    145 VLVPPLPSL 3.038
    189 GTTSSRSFK 3.000
    41 TVVLGQDAK 3.000
    80 ALLHSKYGL 2.700
    365 VVVVVLMSR 2.700
    459 ELLSPGSGR 2.700
    8 EMWGPEAWL 2.025
    180 SVTWDTEVK 2.000
    61 QVGQVAWAR 1.800
    368 VVLMSRYHR 1.800
    142 RLRVLVPPL 1.800
    359 LLFCLLVVV 1.500
    363 LLVVVVVLM 1.350
    316 HVSNEFSSR 1.200
    252 GLEDQNLWH 1.200
    78 ELALLHSKY 1.200
    366 VVVVLMSRY 0.900
    358 ALLFCLLVV 0.900
    477 GIKQAMNHF 0.900
    15 WLLLLLLLA 0.900
    89 HVSPAYEGR 0.600
    294 RVDGDTLGF 0.600
    485 FVQENGTLR 0.600
    97 RVEQPPPPR 0.600
    215 SMNGQPLTC 0.600
    392 LTRENSIRR 0.600
    230 LLQDQRITH 0.400
    351 VVVGVIAAL 0.304
    313 YVCHVSNEF 0.300
    112 VLLRNAVQA 0.300
    299 TLGFPPLTT 0.300
    164 GLTLAASCT 0.300
    354 GVIAALLFC 0.270
    45 GQDAKLPCF 0.270
    355 VIAALLFCL 0.270
    255 DQNLWHIGR 0.216
    132 FPAGSFQAR 0.180
    350 VVVVGVIAA 0.180
    16 LLLLLLLAS 0.180
    186 EVKGTTSSR 0.180
    292 GVRVDGDTL 0.180
    206 SEFHLVPSR 0.180
    481 AMNHFVQEN 0.180
    21 LLASFTGRC 0.180
    11 GPEAWLLLL 0.162
    18 LLLLLASFT 0.150
    77 QELALLHSK 0.135
    42 VVLGQDAKL 0.135
    238 HILHVSFLA 0.135
    274 GQPPPSYNW 0.121
    378 KAQQMTQKY 0.120
    239 ILHVSFLAE 0.120
    117 AVQADEGEY 0.120
    140 RLRLRVLVP 0.120
    498 GNGIYINGR 0.108
    236 ITHILHVSF 0.100
    352 VVGVIAALL 0.090
    19 LLLLASFTG 0.090
    135 GSFQARLRL 0.090
    4 SLGAEMWGP 0.090
    344 DLVSASVVV 0.090
    305 LTTEHSGIY 0.090
    460 LLSPGSGRA 0.090
    382 MTQKYEEEL 0.090
    420 AEGHPDSLK 0.090
    284 RLDGPLPSG 0.068
    261 IGREGAMLK 0.060
    417 GLRAEGHPD 0.060
    81 LLHSKYGLH 0.060
    203 AVTSEFHLV 0.060
    192 SSRSFKHSR 0.060
    260 HIGREGAML 0.060
    304 PLTTEHSGI 0.060
    113 LLRNAVQAD 0.060
    87 GLHVSPAYE 0.060
    345 LVSASVVVV 0.060
    364 LVVVVVLMS 0.054
    495 KPTGNGIYI 0.054
    47 DAKLPCFYR 0.054
    411 QPEESVGLR 0.054
    209 HLVPSRSMN 0.045
    229 GLLQDQRIT 0.045
    349 SVVVVGVIA 0.045
    390 LTLTRENSI 0.045
    158 ALEEGQGLT 0.045
    266 AMLKCLSEG 0.045
    227 HPGLLQDQR 0.040
    426 SLKDNSSCS 0.040
    276 PPPSYNWTR 0.036
    386 YEEELTLTR 0.036
    377 RKAQQMTQK 0.030
    244 FLAEASVRG 0.030
    V2-HLA-A3-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 5; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    8 CLYRGDSGE 0.100
    1 GQDAKLPCL 0.081
    3 DAKLPCLYR 0.036
    5 KLPCLYRGD 0.006
    2 QDAKLPCLY 0.004
    6 LPCLYRGDS 0.000
    4 AKLPCLYRG 0.000
    7 PCLYRGDSG 0.000
    9 LYRGDSGEQ 0.000
    V7-HLA-A3-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 15; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    8 SQSEEPEGR 0.180
    3 HTDPRSQSE 0.002
    7 RSQSEEPEG 0.000
    2 HHTDPRSQS 0.000
    5 DPRSQSEEP 0.000
    4 TDPRSQSEE 0.000
    6 PRSQSEEPE 0.000
    1 SHHTDPRSQ 0.000
    V9-HLA-A3-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 19; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    31 FIYFYFYFF 27.000
    9 ILLRITFNF 13.500
    13 ITFNFFLFF 9.000
    27 LVVFFIYFY 8.100
    99 LLLGLLKVR 6.750
    10 LLRITFNFF 6.000
    26 PLVVFFIYF 5.400
    4 ELLAGILLR 5.400
    28 VVFFIYFYF 4.500
    22 FLPFPLVVF 4.500
    5 LLAGILLRI 4.050
    12 RITFNFFLF 1.800
    113 GVNSCDCER 1.200
    98 CLLLGLLKV 0.900
    77 ACFESFTKR 0.900
    25 FPLVVFFIY 0.810
    76 CACFESFTK 0.600
    65 SLVAGTLSV 0.600
    97 QCLLLGLLK 0.600
    88 KLKKAFRFI 0.540
    29 VFFIYFYFY 0.540
    82 FTKRKKKLK 0.500
    23 LPFPLVVFF 0.450
    18 FLFFFLPFP 0.450
    91 KAFRFIQCL 0.405
    103 LLKVRPLQH 0.400
    126 GIFMQAAPW 0.300
    70 TLSVHHCAC 0.200
    54 LLGSSNPPA 0.200
    39 FLEMESHYV 0.200
    95 FIQCLLLGL 0.180
    102 GLLKVRPLQ 0.135
    46 YVAQAGLEL 0.120
    80 ESFTKRKKK 0.075
    69 GTLSVHHCA 0.068
    128 FMQAAPWEG 0.060
    51 GLELLGSSN 0.060
    15 FNFFLFFFL 0.054
    17 FFLFFFLPF 0.054
    66 LVAGTLSVH 0.045
    83 TKRKKKLKK 0.040
    78 CFESFTKRK 0.030
    30 FFIYFYFYF 0.027
    14 TFNFFLFFF 0.027
    32 IYFYFYFFL 0.027
    124 FQGIFMQAA 0.027
    87 KKLKKAFRF 0.027
    119 CERGYFQGI 0.024
    100 LLGLLKVRP 0.020
    109 LQHQGVNSC 0.018
    34 FYFYFFLEM 0.018
    71 LSVHHCACF 0.015
    53 ELLGSSNPP 0.013
    8 GILLRITFN 0.013
    86 KKKLKKAFR 0.012
    38 FFLEMESHY 0.009
    47 VAQAGLELL 0.009
    105 KVRPLQHQG 0.009
    19 LFFFLPFPL 0.009
    11 LRITFNFFL 0.008
    96 IQCLLLGLL 0.008
    74 HHCACFESF 0.006
    7 AGILLRITF 0.006
    41 EMESHYVAQ 0.006
    116 SCDCERGYF 0.006
    111 HQGVNSCDC 0.006
    93 FRFIQCLLL 0.006
    79 FESFTKRKK 0.006
    3 RELLAGILL 0.005
    42 MESHYVAQA 0.005
    56 GSSNPPASA 0.005
    20 FFFLPFPLV 0.005
    129 MQAAPWEGT 0.005
    40 LEMESHYVA 0.004
    108 PLQHQGVNS 0.004
    90 KKAFRFIQC 0.004
    44 SHYVAQAGL 0.003
    75 HCACFESFT 0.003
    123 YFQGIFMQA 0.003
    16 NFFLFFFLP 0.003
    21 FFLPFPLVV 0.003
    33 YFYFYFFLE 0.003
    63 SASLVAGTL 0.003
    72 SVHHCACFE 0.002
    115 NSCDCERGY 0.002
    67 VAGTLSVHH 0.002
    121 RGYFQGIFM 0.002
    59 NPPASASLV 0.002
    58 SNPPASASL 0.002
    48 AQAGLELLG 0.002
    37 YFFLEMESH 0.002
    62 ASASLVAGT 0.002
    122 GYFQGIFMQ 0.001
    1 MRRELLAGI 0.001
    49 QAGLELLGS 0.001
    85 RKKKLKKAF 0.001
    92 AFRFIQCLL 0.001
    24 PFPLVVFFI 0.001
    68 AGTLSVHHC 0.001
    120 ERGYFQGIF 0.001
    V10-HLA-A3-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 21; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    9 GTSDVVTVV 0.135
    7 ELGTSDVVT 0.030
    6 GELGTSDVV 0.004
    2 RCPAGELGT 0.002
    8 LGTSDVVTV 0.001
    3 CPAGELGTS 0.000
    5 AGELGTSDV 0.000
    1 GRCPAGELG 0.000
    4 PAGELGTSD 0.000
    V11-HLA-A3-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 23; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    8 VMVPPLPSL 3.038
    5 RLRVMVPPL 1.800
    3 RLRLRVMVP 0.120
    7 RVMVPPLPS 0.018
    9 MVPPLPSLN 0.003
    1 QARLRLRVM 0.000
    2 ARLRLRVMV 0.000
    4 LRLRVMVPP 0.000
    6 LRVMVPPLP 0.000
    V13-HLA-A3-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 27; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    7 VLADPQEDS 0.060
    9 ADPQEDSGK 0.020
    1 SQVTVDVLA 0.013
    2 QVTVDVLAD 0.012
    3 VTVDVLADP 0.003
    4 TVDVLADPQ 0.002
    6 DVLADPQED 0.001
    8 LADPQEDSG 0.000
    5 VDVLADPQE 0.000
    V14-HLA-A3-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 29; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position for
    each peptide is the start
    position plus eight.
    Start Subsequence Score
    1 GSSNPPASA 0.005
    8 SASLVAGTL 0.003
    4 NPPASASLV 0.002
    3 SNPPASASL 0.002
    7 ASASLVAGT 0.002
    2 SSNPPASAS 0.000
    5 PPASASLVA 0.000
    9 ASLVAGTLS 0.000
    6 PASASLVAG 0.000
  • TABLE XIII
    V1-HLA-A3-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    332 VLDPQEDSGK 30.000
    19 LLLLASFTGR 18.000
    369 VLMSRYHRRK 9.000
    252 GLEDQNLWHI 8.100
    391 TLTRENSIRR 8.000
    16 LLLLLLLASF 4.500
    8 EMWGPEAWLL 4.050
    400 RLHSHHTDPR 4.000
    260 HIGREGAMLK 4.000
    359 LLFCLLVVVV 3.000
    364 LVVVVVLMSR 2.700
    381 QMTQKYEEEL 1.800
    158 ALEEGQGLTL 1.800
    229 GLLQDQRITH 1.800
    367 VVVLMSRYHR 1.800
    40 VTVVLGQDAK 1.500
    362 CLLVVVVVLM 1.350
    354 GVIAALLFCL 1.215
    81 LLHSKYGLHV 1.200
    257 NLWHIGREGA 1.000
    76 AQELALLHSK 0.900
    365 VVVVVLMSRY 0.900
    239 ILHVSFLAEA 0.900
    230 LLQDQRITHI 0.900
    215 SMNGQPLTCV 0.675
    434 SVMSEEPEGR 0.600
    164 GLTLAASCTA 0.600
    368 VVLMSRYHRR 0.600
    363 LLVVVVVLMS 0.540
    275 QPPPSYNWTR 0.540
    419 RAEGHPDSLK 0.450
    358 ALLFCLLVVV 0.450
    123 GEYECRVSTF 0.405
    43 VLGQDAKLPC 0.400
    352 VVGVIAALLF 0.400
    60 EQVGQVAWAR 0.364
    106 NPLDGSVLLR 0.360
    45 GQDAKLPCFY 0.360
    390 LTLTRENSIR 0.300
    284 RLDGPLPSGV 0.300
    244 FLAEASVRGL 0.270
    500 GIYINGRGHL 0.270
    87 GLHVSPAYEG 0.270
    344 DLVSASVVVV 0.270
    20 LLLASFTGRC 0.270
    130 STFPAGSFQA 0.225
    144 RVLVPPLPSL 0.203
    351 VVVGVIAALL 0.203
    350 VVVVGVIAAL 0.203
    426 SLKDNSSCSV 0.200
    447 TLTTVREIET 0.200
    235 RITHILHVSF 0.200
    15 WLLLLLLLAS 0.180
    33 ELETSDVVTV 0.180
    355 VIAALLFCLL 0.180
    349 SVVVVGVIAA 0.180
    389 ELTLTRENSI 0.180
    410 SQPEESVGLR 0.162
    17 LLLLLLASFT 0.150
    304 PLTTEHSGIY 0.120
    417 GLRAEGHPDS 0.120
    49 KLPCFYRGDS 0.108
    443 RSYSTLTTVR 0.100
    242 VSFLAEASVR 0.100
    18 LLLLLASFTG 0.090
    249 SVRGLEDQNL 0.090
    209 HLVPSRSMNG 0.090
    41 TVVLGQDAKL 0.090
    80 ALLHSKYGLH 0.090
    189 GTTSSRSFKH 0.090
    486 VQENGTLRAK 0.090
    152 SLNPGPALEE 0.090
    112 VLLRNAVQAD 0.090
    311 GIYVCHVSNE 0.090
    236 ITHILHVSFL 0.090
    128 RVSTFPAGSF 0.090
    188 KGTTSSRSFK 0.060
    270 CLSEGQPPPS 0.060
    477 GIKQAMNHFV 0.060
    485 FVQENGTLRA 0.060
    191 TSSRSFKHSR 0.060
    205 TSEFHLVPSR 0.060
    119 QADEGEYECR 0.060
    11 GPEAWLLLLL 0.054
    218 GQPLTCVVSH 0.054
    140 RLRLRVLVPP 0.045
    299 TLGFPPLTTE 0.045
    271 LSEGQPPPSY 0.045
    135 GSFQARLRLR 0.045
    145 VLVPPLPSLN 0.045
    306 TTEHSGIYVC 0.045
    96 GRVEQPPPPR 0.041
    361 FCLLVVVVVL 0.041
    341 KQVDLVSASV 0.041
    181 VTWDTEVKGT 0.037
    385 KYEEELTLTR 0.036
    383 TQKYEEELTL 0.036
    376 RRKAQQMTQK 0.030
    305 LTTEHSGIYV 0.030
    221 LTCVVSHPGL 0.030
    V2-HLA-A3-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 5; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    2 GQDAKLPCLY 0.360
    6 KLPCLYRGDS 0.108
    9 CLYRGDSGEQ 0.030
    3 QDAKLPCLYR 0.012
    1 LGQDAKLPCL 0.001
    10 LYRGDSGEQV 0.000
    4 DAKLPCLYRG 0.000
    7 LPCLYRGDSG 0.000
    8 PCLYRGDSGE 0.000
    5 AKLPCLYRGD 0.000
    V7-HLA-A3-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 15; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    8 RSQSEEPEGR 0.020
    4 HTDPRSQSEE 0.002
    9 SQSEEPEGRS 0.001
    2 SHHTDPRSQS 0.000
    6 DPRSQSEEPE 0.000
    5 TDPRSQSEEP 0.000
    3 HHTDPRSQSE 0.000
    1 HSHHTDPRSQ 0.000
    7 PRSQSEEPEG 0.000
    V9-HLA-A3-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 19; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    28 VVFFIYFYFY 54.000
    18 FLFFFLPFPL 9.000
    9 ILLRITFNFF 9.000
    26 PLVVFFIYFY 8.100
    13 ITFNFFLFFF 6.750
    22 FLPFPLVVFF 6.000
    10 LLRITFNFFL 5.400
    98 CLLLGLLKVR 4.500
    8 GILLRITFNF 4.050
    12 RITFNFFLFF 3.600
    31 FIYFYFYFFL 2.700
    77 ACFESFTKRK 2.250
    82 FTKRKKKLKK 2.000
    70 TLSVHHCACF 2.000
    102 GLLKVRPLQH 1.800
    27 LVVFFIYFYF 1.350
    4 ELLAGILLRI 1.215
    96 IQCLLLGLLK 1.200
    23 LPFPLVVFFI 0.608
    75 HCACFESFTK 0.600
    39 FLEMESHYVA 0.600
    25 FPLVVFFIYF 0.540
    88 KLKKAFRFIQ 0.540
    41 EMESHYVAQA 0.540
    65 SLVAGTLSVH 0.450
    100 LLGLLKVRPL 0.180
    16 NFFLFFFLPF 0.180
    128 FMQAAPWEGT 0.150
    53 ELLGSSNPPA 0.135
    91 KAFRFIQCLL 0.135
    76 CACFESFTKR 0.120
    105 KVRPLQHQGV 0.090
    46 YVAQAGLELL 0.090
    29 VFFIYFYFYF 0.090
    30 FFIYFYFYFF 0.081
    51 GLELLGSSNP 0.060
    108 PLQHQGVNSC 0.060
    3 RELLAGILLR 0.054
    69 GTLSVHHCAC 0.045
    99 LLLGLLKVRP 0.045
    103 LLKVRPLQHQ 0.045
    54 LLGSSNPPAS 0.040
    6 LAGILLRITF 0.040
    66 LVAGTLSVHH 0.030
    79 FESFTKRKKK 0.030
    126 GIFMQAAPWE 0.030
    122 GYFQGIFMQA 0.027
    11 LRITFNFFLF 0.027
    95 FIQCLLLGLL 0.027
    5 LLAGILLRIT 0.022
    37 YFFLEMESHY 0.020
    86 KKKLKKAFRF 0.018
    33 YFYFYFFLEM 0.018
    118 DCERGYFQGI 0.016
    72 SVHHCACFES 0.012
    21 FFLPFPLVVF 0.010
    81 SFTKRKKKLK 0.010
    97 QCLLLGLLKV 0.009
    90 KKAFRFIQCL 0.008
    119 CERGYFQGIF 0.008
    112 QGVNSCDCER 0.006
    73 VHHCACFESF 0.006
    67 VAGTLSVHHC 0.006
    113 GVNSCDCERG 0.006
    20 FFFLPFPLVV 0.006
    24 PFPLVVFFIY 0.005
    15 FNFFLFFFLP 0.005
    48 AQAGLELLGS 0.005
    14 TFNFFLFFFL 0.005
    19 LFFFLPFPLV 0.005
    57 SSNPPASASL 0.005
    85 RKKKLKKAFR 0.004
    59 NPPASASLVA 0.004
    84 KRKKKLKKAF 0.003
    64 ASLVAGTLSV 0.003
    115 NSCDCERGYF 0.003
    94 RFIQCLLLGL 0.003
    32 IYFYFYFFLE 0.003
    80 ESFTKRKKKL 0.002
    78 CFESFTKRKK 0.002
    45 HYVAQAGLEL 0.002
    36 FYFFLEMESH 0.002
    123 YFQGIFMQAA 0.001
    62 ASASLVAGTL 0.001
    2 RRELLAGILL 0.001
    89 LKKAFRFIQC 0.001
    92 AFRFIQCLLL 0.001
    109 LQHQGVNSCD 0.001
    56 GSSNPPASAS 0.001
    43 ESHYVAQAGL 0.001
    87 KKLKKAFRFI 0.001
    114 VNSCDCERGY 0.001
    116 SCDCERGYFQ 0.001
    111 HQGVNSCDCE 0.001
    58 SNPPASASLV 0.001
    107 RPLQHQGVNS 0.001
    124 FQGIFMQAAP 0.001
    38 FFLEMESHYV 0.000
    34 FYFYFFLEME 0.000
    121 RGYFQGIFMQ 0.000
    V10-HLA-A3-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 21; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    8 ELGTSDVVTV 0.180
    10 GTSDVVTVVL 0.135
    7 GELGTSDVVT 0.002
    2 GRCPAGELGT 0.001
    9 LGTSDVVTVV 0.001
    5 PAGELGTSDV 0.000
    4 CPAGELGTSD 0.000
    6 AGELGTSDVV 0.000
    3 RCPAGELGTS 0.000
    1 TGRCPAGELG 0.000
    V11-HLA-A3-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 23; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Start Subsequence Score
    8 RVMVPPLPSL 0.203
    9 VMVPPLPSLN 0.045
    4 RLRLRVMVPP 0.045
    6 RLRVMVPPLP 0.030
    10 MVPPLPSLNP 0.009
    5 LRLRVMVPPL 0.003
    2 QARLRLRVMV 0.002
    1 FQARLRLRVM 0.001
    7 LRVMVPPLPS 0.000
    3 ARLRLRVMVP 0.000
    V12-HLA-A3-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 25; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Start Subsequence Score
    10 CSYSTLTTVR 0.100
    1 SVMSEEPEGC 0.030
    3 MSEEPEGCSY 0.030
    2 VMSEEPEGCS 0.027
    9 GCSYSTLTTV 0.009
    6 EPEGCSYSTL 0.003
    5 EEPEGCSYST 0.000
    4 SEEPEGCSYS 0.000
    7 PEGCSYSTLT 0.000
    8 EGCSYSTLTT 0.000
    11 SYSTLTTVRE 0.000
    V13-HLA-A3-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 27; each start
    position is specified, the length
    of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Start Subsequence Score
    9 LADPQEDSGK 0.300
    8 VLADPQEDSG 0.026
    2 SQVTVDVLAD 0.005
    3 QVTVDVLADP 0.005
    7 DVLADPQEDS 0.003
    5 TVDVLADPQE 0.002
    4 VTVDVLADPQ 0.002
    1 DSQVTVDVLA 0.000
    6 VDVLADPQED 0.000
    10 ADPQEDSGKQ 0.000
    V14-HLA-A3-
    10mers-191P4D12B
    Each peptide s a portion of
    SEQ ID NO: 29; each start
    position is specified, the
    length of peptide is 10
    amino acids, and the end
    position for each peptide is
    the start position plus nine.
    Start Subsequence Score
    3 SSNPPASASL 0.005
    5 NPPASASLVA 0.004
    10 ASLVAGTLSV 0.003
    8 ASASLVAGTL 0.001
    2 GSSNPPASAS 0.001
    4 SNPPASASLV 0.001
    9 SASLVAGTLS 0.000
    1 LGSSNPPASA 0.000
    7 PASASLVAGT 0.000
    6 PPASASLVAG 0.000
  • TABLE XIV
    V1-HLA-A1101-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    41 TVVLGQDAK 3.000
    189 GTTSSRSFK 3.000
    180 SVTWDTEVK 2.000
    365 VVVVVLMSR 1.200
    97 RVEQPPPPR 1.200
    368 VVLMSRYHR 1.200
    61 QVGQVAWAR 0.800
    485 FVQENGTLR 0.400
    392 LTRENSIRR 0.400
    89 HVSPAYEGR 0.400
    316 HVSNEFSSR 0.400
    369 VLMSRYHRR 0.160
    186 EVKGTTSSR 0.120
    294 RVDGDTLGF 0.120
    20 LLLASFTGR 0.120
    77 QELALLHSK 0.090
    391 TLTRENSIR 0.080
    444 SYSTLTTVR 0.080
    435 VMSEEPEGR 0.080
    255 DQNLWHIGR 0.072
    377 RKAQQMTQK 0.060
    292 GVRVDGDTL 0.060
    350 VVVVGVIAA 0.060
    420 AEGHPDSLK 0.060
    243 SFLAEASVR 0.060
    370 LMSRYHRRK 0.040
    411 QPEESVGLR 0.040
    261 IGREGAMLK 0.040
    227 HPGLLQDQR 0.040
    132 FPAGSFQAR 0.040
    459 ELLSPGSGR 0.036
    47 DAKLPCFYR 0.036
    274 GQPPPSYNW 0.036
    42 VVLGQDAKL 0.030
    349 SVVVVGVIA 0.030
    190 TTSSRSFKH 0.030
    366 VVVVLMSRY 0.030
    351 VVVGVIAAL 0.030
    223 CVVSHPGLL 0.030
    498 GNGIYINGR 0.024
    386 YEEELTLTR 0.024
    206 SEFHLVPSR 0.024
    252 GLEDQNLWH 0.024
    117 AVQADEGEY 0.020
    342 QVDLVSASV 0.020
    352 VVGVIAALL 0.020
    333 LDPQEDSGK 0.020
    306 TTEHSGIYV 0.020
    345 LVSASVVVV 0.020
    313 YVCHVSNEF 0.020
    203 AVTSEFHLV 0.020
    415 SVGLRAEGH 0.020
    64 QVAWARVDA 0.020
    238 HILHVSFLA 0.018
    144 RVLVPPLPS 0.018
    354 GVIAALLFC 0.018
    471 EEDQDEGIK 0.018
    45 GQDAKLPCF 0.018
    107 PLDGSVLLR 0.016
    40 VTVVLGQDA 0.015
    390 LTLTRENSI 0.015
    165 LTLAASCTA 0.015
    75 GAQELALLH 0.012
    85 KYGLHVSPA 0.012
    358 ALLFCLLVV 0.012
    11 GPEAWLLLL 0.012
    495 KPTGNGIYI 0.012
    486 VQENGTLRA 0.012
    15 WLLLLLLLA 0.012
    142 RLRVLVPPL 0.012
    80 ALLHSKYGL 0.012
    477 GIKQAMNHF 0.012
    137 FQARLRLRV 0.012
    355 VIAALLFCL 0.012
    236 ITHILHVSF 0.010
    382 MTQKYEEEL 0.010
    305 LTTEHSGIY 0.010
    287 GPLPSGVRV 0.009
    202 AAVTSEFHL 0.009
    230 LLQDQRITH 0.008
    359 LLFCLLVVV 0.008
    276 PPPSYNWTR 0.008
    363 LLVVVVVLM 0.006
    231 LQDQRITHI 0.006
    112 VLLRNAVQA 0.006
    410 SQPEESVGL 0.006
    419 RAEGHPDSL 0.006
    128 RVSTFPAGS 0.006
    364 LVVVVVLMS 0.006
    378 KAQQMTQKY 0.006
    501 IYINGRGHL 0.006
    69 RVDAGEGAQ 0.006
    362 CLLVVVVVL 0.006
    6 GAEMWGPEA 0.006
    131 TFPAGSFQA 0.006
    357 AALLFCLLV 0.006
    17 LLLLLLASF 0.006
    493 RAKPTGNGI 0.006
    487 QENGTLRAK 0.006
    301 GFPPLTTEH 0.006
    V2-HLA-A1101-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 5; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    3 DAKLPCLYR 0.024
    1 GQDAKLPCL 0.018
    8 CLYRGDSGE 0.001
    9 LYRGDSGEQ 0.000
    6 LPCLYRGDS 0.000
    2 QDAKLPCLY 0.000
    5 KLPCLYRGD 0.000
    4 AKLPCLYRG 0.000
    7 PCLYRGDSG 0.000
    V7-HLA-A1101-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 15; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    8 SQSEEPEGR 0.120
    3 HTDPRSQSE 0.001
    7 RSQSEEPEG 0.000
    5 DPRSQSEEP 0.000
    4 TDPRSQSEE 0.000
    2 HHTDPRSQS 0.000
    6 PRSQSEEPE 0.000
    1 SHHTDPRSQ 0.000
    V9-HLA-
    A1101-9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 19; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    113 GVNSCDCER 1.200
    76 CACFESFTK 0.600
    97 QCLLLGLLK 0.600
    82 FTKRKKKLK 0.500
    28 VVFFIYFYF 0.120
    78 CFESFTKRK 0.100
    77 ACFESFTKR 0.080
    4 ELLAGILLR 0.072
    27 LVVFFIYFY 0.060
    99 LLLGLLKVR 0.060
    69 GTLSVHHCA 0.045
    83 TKRKKKLKK 0.040
    13 ITFNFFLFF 0.040
    46 YVAQAGLEL 0.040
    12 RITFNFFLF 0.036
    126 GIFMQAAPW 0.024
    32 IYFYFYFFL 0.024
    66 LVAGTLSVH 0.020
    9 ILLRITFNF 0.018
    34 FYFYFFLEM 0.016
    31 FIYFYFYFF 0.016
    86 KKKLKKAFR 0.012
    19 LFFFLPFPL 0.012
    98 CLLLGLLKV 0.012
    91 KAFRFIQCL 0.012
    65 SLVAGTLSV 0.012
    30 FFIYFYFYF 0.009
    25 FPLVVFFIY 0.009
    103 LLKVRPLQH 0.008
    5 LLAGILLRI 0.008
    95 FIQCLLLGL 0.008
    29 VFFIYFYFY 0.008
    122 GYFQGIFMQ 0.007
    21 FFLPFPLVV 0.006
    14 TFNFFLFFF 0.006
    96 IQCLLLGLL 0.006
    80 ESFTKRKKK 0.006
    17 FFLFFFLPF 0.006
    124 FQGIFMQAA 0.006
    79 FESFTKRKK 0.006
    105 KVRPLQHQG 0.006
    3 RELLAGILL 0.005
    37 YFFLEMESH 0.004
    123 YFQGIFMQA 0.004
    39 FLEMESHYV 0.004
    10 LLRITFNFF 0.004
    23 LPFPLVVFF 0.004
    20 FFFLPFPLV 0.004
    54 LLGSSNPPA 0.004
    22 FLPFPLVVF 0.004
    38 FFLEMESHY 0.003
    87 KKLKKAFRF 0.003
    15 FNFFLFFFL 0.002
    121 RGYFQGIFM 0.002
    40 LEMESHYVA 0.002
    47 VAQAGLELL 0.002
    92 AFRFIQCLL 0.002
    116 SCDCERGYF 0.002
    67 VAGTLSVHH 0.002
    72 SVHHCACFE 0.002
    59 NPPASASLV 0.002
    63 SASLVAGTL 0.002
    102 GLLKVRPLQ 0.002
    94 RFIQCLLLG 0.002
    8 GILLRITFN 0.002
    36 FYFFLEMES 0.002
    26 PLVVFFIYF 0.001
    33 YFYFYFFLE 0.001
    48 AQAGLELLG 0.001
    88 KLKKAFRFI 0.001
    16 NFFLFFFLP 0.001
    51 GLELLGSSN 0.001
    81 SFTKRKKKL 0.001
    11 LRITFNFFL 0.001
    107 RPLQHQGVN 0.001
    128 FMQAAPWEG 0.001
    18 FLFFFLPFP 0.001
    93 FRFIQCLLL 0.001
    2 RRELLAGIL 0.001
    24 PFPLVVFFI 0.001
    109 LQHQGVNSC 0.001
    129 MQAAPWEGT 0.001
    111 HQGVNSCDC 0.001
    7 AGILLRITF 0.001
    56 GSSNPPASA 0.001
    45 HYVAQAGLE 0.001
    119 CERGYFQGI 0.001
    42 MESHYVAQA 0.001
    44 SHYVAQAGL 0.000
    100 LLGLLKVRP 0.000
    70 TLSVHHCAC 0.000
    35 YFYFFLEME 0.000
    49 QAGLELLGS 0.000
    127 IFMQAAPWE 0.000
    58 SNPPASASL 0.000
    60 PPASASLVA 0.000
    71 LSVHHCACF 0.000
    85 RKKKLKKAF 0.000
    84 KRKKKLKKA 0.000
    1 MRRELLAGI 0.000
    V10-A1101-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 21; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    9 GTSDVVTVV 0.030
    6 GELGTSDVV 0.003
    2 RCPAGELGT 0.001
    8 LGTSDVVTV 0.000
    5 AGELGTSDV 0.000
    3 CPAGELGTS 0.000
    7 ELGTSDVVT 0.000
    1 GRCPAGELG 0.000
    4 PAGELGTSD 0.000
    V11-A1101-
    9mers-191P4D12B
    Each peptide is a portion
    of SEQ ID NO: 23; each
    start position is specified,
    the length of peptide is 9
    amino acids, and the end
    position for each peptide is
    the start position plus
    eight.
    Start Subsequence Score
    7 RVMVPPLPS 0.024
    5 RLRVMVPPL 0.012
    8 VMVPPLPSL 0.006
    3 RLRLRVMVP 0.002
    9 MVPPLPSLN 0.002
    2 ARLRLRVMV 0.000
    1 QARLRLRVM 0.000
    4 LRLRVMVPP 0.000
    6 LRVMVPPLP 0.000
    V12-A1101-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 25; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    8 GCSYSTLTT 0.001
    3 SEEPEGCSY 0.001
    9 CSYSTLTTV 0.000
    1 VMSEEPEGC 0.000
    5 EPEGCSYST 0.000
    6 PEGCSYSTL 0.000
    2 MSEEPEGCS 0.000
    4 EEPEGCSYS 0.000
    7 EGCSYSTLT 0.000
    V13-A1101-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 27; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    9 ADPQEDSGK 0.020
    1 SQVTVDVLA 0.009
    2 QVTVDVLAD 0.004
    4 TVDVLADPQ 0.002
    3 VTVDVLADP 0.002
    6 DVLADPQED 0.001
    7 VLADPQEDS 0.000
    8 LADPQEDSG 0.000
    5 VDVLADPQE 0.000
    V14-A1101-
    9mers-191P4D12B
    Each peptide is a portion
    of SEQ ID NO: 29; each
    start position is specified,
    the length of peptide is 9
    amino acids, and the end
    position for each peptide is
    the start position plus
    eight.
    Start Subsequence Score
    8 SASLVAGTL 0.002
    4 NPPASASLV 0.002
    1 GSSNPPASA 0.001
    5 PPASASLVA 0.000
    3 SNPPASASL 0.000
    9 ASLVAGTLS 0.000
    7 ASASLVAGT 0.000
    2 SSNPPASAS 0.000
    6 PASASLVAG 0.000
  • TABLE XV
    V1-HLA-A1101-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    40 VTVVLGQDAK 1.500
    364 LVVVVVLMSR 1.200
    367 VVVLMSRYHR 1.200
    260 HIGREGAMLK 0.800
    434 SVMSEEPEGR 0.800
    76 AQELALLHSK 0.600
    419 RAEGHPDSLK 0.600
    368 VVLMSRYHRR 0.600
    385 KYEEELTLTR 0.480
    332 VLDPQEDSGK 0.400
    390 LTLTRENSIR 0.300
    354 GVIAALLFCL 0.270
    400 RLHSHHTDPR 0.240
    391 TLTRENSIRR 0.160
    19 LLLLASFTGR 0.120
    106 NPLDGSVLLR 0.120
    410 SQPEESVGLR 0.120
    60 EQVGQVAWAR 0.108
    189 GTTSSRSFKH 0.090
    144 RVLVPPLPSL 0.090
    369 VLMSRYHRRK 0.080
    275 QPPPSYNWTR 0.080
    486 VQENGTLRAK 0.060
    188 KGTTSSRSFK 0.060
    376 RRKAQQMTQK 0.060
    349 SVVVVGVIAA 0.060
    128 RVSTFPAGSF 0.060
    484 HFVQENGTLR 0.060
    130 STFPAGSFQA 0.060
    119 QADEGEYECR 0.040
    352 VVGVIAALLF 0.040
    485 FVQENGTLRA 0.040
    131 TFPAGSFQAR 0.040
    229 GLLQDQRITH 0.036
    41 TVVLGQDAKL 0.030
    365 VVVVVLMSRY 0.030
    350 VVVVGVIAAL 0.030
    111 SVLLRNAVQA 0.030
    351 VVVGVIAALL 0.030
    63 GQVAWARVDA 0.027
    341 KQVDLVSASV 0.027
    443 RSYSTLTTVR 0.024
    500 GIYINGRGHL 0.024
    252 GLEDQNLWHI 0.024
    342 QVDLVSASVV 0.020
    61 QVGQVAWARV 0.020
    249 SVRGLEDQNL 0.020
    305 LTTEHSGIYV 0.020
    241 HVSFLAEASV 0.020
    89 HVSPAYEGRV 0.020
    39 VVTVVLGQDA 0.020
    96 GRVEQPPPPR 0.018
    470 EEEDQDEGIK 0.018
    185 TEVKGTTSSR 0.018
    218 GQPLTCVVSH 0.018
    458 TELLSPGSGR 0.018
    45 GQDAKLPCFY 0.018
    46 QDAKLPCFYR 0.012
    11 GPEAWLLLLL 0.012
    477 GIKQAMNHFV 0.012
    235 RITHILHVSF 0.012
    164 GLTLAASCTA 0.012
    85 KYGLHVSPAY 0.012
    383 TQKYEEELTL 0.012
    284 RLDGPLPSGV 0.012
    373 RYHRRKAQQM 0.012
    25 FTGRCPAGEL 0.010
    221 LTCVVSHPGL 0.010
    236 ITHILHVSFL 0.010
    359 LLFCLLVVVV 0.008
    242 VSFLAEASVR 0.008
    158 ALEEGQGLTL 0.008
    257 NLWHIGREGA 0.008
    81 LLHSKYGLHV 0.008
    315 CHVSNEFSSR 0.006
    88 LHVSPAYEGR 0.006
    156 GPALEEGQGL 0.006
    358 ALLFCLLVVV 0.006
    501 IYINGRGHLV 0.006
    201 SAAVTSEFHL 0.006
    79 LALLHSKYGL 0.006
    80 ALLHSKYGLH 0.006
    231 LQDQRITHIL 0.006
    493 RAKPTGNGIY 0.006
    357 AALLFCLLVV 0.006
    97 RVEQPPPPRN 0.006
    362 CLLVVVVVLM 0.006
    294 RVDGDTLGFP 0.006
    16 LLLLLLLASF 0.006
    312 IYVCHVSNEF 0.006
    69 RVDAGEGAQE 0.006
    6 GAEMWGPEAW 0.006
    292 GVRVDGDTLG 0.006
    223 CVVSHPGLLQ 0.006
    8 EMWGPEAWLL 0.005
    490 GTLRAKPTGN 0.005
    239 ILHVSFLAEA 0.004
    426 SLKDNSSCSV 0.004
    411 QPEESVGLRA 0.004
    146 LVPPLPSLNP 0.004
    V2-HLA-A1101-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 5; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Start Subsequence Score
    2 GQDAKLPCLY 0.018
    3 QDAKLPCLYR 0.008
    10 LYRGDSGEQV 0.004
    6 KLPCLYRGDS 0.001
    9 CLYRGDSGEQ 0.001
    7 LPCLYRGDSG 0.000
    1 LGQDAKLPCL 0.000
    4 DAKLPCLYRG 0.000
    8 PCLYRGDSGE 0.000
    5 AKLPCLYRGD 0.000
    V7-HLA-A1101-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 15; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    8 RSQSEEPEGR 0.012
    4 HTDPRSQSEE 0.001
    9 SQSEEPEGRS 0.001
    6 DPRSQSEEPE 0.000
    5 TDPRSQSEEP 0.000
    3 HHTDPRSQSE 0.000
    2 SHHTDPRSQS 0.000
    7 PRSQSEEPEG 0.000
    1 HSHHTDPRSQ 0.000
    V9-HLA-A1101-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 19; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Start Subsequence Score
    82 FTKRKKKLKK 2.000
    96 IQCLLLGLLK 1.200
    75 HCACFESFTK 0.600
    77 ACFESFTKRK 0.200
    3 RELLAGILLR 0.108
    81 SFTKRKKKLK 0.100
    27 LVVFFIYFYF 0.090
    28 VVFFIYFYFY 0.080
    98 CLLLGLLKVR 0.060
    105 KVRPLQHQGV 0.060
    13 ITFNFFLFFF 0.060
    8 GILLRITFNF 0.054
    122 GYFQGIFMQA 0.048
    76 CACFESFTKR 0.040
    102 GLLKVRPLQH 0.036
    79 FESFTKRKKK 0.030
    12 RITFNFFLFF 0.024
    31 FIYFYFYFFL 0.024
    18 FLFFFLPFPL 0.024
    46 YVAQAGLELL 0.020
    78 CFESFTKRKK 0.020
    66 LVAGTLSVHH 0.020
    94 RFIQCLLLGL 0.018
    85 RKKKLKKAFR 0.012
    91 KAFRFIQCLL 0.012
    29 VFFIYFYFYF 0.012
    10 LLRITFNFFL 0.012
    45 HYVAQAGLEL 0.012
    23 LPFPLVVFFI 0.012
    20 FFFLPFPLVV 0.008
    16 NFFLFFFLPF 0.008
    33 YFYFYFFLEM 0.008
    36 FYFFLEMESH 0.008
    39 FLEMESHYVA 0.008
    112 QGVNSCDCER 0.006
    9 ILLRITFNFF 0.006
    72 SVHHCACFES 0.006
    65 SLVAGTLSVH 0.006
    25 FPLVVFFIYF 0.006
    113 GVNSCDCERG 0.006
    30 FFIYFYFYFF 0.006
    97 QCLLLGLLKV 0.006
    14 TFNFFLFFFL 0.006
    69 GTLSVHHCAC 0.005
    6 LAGILLRITF 0.004
    37 YFFLEMESHY 0.004
    59 NPPASASLVA 0.004
    22 FLPFPLVVFF 0.004
    19 LFFFLPFPLV 0.004
    70 TLSVHHCACF 0.004
    92 AFRFIQCLLL 0.004
    95 FIQCLLLGLL 0.004
    88 KLKKAFRFIQ 0.004
    4 ELLAGILLRI 0.004
    21 FFLPFPLVVF 0.003
    38 FFLEMESHYV 0.003
    32 IYFYFYFFLE 0.002
    126 GIFMQAAPWE 0.002
    123 YFQGIFMQAA 0.002
    86 KKKLKKAFRF 0.002
    53 ELLGSSNPPA 0.002
    51 GLELLGSSNP 0.001
    2 RRELLAGILL 0.001
    48 AQAGLELLGS 0.001
    26 PLVVFFIYFY 0.001
    41 EMESHYVAQA 0.001
    11 LRITFNFFLF 0.001
    107 RPLQHQGVNS 0.001
    34 FYFYFFLEME 0.001
    127 IFMQAAPWEG 0.001
    35 YFYFFLEMES 0.001
    24 PFPLVVFFIY 0.001
    64 ASLVAGTLSV 0.001
    99 LLLGLLKVRP 0.001
    90 KKAFRFIQCL 0.001
    111 HQGVNSCDCE 0.001
    124 FQGIFMQAAP 0.001
    109 LQHQGVNSCD 0.001
    119 CERGYFQGIF 0.001
    118 DCERGYFQGI 0.001
    128 FMQAAPWEGT 0.000
    116 SCDCERGYFQ 0.000
    47 VAQAGLELLG 0.000
    54 LLGSSNPPAS 0.000
    100 LLGLLKVRPL 0.000
    58 SNPPASASLV 0.000
    103 LLKVRPLQHQ 0.000
    121 RGYFQGIFMQ 0.000
    125 QGIFMQAAPW 0.000
    84 KRKKKLKKAF 0.000
    17 FFLFFFLPFP 0.000
    15 FNFFLFFFLP 0.000
    115 NSCDCERGYF 0.000
    63 SASLVAGTLS 0.000
    68 AGTLSVHHCA 0.000
    73 VHHCACFESF 0.000
    49 QAGLELLGSS 0.000
    1 MRRELLAGIL 0.000
    67 VAGTLSVHHC 0.000
    62 ASASLVAGTL 0.000
    V10-HLA-
    A1101-10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 21; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Start Subsequence Score
    10 GTSDVVTVVL 0.030
    8 ELGTSDVVTV 0.001
    3 RCPAGELGTS 0.001
    7 GELGTSDVVT 0.000
    9 LGTSDVVTVV 0.000
    6 AGELGTSDVV 0.000
    4 CPAGELGTSD 0.000
    5 PAGELGTSDV 0.000
    2 GRCPAGELGT 0.000
    1 TGRCPAGELG 0.000
    V11-HLA-A1101-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 23; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Start Subsequence Score
    8 RVMVPPLPSL 0.120
    10 MVPPLPSLNP 0.004
    2 QARLRLRVMV 0.002
    6 RLRVMVPPLP 0.001
    4 RLRLRVMVPP 0.001
    9 VMVPPLPSLN 0.001
    1 FQARLRLRVM 0.001
    5 LRLRVMVPPL 0.000
    3 ARLRLRVMVP 0.000
    7 LRVMVPPLPS 0.000
    V12-HLA-
    A1101-10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 25; each start
    position is specified, the
    length of peptide is 10
    amino acids, and the end
    position for each peptide is
    the start position plus nine.
    Start Subsequence Score
    10 CSYSTLTTVR 0.008
    9 GCSYSTLTTV 0.006
    1 SVMSEEPEGC 0.004
    6 EPEGCSYSTL 0.001
    11 SYSTLTTVRE 0.000
    2 VMSEEPEGCS 0.000
    3 MSEEPEGCSY 0.000
    4 SEEPEGCSYS 0.000
    5 EEPEGCSYST 0.000
    8 EGCSYSTLTT 0.000
    7 PEGCSYSTLT 0.000
    V13-HLA-
    A1101-10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 27; each start
    position is specified, the
    length of peptide is 10
    amino acids, and the end
    position for each peptide is
    the start position plus nine.
    Start Subsequence Score
    9 LADPQEDSGK 0.200
    5 TVDVLADPQE 0.002
    3 QVTVDVLADP 0.002
    2 SQVTVDVLAD 0.002
    4 VTVDVLADPQ 0.002
    7 DVLADPQEDS 0.001
    8 VLADPQEDSG 0.000
    1 DSQVTVDVLA 0.000
    6 VDVLADPQED 0.000
    10 ADPQEDSGKQ 0.000
    V14-HLA-
    A1101-10mers-
    191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 29; each start
    position is specified, the
    length of peptide is 10
    amino acids, and the end
    position for each peptide is
    the start position plus nine.
    Start Subsequence Score
    5 NPPASASLVA 0.004
    10 ASLVAGTLSV 0.001
    4 SNPPASASLV 0.000
    8 ASASLVAGTL 0.000
    9 SASLVAGTLS 0.000
    1 LGSSNPPASA 0.000
    3 SSNPPASASL 0.000
    2 GSSNPPASAS 0.000
    6 PPASASLVAG 0.000
    7 PASASLVAGT 0.000
  • TABLE XVI
    V1-HLA-A24-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the length
    of peptide is 9 amino acids,
    and the end position for each
    peptide is the start position
    plus eight.
    Start Subsequence Score
    501 IYINGRGHL 300.000
    124 EYECRVSTF 150.000
    484 HFVQENGTL 30.000
    385 KYEEELTLT 18.000
    105 RNPLDGSVL 12.000
    419 RAEGHPDSL 12.000
    85 KYGLHVSPA 10.000
    142 RLRVLVPPL 9.600
    100 QPPPPRNPL 8.640
    362 CLLVVVVVL 8.400
    351 VVVGVIAAL 8.400
    14 AWLLLLLLL 7.200
    410 SQPEESVGL 7.200
    145 VLVPPLPSL 7.200
    106 NPLDGSVLL 7.200
    10 WGPEAWLLL 7.200
    42 VVLGQDAKL 6.600
    382 MTQKYEEEL 6.600
    71 DAGEGAQEL 6.336
    200 RSAAVTSEF 6.160
    222 TCVVSHPGL 6.000
    223 CVVSHPGLL 6.000
    325 DSQVTVDVL 6.000
    453 EIETQTELL 6.000
    80 ALLHSKYGL 6.000
    202 AAVTSEFHL 6.000
    11 GPEAWLLLL 6.000
    245 LAEASVRGL 6.000
    356 IAALLFCLL 5.760
    352 VVGVIAALL 5.600
    36 TSDVVTVVL 5.600
    281 NWTRLDGPL 4.800
    13 EAWLLLLLL 4.800
    355 VIAALLFCL 4.800
    9 MWGPEAWLL 4.800
    26 TGRCPAGEL 4.400
    8 EMWGPEAWL 4.000
    294 RVDGDTLGF 4.000
    135 GSFQARLRL 4.000
    138 QARLRLRVL 4.000
    292 GVRVDGDTL 4.000
    260 HIGREGAML 4.000
    74 EGAQELALL 4.000
    188 KGTTSSRSF 4.000
    313 YVCHVSNEF 3.696
    17 LLLLLLASF 3.600
    353 VGVIAALLF 3.000
    493 RAKPTGNGI 2.880
    236 ITHILHVSF 2.400
    477 GIKQAMNHF 2.400
    348 ASVVVVGVI 2.100
    45 GQDAKLPCF 2.000
    129 VSTFPAGSF 2.000
    495 KPTGNGIYI 2.000
    390 LTLTRENSI 1.800
    446 STLTTVREI 1.650
    452 REIETQTEL 1.584
    363 LLVVVVVLM 1.050
    231 LQDQRITHI 1.000
    373 RYHRRKAQQ 1.000
    1 MPLSLGAEM 0.990
    157 PALEEGQGL 0.864
    232 QDQRITHIL 0.840
    263 REGAMLKCL 0.800
    93 AYEGRVEQP 0.750
    312 IYVCHVSNE 0.750
    279 SYNWTRLDG 0.750
    131 TFPAGSFQA 0.750
    207 EFHLVPSRS 0.700
    360 LFCLLVVVV 0.600
    151 PSLNPGPAL 0.600
    444 SYSTLTTVR 0.600
    393 TRENSIRRL 0.600
    159 LEEGQGLTL 0.600
    237 THILHVSFL 0.600
    53 FYRGDSGEQ 0.550
    320 EFSSRDSQV 0.500
    195 SFKHSRSAA 0.500
    213 SRSMNGQPL 0.480
    297 GDTLGFPPL 0.480
    250 VRGLEDQNL 0.480
    384 QKYEEELTL 0.480
    251 RGLEDQNLW 0.432
    341 KQVDLVSAS 0.432
    73 GEGAQELAL 0.400
    277 PPSYNWTRL 0.400
    337 EDSGKQVDL 0.400
    133 PAGSFQARL 0.400
    378 KAQQMTQKY 0.396
    28 RCPAGELET 0.330
    144 RVLVPPLPS 0.300
    214 RSMNGQPLT 0.300
    235 RITHILHVS 0.280
    58 SGEQVGQVA 0.252
    146 LVPPLPSLN 0.216
    110 GSVLLRNAV 0.216
    217 NGQPLTCVV 0.216
    275 QPPPSYNWT 0.216
    40 VTVVLGQDA 0.216
    349 SVVVVGVIA 0.210
    V2-HLA-A24-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 5; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position for
    each peptide is the start
    position plus eight.
    Start Subsequence Score
    1 GQDAKLPCL 4.000
    9 LYRGDSGEQ 0.550
    6 LPCLYRGDS 0.100
    5 KLPCLYRGD 0.036
    2 QDAKLPCLY 0.012
    8 CLYRGDSGE 0.010
    3 DAKLPCLYR 0.010
    4 AKLPCLYRG 0.002
    7 PCLYRGDSG 0.002
    V7-HLA-A24-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 15; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    7 RSQSEEPEG 0.033
    3 HTDPRSQSE 0.014
    8 SQSEEPEGR 0.012
    2 HHTDPRSQS 0.012
    5 DPRSQSEEP 0.011
    4 TDPRSQSEE 0.002
    1 SHHTDPRSQ 0.001
    6 PRSQSEEPE 0.000
    V9-HLA-A24-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 19; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position for
    each peptide is the start
    position plus eight.
    Start Subsequence Score
    32 IYFYFYFFL 200.000
    34 FYFYFFLEM 33.000
    92 AFRFIQCLL 28.000
    19 LFFFLPFPL 24.000
    81 SFTKRKKKL 22.000
    17 FFLFFFLPF 18.000
    30 FFIYFYFYF 15.000
    14 TFNFFLFFF 15.000
    91 KAFRFIQCL 9.600
    95 FIQCLLLGL 7.200
    58 SNPPASASL 7.200
    36 FYFFLEMES 6.600
    47 VAQAGLELL 6.000
    101 LGLLKVRPL 6.000
    15 FNFFLFFFL 5.760
    63 SASLVAGTL 5.600
    96 IQCLLLGLL 4.800
    12 RITFNFFLF 4.800
    46 YVAQAGLEL 4.400
    9 ILLRITFNF 4.200
    7 AGILLRITF 3.600
    22 FLPFPLVVF 3.000
    71 LSVHHCACF 3.000
    10 LLRITFNFF 2.880
    23 LPFPLVVFF 2.880
    28 VVFFIYFYF 2.800
    31 FIYFYFYFF 2.400
    13 ITFNFFLFF 2.400
    88 KLKKAFRFI 2.400
    116 SCDCERGYF 2.000
    2 RRELLAGIL 1.440
    5 LLAGILLRI 1.400
    123 YFQGIFMQA 1.260
    3 RELLAGILL 1.200
    24 PFPLVVFFI 1.050
    121 RGYFQGIFM 1.000
    38 FFLEMESHY 0.900
    21 FFLPFPLVV 0.900
    45 HYVAQAGLE 0.750
    11 LRITFNFFL 0.600
    20 FFFLPFPLV 0.600
    29 VFFIYFYFY 0.600
    87 KKLKKAFRF 0.600
    122 GYFQGIFMQ 0.500
    85 RKKKLKKAF 0.480
    44 SHYVAQAGL 0.400
    93 FRFIQCLLL 0.400
    26 PLVVFFIYF 0.360
    107 RPLQHQGVN 0.300
    25 FPLVVFFIY 0.252
    74 HHCACFESF 0.240
    50 AGLELLGSS 0.216
    69 GTLSVHHCA 0.210
    120 ERGYFQGIF 0.200
    51 GLELLGSSN 0.180
    57 SSNPPASAS 0.180
    98 CLLLGLLKV 0.165
    94 RFIQCLLLG 0.150
    39 FLEMESHYV 0.150
    59 NPPASASLV 0.150
    64 ASLVAGTLS 0.150
    65 SLVAGTLSV 0.150
    27 LVVFFIYFY 0.150
    8 GILLRITFN 0.150
    119 CERGYFQGI 0.144
    1 MRRELLAGI 0.144
    62 ASASLVAGT 0.120
    124 FQGIFMQAA 0.120
    6 LAGILLRIT 0.120
    109 LQHQGVNSC 0.120
    115 NSCDCERGY 0.120
    56 GSSNPPASA 0.100
    55 LGSSNPPAS 0.100
    49 QAGLELLGS 0.100
    129 MQAAPWEGT 0.100
    111 HQGVNSCDC 0.100
    126 GIFMQAAPW 0.100
    68 AGTLSVHHC 0.100
    75 HCACFESFT 0.100
    70 TLSVHHCAC 0.100
    54 LLGSSNPPA 0.100
    127 IFMQAAPWE 0.075
    78 CFESFTKRK 0.075
    33 YFYFYFFLE 0.060
    16 NFFLFFFLP 0.060
    37 YFFLEMESH 0.050
    35 YFYFFLEME 0.050
    105 KVRPLQHQG 0.029
    90 KKAFRFIQC 0.024
    84 KRKKKLKKA 0.022
    102 GLLKVRPLQ 0.021
    106 VRPLQHQGV 0.018
    40 LEMESHYVA 0.018
    99 LLLGLLKVR 0.018
    97 QCLLLGLLK 0.018
    53 ELLGSSNPP 0.018
    43 ESHYVAQAG 0.017
    128 FMQAAPWEG 0.017
    113 GVNSCDCER 0.017
    77 ACFESFTKR 0.016
    V10-HLA-
    A24-9mers-191P4D12B
    Each peptide is a portion
    of SEQ ID NO: 21; each
    start position is specified,
    the length of peptide is 9
    amino acids, and the end
    position for each peptide is
    the start position plus
    eight.
    Start Subsequence Score
    2 RCPAGELGT 0.300
    9 GTSDVVTVV 0.168
    5 AGELGTSDV 0.150
    7 ELGTSDVVT 0.100
    8 LGTSDVVTV 0.100
    3 CPAGELGTS 0.100
    6 GELGTSDVV 0.015
    4 PAGELGTSD 0.001
    1 GRCPAGELG 0.001
    V11-HLA-
    A24-9mers-191P4D12B
    Each peptide is a portion
    of SEQ ID NO: 23; each
    start position is specified,
    the length of peptide is 9
    amino acids, and the end
    position for each peptide is
    the start position plus
    eight.
    Start Subsequence Score
    5 RLRVMVPPL 8.000
    8 VMVPPLPSL 7.200
    1 QARLRLRVM 0.500
    7 RVMVPPLPS 0.300
    9 MVPPLPSLN 0.216
    3 RLRLRVMVP 0.020
    2 ARLRLRVMV 0.018
    6 LRVMVPPLP 0.002
    4 LRLRVMVPP 0.002
    V12-HLA-A24-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 25; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    2 MSEEPEGCS 0.180
    5 EPEGCSYST 0.150
    1 VMSEEPEGC 0.120
    9 CSYSTLTTV 0.100
    7 EGCSYSTLT 0.100
    8 GCSYSTLTT 0.100
    6 PEGCSYSTL 0.040
    3 SEEPEGCSY 0.018
    4 EEPEGCSYS 0.018
    V13-HLA-A24-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 27; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    1 SQVTVDVLA 0.210
    7 VLADPQEDS 0.120
    3 VTVDVLADP 0.025
    6 DVLADPQED 0.020
    8 LADPQEDSG 0.012
    4 TVDVLADPQ 0.012
    2 QVTVDVLAD 0.010
    9 ADPQEDSGK 0.002
    5 VDVLADPQE 0.002
    V14-HLA-
    A24-9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 29; each start
    position is specified; the
    length of peptide is 9
    amino acids, and the end
    position for each peptide is
    the start position plus eight.
    Start Subsequence Score
    3 SNPPASASL 7.200
    8 SASLVAGTL 5.600
    2 SSNPPASAS 0.180
    9 ASLVAGTLS 0.150
    4 NPPASASLV 0.150
    7 ASASLVAGT 0.120
    1 GSSNPPASA 0.100
    5 PPASASLVA 0.010
    6 PASASLVAG 0.001
  • TABLE XVII
    V1-HLA-A24-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the length
    of peptide is 10 amino acids,
    and the end position for each
    peptide is the start position
    plus nine.
    Start Subsequence Score
    312 IYVCHVSNEF 277.200
    373 RYHRRKAQQM 60.000
    409 RSQPEESVGL 14.400
    85 KYGLHVSPAY 14.000
    144 RVLVPPLPSL 12.000
    105 RNPLDGSVLL 12.000
    99 EQPPPPRNPL 8.640
    351 VVVGVIAALL 8.400
    361 FCLLVVVVVL 8.400
    350 VVVVGVIAAL 8.400
    501 IYINGRGHLV 7.500
    158 ALEEGQGLTL 7.200
    11 GPEAWLLLLL 7.200
    10 WGPEAWLLLL 7.200
    354 GVIAALLFCL 7.200
    35 ETSDVVTVVL 6.720
    41 TVVLGQDAKL 6.600
    291 SGVRVDGDTL 6.000
    79 LALLHSKYGL 6.000
    439 EPEGRSYSTL 6.000
    72 AGEGAQELAL 6.000
    222 TCVVSHPGLL 6.000
    355 VIAALLFCLL 5.760
    231 LQDQRITHIL 5.600
    53 FYRGDSGEQV 5.000
    249 SVRGLEDQNL 4.800
    244 FLAEASVRGL 4.800
    13 EAWLLLLLLL 4.800
    392 LTRENSIRRL 4.800
    280 YNWTRLDGPL 4.800
    235 RITHILHVSF 4.800
    9 MWGPEAWLLL 4.800
    296 DGDTLGFPPL 4.800
    156 GPALEEGQGL 4.800
    25 FTGRCPAGEL 4.400
    381 QMTQKYEEEL 4.400
    132 FPAGSFQARL 4.000
    236 ITHILHVSFL 4.000
    221 LTCVVSHPGL 4.000
    128 RVSTFPAGSF 4.000
    137 FQARLRLRVL 4.000
    201 SAAVTSEFHL 4.000
    134 AGSFQARLRL 4.000
    500 GIYINGRGHL 4.000
    8 EMWGPEAWLL 4.000
    383 TQKYEEELTL 4.000
    150 LPSLNPGPAL 4.000
    16 LLLLLLLASF 3.600
    44 LGQDAKLPCF 3.600
    476 EGIKQAMNHF 3.600
    207 EFHLVPSRSM 2.500
    385 KYEEELTLTR 2.160
    352 VVGVIAALLF 2.000
    252 GLEDQNLWHI 1.800
    230 LLQDQRITHI 1.800
    452 REIETQTELL 1.440
    347 SASVVVVGVI 1.400
    93 AYEGRVEQPP 1.260
    389 ELTLTRENSI 1.200
    227 HPGLLQDQRI 1.200
    445 YSTLTTVREI 1.100
    124 EYECRVSTFP 1.050
    362 CLLVVVVVLM 1.050
    473 DQDEGIKQAM 1.008
    301 GFPPLTTEHS 0.900
    136 SFQARLRLRV 0.900
    324 RDSQVTVDVL 0.800
    279 SYNWTRLDGP 0.750
    141 LRLRVLVPPL 0.720
    360 LFCLLVVVVV 0.700
    451 VREIETQTEL 0.660
    262 GREGAMLKCL 0.600
    259 WHIGREGAML 0.600
    320 EFSSRDSQVT 0.600
    276 PPPSYNWTRL 0.600
    7 AEMWGPEAWL 0.600
    70 VDAGEGAQEL 0.528
    341 KQVDLVSASV 0.504
    258 LWHIGREGAM 0.500
    195 SFKHSRSAAV 0.500
    444 SYSTLTTVRE 0.500
    418 LRAEGHPDSL 0.480
    212 PSRSMNGQPL 0.480
    336 QEDSGKQVDL 0.400
    483 NHFVQENGTL 0.400
    73 GEGAQELALL 0.400
    293 VRVDGDTLGF 0.360
    199 SRSAAVTSEF 0.308
    97 RVEQPPPPRN 0.300
    214 RSMNGQPLTC 0.300
    28 RCPAGELETS 0.300
    49 KLPCFYRGDS 0.300
    411 QPEESVGLRA 0.252
    284 RLDGPLPSGV 0.240
    493 RAKPTGNGIY 0.240
    123 GEYECRVSTF 0.240
    145 VLVPPLPSLN 0.216
    274 GQPPPSYNWT 0.216
    363 LLVVVVVLMS 0.210
    348 ASVVVVGVIA 0.210
    V2-HLA-A24-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 5; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Start Subsequence Score
    1 LGQDAKLPCL 7.200
    10 LYRGDSGEQV 5.000
    6 KLPCLYRGDS 0.300
    2 GQDAKLPCLY 0.120
    9 CLYRGDSGEQ 0.011
    7 LPCLYRGDSG 0.010
    4 DAKLPCLYRG 0.010
    5 AKLPCLYRGD 0.002
    8 PCLYRGDSGE 0.002
    3 QDAKLPCLYR 0.001
    V7-HLA-A24-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 15; each start
    position is specified, the
    length of peptide is 10
    amino acids, and the end
    position for each peptide is
    the start position plus nine.
    Start Subsequence Score
    9 SQSEEPEGRS 0.120
    8 RSQSEEPEGR 0.030
    4 HTDPRSQSEE 0.013
    6 DPRSQSEEPE 0.010
    1 HSHHTDPRSQ 0.010
    2 SHHTDPRSQS 0.010
    5 TDPRSQSEEP 0.002
    3 HHTDPRSQSE 0.001
    7 PRSQSEEPEG 0.000
    V9-HLA-A24-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 19; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    45 HYVAQAGLEL 330.000
    94 RFIQCLLLGL 72.000
    14 TFNFFLFFFL 43.200
    92 AFRFIQCLLL 20.000
    30 FFIYFYFYFF 18.000
    21 FFLPFPLVVF 18.000
    16 NFFLFFFLPF 12.000
    91 KAFRFIQCLL 11.200
    29 VFFIYFYFYF 10.000
    122 GYFQGIFMQA 8.400
    57 SSNPPASASL 7.200
    95 FIQCLLLGLL 7.200
    62 ASASLVAGTL 5.600
    12 RITFNFFLFF 4.800
    18 FLFFFLPFPL 4.800
    80 ESFTKRKKKL 4.400
    9 ILLRITFNFF 4.320
    8 GILLRITFNF 4.200
    27 LVVFFIYFYF 4.200
    31 FIYFYFYFFL 4.000
    10 LLRITFNFFL 4.000
    46 YVAQAGLELL 4.000
    100 LLGLLKVRPL 4.000
    43 ESHYVAQAGL 4.000
    25 FPLVVFFIYF 3.600
    22 FLPFPLVVFF 3.600
    33 YFYFYFFLEM 3.300
    115 NSCDCERGYF 2.400
    6 LAGILLRITF 2.400
    118 DCERGYFQGI 2.160
    4 ELLAGILLRI 2.100
    13 ITFNFFLFFF 2.000
    70 TLSVHHCACF 2.000
    23 LPFPLVVFFI 1.680
    2 RRELLAGILL 1.200
    90 KKAFRFIQCL 0.960
    123 YFQGIFMQAA 0.900
    38 FFLEMESHYV 0.900
    35 YFYFFLEMES 0.660
    32 IYFYFYFFLE 0.600
    19 LFFFLPFPLV 0.600
    1 MRRELLAGIL 0.576
    34 FYFYFFLEME 0.500
    37 YFFLEMESHY 0.500
    20 FFFLPFPLVV 0.500
    36 FYFFLEMESH 0.500
    84 KRKKKLKKAF 0.480
    86 KKKLKKAFRF 0.400
    11 LRITFNFFLF 0.360
    87 KKLKKAFRFI 0.360
    107 RPLQHQGVNS 0.300
    105 KVRPLQHQGV 0.288
    73 VHHCACFESF 0.240
    50 AGLELLGSSN 0.216
    119 CERGYFQGIF 0.200
    58 SNPPASASLV 0.180
    97 QCLLLGLLKV 0.165
    53 ELLGSSNPPA 0.150
    64 ASLVAGTLSV 0.150
    39 FLEMESHYVA 0.150
    128 FMQAAPWEGT 0.150
    125 QGIFMQAAPW 0.150
    59 NPPASASLVA 0.150
    69 GTLSVHHCAC 0.150
    7 AGILLRITFN 0.150
    41 EMESHYVAQA 0.150
    68 AGTLSVHHCA 0.140
    24 PFPLVVFFIY 0.126
    28 VVFFIYFYFY 0.120
    49 QAGLELLGSS 0.120
    5 LLAGILLRIT 0.120
    72 SVHHCACFES 0.110
    55 LGSSNPPASA 0.100
    114 VNSCDCERGY 0.100
    54 LLGSSNPPAS 0.100
    48 AQAGLELLGS 0.100
    56 GSSNPPASAS 0.100
    63 SASLVAGTLS 0.100
    67 VAGTLSVHHC 0.100
    78 CFESFTKRKK 0.083
    127 IFMQAAPWEG 0.083
    17 FFLFFFLPFP 0.075
    120 ERGYFQGIFM 0.050
    81 SFTKRKKKLK 0.050
    101 LGLLKVRPLQ 0.021
    121 RGYFQGIFMQ 0.020
    88 KLKKAFRFIQ 0.020
    108 PLQHQGVNSC 0.018
    99 LLLGLLKVRP 0.018
    98 CLLLGLLKVR 0.018
    47 VAQAGLELLG 0.018
    112 QGVNSCDCER 0.017
    51 GLELLGSSNP 0.015
    110 QHQGVNSCDC 0.015
    26 PLVVFFIYFY 0.015
    102 GLLKVRPLQH 0.015
    71 LSVHHCACFE 0.015
    106 VRPLQHQGVN 0.015
    65 SLVAGTLSVH 0.015
    113 GVNSCDCERG 0.015
    V10-HLA-A24-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 21; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    10 GTSDVVTVVL 6.720
    3 RCPAGELGTS 0.300
    6 AGELGTSDVV 0.150
    9 LGTSDVVTVV 0.140
    8 ELGTSDVVTV 0.100
    7 GELGTSDVVT 0.015
    4 CPAGELGTSD 0.012
    5 PAGELGTSDV 0.012
    2 GRCPAGELGT 0.012
    1 TGRCPAGELG 0.010
    V11-HLA-A24-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 23; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    8 RVMVPPLPSL 12.000
    5 LRLRVMVPPL 0.600
    1 FQARLRLRVM 0.500
    9 VMVPPLPSLN 0.216
    2 QARLRLRVMV 0.120
    6 RLRVMVPPLP 0.028
    4 RLRLRVMVPP 0.028
    10 MVPPLPSLNP 0.018
    7 LRVMVPPLPS 0.015
    3 ARLRLRVMVP 0.002
    V12-HLA-
    A24-10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 25; each start
    position is specified, the
    length of peptide is 10
    amino acids, and the end
    position for each peptide is
    the start position plus nine.
    Start Subsequence Score
    6 EPEGCSYSTL 6.000
    11 SYSTLTTVRE 0.500
    3 MSEEPEGCSY 0.180
    1 SVMSEEPEGC 0.150
    2 VMSEEPEGCS 0.120
    8 EGCSYSTLTT 0.100
    9 GCSYSTLTTV 0.100
    5 EEPEGCSYST 0.018
    4 SEEPEGCSYS 0.018
    10 CSYSTLTTVR 0.012
    7 PEGCSYSTLT 0.001
    V13-HLA-A24-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 27; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Start Subsequence Score
    1 DSQVTVDVLA 0.210
    7 DVLADPQEDS 0.150
    4 VTVDVLADPQ 0.022
    2 SQVTVDVLAD 0.015
    3 QVTVDVLADP 0.014
    8 VLADPQEDSG 0.012
    9 LADPQEDSGK 0.012
    5 TVDVLADPQE 0.010
    6 VDVLADPQED 0.002
    10 ADPQEDSGKQ 0.002
    V14-HLA-A24-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 29; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Start Subsequence Score
    3 SSNPPASASL 7.200
    8 ASASLVAGTL 5.600
    4 SNPPASASLV 0.180
    10 ASLVAGTLSV 0.150
    5 NPPASASLVA 0.150
    9 SASLVAGTLS 0.100
    1 LGSSNPPASA 0.100
    2 GSSNPPASAS 0.100
    7 PASASLVAGT 0.012
    6 PPASASLVAG 0.001
  • TABLE XVIII
    V1-HLA-B7-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position for
    each peptide is the start
    position plus eight.
    Start Subsequence Score
    292 GVRVDGDTL 200.000
    100 QPPPPRNPL 180.000
    138 QARLRLRVL 120.000
    106 NPLDGSVLL 80.000
    26 TGRCPAGEL 60.000
    142 RLRVLVPPL 40.000
    202 AAVTSEFHL 36.000
    11 GPEAWLLLL 24.000
    42 VVLGQDAKL 20.000
    1 MPLSLGAEM 20.000
    351 VVVGVIAAL 20.000
    352 VVGVIAALL 20.000
    223 CVVSHPGLL 20.000
    13 EAWLLLLLL 12.000
    71 DAGEGAQEL 12.000
    80 ALLHSKYGL 12.000
    356 IAALLFCLL 12.000
    277 PPSYNWTRL 8.000
    495 KPTGNGIYI 8.000
    135 GSFQARLRL 6.000
    8 EMWGPEAWL 6.000
    145 VLVPPLPSL 6.000
    450 TVREIETQT 5.000
    222 TCVVSHPGL 4.000
    325 DSQVTVDVL 4.000
    287 GPLPSGVRV 4.000
    362 CLLVVVVVL 4.000
    10 WGPEAWLLL 4.000
    260 HIGREGAML 4.000
    410 SQPEESVGL 4.000
    355 VIAALLFCL 4.000
    105 RNPLDGSVL 4.000
    74 EGAQELALL 4.000
    382 MTQKYEEEL 4.000
    407 DPRSQPEES 4.000
    419 RAEGHPDSL 3.600
    245 LAEASVRGL 3.600
    203 AVTSEFHLV 3.000
    275 QPPPSYNWT 2.000
    322 SSRDSQVTV 2.000
    150 LPSLNPGPA 2.000
    357 AALLFCLLV 1.800
    371 MSRYHRRKA 1.500
    133 PAGSFQARL 1.200
    493 RAKPTGNGI 1.200
    14 AWLLLLLLL 1.200
    36 TSDVVTVVL 1.200
    453 EIETQTELL 1.200
    157 PALEEGQGL 1.200
    348 ASVVVVGVI 1.200
    249 SVRGLEDQN 1.000
    374 YHRRKAQQM 1.000
    441 EGRSYSTLT 1.000
    363 LLVVVVVLM 1.000
    345 LVSASVVVV 1.000
    126 ECRVSTFPA 1.000
    64 QVAWARVDA 0.750
    103 PPRNPLDGS 0.600
    358 ALLFCLLVV 0.600
    178 APSVTWDTE 0.600
    501 IYINGRGHL 0.600
    151 PSLNPGPAL 0.600
    50 LPCFYRGDS 0.600
    439 EPEGRSYST 0.600
    347 SASVVVVGV 0.600
    349 SVVVVGVIA 0.500
    350 VVVVGVIAA 0.500
    354 GVIAALLFC 0.500
    23 ASFTGRCPA 0.450
    29 CPAGELETS 0.400
    446 STLTTVREI 0.400
    297 GDTLGFPPL 0.400
    232 QDQRITHIL 0.400
    263 REGAMLKCL 0.400
    281 NWTRLDGPL 0.400
    390 LTLTRENSI 0.400
    484 HFVQENGTL 0.400
    452 REIETQTEL 0.400
    384 QKYEEELTL 0.400
    302 FPPLTTEHS 0.400
    237 THILHVSFL 0.400
    250 VRGLEDQNL 0.400
    73 GEGAQELAL 0.400
    9 MWGPEAWLL 0.400
    213 SRSMNGQPL 0.400
    337 EDSGKQVDL 0.400
    289 LPSGVRVDG 0.300
    110 GSVLLRNAV 0.300
    117 AVQADEGEY 0.300
    216 MNGQPLTCV 0.300
    147 VPPLPSLNP 0.300
    137 FQARLRLRV 0.300
    67 WARVDAGEG 0.300
    342 QVDLVSASV 0.300
    462 SPGSGRAEE 0.300
    214 RSMNGQPLT 0.300
    211 VPSRSMNGQ 0.200
    217 NGQPLTCVV 0.200
    35 ETSDVVTVV 0.200
    154 NPGPALEEG 0.200
    V2-HLA-B7-
    9mers-191P4D12B
    Each peptide is a portion
    of SEQ ID NO: 5; each
    start position is specified,
    the length of peptide is 9
    amino acids, and the end
    position for each peptide is
    the start position plus
    eight.
    Start Subsequence Score
    1 GQDAKLPCL 1.200
    6 LPCLYRGDS 0.600
    3 DAKLPCLYR 0.045
    8 CLYRGDSGE 0.010
    9 LYRGDSGEQ 0.010
    5 KLPCLYRGD 0.010
    4 AKLPCLYRG 0.003
    2 QDAKLPCLY 0.002
    7 PCLYRGDSG 0.001
    V7-HLA-B7-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 15; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position for
    each peptide is the start
    position plus eight.
    Start Subsequence Score
    5 DPRSQSEEP 2.000
    7 RSQSEEPEG 0.010
    8 SQSEEPEGR 0.010
    2 HHTDPRSQS 0.005
    3 HTDPRSQSE 0.003
    4 TDPRSQSEE 0.001
    1 SHHTDPRSQ 0.001
    6 PRSQSEEPE 0.000
    V9-HLA-B7-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 19; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position for
    each peptide is the start
    position plus eight.
    Start Subsequence Score
    46 YVAQAGLEL 20.000
    92 AFRFIQCLL 12.000
    91 KAFRFIQCL 12.000
    63 SASLVAGTL 12.000
    47 VAQAGLELL 12.000
    59 NPPASASLV 4.000
    95 FIQCLLLGL 4.000
    96 IQCLLLGLL 4.000
    15 FNFFLFFFL 4.000
    101 LGLLKVRPL 4.000
    58 SNPPASASL 4.000
    121 RGYFQGIFM 1.000
    105 KVRPLQHQG 0.500
    5 LLAGILLRI 0.400
    107 RPLQHQGVN 0.400
    23 LPFPLVVFF 0.400
    88 KLKKAFRFI 0.400
    44 SHYVAQAGL 0.400
    19 LFFFLPFPL 0.400
    81 SFTKRKKKL 0.400
    25 FPLVVFFIY 0.400
    32 IYFYFYFFL 0.400
    3 RELLAGILL 0.400
    119 CERGYFQGI 0.400
    93 FRFIQCLLL 0.400
    1 MRRELLAGI 0.400
    11 LRITFNFFL 0.400
    6 LAGILLRIT 0.300
    62 ASASLVAGT 0.300
    68 AGTLSVHHC 0.300
    60 PPASASLVA 0.200
    10 LLRITFNFF 0.200
    98 CLLLGLLKV 0.200
    65 SLVAGTLSV 0.200
    56 GSSNPPASA 0.150
    129 MQAAPWEGT 0.150
    2 RRELLAGIL 0.120
    70 TLSVHHCAC 0.100
    109 LQHQGVNSC 0.100
    69 GTLSVHHCA 0.100
    28 VVFFIYFYF 0.100
    34 FYFYFFLEM 0.100
    54 LLGSSNPPA 0.100
    27 LVVFFIYFY 0.100
    124 FQGIFMQAA 0.100
    75 HCACFESFT 0.100
    111 HQGVNSCDC 0.100
    7 AGILLRITF 0.090
    49 QAGLELLGS 0.060
    64 ASLVAGTLS 0.060
    50 AGLELLGSS 0.060
    39 FLEMESHYV 0.060
    66 LVAGTLSVH 0.050
    72 SVHHCACFE 0.050
    113 GVNSCDCER 0.050
    48 AQAGLELLG 0.030
    40 LEMESHYVA 0.030
    77 ACFESFTKR 0.030
    67 VAGTLSVHH 0.030
    22 FLPFPLVVF 0.030
    76 CACFESFTK 0.030
    20 FFFLPFPLV 0.030
    57 SSNPPASAS 0.030
    71 LSVHHCACF 0.020
    55 LGSSNPPAS 0.020
    106 VRPLQHQGV 0.020
    21 FFLPFPLVV 0.020
    12 RITFNFFLF 0.020
    9 ILLRITFNF 0.020
    115 NSCDCERGY 0.020
    13 ITFNFFLFF 0.020
    126 GIFMQAAPW 0.020
    8 GILLRITFN 0.020
    31 FIYFYFYFF 0.020
    102 GLLKVRPLQ 0.015
    80 ESFTKRKKK 0.015
    125 QGIFMQAAP 0.010
    128 FMQAAPWEG 0.010
    18 FLFFFLPFP 0.010
    97 QCLLLGLLK 0.010
    100 LLGLLKVRP 0.010
    123 YFQGIFMQA 0.010
    103 LLKVRPLQH 0.010
    83 TKRKKKLKK 0.010
    90 KKAFRFIQC 0.010
    112 QGVNSCDCE 0.010
    42 MESHYVAQA 0.010
    4 ELLAGILLR 0.010
    82 FTKRKKKLK 0.010
    43 ESHYVAQAG 0.010
    84 KRKKKLKKA 0.010
    99 LLLGLLKVR 0.010
    53 ELLGSSNPP 0.010
    114 VNSCDCERG 0.010
    116 SCDCERGYF 0.009
    51 GLELLGSSN 0.006
    24 PFPLVVFFI 0.004
    127 IFMQAAPWE 0.003
    61 PASASLVAG 0.003
    118 DCERGYFQG 0.003
    V11-HLA-B7-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 23; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    5 RLRVMVPPL 40.000
    1 QARLRLRVM 30.000
    8 VMVPPLPSL 6.000
    7 RVMVPPLPS 0.450
    9 MVPPLPSLN 0.100
    3 RLRLRVMVP 0.100
    2 ARLRLRVMV 0.090
    6 LRVMVPPLP 0.001
    4 LRLRVMVPP 0.001
    V12-HLA-B7-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 25; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    5 EPEGCSYST 0.600
    9 CSYSTLTTV 0.200
    7 EGCSYSTLT 0.100
    1 VMSEEPEGC 0.100
    8 GCSYSTLTT 0.100
    6 PEGCSYSTL 0.040
    2 MSEEPEGCS 0.009
    4 EEPEGCSYS 0.002
    3 SEEPEGCSY 0.001
    V13-HLA-B7-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 27; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    1 SQVTVDVLA 0.100
    6 DVLADPQED 0.050
    2 QVTVDVLAD 0.050
    7 VLADPQEDS 0.030
    4 TVDVLADPQ 0.015
    3 VTVDVLADP 0.010
    8 LADPQEDSG 0.009
    9 ADPQEDSGK 0.003
    5 VDVLADPQE 0.001
    V14-HLA-B7-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 29; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    8 SASLVAGTL 12.000
    4 NPPASASLV 4.000
    3 SNPPASASL 4.000
    7 ASASLVAGT 0.300
    5 PPASASLVA 0.200
    1 GSSNPPASA 0.150
    9 ASLVAGTLS 0.060
    2 SSNPPASAS 0.030
    6 PASASLVAG 0.003
  • TABLE XIX
    V1-HLA-B7-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    249 SVRGLEDQNL 200.000
    150 LPSLNPGPAL 120.000
    156 GPALEEGQGL 80.000
    132 FPAGSFQARL 80.000
    407 DPRSQPEESV 60.000
    392 LTRENSIRRL 40.000
    144 RVLVPPLPSL 30.000
    11 GPEAWLLLLL 24.000
    439 EPEGRSYSTL 24.000
    350 VVVVGVIAAL 20.000
    351 VVVGVIAALL 20.000
    354 GVIAALLFCL 20.000
    41 TVVLGQDAKL 20.000
    134 AGSFQARLRL 18.000
    178 APSVTWDTEV 12.000
    13 EAWLLLLLLL 12.000
    201 SAAVTSEFHL 12.000
    79 LALLHSKYGL 12.000
    99 EQPPPPRNPL 9.000
    138 QARLRLRVLV 9.000
    276 PPPSYNWTRL 8.000
    227 HPGLLQDQRI 8.000
    500 GIYINGRGHL 6.000
    25 FTGRCPAGEL 6.000
    7 AEMWGPEAWL 5.400
    409 RSQPEESVGL 4.000
    103 PPRNPLDGSV 4.000
    244 FLAEASVRGL 4.000
    8 EMWGPEAWLL 4.000
    383 TQKYEEELTL 4.000
    137 FQARLRLRVL 4.000
    236 ITHILHVSFL 4.000
    291 SGVRVDGDTL 4.000
    334 DPQEDSGKQV 4.000
    10 WGPEAWLLLL 4.000
    222 TCVVSHPGLL 4.000
    212 PSRSMNGQPL 4.000
    280 YNWTRLDGPL 4.000
    221 LTCVVSHPGL 4.000
    355 VIAALLFCLL 4.000
    381 QMTQKYEEEL 4.000
    35 ETSDVVTVVL 4.000
    361 FCLLVVVVVL 4.000
    105 RNPLDGSVLL 4.000
    158 ALEEGQGLTL 3.600
    72 AGEGAQELAL 3.600
    67 WARVDAGEGA 3.000
    176 SPAPSVTWDT 2.000
    233 DQRITHILHV 2.000
    202 AAVTSEFHLV 1.800
    357 AALLFCLLVV 1.800
    231 LQDQRITHIL 1.200
    347 SASVVVVGVI 1.200
    296 DGDTLGFPPL 1.200
    261 IGREGAMLKC 1.000
    397 SIRRLHSHHT 1.000
    61 QVGQVAWARV 1.000
    441 EGRSYSTLTT 1.000
    89 HVSPAYEGRV 1.000
    362 CLLVVVVVLM 1.000
    241 HVSFLAEASV 1.000
    303 PPLTTEHSGI 0.800
    411 QPEESVGLRA 0.600
    356 IAALLFCLLV 0.600
    358 ALLFCLLVVV 0.600
    349 SVVVVGVIAA 0.500
    485 FVQENGTLRA 0.500
    450 TVREIETQTE 0.500
    292 GVRVDGDTLG 0.500
    39 VVTVVLGQDA 0.500
    111 SVLLRNAVQA 0.500
    22 LASFTGRCPA 0.450
    452 REIETQTELL 0.400
    324 RDSQVTVDVL 0.400
    70 VDAGEGAQEL 0.400
    1 MPLSLGAEMW 0.400
    389 ELTLTRENSI 0.400
    259 WHIGREGAML 0.400
    73 GEGAQELALL 0.400
    495 KPTGNGIYIN 0.400
    418 LRAEGHPDSL 0.400
    9 MWGPEAWLLL 0.400
    483 NHFVQENGTL 0.400
    230 LLQDQRITHI 0.400
    141 LRLRVLVPPL 0.400
    445 YSTLTTVREI 0.400
    342 QVDLVSASVV 0.300
    215 SMNGQPLTCV 0.300
    71 DAGEGAQELA 0.300
    214 RSMNGQPLTC 0.300
    348 ASVVVVGVIA 0.300
    109 DGSVLLRNAV 0.300
    169 ASCTAEGSPA 0.300
    91 SPAYEGRVEQ 0.300
    473 DQDEGIKQAM 0.300
    172 TAEGSPAPSV 0.270
    289 LPSGVRVDGD 0.200
    81 LLHSKYGLHV 0.200
    417 GLRAEGHPDS 0.200
    321 FSSRDSQVTV 0.200
    V2-HLA-B7-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 5; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    1 LGQDAKLPCL 4.000
    7 LPCLYRGDSG 0.200
    10 LYRGDSGEQV 0.200
    4 DAKLPCLYRG 0.030
    6 KLPCLYRGDS 0.030
    9 CLYRGDSGEQ 0.010
    2 GQDAKLPCLY 0.006
    5 AKLPCLYRGD 0.003
    3 QDAKLPCLYR 0.002
    8 PCLYRGDSGE 0.001
    V7-HLA-B7-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 15; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Start Subsequence Score
    6 DPRSQSEEPE 2.000
    9 SQSEEPEGRS 0.030
    8 RSQSEEPEGR 0.010
    1 HSHHTDPRSQ 0.010
    2 SHHTDPRSQS 0.005
    4 HTDPRSQSEE 0.003
    3 HHTDPRSQSE 0.001
    5 TDPRSQSEEP 0.001
    7 PRSQSEEPEG 0.000
    V9-HLA-B7-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 19; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    10 LLRITFNFFL 40.000
    46 YVAQAGLELL 20.000
    92 AFRFIQCLLL 12.000
    91 KAFRFIQCLL 12.000
    62 ASASLVAGTL 12.000
    105 KVRPLQHQGV 10.000
    23 LPFPLVVFFI 8.000
    100 LLGLLKVRPL 4.000
    31 FIYFYFYFFL 4.000
    1 MRRELLAGIL 4.000
    95 FIQCLLLGLL 4.000
    57 SSNPPASASL 4.000
    80 ESFTKRKKKL 4.000
    18 FLFFFLPFPL 4.000
    43 ESHYVAQAGL 4.000
    59 NPPASASLVA 2.000
    64 ASLVAGTLSV 0.600
    4 ELLAGILLRI 0.400
    107 RPLQHQGVNS 0.400
    14 TFNFFLFFFL 0.400
    25 FPLVVFFIYF 0.400
    94 RFIQCLLLGL 0.400
    45 HYVAQAGLEL 0.400
    90 KKAFRFIQCL 0.400
    67 VAGTLSVHHC 0.300
    68 AGTLSVHHCA 0.300
    97 QCLLLGLLKV 0.200
    58 SNPPASASLV 0.200
    128 FMQMPWEGT 0.150
    55 LGSSNPPASA 0.150
    2 RRELLAGILL 0.120
    118 DCERGYFQGI 0.120
    33 YFYFYFFLEM 0.100
    28 VVFFIYFYFY 0.100
    53 ELLGSSNPPA 0.100
    72 SVHHCACFES 0.100
    83 TKRKKKLKKA 0.100
    5 LLAGILLRIT 0.100
    69 GTLSVHHCAC 0.100
    27 LVVFFIYFYF 0.100
    120 ERGYFQGIFM 0.100
    6 LAGILLRITF 0.090
    63 SASLVAGTLS 0.060
    48 AQAGLELLGS 0.060
    7 AGILLRITFN 0.060
    50 AGLELLGSSN 0.060
    49 QAGLELLGSS 0.060
    113 GVNSCDCERG 0.050
    66 LVAGTLSVHH 0.050
    87 KKLKKAFRFI 0.040
    115 NSCDCERGYF 0.030
    47 VAQAGLELLG 0.030
    61 PASASLVAGT 0.030
    76 CACFESFTKR 0.030
    56 GSSNPPASAS 0.030
    19 LFFFLPFPLV 0.030
    77 ACFESFTKRK 0.030
    39 FLEMESHYVA 0.030
    41 EMESHYVAQA 0.030
    38 FFLEMESHYV 0.020
    22 FLPFPLVVFF 0.020
    119 CERGYFQGIF 0.020
    9 ILLRITFNFF 0.020
    70 TLSVHHCACF 0.020
    125 QGIFMQAAPW 0.020
    60 PPASASLVAG 0.020
    8 GILLRITFNF 0.020
    12 RITFNFFLFF 0.020
    114 VNSCDCERGY 0.020
    54 LLGSSNPPAS 0.020
    13 ITFNFFLFFF 0.020
    20 FFFLPFPLVV 0.020
    101 LGLLKVRPLQ 0.015
    103 LLKVRPLQHQ 0.015
    88 KLKKAFRFIQ 0.015
    108 PLQHQGVNSC 0.010
    96 IQCLLLGLLK 0.010
    89 LKKAFRFIQC 0.010
    75 HCACFESFTK 0.010
    82 FTKRKKKLKK 0.010
    102 GLLKVRPLQH 0.010
    121 RGYFQGIFMQ 0.010
    15 FNFFLFFFLP 0.010
    65 SLVAGTLSVH 0.010
    98 CLLLGLLKVR 0.010
    109 LQHQGVNSCD 0.010
    110 QHQGVNSCDC 0.010
    122 GYFQGIFMQA 0.010
    111 HQGVNSCDCE 0.010
    71 LSVHHCACFE 0.010
    126 GIFMQAAPWE 0.010
    99 LLLGLLKVRP 0.010
    123 YFQGIFMQAA 0.010
    124 FQGIFMQAAP 0.010
    74 HHCACFESFT 0.010
    112 QGVNSCDCER 0.010
    21 FFLPFPLVVF 0.003
    127 IFMQAAPWEG 0.003
    40 LEMESHYVAQ 0.003
    116 SCDCERGYFQ 0.003
    V10-HLA-B7-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 21; each start
    positions specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    10 GTSDVVTVVL 4.000
    9 LGTSDVVTVV 0.200
    8 ELGTSDVVTV 0.200
    4 CPAGELGTSD 0.200
    6 AGELGTSDVV 0.180
    1 TGRCPAGELG 0.100
    5 PAGELGTSDV 0.060
    3 RCPAGELGTS 0.020
    2 GRCPAGELGT 0.010
    7 GELGTSDVVT 0.010
    V11-HLA-B7-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 23; each start
    positions specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    8 RVMVPPLPSL 90.000
    2 QARLRLRVMV 9.000
    1 FQARLRLRVM 1.000
    5 LRLRVMVPPL 0.400
    6 RLRVMVPPLP 0.100
    4 RLRLRVMVPP 0.100
    10 MVPPLPSLNP 0.075
    9 VMVPPLPSLN 0.020
    7 LRVMVPPLPS 0.003
    3 ARLRLRVMVP 0.003
    V12-HLA-B7-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 25; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    6 EPEGCSYSTL 24.000
    1 SVMSEEPEGC 1.500
    9 GCSYSTLTTV 0.200
    8 EGCSYSTLTT 0.100
    2 VMSEEPEGCS 0.030
    5 EEPEGCSYST 0.010
    10 CSYSTLTTVR 0.010
    3 MSEEPEGCSY 0.006
    11 SYSTLTTVRE 0.001
    7 PEGCSYSTLT 0.001
    4 SEEPEGCSYS 0.001
    V13-HLA-B7-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 27; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    7 DVLADPQEDS 0.150
    1 DSQVTVDVLA 0.100
    3 QVTVDVLADP 0.050
    5 TVDVLADPQE 0.015
    4 VTVDVLADPQ 0.010
    2 SQVTVDVLAD 0.010
    8 VLADPQEDSG 0.010
    9 LADPQEDSGK 0.009
    10 ADPQEDSGKQ 0.003
    6 VDVLADPQED 0.001
    V14-HLA-B7-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 29; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    8 ASASLVAGTL 12.000
    3 SSNPPASASL 4.000
    5 NPPASASLVA 2.000
    10 ASLVAGTLSV 0.600
    4 SNPPASASLV 0.200
    1 LGSSNPPASA 0.150
    9 SASLVAGTLS 0.060
    7 PASASLVAGT 0.030
    2 GSSNPPASAS 0.030
    6 PPASASLVAG 0.020
  • TABLE XX
    V1-HLA-B3501-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position for
    each peptide is the start
    position plus eight.
    Start Subsequence Score
    1 MPLSLGAEM 40.000
    106 NPLDGSVLL 40.000
    100 QPPPPRNPL 20.000
    495 KPTGNGIYI 16.000
    378 KAQQMTQKY 12.000
    200 RSAAVTSEF 10.000
    138 QARLRLRVL 9.000
    493 RAKPTGNGI 7.200
    322 SSRDSQVTV 6.000
    407 DPRSQPEES 6.000
    142 RLRVLVPPL 6.000
    11 GPEAWLLLL 6.000
    71 DAGEGAQEL 6.000
    129 VSTFPAGSF 5.000
    325 DSQVTVDVL 5.000
    135 GSFQARLRL 5.000
    292 GVRVDGDTL 4.500
    305 LTTEHSGIY 4.000
    287 GPLPSGVRV 4.000
    117 AVQADEGEY 3.000
    26 TGRCPAGEL 3.000
    202 AAVTSEFHL 3.000
    251 RGLEDQNLW 3.000
    29 CPAGELETS 3.000
    105 RNPLDGSVL 3.000
    13 EAWLLLLLL 3.000
    356 IAALLFCLL 3.000
    410 SQPEESVGL 3.000
    477 GIKQAMNHF 3.000
    175 GSPAPSVTW 2.500
    366 VVVVLMSRY 2.000
    275 QPPPSYNWT 2.000
    50 LPCFYRGDS 2.000
    150 LPSLNPGPA 2.000
    78 ELALLHSKY 2.000
    348 ASVVVVGVI 2.000
    363 LLVVVVVLM 2.000
    57 DSGEQVGQV 2.000
    86 YGLHVSPAY 2.000
    10 WGPEAWLLL 2.000
    188 KGTTSSRSF 2.000
    302 FPPLTTEHS 2.000
    277 PPSYNWTRL 2.000
    443 RSYSTLTTV 2.000
    419 RAEGHPDSL 1.800
    74 EGAQELALL 1.500
    260 HIGREGAML 1.500
    36 TSDVVTVVL 1.500
    83 HSKYGLHVS 1.500
    198 HSRSAAVTS 1.500
    371 MSRYHRRKA 1.500
    8 EMWGPEAWL 1.000
    222 TCVVSHPGL 1.000
    17 LLLLLLASF 1.000
    80 ALLHSKYGL 1.000
    355 VIAALLFCL 1.000
    42 VVLGQDAKL 1.000
    242 VSFLAEASV 1.000
    214 RSMNGQPLT 1.000
    351 VVVGVIAAL 1.000
    382 MTQKYEEEL 1.000
    313 YVCHVSNEF 1.000
    309 HSGIYVCHV 1.000
    353 VGVIAALLF 1.000
    352 VVGVIAALL 1.000
    362 CLLVVVVVL 1.000
    90 VSPAYEGRV 1.000
    194 RSFKHSRSA 1.000
    145 VLVPPLPSL 1.000
    223 CVVSHPGLL 1.000
    338 DSGKQVDLV 1.000
    110 GSVLLRNAV 1.000
    236 ITHILHVSF 1.000
    157 PALEEGQGL 0.900
    294 RVDGDTLGF 0.900
    245 LAEASVRGL 0.900
    321 FSSRDSQVT 0.750
    425 DSLKDNSSC 0.750
    347 SASVVVVGV 0.600
    357 AALLFCLLV 0.600
    439 EPEGRSYST 0.600
    450 TVREIETQT 0.600
    334 DPQEDSGKQ 0.600
    423 HPDSLKDNS 0.600
    103 PPRNPLDGS 0.600
    426 SLKDNSSCS 0.600
    374 YHRRKAQQM 0.600
    23 ASFTGRCPA 0.500
    274 GQPPPSYNW 0.500
    191 TSSRSFKHS 0.500
    151 PSLNPGPAL 0.500
    402 HSHHTDPRS 0.500
    383 TQKYEEELT 0.450
    428 KDNSSCSVM 0.400
    446 STLTTVREI 0.400
    390 LTLTRENSI 0.400
    35 ETSDVVTVV 0.400
    341 KQVDLVSAS 0.400
    452 REIETQTEL 0.400
    491 TLRAKPTGN 0.300
    V2-HLA-B3501-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 5; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    6 LPCLYRGDS 2.000
    1 GQDAKLPCL 0.300
    2 QDAKLPCLY 0.200
    3 DAKLPCLYR 0.090
    5 KLPCLYRGD 0.020
    8 CLYRGDSGE 0.010
    9 LYRGDSGEQ 0.005
    4 AKLPCLYRG 0.001
    7 PCLYRGDSG 0.001
    V7-HLA-B3501-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 15; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    5 DPRSQSEEP 0.600
    7 RSQSEEPEG 0.150
    8 SQSEEPEGR 0.030
    2 HHTDPRSQS 0.020
    3 HTDPRSQSE 0.003
    1 SHHTDPRSQ 0.002
    4 TDPRSQSEE 0.001
    6 PRSQSEEPE 0.000
    V9-HLA-B3501-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 19; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    25 FPLVVFFIY 40.000
    23 LPFPLVVFF 20.000
    115 NSCDCERGY 20.000
    91 KAFRFIQCL 6.000
    71 LSVHHCACF 5.000
    107 RPLQHQGVN 4.000
    59 NPPASASLV 4.000
    121 RGYFQGIFM 4.000
    10 LLRITFNFF 3.000
    47 VAQAGLELL 3.000
    63 SASLVAGTL 3.000
    88 KLKKAFRFI 2.400
    27 LVVFFIYFY 2.000
    12 RITFNFFLF 2.000
    46 YVAQAGLEL 1.000
    15 FNFFLFFFL 1.000
    7 AGILLRITF 1.000
    22 FLPFPLVVF 1.000
    95 FIQCLLLGL 1.000
    101 LGLLKVRPL 1.000
    31 FIYFYFYFF 1.000
    58 SNPPASASL 1.000
    28 VVFFIYFYF 1.000
    9 ILLRITFNF 1.000
    13 ITFNFFLFF 1.000
    96 IQCLLLGLL 1.000
    85 RKKKLKKAF 0.600
    126 GIFMQAAPW 0.500
    57 SSNPPASAS 0.500
    62 ASASLVAGT 0.500
    64 ASLVAGTLS 0.500
    56 GSSNPPASA 0.500
    116 SCDCERGYF 0.450
    49 QAGLELLGS 0.450
    5 LLAGILLRI 0.400
    38 FFLEMESHY 0.400
    92 AFRFIQCLL 0.300
    6 LAGILLRIT 0.300
    1 MRRELLAGI 0.240
    87 KKLKKAFRF 0.200
    60 PPASASLVA 0.200
    3 RELLAGILL 0.200
    98 CLLLGLLKV 0.200
    34 FYFYFFLEM 0.200
    65 SLVAGTLSV 0.200
    50 AGLELLGSS 0.200
    29 VFFIYFYFY 0.200
    119 CERGYFQGI 0.120
    93 FRFIQCLLL 0.100
    70 TLSVHHCAC 0.100
    19 LFFFLPFPL 0.100
    111 HQGVNSCDC 0.100
    30 FFIYFYFYF 0.100
    11 LRITFNFFL 0.100
    55 LGSSNPPAS 0.100
    32 IYFYFYFFL 0.100
    54 LLGSSNPPA 0.100
    26 PLVVFFIYF 0.100
    14 TFNFFLFFF 0.100
    44 SHYVAQAGL 0.100
    69 GTLSVHHCA 0.100
    109 LQHQGVNSC 0.100
    17 FFLFFFLPF 0.100
    81 SFTKRKKKL 0.100
    124 FQGIFMQAA 0.100
    74 HHCACFESF 0.100
    75 HCACFESFT 0.100
    120 ERGYFQGIF 0.100
    68 AGTLSVHHC 0.100
    129 MQAAPWEGT 0.100
    8 GILLRITFN 0.100
    39 FLEMESHYV 0.090
    84 KRKKKLKKA 0.060
    105 KVRPLQHQG 0.060
    2 RRELLAGIL 0.060
    80 ESFTKRKKK 0.050
    43 ESHYVAQAG 0.050
    76 CACFESFTK 0.045
    67 VAGTLSVHH 0.030
    82 FTKRKKKLK 0.030
    103 LLKVRPLQH 0.030
    51 GLELLGSSN 0.030
    90 KKAFRFIQC 0.020
    20 FFFLPFPLV 0.020
    40 LEMESHYVA 0.020
    77 ACFESFTKR 0.020
    106 VRPLQHQGV 0.020
    21 FFLPFPLVV 0.020
    114 VNSCDCERG 0.015
    42 MESHYVAQA 0.010
    66 LVAGTLSVH 0.010
    72 SVHHCACFE 0.010
    100 LLGLLKVRP 0.010
    18 FLFFFLPFP 0.010
    125 QGIFMQAAP 0.010
    97 QCLLLGLLK 0.010
    99 LLLGLLKVR 0.010
    48 AQAGLELLG 0.010
    102 GLLKVRPLQ 0.010
    73 VHHCACFES 0.010
    V10-HLA-
    B3501-9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 21; each start
    position is specified, the
    length of peptide is 9 amino acids,
    and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    3 CPAGELGTS 3.000
    9 GTSDVVTVV 0.400
    8 LGTSDVVTV 0.300
    2 RCPAGELGT 0.200
    7 ELGTSDVVT 0.100
    5 AGELGTSDV 0.060
    6 GELGTSDVV 0.020
    4 PAGELGTSD 0.006
    1 GRCPAGELG 0.001
    V11-HLA-B3501-
    9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 23; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    1 QARLRLRVM 18.000
    5 RLRVMVPPL 6.000
    8 VMVPPLPSL 1.000
    7 RVMVPPLPS 0.200
    9 MVPPLPSLN 0.100
    3 RLRLRVMVP 0.060
    2 ARLRLRVMV 0.020
    6 LRVMVPPLP 0.001
    4 LRLRVMVPP 0.001
    V12-HLA-
    B3501-9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 25; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    9 CSYSTLTTV 1.000
    5 EPEGCSYST 0.600
    1 VMSEEPEGC 0.300
    2 MSEEPEGCS 0.300
    8 GCSYSTLTT 0.100
    7 EGCSYSTLT 0.100
    3 SEEPEGCSY 0.090
    4 EEPEGCSYS 0.020
    6 PEGCSYSTL 0.010
    V13-HLA-
    B3501-9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 27; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    7 VLADPQEDS 0.200
    1 SQVTVDVLA 0.100
    3 VTVDVLADP 0.020
    2 QVTVDVLAD 0.015
    6 DVLADPQED 0.015
    8 LADPQEDSG 0.009
    4 TVDVLADPQ 0.003
    9 ADPQEDSGK 0.002
    5 VDVLADPQE 0.001
    V14-HLA-
    B3501-9mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 29; each start
    position is specified, the
    length of peptide is 9 amino
    acids, and the end position
    for each peptide is the start
    position plus eight.
    Start Subsequence Score
    4 NPPASASLV 4.000
    8 SASLVAGTL 3.000
    3 SNPPASASL 1.000
    9 ASLVAGTLS 0.500
    7 ASASLVAGT 0.500
    1 GSSNPPASA 0.500
    2 SSNPPASAS 0.500
    5 PPASASLVA 0.200
    6 PASASLVAG 0.003
  • TABLE XXI
    V1-HLA-B3501-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    493 RAKPTGNGIY 36.000
    156 GPALEEGQGL 30.000
    150 LPSLNPGPAL 20.000
    132 FPAGSFQARL 20.000
    409 RSQPEESVGL 15.000
    407 DPRSQPEESV 12.000
    1 MPLSLGAEMW 10.000
    116 NAVQADEGEY 9.000
    436 MSEEPEGRSY 9.000
    334 DPQEDSGKQV 8.000
    227 HPGLLQDQRI 8.000
    11 GPEAWLLLLL 6.000
    392 LTRENSIRRL 6.000
    439 EPEGRSYSTL 6.000
    383 TQKYEEELTL 4.500
    249 SVRGLEDQNL 4.500
    178 APSVTWDTEV 4.000
    495 KPTGNGIYIN 4.000
    271 LSEGQPPPSY 3.000
    79 LALLHSKYGL 3.000
    13 EAWLLLLLLL 3.000
    201 SAAVTSEFHL 3.000
    365 VVVVVLMSRY 2.000
    276 PPPSYNWTRL 2.000
    128 RVSTFPAGSF 2.000
    35 ETSDVVTVVL 2.000
    362 CLLVVVVVLM 2.000
    235 RITHILHVSF 2.000
    44 LGQDAKLPCF 2.000
    144 RVLVPPLPSL 2.000
    445 YSTLTTVREI 2.000
    10 WGPEAWLLLL 2.000
    176 SPAPSVTWDT 2.000
    105 RNPLDGSVLL 2.000
    244 FLAEASVRGL 2.000
    138 QARLRLRVLV 1.800
    291 SGVRVDGDTL 1.500
    192 SSRSFKHSRS 1.500
    212 PSRSMNGQPL 1.500
    8 EMWGPEAWLL 1.500
    426 SLKDNSSCSV 1.200
    411 QPEESVGLRA 1.200
    103 PPRNPLDGSV 1.200
    303 PPLTTEHSGI 1.200
    347 SASVVVVGVI 1.200
    473 DQDEGIKQAM 1.200
    361 FCLLVVVVVL 1.000
    236 ITHILHVSFL 1.000
    221 LTCVVSHPGL 1.000
    222 TCVVSHPGLL 1.000
    25 FTGRCPAGEL 1.000
    346 VSASVVVVGV 1.000
    354 GVIAALLFCL 1.000
    57 DSGEQVGQVA 1.000
    194 RSFKHSRSAA 1.000
    214 RSMNGQPLTC 1.000
    381 QMTQKYEEEL 1.000
    137 FQARLRLRVL 1.000
    355 VIAALLFCLL 1.000
    350 VVVVGVIAAL 1.000
    352 VVGVIAALLF 1.000
    351 VVVGVIAALL 1.000
    317 VSNEFSSRDS 1.000
    500 GIYINGRGHL 1.000
    16 LLLLLLLASF 1.000
    99 EQPPPPRNPL 1.000
    41 TVVLGQDAKL 1.000
    280 YNWTRLDGPL 1.000
    134 AGSFQARLRL 1.000
    476 EGIKQAMNHF 1.000
    321 FSSRDSQVTV 1.000
    202 AAVTSEFHLV 0.900
    67 WARVDAGEGA 0.900
    341 KQVDLVSASV 0.800
    230 LLQDQRITHI 0.800
    169 ASCTAEGSPA 0.750
    71 DAGEGAQELA 0.600
    233 DQRITHILHV 0.600
    158 ALEEGQGLTL 0.600
    45 GQDAKLPCFY 0.600
    477 GIKQAMNHFV 0.600
    75 GAQELALLHS 0.600
    357 AALLFCLLVV 0.600
    261 IGREGAMLKC 0.600
    356 IAALLFCLLV 0.600
    423 HPDSLKDNSS 0.600
    309 HSGIYVCHVS 0.500
    248 ASVRGLEDQN 0.500
    348 ASVVVVGVIA 0.500
    174 EGSPAPSVTW 0.500
    425 DSLKDNSSCS 0.500
    338 DSGKQVDLVS 0.500
    273 EGQPPPSYNW 0.500
    6 GAEMWGPEAW 0.450
    339 SGKQVDLVSA 0.450
    106 NPLDGSVLLR 0.400
    377 RKAQQMTQKY 0.400
    452 REIETQTELL 0.400
    389 ELTLTRENSI 0.400
    305 LTTEHSGIYV 0.400
    V2-HLA-B3501-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 5; each start
    position is specified, the
    length of peptide is 10
    amino acids, and the end
    position for each peptide is
    the start position plus nine.
    Start Subsequence Score
    1 LGQDAKLPCL 2.000
    2 GQDAKLPCLY 0.600
    7 LPCLYRGDSG 0.200
    6 KLPCLYRGDS 0.200
    4 DAKLPCLYRG 0.090
    10 LYRGDSGEQV 0.060
    9 CLYRGDSGEQ 0.015
    3 QDAKLPCLYR 0.001
    8 PCLYRGDSGE 0.001
    5 AKLPCLYRGD 0.001
    V7-HLA-
    B3501-10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 15; each start
    position is specified, the
    length of peptide is 10
    amino acids, and the end
    position for each peptide is
    the start position plus nine.
    Start Subsequence Score
    6 DPRSQSEEPE 0.600
    9 SQSEEPEGRS 0.200
    8 RSQSEEPEGR 0.150
    1 HSHHTDPRSQ 0.075
    2 SHHTDPRSQS 0.010
    4 HTDPRSQSEE 0.003
    3 HHTDPRSQSE 0.002
    5 TDPRSQSEEP 0.001
    7 PRSQSEEPEG 0.000
    V9-HLA-B3501-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 19; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Start Subsequence Score
    25 FPLVVFFIYF 20.000
    115 NSCDCERGYF 15.000
    23 LPFPLVVFFI 8.000
    91 KAFRFIQCLL 6.000
    57 SSNPPASASL 5.000
    80 ESFTKRKKKL 5.000
    43 ESHYVAQAGL 5.000
    62 ASASLVAGTL 5.000
    107 RPLQHQGVNS 4.000
    6 LAGILLRITF 3.000
    10 LLRITFNFFL 3.000
    59 NPPASASLVA 2.000
    28 VVFFIYFYFY 2.000
    114 VNSCDCERGY 2.000
    12 RITFNFFLFF 2.000
    105 KVRPLQHQGV 1.200
    64 ASLVAGTLSV 1.000
    70 TLSVHHCACF 1.000
    13 ITFNFFLFFF 1.000
    18 FLFFFLPFPL 1.000
    100 LLGLLKVRPL 1.000
    95 FIQCLLLGLL 1.000
    8 GILLRITFNF 1.000
    9 ILLRITFNFF 1.000
    46 YVAQAGLELL 1.000
    31 FIYFYFYFFL 1.000
    27 LVVFFIYFYF 1.000
    22 FLPFPLVVFF 1.000
    86 KKKLKKAFRF 0.600
    84 KRKKKLKKAF 0.600
    1 MRRELLAGIL 0.600
    56 GSSNPPASAS 0.500
    125 QGIFMQAAPW 0.500
    4 ELLAGILLRI 0.400
    119 CERGYFQGIF 0.300
    63 SASLVAGTLS 0.300
    67 VAGTLSVHHC 0.300
    92 AFRFIQCLLL 0.300
    49 QAGLELLGSS 0.300
    120 ERGYFQGIFM 0.200
    58 SNPPASASLV 0.200
    90 KKAFRFIQCL 0.200
    33 YFYFYFFLEM 0.200
    50 AGLELLGSSN 0.200
    97 QCLLLGLLKV 0.200
    26 PLVVFFIYFY 0.200
    37 YFFLEMESHY 0.200
    94 RFIQCLLLGL 0.200
    48 AQAGLELLGS 0.150
    118 DCERGYFQGI 0.120
    21 FFLPFPLVVF 0.100
    14 TFNFFLFFFL 0.100
    30 FFIYFYFYFF 0.100
    72 SVHHCACFES 0.100
    55 LGSSNPPASA 0.100
    69 GTLSVHHCAC 0.100
    45 HYVAQAGLEL 0.100
    53 ELLGSSNPPA 0.100
    16 NFFLFFFLPF 0.100
    128 FMQAAPWEGT 0.100
    11 LRITFNFFLF 0.100
    68 AGTLSVHHCA 0.100
    7 AGILLRITFN 0.100
    54 LLGSSNPPAS 0.100
    73 VHHCACFESF 0.100
    29 VFFIYFYFYF 0.100
    5 LLAGILLRIT 0.100
    87 KKLKKAFRFI 0.080
    38 FFLEMESHYV 0.060
    88 KLKKAFRFIQ 0.060
    2 RRELLAGILL 0.060
    71 LSVHHCACFE 0.050
    83 TKRKKKLKKA 0.030
    47 VAQAGLELLG 0.030
    103 LLKVRPLQHQ 0.030
    61 PASASLVAGT 0.030
    76 CACFESFTKR 0.030
    82 FTKRKKKLKK 0.030
    89 LKKAFRFIQC 0.030
    41 EMESHYVAQA 0.030
    39 FLEMESHYVA 0.030
    121 RGYFQGIFMQ 0.020
    24 PFPLVVFFIY 0.020
    60 PPASASLVAG 0.020
    77 ACFESFTKRK 0.020
    19 LFFFLPFPLV 0.020
    20 FFFLPFPLVV 0.020
    75 HCACFESFTK 0.015
    113 GVNSCDCERG 0.015
    108 PLQHQGVNSC 0.010
    98 CLLLGLLKVR 0.010
    110 QHQGVNSCDC 0.010
    15 FNFFLFFFLP 0.010
    99 LLLGLLKVRP 0.010
    65 SLVAGTLSVH 0.010
    101 LGLLKVRPLQ 0.010
    111 HQGVNSCDCE 0.010
    126 GIFMQAAPWE 0.010
    96 IQCLLLGLLK 0.010
    102 GLLKVRPLQH 0.010
    V10-HLA-
    B3501-10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 21; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Start Subsequence Score
    10 GTSDVVTVVL 2.000
    8 ELGTSDVVTV 0.300
    3 RCPAGELGTS 0.300
    4 CPAGELGTSD 0.200
    9 LGTSDVVTVV 0.200
    5 PAGELGTSDV 0.120
    6 AGELGTSDVV 0.060
    1 TGRCPAGELG 0.030
    2 GRCPAGELGT 0.010
    7 GELGTSDVVT 0.010
    V11-HLA-B3501-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 23; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    8 RVMVPPLPSL 2.000
    1 FQARLRLRVM 2.000
    2 QARLRLRVMV 1.800
    9 VMVPPLPSLN 0.100
    5 LRLRVMVPPL 0.100
    4 RLRLRVMVPP 0.060
    6 RLRVMVPPLP 0.060
    10 MVPPLPSLNP 0.010
    7 LRVMVPPLPS 0.010
    3 ARLRLRVMVP 0.001
    V12-HLA-
    B3501-10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 25; each start
    position is specified, the
    length of peptide is 10
    amino acids, and the end
    position for each peptide is
    the start position plus nine.
    Start Subsequence Score
    3 MSEEPEGCSY 9.000
    6 EPEGCSYSTL 6.000
    2 VMSEEPEGCS 0.200
    9 GCSYSTLTTV 0.200
    1 SVMSEEPEGC 0.150
    8 EGCSYSTLTT 0.100
    10 CSYSTLTTVR 0.050
    5 EEPEGCSYST 0.020
    4 SEEPEGCSYS 0.003
    7 PEGCSYSTLT 0.001
    11 SYSTLTTVRE 0.001
    V13-HLA-B3501-
    10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 27; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position for
    each peptide is the start
    position plus nine.
    Start Subsequence Score
    1 DSQVTVDVLA 0.500
    7 DVLADPQEDS 0.100
    8 VLADPQEDSG 0.020
    4 VTVDVLADPQ 0.020
    2 SQVTVDVLAD 0.015
    9 LADPQEDSGK 0.013
    3 QVTVDVLADP 0.010
    5 TVDVLADPQE 0.003
    10 ADPQEDSGKQ 0.002
    6 VDVLADPQED 0.002
    V14-HLA-
    B3501-10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 29; each start
    position is specified, the
    length of peptide is 10
    amino acids, and the end
    position for each peptide is
    the start position plus nine.
    Start Subsequence Score
    8 ASASLVAGTL 5.000
    3 SSNPPASASL 5.000
    5 NPPASASLVA 2.000
    10 ASLVAGTLSV 1.000
    2 GSSNPPASAS 0.500
    9 SASLVAGTLS 0.300
    4 SNPPASASLV 0.200
    1 LGSSNPPASA 0.100
    7 PASASLVAGT 0.030
    6 PPASASLVAG 0.020
  • TABLE XXII
    V1-HLA-
    A1-9mers-191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 3; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    437 S E E P E G R S Y 32
    107 P L D G S V L L R 21
    305 L T T E H S G I Y 21
    306 T T E H S G I Y V 21
    159 L E E G Q G L T L 20
    252 G L E D Q N L W H 20
    405 H T D P R S Q P E 20
    86 Y G L H V S P A Y 19
    262 G R E G A M L K C 19
    412 P E E S V G L R A 19
    486 V Q E N G T L R A 19
    494 A K P T G N G I Y 19
    11 G P E A W L L L L 18
    78 E L A L L H S K Y 18
    272 S E G Q P P P S Y 18
    332 V L D P Q E D S G 18
    386 Y E E E L T L T R 18
    36 T S D V V T V V L 17
    76 A Q E L A L L H S 17
    184 D T E V K G T T S 17
    225 V S H P G L L Q D 17
    271 L S E G Q P P P S 17
    294 R V D G D T L G F 17
    378 K A Q Q M T Q K Y 17
    58 S G E Q V G Q V A 16
    117 A V Q A D E G E Y 16
    158 A L E E G Q G L T 16
    323 S R D S Q V T V D 16
    366 V V V V L M S R Y 16
    457 Q T E L L S P G S 16
    46 Q D A K L P C F Y 15
    436 M S E E P E G R S 15
    V2-HLA-
    A1-9mers-191P4D12
    Each peptide is a
    portion of SEQ ID
    NO: 5; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    2 Q D A K L P C L Y 17
    1 G Q D A K L P C L 10
    V7-HLA-
    A1-9mers-191P4D12
    Each peptide is a
    portion of SEQ ID
    NO: 15; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    3 H T D P R S Q S E 20
    V9-HLA-
    A1-9mers-191P4D12
    Each peptide is a
    portion of SEQ ID
    NO: 19; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    25 F P L V V F F I Y 21
    29 V F F I Y F Y F Y 20
    115 N S C D C E R G Y 19
    38 F F L E M E S H Y 16
    13 I T F N F F L F F 15
    27 L V V F F I Y F Y 15
    116 S C D C E R G Y F 13
    21 F F L P F P L V V 12
    39 F L E M E S H Y V 12
    51 G L E L L G S S N 12
    118 D C E R G Y F Q G 12
    4 E L L A G I L L R 11
    57 S S N P P A S A S 11
    65 S L V A G T L S V 11
    93 F R F I Q C L L L 11
    98 C L L L G L L K V 11
    2 R R E L L A G I L 10
    17 F F L F F F L P F 10
    34 F Y F Y F F L E M 10
    41 E M E S H Y V A Q 10
    48 A Q A G L E L L G 10
    78 C F E S F T K R K 10
    V10-HLA-
    A1-9mers-191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 21; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    5 A G E L G T S D V 13
    9 G T S D V V T V V 10
    2 R C P A G E L G T 8
    1 G R C P A G E L G 7
    V11-HLA-
    A1-9mers-191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 23; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    7 R V M V P P L P S 7
    8 V M V P P L P S L 6
    9 M V P P L P S L N 6
    6 L R V M V P P L P 4
    2 A R L R L R V M V 3
    3 R L R L R V M V P 3
    V12-HLA-
    A1-9mers-191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 25; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    3 S E E P E G C S Y 32
    V13-HLA-
    A1-9mers-191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 27; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    8 L A D P Q E D S G 16
    4 T V D V L A D P Q 10
    3 V T V D V L A D P 9
    2 Q V T V D V L A D 7
    V14-HLA-
    A1-9mers-191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 29; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    2 S S N P P A S A S 11
    9 A S L V A G T L S 8
    5 P P A S A S L V A 7
    3 S N P P A S A S L 6
    7 A S A S L V A G T 6
    1 G S S N P P A S A 5
  • TABLE XXIII
    V1-HLA-
    A0201-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 3; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 Score
    145 V L V P P L P S L 31
    359 L L F C L L V V V 30
    358 A L L F C L L V V 28
    362 C L L V V V V V L 28
    80 A L L H S K Y G L 26
    142 R L R V L V P P L 26
    355 V I A A L L F C L 26
    351 V V V G V I A A L 24
    502 Y I N G R G H L V 24
    17 L L L L L L A S F 23
    42 V V L G Q D A K L 23
    347 S A S V V V V G V 23
    15 W L L L L L L L A 22
    345 L V S A S V V V V 22
    363 L L V V V V V L M 22
    446 S T L T T V R E I 22
    8 E M W G P E A W L 21
    16 L L L L L L L A S 21
    344 D L V S A S V V V 21
    14 A W L L L L L L L 20
    245 L A E A S V R G L 20
    260 H I G R E G A M L 20
    284 R L D G P L P S G 20
    357 A A L L F C L L V 20
    460 L L S P G S G R A 20
    18 L L L L L A S F T 19
    34 L E T S D V V T V 19
    71 D A G E G A Q E L 19
    112 V L L R N A V Q A 19
    152 S L N P G P A L E 19
    158 A L E E G Q G L T 19
    356 I A A L L F C L L 19
    360 L F C L L V V V V 19
    361 F C L L V V V V V 19
    390 L T L T R E N S I 19
    13 E A W L L L L L L 18
    138 Q A R L R L R V L 18
    266 A M L K C L S E G 18
    342 Q V D L V S A S V 18
    481 A M N H F V Q E N 18
    21 L L A S F T G R C 17
    106 N P L D G S V L L 17
    113 L L R N A V Q A D 17
    139 A R L R L R V L V 17
    229 G L L Q D Q R I T 17
    234 Q R I T H I L H V 17
    244 F L A E A S V R G 17
    287 G P L P S G V R V 17
    292 G V R V D G D T L 17
    299 T L G F P P L T T 17
    322 S S R D S Q V T V 17
    352 V V G V I A A L L 17
    382 M T Q K Y E E E L 17
    410 S Q P E E S V G L 17
    419 R A E G H P D S L 17
    443 R S Y S T L T T V 17
    19 L L L L A S F T G 16
    35 E T S D V V T V V 16
    157 P A L E E G Q G L 16
    159 L E E G Q G L T L 16
    173 A E G S P A P S V 16
    202 A A V T S E F H L 16
    203 A V T S E F H L V 16
    215 S M N G Q P L T C 16
    237 T H I L H V S F L 16
    242 V S F L A E A S V 16
    285 L D G P L P S G V 16
    350 V V V V G V I A A 16
    384 Q K Y E E E L T L 16
    452 R E I E T Q T E L 16
    453 E I E T Q T E L L 16
    501 I Y I N G R G H L 16
    11 G P E A W L L L L 15
    12 P E A W L L L L L 15
    20 L L L A S F T G R 15
    32 G E L E T S D V V 15
    57 D S G E Q V G Q V 15
    74 E G A Q E L A L L 15
    137 F Q A R L R L R V 15
    140 R L R L R V L V P 15
    216 M N G Q P L T C V 15
    217 N G Q P L T C V V 15
    230 L L Q D Q R I T H 15
    240 L H V S F L A E A 15
    270 C L S E G Q P P P 15
    304 P L T T E H S G I 15
    309 H S G I Y V C H V 15
    332 V L D P Q E D S G 15
    493 R A K P T G N G I 15
    V2-HLA-
    A0201-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 5; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 Score
    1 G Q D A K L P C L 17
    8 C L Y R G D S G E 14
    5 K L P C L Y R G D 13
    4 A K L P C L Y R G 11
    V7-HLA-
    A0201-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 15; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 Score
    3 H T D P R S Q S E 8
    8 S Q S E E P E G R 5
    1 S H H T D P R S Q 4
    7 R S Q S E E P E G 3
    V9-HLA-
    A0201-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 19; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 Score
    98 C L L L G L L K V 31
    5 L L A G I L L R I 29
    65 S L V A G T L S V 29
    95 F I Q C L L L G L 26
    39 F L E M E S H Y V 21
    46 Y V A Q A G L E L 21
    47 V A Q A G L E L L 21
    91 K A F R F I Q C L 21
    99 L L L G L L K V R 20
    101 L G L L K V R P L 19
    1 M R R E L L A G I 18
    58 S N P P A S A S L 18
    63 S A S L V A G T L 18
    88 K L K K A F R F I 18
    18 F L F F F L P F P 17
    21 F F L P F P L V V 17
    22 F L P F P L V V F 17
    54 L L G S S N P P A 17
    96 I Q C L L L G L L 17
    4 E L L A G I L L R 16
    9 I L L R I T F N F 16
    44 S H Y V A Q A G L 16
    62 A S A S L V A G T 16
    6 L A G I L L R I T 15
    8 G I L L R I T F N 15
    11 L R I T F N F F L 15
    100 L L G L L K V R P 15
    V10-
    HLA-A0201-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 21; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 Score
    9 G T S D V V T V V 20
    8 L G T S D V V T V 19
    5 A G E L G T S D V 15
    6 G E L G T S D V V 15
    7 E L G T S D V V T 13
    3 C P A G E L G T S 10
    V11-
    HLA-A0201-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 23; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 Score
    8 V M V P P L P S L 29
    5 R L R V M V P P L 25
    2 A R L R L R V M V 17
    3 R L R L R V M V P 14
    V12-
    HLA-A0201-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 25; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 Score
    9 C S Y S T L T T V 17
    1 V M S E E P E G C 12
    6 P E G C S Y S T L 9
    8 G C S Y S T L T T 9
    V13-
    HLA-A0201-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 27; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 Score
    7 V L A D P Q E D S 15
    3 V T V D V L A D P 12
    8 L A D P Q E D S G 10
    2 Q V T V D V L A D 9
    1 S Q V T V D V L A 8
    6 D V L A D P Q E D 7
    V14-
    HLA-A0201-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 29; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 Score
    3 S N P P A S A S L 18
    8 S A S L V A G T L 18
    7 A S A S L V A G T 16
    1 G S S N P P A S A 10
    4 N P P A S A S L V 10
    6 P A S A S L V A G 8
  • TABLE XXIV
    V1-HLA-
    A0203-9mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 score
    No Results Found.
    V2-HLA-
    A0203-9mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 score
    No Results Found.
    V7-HLA-
    A0203-9mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 score
    No Results Found.
    V9-HLA-
    A0203-9mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 score
    No Results Found.
    V10-HLA-
    A0203-9mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 score
    No Results Found.
    V11-HLA-
    A0203-9mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 score
    No Results Found.
    V12-HLA-
    A0203-9mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 score
    No Results Found.
    V13-HLA-
    A0203-9mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 score
    No Results Found.
    V14-HLA-
    A0203-9mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 score
    No Results Found.
  • TABLE XXV
    V1-HLA-
    A03-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 3; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    140 R L R L R V L V P 27
    112 V L L R N A V Q A 25
    180 S V T W D T E V K 25
    41 T V V L G Q D A K 24
    111 S V L L R N A V Q 23
    294 R V D G D T L G F 23
    17 L L L L L L A S F 22
    117 A V Q A D E G E Y 22
    186 E V K G T T S S R 22
    261 I G R E G A M L K 22
    358 A L L F C L L V V 22
    397 S I R R L H S H H 22
    459 E L L S P G S G R 22
    61 Q V G Q V A W A R 21
    78 E L A L L H S K Y 21
    362 C L L V V V V V L 21
    415 S V G L R A E G H 21
    69 R V D A G E G A Q 20
    144 R V L V P P L P S 20
    152 S L N P G P A L E 20
    230 L L Q D Q R I T H 20
    292 G V R V D G D T L 20
    316 H V S N E F S S R 20
    345 L V S A S V V V V 20
    391 T L T R E N S I R 20
    500 G I Y I N G R G H 20
    18 L L L L L A S F T 19
    20 L L L A S F T G R 19
    97 R V E Q P P P P R 19
    107 P L D G S V L L R 19
    243 S F L A E A S V R 19
    249 S V R G L E D Q N 19
    252 G L E D Q N L W H 19
    342 Q V D L V S A S V 19
    349 S V V V V G V I A 19
    366 V V V V L M S R Y 19
    377 R K A Q Q M T Q K 19
    485 F V Q E N G T L R 19
    33 E L E T S D V V T 18
    64 Q V A W A R V D A 18
    77 Q E L A L L H S K 18
    128 R V S T F P A G S 18
    209 H L V P S R S M N 18
    260 H I G R E G A M L 18
    284 R L D G P L P S G 18
    299 T L G F P P L T T 18
    311 G I Y V C H V S N 18
    344 D L V S A S V V V 18
    354 G V I A A L L F C 18
    359 L L F C L L V V V 18
    365 V V V V V L M S R 18
    417 G L R A E G H P D 18
    450 T V R E I E T Q T 18
    491 T L R A K P T G N 18
    2 P L S L G A E M W 17
    16 L L L L L L L A S 17
    19 L L L L A S F T G 17
    42 V V L G Q D A K L 17
    89 H V S P A Y E G R 17
    142 R L R V L V P P L 17
    146 L V P P L P S L N 17
    158 A L E E G Q G L T 17
    164 G L T L A A S C T 17
    351 V V V G V I A A L 17
    368 V V L M S R Y H R 17
    15 W L L L L L L L A 16
    81 L L H S K Y G L H 16
    197 K H S R S A A V T 16
    224 V V S H P G L L Q 16
    235 R I T H I L H V S 16
    239 I L H V S F L A E 16
    244 F L A E A S V R G 16
    288 P L P S G V R V D 16
    352 V V G V I A A L L 16
    369 V L M S R Y H R R 16
    420 A E G H P D S L K 16
    426 S L K D N S S C S 16
    460 L L S P G S G R A 16
    39 V V T V V L G Q D 15
    80 A L L H S K Y G L 15
    105 R N P L D G S V L 15
    113 L L R N A V Q A D 15
    145 V L V P P L P S L 15
    166 T L A A S C T A E 15
    200 R S A A V T S E F 15
    313 Y V C H V S N E F 15
    327 Q V T V D V L D P 15
    332 V L D P Q E D S G 15
    363 L L V V V V V L M 15
    364 L V V V V V L M S 15
    367 V V V L M S R Y H 15
    373 R Y H R R K A Q Q 15
    400 R L H S H H T D P 15
    437 S E E P E G R S Y 15
    487 Q E N G T L R A K 15
    502 Y I N G R G H L V 15
    38 D V V T V V L G Q 14
    87 G L H V S P A Y E 14
    189 G T T S S R S F K 14
    198 H S R S A A V T S 14
    219 Q P L T C V V S H 14
    220 P L T C V V S H P 14
    241 H V S F L A E A S 14
    384 Q K Y E E E L T L 14
    396 N S I R R L H S H 14
    409 R S Q P E E S V G 14
    4 S L G A E M W G P 13
    43 V L G Q D A K L P 13
    49 K L P C F Y R G D 13
    84 S K Y G L H V S P 13
    124 E Y E C R V S T F 13
    139 A R L R L R V L V 13
    203 A V T S E F H L V 13
    210 L V P S R S M N G 13
    236 I T H I L H V S F 13
    257 N L W H I G R E G 13
    270 C L S E G Q P P P 13
    304 P L T T E H S G I 13
    322 S S R D S Q V T V 13
    329 T V D V L D P Q E 13
    331 D V L D P Q E D S 13
    333 L D P Q E D S G K 13
    350 V V V V G V I A A 13
    370 L M S R Y H R R K 13
    374 Y H R R K A Q Q M 13
    443 R S Y S T L T T V 13
    477 G I K Q A M N H F 13
    V2-HLA-
    A03-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 5; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    8 C L Y R G D S G E 22
    5 K L P C L Y R G D 13
    2 Q D A K L P C L Y 10
    V7-HLA-
    A03-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 15; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    2 H H T D P R S Q S 8
    3 H T D P R S Q S E 7
    8 S Q S E E P E G R 7
    4 T D P R S Q S E E 6
    1 S H H T D P R S Q 4
    7 R S Q S E E P E G 4
    5 D P R S Q S E E P 3
    V9-HLA-
    A03-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 19; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    66 L V A G T L S V H 24
    103 L L K V R P L Q H 24
    4 E L L A G I L L R 23
    22 F L P F P L V V F 22
    99 L L L G L L K V R 22
    105 K V R P L Q H Q G 22
    9 I L L R I T F N F 21
    97 Q C L L L G L L K 21
    65 S L V A G T L S V 20
    51 G L E L L G S S N 19
    10 L L R I T F N F F 18
    98 C L L L G L L K V 18
    46 Y V A Q A G L E L 17
    83 T K R K K K L K K 17
    108 P L Q H Q G V N S 17
    5 L L A G I L L R I 16
    7 A G I L L R I T F 16
    12 R I T F N F F L F 16
    27 L V V F F I Y F Y 16
    31 F I Y F Y F Y F F 16
    82 F T K R K K K L K 15
    100 L L G L L K V R P 15
    8 G I L L R I T F N 14
    26 P L V V F F I Y F 14
    28 V V F F I Y F Y F 14
    53 E L L G S S N P P 14
    72 S V H H C A C F E 14
    76 C A C F E S F T K 14
    88 K L K K A F R F I 14
    102 G L L K V R P L Q 14
    113 G V N S C D C E R 14
    126 G I F M Q A A P W 14
    21 F F L P F P L V V 13
    86 K K K L K K A F R 13
    87 K K L K K A F R F 13
    38 F F L E M E S H Y 12
    80 E S F T K R K K K 12
    23 L P F P L V V F F 11
    57 S S N P P A S A S 11
    63 S A S L V A G T L 11
    70 T L S V H H C A C 11
    95 F I Q C L L L G L 11
    107 R P L Q H Q G V N 11
    121 R G Y F Q G I F M 11
    V10-HLA-
    A03-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 21; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    7 E L G T S D V V T 18
    2 R C P A G E L G T 11
    5 A G E L G T S D V 9
    3 C P A G E L G T S 8
    6 G E L G T S D V V 8
    8 L G T S D V V T V 8
    V11-HLA-
    A03-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 23; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    3 R L R L R V M V P 25
    7 R V M V P P L P S 18
    5 R L R V M V P P L 17
    9 M V P P L P S L N 17
    2 A R L R L R V M V 14
    1 Q A R L R L R V M 12
    V12-HLA-
    A03-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 25; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    3 S E E P E G C S Y 15
    9 C S Y S T L T T V 9
    6 P E G C S Y S T L 7
    8 G C S Y S T L T T 7
    V13-HLA-
    A03-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 27; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    2 Q V T V D V L A D 16
    9 A D P Q E D S G K 16
    6 D V L A D P Q E D 15
    4 T V D V L A D P Q 13
    7 V L A D P Q E D S 12
    V14-HLA-
    A03-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 29; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    2 S S N P P A S A S 11
    8 S A S L V A G T L 11
    3 S N P P A S A S L 9
    9 A S L V A G T L S 9
    4 N P P A S A S L V 8
    5 P P A S A S L V A 8
    1 G S S N P P A S A 7
    6 P A S A S L V A G 7
    7 A S A S L V A G T 7
  • TABLE XXVI
    V1-HLA-
    A26-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 3; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    38 D V V T V V L G Q 27
    351 V V V G V I A A L 27
    366 V V V V L M S R Y 26
    13 E A W L L L L L L 24
    124 E Y E C R V S T F 24
    223 C V V S H P G L L 24
    455 E T Q T E L L S P 24
    35 E T S D V V T V V 23
    78 E L A L L H S K Y 23
    74 E G A Q E L A L L 22
    186 E V K G T T S S R 22
    305 L T T E H S G I Y 22
    453 E I E T Q T E L L 22
    117 A V Q A D E G E Y 21
    292 G V R V D G D T L 20
    325 D S Q V T V D V L 20
    350 V V V V G V I A A 20
    352 V V G V I A A L L 20
    364 L V V V V V L M S 20
    42 V V L G Q D A K L 19
    184 D T E V K G T T S 19
    294 R V D G D T L G F 19
    331 D V L D P Q E D S 19
    337 E D S G K Q V D L 19
    354 G V I A A L L F C 19
    365 V V V V V L M S R 19
    8 E M W G P E A W L 18
    60 E Q V G Q V A W A 18
    71 D A G E G A Q E L 18
    145 V L V P P L P S L 18
    236 I T H I L H V S F 18
    237 T H I L H V S F L 18
    313 Y V C H V S N E F 18
    449 T T V R E I E T Q 18
    39 V V T V V L G Q D 17
    328 V T V D V L D P Q 17
    355 V I A A L L F C L 17
    41 T V V L G Q D A K 16
    57 D S G E Q V G Q V 16
    130 S T F P A G S F Q 16
    298 D T L G F P P L T 16
    327 Q V T V D V L D P 16
    349 S V V V V G V I A 16
    382 M T Q K Y E E E L 16
    450 T V R E I E T Q T 16
    413 E E S V G L R A E 15
    414 E S V G L R A E G 15
    473 D Q D E G I K Q A 15
    12 P E A W L L L L L 14
    14 A W L L L L L L L 14
    17 L L L L L L A S F 14
    40 V T V V L G Q D A 14
    160 E E G Q G L T L A 14
    260 H I G R E G A M L 14
    345 L V S A S V V V V 14
    367 V V V L M S R Y H 14
    387 E E E L T L T R E 14
    437 S E E P E G R S Y 14
    452 R E I E T Q T E L 14
    472 E D Q D E G I K Q 14
    476 E G I K Q A M N H 14
    484 H F V Q E N G T L 14
    485 F V Q E N G T L R 14
    11 G P E A W L L L L 13
    45 G Q D A K L P C F 13
    109 D G S V L L R N A 13
    135 G S F Q A R L R L 13
    142 R L R V L V P P L 13
    146 L V P P L P S L N 13
    161 E G Q G L T L A A 13
    222 T C V V S H P G L 13
    249 S V R G L E D Q N 13
    320 E F S S R D S Q V 13
    329 T V D V L D P Q E 13
    344 D L V S A S V V V 13
    353 V G V I A A L L F 13
    393 T R E N S I R R L 13
    421 E G H P D S L K D 13
    438 E E P E G R S Y S 13
    446 S T L T T V R E I 13
    459 E L L S P G S G R 13
    501 I Y I N G R G H L 13
    V2-HLA-
    A26-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 5; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    1 G Q D A K L P C L 13
    2 Q D A K L P C L Y 11
    3 D A K L P C L Y R 9
    V7-HLA-
    A26-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 15; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    3 H T D P R S Q S E 10
    5 D P R S Q S E E P 9
    2 H H T D P R S Q S 4
    V9-HLA-
    A26-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 19; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    27 L V V F F I Y F Y 28
    28 V V F F I Y F Y F 24
    13 I T F N F F L F F 21
    46 Y V A Q A G L E L 20
    120 E R G Y F Q G I F 19
    23 L P F P L V V F F 18
    95 F I Q C L L L G L 18
    80 E S F T K R K K K 16
    91 K A F R F I Q C L 16
    4 E L L A G I L L R 15
    7 A G I L L R I T F 15
    66 L V A G T L S V H 15
    12 R I T F N F F L F 14
    29 V F F I Y F Y F Y 14
    96 I Q C L L L G L L 14
    14 T F N F F L F F F 13
    15 F N F F L F F F L 13
    19 L F F F L P F P L 13
    26 P L V V F F I Y F 13
    38 F F L E M E S H Y 13
    93 F R F I Q C L L L 13
    101 L G L L K V R P L 13
    105 K V R P L Q H Q G 13
    V10-HLA-
    A26-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 21; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    9 G T S D V V T V V 13
    7 E L G T S D V V T 10
    8 L G T S D V V T V 7
    3 C P A G E L G T S 6
    V11-HLA-
    A26-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 23; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    8 V M V P P L P S L 18
    9 M V P P L P S L N 13
    5 R L R V M V P P L 12
    7 R V M V P P L P S 11
    V12-HLA-
    A26-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 25; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    3 S E E P E G C S Y 14
    4 E E P E G C S Y S 13
    5 E P E G C S Y S T 11
    7 E G C S Y S T L T 11
    6 P E G C S Y S T L 10
    9 C S Y S T L T T V 6
    V13-HLA-
    A26-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 27; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    6 D V L A D P Q E D 18
    2 Q V T V D V L A D 17
    3 V T V D V L A D P 17
    4 T V D V L A D P Q 12
    V14-HLA-
    A26-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 29; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    3 S N P P A S A S L 11
    8 S A S L V A G T L 11
    7 A S A S L V A G T 6
    6 P A S A S L V A G 5
  • TABLE XXVII
    V1-HLA-
    B0702-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 3; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    100 Q P P P P R N P L 26
    11 G P E A W L L L L 23
    277 P P S Y N W T R L 23
    106 N P L D G S V L L 22
    287 G P L P S G V R V 20
    495 K P T G N G I Y I 20
    150 L P S L N P G P A 19
    439 E P E G R S Y S T 19
    1 M P L S L G A E M 18
    8 E M W G P E A W L 17
    275 Q P P P S Y N W T 17
    289 L P S G V R V D G 17
    337 E D S G K Q V D L 17
    142 R L R V L V P P L 16
    151 P S L N P G P A L 16
    26 T G R C P A G E L 15
    36 T S D V V T V V L 15
    73 G E G A Q E L A L 15
    103 P P R N P L D G S 15
    132 F P A G S F Q A R 15
    145 V L V P P L P S L 15
    147 V P P L P S L N P 15
    159 L E E G Q G L T L 15
    14 A W L L L L L L L 14
    176 S P A P S V T W D 14
    178 A P S V T W D T E 14
    213 S R S M N G Q P L 14
    351 V V V G V I A A L 14
    362 C L L V V V V V L 14
    12 P E A W L L L L L 13
    13 E A W L L L L L L 13
    29 C P A G E L E T S 13
    42 V V L G Q D A K L 13
    74 E G A Q E L A L L 13
    91 S P A Y E G R V E 13
    105 R N P L D G S V L 13
    135 G S F Q A R L R L 13
    138 Q A R L R L R V L 13
    161 E G Q G L T L A A 13
    173 A E G S P A P S V 13
    219 Q P L T C V V S H 13
    260 H I G R E G A M L 13
    263 R E G A M L K C L 13
    292 G V R V D G D T L 13
    294 R V D G D T L G F 13
    297 G D T L G F P P L 13
    345 L V S A S V V V V 13
    356 I A A L L F C L L 13
    419 R A E G H P D S L 13
    462 S P G S G R A E E 13
    9 M W G P E A W L L 12
    10 W G P E A W L L L 12
    35 E T S D V V T V V 12
    80 A L L H S K Y G L 12
    82 L H S K Y G L H V 12
    101 P P P P R N P L D 12
    102 P P P R N P L D G 12
    133 P A G S F Q A R L 12
    148 P P L P S L N P G 12
    154 N P G P A L E E G 12
    202 A A V T S E F H L 12
    211 V P S R S M N G Q 12
    237 T H I L H V S F L 12
    245 L A E A S V R G L 12
    299 T L G F P P L T T 12
    324 R D S Q V T V D V 12
    325 D S Q V T V D V L 12
    352 V V G V I A A L L 12
    355 V I A A L L F C L 12
    384 Q K Y E E E L T L 12
    407 D P R S Q P E E S 12
    410 S Q P E E S V G L 12
    452 R E I E T Q T E L 12
    453 E I E T Q T E L L 12
    501 I Y I N G R G H L 12
    V2-HLA-
    B0702-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 5; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    1 G Q D A K L P C L 13
    6 L P C L Y R G D S 11
    V7-HLA-
    B0702-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 15; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    5 D P R S Q S E E P 12
    V9-HLA-
    B0702-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 19; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    23 L P F P L V V F F 21
    60 P P A S A S L V A 20
    59 N P P A S A S L V 17
    46 Y V A Q A G L E L 14
    92 A F R F I Q C L L 14
    3 R E L L A G I L L 12
    15 F N F F L F F F L 12
    22 F L P F P L V V F 12
    32 I Y F Y F Y F F L 12
    56 G S S N P P A S A 12
    58 S N P P A S A S L 12
    63 S A S L V A G T L 12
    93 F R F I Q C L L L 12
    95 F I Q C L L L G L 12
    101 L G L L K V R P L 12
    107 R P L Q H Q G V N 12
    2 R R E L L A G I L 11
    5 L L A G I L L R I 11
    11 L R I T F N F F L 11
    13 I T F N F F L F F 11
    19 L F F F L P F P L 11
    20 F F F L P F P L V 11
    25 F P L V V F F I Y 11
    44 S H Y V A Q A G L 11
    47 V A Q A G L E L L 11
    62 A S A S L V A G T 11
    81 S F T K R K K K L 11
    91 K A F R F I Q C L 11
    96 I Q C L L L G L L 11
    119 C E R G Y F Q G I 11
    129 M Q A A P W E G T 11
    10 L L R I T F N F F 10
    17 F F L F F F L P F 10
    21 F F L P F P L V V 10
    42 M E S H Y V A Q A 10
    65 S L V A G T L S V 10
    88 K L K K A F R F I 10
    V10-
    HLA-B0702-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 21; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    3 C P A G E L G T S 13
    7 E L G T S D V V T 11
    9 G T S D V V T V V 11
    2 R C P A G E L G T 10
    5 A G E L G T S D V 9
    6 G E L G T S D V V 9
    8 L G T S D V V T V 9
    V11-
    HLA-B0702-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 23; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    5 R L R V M V P P L 16
    8 V M V P P L P S L 15
    2 A R L R L R V M V 11
    1 Q A R L R L R V M 9
    7 R V M V P P L P S 8
    V12-
    HLA-B0702-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 25; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    5 E P E G C S Y S T 19
    6 P E G C S Y S T L 11
    8 G C S Y S T L T T 11
    V13-
    HLA-B0702-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 27; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    1 S Q V T V D V L A 8
    2 Q V T V D V L A D 4
    7 V L A D P Q E D S 4
    V14-
    HLA-B0702-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 29; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    5 P P A S A S L V A 20
    4 N P P A S A S L V 17
    1 G S S N P P A S A 12
    3 S N P P A S A S L 12
    8 S A S L V A G T L 12
    7 A S A S L V A G T 11
  • TABLE XXVIII
    V1-
    HLA-B08-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 3; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    138 Q A R L R L R V L 29
    142 R L R V L V P P L 24
    337 E D S G K Q V D L 23
    140 R L R L R V L V P 22
    491 T L R A K P T G N 22
    477 G I K Q A M N H F 21
    493 R A K P T G N G I 20
    362 C L L V V V V V L 19
    292 G V R V D G D T L 18
    426 S L K D N S S C S 18
    11 G P E A W L L L L 17
    13 E A W L L L L L L 17
    26 T G R C P A G E L 17
    45 G Q D A K L P C F 17
    71 D A G E G A Q E L 17
    106 N P L D G S V L L 17
    124 E Y E C R V S T F 17
    145 V L V P P L P S L 17
    277 P P S Y N W T R L 17
    80 A L L H S K Y G L 16
    81 L L H S K Y G L H 16
    100 Q P P P P R N P L 16
    157 P A L E E G Q G L 16
    247 E A S V R G L E D 16
    265 G A M L K C L S E 16
    267 M L K C L S E G Q 16
    356 I A A L L F C L L 16
    374 Y H R R K A Q Q M 16
    439 E P E G R S Y S T 16
    453 E I E T Q T E L L 16
    47 D A K L P C F Y R 15
    65 V A W A R V D A G 15
    101 P P P P R N P L D 15
    231 L Q D Q R I T H I 15
    245 L A E A S V R G L 15
    260 H I G R E G A M L 15
    355 V I A A L L F C L 15
    369 V L M S R Y H R R 15
    410 S Q P E E S V G L 15
    113 L L R N A V Q A D 14
    133 P A G S F Q A R L 14
    202 A A V T S E F H L 14
    390 L T L T R E N S I 14
    419 R A E G H P D S L 14
    V2-
    HLA-B08-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 5; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    1 G Q D A K L P C L 21
    3 D A K L P C F Y R 15
    V7-
    HLA-B08-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 15; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    5 D P R S Q S E E P 13
    3 H T D P R S Q S E 9
    V9-
    HLA-B08-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 19; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    103 L L K V R P L Q H 25
    82 F T K R K K K L K 22
    88 K L K K A F R F I 22
    101 L G L L K V R P L 22
    81 S F T K R K K K L 21
    84 K R K K K L K K A 21
    86 K K K L K K A F R 21
    10 L L R I T F N F F 18
    85 R K K K L K K A F 18
    63 S A S L V A G T L 17
    83 T K R K K K L K K 16
    87 K K L K K A F R F 16
    92 A F R F I Q C L L 16
    8 G I L L R I T F N 15
    47 V A Q A G L E L L 15
    91 K A F R F I Q C L 15
    95 F I Q C L L L G L 15
    1 M R R E L L A G I 14
    22 F L P F P L V V F 14
    23 L P F P L V V F F 14
    9 I L L R I T F N F 13
    26 P L V V F F I Y F 13
    44 S H Y V A Q A G L 13
    80 E S F T K R K K K 13
    5 L L A G I L L R I 12
    32 I Y F Y F Y F F L 12
    58 S N P P A S A S L 12
    96 I Q C L L L G L L 12
    119 C E R G Y F Q G I 12
    V10-
    HLA-B08-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 21; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    7 E L G T S D V V T 9
    3 C P A G E L G T S 6
    4 P A G E L G T S D 6
    V11-
    HLA-B08-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 23; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    5 R L R V M V P P L 24
    3 R L R L R V M V P 22
    1 Q A R L R L R V M 19
    8 V M V P P L P S L 11
    V12-
    HLA-B08-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 25; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    6 P E G C S Y S T L 10
    5 E P E G C S Y S T 8
    4 E E P E G C S Y S 4
    V13-
    HLA-B08-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 27; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    7 V L A D P Q E D S 7
    8 L A D P Q E D S G 4
    1 S Q V T V D V L A 3
    2 Q V T V D V L A D 3
    V14-
    HLA-B08-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 29; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    8 S A S L V A G T L 17
    3 S N P P A S A S L 12
  • TABLE XXIX
    V1-HLA-
    B1510-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 3; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    237 T H I L H V S F L 22
    208 F H L V P S R S M 20
    259 W H I G R E G A M 18
    374 Y H R R K A Q Q M 17
    393 T R E N S I R R L 17
    36 T S D V V T V V L 16
    362 C L L V V V V V L 16
    135 G S F Q A R L R L 15
    308 E H S G I Y V C H 15
    337 E D S G K Q V D L 15
    100 Q P P P P R N P L 14
    106 N P L D G S V L L 14
    138 Q A R L R L R V L 14
    145 V L V P P L P S L 14
    245 L A E A S V R G L 14
    277 P P S Y N W T R L 14
    325 D S Q V T V D V L 14
    501 I Y I N G R G H L 14
    8 E M W G P E A W L 13
    26 T G R C P A G E L 13
    71 D A G E G A Q E L 13
    74 E G A Q E L A L L 13
    142 R L R V L V P P L 13
    151 P S L N P G P A L 13
    159 L E E G Q G L T L 13
    197 K H S R S A A V T 13
    222 T C V V S H P G L 13
    292 G V R V D G D T L 13
    297 G D T L G F P P L 13
    351 V V V G V I A A L 13
    356 I A A L L F C L L 13
    403 S H H T D P R S Q 13
    404 H H T D P R S Q P 13
    410 S Q P E E S V G L 13
    419 R A E G H P D S L 13
    9 M W G P E A W L L 12
    11 G P E A W L L L L 12
    73 G E G A Q E L A L 12
    82 L H S K Y G L H V 12
    88 L H V S P A Y E G 12
    105 R N P L D G S V L 12
    133 P A G S F Q A R L 12
    213 S R S M N G Q P L 12
    382 M T Q K Y E E E L 12
    384 Q K Y E E E L T L 12
    422 G H P D S L K D N 12
    452 R E I E T Q T E L 12
    453 E I E T Q T E L L 12
    484 H F V Q E N G T L 12
    10 W G P E A W L L L 11
    12 P E A W L L L L L 11
    13 E A W L L L L L L 11
    42 V V L G Q D A K L 11
    80 A L L H S K Y G L 11
    157 P A L E E G Q G L 11
    223 C V V S H P G L L 11
    226 S H P G L L Q D Q 11
    240 L H V S F L A E A 11
    315 C H V S N E F S S 11
    352 V V G V I A A L L 11
    355 V I A A L L F C L 11
    401 L H S H H T D P R 11
    440 P E G R S Y S T L 11
    483 N H F V Q E N G T 11
    14 A W L L L L L L L 10
    124 E Y E C R V S T F 10
    202 A A V T S E F H L 10
    232 Q D Q R I T H I L 10
    236 I T H I L H V S F 10
    250 V R G L E D Q N L 10
    260 H I G R E G A M L 10
    263 R E G A M L K C L 10
    281 N W T R L D G P L 10
    363 L L V V V V V L M 10
    474 Q D E G I K Q A M 10
    V2-HLA-
    B1510-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 5; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    1 G Q D A K L P C L 12
    V7-HLA-
    B1510-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 15; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    1 S H H T D P R S Q 13
    2 H H T D P R S Q S 13
    V9-HLA-
    B1510-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 19; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    44 S H Y V A Q A G L 21
    74 H H C A C F E S F 16
    46 Y V A Q A G L E L 14
    101 L G L L K V R P L 13
    32 I Y F Y F Y F F L 12
    58 S N P P A S A S L 12
    63 S A S L V A G T L 12
    81 S F T K R K K K L 12
    96 I Q C L L L G L L 12
    2 R R E L L A G I L 11
    19 L F F F L P F P L 11
    22 F L P F P L V V F 11
    23 L P F P L V V F F 11
    47 V A Q A G L E L L 11
    73 V H H C A C F E S 11
    91 K A F R F I Q C L 11
    110 Q H Q G V N S C D 11
    3 R E L L A G I L L 10
    11 L R I T F N F F L 10
    15 F N F F L F F F L 10
    92 A F R F I Q C L L 10
    93 F R F I Q C L L L 10
    95 F I Q C L L L G L 10
    V10-HLA-
    B1510-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 21; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    9 G T S D V V T V V 6
    7 E L G T S D V V T 5
    6 G E L G T S D V V 4
    8 L G T S D V V T V 4
    1 G R C P A G E L G 3
    3 C P A G E L G T S 3
    5 A G E L G T S D V 2
    V11-HLA-
    B1510-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 23; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    8 V M V P P L P S L 14
    5 R L R V M V P P L 13
    1 Q A R L R L R V M 10
    V12-HLA-
    B1510-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 25; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    6 P E G C S Y S T L 11
    V13-HLA-
    B1510-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 27; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    2 Q V T V D V L A D 3
    7 V L A D P Q E D S 3
    1 S Q V T V D V L A 2
    4 T V D V L A D P Q 2
    6 D V L A D P Q E D 2
    8 L A D P Q E D S G 2
    3 V T V D V L A D P 1
    5 V D V L A D P Q E 1
    9 A D P Q E D S G K 1
    V14-HLA-
    B1510-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 29; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    3 S N P P A S A S L 12
    8 S A S L V A G T L 12
  • TABLE XXX
    V1-HLA-
    B2705-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 3; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    393 T R E N S I R R L 26
    250 V R G L E D Q N L 25
    452 R E I E T Q T E L 22
    135 G S F Q A R L R L 21
    213 S R S M N G Q P L 20
    377 R K A Q Q M T Q K 19
    42 V V L G Q D A K L 18
    97 R V E Q P P P P R 18
    262 G R E G A M L K C 18
    351 V V V G V I A A L 18
    376 R R K A Q Q M T Q 18
    399 R R L H S H H T D 18
    14 A W L L L L L L L 17
    17 L L L L L L A S F 17
    105 R N P L D G S V L 17
    142 R L R V L V P P L 17
    200 R S A A V T S E F 17
    206 S E F H L V P S R 17
    294 R V D G D T L G F 17
    297 G D T L G F P P L 17
    419 R A E G H P D S L 17
    498 G N G I Y I N G R 17
    41 T V V L G Q D A K 16
    45 G Q D A K L P C F 16
    80 A L L H S K Y G L 16
    96 G R V E Q P P P P 16
    106 N P L D G S V L L 16
    145 V L V P P L P S L 16
    234 Q R I T H I L H V 16
    243 S F L A E A S V R 16
    261 I G R E G A M L K 16
    293 V R V D G D T L G 16
    301 G F P P L T T E H 16
    337 E D S G K Q V D L 16
    362 C L L V V V V V L 16
    384 Q K Y E E E L T L 16
    442 G R S Y S T L T T 16
    476 E G I K Q A M N H 16
    477 G I K Q A M N H F 16
    484 H F V Q E N G T L 16
    11 G P E A W L L L L 15
    20 L L L A S F T G R 15
    61 Q V G Q V A W A R 15
    71 D A G E G A Q E L 15
    74 E G A Q E L A L L 15
    75 G A Q E L A L L H 15
    77 Q E L A L L H S K 15
    107 P L D G S V L L R 15
    133 P A G S F Q A R L 15
    139 A R L R L R V L V 15
    141 L R L R V L V P P 15
    188 K G T T S S R S F 15
    189 G T T S S R S F K 15
    227 H P G L L Q D Q R 15
    237 T H I L H V S F L 15
    263 R E G A M L K C L 15
    283 T R L D G P L P S 15
    333 L D P Q E D S G K 15
    365 V V V V V L M S R 15
    392 L T R E N S I R R 15
    466 G R A E E E E D Q 15
    492 L R A K P T G N G 15
    501 I Y I N G R G H L 15
    8 E M W G P E A W L 14
    9 M W G P E A W L L 14
    13 E A W L L L L L L 14
    27 G R C P A G E L E 14
    73 G E G A Q E L A L 14
    104 P R N P L D G S V 14
    114 L R N A V Q A D E 14
    120 A D E G E Y E C R 14
    143 L R V L V P P L P 14
    151 P S L N P G P A L 14
    157 P A L E E G Q G L 14
    159 L E E G Q G L T L 14
    186 E V K G T T S S R 14
    193 S R S F K H S R S 14
    199 S R S A A V T S E 14
    236 I T H I L H V S F 14
    277 P P S Y N W T R L 14
    286 D G P L P S G V R 14
    292 G V R V D G D T L 14
    313 Y V C H V S N E F 14
    323 S R D S Q V T V D 14
    368 V V L M S R Y H R 14
    375 H R R K A Q Q M T 14
    378 K A Q Q M T Q K Y 14
    386 Y E E E L T L T R 14
    408 P R S Q P E E S V 14
    410 S Q P E E S V G L 14
    418 L R A E G H P D S 14
    420 A E G H P D S L K 14
    444 S Y S T L T T V R 14
    459 E L L S P G S G R 14
    1 M P L S L G A E M 13
    12 P E A W L L L L L 13
    26 T G R C P A G E L 13
    36 T S D V V T V V L 13
    78 E L A L L H S K Y 13
    86 Y G L H V S P A Y 13
    100 Q P P P P R N P L 13
    124 E Y E C R V S T F 13
    129 V S T F P A G S F 13
    132 F P A G S F Q A R 13
    138 Q A R L R L R V L 13
    202 A A V T S E F H L 13
    208 F H L V P S R S M 13
    219 Q P L T C V V S H 13
    222 T C V V S H P G L 13
    231 L Q D Q R I T H I 13
    252 G L E D Q N L W H 13
    272 S E G Q P P P S Y 13
    276 P P P S Y N W T R 13
    316 H V S N E F S S R 13
    352 V V G V I A A L L 13
    353 V G V I A A L L F 13
    356 I A A L L F C L L 13
    366 V V V V L M S R Y 13
    382 M T Q K Y E E E L 13
    391 T L T R E N S I R 13
    394 R E N S I R R L H 13
    398 I R R L H S H H T 13
    411 Q P E E S V G L R 13
    428 K D N S S C S V M 13
    440 P E G R S Y S T L 13
    485 F V Q E N G T L R 13
    487 Q E N G T L R A K 13
    500 G I Y I N G R G H 13
    10 W G P E A W L L L 12
    47 D A K L P C F Y R 12
    54 Y R G D S G E Q V 12
    68 A R V D A G E G A 12
    127 C R V S T F P A G 12
    134 A G S F Q A R L R 12
    192 S S R S F K H S R 12
    228 P G L L Q D Q R I 12
    245 L A E A S V R G L 12
    255 D Q N L W H I G R 12
    259 W H I G R E G A M 12
    260 H I G R E G A M L 12
    281 N W T R L D G P L 12
    308 E H S G I Y V C H 12
    325 D S Q V T V D V L 12
    355 V I A A L L F C L 12
    363 L L V V V V V L M 12
    369 V L M S R Y H R R 12
    370 L M S R Y H R R K 12
    372 S R Y H R R K A Q 12
    396 N S I R R L H S H 12
    435 V M S E E P E G R 12
    451 V R E I E T Q T E 12
    471 E E D Q D E G I K 12
    474 Q D E G I K Q A M 12
    493 R A K P T G N G I 12
    494 A K P T G N G I Y 12
    V2-HLA-
    B2705-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 5; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    1 G Q D A K L P C L 16
    3 D A K L P C L Y R 13
    2 Q D A K L P C L Y 11
    4 A K L P C L Y R G 8
    V7-HLA-
    B2705-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 15; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    6 P R S Q S E E P E 13
    8 S Q S E E P E G R 12
    7 R S Q S E E P E G 7
    V9-HLA-
    B2705-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 19; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    2 R R E L L A G I L 27
    93 F R F I Q C L L L 24
    11 L R I T F N F F L 23
    120 E R G Y F Q G I F 22
    1 M R R E L L A G I 20
    77 A C F E S F T K R 20
    87 K K L K K A F R F 20
    3 R E L L A G I L L 18
    4 E L L A G I L L R 18
    84 K R K K K L K K A 18
    85 R K K K L K K A F 18
    91 K A F R F I Q C L 18
    7 A G I L L R I T F 17
    23 L P F P L V V F F 17
    83 T K R K K K L K K 17
    99 L L L G L L K V R 17
    9 I L L R I T F N F 16
    80 E S F T K R K K K 16
    86 K K K L K K A F R 16
    13 I T F N F F L F F 15
    44 S H Y V A Q A G L 15
    81 S F T K R K K K L 15
    97 Q C L L L G L L K 15
    101 L G L L K V R P L 15
    113 G V N S C D C E R 15
    121 R G Y F Q G I F M 15
    12 R I T F N F F L F 14
    15 F N F F L F F F L 14
    19 L F F F L P F P L 14
    22 F L P F P L V V F 14
    28 V V F F I Y F Y F 14
    32 I Y F Y F Y F F L 14
    37 Y F F L E M E S H 14
    46 Y V A Q A G L E L 14
    58 S N P P A S A S L 14
    63 S A S L V A G T L 14
    92 A F R F I Q C L L 14
    96 I Q C L L L G L L 14
    5 L L A G I L L R I 13
    17 F F L F F F L P F 13
    27 L V V F F I Y F Y 13
    31 F I Y F Y F Y F F 13
    34 F Y F Y F F L E M 13
    47 V A Q A G L E L L 13
    66 L V A G T L S V H 13
    76 C A C F E S F T K 13
    79 F E S F T K R K K 13
    95 F I Q C L L L G L 13
    122 G Y F Q G I F M Q 13
    V10-HLA-
    B2705-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 21; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    1 G R C P A G E L G 14
    6 G E L G T S D V V 9
    9 G T S D V V T V V 8
    2 R C P A G E L G T 7
    3 C P A G E L G T S 5
    4 P A G E L G T S D 5
    5 A G E L G T S D V 5
    V11-HLA-
    B2705-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 23; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    5 R L R V M V P P L 16
    8 V M V P P L P S L 16
    2 A R L R L R V M V 15
    4 L R L R V M V P P 14
    6 L R V M V P P L P 13
    1 Q A R L R L R V M 11
    3 R L R L R V M V P 8
    V12-HLA-
    B2705-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 25; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    6 P E G C S Y S T L 13
    3 S E E P E G C S Y 11
    8 G C S Y S T L T T 6
    9 C S Y S T L T T V 6
    V13-HLA-
    B2705-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 27; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    9 A D P Q E D S G K 16
    V14-HLA-
    B2705-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 29; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    3 S N P P A S A S L 14
    8 S A S L V A G T L 14
    1 G S S N P P A S A 6
  • TABLE XXXI
    V1-HLA-
    B2709-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 3; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    139 A R L R L R V L V 22
    250 V R G L E D Q N L 21
    393 T R E N S I R R L 21
    213 S R S M N G Q P L 20
    234 Q R I T H I L H V 20
    54 Y R G D S G E Q V 19
    104 P R N P L D G S V 19
    408 P R S Q P E E S V 18
    135 G S F Q A R L R L 17
    142 R L R V L V P P L 16
    287 G P L P S G V R V 16
    399 R R L H S H H T D 16
    96 G R V E Q P P P P 15
    105 R N P L D G S V L 15
    297 G D T L G F P P L 15
    443 R S Y S T L T T V 15
    452 R E I E T Q T E L 15
    11 G P E A W L L L L 14
    14 A W L L L L L L L 14
    27 G R C P A G E L E 14
    73 G E G A Q E L A L 14
    80 A L L H S K Y G L 14
    262 G R E G A M L K C 14
    263 R E G A M L K C L 14
    292 G V R V D G D T L 14
    294 R V D G D T L G F 14
    362 C L L V V V V V L 14
    376 R R K A Q Q M T Q 14
    419 R A E G H P D S L 14
    442 G R S Y S T L T T 14
    32 G E L E T S D V V 13
    34 L E T S D V V T V 13
    106 N P L D G S V L L 13
    127 C R V S T F P A G 13
    141 L R L R V L V P P 13
    145 V L V P P L P S L 13
    151 P S L N P G P A L 13
    283 T R L D G P L P S 13
    324 R D S Q V T V D V 13
    384 Q K Y E E E L T L 13
    466 G R A E E E E D Q 13
    493 R A K P T G N G I 13
    9 M W G P E A W L L 12
    42 V V L G Q D A K L 12
    45 G Q D A K L P C F 12
    68 A R V D A G E G A 12
    110 G S V L L R N A V 12
    133 P A G S F Q A R L 12
    143 L R V L V P P L P 12
    157 P A L E E G Q G L 12
    173 A E G S P A P S V 12
    200 R S A A V T S E F 12
    202 A A V T S E F H L 12
    222 T C V V S H P G L 12
    223 C V V S H P G L L 12
    237 T H I L H V S F L 12
    323 S R D S Q V T V D 12
    352 V V G V I A A L L 12
    357 A A L L F C L L V 12
    358 A L L F C L L V V 12
    361 F C L L V V V V V 12
    372 S R Y H R R K A Q 12
    501 I Y I N G R G H L 12
    1 M P L S L G A E M 11
    10 W G P E A W L L L 11
    12 P E A W L L L L L 11
    13 E A W L L L L L L 11
    26 T G R C P A G E L 11
    36 T S D V V T V V L 11
    71 D A G E G A Q E L 11
    100 Q P P P P R N P L 11
    159 L E E G Q G L T L 11
    188 K G T T S S R S F 11
    193 S R S F K H S R S 11
    199 S R S A A V T S E 11
    203 A V T S E F H L V 11
    228 P G L L Q D Q R I 11
    232 Q D Q R I T H I L 11
    245 L A E A S V R G L 11
    277 P P S Y N W T R L 11
    281 N W T R L D G P L 11
    293 V R V D G D T L G 11
    325 D S Q V T V D V L 11
    337 E D S G K Q V D L 11
    343 V D L V S A S V V 11
    344 D L V S A S V V V 11
    348 A S V V V V G V I 11
    351 V V V G V I A A L 11
    353 V G V I A A L L F 11
    356 I A A L L F C L L 11
    359 L L F C L L V V V 11
    363 L L V V V V V L M 11
    398 I R R L H S H H T 11
    410 S Q P E E S V G L 11
    418 L R A E G H P D S 11
    428 K D N S S C S V M 11
    446 S T L T T V R E I 11
    477 G I K Q A M N H F 11
    484 H F V Q E N G T L 11
    492 L R A K P T G N G 11
    495 K P T G N G I Y I 11
    8 E M W G P E A W L 10
    17 L L L L L L A S F 10
    57 D S G E Q V G Q V 10
    74 E G A Q E L A L L 10
    114 L R N A V Q A D E 10
    129 V S T F P A G S F 10
    137 F Q A R L R L R V 10
    138 Q A R L R L R V L 10
    208 F H L V P S R S M 10
    236 I T H I L H V S F 10
    242 V S F L A E A S V 10
    260 H I G R E G A M L 10
    320 E F S S R D S Q V 10
    345 L V S A S V V V V 10
    347 S A S V V V V G V 10
    355 V I A A L L F C L 10
    360 L F C L L V V V V 10
    374 Y H R R K A Q Q M 10
    375 H R R K A Q Q M T 10
    382 M T Q K Y E E E L 10
    390 L T L T R E N S I 10
    440 P E G R S Y S T L 10
    451 V R E I E T Q T E 10
    453 E I E T Q T E L L 10
    V2-HLA-
    B2709-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 5; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    1 G Q D A K L P C L 14
    4 A K L P C L Y R G 6
    V7-HLA-
    B2709-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 15; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    6 P R S Q S E E P E 10
    7 R S Q S E E P E G 6
    V9-HLA-
    B2709-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 19; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    2 R R E L L A G I L 25
    93 F R F I Q C L L L 23
    11 L R I T F N F F L 21
    1 M R R E L L A G I 18
    106 V R P L Q H Q G V 18
    120 E R G Y F Q G I F 18
    3 R E L L A G I L L 16
    87 K K L K K A F R F 14
    91 K A F R F I Q C L 14
    121 R G Y F Q G I F M 14
    9 I L L R I T F N F 13
    12 R I T F N F F L F 13
    23 L P F P L V V F F 13
    32 I Y F Y F Y F F L 13
    101 L G L L K V R P L 13
    13 I T F N F F L F F 12
    15 F N F F L F F F L 12
    19 L F F F L P F P L 12
    21 F F L P F P L V V 12
    44 S H Y V A Q A G L 12
    84 K R K K K L K K A 12
    85 R K K K L K K A F 12
    92 A F R F I Q C L L 12
    V10-HLA-
    B2709-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 21; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    1 G R C P A G E L G 14
    6 G E L G T S D V V 13
    8 L G T S D V V T V 13
    9 G T S D V V T V V 12
    5 A G E L G T S D V 9
    V11-HLA-
    B2709-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 23; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    2 A R L R L R V M V 22
    5 R L R V M V P P L 16
    4 L R L R V M V P P 13
    8 V M V P P L P S L 13
    6 L R V M V P P L P 12
    V12-HLA-
    B2709-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 25; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    9 C S Y S T L T T V 11
    6 P E G C S Y S T L 10
    V13-HLA-
    B2709-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 27; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    2 Q V T V D V L A D 4
    5 V D V L A D P Q E 3
    6 D V L A D P Q E D 3
    1 S Q V T V D V L A 2
    3 V T V D V L A D P 1
    4 T V D V L A D P Q 1
    8 L A D P Q E D S G 1
    9 A D P Q E D S G K 1
    V14-HLA-
    B2709-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 29; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    3 S N P P A S A S L 11
    8 S A S L V A G T L 11
    4 N P P A S A S L V 9
  • TABLE XXXII
    V1-HLA-
    B4402-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 3; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    7 A E M W G P E A W 27
    437 S E E P E G R S Y 25
    12 P E A W L L L L L 23
    59 G E Q V G Q V A W 23
    73 G E G A Q E L A L 23
    159 L E E G Q G L T L 23
    263 R E G A M L K C L 23
    452 R E I E T Q T E L 23
    272 S E G Q P P P S Y 22
    440 P E G R S Y S T L 22
    253 L E D Q N L W H I 21
    470 E E E D Q D E G I 21
    14 A W L L L L L L L 18
    413 E E S V G L R A E 17
    13 E A W L L L L L L 16
    100 Q P P P P R N P L 16
    351 V V V G V I A A L 16
    388 E E L T L T R E N 16
    9 M W G P E A W L L 15
    106 N P L D G S V L L 15
    124 E Y E C R V S T F 15
    138 Q A R L R L R V L 15
    237 T H I L H V S F L 15
    246 A E A S V R G L E 15
    337 E D S G K Q V D L 15
    393 T R E N S I R R L 15
    453 E I E T Q T E L L 15
    487 Q E N G T L R A K 15
    494 A K P T G N G I Y 15
    501 I Y I N G R G H L 15
    36 T S D V V T V V L 14
    74 E G A Q E L A L L 14
    78 E L A L L H S K Y 14
    80 A L L H S K Y G L 14
    98 V E Q P P P P R N 14
    135 G S F Q A R L R L 14
    145 V L V P P L P S L 14
    151 P S L N P G P A L 14
    160 E E G Q G L T L A 14
    173 A E G S P A P S V 14
    202 A A V T S E F H L 14
    206 S E F H L V P S R 14
    232 Q D Q R I T H I L 14
    274 G Q P P P S Y N W 14
    294 R V D G D T L G F 14
    307 T E H S G I Y V C 14
    319 N E F S S R D S Q 14
    362 C L L V V V V V L 14
    387 E E E L T L T R E 14
    394 R E N S I R R L H 14
    420 A E G H P D S L K 14
    438 E E P E G R S Y S 14
    2 P L S L G A E M W 13
    8 E M W G P E A W L 13
    10 W G P E A W L L L 13
    11 G P E A W L L L L 13
    17 L L L L L L A S F 13
    34 L E T S D V V T V 13
    42 V V L G Q D A K L 13
    77 Q E L A L L H S K 13
    86 Y G L H V S P A Y 13
    105 R N P L D G S V L 13
    117 A V Q A D E G E Y 13
    175 G S P A P S V T W 13
    188 K G T T S S R S F 13
    213 S R S M N G Q P L 13
    231 L Q D Q R I T H I 13
    251 R G L E D Q N L W 13
    348 A S V V V V G V I 13
    352 V V G V I A A L L 13
    353 V G V I A A L L F 13
    356 I A A L L F C L L 13
    378 K A Q Q M T Q K Y 13
    386 Y E E E L T L T R 13
    410 S Q P E E S V G L 13
    446 S T L T T V R E I 13
    458 T E L L S P G S G 13
    468 A E E E E D Q D E 13
    471 E E D Q D E G I K 13
    V2-HLA-
    B4402-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 5; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    1 G Q D A K L P C L 12
    2 Q D A K L P C L Y 12
    4 A K L P C L Y R G 8
    V7-HLA-
    B4402-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 15; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    3 H T D P R S Q S E 5
    1 S H H T D P R S Q 4
    2 H H T D P R S Q S 3
    8 S Q S E E P E G R 3
    4 T D P R S Q S E E 2
    V9-HLA-
    B4402-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 19; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    3 R E L L A G I L L 24
    7 A G I L L R I T F 20
    119 C E R G Y F Q G I 20
    23 L P F P L V V F F 17
    91 K A F R F I Q C L 17
    13 I T F N F F L F F 15
    58 S N P P A S A S L 15
    63 S A S L V A G T L 15
    81 S F T K R K K K L 15
    92 A F R F I Q C L L 15
    9 I L L R I T F N F 14
    11 L R I T F N F F L 14
    22 F L P F P L V V F 14
    85 R K K K L K K A F 14
    93 F R F I Q C L L L 14
    101 L G L L K V R P L 14
    12 R I T F N F F L F 13
    15 F N F F L F F F L 13
    17 F F L F F F L P F 13
    19 L F F F L P F P L 13
    27 L V V F F I Y F Y 13
    28 V V F F I Y F Y F 13
    29 V F F I Y F Y F Y 13
    30 F F I Y F Y F Y F 13
    42 M E S H Y V A Q A 13
    79 F E S F T K R K K 13
    87 K K L K K A F R F 13
    96 I Q C L L L G L L 13
    115 N S C D C E R G Y 13
    116 S C D C E R G Y F 13
    126 G I F M Q A A P W 13
    2 R R E L L A G I L 12
    5 L L A G I L L R I 12
    10 L L R I T F N F F 12
    25 F P L V V F F I Y 12
    26 P L V V F F I Y F 12
    32 I Y F Y F Y F F L 12
    40 L E M E S H Y V A 12
    47 V A Q A G L E L L 12
    52 L E L L G S S N P 12
    95 F I Q C L L L G L 12
    120 E R G Y F Q G I F 12
    14 T F N F F L F F F 11
    24 P F P L V V F F I 11
    31 F I Y F Y F Y F F 11
    38 F F L E M E S H Y 11
    44 S H Y V A Q A G L 11
    46 Y V A Q A G L E L 11
    74 H H C A C F E S F 11
    88 K L K K A F R F I 11
    V10-
    HLA-B4402-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 21; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    6 G E L G T S D V V 13
    V11-
    HLA-B4402-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 23; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    8 V M V P P L P S L 14
    5 R L R V M V P P L 11
    2 A R L R L R V M V 7
    9 M V P P L P S L N 6
    V12-
    HLA-B4402-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 25; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    3 S E E P E G C S Y 24
    6 P E G C S Y S T L 21
    4 E E P E G C S Y S 13
    V13-
    HLA-B4402-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 27; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    1 S Q V T V D V L A 4
    2 Q V T V D V L A D 4
    8 L A D P Q E D S G 4
    9 A D P Q E D S G K 4
    3 V T V D V L A D P 2
    4 T V D V L A D P Q 2
    5 V D V L A D P Q E 2
    6 D V L A D P Q E D 2
    7 V L A D P Q E D S 1
    V14-
    HLA-B4402-9mers-
    191P4D12B
    Each peptide is a
    portion of SEQ ID
    NO: 29; each start
    position is
    specified, the
    length of peptide
    is 9 amino acids,
    and the end
    position for each
    peptide is the
    start position
    plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    3 S N P P A S A S L 15
    8 S A S L V A G T L 15
    2 S S N P P A S A S 7
  • TABLE XXXIIII
    V1-HLA-B5101-9mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 3; each start position is
    specified, the length of peptide
    is 9 amino acids, and the end
    position for each peptide is the
    start position plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    71 D A G E G A Q E L 23
    245 L A E A S V R G L 23
    287 G P L P S G V R V 23
    347 S A S V V V V G V 23
    493 R A K P T G N G I 22
    495 K P T G N G I Y I 22
    106 N P L D G S V L L 21
    138 Q A R L R L R V L 21
    357 A A L L F C L L V 21
    157 P A L E E G Q G L 20
    11 G P E A W L L L L 19
    13 E A W L L L L L L 19
    202 A A V T S E F H L 19
    228 P G L L Q D Q R I 19
    356 I A A L L F C L L 19
    361 F C L L V V V V V 19
    100 Q P P P P R N P L 18
    217 N G Q P L T C V V 18
    277 P P S Y N W T R L 18
    334 D P Q E D S G K Q 18
    345 L V S A S V V V V 18
    419 R A E G H P D S L 18
    35 E T S D V V T V V 17
    92 P A Y E G R V E Q 17
    133 P A G S F Q A R L 17
    348 A S V V V V G V I 17
    443 R S Y S T L T T V 17
    446 S T L T T V R E I 17
    10 W G P E A W L L L 16
    32 G E L E T S D V V 16
    57 D S G E Q V G Q V 16
    62 V G Q V A W A R V 16
    121 D E G E Y E C R V 16
    219 Q P L T C V V S H 16
    289 L P S G V R V D G 16
    325 D S Q V T V D V L 16
    343 V D L V S A S V V 16
    344 D L V S A S V V V 16
    359 L L F C L L V V V 16
    360 L F C L L V V V V 16
    362 C L L V V V V V L 16
    390 L T L T R E N S I 16
    34 L E T S D V V T V 15
    65 V A W A R V D A G 15
    79 L A L L H S K Y G 15
    148 P P L P S L N P G 15
    231 L Q D Q R I T H I 15
    276 P P P S Y N W T R 15
    338 D S G K Q V D L V 15
    358 A L L F C L L V V 15
    384 Q K Y E E E L T L 15
    407 D P R S Q P E E S 15
    411 Q P E E S V G L R 15
    22 L A S F T G R C P 14
    26 T G R C P A G E L 14
    29 C P A G E L E T S 14
    31 A G E L E T S D V 14
    47 D A K L P C F Y R 14
    75 G A Q E L A L L H 14
    82 L H S K Y G L H V 14
    91 S P A Y E G R V E 14
    132 F P A G S F Q A R 14
    172 T A E G S P A P S 14
    176 S P A P S V T W D 14
    253 L E D Q N L W H I 14
    286 D G P L P S G V R 14
    302 F P P L T T E H S 14
    303 P P L T T E H S G 14
    1 M P L S L G A E M 13
    30 P A G E L E T S D 13
    36 T S D V V T V V L 13
    50 L P C F Y R G D S 13
    74 E G A Q E L A L L 13
    90 V S P A Y E G R V 13
    102 P P P R N P L D G 13
    147 V P P L P S L N P 13
    150 L P S L N P G P A 13
    177 P A P S V T W D T 13
    178 A P S V T W D T E 13
    211 V P S R S M N G Q 13
    275 Q P P P S Y N W T 13
    300 L G F P P L T T E 13
    322 S S R D S Q V T V 13
    378 K A Q Q M T Q K Y 13
    478 I K Q A M N H F V 13
    42 V V L G Q D A K L 12
    54 Y R G D S G E Q V 12
    86 Y G L H V S P A Y 12
    101 P P P P R N P L D 12
    109 D G S V L L R N A 12
    119 Q A D E G E Y E C 12
    154 N P G P A L E E G 12
    159 L E E G Q G L T L 12
    167 L A A S C T A E G 12
    168 A A S C T A E G S 12
    234 Q R I T H I L H V 12
    265 G A M L K C L S E 12
    309 H S G I Y V C H V 12
    339 S G K Q V D L V S 12
    467 R A E E E E D Q D 12
    480 Q A M N H F V Q E 12
    5 L G A E M W G P E 11
    58 S G E Q V G Q V A 11
    67 W A R V D A G E G 11
    103 P P R N P L D G S 11
    116 N A V Q A D E G E 11
    137 F Q A R L R L R V 11
    139 A R L R L R V L V 11
    201 S A A V T S E F H 11
    216 M N G Q P L T C V 11
    247 E A S V R G L E D 11
    251 R G L E D Q N L W 11
    261 I G R E G A M L K 11
    285 L D G P L P S G V 11
    296 D G D T L G F P P 11
    304 P L T T E H S G I 11
    306 T T E H S G I Y V 11
    310 S G I Y V C H V S 11
    324 R D S Q V T V D V 11
    335 P Q E D S G K Q V 11
    351 V V V G V I A A L 11
    393 T R E N S I R R L 11
    427 L K D N S S C S V 11
    439 E P E G R S Y S T 11
    470 E E E D Q D E G I 11
    502 Y I N G R G H L V 11
    V2-HLA-B5101-9mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 5; each start position is
    specified, the length of peptide
    is 9 amino acids, and the end
    position for each peptide is the
    start position plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    3 D A K L P C L Y R 15
    6 L P C L Y R G D S 13
    1 G Q D A K L P C L 19
    V7-HLA-B5101-9mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 15; each start position is
    specified, the length of peptide
    is 9 amino acids, and the end
    position for each peptide is the
    start position plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    5 D P R S Q S E E P 14
    V9-HLA-B5101-9mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 19; each start position is
    specified, the length of peptide
    is 9 amino acids, and the end
    position for each peptide is the
    start position plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    59 N P P A S A S L V 23
    63 S A S L V A G T L 21
    101 L G L L K V R P L 20
    47 V A Q A G L E L L 19
    91 K A F R F I Q C L 18
    5 L L A G I L L R I 16
    21 F F L P F P L V V 16
    23 L P F P L V V F F 16
    25 F P L V V F F I Y 16
    24 P F P L V V F F I 15
    107 R P L Q H Q G V N 15
    1 M R R E L L A G I 14
    6 L A G I L L R I T 14
    60 P P A S A S L V A 14
    61 P A S A S L V A G 14
    67 V A G T L S V H H 14
    98 C L L L G L L K V 14
    88 K L K K A F R F I 13
    119 C E R G Y F Q G I 13
    49 Q A G L E L L G S 12
    76 C A C F E S F T K 12
    20 F F F L P F P L V 11
    50 A G L E L L G S S 11
    121 R G Y F Q G I F M 11
    V10-HLA-B5101-9mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 21; each start position is
    specified, the length of peptide
    is 9 amino acids, and the end
    position for each peptide is the
    start position plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    8 L G T S D V V T V 21
    9 G T S D V V T V V 17
    6 G E L G T S D V V 15
    3 C P A G E L G T S 14
    5 A G E L G T S D V 14
    4 P A G E L G T S D 13
    V11-HLA-B5101-9mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 23; each start position is
    specified, the length of peptide
    is 9 amino acids, and the end
    position for each peptide is the
    start position plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    1 Q A R L R L R V M 15
    2 A R L R L R V M V 11
    5 R L R V M V P P L 9
    8 V M V P P L P S L 8
    4 L R L R V M V P P 7
    V12-HLA-B5101-9mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 25; each start position is
    specified, the length of peptide
    is 9 amino acids, and the end
    position for each peptide is the
    start position plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    9 C S Y S T L T T V 17
    5 E P E G C S Y S T 11
    6 P E G C S Y S T L 9
    7 E G C S Y S T L T 8
    V13-HLA-B5101-9mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 27; each start position is
    specified, the length of peptide
    is 9 amino acids, and the end
    position for each peptide is the
    start position plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    8 L A D P Q E D S G 12
    6 D V L A D P Q E D 8
    3 V T V D V L A D P 5
    V14-HLA-B5101-9mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 29; each start position is
    specified, the length of peptide
    is 9 amino acids, and the end
    position for each peptide is the
    start position plus eight.
    Pos 1 2 3 4 5 6 7 8 9 score
    4 N P P A S A S L V 23
    8 S A S L V A G T L 21
    5 P P A S A S L V A 14
    6 P A S A S L V A G 14
  • TABLE XXXIV
    V1-HLA-A1-10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    271 L S E G Q P P P S Y 30
    436 M S E E P E G R S Y 30
    45 G Q D A K L P C F Y 25
    405 H T D P R S Q P E E 20
    493 R A K P T G N G I Y 20
    158 A L E E G Q G L T L 19
    11 G P E A W L L L L L 18
    72 A G E G A Q E L A L 18
    107 P L D G S V L L R N 18
    453 E I E T Q T E L L S 18
    36 T S D V V T V V L G 17
    77 Q E L A L L H S K Y 17
    306 T T E H S G I Y V C 17
    377 R K A Q Q M T Q K Y 17
    411 Q P E E S V G L R A 17
    437 S E E P E G R S Y S 17
    471 E E D Q D E G I K Q 17
    184 D T E V K G T T S S 16
    304 P L T T E H S G I Y 16
    332 V L D P Q E D S G K 16
    365 V V V V V L M S R Y 16
    385 K Y E E E L T L T R 16
    457 Q T E L L S P G S G 16
    85 K Y G L H V S P A Y 15
    116 N A V Q A D E G E Y 15
    205 T S E F H L V P S R 15
    V2-HLA-A1-10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 5; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    2 G Q D A K L P C L Y 27
    V7-HLA-A1-10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 15; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    4 H T D P R S Q S E E 20
    V9-HLA-A1-10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 19; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    28 V V F F I Y F Y F Y 19
    24 P F P L V V F F I Y 18
    2 R R E L L A G I L L 17
    37 Y F F L E M E S H Y 17
    26 P L V V F F I Y F Y 16
    114 V N S C D C E R G Y 16
    82 F T K R K K K L K K 15
    39 F L E M E S H Y V A 13
    116 S C D C E R G Y F Q 13
    118 D C E R G Y F Q G I 13
    78 C F E S F T K R K K 12
    33 Y F Y F Y F F L E M 11
    41 E M E S H Y V A Q A 11
    51 G L E L L G S S N P 11
    64 A S L V A G T L S V 11
    57 S S N P P A S A S L 10
    12 R I T F N F F L F F 9
    16 N F F L F F F L P F 9
    47 V A Q A G L E L L G 9
    92 A F R F I Q C L L L 9
    93 F R F I Q C L L L G 9
    96 I Q C L L L G L L K
    V10-HLA-A1-10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 21; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    6 A G E L G T S D V V 12
    2 G R C P A G E L G T 10
    10 G T S D V V T V V L 7
    V11-HLA-A1-10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 23; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    10 M V P P L P S L N P 10
    9 V M V P P L P S L N 7
    7 L R V M V P P L P S 6
    V12-HLA-A1-10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 25; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    3 M S E E P E G C S Y 30
    4 S E E P E G C S Y S 16
    V13-HLA-A1-10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 27; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    9 L A D P Q E D S G K 14
    5 T V D V L A D P Q E 10
    2 S Q V T V D V L A D 9
    4 V T V D V L A D P Q 7
    1 D S Q V T V D V L A 6
    V14-HLA-A1-10mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 29; each start
    position is specified, the
    length of peptide is 10 amino
    acids, and the end position
    for each peptide is the start
    position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    10 A S L V A G T L S V 11
    3 S S N P P A S A S L 10
    4 S N P P A S A S L V 8
    5 N P P A S A S L V A 7
    8 A S A S L V A G T L 5
  • TABLE XXXV
    V1-HLA-A0201-10mers-191P4D12B
    Each peptide is aportion of SEQ ID
    NO: 3; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    244 F L A E A S V R G L 30
    358 A L L F C L L V V V 29
    359 L L F C L L V V V V 29
    215 S M N G Q P L T C V 27
    158 A L E E G Q G L T L 26
    230 L L Q D Q R I T H I 25
    344 D L V S A S V V V V 25
    33 E L E T S D V V T V 24
    239 I L H V S F L A E A 24
    426 S L K D N S S C S V 24
    81 L L H S K Y G L H V 23
    144 R V L V P P L P S L 23
    252 G L E D Q N L W H I 23
    284 R L D G P L P S G V 23
    357 A A L L F C L L V V 23
    16 L L L L L L L A S F 22
    350 V V V V G V I A A L 22
    362 C L L V V V V V L M 22
    392 L T R E N S I R R L 22
    354 G V I A A L L F C L 21
    355 V I A A L L F C L L 21
    79 L A L L H S K Y G L 20
    236 I T H I L H V S F L 20
    346 V S A S V V V V G V 20
    500 G I Y I N G R G H L 20
    141 L R L R V L V P P L 19
    351 V V V G V I A A L L 19
    356 I A A L L F C L L V 19
    361 F C L L V V V V V L 19
    381 Q M T Q K Y E E E L 19
    477 G I K Q A M N H F V 19
    8 E M W G P E A W L L 18
    15 W L L L L L L L A S 18
    17 L L L L L L A S F T 18
    41 T V V L G Q D A K L 18
    112 V L L R N A V Q A D 18
    152 S L N P G P A L E E 18
    172 T A E G S P A P S V 18
    201 S A A V T S E F H L 18
    221 L T C V V S H P G L 18
    249 S V R G L E D Q N L 18
    347 S A S V V V V G V I 18
    360 L F C L L V V V V V 18
    418 L R A E G H P D S L 18
    10 W G P E A W L L L L 17
    13 E A W L L L L L L L 17
    25 F T G R C P A G E L 17
    56 G D S G E Q V G Q V 17
    70 V D A G E G A Q E L 17
    73 G E G A Q E L A L L 17
    132 F P A G S F Q A R L 17
    137 F Q A R L R L R V L 17
    202 A A V T S E F H L V 17
    241 H V S F L A E A S V 17
    305 L T T E H S G I Y V 17
    363 L L V V V V V L M S 17
    389 E L T L T R E N S I 17
    18 L L L L L A S F T G 16
    61 Q V G Q V A W A R V 16
    89 H V S P A Y E G R V 16
    138 Q A R L R L R V L V 16
    140 R L R L R V L V P P 16
    164 G L T L A A S C T A 16
    166 T L A A S C T A E G 16
    257 N L W H I G R E G A 16
    259 W H I G R E G A M L 16
    341 K Q V D L V S A S V 16
    370 L M S R Y H R R K A 16
    442 G R S Y S T L T T V 16
    7 A E M W G P E A W L 15
    11 G P E A W L L L L L 15
    19 L L L L A S F T G R 15
    34 L E T S D V V T V V 15
    72 A G E G A Q E L A L 15
    181 V T W D T E V K G T 15
    229 G L L Q D Q R I T H 15
    262 G R E G A M L K C L 15
    299 T L G F P P L T T E 15
    321 F S S R D S Q V T V 15
    343 V D L V S A S V V V 15
    349 S V V V V G V I A A 15
    397 S I R R L H S H H T 15
    409 R S Q P E E S V G L 15
    445 Y S T L T T V R E I 15
    447 T L T T V R E I E T 15
    460 L L S P G S G R A E 15
    501 I Y I N G R G H L V 15
    12 P E A W L L L L L L 14
    20 L L L A S F T G R C 14
    21 L L A S F T G R C P 14
    35 E T S D V V T V V L 14
    80 A L L H S K Y G L H 14
    87 G L H V S P A Y E G 14
    107 P L D G S V L L R N 14
    111 S V L L R N A V Q A 14
    113 L L R N A V Q A D E 14
    150 L P S L N P G P A L 14
    156 G P A L E E G Q G L 14
    178 A P S V T W D T E V 14
    195 S F K H S R S A A V 14
    233 D Q R I T H I L H V 14
    291 S G V R V D G D T L 14
    298 D T L G F P P L T T 14
    311 G I Y V C H V S N E 14
    323 S R D S Q V T V D V 14
    324 R D S Q V T V D V L 14
    332 V L D P Q E D S G K 14
    342 Q V D L V S A S V V 14
    452 R E I E T Q T E L L 14
    492 L R A K P T G N G I 14
    V2-HLA-A0201-10mers-191P4D12B
    Each peptide is aportion of SEQ ID
    NO: 5; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    1 L G Q D A K L P C L 18
    10 L Y R G D S G E Q V 14
    9 C L Y R G D S G E Q 13
    6 K L P C L Y R G D S 11
    V7-HLA-A0201-10mers-191P4D12B
    Each peptide is aportion of SEQ ID
    NO: 15; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    4 H T D P R S Q S E E 8
    9 S Q S E E P E G R S 4
    V9-HLA-A0201-10mers-191P4D12B
    Each peptide is aportion of SEQ ID
    NO: 19; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    100 L L G L L K V R P L 26
    5 L L A G I L L R I T 24
    95 F I Q C L L L G L L 23
    4 E L L A G I L L R I 22
    10 L L R I T F N F F L 22
    46 Y V A Q A G L E L L 22
    18 F L F F F L P F P L 21
    31 F I Y F Y F Y F F L 19
    57 S S N P P A S A S L 19
    97 Q C L L L G L L K V 19
    94 R F I Q C L L L G L 18
    99 L L L G L L K V R P 18
    105 K V R P L Q H Q G V 18
    23 L P F P L V V F F I 17
    64 A S L V A G T L S V 17
    22 F L P F P L V V F F 16
    38 F F L E M E S H Y V 16
    53 E L L G S S N P P A 16
    62 A S A S L V A G T L 16
    65 S L V A G T L S V H 16
    90 K K A F R F I Q C L 16
    91 K A F R F I Q C L L 16
    9 I L L R I T F N F F 15
    39 F L E M E S H Y V A 15
    98 C L L L G L L K V R 15
    103 L L K V R P L Q H Q 15
    41 E M E S H Y V A Q A 14
    54 L L G S S N P P A S 14
    58 S N P P A S A S L V 14
    102 G L L K V R P L Q H 14
    108 P L Q H Q G V N S C 14
    128 F M Q A A P W E G T 14
    19 L F F F L P F P L V 13
    20 F F F L P F P L V V 13
    45 H Y V A Q A G L E L 13
    1 M R R E L L A G I L 12
    26 P L V V F F I Y F Y 12
    48 A Q A G L E L L G S 12
    61 P A S A S L V A G T 12
    66 L V A G T L S V H H 12
    70 T L S V H H C A C F 12
    92 A F R F I Q C L L L 12
    V10-HLA-A0201-10mers-191P4D12B
    Each peptide is aportion of SEQ ID
    NO: 21; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    8 E L G T S D V V T V 25
    10 G T S D V V T V V L 18
    9 L G T S D V V T V V 15
    5 P A G E L G T S D V 13
    V11-HLA-A0201-10mers-191P4D12B
    Each peptide is aportion of SEQ ID
    NO: 23; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    8 R V M V P P L P S L 22
    5 L R L R V M V P P L 19
    2 Q A R L R L R V M V 16
    4 R L R L R V M V P P 12
    1 F Q A R L R L R V M 11
    6 R L R V M V P P L P 11
    9 V M V P P L P S L N 11
    V12-HLA-A0201-10mers-191P4D12B
    Each peptide is aportion of SEQ ID
    NO: 25; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    9 G C S Y S T L T T V 16
    2 V M S E E P E G C S 11
    6 E P E G C S Y S T L 10
    1 S V M S E E P E G C 8
    V13-HLA-A0201-10mers-191P4D12B
    Each peptide is aportion of SEQ ID
    NO: 27; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    8 V L A D P Q E D S G 16
    3 Q V T V D V L A D P 9
    9 L A D P Q E D S G K 9
    2 S Q V T V D V L A D 8
    V14-HLA-A0201-10mers-191P4D12B
    Each peptide is aportion of SEQ ID
    NO: 29; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    3 S S N P P A S A S L 19
    10 A S L V A G T L S V 17
    8 A S A S L V A G T L 16
    4 S N P P A S A S L V 14
    7 P A S A S L V A G T 12
    1 L G S S N P P A S A 10
  • TABLE XXXVI
    V1-HLA-A0203-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 3; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    160 E E G Q G L T L A A 19
    194 R S F K H S R S A A 19
    349 S V V V V G V I A A 19
    59 G E Q V G Q V A W A 18
    239 I L H V S F L A E A 18
    161 E G Q G L T L A A S 17
    195 S F K H S R S A A V 17
    350 V V V V G V I A A L 17
    5 L G A E M W G P E A 10
    14 A W L L L L L L L A 10
    22 L A S F T G R C P A 10
    39 V V T V V L G Q D A 10
    57 D S G E Q V G Q V A 10
    63 G Q V A W A R V D A 10
    67 W A R V D A G E G A 10
    71 D A G E G A Q E L A 10
    84 S K Y G L H V S P A 10
    108 L D G S V L L R N A 10
    111 S V L L R N A V Q A 10
    125 Y E C R V S T F P A 10
    130 S T F P A G S F Q A 10
    149 P L P S L N P G P A 10
    159 L E E G Q G L T L A 10
    164 G L T L A A S C T A 10
    169 A S C T A E G S P A 10
    193 S R S F K H S R S A 10
    237 T H I L H V S F L A 10
    257 N L W H I G R E G A 10
    339 S G K Q V D L V S A 10
    348 A S V V V V G V I A 10
    370 L M S R Y H R R K A 10
    411 Q P E E S V G L R A 10
    459 E L L S P G S G R A 10
    472 E D Q D E G I K Q A 10
    485 F V Q E N G T L R A 10
    6 G A E M W G P E A W 9
    15 W L L L L L L L A S 9
    23 A S F T G R C P A G 9
    40 V T V V L G Q D A K 9
    58 S G E Q V G Q V A W 9
    60 E Q V G Q V A W A R 9
    64 Q V A W A R V D A G 9
    68 A R V D A G E G A Q 9
    72 A G E G A Q E L A L 9
    85 K Y G L H V S P A Y 9
    109 D G S V L L R N A V 9
    112 V L L R N A V Q A D 9
    126 E C R V S T F P A G 9
    131 T F P A G S F Q A R 9
    150 L P S L N P G P A L 9
    165 L T L A A S C T A E 9
    170 S C T A E G S P A P 9
    238 H I L H V S F L A E 9
    240 L H V S F L A E A S 9
    258 L W H I G R E G A M 9
    340 G K Q V D L V S A S 9
    371 M S R Y H R R K A Q 9
    412 P E E S V G L R A E 9
    460 L L S P G S G R A E 9
    473 D Q D E G I K Q A M 9
    486 V Q E N G T L R A K 9
    V2-HLA-A0203-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 5; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    160 E E G Q G L T L A A 19
    V7-HLA-A0203-10mers-191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V9-HLA-A0203-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 19; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    123 Y F Q G I F M Q A A 19
    41 E M E S H Y V A Q A 18
    55 L G S S N P P A S A 18
    124 F Q G I F M Q A A P 17
    39 F L E M E S H Y V A 10
    53 E L L G S S N P P A 10
    59 N P P A S A S L V A 10
    68 A G T L S V H H C A 10
    83 T K R K K K L K K A 10
    122 G Y F Q G I F M Q A 10
    40 L E M E S H Y V A Q 9
    42 M E S H Y V A Q A G 9
    54 L L G S S N P P A S 9
    56 G S S N P P A S A S 9
    60 P P A S A S L V A G 9
    69 G T L S V H H C A C 9
    84 K R K K K L K K A F 9
    V10-HLA-A0203-10mers-191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V11-HLA-A0203-10mers-191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V12-HLA-A0203-10mers-191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V13-HLA-A0203-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 27; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    1 D S Q V T V D V L A 10
    2 S Q V T V D V L A D 9
    3 Q V T V D V L A D P 8
    V14-HLA-A0203-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 29; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    1 L G S S N P P A S A 18
    5 N P P A S A S L V A 10
    2 G S S N P P A S A S 9
    6 P P A S A S L V A G 9
    3 S S N P P A S A S L 8
    7 P A S A S L V A G T 8
  • TABLE XXXVII
    V1-HLA-A03-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 3; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    332 V L D P Q E D S G K 26
    69 R V D A G E G A Q E 25
    260 H I G R E G A M L K 25
    111 S V L L R N A V Q A 24
    128 R V S T F P A G S F 24
    158 A L E E G Q G L T L 24
    342 Q V D L V S A S V V 23
    358 A L L F C L L V V V 23
    16 L L L L L L L A S F 22
    140 R L R L R V L V P P 22
    235 R I T H I L H V S F 22
    229 G L L Q D Q R I T H 21
    376 R R K A Q Q M T Q K 21
    80 A L L H S K Y G L H 20
    152 S L N P G P A L E E 20
    203 A V T S E F H L V P 20
    284 R L D G P L P S G V 20
    345 L V S A S V V V V G 20
    352 V V G V I A A L L F 20
    369 V L M S R Y H R R K 20
    17 L L L L L L A S F T 19
    365 V V V V V L M S R Y 19
    419 R A E G H P D S L K 19
    19 L L L L A S F T G R 18
    33 E L E T S D V V T V 18
    117 A V Q A D E G E Y E 18
    142 R L R V L V P P L P 18
    144 R V L V P P L P S L 18
    344 D L V S A S V V V V 18
    351 V V V G V I A A L L 18
    359 L L F C L L V V V V 18
    400 R L H S H H T D P R 18
    450 T V R E I E T Q T E 18
    15 W L L L L L L L A S 17
    18 L L L L L A S F T G 17
    42 V V L G Q D A K L P 17
    113 L L R N A V Q A D E 17
    145 V L V P P L P S L N 17
    188 K G T T S S R S F K 17
    197 K H S R S A A V T S 17
    294 R V D G D T L G F P 17
    304 P L T T E H S G I Y 17
    364 L V V V V V L M S R 17
    391 T L T R E N S I R R 17
    443 R S Y S T L I T V R 17
    460 L L S P G S G R A E 17
    76 A Q E L A L L H S K 16
    81 L L H S K Y G L H V 16
    112 V L L R N A V Q A D 16
    123 G E Y E C R V S T F 16
    146 L V P P L P S L N P 16
    166 T L A A S C T A E G 16
    186 E V K G T T S S R S 16
    223 C V V S H P G L L Q 16
    224 V V S H P G L L Q D 16
    249 S V R G L E D Q N L 16
    362 C L L V V V V V L M 16
    367 V V V L M S R Y H R 16
    368 V V L M S R Y H R R 16
    434 S V M S E E P E G R 16
    491 T L R A K P T G N G 16
    20 L L L A S F T G R C 15
    49 K L P C F Y R G D S 15
    61 Q V G Q V A W A R V 15
    77 Q E L A L L H S K Y 15
    97 R V E Q P P P P R N 15
    107 P L D G S V L L R N 15
    139 A R L R L R V L V P 15
    164 G L T L A A S C T A 15
    180 S V T W D T E V K G 15
    239 I L H V S F L A E A 15
    241 H V S F L A E A S V 15
    242 V S F L A E A S V R 15
    251 R G L E D Q N L W H 15
    267 M L K C L S E G Q P 15
    288 P L P S G V R V D G 15
    299 T L G F P P L T T E 15
    311 G I Y V C H V S N E 15
    331 D V L D P Q E D S G 15
    354 G V I A A L L F C L 15
    385 K Y E E E L T L T R 15
    397 S I R R L H S H H T 15
    417 G L R A E G H P D S 15
    426 S L K D N S S C S V 15
    493 R A K P T G N G I Y 15
    500 G I Y I N G R G H L 15
    4 S L G A E M W G P E 14
    21 L L A S F T G R C P 14
    38 D V V T V V L G Q D 14
    41 T V V L G Q D A K L 14
    64 Q V A W A R V D A G 14
    89 H V S P A Y E G R V 14
    179 P S V T W D T E V K 14
    209 H L V P S R S M N G 14
    238 H I L H V S F L A E 14
    292 G V R V D G D T L G 14
    316 H V S N E F S S R D 14
    350 V V V V G V I A A L 14
    363 L L V V V V V L M S 14
    366 V V V V L M S R Y H 14
    485 F V Q E N G T L R A 14
    2 P L S L G A E M W G 13
    39 V V T V V L G Q D A 13
    43 V L G Q D A K L P C 13
    87 G L H V S P A Y E G 13
    104 P R N P L D G S V L 13
    214 R S M N G Q P L T C 13
    275 Q P P P S Y N W T R 13
    357 A A L L F C L L V V 13
    373 R Y H R R K A Q Q M 13
    389 E L T L T R E N S I 13
    396 N S I R R L H S H H 13
    415 S V G L R A E G H P 13
    458 T E L L S P G S G R 13
    459 E L L S P G S G R A 13
    78 E L A L L H S K Y G 12
    149 P L P S L N P G P A 12
    230 L L Q D Q R I T H I 12
    244 F L A E A S V R G L 12
    259 W H I G R E G A M L 12
    270 C L S E G Q P P P S 12
    285 L D G P L P S G V R 12
    298 D T L G F P P L T T 12
    327 Q V T V D V L D P Q 12
    349 S V V V V G V I A A 12
    436 M S E E P E G R S Y 12
    470 E E E D Q D E G I K 12
    486 V Q E N G T L R A K 12
    V2-HLA-A03-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 5; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    9 C L Y R G D S G E Q 18
    6 K L P C L Y R G D S 15
    10 L Y R G D S G E Q V 11
    3 Q D A K L P C L Y R 10
    2 G Q D A K L P C L Y 9
    5 A K L P C L Y R G D 8
    V7-HLA-A03-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 15; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    8 R S Q S E E P E G R 9
    2 S H H T D P R S Q S 8
    4 H T D P R S Q S E E 6
    V9-HLA-A03-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 19; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    65 S L V A G T L S V H 24
    102 G L L K V R P L Q H 23
    9 I L L R I T F N F F 21
    66 L V A G T L S V H H 21
    98 C L L L G L L K V R 21
    12 R I T F N F F L F F 19
    96 I Q C L L L G L L K 19
    105 K V R P L Q H Q G V 19
    22 F L P F P L V V F F 18
    99 L L L G L L K V R P 18
    4 E L L A G I L L R I 17
    21 F F L P F P L V V F 17
    70 T L S V H H C A C F 17
    82 F T K R K K K L K K 17
    26 P L V V F F I Y F Y 16
    28 V V F F I Y F Y F Y 16
    8 G I L L R I T F N F 15
    75 H C A C F E S F T K 15
    88 K L K K A F R F I Q 15
    3 R E L L A G I L L R 14
    10 L L R I T F N F F L 14
    27 L V V F F I Y F Y F 14
    39 F L E M E S H Y V A 14
    50 A G L E L L G S S N 14
    51 G L E L L G S S N P 14
    53 E L L G S S N P P A 14
    77 A C F E S F T K R K 14
    5 L L A G I L L R I T 13
    107 R P L Q H Q G V N S 13
    31 F I Y F Y F Y F F L 12
    54 L L G S S N P P A S 12
    62 A S A S L V A G T L 12
    85 R K K K L K K A F R 12
    86 K K K L K K A F R F 12
    108 P L Q H Q G V N S C 12
    126 G I F M Q A A P W E 12
    18 F L F F F L P F P L 11
    46 Y V A Q A G L E L L 11
    72 S V H H C A C F E S 11
    79 F E S F T K R K K K 11
    81 S F T K R K K K L K 11
    100 L L G L L K V R P L 11
    103 L L K V R P L Q H Q 11
    125 Q G I F M Q A A P W 11
    V10-HLA-A03-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 21; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    8 E L G T S D V V T V 18
    7 G E L G T S D V V T 12
    3 R C P A G E L G T S 11
    4 C P A G E L G T S D 9
    10 G T S D V V T V V L 9
    6 A G E L G T S D V V 8
    V11-HLA-A03-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 23; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    4 R L R L R V M V P P 22
    6 R L R V M V P P L P 18
    8 R V M V P P L P S L 16
    10 M V P P L P S L N P 16
    3 A R L R L R V M V P 13
    2 Q A R L R L R V M V 12
    V12-HLA-A03-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 25; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    10 C S Y S T L T T V R 13
    1 S V M S E E P E G C 12
    3 M S E E P E G C S Y 12
    6 E P E G C S Y S T L 9
    4 S E E P E G C S Y S 7
    8 E G C S Y S T L T T 7
    V13-HLA-A03-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 27; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    9 L A D P Q E D S G K 16
    3 Q V T V D V L A D P 15
    7 D V L A D P Q E D S 14
    8 V L A D P Q E D S G 14
    5 T V D V L A D P Q E 13
    V14-HLA-A03-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 29; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    8 A S A S L V A G T L 12
    4 S N P P A S A S L V 10
    10 A S L V A G T L S V 10
    3 S S N P P A S A S L 9
    5 N P P A S A S L V A 9
    2 G S S N P P A S A S 8
    1 L G S S N P P A S A 6
    6 P P A S A S L V A G 6
    9 S A S L V A G T L S 6
    7 P A S A S L V A G T 5
  • TABLE XXXVIII
    V1-HLA-A26-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 3; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    38 D V V T V V L G Q D 28
    35 E T S D V V T V V L 27
    350 V V V V G V I A A L 27
    354 G V I A A L L F C L 26
    365 V V V V V L M S R Y 25
    41 T V V L G Q D A K L 24
    13 E A W L L L L L L L 23
    144 R V L V P P L P S L 23
    455 E T Q T E L L S P G 23
    351 V V V G V I A A L L 22
    392 L T R E N S I R R L 22
    476 E G I K Q A M N H F 22
    186 E V K G T T S S R S 21
    236 I T H I L H V S F L 21
    349 S V V V V G V I A A 21
    128 R V S T F P A G S F 20
    331 D V L D P Q E D S G 20
    439 E P E G R S Y S T L 20
    99 E Q P P P P R N P L 19
    249 S V R G L E D Q N L 19
    352 V V G V I A A L L F 19
    364 L V V V V V L M S R 19
    8 E M W G P E A W L L 18
    298 D T L G F P P L T T 18
    25 F T G R C P A G E L 17
    184 D T E V K G T T S S 17
    223 C V V S H P G L L Q 17
    344 D L V S A S V V V V 17
    123 G E Y E C R V S T F 16
    221 L T C V V S H P G L 16
    224 V V S H P G L L Q D 16
    296 D G D T L G F P P L 16
    472 E D Q D E G I K Q A 16
    10 W G P E A W L L L L 15
    33 E L E T S D V V T V 15
    60 E Q V G Q V A W A R 15
    64 Q V A W A R V D A G 15
    116 N A V Q A D E G E Y 15
    130 S T F P A G S F Q A 15
    161 E G Q G L T L A A S 15
    291 S G V R V D G D T L 15
    294 R V D G D T L G F P 15
    327 Q V T V D V L D P Q 15
    395 E N S I R R L H S H 15
    421 E G H P D S L K D N 15
    453 E I E T Q T E L L S 15
    204 V T S E F H L V P S 14
    222 T C V V S H P G L L 14
    235 R I T H I L H V S F 14
    244 F L A E A S V R G L 14
    247 E A S V R G L E D Q 14
    259 W H I G R E G A M L 14
    293 V R V D G D T L G F 14
    308 E H S G I Y V C H V 14
    328 V T V D V L D P Q E 14
    337 E D S G K Q V D L V 14
    345 L V S A S V V V V G 14
    366 V V V V L M S R Y H 14
    367 V V V L M S R Y H R 14
    414 E S V G L R A E G H 14
    429 D N S S C S V M S E 14
    436 M S E E P E G R S Y 14
    448 L T T V R E I E T Q 14
    449 T T V R E I E T Q T 14
    450 T V R E I E T Q T E 14
    452 R E I E T Q T E L L 14
    483 N H F V Q E N G T L 14
    11 G P E A W L L L L L 13
    12 P E A W L L L L L L 13
    16 L L L L L L L A S F 13
    40 V T V V L G Q D A K 13
    44 L G Q D A K L P C F 13
    158 A L E E G Q G L T L 13
    180 S V T W D T E V K G 13
    181 V T W D T E V K G T 13
    203 A V T S E F H L V P 13
    233 D Q R I T H I L H V 13
    255 D Q N L W H I G R E 13
    305 L T T E H S G I Y V 13
    306 T T E H S G I Y V C 13
    438 E E P E G R S Y S T 13
    441 E G R S Y S T L T T 13
    471 E E D Q D E G I K Q 13
    485 F V Q E N G T L R A 13
    500 G I Y I N G R G H L 13
    V2-HLA-A26-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 5; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    1 L G Q D A K L P C L 13
    4 D A K L P C L Y R G 12
    2 G Q D A K L P C L Y 10
    4 H T D P R S Q S E E 10
    6 D P R S Q S E E P E 9
    9 S Q S E E P E G R S 4
    V9-HLA-A26-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 19; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    13 I T F N F F L F F F 24
    28 V V F F I Y F Y F Y 24
    80 E S F T K R K K K L 23
    27 L V V F F I Y F Y F 22
    46 Y V A Q A G L E L L 22
    26 P L V V F F I Y F Y 18
    43 E S H Y V A Q A G L 18
    94 R F I Q C L L L G L 17
    95 F I Q C L L L G L L 17
    41 E M E S H Y V A Q A 16
    4 E L L A G I L L R I 15
    37 Y F F L E M E S H Y 15
    12 R I T F N F F L F F 14
    45 H Y V A Q A G L E L 14
    16 N F F L F F F L P F 13
    21 F F L P F P L V V F 13
    8 G I L L R I T F N F 12
    11 L R I T F N F F L F 12
    18 F L F F F L P F P L 12
    22 F L P F P L V V F F 12
    29 V F F I Y F Y F Y F 12
    30 F F I Y F Y F Y F F 12
    31 F I Y F Y F Y F F L 12
    90 K K A F R F I Q C L 12
    91 K A F R F I Q C L L 12
    100 L L G L L K V R P L 12
    120 E R G Y F Q G I F M 12
    1 M R R E L L A G I L 11
    57 S S N P P A S A S L 11
    62 A S A S L V A G T L 11
    72 S V H H C A C F E S 11
    105 K V R P L Q H Q G V 11
    113 G V N S C D C E R G 11
    V10-HLA-A26-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 21; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    10 G T S D V V T V V L 17
    8 E L G T S D V V T V 15
    V11-HLA-A26-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 23; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    8 R V M V P P L P S L 23
    5 L R L R V M V P P L 12
    10 M V P P L P S L N P 12
    V12-HLA-A26-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 25; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    6 E P E G C S Y S T L 20
    3 M S E E P E G C S Y 14
    5 E E P E G C S Y S T 13
    8 E G C S Y S T L T T 13
    1 S V M S E E P E G C 12
    V13-HLA-A26-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 3; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    7 D V L A D P Q E D S 18
    3 Q V T V D V L A D P 15
    4 V T V D V L A D P Q 13
    5 T V D V L A D P Q E 12
    2 S Q V T V D V L A D 11
    1 D S Q V T V D V L A 8
    V14-HLA-A26-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 29; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    3 S S N P P A S A S L 11
    8 A S A S L V A G T L 11
    6 P P A S A S L V A G 6
  • TABLE XXXIX
    V1-HLA-B0702-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 3; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    132 F P A G S F Q A R L 24
    150 L P S L N P G P A L 24
    11 G P E A W L L L L L 23
    439 E P E G R S Y S T L 23
    156 G P A L E E G Q G L 21
    178 A P S V T W D T E V 21
    276 P P P S Y N W T R L 21
    176 S P A P S V T W D T 19
    103 P P R N P L D G S V 18
    407 D P R S Q P E E S V 18
    411 Q P E E S V G L R A 18
    35 E T S D V V T V V L 17
    72 A G E G A Q E L A L 17
    134 A G S F Q A R L R L 17
    227 H P G L L Q D Q R I 17
    303 P P L T T E H S G I 16
    334 D P Q E D S G K Q V 16
    289 L P S G V R V D G D 15
    324 R D S Q V T V D V L 15
    7 A E M W G P E A W L 14
    9 M W G P E A W L L L 14
    29 C P A G E L E T S D 14
    91 S P A Y E G R V E Q 14
    99 E Q P P P P R N P L 14
    158 A L E E G Q G L T L 14
    249 S V R G L E D Q N L 14
    296 D G D T L G F P P L 14
    361 F C L L V V V V V L 14
    409 R S Q P E E S V G L 14
    8 E M W G P E A W L L 13
    12 P E A W L L L L L L 13
    13 E A W L L L L L L L 13
    70 V D A G E G A Q E L 13
    73 G E G A Q E L A L L 13
    101 P P P P R N P L D G 13
    105 R N P L D G S V L L 13
    106 N P L D G S V L L R 13
    141 L R L R V L V P P L 13
    212 P S R S M N G Q P L 13
    236 I T H I L H V S F L 13
    259 W H I G R E G A M L 13
    277 P P S Y N W T R L D 13
    287 G P L P S G V R V D 13
    336 Q E D S G K Q V D L 13
    351 V V V G V I A A L L 13
    355 V I A A L L F C L L 13
    495 K P T G N G I Y I N 13
    10 W G P E A W L L L L 12
    100 Q P P P P R N P L D 12
    104 P R N P L D G S V L 12
    137 F Q A R L R L R V L 12
    144 R V L V P P L P S L 12
    148 P P L P S L N P G P 12
    154 N P G P A L E E G Q 12
    160 E E G Q G L T L A A 12
    211 V P S R S M N G Q P 12
    231 L Q D Q R I T H I L 12
    244 F L A E A S V R G L 12
    262 G R E G A M L K C L 12
    308 E H S G I Y V C H V 12
    337 E D S G K Q V D L V 12
    350 V V V V G V I A A L 12
    383 T Q K Y E E E L T L 12
    392 L T R E N S I R R L 12
    441 E G R S Y S T L T T 12
    452 R E I E T Q T E L L 12
    25 F T G R C P A G E L 11
    41 T V V L G Q D A K L 11
    56 G D S G E Q V G Q V 11
    138 Q A R L R L R V L V 11
    147 V P P L P S L N P G 11
    201 S A A V T S E F H L 11
    219 Q P L T C V V S H P 11
    221 L T C V V S H P G L 11
    275 Q P P P S Y N W T R 11
    280 Y N W T R L D G P L 11
    354 G V I A A L L F C L 11
    357 A A L L F C L L V V 11
    358 A L L F C L L V V V 11
    418 L R A E G H P D S L 11
    423 H P D S L K D N S S 11
    451 V R E I E T Q T E L 11
    462 S P G S G R A E E E 11
    500 G I Y I N G R G H L 11
    V2-HLA-B0702-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 5; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    1 L G Q D A K L P C L 11
    7 L P C L Y R G D S G 10
    10 L Y R G D S G E Q V 10
    V7-HLA-B0702-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 15; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    6 D P R S Q S E E P E 13
    V9-HLA-B0702-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 19; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    59 N P P A S A S L V A 20
    23 L P F P L V V F F I 19
    25 F P L V V F F I Y F 17
    92 A F R F I Q C L L L 16
    60 P P A S A S L V A G 14
    10 L L R I T F N F F L 13
    45 H Y V A Q A G L E L 13
    62 A S A S L V A G T L 13
    94 R F I Q C L L L G L 13
    100 L L G L L K V R P L 13
    107 R P L Q H Q G V N S 13
    1 M R R E L L A G I L 12
    14 T F N F F L F F F L 12
    43 E S H Y V A Q A G L 12
    57 S S N P P A S A S L 12
    90 K K A F R F I Q C L 12
    2 R R E L L A G I L L 11
    12 R I T F N F F L F F 11
    18 F L F F F L P F P L 11
    31 F I Y F Y F Y F F L 11
    46 Y V A Q A G L E L L 11
    53 E L L G S S N P P A 11
    61 P A S A S L V A G T 11
    64 A S L V A G T L S V 11
    80 E S F T K R K K K L 11
    91 K A F R F I Q C L L 11
    4 E L L A G I L L R I 10
    16 N F F L F F F L P F 10
    21 F F L P F P L V V F 10
    22 F L P F P L V V F F 10
    87 K K L K K A F R F I 10
    95 F I Q C L L L G L L 10
    105 K V R P L Q H Q G V 10
    119 C E R G Y F Q G I F 10
    5 L L A G I L L R I T 9
    9 I L L R I T F N F F 9
    20 F F F L P F P L V V 9
    33 Y F Y F Y F F L E M 9
    41 E M E S H Y V A Q A 9
    55 L G S S N P P A S A 9
    70 T L S V H H C A C F 9
    83 T K R K K K L K K A 9
    84 K R K K K L K K A F 9
    120 E R G Y F Q G I F M 9
    123 Y F Q G I F M Q A A 9
    V10-HLA-B0702-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 21; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    10 G T S D V V T V V L 16
    4 C P A G E L G T S D 14
    7 G E L G T S D V V T 11
    8 E L G T S D V V T V 11
    2 G R C P A G E L G T 9
    6 A G E L G T S D V V 9
    9 L G T S D V V T V V 9
    5 P A G E L G T S D V 8
    V11-HLA-B0702-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 23; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    5 L R L R V M V P P L 13
    8 R V M V P P L P S L 13
    2 Q A R L R L R V M V 11
    1 F Q A R L R L R V M 8
    4 R L R L R V M V P P 6
    V12-HLA-B0702-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 25; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    6 E P E G C S Y S T L 23
    V13-HLA-B0702-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 27; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    1 D S Q V T V D V L A 8
    2 S Q V T V D V L A D 4
    V14-HLA-B0702-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 29; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    5 N P P A S A S L V A 20
    6 P P A S A S L V A G 14
    8 A S A S L V A G T L 13
    3 S S N P P A S A S L 12
    7 P A S A S L V A G T 11
    10 A S L V A G T L S V 11
    1 L G S S N P P A S A 9
  • TABLE XL
    V1-HLA-B08-
    10mers-191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
  • TABLE XXIV
    V7-HLA-
    A0203-9mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 score
    No Results Found.
    V9-HLA-
    A0203-9mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 score
    No Results Found.
    V10-HLA-
    A0203-9mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 score
    No Results Found.
    V11-HLA-
    A0203-9mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 score
    No Results Found.
    V12-HLA-
    A0203-9mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 score
    No Results Found.
    V13-HLA-
    A0203-9mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 score
    No Results Found.
    V14-HLA-
    A0203-9mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 score
    No Results Found.
  • TABLE XLI
    Vl-HLA-
    B1510-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V2-HLA-
    B1510-10mers
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Resu1ts Found.
    V7-HLA-
    B1510-10mers
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V9-HLA-
    B1510-10mers
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V10-HLA-
    B1510-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V11-HLA-
    B1510-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V12-HLA-
    B1510-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V13-HLA-
    B1510-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V14-HLA-
    B1510-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
  • TABLE XLII
    V1-HLA-
    B2705-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V2-HLA-
    B2705-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V7-HLA-
    B2705-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V9-HLA-
    B2705-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V10-HLA-
    B2705-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V11-HLA-
    B2705-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V12-HLA-
    B2705-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V13-HLA-
    B2705-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V14-HLA-
    B2705-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
  • TABLE XLIII
    V1-HLA-
    B2709-10mers-
    191P 4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V2-HLA-
    B2709-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V7-HLA-
    B2709-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V9-HLA-
    B2709-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V10-HLA-
    B2709-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V11-HLA-
    B2709-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V12-HLA-
    B2709-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V13-HLA-
    B2709-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V14-HLA-
    B2709-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
  • TABLE XLIV
    V1-HLA-B4402-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 3; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    452 R E I E T Q T E L L 25
    7 A E M W G P E A W L 24
    12 P E A W L L L L L L 23
    73 G E G A Q E L A L L 22
    77 Q E L A L L H S K Y 22
    123 G E Y E C R V S T F 22
    336 Q E D S G K Q V D L 22
    469 E E E E D Q D E G I 20
    99 E Q P P P P R N P L 18
    174 E G S P A P S V T W 18
    35 E T S D V V T V V L 17
    72 A G E G A Q E L A L 17
    13 E A W L L L L L L L 16
    134 A G S F Q A R L R L 16
    160 E E G Q G L T L A A 16
    476 E G I K Q A M N H F 16
    8 E M W G P E A W L L 15
    9 M W G P E A W L L L 15
    98 V E Q P P P P R N P 15
    158 A L E E G Q G L T L 15
    173 A E G S P A P S V T 15
    273 E G Q P P P S Y N W 15
    350 V V V V G V I A A L 15
    361 F C L L V V V V V L 15
    387 E E E L T L T R E N 15
    388 E E L T L T R E N S 15
    420 A E G H P D S L K D 15
    437 S E E P E G R S Y S 15
    471 E E D Q D E G I K Q 15
    10 W G P E A W L L L L 14
    58 S G E Q V G Q V A W 14
    85 K Y G L H V S P A Y 14
    104 P R N P L D G S V L 14
    105 R N P L D G S V L L 14
    137 F Q A R L R L R V L 14
    150 L P S L N P G P A L 14
    206 S E F H L V P S R S 14
    246 A E A S V R G L E D 14
    259 W H I G R E G A M L 14
    262 G R E G A M L K C L 14
    319 N E F S S R D S Q V 14
    354 G V I A A L L F C L 14
    392 L T R E N S I R R L 14
    409 R S Q P E E S V G L 14
    412 P E E S V G L R A E 14
    413 E E S V G L R A E G 14
    439 E P E G R S Y S T L 14
    483 N H F V Q E N G T L 14
    494 A K P T G N G I Y I 14
    6 G A E M W G P E A W 13
    11 G P E A W L L L L L 13
    16 L L L L L L L A S F 13
    32 G E L E T S D V V T 13
    128 R V S T F P A G S F 13
    141 L R L R V L V P P L 13
    159 L E E G Q G L T L A 13
    199 S R S A A V T S E F 13
    231 L Q D Q R I T H I L 13
    250 V R G L E D Q N L W 13
    291 S G V R V D G D T L 13
    293 V R V D G D T L G F 13
    296 D G D T L G F P P L 13
    324 R D S Q V T V D V L 13
    351 V V V G V I A A L L 13
    352 V V G V I A A L L F 13
    438 E E P E G R S Y S T 13
    468 A E E E E D Q D E G 13
    470 E E E D Q D E G I K 13
    487 Q E N G T L R A K P 13
    493 R A K P T G N G I Y 13
    1 M P L S L G A E M W 12
    25 F T G R C P A G E L 12
    34 L E T S D V V T V V 12
    41 T V V L G Q D A K L 12
    44 L G Q D A K L P C F 12
    45 G Q D A K L P C F Y 12
    70 V D A G E G A Q E L 12
    79 L A L L H S K Y G L 12
    121 D E G E Y E C R V S 12
    125 Y E C R V S T F P A 12
    144 R V L V P P L P S L 12
    187 V K G T T S S R S F 12
    222 T C V V S H P G L L 12
    230 L L Q D Q R I T H I 12
    244 F L A E A S V R G L 12
    249 S V R G L E D Q N L 12
    253 L E D Q N L W H I G 12
    271 L S E G Q P P P S Y 12
    272 S E G Q P P P S Y N 12
    347 S A S V V V V G V I 12
    355 V I A A L L F C L L 12
    377 R K A Q Q M T Q K Y 12
    383 T Q K Y E E E L T L 12
    389 E L T L T R E N S I 12
    394 R E N S I R R L H S 12
    440 P E G R S Y S T L T 12
    454 I E T Q T E L L S P 12
    458 T E L L S P G S G R 12
    V2-HLA-B4402-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 5; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    2 G Q D A K L P C L Y 13
    1 L G Q D A K L P C L 12
    5 A K L P C L Y R G D 8
    V7-HLA-B4402-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 15; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    2 S H H T D P R S Q S 4
    4 H T D P R S Q S E E 4
    1 H S H H T D P R S Q 2
    5 T D P R S Q S E E P 2
    9 S Q S E E P E G R S 2
    3 H H T D P R S Q S E 1
    7 P R S Q S E E P E G 1
    8 R S Q S E E P E G R 1
    V9-HLA-B4402-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 19; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    119 C E R G Y F Q G I F 21
    80 E S F T K R K K K L 18
    3 R E L L A G I L L R 17
    21 F F L P F P L V V F 17
    11 L R I T F N F F L F 16
    16 N F F L F F F L P F 16
    62 A S A S L V A G T L 15
    79 F E S F T K R K K K 15
    84 K R K K K L K K A F 15
    91 K A F R F I Q C L L 15
    92 A F R F I Q C L L L 15
    94 R F I Q C L L L G L 15
    9 I L L R I T F N F F 14
    13 I T F N F F L F F F 14
    23 L P F P L V V F F I 14
    30 F F I Y F Y F Y F F 14
    40 L E M E S H Y V A Q 14
    42 M E S H Y V A Q A G 14
    57 S S N P P A S A S L 14
    90 K K A F R F I Q C L 14
    125 Q G I F M Q A A P W 14
    2 R R E L L A G I L L 13
    4 E L L A G I L L R I 13
    6 L A G I L L R I T F 13
    8 G I L L R I T F N F 13
    18 F L F F F L P F P L 13
    22 F L P F P L V V F F 13
    24 P F P L V V F F I Y 13
    25 F P L V V F F I Y F 13
    26 P L V V F F I Y F Y 13
    28 V V F F I Y F Y F Y 13
    37 Y F F L E M E S H Y 13
    52 L E L L G S S N P P 13
    86 K K K L K K A F R F 13
    100 L L G L L K V R P L 13
    115 N S C D C E R G Y F 13
    12 R I T F N F F L F F 12
    29 V F F I Y F Y F Y F 12
    43 E S H Y V A Q A G L 12
    46 Y V A Q A G L E L L 12
    87 K K L K K A F R F I 12
    95 F I Q C L L L G L L 12
    114 V N S C D C E R G Y 12
    1 M R R E L L A G I L 11
    14 T F N F F L F F F L 11
    45 H Y V A Q A G L E L 11
    70 T L S V H H C A C F 11
    73 V H H C A C F E S F 11
    7 A G I L L R I T F N 10
    10 L L R I T F N F F L 10
    27 L V V F F I Y F Y F 10
    31 F I Y F Y F Y F F L 10
    118 D C E R G Y F Q G I 10
    V10-HLA-B4402-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 21; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    10 G T S D V V T V V L 15
    7 G E L G T S D V V T 14
    V11-HLA-B4402-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 23; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    5 L R L R V M V P P L 13
    8 R V M V P P L P S L 12
    3 A R L R L R V M V P 7
    V12-HLA-B4402-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 25; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    4 S E E P E G C S Y S 14
    6 E P E G C S Y S T L 14
    5 E E P E G C S Y S T 13
    7 P E G C S Y S T L T 11
    3 M S E E P E G C S Y 10
    V13-HLA-B4402-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 27; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    2 S Q V T V D V L A D 6
    10 A D P Q E D S G K Q 5
    9 L A D P Q E D S G K 4
    1 D S Q V T V D V L A 2
    4 V T V D V L A D P Q 2
    5 T V D V L A D P Q E 2
    6 V D V L A D P Q E D 2
    V14-HLA-B4402-10mers-191P4D12B
    Each peptide is a portion of SEQ ID
    NO: 29; each start position is
    specified, the length of peptide
    is 10 amino acids, and the end
    position for each peptide is the
    start position plus nine.
    Pos 1 2 3 4 5 6 7 8 9 0 score
    8 A S A S L V A G T L 15
    3 S S N P P A S A S L 14
    4 S N P P A S A S L V 7
  • TABLE XLV
    V1-HLA-
    B5101-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V2-HLA-
    B5101-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V7-HLA-
    B5101-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V9-HLA-
    B5101-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V10-HLA-
    B5101-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V11-HLA-
    B5101-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V12-HLA-
    B5101-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V13-HLA-
    B5101-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
    V14-HLA-
    B5101-10mers-
    191P4D12B
    Pos
    1 2 3 4 5 6 7 8 9 0 score
    No Results Found.
  • TABLE XLVI
    V1-HLA-DRB1-0101-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    279 S Y N W T R L D G P L P S G V 35
    140 R L R L R V L V P P L P S L N 32
    205 T S E F H L V P S R S M N G Q 32
    299 T L G F P P L T T E H S G I Y 32
    37 S D V V T V V L G Q D A K L P 31
    40 V T V V L G Q D A K L P C F Y 31
    340 G K Q V D L V S A S V V V V G 31
    349 S V V V V G V I A A L L F C L 31
    144 R V L V P P L P S L N P G P A 30
    147 V P P L P S L N P G P A L E E 30
    350 V V V V G V I A A L L F C L L 30
    51 P C F Y R G D S G E Q V G Q V 28
    12 P E A W L L L L L L L A S F T 27
    247 E A S V R G L E D Q N L W H I 27
    358 A L L F C L L V V V V V L M S 27
    371 M S R Y H R R K A Q Q M T Q K 26
    6 G A E M W G P E A W L L L L L 25
    13 E A W L L L L L L L A S F T G 25
    14 A W L L L L L L L A S F T G R 25
    15 W L L L L L L L A S F T G R C 25
    19 L L L L A S F T G R C P A G E 25
    102 P P P R N P L D G S V L L R N 25
    109 D G S V L L R N A V Q A D E G 25
    122 E G E Y E C R V S T F P A G S 25
    193 S R S F K H S R S A A V T S E 25
    239 I L H V S F L A E A S V R G L 25
    255 D Q N L W H I G R E G A M L K 25
    265 G A M L K C L S E G Q P P P S 25
    310 S G I Y V C H V S N E F S S R 25
    454 I E T Q T E L L S P G S G R A 25
    64 Q V A W A R V D A G E G A Q E 24
    76 A Q E L A L L H S K Y G L H V 24
    79 L A L L H S K Y G L H V S P A 24
    126 E C R V S T F P A G S F Q A R 24
    156 G P A L E E G Q G L T L A A S 24
    162 G Q G L T L A A S C T A E G S 24
    181 V T W D T E V K G T T S S R S 24
    210 L V P S R S M N G Q P L T C V 24
    213 S R S M N G Q P L T C V V S H 24
    282 W T R L D G P L P S G V R V D 24
    347 S A S V V V V G V I A A L L F 24
    353 V G V I A A L L F C L L V V V 24
    357 A A L L F C L L V V V V V L M 24
    364 L V V V V V L M S R Y H R R K 24
    395 E N S I R R L H S H H T D P R 24
    442 G R S Y S T L T T V R E I E T 24
    16 L L L L L L L A S F T G R C P 23
    28 R C P A G E L E T S D V V T V 23
    184 D T E V K G T T S S R S F K H 23
    228 P G L L Q D Q R I T H I L H V 23
    233 D Q R I T H I L H V S F L A E 23
    289 L P S G V R V D G D T L G F P 23
    339 S G K Q V D L V S A S V V V V 23
    346 V S A S V V V V G V I A A L L 23
    361 F C L L V V V V V L M S R Y H 23
    424 P D S L K D N S S C S V M S E 23
    448 L T T V R E I E T Q T E L L S 23
    457 Q T E L L S P G S G R A E E E 23
    483 N H F V Q E N G T L R A K P T 23
    3 L S L G A E M W G P E A W L L 22
    55 R G D S G E Q V G Q V A W A R 22
    59 G E Q V G Q V A W A R V D A G 22
    141 L R L R V L V P P L P S L N P 22
    204 V T S E F H L V P S R S M N G 22
    250 V R G L E D Q N L W H I G R E 22
    268 L K C L S E G Q P P P S Y N W 22
    311 G I Y V C H V S N E F S S R D 22
    327 Q V T V D V L D P Q E D S G K 22
    360 L F C L L V V V V V L M S R Y 22
    451 V R E I E T Q T E L L S P G S 22
    218 G Q P L T C V V S H P G L L Q 21
    256 Q N L W H I G R E G A M L K C 21
    277 P P S Y N W T R L D G P L P S 21
    33 E L E T S D V V T V V L G Q D 20
    65 V A W A R V D A G E G A Q E L 20
    123 G E Y E C R V S T F P A G S F 20
    154 N P G P A L E E G Q G L T L A 20
    321 F S S R D S Q V T V D V L D P 20
    429 D N S S C S V M S E E P E G R 20
    482 M N H F V Q E N G T L R A K P 20
    490 G T L R A K P T G N G I Y I N 20
    22 L A S F T G R C P A G E L E T 19
    39 V V T V V L G Q D A K L P C F 19
    138 Q A R L R L R V L V P P L P S 19
    234 Q R I T H I L H V S F L A E A 19
    242 V S F L A E A S V R G L E D Q 19
    412 P E E S V G L R A E G H P D S 19
    415 S V G L R A E G H P D S L K D 19
    7 A E M W G P E A W L L L L L L 18
    91 S P A Y E G R V E Q P P P P R 18
    134 A G S F Q A R L R L R V L V P 18
    165 L T L A A S C T A E G S P A P 18
    264 E G A M L K C L S E G Q P P P 18
    266 A M L K C L S E G Q P P P S Y 18
    280 Y N W T R L D G P L P S G V R 18
    368 V V L M S R Y H R R K A Q Q M 18
    387 E E E L T L T R E N S I R R L 18
    11 G P E A W L L L L L L L A S F 17
    67 W A R V D A G E G A Q E L A L 17
    68 A R V D A G E G A Q E L A L L 17
    83 H S K Y G L H V S P A Y E G R 17
    115 R N A V Q A D E G E Y E C R V 17
    125 Y E C R V S T F P A G S F Q A 17
    135 G S F Q A R L R L R V L V P P 17
    148 P P L P S L N P G P A L E E G 17
    150 L P S L N P G P A L E E G Q G 17
    167 L A A S C T A E G S P A P S V 17
    201 S A A V T S E F H L V P S R S 17
    221 L T C V V S H P G L L Q D Q R 17
    225 V S H P G L L Q D Q R I T H I 17
    238 H I L H V S F L A E A S V R G 17
    257 N L W H I G R E G A M L K C L 17
    258 L W H I G R E G A M L K C L S 17
    284 R L D G P L P S G V R V D G D 17
    291 S G V R V D G D T L G F P P L 17
    294 R V D G D T L G F P P L T T E 17
    303 P P L T T E H S G I Y V C H V 17
    330 V D V L D P Q E D S G K Q V D 17
    332 V L D P Q E D S G K Q V D L V 17
    342 Q V D L V S A S V V V V G V I 17
    348 A S V V V V G V I A A L L F C 17
    354 G V I A A L L F C L L V V V V 17
    356 I A A L L F C L L V V V V V L 17
    379 A Q Q M T Q K Y E E E L T L T 17
    407 D P R S Q P E E S V G L R A E 17
    413 E E S V G L R A E G H P D S L 17
    432 S C S V M S E E P E G R S Y S 17
    458 T E L L S P G S G R A E E E E 17
    475 D E G I K Q A M N H F V Q E N 17
    486 V Q E N G T L R A K P T G N G 17
    V2-HLA-DRB1-0101-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 5; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    2 V T V V L G Q D A K L P C L Y 31
    13 P C L Y R G D S G E Q V G Q V 28
    9 D A K L P C L Y R G D S G E Q 24
    1 V V T V V L G Q D A K L P C L 19
    V7-HLA-DRB1-0101-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 15; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    2 I R R L H S H H T D P R S Q S 14
    8 H H T D P R S Q S E E P E G R 14
    13 R S Q S E E P E G R S Y S T L 10
    1 S I R R L H S H H T D P R S Q 9
    11 D P R S Q S E E P E G R S Y S 9
    14 S Q S E E P E G R S Y S T L T 9
    3 R R L H S H H T D P R S Q S E 8
    5 L H S H H T D P R S Q S E E P 8
    9 H T D P R S Q S E E P E G R S 8
    12 P R S Q S E E P E G R S Y S T 8
    4 R L H S H H T D P R S Q S E E 7
    6 H S H H T D P R S Q S E E P E 7
    V9-HLA-DRB1-0101-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 19; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    43 E S H Y V A Q A G L E L L G S 33
    49 Q A G L E L L G S S N P P A S 32
    36 F Y F F L E M E S H Y V A Q A 31
    103 L L K V R P L Q H Q G V N S C 28
    17 F F L F F F L P F P L V V F F 27
    90 K K A F R F I Q C L L L G L L 27
    98 C L L L G L L K V R P L Q H Q 26
    18 F L F F F L P F P L V V F F I 25
    60 P P A S A S L V A G T L S V H 24
    61 P A S A S L V A G T L S V H H 24
    93 F R F I Q C L L L G L L K V R 24
    97 Q C L L L G L L K V R P L Q H 24
    121 R G Y F Q G I F M Q A A P W E 24
    6 L A G I L L R I T F N F F L F 23
    16 N F F L F F F L P F P L V V F 23
    7 A G I L L R I T F N F F L F F 22
    52 L E L L G S S N P P A S A S L 22
    100 L L G L L K V R P L Q H Q G V 22
    8 G I L L R I T F N F F L F F F 21
    27 L V V F F I Y F Y F Y F F L E 21
    12 R I T F N F F L F F F L P F P 20
    34 F Y F Y F F L E M E S H Y V A 20
    92 A F R F I Q C L L L G L L K V 20
    4 E L L A G I L L R I T F N F F 19
    14 T F N F F L F F F L P F P L V 19
    15 F N F F L F F F L P F P L V V 19
    31 F I Y F Y F Y F F L E M E S H 19
    33 Y F Y F Y F F L E M E S H Y V 19
    46 Y V A Q A G L E L L G S S N P 19
    95 F I Q C L L L G L L K V R P L 19
    10 L L R I T F N F F L F F F L P 18
    19 L F F F L P F P L V V F F I Y 18
    25 F P L V V F F I Y F Y F Y F F 18
    28 V V F F I Y F Y F Y F F L E M 18
    84 K R K K K L K K A F R F I Q C 18
    120 E R G Y F Q G I F M Q A A P W 18
    13 I T F N F F L F F F L P F P L 17
    20 F F F L P F P L V V F F I Y F 17
    22 F L P F P L V V F F I Y F Y F 17
    29 V F F I Y F Y F Y F F L E M E 17
    37 Y F F L E M E S H Y V A Q A G 17
    44 S H Y V A Q A G L E L L G S S 17
    94 R F I Q C L L L G L L K V R P 17
    2 R R E L L A G I L L R I T F N 16
    21 F F L P F P L V V F F I Y F Y 16
    39 F L E M E S H Y V A Q A G L E 16
    41 E M E S H Y V A Q A G L E L L 16
    48 A Q A G L E L L G S S N P P A 16
    51 G L E L L G S S N P P A S A S 16
    54 L L G S S N P P A S A S L V A 16
    56 G S S N P P A S A S L V A G T 16
    68 A G T L S V H H C A C F E S F 16
    70 T L S V H H C A C F E S F T K 16
    105 K V R P L Q H Q G V N S C D C 16
    118 D C E R G Y F Q G I F M Q A A 16
    V10-HLA-DRB1-0101-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 21; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    8 R C P A G E L G T S D V V T V 23
    13 E L G T S D V V T V V L G Q D 20
    2 L A S F T G R C P A G E L G T 19
    3 A S F T G R C P A G E L G T S 16
    11 A G E L G T S D V V T V V L G 16
    9 C P A G E L G T S D V V T V V 15
  • TABLE XLVI
    V11-HLA-DRB1-0101-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 23; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    9 R L R L R V M V P P L P S L N 30
    13 R V M V P P L P S L N P G P A 30
    10 L R L R V M V P P L P S L N P 22
    7 Q A R L R L R V M V P P L P S 19
    3 A G S F Q A R L R L R V M V P 18
    4 G S F Q A R L R L R V M V P P 17
    6 F Q A R L R L R V M V P P L P 16
    11 R L R V M V P P L P S L N P G 16
    1 F P A G S F Q A R L R L R V M 15
    12 L R V M V P P L P S L N P G P 15
    8 A R L R L R V M V P P L P S L 14
    V12-HLA-DRB1-0101-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 25; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    14 G C S Y S T L T T V R E I E T 24
    1 D N S S C S V M S E E P E G C 20
    4 S C S V M S E E P E G C S Y S 17
    5 C S V M S E E P E G C S Y S T 16
    15 C S Y S T L T T V R E I E T Q 11
    V13-HLA-DRB1-0101-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 27; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    2 F S S R D S Q V T V D V L A D 20
    6 D S Q V T V D V L A D P Q E D 17
    14 L A D P Q E D S G K Q V D L V 17
    8 Q V T V D V L A D P Q E D S G 16
    10 T V D V L A D P Q E D S G K Q 16
    7 S Q V T V D V L A D P Q E D S 15
    3 S S R D S Q V T V D V L A D P 14
    12 D V L A D P Q E D S G K Q V D 9
    V14-HLA-DRB1-0101-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 29; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    11 P P A S A S L V A G T L S V H 24
    12 P A S A S L V A G T L S V H H 24
    3 L E L L G S S N P P A S A S L 22
    2 G L E L L G S S N P P A S A S 16
    5 L L G S S N P P A S A S L V A 16
    7 G S S N P P A S A S L V A G T 16
    1 A G L E L L G S S N P P A S A 15
    6 L G S S N P P A S A S L V A G 15
    13 A S A S L V A G T L S V H H C 15
    4 E L L G S S N P P A S A S L V 14
    8 S S N P P A S A S L V A G T L 14
    15 A S L V A G T L S V H H C A C 14
  • TABLE XLVII
    V1-HLA-DRB1-0301-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    178 A P S V T W D T E V K G T T S 29
    227 H P G L L Q D Q R I T H I L H 28
    41 T V V L G Q D A K L P C F Y R 27
    379 A Q Q M T Q K Y E E E L T L T 25
    14 A W L L L L L L L A S F T G R 23
    290 P S G V R V D G D T L G F P P 23
    39 V V T V V L G Q D A K L P C F 22
    103 P P R N P L D G S V L L R N A 22
    247 E A S V R G L E D Q N L W H I 22
    115 R N A V Q A D E G E Y E C R V 21
    142 R L R V L V P P L P S L N P G 21
    233 D Q R I T H I L H V S F L A E 21
    325 D S Q V T V D V L D P Q E D S 21
    348 A S V V V V G V I A A L L F C 21
    349 S V V V V G V I A A L L F C L 21
    6 G A E M W G P E A W L L L L L 20
    156 G P A L E E G Q G L T L A A S 20
    242 V S F L A E A S V R G L E D Q 20
    249 S V R G L E D Q N L W H I G R 20
    292 G V R V D G D T L G F P P L T 20
    350 V V V V G V I A A L L F C L L 20
    352 V V G V I A A L L F C L L V V 20
    353 V G V I A A L L F C L L V V V 20
    363 L L V V V V V L M S R Y H R R 20
    126 E C R V S T F P A G S F Q A R 19
    302 F P P L T T E H S G I Y V C H 19
    328 V T V D V L D P Q E D S G K Q 19
    365 V V V V V L M S R Y H R R K A 19
    387 E E E L T L T R E N S I R R L 19
    77 Q E L A L L H S K Y G L H V S 18
    111 S V L L R N A V Q A D E G E Y 18
    265 G A M L K C L S E G Q P P P S 18
    286 D G P L P S G V R V D G D T L 18
    319 N E F S S R D S Q V T V D V L 18
    329 T V D V L D P Q E D S G K Q V 18
    433 C S V M S E E P E G R S Y S T 18
    451 V R E I E T Q T E L L S P G S 18
    87 G L H V S P A Y E G R V E Q P 17
    97 R V E Q P P P P R N P L D G S 17
    239 I L H V S F L A E A S V R G L 17
    255 D Q N L W H I G R E G A M L K 17
    311 G I Y V C H V S N E F S S R D 17
    334 D P Q E D S G K Q V D L V S A 17
    368 V V L M S R Y H R R K A Q Q M 17
    381 Q M T Q K Y E E E L T L T R E 17
    401 L H S H H T D P R S Q P E E S 17
    413 E E S V G L R A E G H P D S L 17
    445 Y S T L T T V R E I E T Q T E 17
    475 D E G I K Q A M N H F V Q E N 17
    479 K Q A M N H F V Q E N G T L R 17
    491 T L R A K P T G N G I Y I N G 17
    5 L G A E M W G P E A W L L L L 16
    13 E A W L L L L L L L A S F T G 16
    47 D A K L P C F Y R G D S G E Q 16
    70 V D A G E G A Q E L A L L H S 16
    134 A G S F Q A R L R L R V L V P 16
    114 L R N A V Q A D E G E Y E C R 15
    130 S T F P A G S F Q A R L R L R 15
    132 F P A G S F Q A R L R L R V L 15
    199 S R S A A V T S E F H L V P S 15
    221 L T C V V S H P G L L Q D Q R 15
    236 I T H I L H V S F L A E A S V 15
    481 A M N H F V Q E N G T L R A K 15
    15 W L L L L L L L A S F T G R C 14
    17 L L L L L L A S F T G R C P A 14
    78 E L A L L H S K Y G L H V S P 14
    109 D G S V L L R N A V Q A D E G 14
    110 G S V L L R N A V Q A D E G E 14
    143 L R V L V P P L P S L N P G P 14
    144 R V L V P P L P S L N P G P A 14
    280 Y N W T R L D G P L P S G V R 14
    342 Q V D L V S A S V V V V G V I 14
    356 I A A L L F C L L V V V V V L 14
    360 L F C L L V V V V V L M S R Y 14
    448 L T T V R E I E T Q T E L L S 14
    449 T T V R E I E T Q T E L L S P 14
    457 Q T E L L S P G S G R A E E E 14
    V2-HLA-DRB1-0301-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 5; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    3 T V V L G Q D A K L P C L Y R 27
    1 V V T V V L G Q D A K L P C L 22
    9 D A K L P C L Y R G D S G E Q 16
    2 V T V V L G Q D A K L P C L Y 13
    V7-HLA-DRB1-0301-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 15; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    5 L H S H H T D P R S Q S E E P 17
    2 I R R L H S H H T D P R S Q S 11
    13 R S Q S E E P E G R S Y S T L 10
    9 H T D P R S Q S E E P E G R S 9
    7 S H H T D P R S Q S E E P E G 8
    12 P R S Q S E E P E G R S Y S T 8
    14 S Q S E E P E G R S Y S T L T 8
    V9-HLA-DRB1-0301-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 19; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    8 G I L L R I T F N F F L F F F 25
    112 Q G V N S C D C E R G Y F Q G 24
    35 Y F Y F F L E M E S H Y V A Q 23
    6 L A G I L L R I T F N F F L F 22
    7 A G I L L R I T F N F F L F F 21
    19 L F F F L P F P L V V F F I Y 21
    10 L L R I T F N F F L F F F L P 20
    20 F F F L P F P L V V F F I Y F 20
    44 S H Y V A Q A G L E L L G S S 20
    93 F R F I Q C L L L G L L K V R 20
    97 Q C L L L G L L K V R P L Q H 20
    98 C L L L G L L K V R P L Q H Q 20
    16 N F F L F F F L P F P L V V F 19
    24 P F P L V V F F I Y F Y F Y F 19
    25 F P L V V F F I Y F Y F Y F F 19
    51 G L E L L G S S N P P A S A S 19
    68 A G T L S V H H C A C F E S F 19
    90 K K A F R F I Q C L L L G L L 19
    92 A F R F I Q C L L L G L L K V 19
    14 T F N F F L F F F L P F P L V 18
    26 P L V V F F I Y F Y F Y F F L 18
    29 V F F I Y F Y F Y F F L E M E 18
    12 R I T F N F F L F F F L P F P 17
    22 F L P F P L V V F F I Y F Y F 17
    28 V V F F I Y F Y F Y F F L E M 17
    79 F E S F T K R K K K L K K A F 17
    82 F T K R K K K L K K A F R F I 17
    86 K K K L K K A F R F I Q C L L 17
    27 L V V F F I Y F Y F Y F F L E 16
    76 C A C F E S F T K R K K K L K 16
    4 E L L A G I L L R I T F N F F 15
    33 Y F Y F Y F F L E M E S H Y V 15
    41 E M E S H Y V A Q A G L E L L 15
    78 C F E S F T K R K K K L K K A 15
    89 L K K A F R F I Q C L L L G L 15
    113 G V N S C D C E R G Y F Q G I 15
    117 C D C E R G Y F Q G I F M Q A 15
    96 I Q C L L L G L L K V R P L Q 14
    2 R R E L L A G I L L R I T F N 13
    49 Q A G L E L L G S S N P P A S 13
    100 L L G L L K V R P L Q H Q G V 13
    101 L G L L K V R P L Q H Q G V N 13
    103 L L K V R P L Q H Q G V N S C 13
    36 F Y F F L E M E S H Y V A Q A 12
    37 Y F F L E M E S H Y V A Q A G 12
    39 F L E M E S H Y V A Q A G L E 12
    52 L E L L G S S N P P A S A S L 12
    64 A S L V A G T L S V H H C A C 12
    106 V R P L Q H Q G V N S C D C E 12
    V10-HLA-DRB1-0301-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 21; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    12 G E L G T S D V V T V V L G Q 12
    11 A G E L G T S D V V T V V L G 11
    2 L A S F T G R C P A G E L G T 10
    3 A S F T G R C P A G E L G T S 9
    5 F T G R C P A G E L G T S D V 9
    13 E L G T S D V V T V V L G Q D 9
    V11-HLA-DRB1-0301-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 23; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    11 R L R V M V P P L P S L N P G 19
    3 A G S F Q A R L R L R V M V P 16
    1 F P A G S F Q A R L R L R V M 15
    12 L R V M V P P L P S L N P G P 14
    13 R V M V P P L P S L N P G P A 14
    7 Q A R L R L R V M V P P L P S 13
    9 R L R L R V M V P P L P S L N 12
    5 S F Q A R L R L R V M V P P L 10
    8 A R L R L R V M V P P L P S L 10
    15 M V P P L P S L N P G P A L E 10
    V12-HLA-DRB1-0301-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 25; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    5 C S V M S E E P E G C S Y S T 18
    4 S C S V M S E E P E G C S Y S 12
    6 S V M S E E P E G C S Y S T L 10
    3 S S C S V M S E E P E G C S Y 9
    9 S E E P E G C S Y S T L T T V 9
    V13-HLA-DRB1-0301-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 27; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    10 T V D V L A D P Q E D S G K Q 29
    6 D S Q V T V D V L A D P Q E D 22
    11 V D V L A D P Q E D S G K Q V 16
    V14-HLA-DRB1-0301-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 29; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position for
    each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    2 G L E L L G S S N P P A S A S 19
    3 L E L L G S S N P P A S A S L 12
    15 A S L V A G T L S V H H C A C 12
    14 S A S L V A G T L S V H H C A 11
    6 L G S S N P P A S A S L V A G 10
    11 P P A S A S L V A G T L S V H 9
  • TABLE XLVIII
    V1-HLA-DRB1-0401-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    205 T S E F H L V P S R S M N G Q 28
    299 T L G F P P L T T E H S G I Y 28
    47 D A K L P C F Y R G D S G E Q 26
    162 G Q G L T L A A S C T A E G S 26
    255 D Q N L W H I G R E G A M L K 26
    311 G I Y V C H V S N E F S S R D 26
    395 E N S I R R L H S H H T D P R 26
    415 S V G L R A E G H P D S L K D 26
    475 D E G I K Q A M N H F V Q E N 26
    7 A E M W G P E A W L L L L L L 22
    12 P E A W L L L L L L L A S F T 22
    50 L P C F Y R G D S G E Q V G Q 22
    51 P C F Y R G D S G E Q V G Q V 22
    180 S V T W D T E V K G T T S S R 22
    193 S R S F K H S R S A A V T S E 22
    241 H V S F L A E A S V R G L E D 22
    358 A L L F C L L V V V V V L M S 22
    383 T Q K Y E E E L T L T R E N S 22
    442 G R S Y S T L T T V R E I E T 22
    13 E A W L L L L L L L A S F T G 20
    15 W L L L L L L L A S F T G R C 20
    16 L L L L L L L A S F T G R C P 20
    37 S D V V T V V L G Q D A K L P 20
    59 G E Q V G Q V A W A R V D A G 20
    76 A Q E L A L L H S K Y G L H V 20
    87 G L H V S P A Y E G R V E Q P 20
    111 S V L L R N A V Q A D E G E Y 20
    144 R V L V P P L P S L N P G P A 20
    147 V P P L P S L N P G P A L E E 20
    184 D T E V K G T T S S R S F K H 20
    201 S A A V T S E F H L V P S R S 20
    218 G Q P L T C V V S H P G L L Q 20
    227 H P G L L Q D Q R I T H I L H 20
    233 D Q R I T H I L H V S F L A E 20
    239 I L H V S F L A E A S V R G L 20
    242 V S F L A E A S V R G L E D Q 20
    247 E A S V R G L E D Q N L W H I 20
    258 L W H I G R E G A M L K C L S 20
    264 E G A M L K C L S E G Q P P P 20
    302 F P P L T T E H S G I Y V C H 20
    314 V C H V S N E F S S R D S Q V 20
    325 D S Q V T V D V L D P Q E D S 20
    340 G K Q V D L V S A S V V V V G 20
    342 Q V D L V S A S V V V V G V I 20
    347 S A S V V V V G V I A A L L F 20
    349 S V V V V G V I A A L L F C L 20
    352 V V G V I A A L L F C L L V V 20
    353 V G V I A A L L F C L L V V V 20
    357 A A L L F C L L V V V V V L M 20
    360 L F C L L V V V V V L M S R Y 20
    361 F C L L V V V V V L M S R Y H 20
    364 L V V V V V L M S R Y H R R K 20
    368 V V L M S R Y H R R K A Q Q M 20
    389 E L T L T R E N S I R R L H S 20
    424 P D S L K D N S S C S V M S E 20
    433 C S V M S E E P E G R S Y S T 20
    445 Y S T L T T V R E I E T Q T E 20
    448 L T T V R E I E T Q T E L L S 20
    457 Q T E L L S P G S G R A E E E 20
    479 K Q A M N H F V Q E N G T L R 20
    483 N H F V Q E N G T L R A K P T 20
    28 R C P A G E L E T S D V V T V 18
    29 C P A G E L E T S D V V T V V 18
    33 E L E T S D V V T V V L G Q D 18
    38 D V V T V V L G Q D A K L P C 18
    89 H V S P A Y E G R V E Q P P P 18
    103 P P R N P L D G S V L L R N A 18
    107 P L D G S V L L R N A V Q A D 18
    108 L D G S V L L R N A V Q A D E 18
    120 A D E G E Y E C R V S T F P A 18
    123 G E Y E C R V S T F P A G S F 18
    128 R V S T F P A G S F Q A R L R 18
    155 P G P A L E E G Q G L T L A A 18
    190 T T S S R S F K H S R S A A V 18
    219 Q P L T C V V S H P G L L Q D 18
    308 E H S G I Y V C H V S N E F S 18
    315 C H V S N E F S S R D S Q V T 18
    319 N E F S S R D S Q V T V D V L 18
    328 V T V D V L D P Q E D S G K Q 18
    331 D V L D P Q E D S G K Q V D L 18
    339 S G K Q V D L V S A S V V V V 18
    373 R Y H R R K A Q Q M T Q K Y E 18
    386 Y E E E L T L T R E N S I R R 18
    392 L T R E N S I R R L H S H H T 18
    407 D P R S Q P E E S V G L R A E 18
    423 H P D S L K D N S S C S V M S 18
    435 V M S E E P E G R S Y S T L T 18
    449 T T V R E I E T Q T E L L S P 18
    454 I E T Q T E L L S P G S G R A 18
    472 E D Q D E G I K Q A M N H F V 18
    134 A G S F Q A R L R L R V L V P 17
    318 S N E F S S R D S Q V T V D V 17
    64 Q V A W A R V D A G E G A Q E 16
    83 H S K Y G L H V S P A Y E G R 16
    256 Q N L W H I G R E G A M L K C 16
    279 S Y N W T R L D G P L P S G V 16
    310 S G I Y V C H V S N E F S S R 16
    482 M N H F V Q E N G T L R A K P 16
    367 V V V L M S R Y H R R K A Q Q 15
    2 P L S L G A E M W G P E A W L 14
    6 G A E M W G P E A W L L L L L 14
    14 A W L L L L L L L A S F T G R 14
    17 L L L L L L A S F T G R C P A 14
    18 L L L L L A S F T G R C P A G 14
    19 L L L L A S F T G R C P A G E 14
    31 A G E L E T S D V V T V V L G 14
    36 T S D V V T V V L G Q D A K L 14
    39 V V T V V L G Q D A K L P C F 14
    41 T V V L G Q D A K L P C F Y R 14
    62 V G Q V A W A R V D A G E G A 14
    95 E G R V E Q P P P P R N P L D 14
    105 R N P L D G S V L L R N A V Q 14
    115 R N A V Q A D E G E Y E C R V 14
    126 E C R V S T F P A G S F Q A R 14
    140 R L R L R V L V P P L P S L N 14
    142 R L R V L V P P L P S L N P G 14
    143 L R V L V P P L P S L N P G P 14
    156 G P A L E E G Q G L T L A A S 14
    164 G L T L A A S C T A E G S P A 14
    178 A P S V T W D T E V K G T T S 14
    207 E F H L V P S R S M N G Q P L 14
    213 S R S M N G Q P L T C V V S H 14
    221 L T C V V S H P G L L Q D Q R 14
    228 P G L L Q D Q R I T H I L H V 14
    236 I T H I L H V S F L A E A S V 14
    237 T H I L H V S F L A E A S V R 14
    250 V R G L E D Q N L W H I G R E 14
    265 G A M L K C L S E G Q P P P S 14
    268 L K C L S E G Q P P P S Y N W 14
    282 W T R L D G P L P S G V R V D 14
    286 D G P L P S G V R V D G D T L 14
    290 P S G V R V D G D T L G F P P 14
    292 G V R V D G D T L G F P P L T 14
    327 Q V T V D V L D P Q E D S G K 14
    330 V D V L D P Q E D S G K Q V D 14
    348 A S V V V V G V I A A L L F C 14
    350 V V V V G V I A A L L F C L L 14
    356 I A A L L F C L L V V V V V L 14
    362 C L L V V V V V L M S R Y H R 14
    363 L L V V V V V L M S R Y H R R 14
    365 V V V V V L M S R Y H R R K A 14
    387 E E E L T L T R E N S I R R L 14
    398 I R R L H S H H T D P R S Q P 14
    432 S C S V M S E E P E G R S Y S 14
    451 V R E I E T Q T E L L S P G S 14
    V2-HLA-DRB1-0401-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 5; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    9 D A K L P C L Y R G D S G E Q 26
    13 P C L Y R G D S G E Q V G Q V 22
    12 L P C L Y R G D S G E Q V G Q 20
    1 V V T V V L G Q D A K L P C L 14
    3 T V V L G Q D A K L P C L Y R 14
    4 V V L G Q D A K L P C L Y R G 12
    15 L Y R G D S G E Q V G Q V A W 12
    V7-HLA-DRB1-0401-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 15; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    5 L H S H H T D P R S Q S E E P 18
    14 S Q S E E P E G R S Y S T L T 18
    2 I R R L H S H H T D P R S Q S 14
    12 P R S Q S E E P E G R S Y S T 12
    V9-HLA-DRB1-0401-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 19; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    37 Y F F L E M E S H Y V A Q A G 26
    86 K K K L K K A F R F I Q C L L 26
    103 L L K V R P L Q H Q G V N S C 26
    12 R I T F N F F L F F F L P F P 22
    17 F F L F F F L P F P L V V F F 22
    33 Y F Y F Y F F L E M E S H Y V 22
    36 F Y F F L E M E S H Y V A Q A 22
    76 C A C F E S F T K R K K K L K 22
    90 K K A F R F I Q C L L L G L L 22
    121 R G Y F Q G I F M Q A A P W E 22
    3 R E L L A G I L L R I T F N F 20
    8 G I L L R I T F N F F L F F F 20
    16 N F F L F F F L P F P L V V F 20
    44 S H Y V A Q A G L E L L G S S 20
    49 Q A G L E L L G S S N P P A S 20
    51 G L E L L G S S N P P A S A S 20
    93 F R F I Q C L L L G L L K V R 20
    98 C L L L G L L K V R P L Q H Q 20
    41 E M E S H Y V A Q A G L E L L 18
    62 A S A S L V A G T L S V H H C 18
    73 V H H C A C F E S F T K R K K 18
    89 L K K A F R F I Q C L L L G L 18
    14 T F N F F L F F F L P F P L V 16
    15 F N F F L F F F L P F P L V V 16
    18 F L F F F L P F P L V V F F I 16
    19 L F F F L P F P L V V F F I Y 16
    22 F L P F P L V V F F I Y F Y F 16
    28 V V F F I Y F Y F Y F F L E M 16
    30 F F I Y F Y F Y F F L E M E S 16
    31 F I Y F Y F Y F F L E M E S H 16
    32 I Y F Y F Y F F L E M E S H Y 16
    34 F Y F Y F F L E M E S H Y V A 16
    35 Y F Y F F L E M E S H Y V A Q 16
    43 E S H Y V A Q A G L E L L G S 16
    92 A F R F I Q C L L L G L L K V 16
    120 E R G Y F Q G I F M Q A A P W 16
    2 R R E L L A G I L L R I T F N 14
    7 A G I L L R I T F N F F L F F 14
    24 P F P L V V F F I Y F Y F Y F 14
    25 F P L V V F F I Y F Y F Y F F 14
    26 P L V V F F I Y F Y F Y F F L 14
    29 V F F I Y F Y F Y F F L E M E 14
    39 F L E M E S H Y V A Q A G L E 14
    52 L E L L G S S N P P A S A S L 14
    64 A S L V A G T L S V H H C A C 14
    70 T L S V H H C A C F E S F T K 14
    97 Q C L L L G L L K V R P L Q H 14
    100 L L G L L K V R P L Q H Q G V 14
    4 E L L A G I L L R I T F N F F 12
    5 L L A G I L L R I T F N F F L 12
    21 F F L P F P L V V F F I Y F Y 12
    46 Y V A Q A G L E L L G S S N P 12
    47 V A Q A G L E L L G S S N P P 12
    48 A Q A G L E L L G S S N P P A 12
    55 L G S S N P P A S A S L V A G 12
    56 G S S N P P A S A S L V A G T 12
    57 S S N P P A S A S L V A G T L 12
    60 P P A S A S L V A G T L S V H 12
    61 P A S A S L V A G T L S V H H 12
    66 L V A G T L S V H H C A C F E 12
    67 V A G T L S V H H C A C F E S 12
    75 H C A C F E S F T K R K K K L 12
    77 A C F E S F T K R K K K L K K 12
    94 R F I Q C L L L G L L K V R P 12
    95 F I Q C L L L G L L K V R P L 12
    104 L K V R P L Q H Q G V N S C D 12
    108 P L Q H Q G V N S C D C E R G 12
    114 V N S C D C E R G Y F Q G I F 12
    118 D C E R G Y F Q G I F M Q A A 12
    122 G Y F Q G I F M Q A A P W E G 12
    V10-HLA-DRB1-0401-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 21; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    8 R C P A G E L G T S D V V T V 18
    13 E L G T S D V V T V V L G Q D 18
    11 A G E L G T S D V V T V V L G 14
    5 F T G R C P A G E L G T S D V 12
    9 C P A G E L G T S D V V T V V 12
    12 G E L G T S D V V T V V L G Q 12
    V11-HLA-DRB1-0401-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 23; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    13 R V M V P P L P S L N P G P A 20
    3 A G S F Q A R L R L R V M V P 17
    11 R L R V M V P P L P S L N P G 14
    12 L R V M V P P L P S L N P G P 14
    1 F P A G S F Q A R L R L R V M 12
    4 G S F Q A R L R L R V M V P P 12
    8 A R L R L R V M V P P L P S L 12
    10 L R L R V M V P P L P S L N P 12
    V12-HLA-DRB1-0401-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 25; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    14 G C S Y S T L T T V R E I E T 22
    5 C S V M S E E P E G C S Y S T 20
    4 S C S V M S E E P E G C S Y S 14
    1 D N S S C S V M S E E P E G C 12
    7 V M S E E P E G C S Y S T L T 12
    8 M S E E P E G C S Y S T L T T 12
    10 E E P E G C S Y S T L T T V R 12
    11 E P E G C S Y S T L T T V R E 12
    V13-HLA-DRB1-0401-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 27; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    10 T V D V L A D P Q E D S G K Q 26
    13 V L A D P Q E D S G K Q V D L 18
    6 D S Q V T V D V L A D P Q E D 14
    8 Q V T V D V L A D P Q E D S G 14
    2 F S S R D S Q V T V D V L A D 12
    3 S S R D S Q V T V D V L A D P 12
    7 S Q V T V D V L A D P Q E D S 12
    14 L A D P Q E D S G K Q V D L V 12
    V14-HLA-DRB1-0401-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 29; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    2 G L E L L G S S N P P A S A S 20
    13 A S A S L V A G T L S V H H C 18
    3 L E L L G S S N P P A S A S L 14
    15 A S L V A G T L S V H H C A C 14
    6 L G S S N P P A S A S L V A G 12
    7 G S S N P P A S A S L V A G T 12
    8 S S N P P A S A S L V A G T L 12
    11 P P A S A S L V A G T L S V H 12
    12 P A S A S L V A G T L S V H H 12
  • TABLE XLIX
    V1-HLA-DRB1-1101-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    255 D Q N L W H I G R E G A M L K 26
    279 S Y N W T R L D G P L P S G V 25
    12 P E A W L L L L L L L A S F T 23
    201 S A A V T S E F H L V P S R S 23
    64 Q V A W A R V D A G E G A Q E 22
    140 R L R L R V L V P P L P S L N 22
    218 G Q P L T C V V S H P G L L Q 22
    233 D Q R I T H I L H V S F L A E 22
    286 D G P L P S G V R V D G D T L 22
    299 T L G F P P L T T E H S G I Y 22
    368 V V L M S R Y H R R K A Q Q M 22
    37 S D V V T V V L G Q D A K L P 21
    261 I G R E G A M L K C L S E G Q 21
    361 F C L L V V V V V L M S R Y H 21
    47 D A K L P C F Y R G D S G E Q 20
    134 A G S F Q A R L R L R V L V P 20
    180 S V T W D T E V K G T T S S R 20
    365 V V V V V L M S R Y H R R K A 20
    386 Y E E E L T L T R E N S I R R 20
    392 L T R E N S I R R L H S H H T 20
    415 S V G L R A E G H P D S L K D 20
    347 S A S V V V V G V I A A L L F 19
    358 A L L F C L L V V V V V L M S 19
    13 E A W L L L L L L L A S F T G 18
    16 L L L L L L L A S F T G R C P 18
    76 A Q E L A L L H S K Y G L H V 18
    91 S P A Y E G R V E Q P P P P R 18
    122 E G E Y E C R V S T F P A G S 18
    144 R V L V P P L P S L N P G P A 18
    147 V P P L P S L N P G P A L E E 18
    241 H V S F L A E A S V R G L E D 18
    265 G A M L K C L S E G Q P P P S 18
    311 G I Y V C H V S N E F S S R D 18
    442 G R S Y S T L T T V R E I E T 18
    204 V T S E F H L V P S R S M N G 17
    205 T S E F H L V P S R S M N G Q 17
    367 V V V L M S R Y H R R K A Q Q 17
    190 T T S S R S F K H S R S A A V 16
    277 P P S Y N W T R L D G P L P S 16
    346 V S A S V V V V G V I A A L L 16
    360 L F C L L V V V V V L M S R Y 16
    487 Q E N G T L R A K P T G N G I 16
    75 G A Q E L A L L H S K Y G L H 15
    107 P L D G S V L L R N A V Q A D 15
    178 A P S V T W D T E V K G T T S 15
    192 S S R S F K H S R S A A V T S 15
    219 Q P L T C V V S H P G L L Q D 15
    230 L L Q D Q R I T H I L H V S F 15
    343 V D L V S A S V V V V G V I A 15
    362 C L L V V V V V L M S R Y H R 15
    363 L L V V V V V L M S R Y H R R 15
    411 Q P E E S V G L R A E G H P D 15
    476 E G I K Q A M N H F V Q E N 15
    485 F V Q E N G T L R A K P T G N 15
    20 L L L A S F T G R C P A G E L 14
    34 L E T S D V V T V V L G Q D A 14
    36 T S D V V T V V L G Q D A K L 14
    41 T V V L G Q D A K L P C F Y R 14
    59 G E Q V G Q V A W A R V D A G 14
    61 Q V G Q V A W A R V D A G E G 14
    81 L L H S K Y G L H V S P A Y E 14
    138 Q A R L R L R V L V P P L P S 14
    162 G Q G L T L A A S C T A E G S 14
    181 V T W D T E V K G T T S S R S 14
    184 D T E V K G T T S S R S F K H 14
    227 H P G L L Q D Q R I T H I L H 14
    252 G L E D Q N L W H I G R E G A 14
    276 P P P S Y N W T R L D G P L P 14
    290 P S G V R V D G D T L G F P P 14
    308 E H S G I Y V C H V S N E F S 14
    350 V V V V G V I A A L L F C L L 14
    357 A A L L F C L L V V V V V L M 14
    364 L V V V V V L M S R Y H R R K 14
    397 S I R R L H S H H T D P R S Q 14
    401 L H S H H T D P R S Q P E E S 14
    420 A E G H P D S L K D N S S C S 14
    433 C S V M S E E P E G R S Y S T 14
    435 V M S E E P E G R S Y S T L T 14
    445 Y S T L T T V R E I E T Q T E 14
    454 I E T Q T E L L S P G S G R A 14
    457 Q T E L L S P G S G R A E E E 14
    479 K Q A M N H F V Q E N G T L R 14
    483 N H F V Q E N G T L R A K P T 14
    19 L L L L A S F T G R C P A G E 13
    40 V T V V L G Q D A K L P C F Y 13
    85 K Y G L H V S P A Y E G R V E 13
    106 N P L D G S V L L R N A V Q A 13
    137 F Q A R L R L R V L V P P L P 13
    215 S M N G Q P L T C V V S H P G 13
    237 T H I L H V S F L A E A S V R 13
    327 Q V T V D V L D P Q E D S G K 13
    340 G K Q V D L V S A S V V V V G 13
    349 S V V V V G V I A A L L F C L 13
    353 V G V I A A L L F C L L V V V 13
    451 V R E I E T Q T E L L S P G S 13
    3 L S L G A E M W G P E A W L L 12
    14 A W L L L L L L L A S F T G R 12
    15 W L L L L L L L A S F T G R C 12
    22 L A S F T G R C P A G E L E T 12
    62 V G Q V A W A R V D A G E G A 12
    73 G E G A Q E L A L L H S K Y G 12
    82 L H S K Y G L H V S P A Y E G 12
    83 H S K Y G L H V S P A Y E G R 12
    92 P A Y E G R V E Q P P P P R N 12
    109 D G S V L L R N A V Q A D E G 12
    112 V L L R N A V Q A D E G E Y E 12
    123 G E Y E C R V S T F P A G S F 12
    141 L R L R V L V P P L P S L N P 12
    153 L N P G P A L E E G Q G L T L 12
    159 L E E G Q G L T L A A S C T A 12
    164 G L T L A A S C T A E G S P A 12
    207 E F H L V P S R S M N G Q P L 12
    236 I T H I L H V S F L A E A S V 12
    239 I L H V S F L A E A S V R G L 12
    247 E A S V R G L E D Q N L W H I 12
    268 L K C L S E G Q P P P S Y N W 12
    292 G V R V D G D T L G F P P L T 12
    310 S G I Y V C H V S N E F S S R 12
    324 R D S Q V T V D V L D P Q E D 12
    329 T V D V L D P Q E D S G K Q V 12
    337 E D S G K Q V D L V S A S V V 12
    395 E N S I R R L H S H H T D P R 12
    413 E E S V G L R A E G H P D S L 12
    421 E G H P D S L K D N S S C S V 12
    429 D N S S C S V M S E E P E G R 12
    448 L T T V R E I E T Q T E L L S 12
    455 E T Q T E L L S P G S G R A E 12
    489 N G T L R A K P T G N G I Y I 12
    V2-HLA-DRB1-1101-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 5; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    9 D A K L P C L Y R G D S G E Q 26
    3 T V V L G Q D A K L P C L Y R 14
    2 V T V V L G Q D A K L P C L Y 13
    V7-HLA-DRB1-1101-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 15; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    1 S I R R L H S H H T D P R S Q 14
    5 L H S H H T D P R S Q S E E P 14
    14 S Q S E E P E G R S Y S T L T 14
    3 R R L H S H H T D P R S Q S E 8
    12 P R S Q S E E P E G R S Y S T 8
    2 I R R L H S H H T D P R S Q S 6
    8 H H T D P R S Q S E E P E G R 6
    10 T D P R S Q S E E P E G R S Y 6
    V9-HLA-DRB1-1101-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 19; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    97 Q C L L L G L L K V R P L Q H 28
    121 R G Y F Q G I F M Q A A P W E 22
    37 Y F F L E M E S H Y V A Q A G 21
    79 F E S F T K R K K K L K K A F 21
    76 C A C F E S F T K R K K K L K 20
    103 L L K V R P L Q H Q G V N S C 20
    22 F L P F P L V V F F I Y F Y F 19
    17 F F L F F F L P F P L V V F F 18
    49 Q A G L E L L G S S N P P A S 18
    66 L V A G T L S V H H C A C F E 18
    34 F Y F Y F F L E M E S H Y V A 17
    90 K K A F R F I Q C L L L G L L 17
    120 E R G Y F Q G I F M Q A A P W 17
    15 F N F F L F F F L P F P L V V 16
    33 Y F Y F Y F F L E M E S H Y V 16
    36 F Y F F L E M E S H Y V A Q A 16
    86 K K K L K K A F R F I Q C L L 15
    3 R E L L A G I L L R I T F N F 14
    4 E L L A G I L L R I T F N F F 14
    13 I T F N F F L F F F L P F P L 14
    67 V A G T L S V H H C A C F E S 14
    83 T K R K K K L K K A F R F I Q 14
    111 H Q G V N S C D C E R G Y F Q 14
    26 P L V V F F I Y F Y F Y F F L 13
    61 P A S A S L V A G T L S V H H 13
    93 F R F I Q C L L L G L L K V R 13
    98 C L L L G L L K V R P L Q H Q 13
    V10-HLA-DRB1-1101-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 21; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    14 L G T S D V V T V V L G Q D A 14
    2 L A S F T G R C P A G E L G T 12
    13 E L G T S D V V T V V L G Q D 9
    1 L L A S F T G R C P A G E L G 7
    4 S F T G R C P A G E L G T S D 7
    6 T G R C P A G E L G T S D V V 6
    8 R C P A G E L G T S D V V T V 6
    11 A G E L G T S D V V T V V L G 6
    V11-HLA-DRB1-1101-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 23; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    9 R L R L R V M V P P L P S L N 22
    3 A G S F Q A R L R L R V M V P 20
    13 R V M V P P L P S L N P G P A 18
    7 Q A R L R L R V M V P P L P S 14
    6 F Q A R L R L R V M V P P L P 13
    10 L R L R V M V P P L P S L N P 12
    1 F P A G S F Q A R L R L R V M 10
    V12-HLA-DRB1-1101-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 25; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    14 G C S Y S T L T T V R E I E T 18
    1 D N S S C S V M S E E P E G C 12
    5 C S V M S E E P E G C S Y S T 12
    2 N S S C S V M S E E P E G C S 7
    V13-HLA-DRB1-1101-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 27; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    6 D S Q V T V D V L A D P Q E D 17
    8 Q V T V D V L A D P Q E D S G 13
    10 T V D V L A D P Q E D S G K Q 12
    11 V D V L A D P Q E D S G K Q V 12
    4 S R D S Q V T V D V L A D P Q 10
    15 A D P Q E D S G K Q V D L V S 9
    V14-HLA-DRB1-1101-
    15mers-191P4D12B
    Each peptide is a portion of
    SEQ ID NO: 3; each start
    position is specified, the
    length of peptide is 15 amino
    acids, and the end position
    for each peptide is the start
    position plus fourteen.
    Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score
    12 P A S A S L V A G T L S V H H 13
    2 G L E L L G S S N P P A S A S 12
    3 L E L L G S S N P P A S A S L 12
    11 P P A S A S L V A G T L S V H 8
    8 S S N P P A S A S L V A G T L 7
    14 S A S L V A G T L S V H H C A 7
    1 A G L E L L G S S N P P A S A 6
    4 E L L G S S N P P A S A S L V 6
    5 L L G S S N P P A S A S L V A 6
    9 S N P P A S A S L V A G T L S 6
    15 A S L V A G T L S V H H C A C 6
  • TABLE L
    Properties of 191P4D12(b)
    Bioinformatic
    Program Outcome
    191P4D12(b)B v.1
    ORF ORF finder 264-1796
    Protein length 510aa
    Transmembrane TM Pred 2 TM, aa 14-30, 351-370
    region
    HMMTop 1 TM, aa 347-371
    Sosui 2 TM, aa 14-31, 347-369
    TMHMM 1 TM, aa 350-372
    Signal Peptide Signal P yes, cleaved aa 31-32
    pI pI/MW tool pI 5.27
    Molecular weight pI/MW tool 55.4 kDa
    Localization PSORT
    46% plasma membrane
    PSORT II 39.1% cytoplasmic, 21%
    nuclear
    Motifs Pfam Immunoglobulin domain
    Prints Cadherin signature
    Blocks Ig domain, Herpesvirus
    glycoprotein D
    v.6
    ORF ORF finder
    Protein length
    295 aa
    Transmembrane TM Pred 1 TM, aa 135-156
    region
    HMMTop 1 TM, aa 132-156
    Sosui 1 TM, aa 132-154
    TMHMM 1 TM, aa 135-157
    Signal Peptide Signal P none
    pI pI/MW tool pI 5.28
    Molecular weight pI/MW tool 32.6 kDa
    Localization PSORT
    70% plasma membrane, 20%
    endoplasmic reticulum
    PSORT II 39% cytoplasmic, 21% nuclear
    Motifs Pfam Immunoglobulin domain
    Prints none
    Blocks Herpesvirus glycoprotein D
  • TABLE LI
    Exon boundaries of transcript 191P4D12(b) v.1
    Exon Number Start End Length
    1 2 342 341
    2 343 702 360
    3 703 993 291
    4 994 1114 121
    5 1115 1263 149
    6 1264 1420 157
    7 1421 1496 76
    8 1497 1571 75
    9 1572 3459 1888
  • TABLE LII(a)
    Nucleotide sequence of transcript variant
    191P4D12(b) v.6 (SEQ ID NO: 105)
    ggccgtcgtt gttggccaca gcgtgggaag cagctctggg ggagctcgga gctcccgatc 60
    acggcttctt gggggtagct acggctgggt gtgtagaacg gggccggggc tggggctggg 120
    tcccctagtg gagacccaag tgcgagaggc aagaactctg cagcttcctg ccttctgggt 180
    cagttcctta ttcaagtctg ctactgctgg catcatttac aggccggtgc cccgcgggtg 240
    agctggagac ctcagacgtg gtaactgtgg tgctgggcca ggacgcaaaa ctgccctgct 300
    tctaccgagg ggactccggc gagcaagtgg ggcaagtggc atgggctcgg gtggacgcgg 360
    gcgaaggcgc ccaggaacta gcgctactgc actccaaata cgggcttcat gtgagcccgg 420
    cttacgaggg ccgcgtggag cagccgccgc ccccacgcaa ccccctggac ggctcagtgc 480
    tcctgcgcaa cgcagtgcag gcggatgagg gcgagtacga gtgccgggtc agcaccttcc 540
    ccgccggcag cttccaggcg cggctgcggc tccgagtgct ggtgcctccc ctgccctcac 600
    tgaatcctgg tccagcacta gaagagggcc agggcctgac cctggcagcc tcctgcacag 660
    ctgagggcag cccagccccc agcgtgacct gggacacgga ggtcaaaggc acaacgtcca 720
    gccgttcctt caagcactcc cgctctgctg ccgtcacctc agagttccac ttggtgccta 780
    gccgcagcat gaatgggcag ccactgactt gtgtggtgtc ccatcctggc ctgctccagg 840
    accaaaggat cacccacatc ctccacgtgt ccttccttgc tgaggcctct gtgaggggcc 900
    ttgaagacca aaatctgtgg cacattggca gagaaggagc tatgctcaag tgcctgagtg 960
    aagggcagcc ccctccctca tacaactgga cacggctgga tgggcctctg cccagtgggg 1020
    tacgagtgga tggggacact ttgggctttc ccccactgac cactgagcac agcggcatct 1080
    acgtctgcca tgtcagcaat gagttctcct caagggattc tcaggtcact gtggatgttc 1140
    ttgaccccca ggaagactct gggaagcagg tggacctagt gtcagcctcg gtggtggtgg 1200
    tgggtgtgat cgccgcactc ttgttctgcc ttctggtggt ggtggtggtg ctcatgtccc 1260
    gataccatcg gcgcaaggcc cagcagatga cccagaaata tgaggaggag ctgaccctga 1320
    ccagggagaa ctccatccgg aggctgcatt cccatcacac ggaccccagg agccagccgg 1380
    aggagagtgt agggctgaga gccgagggcc accctgatag tctcaaggac aacagtagct 1440
    gctctgtgat gagtgaagag cccgagggcc gcagttactc cacgctgacc acggtgaggg 1500
    agatagaaac acagactgaa ctgctgtctc caggctctgg gcgggccgag gaggaggaag 1560
    atcaggatga aggcatcaaa caggccatga accattttgt tcaggagaat gggaccctac 1620
    gggccaagcc cacgggcaat ggcatctaca tcaatgggcg gggacacctg gtctgaccca 1680
    ggcctgcctc ccttccctag gcctggctcc ttctgttgac atgggagatt ttagctcatc 1740
    ttgggggcct ccttaaacac ccccatttct tgcggaagat gctccccatc ccactgactg 1800
    cttgaccttt acctccaacc cttctgttca tcgggagggc tccaccaatt gagtctctcc 1860
    caccatgcat gcaggtcact gtgtgtgtgc atgtgtgcct gtgtgagtgt tgactgactg 1920
    tgtgtgtgtg gaggggtgac tgtccgtgga ggggtgactg tgtccgtggt gtgtattatg 1980
    ctgtcatatc agagtcaagt gaactgtggt gtatgtgcca cgggatttga gtggttgcgt 2040
    gggcaacact gtcagggttt ggcgtgtgtg tcatgtggct gtgtgtgacc tctgcctgaa 2100
    aaagcaggta ttttctcaga ccccagagca gtattaatga tgcagaggtt ggaggagaga 2160
    ggtggagact gtggctcaga cccaggtgtg cgggcatagc tggagctgga atctgcctcc 2220
    ggtgtgaggg aacctgtctc ctaccacttc ggagccatgg gggcaagtgt gaagcagcca 2280
    gtccctgggt cagccagagg cttgaactgt tacagaagcc ctctgccctc tggtggcctc 2340
    tgggcctgct gcatgtacat attttctgta aatatacatg cgccgggagc ttcttgcagg 2400
    aatactgctc cgaatcactt ttaatttttt tctttttttt ttcttgccct ttccattagt 2460
    tgtatttttt atttattttt atttttattt ttttttagag atggagtctc actatgttgc 2520
    tcaggctggc cttgaactcc tgggctcaag caatcctcct gcctcagcct ccctagtagc 2580
    tgggacttta agtgtacacc actgtgcctg ctttgaatcc tttacgaaga gaaaaaaaaa 2640
    attaaagaaa gcctttagat ttatccaatg tttactactg ggattgctta aagtgaggcc 2700
    cctccaacac cagggggtta attcctgtga ttgtgaaagg ggctacttcc aaggcatctt 2760
    catgcaggca gccccttggg agggcacctg agagctggta gagtctgaaa ttagggatgt 2820
    gagcctcgtg gttactgagt aaggtaaaat tgcatccacc attgtttgtg ataccttagg 2880
    gaattgcttg gacctggtga caagggctcc tgttcaatag tggtgttggg gagagagaga 2940
    gcagtgatta tagaccgaga gagtaggagt tgaggtgagg tgaaggaggt gctgggggtg 3000
    agaatgtcgc ctttccccct gggttttgga tcactaattc aaggctcttc tggatgtttc 3060
    tctgggttgg ggctggagtt caatgaggtt tatttttagc tggcccaccc agatacactc 3120
    agccagaata cctagattta gtacccaaac tcttcttagt ctgaaatctg ctggatttct 3180
    ggcctaaggg agaggctccc atccttcgtt ccccagccag cctaggactt cgaatgtgga 3240
    gcctgaagat ctaagatcct aacatgtaca ttttatgtaa atatgtgcat atttgtacat 3300
    aaaatgatat tctgttttta aataaacaga caaaacttga aaaa 3344
  • TABLE LIII(a)
    Nucleotide sequence alignment of 191P4D12(b) v.1 (SEQ ID NO: 106) and
    191P4D12(b) v.6 (SEQ ID NO: 107).
    Figure US20100297669A1-20101125-C00001
    Figure US20100297669A1-20101125-C00002
    Figure US20100297669A1-20101125-C00003
    Figure US20100297669A1-20101125-C00004
    Figure US20100297669A1-20101125-C00005
  • TABLE LIV(a)
    Peptide sequences of protein coded by
    191P4D12(b) v.6 (SEQ ID NO: 108)
    MNGQPLTCVV SHPGLLQDQR ITHILHVSFL AEASVRGLED QNLWHIGREG AMLKCLSEGQ 60
    PPPSYNWTRL DGPLPSGVRV DGDTLGFPPL TTEHSGIYVC HVSNEFSSRD SQVTVDVLDP 120
    QEDSGKQVDL VSASVVVVGV IAALLFCLLV VVVVLMSRYH RRKAQQMTQK YEEELTLTRE 180
    NSIRRLHSHH TDPRSQPEES VGLPAEGHPD SLKDNSSCSV MSEEPEGRSY STLTTVREIE 240
    TQTELLSPGS GRAEEEEDQD EGIKQAMNHF VQENGTLRAK PTGNGIYING RGHLV 295
  • TABLE LV(a)
    Amino acid sequence alignment of 191P4D12(b) v.1 (SEQ ID NO: 109) and
    191P4D12(b) v.6 (SEQ ID NO: 110)
    Figure US20100297669A1-20101125-C00006
  • TABLE LII(b)
    Nucleotide sequence of transcript variant
    191P4D12(b) v.7 (SEQ ID NO: 111)
    ggccgtcgtt gttggccaca gcgtgggaag cagctctggg ggagctcgga gctcccgatc 60
    acggcttctt gggggtagct acggctgggt gtgtagaacg gggccggggc tggggctggg 120
    tcccctagtg gagacccaag tgcgagaggc aagaactctg cagcttcctg ccttctgggt 180
    cagttcctta ttcaagtctg cagccggctc ccagggagat ctcggtggaa cttcagaaac 240
    gctgggcagt ctgcctttca accatgcccc tgtccctggg agccgagatg tgggggcctg 300
    aggcctggct gctgctgctg ctactgctgg catcatttac aggccggtgc cccgcgggtg 360
    agctggagac ctcagacgtg gtaactgtgg tgctgggcca ggacgcaaaa ctgccctgct 420
    tctaccgagg ggactccggc gagcaagtgg ggcaagtggc atgggctcgg gtggacgcgg 480
    gcgaaggcgc ccaggaacta gcgctactgc actccaaata cgggcttcat gtgagcccgg 540
    cttacgaggg ccgcgtggag cagccgccgc ccccacgcaa ccccctggac ggctcagtgc 600
    tcctgcgcaa cgcagtgcag gcggatgagg gcgagtacga gtgccgggtc agcaccttcc 660
    ccgccggcag cttccaggcg cggctgcggc tccgagtgct ggtgcctccc ctgccctcac 720
    tgaatcctgg tccagcacta gaagagggcc agggcctgac cctggcagcc tcctgcacag 780
    ctgagggcag cccagccccc agcgtgacct gggacacgga ggtcaaaggc acaacgtcca 840
    gccgttcctt caagcactcc cgctctgctg ccgtcacctc agagttccac ttggtgccta 900
    gccgcagcat gaatgggcag ccactgactt gtgtggtgtc ccatcctggc ctgctccagg 960
    accaaaggat cacccacatc ctccacgtgt ccttccttgc tgaggcctct gtgaggggcc 1020
    ttgaagacca aaatctgtgg cacattggca gagaaggagc tatgctcaag tgcctgagtg 1080
    aagggcagcc ccctccctca tacaactgga cacggctgga tgggcctctg cccagtgggg 1140
    tacgagtgga tggggacact ttgggctttc ccccactgac cactgagcac agcggcatct 1200
    acgtctgcca tgtcagcaat gagttctcct caagggattc tcaggtcact gtggatgttc 1260
    ttgaccccca ggaagactct gggaagcagg tggacctagt gtcagcctcg gtggtggtgg 1320
    tgggtgtgat cgccgcactc ttgttctgcc ttctggtggt ggtggtggtg ctcatgtccc 1380
    gataccatcg gcgcaaggcc cagcagatga cccagaaata tgaggaggag ctgaccctga 1440
    ccagggagaa ctccatccgg aggctgcatt cccatcacac ggaccccagg agccagagtg 1500
    aagagcccga gggccgcagt tactccacgc tgaccacggt gagggagata gaaacacaga 1560
    ctgaactgct gtctccaggc tctgggcggg ccgaggagga ggaagatcag gatgaaggca 1620
    tcaaacaggc catgaaccat tttgttcagg agaatgggac cctacgggcc aagcccacgg 1680
    gcaatggcat ctacatcaat gggcggggac acctggtctg acccaggcct gcctcccttc 1740
    cctaggcctg gctccttctg ttgacatggg agattttagc tcatcttggg ggcctcctta 1800
    aacaccccca tttcttgcgg aagatgctcc ccatcccact gactgcttga cctttacctc 1860
    caacccttct gttcatcggg agggctccac caattgagtc tctcccacca tgcatgcagg 1920
    tcactgtgtg tgtgcatgtg tgcctgtgtg agtgttgact gactgtgtgt gtgtggaggg 1980
    gtgactgtcc gtggaggggt gactgtgtcc gtggtgtgta ttatgctgtc atatcagagt 2040
    caagtgaact gtggtgtatg tgccacggga tttgagtggt tgcgtgggca acactgtcag 2100
    ggtttggcgt gtgtgtcatg tggctgtgtg tgacctctgc ctgaaaaagc aggtattttc 2160
    tcagacccca gagcagtatt aatgatgcag aggttggagg agagaggtgg agactgtggc 2220
    tcagacccag gtgtgcgggc atagctggag ctggaatctg cctccggtgt gagggaacct 2280
    gtctcctacc acttcggagc catgggggca agtgtgaagc agccagtccc tgggtcagcc 2340
    agaggcttga actgttacag aagccctctg ccctctggtg gcctctgggc ctgctgcatg 2400
    tacatatttt ctgtaaatat acatgcgccg ggagcttctt gcaggaatac tgctccgaat 2460
    cacttttaat ttttttcttt tttttttctt gccctttcca ttagttgtat tttttattta 2520
    tttttatttt tatttttttt tagagatgga gtctcactat gttgctcagg ctggccttga 2580
    actcctgggc tcaagcaatc ctcctgcctc agcctcccta gtagctggga ctttaagtgt 2640
    acaccactgt gcctgctttg aatcctttac gaagagaaaa aaaaaattaa agaaagcctt 2700
    tagatttatc caatgtttac tactgggatt gcttaaagtg aggcccctcc aacaccaggg 2760
    ggttaattcc tgtgattgtg aaaggggcta cttccaaggc atcttcatgc aggcagcccc 2820
    ttgggagggc acctgagagc tggtagagtc tgaaattagg gatgtgagcc tcgtggttac 2880
    tgagtaaggt aaaattgcat ccaccattgt ttgtgatacc ttagggaatt gcttggacct 2940
    ggtgacaagg gctcctgttc aatagtggtg ttggggagag agagagcagt gattatagac 3000
    cgagagagta ggagttgagg tgaggtgaag gaggtgctgg gggtgagaat gtcgcctttc 3060
    cccctgggtt ttggatcact aattcaaggc tcttctggat gtttctctgg gttggggctg 3120
    gagttcaatg aggtttattt ttagctggcc cacccagata cactcagcca gaatacctag 3180
    atttagtacc caaactcttc ttagtctgaa atctgctgga tttctggcct aagggagagg 3240
    ctcccatcct tcgttcccca gccagcctag gacttcgaat gtggagcctg aagatctaag 3300
    atcctaacat gtacatttta tgtaaatatg tgcatatttg tacataaaat gatattctgt 3360
    ttttaaataa acagacaaaa cttgaaaaa 3389
  • TABLE LIII(b)
    Nucleotide sequence alignment of 191P4D12(b) v.1 (SEQ ID NO: 112) and
    191P4D12(b) v.7 (SEQ ID NO: 113)
    Figure US20100297669A1-20101125-C00007
    Figure US20100297669A1-20101125-C00008
    Figure US20100297669A1-20101125-C00009
    Figure US20100297669A1-20101125-C00010
    Figure US20100297669A1-20101125-C00011
    Figure US20100297669A1-20101125-C00012
  • TABLE LIV(b)
    Peptide sequences of protein coded by
    191P4D12(b) v.7 (SEQ ID NO: 114)
    MPLSLGAEMW GPEAWLLLLL LLASFTGRCP AGELETSDVV TVVLGQDAKL PCFYRGDSGE 60
    QVGQVAWARV DAGEGAQELA LLHSKYGLHV SPAYEGRVEQ PPPPRNPLDG SVLLRNAVQA 120
    DEGEYECRVS TFPAGSFQAR LRLRVLVPPL PSLNPGPALE EGQGLTLAAS CTAEGSPAPS 180
    VTWDTEVKGT TSSRSFKHSR SAAVTSEFHL VPSRSMNGQP LTCVVSHPGL LQDQRITHIL 240
    HVSFLAEASV RGLEDQNLWH IGREGAMLKC LSEGQPPPSY NWTRLDGPLP SGVRVDGDTL 300
    GFPPLTTEHS GIYVCHVSNE FSSRDSQVTV DVLDPQEDSG KQVDLVSASV VVVGVIAALL 360
    FCLLVVVVVL MSRYHRRKAQ QMTQKYEEEL TLTRENSIRR LHSHHTDPRS QSEEPEGRSY 420
    STLTTVREIE TQTELLSPGS GRAEEEEDQD EGIKQAMNHF VQENGTLRAK PTGNGIYING 480
    RGHLV 485
  • TABLE LV(b)
    Amino acid sequence alignment of 191P4D12(b) v.1 (SEQ ID NO: 115) and
    191P4D12(b) v.7 (SEQ ID NO: 116).
    Figure US20100297669A1-20101125-C00013
  • TABLE LII(c)
    Nucleotide sequence of transcript variant
    191P4D12(b) v.8 (SEQ ID NO:117)
    ggccgtcgtt gttggccaca gcgtgggaag cagctctggg ggagctcgga gctcccgatc 60
    acggcttctt gggggtagct acggctgggt gtgtagaacg gggccggggc tggggctggg 120
    tcccctagtg gagacccaag tgcgagaggc aagaactctg cagcttcctg ccttctgggt 180
    cagttcctta ttcaagtctg cagccggctc ccagggagat ctcggtggaa cttcagaaac 240
    gctgggcagt ctgcctttca accatgcccc tgtccctggg agccgagatg tgggggcctg 300
    aggcctggct gctgctgctg ctactgctgg catcatttac aggccggtgc cccgcgggtg 360
    agctggagac ctcagacgtg gtaactgtgg tgctgggcca ggacgcaaaa ctgccctgct 420
    tctaccgagg ggactccggc gagcaagtgg ggcaagtggc atgggctcgg gtggacgcgg 480
    gcgaaggcgc ccaggaacta gcgctactgc actccaaata cgggcttcat gtgagcccgg 540
    cttacgaggg ccgcgtggag cagccgccgc ccccacgcaa ccccctggac ggctcagtgc 600
    tcctgcgcaa cgcagtgcag gcggatgagg gcgagtacga gtgccgggtc agcaccttcc 660
    ccgccggcag cttccaggcg cggctgcggc tccgagtgct ggtgcctccc ctgccctcac 720
    tgaatcctgg tccagcacta gaagagggcc agggcctgac cctggcagcc tcctgcacag 780
    ctgagggcag cccagccccc agcgtgacct gggacacgga ggtcaaaggc acaacgtcca 840
    gccgttcctt caagcactcc cgctctgctg ccgtcacctc agagttccac ttggtgccta 900
    gccgcagcat gaatgggcag ccactgactt gtgtggtgtc ccatcctggc ctgctccagg 960
    accaaaggat cacccacatc ctccacgtgt ccttccttgc tgaggcctct gtgaggggcc 1020
    ttgaagacca aaatctgtgg cacattggca gagaaggagc tatgctcaag tgcctgagtg 1080
    aagggcagcc ccctccctca tacaactgga cacggctgga tgggcctctg cccagtgggg 1140
    tacgagtgga tggggacact ttgggctttc ccccactgac cactgagcac agcggcatct 1200
    acgtctgcca tgtcagcaat gagttctcct caagggattc tcaggtcact gtggatgttc 1260
    ttgaccccca ggaagactct gggaagcagg tggacctagt gtcagcctcg gtggtggtgg 1320
    tgggtgtgat cgccgcactc ttgttctgcc ttctggtggt ggtggtggtg ctcatgtccc 1380
    gataccatcg gcgcaaggcc cagcagatga cccagaaata tgaggaggag ctgaccctga 1440
    ccagggagaa ctccatccgg aggctgcatt cccatcacac ggaccccagg agccagccgg 1500
    aggagagtgt agggctgaga gccgagggcc accctgatag tctcaaggac aacagtagct 1560
    gctctgtgat gagtgaagag cccgagggcc gcagttactc cacgctgacc acggtgaggg 1620
    agatagaaac acagactgaa ctgctgtctc caggctctgg gcgggccgag gaggaggaag 1680
    atcaggatga aggcatcaaa caggccatga accattttgt tcaggagaat gggaccctac 1740
    gggccaagcc cacgggcaat ggcatctaca tcaatgggcg gggacacctg gtctgaccca 1800
    ggcctgcctc ccttccctag gcctggctcc ttctgttgac atgggagatt ttagctcatc 1860
    ttgggggcct ccttaaacac ccccatttct tgcggaagat gctccccatc ccactgactg 1920
    cttgaccttt acctccaacc cttctgttca tcgggagggc tccaccaatt gagtctctcc 1980
    caccatgcat gcaggtcact gtgtgtgtgc atgtgtgcct gtgtgagtgt tgactgactg 2040
    tgtgtgtgtg gaggggtgac tgtccgtgga ggggtgactg tgtccgtggt gtgtattatg 2100
    ctgtcatatc agagtcaagt gaactgtggt gtatgtgcca cgggatttga gtggttgcgt 2160
    gggcaacact gtcagggttt ggcgtgtgtg tcatgtggct gtgtgtgacc tctgcctgaa 2220
    aaagcaggta ttttctcaga ccccagagca gtattaatga tgcagaggtt ggaggagaga 2280
    ggtggagact gtggctcaga cccaggtgtg cgggcatagc tggagctgga atctgcctcc 2340
    ggtgtgaggg aacctgtctc ctaccacttc ggagccatgg gggcaagtgt gaagcagcca 2400
    gtccctgggt cagccagagg cttgaactgt tacagaagcc ctctgccctc tggtggcctc 2460
    tgggcctgct gcatgtacat attttctgta aatatacatg cgccgggagc ttcttgcagg 2520
    aatactgctc cgaatcactt ttaatttttt tctttttttt ttcttgccct ttccattagt 2580
    tgtatttttt atttattttt atttttattt ttttttagag atggagtctc actatgttgc 2640
    tcaggctggc cttgaactcc tgggctcaag caatcctcct gcctcagcct ccctagtagc 2700
    tgggacttta agtgtacacc actgtgcctg ctttgaatcc tttacgaaga gaaaaaaaaa 2760
    attaaagaaa gcctttagat ttatccaatg tttactactg ggattgctta aagtgaggcc 2820
    cctccaacac cagggggtta attcctgtga ttgtgaaagg ggctacttcc aaggcatctt 2880
    catgcaggca gccccttggg agggcacctg agagctggta gagtctgaaa ttagggatgt 2940
    gagcctcgtg ctggtgacaa gggctcctgt tcaatagtgg tgttggggag agagagagca 3000
    gtgattatag accgagagag taggagttga ggtgaggtga aggaggtgct gggggtgaga 3060
    atgtcgcctt tccccctggg ttttggatca ctaattcaag gctcttctgg atgtttctct 3120
    gggttggggc tggagttcaa tgaggtttat ttttagctgg cccacccaga tacactcagc 3180
    cagaatacct agatttagta cccaaactct tcttagtctg aaatctgctg gatttctggc 3240
    ctaagggaga ggctcccatc cttcgttccc cagccagcct aggacttcga atgtggagcc 3300
    tgaagatcta agatcctaac atgtacattt tatgtaaata tgtgcatatt tgtacataaa 3360
    atgatattct gtttttaaat aaacagacaa aacttgaaaa a 3401
  • TABLE LIII(c)
    Nucleotide sequence alignment of 191P4D12(b) v.1 (SEQ ID NO: 118)
    and 191P4D12(b) v.8 (SEQ ID NO: 119)
    Figure US20100297669A1-20101125-C00014
    Figure US20100297669A1-20101125-C00015
    Figure US20100297669A1-20101125-C00016
    Figure US20100297669A1-20101125-C00017
    Figure US20100297669A1-20101125-C00018
  • TABLE LIV(c)
    Peptide sequences of protein coded by
    191P4D12(b) v.8 (SEQ ID NO:120)
    MPLSLGAEMW GPEAWLLLLL LLASFTGRCP AGELETSDVV TVVLGQDAKL PCFYRGDSGE 60
    QVGQVAWARV DAGEGAQELA LLHSKYGLHV SPAYEGRVEQ PPPPRNPLDG SVLLRNAVQA 120
    DEGEYECRVS TFPAGSFQAR LRLRVLVPPL PSLNPGPALE EGQGLTLAAS CTAEGSPAPS 180
    VTWDTEVKGT TSSRSFKHSR SAAVTSEFHL VPSRSMNGQP LTCVVSHPGL LQDQRITHIL 240
    HVSFLAEASV RGLEDQNLWH IGREGAMLKC LSEGQPPPSY NWTRLDGPLP SGVRVDGDTL 300
    GFPPLTTEHS GIYVCHVSNE FSSRDSQVTV DVLDPQEDSG KQVDLVSASV VVVGVIAALL 360
    FCLLVVVVVL MSRYHRRKAQ QMTQKYEEEL TLTRENSIRR LHSHHTDPRS QPEESVGLRA 420
    EGHPDSLKDN SSCSVMSEEP EGRSYSTLTT VREIETQTEL LSPGSGRAEE EEDQDEGIKQ 480
    AMNHFVQENG TLRAKPTGNG IYINGRGHLV 510
  • TABLE LV(c)
    Amino acid sequence alignment of 191P4D12(b) v.1 (SEQ ID NO: 121) and
    191P4D12(b) v.8 (SEQ ID NO: 122)
    Figure US20100297669A1-20101125-C00019
  • TABLE LII(d)
    Nucleotide sequence of transcript variant
    191P4D12(b) v.9 (SEQ ID NO: 123)
    gtctgaccca ggcctgcctc ccttccctag gcctggctcc ttctgttgac atgggagatt 60
    ttagctcatc ttgggggcct ccttaaacac ccccatttct tgcggaagat gctccccatc 120
    ccactgactg cttgaccttt acctccaacc cttctgttca tcgggagggc tccaccaatt 180
    gagtctctcc caccatgcat gcaggtcact gtgtgtgtgc atgtgtgcct gtgtgagtgt 240
    tgactgactg tgtgtgtgtg gaggggtgac tgtccgtgga ggggtgactg tgtccgtggt 300
    gtgtattatg ctgtcatatc agagtcaagt gaactgtggt gtatgtgcca cgggatttga 360
    gtggttgcgt gggcaacact gtcagggttt ggcgtgtgtg tcatgtggct gtgtgtgacc 420
    tctgcctgaa aaagcaggta ttttctcaga ccccagagca gtattaatga tgcagaggtt 480
    ggaggagaga ggtggagact gtggctcaga cccaggtgtg cgggcatagc tggagctgga 540
    atctgcctcc ggtgtgaggg aacctgtctc ctaccacttc ggagccatgg gggcaagtgt 600
    gaagcagcca gtccctgggt cagccagagg cttgaactgt tacagaagcc ctctgccctc 660
    tggtggcctc tgggcctgct gcatgtacat attttctgta aatatacatg cgccgggagc 720
    ttcttgcagg aatactgctc cgaatcactt ttaatttttt tctttttttt ttcttgccct 780
    ttccattagt tgtatttttt atttattttt atttttattt ttttttagag atggagtctc 840
    actatgttgc tcaggctggc cttgaactcc tgggctcaag caatcctcct gcctcagcct 900
    ccctagtagc tgggacttta agtgtacacc actgtgcctg ctttgaatcc tttacgaaga 960
    gaaaaaaaaa attaaagaaa gcctttagat ttatccaatg tttactactg ggattgctta 1020
    aagtgaggcc cctccaacac cagggggtta attcctgtga ttgtgaaagg ggctacttcc 1080
    aaggcatctt catgcaggca gccccttggg agggcacctg agagctggta gagtctgaaa 1140
    ttagggatgt gagcctcgtg gttactgagt aaggtaaaat tgcatccacc attgtttgtg 1200
    ataccttagg gaattgcttg gacctggtga caagggctcc tgttcaatag tggtgttggg 1260
    gagagagaga gcagtgatta tagaccgaga gagtaggagt tgaggtgagg tgaaggaggt 1320
    gctgggggtg agaatgtcgc ctttccccct gggttttgga tcactaattc aaggctcttc 1380
    tggatgtttc tctgggttgg ggctggagtt caatgaggtt tatttttagc tggcccaccc 1440
    agatacactc agccagaata cctagattta gtacccaaac tcttcttagt ctgaaatctg 1500
    ctggatttct ggcctaaggg agaggctccc atccttcgtt ccccagccag cctaggactt 1560
    cgaatgtgga gcctgaagat ctaagatcct aacatgtaca ttttatgtaa atatgtgcat 1620
    atttgtacat aaaatgatat tctgttttta aataaacaga caaaacttg 1669
  • TABLE LIII(d)
    Nucleotide sequence alignment of 191P4D12(b) v.1 (SEQ ID NO: 124) and
    191P4D12(b) v.9 (SEQ ID NO: 125)
    Figure US20100297669A1-20101125-C00020
    Figure US20100297669A1-20101125-C00021
    Figure US20100297669A1-20101125-C00022
  • TABLE LIV(d)
    Peptide sequences of protein coded by
    191P4D12(b) v.9 (SEQ ID NO: 126)
    MRRELLAGIL LRITFNFFLF FFLPFPLVVF FIYFYFYFFL EMESHYVAQA GLELLGSSNP 60
    PASASLVAGT LSVHHCACFE SFTKRKKKLK KAFRFIQCLL LGLLKVRPLQ HQGVNSCDCE 120
    RGYFQGIFMQ AAPWEGT 137
  • TABLE LV(d)
    Amino acid sequence alignment of 191P4D12(b) v.1 and 191P4D12(b) v.9
    (NO SIGNIFICANT MATCH)

Claims (20)

1. A method of detecting the presence of a protein in a test sample, comprising:
providing the test sample;
contacting the sample with an antibody or antigen binding fragment thereof that binds the protein, which comprises the amino acid sequence of SEQ ID NO. 3; and
detecting the binding of the protein in the sample thereto, wherein detection of the protein correlates to the presence of a cancer cell in the test sample.
2. The method of claim 1, wherein the cell is from a tissue source selected from the group consisting of prostate, bladder, kidney, colon, lung, pancreas, ovary, breast, uterus, and cervix.
3. The method of claim 1, wherein the antibody is a monoclonal antibody.
4. The method of claim 1, wherein the antibody is a polyclonal antibody.
5. The method of claim 1, wherein the antigen binding fragment is an Fab, F(ab′)2, Fv or Sfv fragment.
6. The method of claim 1, wherein the antibody comprises an antigen binding site that specifically binds to an epitope within amino acids of SEQ ID NO:3.
7. The method of claim 1, wherein the antibody or antigen binding fragment thereof is conjugated to a detectable marker.
8. The method of claim 7, wherein the detectable marker is selected from the group consisting of a radioisotope, fluorescent compound, bioluminescent compound, a chemiluminescent compound, metal chelator or enzyme.
9. The method of claim 7, wherein the detectable marker is a radioisotope.
10. The method of claim 9, wherein the radioisotope comprises 131I, 125I, 32P, or Lu.
11. A method of detecting the presence of a cancer cell, comprising:
providing an antibody or fragment thereof comprising the variable regions of the heavy chains and light chains of an antibody that binds specifically to a protein comprising the amino acid sequence of SEQ ID NO:3;
obtaining a test tissue sample from an individual suspected of having cancer;
contacting the sample with the antibody or antigen binding fragment thereof; and
detecting the presence or absence of binding of the antibody or antigen binding fragment thereof to a cell in the test tissue sample, wherein the cell expresses the protein and wherein binding indicates the presence of cancer in the individual.
12. The method of claim 11, wherein the cell is from a tissue source selected from the group consisting of prostate, bladder, kidney, colon, lung, pancreas, ovary, breast, uterus, and cervix.
13. The method of claim 1, wherein the antibody is a monoclonal antibody.
14. The method of claim 11, wherein the antibody is a polyclonal antibody.
15. The method of claim 11, wherein the antigen binding fragment is an Fab, F(ab′)2, Fv or Sfv fragment.
16. The method of claim 11, wherein the antibody comprises an antigen binding site that specifically binds to an epitope within amino acids of SEQ ID NO:3.
17. The method of claim 11, wherein the antibody or antigen binding fragment thereof is conjugated to a detectable marker.
18. The method of claim 17, wherein the detectable marker is selected from the group consisting of a radioisotope, fluorescent compound, bioluminescent compound, a chemiluminescent compound, metal chelator or enzyme.
19. The method of claim 17, wherein the detectable marker is a radioisotope.
20. The method of claim 19, wherein the radioisotope comprises 131I, 125I, 32P, or Lu.
US12/821,045 2002-08-16 2010-06-22 NUCLEIC ACIDS AND CORRESPONDING PROTEINS ENTITLED 191P4D12(b) USEFUL IN TREATMENT AND DETECTION OF CANCER Abandoned US20100297669A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/821,045 US20100297669A1 (en) 2002-08-16 2010-06-22 NUCLEIC ACIDS AND CORRESPONDING PROTEINS ENTITLED 191P4D12(b) USEFUL IN TREATMENT AND DETECTION OF CANCER

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US40430602P 2002-08-16 2002-08-16
US42329002P 2002-11-01 2002-11-01
US10/422,571 US20040083497A1 (en) 2002-08-16 2003-04-23 Nucleic acids and corresponding proteins entitled 191P4D12(b) useful in treatment and detection of cancer
US12/821,045 US20100297669A1 (en) 2002-08-16 2010-06-22 NUCLEIC ACIDS AND CORRESPONDING PROTEINS ENTITLED 191P4D12(b) USEFUL IN TREATMENT AND DETECTION OF CANCER

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/422,571 Division US20040083497A1 (en) 2002-08-16 2003-04-23 Nucleic acids and corresponding proteins entitled 191P4D12(b) useful in treatment and detection of cancer

Publications (1)

Publication Number Publication Date
US20100297669A1 true US20100297669A1 (en) 2010-11-25

Family

ID=31891426

Family Applications (16)

Application Number Title Priority Date Filing Date
US10/418,972 Abandoned US20040081653A1 (en) 2002-08-16 2003-04-17 Nucleic acids and corresponding proteins entitled 251P5G2 useful in treatment and detection of cancer
US10/422,571 Abandoned US20040083497A1 (en) 2002-08-16 2003-04-23 Nucleic acids and corresponding proteins entitled 191P4D12(b) useful in treatment and detection of cancer
US10/435,751 Active 2024-07-24 US7115727B2 (en) 2002-08-16 2003-05-09 Nucleic acids and corresponding proteins entitled 282P1G3 useful in treatment and detection of cancer
US10/463,782 Abandoned US20040192597A1 (en) 2002-08-16 2003-06-16 Nucleic acids and corresponding proteins entitled 202P5A5 useful in treatment and detection of cancer
US10/641,633 Expired - Fee Related US7250498B2 (en) 2002-08-16 2003-08-15 Nucleic acids and corresponding proteins entitled 273P4B7 useful in treatment and detection of cancer
US11/438,944 Expired - Lifetime US7612172B2 (en) 2002-08-16 2006-05-23 Nucleic acids and corresponding proteins entitled 282P1G3 useful in treatment and detection of cancer
US11/548,626 Expired - Fee Related US8057996B2 (en) 2002-08-16 2006-10-11 Nucleic acids and corresponding proteins entitled 202P5A5 useful in treatment and detection of cancer
US11/549,900 Expired - Lifetime US7696336B2 (en) 2002-08-16 2006-10-16 Nucleic acids and corresponding proteins entitled 251P5G2 useful in treatment and detection of cancer
US11/708,975 Abandoned US20070298424A1 (en) 2002-08-16 2007-02-20 Nucleic acids and corresponding proteins entitled 273P4B7 useful in treatment and detection of cancer
US12/400,679 Abandoned US20090252747A1 (en) 2002-08-16 2009-03-09 Nucleic acids and corresponding proteins entitled 282p1g3 useful in treatment and detection of cancer
US12/651,336 Expired - Lifetime US8604169B2 (en) 2002-08-16 2009-12-31 Nucleic acids and corresponding proteins entitled 251P5G2 useful in treatment and detection of cancer
US12/821,045 Abandoned US20100297669A1 (en) 2002-08-16 2010-06-22 NUCLEIC ACIDS AND CORRESPONDING PROTEINS ENTITLED 191P4D12(b) USEFUL IN TREATMENT AND DETECTION OF CANCER
US12/821,016 Abandoned US20100297006A1 (en) 2002-08-16 2010-06-22 NUCLEIC ACIDS AND CORRESPONDING PROTEINS ENTITLED 191P4D12(b) USEFUL IN TREATMENT AND DETECTION OF CANCER
US13/021,202 Expired - Fee Related US8426571B2 (en) 2002-08-16 2011-02-04 Nucleic acids and corresponding proteins entitled 202P5A5 useful in treatment and detection of cancer
US13/749,461 Abandoned US20130177569A1 (en) 2002-08-16 2013-01-24 Nucleic acids and corresponding proteins entitled 202p5a5 useful in treatment and detection of cancer
US13/913,360 Abandoned US20130267024A1 (en) 2002-08-16 2013-06-07 Nucleic acids and corresponding proteins entitled 282p1g3 useful in treatment and detection of cancer

Family Applications Before (11)

Application Number Title Priority Date Filing Date
US10/418,972 Abandoned US20040081653A1 (en) 2002-08-16 2003-04-17 Nucleic acids and corresponding proteins entitled 251P5G2 useful in treatment and detection of cancer
US10/422,571 Abandoned US20040083497A1 (en) 2002-08-16 2003-04-23 Nucleic acids and corresponding proteins entitled 191P4D12(b) useful in treatment and detection of cancer
US10/435,751 Active 2024-07-24 US7115727B2 (en) 2002-08-16 2003-05-09 Nucleic acids and corresponding proteins entitled 282P1G3 useful in treatment and detection of cancer
US10/463,782 Abandoned US20040192597A1 (en) 2002-08-16 2003-06-16 Nucleic acids and corresponding proteins entitled 202P5A5 useful in treatment and detection of cancer
US10/641,633 Expired - Fee Related US7250498B2 (en) 2002-08-16 2003-08-15 Nucleic acids and corresponding proteins entitled 273P4B7 useful in treatment and detection of cancer
US11/438,944 Expired - Lifetime US7612172B2 (en) 2002-08-16 2006-05-23 Nucleic acids and corresponding proteins entitled 282P1G3 useful in treatment and detection of cancer
US11/548,626 Expired - Fee Related US8057996B2 (en) 2002-08-16 2006-10-11 Nucleic acids and corresponding proteins entitled 202P5A5 useful in treatment and detection of cancer
US11/549,900 Expired - Lifetime US7696336B2 (en) 2002-08-16 2006-10-16 Nucleic acids and corresponding proteins entitled 251P5G2 useful in treatment and detection of cancer
US11/708,975 Abandoned US20070298424A1 (en) 2002-08-16 2007-02-20 Nucleic acids and corresponding proteins entitled 273P4B7 useful in treatment and detection of cancer
US12/400,679 Abandoned US20090252747A1 (en) 2002-08-16 2009-03-09 Nucleic acids and corresponding proteins entitled 282p1g3 useful in treatment and detection of cancer
US12/651,336 Expired - Lifetime US8604169B2 (en) 2002-08-16 2009-12-31 Nucleic acids and corresponding proteins entitled 251P5G2 useful in treatment and detection of cancer

Family Applications After (4)

Application Number Title Priority Date Filing Date
US12/821,016 Abandoned US20100297006A1 (en) 2002-08-16 2010-06-22 NUCLEIC ACIDS AND CORRESPONDING PROTEINS ENTITLED 191P4D12(b) USEFUL IN TREATMENT AND DETECTION OF CANCER
US13/021,202 Expired - Fee Related US8426571B2 (en) 2002-08-16 2011-02-04 Nucleic acids and corresponding proteins entitled 202P5A5 useful in treatment and detection of cancer
US13/749,461 Abandoned US20130177569A1 (en) 2002-08-16 2013-01-24 Nucleic acids and corresponding proteins entitled 202p5a5 useful in treatment and detection of cancer
US13/913,360 Abandoned US20130267024A1 (en) 2002-08-16 2013-06-07 Nucleic acids and corresponding proteins entitled 282p1g3 useful in treatment and detection of cancer

Country Status (12)

Country Link
US (16) US20040081653A1 (en)
EP (6) EP2332966A1 (en)
JP (6) JP2006513724A (en)
AU (6) AU2003243151A1 (en)
CA (5) CA2493923C (en)
CY (1) CY1113247T1 (en)
DK (2) DK1576170T3 (en)
ES (2) ES2392341T3 (en)
IL (6) IL166531A (en)
PT (2) PT1576170E (en)
SI (2) SI1576170T1 (en)
WO (5) WO2004016733A2 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7271240B2 (en) * 2001-03-14 2007-09-18 Agensys, Inc. 125P5C8: a tissue specific protein highly expressed in various cancers
AU2003258127A1 (en) * 2002-08-06 2004-02-23 Diadexus, Inc. Compositions and methods relating to ovarian specific genes and proteins
AU2003243151A1 (en) * 2002-08-16 2004-03-03 Agensys, Inc. Nucleic acid and corresponding protein entitled 251p5g2 useful in treatment and detection of cancer
WO2005054860A1 (en) * 2003-12-01 2005-06-16 Dako Denmark A/S Methods and compositions for immuno-histochemical detection
US20060019396A1 (en) * 2004-06-07 2006-01-26 Tissuegene, Inc. Retroviral vectors with enhanced efficiency of transgene expression and safety
EA016186B1 (en) * 2005-09-26 2012-03-30 Медарекс, Инк. Human monoclonal antibodies to cd70 and use thereof
TW200745163A (en) 2006-02-17 2007-12-16 Syntonix Pharmaceuticals Inc Peptides that block the binding of IgG to FcRn
NZ578354A (en) * 2006-12-14 2012-01-12 Medarex Inc Antibody-partner molecule conjugates that bind cd70 and uses thereof
CN101663047B (en) * 2007-02-23 2014-07-09 纽约哥伦比亚大学理事会 Methods to activate or block the hla-e/qa-1 restricted cd8+ t cell regulatory pathway to treat immunological disease
EA201070231A1 (en) 2007-08-09 2010-10-29 Синтоникс Фармасьютикалз, Инк. IMMUNOMODULATING PEPTIDES
CA2758964A1 (en) * 2009-04-16 2010-10-21 Abbott Biotherapeutics Corp. Anti-tnf-.alpha. antibodies and their uses
EP2470906A4 (en) * 2009-08-24 2013-10-02 Univ Columbia Assay for determining health of cd8+ t cells
WO2011112599A2 (en) * 2010-03-12 2011-09-15 The United States Of America, As Represented By The Secretary. Department Of Health & Human Services Immunogenic pote peptides and methods of use
US8449512B2 (en) 2010-04-09 2013-05-28 Davinci Biomedical Research Products Inc. Stoma stabilitating device and method
TWI651096B (en) * 2010-09-29 2019-02-21 美商艾澤西公司 Antibody drug conjugate (ADC) that binds to the 191P4D12 protein
US9244073B2 (en) 2011-02-25 2016-01-26 Wellstat Diagnostics, Llc Assays for detecting enzymatic activity
WO2012164004A1 (en) 2011-06-01 2012-12-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Novel antigen peptide and uses thereof
US9314500B2 (en) 2011-10-12 2016-04-19 The General Hospital Corporation Non-N-glycosylated recombinant human annexin A2
US9708404B2 (en) 2012-12-21 2017-07-18 Seattle Genetics, Inc. Anti-NTB-A antibodies and related compositions and methods
US9944689B2 (en) 2013-03-07 2018-04-17 The General Hospital Corporation Human CTLA4 mutants and use thereof
US20160340659A1 (en) * 2014-01-30 2016-11-24 Yissum Research And Development Company Of The Hebrew University Of Jerusalem Ltd. Actin binding peptides and compositions comprising same for inhibiting angiogenesis and treating medical conditions associated with same
KR101503341B1 (en) 2014-03-12 2015-03-18 국립암센터 Methods for isolation and proliferation of autologous cancer antigen-specific CD8+ T cells
US9616114B1 (en) 2014-09-18 2017-04-11 David Gordon Bermudes Modified bacteria having improved pharmacokinetics and tumor colonization enhancing antitumor activity
US11318163B2 (en) 2015-02-18 2022-05-03 Enlivex Therapeutics Ltd Combination immune therapy and cytokine control therapy for cancer treatment
US11596652B2 (en) 2015-02-18 2023-03-07 Enlivex Therapeutics R&D Ltd Early apoptotic cells for use in treating sepsis
WO2016132366A1 (en) 2015-02-18 2016-08-25 Enlivex Therapeutics Ltd. Combination immune therapy and cytokine control therapy for cancer treatment
US11497767B2 (en) 2015-02-18 2022-11-15 Enlivex Therapeutics R&D Ltd Combination immune therapy and cytokine control therapy for cancer treatment
US11000548B2 (en) 2015-02-18 2021-05-11 Enlivex Therapeutics Ltd Combination immune therapy and cytokine control therapy for cancer treatment
US11304976B2 (en) 2015-02-18 2022-04-19 Enlivex Therapeutics Ltd Combination immune therapy and cytokine control therapy for cancer treatment
US10857181B2 (en) 2015-04-21 2020-12-08 Enlivex Therapeutics Ltd Therapeutic pooled blood apoptotic cell preparations and uses thereof
KR20180110141A (en) 2016-02-18 2018-10-08 엔리벡스 테라퓨틱스 리미티드 Combination of immunotherapy and cytokine regulating therapy to treat cancer
US11246905B2 (en) 2016-08-15 2022-02-15 President And Fellows Of Harvard College Treating infections using IdsD from Proteus mirabilis
US10350280B2 (en) * 2016-08-31 2019-07-16 Medgenome Inc. Methods to analyze genetic alterations in cancer to identify therapeutic peptide vaccines and kits therefore
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
US11180535B1 (en) 2016-12-07 2021-11-23 David Gordon Bermudes Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria
SG10201914064QA (en) 2017-01-06 2020-03-30 Eutilex Co Ltd Anti-human 4-1 bb antibodies and use thereof
JP7106810B2 (en) * 2018-04-19 2022-07-27 学校法人 埼玉医科大学 Novel lung cancer marker
CN108875628A (en) * 2018-06-14 2018-11-23 攀枝花学院 pedestrian detection method
MX2021010149A (en) 2019-02-25 2021-09-14 Novartis Ag Compositions and methods to treat bietti crystalline dystrophy.
WO2020174369A2 (en) 2019-02-25 2020-09-03 Novartis Ag Compositions and methods to treat bietti crystalline dystrophy
CN110147939B (en) * 2019-04-24 2022-04-08 中国食品药品检定研究院 Process evaluation method and system for imitation drugs
EP4208259A2 (en) 2020-09-04 2023-07-12 NovaRock Biotherapeutics, Ltd. Nectin-4 antibodies and uses thereof
AU2022328339A1 (en) * 2021-08-13 2024-01-04 Agensys, Inc. Methods for treating non-muscle invasive bladder cancer (nmibc) with antibody drug conjugates (adc) that bind to 191p4d12 proteins

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264949B1 (en) * 1998-09-29 2001-07-24 Mount Sinai School Of Medicine Of New York University Noninvasive agents for diagnosis and prognosis of the progression of fibrosis
US20010051344A1 (en) * 1994-06-17 2001-12-13 Shalon Tidhar Dari Methods for constructing subarrays and uses thereof
US20020065220A1 (en) * 1999-09-03 2002-05-30 Young Paul E. Immunoglobulin superfamily polynucleotides, polypeptides, and antibodies
US20020090672A1 (en) * 2000-01-31 2002-07-11 Rosen Craig A. Nucleic acids, proteins, and antibodies
US20020137160A1 (en) * 1998-12-17 2002-09-26 Byatt John C Nucleic acid and other molecules associated with lactation and muscle and fat deposition
US20030077606A1 (en) * 2000-01-31 2003-04-24 Human Genome Sciences, Inc. Nucleic acids, proteins, and antibodies
US20030083263A1 (en) * 2001-04-30 2003-05-01 Svetlana Doronina Pentapeptide compounds and uses related thereto
US20030099974A1 (en) * 2001-07-18 2003-05-29 Millennium Pharmaceuticals, Inc. Novel genes, compositions, kits and methods for identification, assessment, prevention, and therapy of breast cancer
US20030148408A1 (en) * 2001-09-18 2003-08-07 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
US20030165831A1 (en) * 2000-03-21 2003-09-04 John Lee Novel genes, compositions, kits, and methods for identification, assessment, prevention, and therapy of ovarian cancer
US20030170621A1 (en) * 1999-06-14 2003-09-11 Mccarthy Sean A. Novel genes encoding proteins having prognostic, diagnostic, preventive, therapeutic, and other uses
US20030232350A1 (en) * 2001-11-13 2003-12-18 Eos Biotechnology, Inc. Methods of diagnosis of cancer, compositions and methods of screening for modulators of cancer
US20040005563A1 (en) * 2001-06-18 2004-01-08 Eos Biotechnology, Inc. Methods of diagnosis of ovarian cancer, compositions and methods of screening for modulators of ovarian cancer
US20040029114A1 (en) * 2001-01-24 2004-02-12 Eos Technology, Inc. Methods of diagnosis of breast cancer, compositions and methods of screening for modulators of breast cancer
US20040076955A1 (en) * 2001-07-03 2004-04-22 Eos Biotechnology, Inc. Methods of diagnosis of bladder cancer, compositions and methods of screening for modulators of bladder cancer
US20040083497A1 (en) * 2002-08-16 2004-04-29 Raitano Arthur B. Nucleic acids and corresponding proteins entitled 191P4D12(b) useful in treatment and detection of cancer
US6794501B2 (en) * 2001-05-04 2004-09-21 Ludwig Institute For Cancer Research Colon cancer antigen panel
US20040259086A1 (en) * 2000-02-17 2004-12-23 Millennium Pharmaceuticals, Inc. Novel genes, compositions, kits, and methods for identification, assessment, prevention, and therapy of human prostate cancer
US20060275211A1 (en) * 2001-11-07 2006-12-07 Agensys, Inc. Antibodies and related molecules that bind to 161P2F10B proteins
US7175849B2 (en) * 2000-10-05 2007-02-13 Immunex Corporation Nectin polypeptides
US20090203538A1 (en) * 2006-07-10 2009-08-13 Institute For Antibodies Co., Ltd. Method of classifying antibody, method of identifying antigen, method of obtaining antibody or antibody set, method of constructing antibody panel and antibody or antibody set and use of the same
US7659241B2 (en) * 2002-07-31 2010-02-09 Seattle Genetics, Inc. Drug conjugates and their use for treating cancer, an autoimmune disease or an infectious disease
US7745394B2 (en) * 2003-11-06 2010-06-29 Seattle Genetics, Inc. Monomethylvaline compounds capable of conjugation to ligands
US7968090B2 (en) * 2001-03-14 2011-06-28 Agensys, Inc. Nucleic acids and corresponding proteins entitled 191P4D12(b) useful in treatment and detection of cancer

Family Cites Families (228)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6903384A (en) 1969-03-05 1970-09-08
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
US4235871A (en) 1978-02-24 1980-11-25 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
JPS6023084B2 (en) 1979-07-11 1985-06-05 味の素株式会社 blood substitute
US4640835A (en) 1981-10-30 1987-02-03 Nippon Chemiphar Company, Ltd. Plasminogen activator derivatives
US4722848A (en) 1982-12-08 1988-02-02 Health Research, Incorporated Method for immunizing animals with synthetically modified vaccinia virus
US4870009A (en) 1982-11-22 1989-09-26 The Salk Institute For Biological Studies Method of obtaining gene product through the generation of transgenic animals
US4501728A (en) 1983-01-06 1985-02-26 Technology Unlimited, Inc. Masking of liposomes from RES recognition
US4496689A (en) 1983-12-27 1985-01-29 Miles Laboratories, Inc. Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer
US4736866A (en) 1984-06-22 1988-04-12 President And Fellows Of Harvard College Transgenic non-human mammals
US5430136A (en) 1984-10-16 1995-07-04 Chiron Corporation Oligonucleotides having selectably cleavable and/or abasic sites
US5019369A (en) 1984-10-22 1991-05-28 Vestar, Inc. Method of targeting tumors in humans
US5506337A (en) 1985-03-15 1996-04-09 Antivirals Inc. Morpholino-subunit combinatorial library and method
DE3675588D1 (en) 1985-06-19 1990-12-20 Ajinomoto Kk HAEMOGLOBIN TIED TO A POLY (ALKENYLENE OXIDE).
US4791192A (en) 1986-06-26 1988-12-13 Takeda Chemical Industries, Ltd. Chemically modified protein with polyethyleneglycol
US4837028A (en) 1986-12-24 1989-06-06 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5124246A (en) 1987-10-15 1992-06-23 Chiron Corporation Nucleic acid multimers and amplified nucleic acid hybridization assays using same
US5359100A (en) 1987-10-15 1994-10-25 Chiron Corporation Bifunctional blocked phosphoramidites useful in making nucleic acid mutimers
GB8724885D0 (en) 1987-10-23 1987-11-25 Binns M M Fowlpox virus promotors
US5254678A (en) 1987-12-15 1993-10-19 Gene Shears Pty. Limited Ribozymes
WO1989006692A1 (en) * 1988-01-12 1989-07-27 Genentech, Inc. Method of treating tumor cells by inhibiting growth factor receptor function
US5785973A (en) * 1988-02-01 1998-07-28 Praxis Biologics, Inc. Synthetic peptides representing a T-cell epitope as a carrier molecule for conjugate vaccines
US5010175A (en) 1988-05-02 1991-04-23 The Regents Of The University Of California General method for producing and selecting peptides with specific properties
CA1340323C (en) 1988-09-20 1999-01-19 Arnold E. Hampel Rna catalyst for cleaving specific rna sequences
ES2075196T3 (en) * 1989-02-17 1995-10-01 Chiron Mimotopes Pty Ltd METHOD FOR USE AND SYNTHESIS OF PEPTIDES.
US5225538A (en) 1989-02-23 1993-07-06 Genentech, Inc. Lymphocyte homing receptor/immunoglobulin fusion proteins
DK0462145T3 (en) 1989-03-07 1994-08-08 Genentech Inc Covalent conjugates between lipid and oligonucleotide
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
WO1991004753A1 (en) 1989-10-02 1991-04-18 Cetus Corporation Conjugates of antisense oligonucleotides and therapeutic uses thereof
US5208020A (en) 1989-10-25 1993-05-04 Immunogen Inc. Cytotoxic agents comprising maytansinoids and their therapeutic use
AU625013B2 (en) 1989-11-03 1992-06-25 Vanderbilt University Method of in vivo delivery of functioning foreign genes
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
DE69133566T2 (en) 1990-01-12 2007-12-06 Amgen Fremont Inc. Formation of xenogenic antibodies
US6673986B1 (en) 1990-01-12 2004-01-06 Abgenix, Inc. Generation of xenogeneic antibodies
US5279833A (en) 1990-04-04 1994-01-18 Yale University Liposomal transfection of nucleic acids into animal cells
US5204253A (en) 1990-05-29 1993-04-20 E. I. Du Pont De Nemours And Company Method and apparatus for introducing biological substances into living cells
IE66205B1 (en) 1990-06-14 1995-12-13 Paul A Bartlett Polypeptide analogs
US5723286A (en) 1990-06-20 1998-03-03 Affymax Technologies N.V. Peptide library and screening systems
WO1992000311A1 (en) 1990-06-27 1992-01-09 Princeton University Probes for detecting mutant p53
US5650489A (en) 1990-07-02 1997-07-22 The Arizona Board Of Regents Random bio-oligomer library, a method of synthesis thereof, and a method of use thereof
SE9002480D0 (en) 1990-07-23 1990-07-23 Hans Lilja ASSAY OF FREE AND COMPLEXED PROSTATE-SPECIFIC ANTIGEN
US5733731A (en) 1991-10-16 1998-03-31 Affymax Technologies N.V. Peptide library and screening method
WO1993016178A2 (en) 1992-02-12 1993-08-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Sequences characteristic of human gene transcription product
US5573905A (en) 1992-03-30 1996-11-12 The Scripps Research Institute Encoded combinatorial chemical libraries
US5541061A (en) 1992-04-29 1996-07-30 Affymax Technologies N.V. Methods for screening factorial chemical libraries
CA2134773A1 (en) 1992-06-04 1993-12-09 Robert J. Debs Methods and compositions for in vivo gene therapy
IL106610A0 (en) 1992-08-07 1993-12-08 Cytel Corp Hla binding peptides and their uses
JP3472587B2 (en) * 1992-08-28 2003-12-02 アベンティス ファーマ株式会社 Bone-related carboxypeptidase-like protein and method for producing the same
US5288514A (en) 1992-09-14 1994-02-22 The Regents Of The University Of California Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support
US5652138A (en) * 1992-09-30 1997-07-29 The Scripps Research Institute Human neutralizing monoclonal antibodies to human immunodeficiency virus
DE69314148T2 (en) 1992-12-17 1998-01-15 Valeo Systemes Dessuyage Power supply method and device for an electric motor for driving a windshield wiper of a motor vehicle
US5576220A (en) 1993-02-19 1996-11-19 Arris Pharmaceutical Corporation Thin film HPMP matrix systems and methods for constructing and displaying ligands
SG49008A1 (en) 1993-03-05 1998-05-18 Cytel Corp Hla-a2.1 binding peptides and their uses
CN1127527A (en) 1993-05-17 1996-07-24 加利福尼亚大学董事会 Ribozyme gene therapy for HIV infection and Aids
US5837501A (en) 1993-07-09 1998-11-17 Akzo Nobel N.V. Nucleic acid quantitation by co-amplification of target with multiple internal controls
US5804566A (en) 1993-08-26 1998-09-08 The Regents Of The University Of California Methods and devices for immunizing a host through administration of naked polynucleotides with encode allergenic peptides
US5679647A (en) 1993-08-26 1997-10-21 The Regents Of The University Of California Methods and devices for immunizing a host against tumor-associated antigens through administration of naked polynucleotides which encode tumor-associated antigenic peptides
AU698962B2 (en) 1993-09-14 1998-11-12 Epimmune, Inc. Alteration of immune response using pan DR-binding peptides
US5681697A (en) 1993-12-08 1997-10-28 Chiron Corporation Solution phase nucleic acid sandwich assays having reduced background noise and kits therefor
CH686982A5 (en) 1993-12-16 1996-08-15 Maurice Stroun Method for diagnosis of cancers.
US5519134A (en) 1994-01-11 1996-05-21 Isis Pharmaceuticals, Inc. Pyrrolidine-containing monomers and oligomers
US5593853A (en) 1994-02-09 1997-01-14 Martek Corporation Generation and screening of synthetic drug libraries
US5539083A (en) 1994-02-23 1996-07-23 Isis Pharmaceuticals, Inc. Peptide nucleic acid combinatorial libraries and improved methods of synthesis
US5739118A (en) 1994-04-01 1998-04-14 Apollon, Inc. Compositions and methods for delivery of genetic material
US5525735A (en) 1994-06-22 1996-06-11 Affymax Technologies Nv Methods for synthesizing diverse collections of pyrrolidine compounds
US5549974A (en) 1994-06-23 1996-08-27 Affymax Technologies Nv Methods for the solid phase synthesis of thiazolidinones, metathiazanones, and derivatives thereof
WO1996002561A1 (en) 1994-07-20 1996-02-01 The General Hospital Corporation Interaction trap systems for detecting protein interactions
US5580731A (en) 1994-08-25 1996-12-03 Chiron Corporation N-4 modified pyrimidine deoxynucleotides and oligonucleotide probes synthesized therewith
US5597909A (en) 1994-08-25 1997-01-28 Chiron Corporation Polynucleotide reagents containing modified deoxyribose moieties, and associated methods of synthesis and use
US5681702A (en) 1994-08-30 1997-10-28 Chiron Corporation Reduction of nonspecific hybridization by using novel base-pairing schemes
US5919652A (en) 1994-11-09 1999-07-06 The Regents Of The University Of California Nucleic acid molecules comprising the prostate specific antigen (PSA) promoter and uses thereof
US5736524A (en) 1994-11-14 1998-04-07 Merck & Co.,. Inc. Polynucleotide tuberculosis vaccine
US5614372A (en) * 1995-02-24 1997-03-25 Lilja; Hans Early detection of prostate cancer (CAP) by employing prostate specific antigen (PSA) and human glandular kallikrein (hGK-1)
US5962428A (en) 1995-03-30 1999-10-05 Apollon, Inc. Compositions and methods for delivery of genetic material
ATE352638T1 (en) 1995-04-11 2007-02-15 Gen Hospital Corp REVERSE TWO-HYBRID SYSTEMS
WO1996032494A1 (en) 1995-04-14 1996-10-17 University Of Alabama Research Foundation Fusion protein delivery system and uses thereof
EP0821591A1 (en) 1995-04-19 1998-02-04 Acorda Therapeutics Cns neurite outgrowth modulators, and compositions, cells and methods embodying and using same
US6576607B1 (en) 1995-04-19 2003-06-10 Acorda Therapeutics Methods using CNS neurite outgrowth modulators
US5922687A (en) 1995-05-04 1999-07-13 Board Of Trustees Of The Leland Stanford Junior University Intracellular delivery of nucleic acids using pressure
US5759776A (en) * 1995-06-05 1998-06-02 California Pacific Medical Center Targets for breast cancer diagnosis and treatment
US5861160A (en) * 1995-06-07 1999-01-19 Ambico, Inc. Isospora suis sporozoite antigen
US5585639A (en) 1995-07-27 1996-12-17 Hewlett-Packard Company Optical scanning apparatus
US5569588A (en) 1995-08-09 1996-10-29 The Regents Of The University Of California Methods for drug screening
US6248555B1 (en) * 1995-08-31 2001-06-19 The General Hospital Corporation Genetic alterations related to familial alzheimer's disease
US7241876B2 (en) * 1996-01-11 2007-07-10 Corixa Corporation Compositions and methods for the therapy and diagnosis of breast cancer
US20020068285A1 (en) 1996-01-11 2002-06-06 Frudakis Tony N. Compositions and methods for the therapy and diagnosis of breast cancer
CA2242340A1 (en) 1996-01-11 1997-07-17 Corixa Corporation Compositions and methods for the treatment and diagnosis of breast cancer
US20030125536A1 (en) 1996-01-11 2003-07-03 Corixa Corporation Compositions and methods for the therapy and diagnosis of breast cancer
US6344550B1 (en) * 1996-01-11 2002-02-05 Corixa Corporation Compositions and methods for the treatment and diagnosis of breast cancer
CU22559A1 (en) 1996-01-17 1999-05-03 Ct Ingenieria Genetica Biotech EXPRESSION SYSTEM OF HETEROLOGICAL ANTIGENS IN E. COLI AS FUSION PROTEINS
US5840839A (en) * 1996-02-09 1998-11-24 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Alternative open reading frame DNA of a normal gene and a novel human cancer antigen encoded therein
CA2248657A1 (en) 1996-03-11 1997-09-18 Epimmune Inc. Peptides with increased binding affinity for hla molecules
JP2000508923A (en) 1996-04-26 2000-07-18 マサチューセッツ・インスティテュート・オブ・テクノロジー 3-Hybrid screening assay
CA2262006A1 (en) 1996-07-26 1998-02-05 Sloan-Kettering Institute For Cancer Research Method and reagents for genetic immunization
US5925523A (en) 1996-08-23 1999-07-20 President & Fellows Of Harvard College Intraction trap assay, reagents and uses thereof
US6183988B1 (en) * 1996-10-02 2001-02-06 The General Hospital Corporation Leukocyte-specific protein and gene, and methods of use thereof
US6365797B1 (en) 1997-10-15 2002-04-02 The Regents Of The University Of California Mice models of human prostate cancer progression
DE69738077T2 (en) 1996-10-15 2008-05-21 The Regents Of The University Of California, Oakland ANIMAL MODELS FOR HUMAN PROSTATE CANCER PROGRESS
US5846722A (en) 1996-10-16 1998-12-08 Terrapin Technologies, Inc. System to detect small molecule/peptide interaction
US5840501A (en) 1996-10-25 1998-11-24 Bayer Corporation Determination of cPSA
ES2301183T3 (en) 1996-12-03 2008-06-16 Amgen Fremont Inc. COMPLETELY HUMAN ANTIBODY THAT JOINS THE EGFR RECEIVER.
US20030185830A1 (en) * 1997-02-25 2003-10-02 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
US7033827B2 (en) * 1997-02-25 2006-04-25 Corixa Corporation Prostate-specific polynucleotide compositions
US6800746B2 (en) * 1997-02-25 2004-10-05 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
US7026447B2 (en) 1997-10-09 2006-04-11 Human Genome Sciences, Inc. 53 human secreted proteins
ZA982968B (en) 1997-04-09 1998-10-27 Corixa Corp Compositions and methods for the treatment and diagnosis of breast cancer
JP2001519666A (en) 1997-04-10 2001-10-23 ジェネティックス・インスチチュート・インコーポレーテッド Secretory expression sequence tags (sESTs)
EP0973896A2 (en) 1997-04-10 2000-01-26 Genetics Institute, Inc. SECRETED EXPRESSED SEQUENCE TAGS (sESTs)
CA2284726A1 (en) * 1997-04-11 1998-10-22 G.D. Searle & Co. Antagonistic anti-avb3 integrin antibodies
AU8555198A (en) 1997-08-01 1999-02-22 Genset 5' ests for secreted proteins expressed in prostate
CA2305690A1 (en) 1997-10-09 1999-04-22 Human Genome Sciences, Inc. 53 human secreted proteins
JP2002508182A (en) 1997-12-17 2002-03-19 ジェンセット Extended cDNA of secreted protein
US20030215803A1 (en) 2000-12-07 2003-11-20 Garcia Pablo Dominguez Human genes and gene expression products isolated from human prostate
US20030044783A1 (en) 2000-03-09 2003-03-06 Williams Lewis T. Human genes and gene expression products
JP2002519000A (en) 1998-01-28 2002-07-02 カイロン コーポレイション Human genes and gene expression products II
ID27813A (en) 1998-01-28 2001-04-26 Corixa Corp COMPOUNDS FOR THERAPY AND DIAGNOSIS OF LUNG CANCER AND METHODS FOR USE
US6500938B1 (en) * 1998-01-30 2002-12-31 Incyte Genomics, Inc. Composition for the detection of signaling pathway gene expression
DE69933661T3 (en) * 1998-04-15 2012-01-26 Merck Serono Biodevelopment GENOMIC SEQUENCE OF THE 5-LIPOXYGENASE-ACTIVATING PROTEIN (FLAP), POLYMORPHIC MARKERS AND THEIR USE IN THE DIAGNOSIS OF ASTHMA
US6476212B1 (en) 1998-05-26 2002-11-05 Incyte Genomics, Inc. Polynucleotides and polypeptides derived from corn ear
US20030118599A1 (en) 1999-04-02 2003-06-26 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
CA2334038A1 (en) 1998-07-14 2000-01-27 Corixa Corporation Compositions and methods for therapy and diagnosis of prostate cancer
EP1144636A2 (en) 1998-09-28 2001-10-17 Chiron Corporation Human genes and gene expression products
AU1208200A (en) 1998-10-15 2000-05-01 Genetics Institute Inc. Secreted expressed sequence tags (sests)
WO2001057188A2 (en) 2000-02-03 2001-08-09 Hyseq, Inc. Novel nucleic acids and polypeptides
CA2296792A1 (en) 1999-02-26 2000-08-26 Genset S.A. Expressed sequence tags and encoded human proteins
JP2003500014A (en) 1999-03-26 2003-01-07 ヒューマン ジノーム サイエンシーズ, インコーポレイテッド 50 human secreted proteins
WO2000058473A2 (en) 1999-03-31 2000-10-05 Curagen Corporation Nucleic acids including open reading frames encoding polypeptides; 'orfx'
EP1187915A2 (en) 1999-04-02 2002-03-20 Corixa Corporation Compounds for therapy and diagnosis of lung cancer and methods for their use
EP1169444A2 (en) 1999-04-09 2002-01-09 Corixa Corporation Compositions and methods for the treatment and diagnosis of breast cancer
EP1268758A2 (en) 1999-06-01 2003-01-02 Incyte Genomics, Inc. Molecules for diagnostics and therapeutics
US6114123A (en) * 1999-06-14 2000-09-05 Incyte Pharmaceuticals, Inc. Lipocalin family protein
EP1130094A3 (en) 1999-07-08 2001-11-21 Helix Research Institute Primers for synthesizing full length cDNA clones and their use
JP2002191363A (en) * 1999-07-29 2002-07-09 Herikkusu Kenkyusho:Kk PRIMER FOR WHOLE LENGTH cDNA SYNTHESIS AND ITS USE
EP1074617A3 (en) * 1999-07-29 2004-04-21 Research Association for Biotechnology Primers for synthesising full-length cDNA and their use
AU6063900A (en) * 1999-09-10 2001-04-10 Millennium Pharmaceuticals, Inc. Novel genes encoding proteins having prognostic, diagnostic, preventive, therapeutic, and other uses
AU7994200A (en) 1999-10-04 2001-05-10 Corixa Corporation Compositions and methods for therapy and diagnosis of prostate cancer
US6893818B1 (en) * 1999-10-28 2005-05-17 Agensys, Inc. Gene upregulated in cancers of the prostate
JP2004537252A (en) 1999-11-12 2004-12-16 コリクサ コーポレイション Compositions and methods for treatment and diagnosis of prostate cancer
EP1285088A2 (en) 2000-01-13 2003-02-26 Genset Biallelic markers derived from genomic regions carrying genes involved in central nervous system disorders
AU2001229340A1 (en) 2000-01-14 2001-07-24 Millennium Pharmaceuticals, Inc. Genes compositions, kits, and methods for identification, assessment, prevention, and therapy of breast cancer
AU3447401A (en) 2000-01-14 2001-07-24 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
WO2001055312A2 (en) 2000-01-31 2001-08-02 Human Genome Sciences, Inc. Nucleic acids, proteins, and antibodies
WO2001059063A2 (en) 2000-01-31 2001-08-16 Human Genome Sciences, Inc. Nucleic acids, proteins, and antibodies
US20020132767A1 (en) * 2000-01-31 2002-09-19 Rosen Craig A. Nucleic acids, proteins, and antibodies
WO2001055326A2 (en) 2000-01-31 2001-08-02 Human Genome Sciences, Inc. Nucleic acids, proteins, and antibodies
EP1290217A2 (en) 2000-02-04 2003-03-12 Aeomica, Inc. Methods and apparatus for predicting, confirming, and displaying functional information derived from genomic sequence
US20030170246A1 (en) 2000-02-11 2003-09-11 Corixa Corporation Lipophilin complexes for use in cancer diagnosis and therapy
AU2001241511A1 (en) 2000-02-28 2001-09-12 Hyseq, Inc. Novel nucleic acids and polypeptides
JP2001245671A (en) 2000-03-07 2001-09-11 Chiba Prefecture New gene cloned in human neuroblastoma and fragment thereof
EP1311673A2 (en) 2000-03-27 2003-05-21 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
CZ20023567A3 (en) 2000-03-29 2003-11-12 Corixa Corporation Compounds and methods for therapy and diagnosis of lung carcinoma
US6436703B1 (en) * 2000-03-31 2002-08-20 Hyseq, Inc. Nucleic acids and polypeptides
DE60126592T2 (en) 2000-04-03 2007-11-22 Corixa Corp., Hamilton METHODS, COMPOSITIONS AND KITS FOR IDENTIFYING AND MONITORING BREAST CANCER
US20020192763A1 (en) * 2000-04-17 2002-12-19 Jiangchun Xu Compositions and methods for the therapy and diagnosis of prostate cancer
US6682888B1 (en) 2000-05-05 2004-01-27 Incyte Corporation Genes expressed in alzheimer's disease
AU2001261476A1 (en) 2000-05-11 2001-11-20 Lifespan Biosciences, Inc. Nucleic acid sequences for novel gpcrs
AU2001263006A1 (en) * 2000-05-18 2001-11-26 Hyseq, Inc. Novel nucleic acids and polypeptides
WO2001092581A2 (en) 2000-05-26 2001-12-06 Corixa Corporation Compositions and methods for the therapy and diagnosis of ovarian cancer
US20020082206A1 (en) * 2000-05-30 2002-06-27 Leach Martin D. Novel polynucleotides from atherogenic cells and polypeptides encoded thereby
JP2004509612A (en) 2000-06-05 2004-04-02 アバロン ファーマシューティカルズ Oncogene determination and therapeutic screening using characteristic genes
GB0014185D0 (en) * 2000-06-09 2000-08-02 Novartis Res Found Compound and method
US6974667B2 (en) 2000-06-14 2005-12-13 Gene Logic, Inc. Gene expression profiles in liver cancer
US20040072996A1 (en) * 2001-06-15 2004-04-15 Lal Preeti G G-protein coupled receptors
JP2004523203A (en) 2000-06-16 2004-08-05 インサイト・ゲノミックス・インコーポレイテッド G protein-coupled receptor
IL154129A0 (en) 2000-07-28 2003-07-31 Compugen Inc Oligonucleotide library for detecting rna transcripts and splice variants that populate a transcriptome
JP2004516821A (en) 2000-09-01 2004-06-10 エピゲノミクス アーゲー Method for quantifying the degree of methylation of specific cytosine in sequence context 5-CpG-3 on genomic DNA
CN1345964A (en) 2000-09-29 2002-04-24 上海博德基因开发有限公司 Novel polypeptide-hexokinase 10.01 and polynucleotide for encoding said polypeptide
WO2002029086A2 (en) 2000-10-02 2002-04-11 Bayer Corporation Nucleic acid sequences differentially expressed in cancer tissue
US20030134283A1 (en) * 2000-10-03 2003-07-17 Peterson David P. Genes regulated in dendritic cell differentiation
WO2002030268A2 (en) * 2000-10-13 2002-04-18 Eos Biotechnology, Inc. Methods of diagnosis of prostate cancer, compositions and methods of screening for modulators of prostate cancer
US20070014801A1 (en) * 2001-01-24 2007-01-18 Gish Kurt C Methods of diagnosis of prostate cancer, compositions and methods of screening for modulators of prostate cancer
CA2430794A1 (en) 2000-12-07 2002-07-18 Chiron Corporation Human genes and gene expression products isolated from human prostate
WO2002050105A1 (en) 2000-12-19 2002-06-27 Smithkline Beecham Corporation Novel compounds
US7820447B2 (en) 2000-12-22 2010-10-26 Sagres Discovery Inc. Compositions and methods for cancer
US20040072264A1 (en) 2000-12-22 2004-04-15 Morris David W. Novel compositions and methods for cancer
CN1363678A (en) 2001-01-05 2002-08-14 上海博德基因开发有限公司 Polypeptide-signal peptidase 9.79 and polynucleotide for coding it
JP2005503760A (en) * 2001-01-24 2005-02-10 プロテイン デザイン ラブス, インコーポレイテッド Breast cancer diagnosis method, composition and breast cancer modulator screening method
AU2002253878A1 (en) 2001-01-25 2002-08-06 Gene Logic, Inc. Gene expression profiles in breast tissue
AU2002251841A1 (en) 2001-01-30 2002-08-12 Corixa Corporation Compositions and methods for the therapy and diagnosis of pancreatic cancer
DE20103510U1 (en) 2001-02-28 2001-06-07 Lion Bioscience Ag Gene library
WO2003008583A2 (en) 2001-03-02 2003-01-30 Sagres Discovery Novel compositions and methods for cancer
US6783969B1 (en) * 2001-03-05 2004-08-31 Nuvelo, Inc. Cathepsin V-like polypeptides
US20040053250A1 (en) * 2001-03-05 2004-03-18 Tang Y. Tom Novel arginine-rich protein-like nucleic acids and polypeptides
US20030087250A1 (en) * 2001-03-14 2003-05-08 Millennium Pharmaceuticals, Inc. Nucleic acid molecules and proteins for the identification, assessment, prevention, and therapy of ovarian cancer
AU2002258622A1 (en) 2001-03-27 2002-10-08 Human Genome Sciences, Inc. Human secreted proteins
EP1383894A2 (en) 2001-03-28 2004-01-28 Incyte Genomics, Inc. Molecules for disease detection and treatment
AU2002311791A1 (en) 2001-03-29 2002-10-28 Incyte Genomics, Inc. Secretory molecules
WO2002078516A2 (en) 2001-03-30 2002-10-10 Corixa Corporation Compositions and methods for the therapy and diagnosis of cancer
US20040138416A1 (en) 2001-03-30 2004-07-15 Thornton Michael B G-protein coupled receptors
AU2002338345A1 (en) 2001-04-04 2002-10-21 Digital Gene Technologies, Inc. Genes expressed in intestinal epithelium and peyer's patch m cells
AU2002307466A1 (en) 2001-04-20 2002-11-05 Millennium Pharmaceutical, Inc. Method for detecting breast cancer cells
CA2446788A1 (en) 2001-05-09 2002-11-14 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
AU2002311909A1 (en) 2001-05-11 2002-11-25 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
US7171311B2 (en) 2001-06-18 2007-01-30 Rosetta Inpharmatics Llc Methods of assigning treatment to breast cancer patients
WO2003052049A2 (en) 2001-07-09 2003-06-26 Incyte Genomics, Inc. Molecules for disease detection and treatment
WO2003006618A2 (en) 2001-07-12 2003-01-23 Incyte Genomics, Inc. Nucleic acid-associated proteins
AU2002337657A1 (en) 2001-07-25 2003-02-17 Millennium Pharmaceuticals, Inc. Novel genes, compositions, kits, and methods for identification, assessment, prevention, and therapy of prostate cancer
EP1483386A4 (en) 2001-08-09 2005-08-10 Nuvelo Inc Novel nucleic acids and secreted polypeptides
US20070015145A1 (en) 2001-08-14 2007-01-18 Clifford Woolf Nucleic acid and amino acid sequences involved in pain
EP1539955A4 (en) 2001-08-20 2006-09-27 Bristol Myers Squibb Co G-protein coupled receptor polynucleotides and methods of use thereof
EP1293569A3 (en) 2001-09-14 2004-03-31 Research Association for Biotechnology Full-length cDNAs
JP2003088388A (en) * 2001-09-14 2003-03-25 Herikkusu Kenkyusho:Kk NEW FULL-LENGTH cDNA
CN1412309A (en) 2001-10-08 2003-04-23 中国人民解放军军事医学科学院放射医学研究所 CDNA library of human bronchial epicyte malignant transformation differential expression gene and clone related to lesion of cancer of lung
EP1478773B1 (en) 2001-10-30 2007-09-19 Ortho-Clinical Diagnostics, Inc. Methods for assessing acute myeloid leukemia
EP1470247A2 (en) 2001-11-05 2004-10-27 Deutsches Krebsforschungszentrum Novel genetic markers for leukemias
US20040115629A1 (en) * 2002-01-09 2004-06-17 Panzer Scott R Molecules for diagnostics and therapeutics
AU2003210518A1 (en) 2002-01-16 2003-09-02 Incyte Genomics, Inc. Molecules for diagnostics and therapeutics
AU2003210266A1 (en) 2002-02-14 2003-09-04 Bioinvent International Ab Treatment, diagnosis and imaging of disease
AU2003216482A1 (en) 2002-03-01 2003-09-16 Exelixis, Inc. MSRAs AS MODIFIERS OF THE p53 PATHWAY AND METHODS OF USE
WO2003076586A2 (en) 2002-03-06 2003-09-18 Incyte Corporation Nucleic acid-associated proteins
JP2003259877A (en) 2002-03-11 2003-09-16 Sumitomo Pharmaceut Co Ltd Marker for hepatic fibrosis disease and application of the same
AU2003222103A1 (en) 2002-03-28 2003-10-13 Idec Pharmaceuticals Corporation Novel gene targets and ligands that bind thereto for treatment and diagnosis of colon carcinomas
US20030194704A1 (en) 2002-04-03 2003-10-16 Penn Sharron Gaynor Human genome-derived single exon nucleic acid probes useful for gene expression analysis two
AU2003223520A1 (en) * 2002-04-12 2003-10-27 Mitokor Targets for therapeutic intervention identified in the mitochondrial proteome
JP2004121218A (en) 2002-08-06 2004-04-22 Jenokkusu Soyaku Kenkyusho:Kk Method for testing bronchial asthma or chronic obstructive pulmonary disease
US7408048B2 (en) * 2002-08-09 2008-08-05 Melbourne Health Mammalian grainyhead transcription factors
CN1477123A (en) 2002-08-23 2004-02-25 上海博德基因开发有限公司 A polypeptide-transcription factor 43 and polynucleotide coding said polypeptide
WO2004023973A2 (en) 2002-09-12 2004-03-25 Incyte Corporation Molecules for diagnostics and therapeutics
JP2006513700A (en) 2002-09-25 2006-04-27 ジェネンテック・インコーポレーテッド Novel compositions and methods for the treatment of psoriasis
EP1560597A4 (en) 2002-10-29 2007-06-27 Pharmacia Corp Differentially expressed genes involved in cancer, the polypeptides encoded thereby, and methods of using the same
AU2003297300A1 (en) 2002-11-20 2004-06-15 Biogen Idec Inc. Novel gene targets and ligands that bind thereto for treatment and diagnosis of carcinomas
AU2003294510A1 (en) 2002-11-22 2004-06-18 Incyte Corporation Transporters and ion channels
US20040253606A1 (en) 2002-11-26 2004-12-16 Protein Design Labs, Inc. Methods of detecting soft tissue sarcoma, compositions and methods of screening for soft tissue sarcoma modulators
WO2004066948A2 (en) 2003-01-29 2004-08-12 Exelixis Inc. Mapcaxs as modifiers of the apc and axin pathways and methods of use
EP1447413A3 (en) 2003-02-14 2006-01-04 Research Association for Biotechnology Full-length human cDNA
WO2004108948A2 (en) 2003-06-04 2004-12-16 President And Fellows Of Harvard College Systems, methods and kits for characterizing phosphoproteomes
JO3421B1 (en) 2011-06-20 2019-10-20 H Lundbeck As Method of administration of 4-((1R,3S)-6-chloro-3-phenyl-indan-1-yl)-1,2,2-trimethyl-piperazine and the salts thereof in the treatment of schizophrenia
US9701019B2 (en) 2011-09-15 2017-07-11 Convergent Information Technologies Gmbh System and method for the automatic generation of robot programs

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010051344A1 (en) * 1994-06-17 2001-12-13 Shalon Tidhar Dari Methods for constructing subarrays and uses thereof
US6264949B1 (en) * 1998-09-29 2001-07-24 Mount Sinai School Of Medicine Of New York University Noninvasive agents for diagnosis and prognosis of the progression of fibrosis
US20020137160A1 (en) * 1998-12-17 2002-09-26 Byatt John C Nucleic acid and other molecules associated with lactation and muscle and fat deposition
US20030170621A1 (en) * 1999-06-14 2003-09-11 Mccarthy Sean A. Novel genes encoding proteins having prognostic, diagnostic, preventive, therapeutic, and other uses
US20020065220A1 (en) * 1999-09-03 2002-05-30 Young Paul E. Immunoglobulin superfamily polynucleotides, polypeptides, and antibodies
US20020090672A1 (en) * 2000-01-31 2002-07-11 Rosen Craig A. Nucleic acids, proteins, and antibodies
US20030077606A1 (en) * 2000-01-31 2003-04-24 Human Genome Sciences, Inc. Nucleic acids, proteins, and antibodies
US20040259086A1 (en) * 2000-02-17 2004-12-23 Millennium Pharmaceuticals, Inc. Novel genes, compositions, kits, and methods for identification, assessment, prevention, and therapy of human prostate cancer
US20030165831A1 (en) * 2000-03-21 2003-09-04 John Lee Novel genes, compositions, kits, and methods for identification, assessment, prevention, and therapy of ovarian cancer
US7175849B2 (en) * 2000-10-05 2007-02-13 Immunex Corporation Nectin polypeptides
US20040029114A1 (en) * 2001-01-24 2004-02-12 Eos Technology, Inc. Methods of diagnosis of breast cancer, compositions and methods of screening for modulators of breast cancer
US7968090B2 (en) * 2001-03-14 2011-06-28 Agensys, Inc. Nucleic acids and corresponding proteins entitled 191P4D12(b) useful in treatment and detection of cancer
US20030083263A1 (en) * 2001-04-30 2003-05-01 Svetlana Doronina Pentapeptide compounds and uses related thereto
US6794501B2 (en) * 2001-05-04 2004-09-21 Ludwig Institute For Cancer Research Colon cancer antigen panel
US20040005563A1 (en) * 2001-06-18 2004-01-08 Eos Biotechnology, Inc. Methods of diagnosis of ovarian cancer, compositions and methods of screening for modulators of ovarian cancer
US7189507B2 (en) * 2001-06-18 2007-03-13 Pdl Biopharma, Inc. Methods of diagnosis of ovarian cancer, compositions and methods of screening for modulators of ovarian cancer
US20040076955A1 (en) * 2001-07-03 2004-04-22 Eos Biotechnology, Inc. Methods of diagnosis of bladder cancer, compositions and methods of screening for modulators of bladder cancer
US20030099974A1 (en) * 2001-07-18 2003-05-29 Millennium Pharmaceuticals, Inc. Novel genes, compositions, kits and methods for identification, assessment, prevention, and therapy of breast cancer
US7951546B2 (en) * 2001-09-18 2011-05-31 Genetech, Inc. Compositions and methods for the diagnosis and treatment of tumor
US20030148408A1 (en) * 2001-09-18 2003-08-07 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
US20060275211A1 (en) * 2001-11-07 2006-12-07 Agensys, Inc. Antibodies and related molecules that bind to 161P2F10B proteins
US20030232350A1 (en) * 2001-11-13 2003-12-18 Eos Biotechnology, Inc. Methods of diagnosis of cancer, compositions and methods of screening for modulators of cancer
US7659241B2 (en) * 2002-07-31 2010-02-09 Seattle Genetics, Inc. Drug conjugates and their use for treating cancer, an autoimmune disease or an infectious disease
US7829531B2 (en) * 2002-07-31 2010-11-09 Seattle Genetics Inc. Drug conjugates and their use for treating cancer, an autoimmune disease or an infectious disease
US7851437B2 (en) * 2002-07-31 2010-12-14 Seattle Genetics Inc. Drug conjugates and their use for treating cancer, an autoimmune disease or an infectious disease
US20110064753A1 (en) * 2002-07-31 2011-03-17 Seattle Genetics, Inc. Drug conjugates and their use for treating cancer, an autoimmune disease or an infectious disease
US20040083497A1 (en) * 2002-08-16 2004-04-29 Raitano Arthur B. Nucleic acids and corresponding proteins entitled 191P4D12(b) useful in treatment and detection of cancer
US7745394B2 (en) * 2003-11-06 2010-06-29 Seattle Genetics, Inc. Monomethylvaline compounds capable of conjugation to ligands
US7964566B2 (en) * 2003-11-06 2011-06-21 Seattle Genetics, Inc. Monomethylvaline compounds capable of conjugation to ligands
US20090203538A1 (en) * 2006-07-10 2009-08-13 Institute For Antibodies Co., Ltd. Method of classifying antibody, method of identifying antigen, method of obtaining antibody or antibody set, method of constructing antibody panel and antibody or antibody set and use of the same

Also Published As

Publication number Publication date
EP2301954A3 (en) 2012-05-09
EP1576170B1 (en) 2012-08-15
SI1576170T1 (en) 2012-12-31
CA2493921C (en) 2015-12-08
AU2003236553C1 (en) 2008-05-01
EP1576132B1 (en) 2012-08-15
PT1576132E (en) 2012-10-31
JP4490502B2 (en) 2010-06-30
JP2010142228A (en) 2010-07-01
JP2009278977A (en) 2009-12-03
US8604169B2 (en) 2013-12-10
EP2301954A2 (en) 2011-03-30
DK1576132T3 (en) 2012-10-01
AU2003232116A1 (en) 2004-03-03
WO2004016762A2 (en) 2004-02-26
EP1576132A2 (en) 2005-09-21
AU2003243151A1 (en) 2004-03-03
US20090252747A1 (en) 2009-10-08
JP2009159963A (en) 2009-07-23
US20040192597A1 (en) 2004-09-30
AU2003258269B2 (en) 2007-06-28
IL166532A0 (en) 2006-01-15
IL233223A (en) 2015-03-31
PT1576170E (en) 2012-11-05
US20130267024A1 (en) 2013-10-10
CA2493928A1 (en) 2004-02-26
EP1576170A2 (en) 2005-09-21
AU2003243151A8 (en) 2004-03-03
AU2003236553A1 (en) 2004-03-03
ES2391892T3 (en) 2012-11-30
JP2009278988A (en) 2009-12-03
CA2493928C (en) 2014-04-01
CA2493923A1 (en) 2004-02-26
EP1576132A4 (en) 2007-09-05
US20070231261A1 (en) 2007-10-04
IL200404A (en) 2014-07-31
CA2493923C (en) 2020-02-18
IL166564A (en) 2012-01-31
US7250498B2 (en) 2007-07-31
US8426571B2 (en) 2013-04-23
EP1576104A4 (en) 2007-10-10
IL166531A0 (en) 2006-01-15
US7115727B2 (en) 2006-10-03
IL166531A (en) 2014-07-31
IL166655A (en) 2010-06-16
CA2493921A1 (en) 2004-02-26
US20110195019A1 (en) 2011-08-11
EP1576104A2 (en) 2005-09-21
US20040053348A1 (en) 2004-03-18
IL166564A0 (en) 2006-01-15
US20040083497A1 (en) 2004-04-29
AU2003232116B2 (en) 2008-05-29
JP2006513724A (en) 2006-04-27
AU2003258269A1 (en) 2004-03-03
AU2008207531A1 (en) 2008-09-18
US20130177569A1 (en) 2013-07-11
IL166532A (en) 2011-09-27
US8057996B2 (en) 2011-11-15
WO2004016733A3 (en) 2006-03-16
IL166655A0 (en) 2006-01-15
EP1576130A2 (en) 2005-09-21
DK1576170T3 (en) 2012-11-26
EP1576170A4 (en) 2008-07-23
CA2493925A1 (en) 2004-02-26
JP2006511232A (en) 2006-04-06
WO2004016736A3 (en) 2006-10-05
AU2003228717A1 (en) 2004-03-03
CY1113247T1 (en) 2016-04-13
WO2004016736A2 (en) 2004-02-26
AU2003228717B2 (en) 2008-02-21
US7612172B2 (en) 2009-11-03
US20040081653A1 (en) 2004-04-29
EP2332966A1 (en) 2011-06-15
EP1576130A4 (en) 2007-08-08
WO2004016762A3 (en) 2007-01-18
WO2004016734A2 (en) 2004-02-26
US20070298424A1 (en) 2007-12-27
US20100297006A1 (en) 2010-11-25
US20040213778A1 (en) 2004-10-28
WO2004016733A2 (en) 2004-02-26
IL233223A0 (en) 2014-07-31
CA3066279A1 (en) 2004-02-26
AU2003236553B2 (en) 2007-09-20
SI1576132T1 (en) 2012-12-31
US20080181885A1 (en) 2008-07-31
US20070059729A1 (en) 2007-03-15
WO2004016799A2 (en) 2004-02-26
WO2004016799A3 (en) 2007-04-05
US7696336B2 (en) 2010-04-13
IL200404A0 (en) 2010-04-29
AU2003258269C1 (en) 2004-03-03
US20110201052A1 (en) 2011-08-18
ES2392341T3 (en) 2012-12-07
WO2004016734A3 (en) 2006-08-24

Similar Documents

Publication Publication Date Title
US8426571B2 (en) Nucleic acids and corresponding proteins entitled 202P5A5 useful in treatment and detection of cancer
US7884179B2 (en) Nucleic acid and corresponding protein entitled STEAP-1 useful in treatment and detection of cancer
US7622564B2 (en) Prostate stem cell antigen (PSCA) variants and subsequences thereof
US20160176977A1 (en) Novel acid and corresponding protein entitled 161p2f10b useful in treatment and detection of cancer
US7968090B2 (en) Nucleic acids and corresponding proteins entitled 191P4D12(b) useful in treatment and detection of cancer
US8124741B2 (en) Antibodies to tumor associated proteins
CA2481503A1 (en) Nucleic acid and corresponding protein entitled 98p4b6 useful in treatment and detection of cancer
US20110008393A1 (en) Nucleic acids and corresponding proteins entitled 58p1d12 useful in treatment and detection of cancer
US20110086437A1 (en) Methods to inhibit cell growth
US7811575B2 (en) Nucleic acids and corresponding proteins entitled 158P3D2 useful in treatment and detection of cancer
CA2496566A1 (en) Nucleic acid and corresponding protein entitled 98p4b6 useful in treatment and detection of cancer

Legal Events

Date Code Title Description
AS Assignment

Owner name: AGENSYS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAITANO, ARTHUR B.;CHALLITA-EID, PIA M.;JAKOBOVITS, AYA;AND OTHERS;SIGNING DATES FROM 20090505 TO 20090709;REEL/FRAME:024661/0853

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION