US20110015808A1 - System for estimating a vehicle mass - Google Patents

System for estimating a vehicle mass Download PDF

Info

Publication number
US20110015808A1
US20110015808A1 US12/883,959 US88395910A US2011015808A1 US 20110015808 A1 US20110015808 A1 US 20110015808A1 US 88395910 A US88395910 A US 88395910A US 2011015808 A1 US2011015808 A1 US 2011015808A1
Authority
US
United States
Prior art keywords
vehicle
mass
mass signal
signal
processor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/883,959
Inventor
Loren Christopher Dreier
Ingo-Gerd Sauter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/883,959 priority Critical patent/US20110015808A1/en
Publication of US20110015808A1 publication Critical patent/US20110015808A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/50Inputs being a function of the status of the machine, e.g. position of doors or safety belts
    • F16H59/52Inputs being a function of the status of the machine, e.g. position of doors or safety belts dependent on the weight of the machine, e.g. change in weight resulting from passengers boarding a bus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals

Definitions

  • This invention relates to vehicle systems, specifically to such systems used for estimating a mass of a vehicle.
  • Vehicles utilizing automatic or automated mechanical transmissions such as trucks, buses, and cars, depend on gear shifting logic or algorithms to determine the appropriate gear to use for a wide variety of conditions. Each shift decision may be based on a balance between fuel efficiency and performance to provide a desired driving experience.
  • One of the significant parameters impacting this balance is the total mass or weight of the vehicle. For example, a truck carrying no payload may shift to a higher gear by skipping one or more gears to improve fuel efficiency and yet still maintain an adequate level of performance. However, a truck carrying a relatively heavy payload may up-shift through each gear and engage each gear for a longer period of time to improve performance by transmitting an increased amount of power from the engine.
  • force mass ⁇ acceleration
  • the force is related to the engine torque, which propels the vehicle.
  • the vehicle mass may be derived through a calculation based on the vehicle's acceleration.
  • a system may repeat the calculation several times to provide a mass or weight value with a better accuracy.
  • the vehicle must be in motion for this mass determination method to work because it requires measurement of a useful acceleration value. Also, this method typically uses an average of several calculations, and a single inaccurate calculation may adversely impact the mass or weight value. Furthermore, collecting and averaging several calculations takes time during which shifting performance may be negatively affected.
  • a vehicle mass estimation system for use in a vehicle including a tractor, a trailer, and a transmission.
  • a signal device may be operable to generate an indication signal.
  • a processor may be operable to communicate with the signal device and operable to receive the indication signal from the signal device.
  • the processor may be further operable to determine whether a vehicle trailer is connected to the vehicle tractor based on the indication signal.
  • the processor may be further operable to estimate a vehicle mass based, at least in part, on the indication signal.
  • the processor may be further operable to select a desired gear ratio for engagement in a transmission based, at least in part, on the estimated vehicle mass.
  • a vehicle mass estimation system for use in a vehicle including a tractor, a trailer, and a transmission.
  • a processor in a vehicle may be operable to communicate with a remote station.
  • the remote station may be operable to transmit a mass signal indicative of the mass of at least a portion of the vehicle.
  • the processor may be further operable to receive the mass signal.
  • the processor may be further operable to select a desired gear ratio for engagement in the transmission based, at least in part, on the mass signal.
  • a vehicle mass estimation system for use in a vehicle including a tractor, a trailer, and a transmission.
  • An input device on or in a vehicle may be operable to receive an input from an operator and to generate a first mass signal.
  • the input may be indicative of a mass of at least a portion of the vehicle.
  • a processor may be operable to communicate with the input device and operable to receive the first mass signal from the input device.
  • the processor may be further operable to estimate the vehicle mass based, at least in part, on the first mass signal.
  • the processor may be further operable to select a desired gear ratio for engagement in the transmission based, at least in part, on the estimated vehicle mass.
  • a method of estimating a vehicle mass is provided.
  • An indication signal may be received. Whether a vehicle trailer is connected to a vehicle tractor may be determined based on the indication signal.
  • a vehicle mass may be estimated based, at least in part, on the indication signal.
  • a desired gear ratio for engagement in a transmission may be selected based, at least in part, on the estimated vehicle mass.
  • a method of estimating a vehicle mass is provided.
  • a mass signal may be received from a remote station.
  • the mass signal may be indicative of a mass of at least a portion of a vehicle.
  • a desired gear ratio for engagement in a transmission may be selected based, at least in part, on the mass signal.
  • a method of estimating a vehicle mass is provided.
  • An input may be received from an operator.
  • the input may be indicative of a mass of at least a portion of the vehicle.
  • a first mass signal may be generated based on the input.
  • a vehicle mass may be estimated based, at least in part, on the first mass signal.
  • a desired gear ratio for engagement in a transmission may be selected based, at least in part, on the estimated mass.
  • FIG. 1 is a two-dimensional drawing illustrating a basic structure of a vehicle.
  • FIG. 2 is a diagram illustrating an exemplary embodiment of a vehicle mass estimation system.
  • FIG. 3 is a diagram illustrating an alternate exemplary embodiment of a vehicle mass estimation system.
  • FIG. 4 is a diagram illustrating another alternate exemplary embodiment of a vehicle mass estimation system.
  • FIG. 5 is a flowchart illustrating an example of a method of estimating a vehicle mass.
  • FIG. 6 is a flowchart illustrating an alternate example of a method of estimating a vehicle mass.
  • FIG. 7 is a flowchart illustrating another alternate example of a method of estimating a vehicle mass.
  • FIG. 8 is a flowchart illustrating an example of a method of updating a vehicle mass estimation.
  • FIG. 1 is a two-dimensional drawing illustrating a basic structure of a vehicle 100 .
  • the vehicle 100 may be a car, bus, truck, or any other known or future vehicle that utilizes an automatic or automated mechanical transmission.
  • the vehicle 100 may be a semi-trailer truck or any other vehicle including a vehicle tractor 104 and a vehicle trailer 108 .
  • the vehicle 100 may comprise only the vehicle tractor 104 .
  • the vehicle tractor 104 may include, but is not limited to, a cab, a door for entering and exiting the cab, windows, seats for a driver, operator, and/or passenger, an engine, a transmission, a front or steer axle having two wheels, and two rear drive axles having double wheels on each side.
  • the tractor 104 may have a single drive axle (known as a “six wheeler”) used to pull shorter trailers.
  • the vehicle trailer 108 may include, but is not limited to, two tandem axles at the rear, and each of the axles may include dual wheels on each side (eight wheels on the trailer).
  • the trailer 108 may comprise a box trailer, a cement trailer, a reefer trailer, a tanker trailer, a dry bulk trailer, a flatbed trailer, a lowboy trailer, or any known or future trailer.
  • FIG. 2 is a diagram illustrating an exemplary embodiment of a vehicle mass estimation system.
  • the vehicle mass estimation system may be in or on a vehicle 200 , such as the vehicle 100 previously described.
  • any number of or all the components of the vehicle mass estimation system may be in or on a vehicle tractor, such as the vehicle tractor 104 , or any number of or all the components of the vehicle mass estimation system may be in or on a vehicle trailer, such as the vehicle trailer 108 .
  • the vehicle mass estimation system may include, but is not limited to, a transmission system 209 , a power take-off assembly 213 , a memory 205 , a processor 201 , a signal device 203 , a weighing device 217 , and a display 221 .
  • the transmission system 209 may include, but is not limited to, a transmission, such as an automatic or automated mechanical transmission, one or more sensors, at least one transmission controller, and the power take-off assembly 213 .
  • the power-take off (“PTO”) assembly 213 may include, but is not limited to, a PTO component, such as a gear or shaft, that may engage with the transmission to provide power for any variety of PTO operations. For example, when an engine is providing power to the transmission, a PTO component may be driven by a gear or shaft of the transmission. Consequently, the PTO component may provide power or energy to a pump, a generator, a ladder, a gear or pulley system, or any known or future mechanical, fluid, and/or electrical system.
  • Any PTO component of the PTO assembly 213 may be in or on the vehicle tractor and/or the vehicle trailer.
  • the PTO assembly 213 and a respective PTO component may be on a vehicle not associated with a trailer, such as a fire engine or other non-trailer vehicle.
  • the memory 205 may be a “computer-readable medium,” “machine-readable medium,” “propagated-signal” medium, and/or “signal-bearing medium” and may comprise any device that contains, stores, communicates, propagates, or transports software, data, and/or predetermined values indicative of one or more vehicle trailer masses or weights for use by or in connection with an instruction executable system, apparatus, or device.
  • the memory 205 may be in any part of the vehicle 200 .
  • the machine-readable medium may selectively be, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium.
  • a non-exhaustive list of examples of a machine-readable medium would include: an electrical connection “electronic” having one or more wires, a portable magnetic or optical disk, a volatile memory such as a Random Access Memory “RAM” (electronic), a Read-Only Memory “ROM” (electronic), an Erasable Programmable Read-Only Memory (EPROM or Flash memory) (electronic), or an optical fiber (optical).
  • a machine-readable medium may also include a tangible medium upon which software is printed, as the software may be electronically stored as an image or in another format (e.g., through an optical scan), then compiled, and/or interpreted or otherwise processed. The processed medium may then be stored in a computer and/or machine memory.
  • the processor 201 may be in communication with or operable to communicate with the memory 205 , the transmission system 209 , the signal device 203 , the weighing device 217 , and the display 221 .
  • the processor 201 may be in communication with any other component of the vehicle 200 .
  • the processor 201 may be in any part of the vehicle 200 .
  • the processor 201 may be a main processor or a plurality of processors operable to communicate with electronics and controllers of the vehicle 200 .
  • the processor 201 may be part of a public or private communications area network (“CAN”).
  • the processor 201 may utilize a public electronic communication protocol, such as SAE J 1939 or SAE J 1587, and/or may utilize a proprietary electronic communication protocol or any other type of public or private communication technique.
  • the processor 201 may be able to determine whether a vehicle trailer is connected to a vehicle tractor based on an indication signal. Additionally, the processor 201 may be operable to estimate a vehicle mass or weight (hereinafter “mass or weight” will be referred to as “mass”) at least in part on the indication signal, and the processor 201 may be operable to select a desired gear ratio for engagement in a transmission based, at least in part, on the estimated vehicle mass.
  • the signal device 203 may be in communication with the transmission system 209 and may be operable to communicate with the processor 201 .
  • the signal device 203 may be a mechanical and/or electrical sensor or a plurality of sensors operable to detect contact of a vehicle trailer, such as the vehicle trailer 108 , with a vehicle tractor, such as the vehicle tractor 104 .
  • the signal device 203 may be a voltage or current supply or a processor on or in the vehicle tractor or trailer.
  • the signal device 203 may be on a tractor bed or any other part of the vehicle tractor, and when the vehicle trailer is physically attached to the vehicle tractor, the signal device 203 may sense the attachment by a mechanical and/or electrical contact and transmit an indication signal to the processor 201 .
  • the signal device may transmit an alternating or direct current (“AC” or “DC”) and/or voltage as an indication signal directly or indirectly to the processor 201 .
  • the indication signal may be a digital or analog signal.
  • the signal device may transmit the indication signal to the processor 201 through electrical wires or traces or it may transmit the indication signal wirelessly.
  • the indication signal may also be a MID137 signal.
  • Trailers manufactured after 2001 may be equipped with the ability to broadcast a MID137 signal, which may be used to identify that the trailer has been added, on the vehicle's computer communications network.
  • the indication signal may contain information or data that indicates what type of trailer is being attached, what the mass or weight of the trailer is, what type of payload the trailer is carrying, and/or the amount of payload the trailer is carrying.
  • the signal device 203 may transmit the indication signal to the processor 201 .
  • the indication signal may be a low or high AC or DC signal or a MID137 signal.
  • the processor 201 may determine whether the vehicle trailer is attached or not. If the vehicle trailer is not attached, a predetermined value of the mass of the vehicle tractor, which may be stored in the memory 205 , may be used in a shifting logic or algorithm to select a desired gear ratio for engagement in a transmission based on the vehicle tractor mass.
  • the processor 201 may retrieve a predetermined value of the mass of the vehicle trailer from the memory 205 , such as a mass signal representing the value of the mass of the vehicle trailer.
  • the “value of the mass” may be an estimation, calculation, or measurement of mass that may or may not be equal to an actual mass.
  • the predetermined value of the mass of the vehicle trailer may be used to estimate a total mass of the vehicle 200 .
  • a desired gear ratio is selected for engagement in a transmission based, at least in part, on the estimated vehicle mass.
  • the processor 201 may retrieve a predetermined value of the mass of the whole vehicle 200 from the memory 205 .
  • the indication signal may include one or more data indicative of a type of the vehicle trailer, whether the vehicle trailer is carrying a payload, and/or the amount of payload in or on the vehicle trailer.
  • the memory 205 may store data concerning the mass of the vehicle 200 and or the vehicle trailer based on the type of trailer, the amount of payload in or on the trailer, and/or the material or physical properties of the payload. For example, if a tanker full of petroleum is attached to a vehicle tractor, the processor 201 may intelligently retrieve a specific mass value for the vehicle trailer and/or the vehicle 200 based on the criteria that the trailer is a tanker, the tanker is full, and the tanker is carrying petroleum. If an empty lowboy is attached to the vehicle tractor, the processor 201 may intelligently retrieve a different specific vehicle mass value for the trailer and/or the vehicle 200 based on the criteria that the trailer is a lowboy and is empty.
  • the indication signal may include the mass of the vehicle trailer to be attached to the vehicle tractor.
  • the mass of the vehicle trailer may be measured or estimated and a corresponding mass value may be stored in the signal device 203 , the memory 205 , or any other component on or in the vehicle trailer.
  • the indication signal containing the mass information of the vehicle trailer may be transmitted to the processor 201 .
  • the processor 201 may use the mass information to estimate a total mass of the vehicle 200 and to select a desired gear for engagement in a transmission based, at least in part, on the estimated vehicle mass.
  • the signal device 203 may be an electronic and/or mechanical component operable to monitor a PTO component of the PTO assembly 213 .
  • the signal device 203 may be a sensor and/or controller that may continuously or periodically monitor whether a PTO component is engaged in operation.
  • the signal device 203 may transmit a signal to the processor 201 indicating whether or not the PTO component is engaged.
  • the processor 201 also may determine whether or not a vehicle trailer is attached to a vehicle tractor based on the PTO operation.
  • the PTO component of the PTO assembly 213 may be used to operate a PTO pump or generator in conjunction with the vehicle trailer.
  • the signal device 203 may periodically or continuously monitor the PTO component and transmit a PTO message signal to the processor 201 .
  • the processor 201 may determine whether or not a vehicle trailer is attached to the vehicle tractor.
  • the processor 201 may retrieve a predetermined value of the mass of the vehicle trailer or the vehicle 200 from the memory 205 as previously described.
  • the predetermined value of the mass may be used to estimate a total mass of the vehicle 200 .
  • a desired gear ratio may be selected for engagement in a transmission based, at least in part, on the estimated vehicle mass.
  • a PTO operation may occur even when a vehicle trailer may not be attached to a vehicle tractor.
  • additional information may be transmitted in the PTO message signal or another signal alerting the system that a vehicle trailer is not attached.
  • a manual input may be used to indicate the difference between a PTO operation using a vehicle trailer and a PTO operation without a vehicle trailer.
  • the PTO message signal may be used to calculate a time period of the PTO operation.
  • the PTO component may be used to drive a PTO pump that pumps fluid into and out of a vehicle trailer.
  • the processor 201 may continuously or periodically receive the PTO message signal indicating that a vehicle trailer is attached to the vehicle tractor, and based on the reception of the PTO message signal, the processor 201 may estimate the amount of time the PTO operation has been occurring.
  • the processor 201 may determine a change in the mass of the vehicle trailer. For example, the material and other information of the payload, such as density and/or volume, or dimensional characteristics of the PTO pump may be stored in the memory 205 or may be coded or entered into the vehicle mass estimation system. As time passes, the processor 201 may determine the volumetric flow rate of the liquid being pumped in and/or out of the vehicle trailer.
  • payload data e.g., type of payload, density of payload material
  • the processor 201 may determine a change in the mass of the vehicle trailer. For example, the material and other information of the payload, such as density and/or volume, or dimensional characteristics of the PTO pump may be stored in the memory 205 or may be coded or entered into the vehicle mass estimation system. As time passes, the processor 201 may determine the volumetric flow rate of the liquid being pumped in and/or out of the vehicle trailer.
  • the processor 201 may determine the amount of liquid entering or exiting the vehicle trailer based on pump or PTO component characteristics (e.g., features such as area, volume, or power) and/or information related to the payload (e.g., density, volume, quantity) in relation to a time of operation.
  • the PTO message signal itself may include information indicative of the time of the PTO operation and/or the payload material or amount entry and exit rates.
  • the processor 201 may determine the change in mass of the vehicle trailer.
  • the processor 201 may estimate a vehicle mass based, at least in part, on the change in mass and select a desired gear ratio for engagement in a transmission based, at least in part, on the estimated vehicle mass.
  • the vehicle estimation system may also include the weighing device 217 .
  • the weighing device 217 may be one or more strain gauges, weight sensors, pressure or temperature sensors, or any other known or future weighing device located on a suspension, in a wheel, or any other part of the vehicle 200 .
  • the weighing device 217 may be operable to measure a mass of at least a portion of the vehicle 200 .
  • the weighing device 217 may transmit a mass signal indicative of a mass of at least the portion of the vehicle to the processor 201 .
  • the mass information determined by the weighing device 217 as well as other mass information derived from force/acceleration calculations may be used with any other vehicle mass estimation technique previously described.
  • the processor 201 may use the mass information to select a desired gear ratio for engagement in a transmission in conjunction with the estimation techniques.
  • the mass estimated by the techniques previously described may be replaced or confirmed by the mass determined by the weighing device 217 and/or force/acceleration calculations or vice versa.
  • the display 221 may be any mechanical and/or electronic display positioned for accessible viewing by a driver, operator, and/or passenger of the vehicle 200 .
  • the display 221 may be a light emitting diode, (“LED”), display, liquid crystal display, (“LCD”), or a cathode ray tube (“CRT”) display, or any other known or future display in the cab of the vehicle tractor or at any other location in or on the vehicle 200 .
  • the display 221 may be capable of showing or illuminating various measurements or estimations including mass values of all or some of the vehicle 200 .
  • FIG. 3 is a diagram illustrating an alternate exemplary embodiment of a vehicle mass estimation system.
  • the vehicle mass estimation system of FIG. 3 may include a vehicle 300 , such as the vehicle 100 or 200 previously described, and the vehicle 300 may be operable to communicate with a remote station 304 .
  • a processor 308 and a receiver circuit 312 may be on or in the vehicle 300 .
  • the processor 308 may be substantially similar to the processor 201 .
  • More components, such as the transmission system 209 , the power take-off assembly 213 , the memory 205 , the signal device 203 , the weighing device 217 , and the display 221 of FIG. 2 may be included in or on the vehicle 300 . Alternatively, fewer components may be utilized.
  • the vehicle mass estimation system may not include the receiver circuit 312 .
  • the remote station 304 may be an area, a scale, an unmanned structure, a manned structure, and/or any known or future facility to measure or estimate a mass of a vehicle, such as the vehicle 300 .
  • the remote station 304 may be located by a loading dock of a shipping company, retailer, and/or manufacturer, or it may be located on the premises of a vehicle company that designs, tests, repairs, and/or manufactures vehicles, such as trucks. Alternatively, the remote station may be located on public highways, weigh stations, and/or rest areas.
  • the remote station 304 may include an area for all or part of a vehicle to be weighed, such as a scale.
  • a scale For example, the vehicle 300 , including a vehicle tractor and a vehicle trailer, may park on top of the scale, and the scale may measure the mass of the vehicle 300 . Alternatively, the vehicle tractor and/or the vehicle trailer may be weighed separately.
  • the weight measurement may be stored in a memory of the remote station 304 and may be transmitted to the processor 308 by a wired or wireless transmission.
  • a cable or wire may be connected to the vehicle 300 during, before, or after the weighing of the vehicle 300 .
  • the wire connection may be any known or future connection, such as plug or jack connection.
  • the cable or wire connection may be made on the vehicle trailer and/or the vehicle tractor.
  • a wireless communication may be utilized.
  • the remote station 304 may wirelessly transmit the mass information via a mass signal to the vehicle 300 .
  • the mass signal may be a radio frequency (“RF”) signal, an infrared (“IR”) signal, a Wi-Fi signal, a Bluetooth signal, and/or any other known or future wireless signal.
  • the mass signal may be received by the receiver circuit 312 on or in the vehicle 300 .
  • the receiver circuit 312 may include an optical sensor or any other wireless sensor and/or an antenna.
  • the receiver circuit 312 may include electrical components, such as resistors, capacitors, inductors, filters, and/or power amplifiers. Such components may be discrete components on a circuit board or may be integrated on or in a semiconductor device. Portions or all of the receiver circuit 312 may be manufactured as an integrated circuit (“IC”) module.
  • IC integrated circuit
  • the receiver circuit 312 may receive the mass signal from the remote station 304 and transmit the mass signal or a portion of the signal including the mass information to the processor 308 .
  • the receiver circuit 312 may receive the mass signal and amplify the mass signal via a power amplifier.
  • the amplified signal may then be converted into a digital signal via an analog-to-digital converter (“ADC”).
  • ADC analog-to-digital converter
  • the digital signal may include one or more data indicative of the mass of the portion of the vehicle 300 that was weighed.
  • the digital signal may then be transmitted to the processor 308 .
  • the processor 308 may use the mass information in a shifting logic or algorithm to select a desired gear ratio for engagement in a transmission.
  • the measured mass information may be used to select a desired gear ratio for engagement in a transmission in conjunction with the estimation techniques previously discussed.
  • the mass measured by the remote station 304 may replace or confirm any of the mass values estimated by the techniques previously discussed or vice versa.
  • the vehicle 300 or a portion of the vehicle 300 may be weighed in a resting state.
  • the remote station 304 may weigh the vehicle 300 or a portion of the vehicle 300 while the vehicle 300 is in motion.
  • the vehicle 300 may pass by or through the remote station 304 .
  • the remote station 304 may make a mass measurement of all or part of the vehicle 300 during this time and then transmit the mass information to the vehicle 300 in substantially real time or at a delayed time.
  • Velocity sensors and/or calculations may be used by the remote station 304 to determine accurate mass information of the passing vehicle.
  • FIG. 4 is a diagram illustrating another alternate exemplary embodiment of a vehicle mass estimation system.
  • the vehicle mass estimation system of FIG. 4 may include a vehicle 400 , such as the vehicle 100 , 200 , or 300 previously described.
  • a processor 403 , an input device 407 , and a weighing device 411 may be on or in the vehicle 400 .
  • the processor 403 may be substantially similar to the processor 201 or 308
  • the weighing device 411 may be substantially similar to the weighing device 217 .
  • the vehicle 400 also may include other components, such as the transmission system 209 , the power take-off assembly 213 , the memory 205 , the signal device 203 , and the display 221 of FIG. 2 .
  • the input device 407 may be any mechanical and/or electrical device enabling an operator or passenger of the vehicle 400 to enter mass information for all or a portion of the vehicle 400 .
  • the input device 407 may be a mechanical and/or electrical switch, such as a button or a lever, on or in the vehicle tractor and/or the vehicle trailer.
  • An operator of the vehicle 400 may activate the switch a number of times to indicate a specific mass value.
  • the number of activations may correspond to the mass of the vehicle 400 including both the vehicle tractor and the vehicle trailer. For example, if a vehicle trailer is attached to the vehicle tractor and the operator knows that the vehicle trailer is 9,000 kg, then the operator may push a button nine times or pull a lever nine times.
  • a signal may be generated and transmitted to the processor 403 or an intermediate component, such as a counter.
  • the input device 407 may transmit a signal indicative of the number of activations after all of the activations have been made.
  • the input device 407 may be a keyboard or a voice recognition circuit in or on the vehicle 400 .
  • the keyboard may be a pad having a plurality of buttons or a touch screen. The operator may input the mass of all or part of the vehicle 400 using the keyboard.
  • the voice recognition circuit may be any known or future voice recognition circuit used to extract one or more data from an audible signal.
  • the voice recognition circuit may include electrical components, such as resistors, capacitors, inductors, filters, power amplifiers, ADC's, and/or beamformers. Such components may be discrete components on a circuit board or may be integrated on or in a semiconductor device. Portions or all of the voice recognition circuit may be manufactured as an integrated circuit (“IC”) or module.
  • IC integrated circuit
  • An operator may verbally recite the mass of the vehicle as an audible signal.
  • the audible signal may be received by the voice recognition circuit via a microphone, a plurality of microphones, or any other known or future audible signal receiver.
  • the audible signal may be sampled and converted into a digital signal by an ADC.
  • the digital signal may be indicative of the mass of the vehicle 400 and may be transmitted to the processor 403 .
  • the processor 403 may interpret the digital signal to acquire mass information, such as processing text data from the speech to obtain a mass value.
  • Various voice encryption and security features may be utilized to allow for certain operators to use the voice recognition circuit.
  • the processor 403 may use the mass information obtained from the input device 407 in a shifting logic or algorithm to select a desired gear ratio for engagement in a transmission.
  • the inputted mass information may be used to select a desired gear ratio for engagement in a transmission in conjunction with the estimation techniques previously discussed.
  • the inputted mass information may replace or confirm any of the mass values estimated by the techniques previously discussed or vice versa.
  • the weighing device 411 and/or force/acceleration calculations may also be used in conjunction with the input device 407 .
  • the weighing device 411 may determine the mass of the vehicle trailer or the whole vehicle 400 , such as the weighing device 217 .
  • the mass information measured by the weighing device 411 may replace or confirm the mass information generated by the input device and/or any of the estimation techniques previously discussed or vice versa.
  • FIG. 5 is a flowchart illustrating an example of a method of estimating a vehicle mass. Fewer or more steps may be provided, and the steps may be arranged in different orders.
  • an indication signal may be received.
  • the indication signal may indicate that a vehicle trailer is attached to a vehicle tractor.
  • the indication signal may be a low or high AC or DC signal and/or a MID137 signal.
  • the indication signal may be indicative of a type of the vehicle trailer and/or may be indicative of a mass of all or a portion of a vehicle, such as the vehicle trailer.
  • the indication signal may indicate that a PTO operation is occurring and/or indicate a time period of the PTO operation, such as how long the PTO operation has been occurring.
  • the indication signal may also indicate a type and/or amount of payload that may be entering or exiting the vehicle trailer during the PTO operation.
  • a determination is made based on the indication signal whether or not a vehicle trailer is connected to a vehicle tractor.
  • a vehicle mass may be estimated based, at least in part, on the indication signal. For example, when an indication signal indicates that a vehicle trailer is present, a predetermined value indicative of the mass of the vehicle trailer or the entire vehicle may be retrieved from a memory to estimate the vehicle mass. The retrieval of the predetermined value may be based on the vehicle trailer type, the type of payload, and/or the amount of payload in or on the vehicle trailer. Alternatively, the indication signal itself may include one or more data indicative of the vehicle trailer mass. Also, a change in mass may be estimated based on how long a PTO operation is occurring and whether a payload is exiting or entering the vehicle trailer due to the PTO operation.
  • a mass signal generated by an onboard weighing device may be received.
  • the mass signal may be indicative of at least a portion of the vehicle, such as the vehicle trailer.
  • the onboard weighing device may be any weighing device previously described.
  • the vehicle mass may be estimated based in part on the mass signal.
  • the mass information from the mass signal may replace or confirm the mass information estimated in step 508 or vice versa.
  • the vehicle mass may be estimated using force and acceleration calculations previously mentioned.
  • the estimated mass based on the force and acceleration calculations may replace or confirm the mass information estimated in steps 508 and 516 or vice versa.
  • a desired gear ratio may be selected for engagement in a transmission based, at least in part, on the estimated vehicle mass.
  • a shifting logic or algorithm may utilize the estimated vehicle mass in selecting the gear ratio by replacing or confirming a previous or simultaneous mass determination.
  • FIG. 6 is a flowchart illustrating an alternate example of a method of estimating a vehicle mass. Fewer or more steps may be provided, and the steps may be arranged in different orders.
  • a mass signal may be received from a remote station.
  • the remote station may be any remote station previously described.
  • the mass signal may be indicative of a mass of at least a portion of the vehicle.
  • the mass signal may be received wirelessly or via a wired transmission as previously described. Also, the mass signal may be received while the vehicle may be at rest or in motion.
  • the vehicle mass may be estimated using force and acceleration calculations previously mentioned.
  • the estimated mass based on the force and acceleration calculations may replace or confirm the mass information in step 601 or vice versa.
  • any other mass estimation technique may be used, such as utilizing an onboard weighing device and/or an indication signal, as previously mentioned.
  • a desired gear ratio may be selected for engagement in a transmission based, at least in part, on the mass signal from the remote station and/or the estimated vehicle mass.
  • a shifting logic or algorithm may utilize the vehicle mass information in selecting the gear ratio by replacing or confirming a previous or simultaneous mass determination or estimation.
  • FIG. 7 is a flowchart illustrating another alternate example of a method of estimating a vehicle mass. Fewer or more steps may be provided, and the steps may be arranged in different orders.
  • an input may be received from an operator.
  • the operator may be a driver, a passenger, or any other person or machine working on or with the vehicle.
  • the input may be activations of a mechanical and/or electrical device.
  • the input may be a switch, such as a button or a lever, and the number of activations of the switch may correspond to a specific mass value of all or a portion of the vehicle.
  • the input may be a manual entry or an audible signal of the mass of the vehicle.
  • an operator may verbally recite the mass of the vehicle.
  • a first mass signal may be generated based on the input.
  • the first mass signal may be indicative of a mass of at least a portion of the vehicle.
  • a signal may be generated every time an input device, such as the input device 407 , is activated, or a signal indicative of the number of activations may be generated.
  • the operator may enter a specific mass using a keyboard, and a signal may be generated based on the entered mass.
  • a voice or audible signal from the operator may be converted into the first mass signal. Any known or future voice recognition technique may be utilized.
  • a vehicle mass may be estimated based, at least in part, on the first mass signal.
  • the mass value entered by the operator may be used as the actual mass of all or a portion of the vehicle, such as a vehicle trailer.
  • the entered value may be an estimation because the input may not exactly correspond to the actual mass.
  • an operator may activate a switch nine times corresponding to 9,000 kg when the actual mass may be 9,400 kg.
  • only a vehicle trailer mass may be entered, and the total mass of the vehicle may be estimated by using any known or future mathematical calculation.
  • a second mass signal generated by an onboard weighing device may be received.
  • the second mass signal may be indicative of at least a portion of the vehicle, such as the vehicle trailer.
  • the onboard weighing device may be any weighing device previously described.
  • the vehicle mass may be estimated based in part on the second mass signal.
  • the mass information from the second mass signal may replace or confirm the mass information estimated in step 708 or vice versa.
  • the vehicle mass may be estimated using force and acceleration calculations previously mentioned.
  • the estimated mass based on the force and acceleration calculations may replace or confirm the mass information in steps 708 and 716 or vice versa.
  • any other mass estimation technique may be used, such as utilizing a remote station and/or an indication signal, as previously mentioned.
  • a desired gear ratio may be selected for engagement in a transmission based, at least in part, on the estimated vehicle mass.
  • a shifting logic or algorithm may utilize the estimated vehicle mass in selecting the gear ratio by replacing or confirming a previous or simultaneous mass determination.
  • FIG. 8 is a flowchart illustrating an example of a method of updating a vehicle mass estimation. Fewer or more steps may be provided, and the steps may be arranged in different orders.
  • conditions for determining if a remote station may be utilized for estimating a vehicle mass may be determined.
  • the conditions may include, but are not limited to, detection of a mass signal from a remote station, user input or programmed condition, an environmental condition, or any other condition criteria. If the use of a remote station is confirmed by a condition, a vehicle mass is estimated or determined based on the remote station, in step 805 , such as previously described in step 601 .
  • step 809 conditions for determining if an indication signal may be utilized for estimating a vehicle mass may be determined.
  • the conditions may include, but are not limited to, detection of an indication signal, as previously described, user input or programmed condition, an environmental condition, or any other condition criteria. If the use of an indication signal is confirmed by a condition, a vehicle mass is determined based on the indication signal, in step 813 , such as previously described in steps 500 , 504 , and 508 .
  • conditions for determining if an operator input may be utilized for estimating a vehicle mass may be determined.
  • the conditions may include, but are not limited to, detection of a mass signal from an input device, as previously described, a programmed setting enabling the system to accept a mass signal from an input device, an environmental condition, or any other condition criteria. If the use of a mass signal from an input device is confirmed by a condition, a vehicle mass is determined based on the mass signal, in step 821 , such as previously described in steps 700 , 704 , and 708 .
  • conditions for determining if an onboard weighing device may be utilized for estimating a vehicle mass may be determined.
  • the conditions may include, but are not limited to, detection of a mass signal from an onboard weighing device, as previously described, detection of the onboard weighing device itself, a programmed setting enabling the system to accept a mass signal from an onboard weighing device, an environmental condition, or any other condition criteria. If the use of a mass signal from an onboard weighing device is confirmed by a condition, a vehicle mass is determined based on the mass signal, in step 829 , such as previously described in steps 512 , 516 , 712 , and 716 .
  • conditions for determining if force and acceleration calculations may be utilized for estimating a vehicle mass may be determined.
  • the conditions may include, but are not limited to, detection of programmed logic or functions to calculate force and acceleration, detection of sensors for supplying information for the calculations, user input or a programmed setting enabling the system to accept force and acceleration calculations, an environmental condition, or any other condition criteria. If the use of force and acceleration calculations are confirmed by a condition, a vehicle mass is determined based on the calculations, in step 837 , such as previously described in steps 520 , 605 , and 720 .
  • step 841 updating shifting based on an estimated or determined vehicle mass may be determined. For example, if none of the conditions previously mentioned are met, then the system may continue to use the present mass information in the shifting logic for the transmission. However, if a condition is met, then the shifting logic may be updated by updating the present vehicle mass information with a more recent estimated vehicle mass.
  • a priority or hierarchy order may be programmed into the system for choosing a vehicle mass estimation of one method over another. For example, if a condition associated with an indication signal is confirmed as well as a condition associated with a remote station, preprogrammed logic may assign a higher priority to a vehicle mass determination by a remote station. Therefore, the vehicle mass determined by the remote station may be used for selecting a desired gear ratio for engagement in the transmission.
  • the priority logic may be based on the precision of estimation of each of the different techniques, environmental conditions, or any other criteria.
  • the vehicle mass estimation system previously described may include instructions that may be executable by the processor 201 , 308 , or 403 .
  • the instructions may be stored in a computer-readable medium, such as the memory 205 .
  • the instructions may implement the methods, acts, and processes previously described.
  • the instructions for implementing the processes, methods and/or techniques previously discussed may be provided on computer-readable storage media or memories, such as a cache, buffer, RAM, removable media, hard drive or other computer readable storage media.
  • Computer readable storage media may include various types of volatile and nonvolatile storage media.
  • the functions, acts, or tasks illustrated in the figures or described herein may be executed in response to one or more sets of instructions stored in or on computer readable storage media.
  • the functions, acts, or tasks may be independent of the particular type of instructions set, storage media, processor or processing strategy and may be performed by software, hardware, integrated circuits, firmware, micro code and the like, operating alone or in combination.
  • processing strategies may include multiprocessing, multitasking, parallel processing and the like.
  • the instructions may be stored on a removable media device for reading by local or remote systems.
  • the instructions may be stored in a remote location for transfer through a computer network or over telephone lines.
  • the instructions may be stored within a given computer, CPU, GPU, or system.

Abstract

A vehicle mass estimation system for use in a vehicle, such as a truck, including a transmission is provided. A processor may be operable to receive a signal relating to a mass of at least a portion of the vehicle. The processor may be further operable to estimate a vehicle mass based, at least in part, on the signal. The processor may be further operable to select a desired gear ratio for engagement in a transmission based, at least in part, on the estimated vehicle mass.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This patent application is a divisional of U.S. patent application Ser. No. 12/021,972, filed Jan. 29, 2008, which is hereby incorporated by reference in its entirety.
  • FIELD OF THE INVENTION
  • This invention relates to vehicle systems, specifically to such systems used for estimating a mass of a vehicle.
  • BACKGROUND
  • Vehicles utilizing automatic or automated mechanical transmissions (also referred to as automated manual transmissions), such as trucks, buses, and cars, depend on gear shifting logic or algorithms to determine the appropriate gear to use for a wide variety of conditions. Each shift decision may be based on a balance between fuel efficiency and performance to provide a desired driving experience. One of the significant parameters impacting this balance is the total mass or weight of the vehicle. For example, a truck carrying no payload may shift to a higher gear by skipping one or more gears to improve fuel efficiency and yet still maintain an adequate level of performance. However, a truck carrying a relatively heavy payload may up-shift through each gear and engage each gear for a longer period of time to improve performance by transmitting an increased amount of power from the engine.
  • Some systems rely on the equation for Newton's second law of motion, force=mass×acceleration, to calculate a vehicle's mass or weight for use in a shifting algorithm. For example, the force is related to the engine torque, which propels the vehicle. When the engine torque is known, the vehicle mass may be derived through a calculation based on the vehicle's acceleration. A system may repeat the calculation several times to provide a mass or weight value with a better accuracy.
  • However, the vehicle must be in motion for this mass determination method to work because it requires measurement of a useful acceleration value. Also, this method typically uses an average of several calculations, and a single inaccurate calculation may adversely impact the mass or weight value. Furthermore, collecting and averaging several calculations takes time during which shifting performance may be negatively affected.
  • BRIEF SUMMARY
  • According to a first aspect, a vehicle mass estimation system for use in a vehicle including a tractor, a trailer, and a transmission is provided. A signal device may be operable to generate an indication signal. A processor may be operable to communicate with the signal device and operable to receive the indication signal from the signal device. The processor may be further operable to determine whether a vehicle trailer is connected to the vehicle tractor based on the indication signal. The processor may be further operable to estimate a vehicle mass based, at least in part, on the indication signal. The processor may be further operable to select a desired gear ratio for engagement in a transmission based, at least in part, on the estimated vehicle mass.
  • According to a second aspect, a vehicle mass estimation system for use in a vehicle including a tractor, a trailer, and a transmission is provided. A processor in a vehicle may be operable to communicate with a remote station. The remote station may be operable to transmit a mass signal indicative of the mass of at least a portion of the vehicle. The processor may be further operable to receive the mass signal. The processor may be further operable to select a desired gear ratio for engagement in the transmission based, at least in part, on the mass signal.
  • According to a third aspect, a vehicle mass estimation system for use in a vehicle including a tractor, a trailer, and a transmission is provided. An input device on or in a vehicle may be operable to receive an input from an operator and to generate a first mass signal. The input may be indicative of a mass of at least a portion of the vehicle. A processor may be operable to communicate with the input device and operable to receive the first mass signal from the input device. The processor may be further operable to estimate the vehicle mass based, at least in part, on the first mass signal. The processor may be further operable to select a desired gear ratio for engagement in the transmission based, at least in part, on the estimated vehicle mass.
  • According to a fourth aspect, a method of estimating a vehicle mass is provided. An indication signal may be received. Whether a vehicle trailer is connected to a vehicle tractor may be determined based on the indication signal. A vehicle mass may be estimated based, at least in part, on the indication signal. A desired gear ratio for engagement in a transmission may be selected based, at least in part, on the estimated vehicle mass.
  • According to a fifth aspect, a method of estimating a vehicle mass is provided. A mass signal may be received from a remote station. The mass signal may be indicative of a mass of at least a portion of a vehicle. A desired gear ratio for engagement in a transmission may be selected based, at least in part, on the mass signal.
  • According to a sixth aspect, a method of estimating a vehicle mass is provided. An input may be received from an operator. The input may be indicative of a mass of at least a portion of the vehicle. A first mass signal may be generated based on the input. A vehicle mass may be estimated based, at least in part, on the first mass signal. A desired gear ratio for engagement in a transmission may be selected based, at least in part, on the estimated mass.
  • Other systems, methods, features and advantages of the invention will be, or will become, apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like referenced numerals designate corresponding parts throughout the different views.
  • FIG. 1 is a two-dimensional drawing illustrating a basic structure of a vehicle.
  • FIG. 2 is a diagram illustrating an exemplary embodiment of a vehicle mass estimation system.
  • FIG. 3 is a diagram illustrating an alternate exemplary embodiment of a vehicle mass estimation system.
  • FIG. 4 is a diagram illustrating another alternate exemplary embodiment of a vehicle mass estimation system.
  • FIG. 5 is a flowchart illustrating an example of a method of estimating a vehicle mass.
  • FIG. 6 is a flowchart illustrating an alternate example of a method of estimating a vehicle mass.
  • FIG. 7 is a flowchart illustrating another alternate example of a method of estimating a vehicle mass.
  • FIG. 8 is a flowchart illustrating an example of a method of updating a vehicle mass estimation.
  • DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS
  • FIG. 1 is a two-dimensional drawing illustrating a basic structure of a vehicle 100. The vehicle 100 may be a car, bus, truck, or any other known or future vehicle that utilizes an automatic or automated mechanical transmission. For example, the vehicle 100 may be a semi-trailer truck or any other vehicle including a vehicle tractor 104 and a vehicle trailer 108. Alternatively, the vehicle 100 may comprise only the vehicle tractor 104.
  • The vehicle tractor 104 may include, but is not limited to, a cab, a door for entering and exiting the cab, windows, seats for a driver, operator, and/or passenger, an engine, a transmission, a front or steer axle having two wheels, and two rear drive axles having double wheels on each side. Alternatively, the tractor 104 may have a single drive axle (known as a “six wheeler”) used to pull shorter trailers.
  • The vehicle trailer 108 may include, but is not limited to, two tandem axles at the rear, and each of the axles may include dual wheels on each side (eight wheels on the trailer). The trailer 108 may comprise a box trailer, a cement trailer, a reefer trailer, a tanker trailer, a dry bulk trailer, a flatbed trailer, a lowboy trailer, or any known or future trailer.
  • FIG. 2 is a diagram illustrating an exemplary embodiment of a vehicle mass estimation system. The vehicle mass estimation system may be in or on a vehicle 200, such as the vehicle 100 previously described. For example, any number of or all the components of the vehicle mass estimation system may be in or on a vehicle tractor, such as the vehicle tractor 104, or any number of or all the components of the vehicle mass estimation system may be in or on a vehicle trailer, such as the vehicle trailer 108. The vehicle mass estimation system may include, but is not limited to, a transmission system 209, a power take-off assembly 213, a memory 205, a processor 201, a signal device 203, a weighing device 217, and a display 221.
  • The transmission system 209 may include, but is not limited to, a transmission, such as an automatic or automated mechanical transmission, one or more sensors, at least one transmission controller, and the power take-off assembly 213. The power-take off (“PTO”) assembly 213 may include, but is not limited to, a PTO component, such as a gear or shaft, that may engage with the transmission to provide power for any variety of PTO operations. For example, when an engine is providing power to the transmission, a PTO component may be driven by a gear or shaft of the transmission. Consequently, the PTO component may provide power or energy to a pump, a generator, a ladder, a gear or pulley system, or any known or future mechanical, fluid, and/or electrical system. Any PTO component of the PTO assembly 213 may be in or on the vehicle tractor and/or the vehicle trailer. Alternatively, the PTO assembly 213 and a respective PTO component may be on a vehicle not associated with a trailer, such as a fire engine or other non-trailer vehicle.
  • The memory 205 may be a “computer-readable medium,” “machine-readable medium,” “propagated-signal” medium, and/or “signal-bearing medium” and may comprise any device that contains, stores, communicates, propagates, or transports software, data, and/or predetermined values indicative of one or more vehicle trailer masses or weights for use by or in connection with an instruction executable system, apparatus, or device. The memory 205 may be in any part of the vehicle 200. The machine-readable medium may selectively be, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. A non-exhaustive list of examples of a machine-readable medium would include: an electrical connection “electronic” having one or more wires, a portable magnetic or optical disk, a volatile memory such as a Random Access Memory “RAM” (electronic), a Read-Only Memory “ROM” (electronic), an Erasable Programmable Read-Only Memory (EPROM or Flash memory) (electronic), or an optical fiber (optical). A machine-readable medium may also include a tangible medium upon which software is printed, as the software may be electronically stored as an image or in another format (e.g., through an optical scan), then compiled, and/or interpreted or otherwise processed. The processed medium may then be stored in a computer and/or machine memory.
  • The processor 201 may be in communication with or operable to communicate with the memory 205, the transmission system 209, the signal device 203, the weighing device 217, and the display 221. The processor 201 may be in communication with any other component of the vehicle 200. The processor 201 may be in any part of the vehicle 200. The processor 201 may be a main processor or a plurality of processors operable to communicate with electronics and controllers of the vehicle 200. For example, the processor 201 may be part of a public or private communications area network (“CAN”). The processor 201 may utilize a public electronic communication protocol, such as SAE J 1939 or SAE J 1587, and/or may utilize a proprietary electronic communication protocol or any other type of public or private communication technique. Also, the processor 201 may be able to determine whether a vehicle trailer is connected to a vehicle tractor based on an indication signal. Additionally, the processor 201 may be operable to estimate a vehicle mass or weight (hereinafter “mass or weight” will be referred to as “mass”) at least in part on the indication signal, and the processor 201 may be operable to select a desired gear ratio for engagement in a transmission based, at least in part, on the estimated vehicle mass.
  • The signal device 203 may be in communication with the transmission system 209 and may be operable to communicate with the processor 201. The signal device 203 may be a mechanical and/or electrical sensor or a plurality of sensors operable to detect contact of a vehicle trailer, such as the vehicle trailer 108, with a vehicle tractor, such as the vehicle tractor 104. Alternatively, the signal device 203 may be a voltage or current supply or a processor on or in the vehicle tractor or trailer.
  • For example, the signal device 203 may be on a tractor bed or any other part of the vehicle tractor, and when the vehicle trailer is physically attached to the vehicle tractor, the signal device 203 may sense the attachment by a mechanical and/or electrical contact and transmit an indication signal to the processor 201. Alternatively, when the vehicle trailer comes into contact with the vehicle trailer, the signal device may transmit an alternating or direct current (“AC” or “DC”) and/or voltage as an indication signal directly or indirectly to the processor 201. The indication signal may be a digital or analog signal. The signal device may transmit the indication signal to the processor 201 through electrical wires or traces or it may transmit the indication signal wirelessly. The indication signal may also be a MID137 signal. Trailers manufactured after 2001 may be equipped with the ability to broadcast a MID137 signal, which may be used to identify that the trailer has been added, on the vehicle's computer communications network. Alternatively, the indication signal may contain information or data that indicates what type of trailer is being attached, what the mass or weight of the trailer is, what type of payload the trailer is carrying, and/or the amount of payload the trailer is carrying.
  • For example, when a vehicle trailer is attached to a vehicle tractor, the signal device 203 may transmit the indication signal to the processor 201. As previously mentioned, the indication signal may be a low or high AC or DC signal or a MID137 signal. Based on the presence or lack of presence of the signal, the processor 201 may determine whether the vehicle trailer is attached or not. If the vehicle trailer is not attached, a predetermined value of the mass of the vehicle tractor, which may be stored in the memory 205, may be used in a shifting logic or algorithm to select a desired gear ratio for engagement in a transmission based on the vehicle tractor mass.
  • If the vehicle trailer is attached, the processor 201 may retrieve a predetermined value of the mass of the vehicle trailer from the memory 205, such as a mass signal representing the value of the mass of the vehicle trailer. The “value of the mass” may be an estimation, calculation, or measurement of mass that may or may not be equal to an actual mass. The predetermined value of the mass of the vehicle trailer may be used to estimate a total mass of the vehicle 200. A desired gear ratio is selected for engagement in a transmission based, at least in part, on the estimated vehicle mass. Alternatively, the processor 201 may retrieve a predetermined value of the mass of the whole vehicle 200 from the memory 205.
  • The indication signal may include one or more data indicative of a type of the vehicle trailer, whether the vehicle trailer is carrying a payload, and/or the amount of payload in or on the vehicle trailer. For example, the memory 205 may store data concerning the mass of the vehicle 200 and or the vehicle trailer based on the type of trailer, the amount of payload in or on the trailer, and/or the material or physical properties of the payload. For example, if a tanker full of petroleum is attached to a vehicle tractor, the processor 201 may intelligently retrieve a specific mass value for the vehicle trailer and/or the vehicle 200 based on the criteria that the trailer is a tanker, the tanker is full, and the tanker is carrying petroleum. If an empty lowboy is attached to the vehicle tractor, the processor 201 may intelligently retrieve a different specific vehicle mass value for the trailer and/or the vehicle 200 based on the criteria that the trailer is a lowboy and is empty.
  • Alternatively, the indication signal may include the mass of the vehicle trailer to be attached to the vehicle tractor. For example, the mass of the vehicle trailer may be measured or estimated and a corresponding mass value may be stored in the signal device 203, the memory 205, or any other component on or in the vehicle trailer. Once the vehicle trailer is attached to the vehicle tractor, the indication signal containing the mass information of the vehicle trailer may be transmitted to the processor 201. The processor 201 may use the mass information to estimate a total mass of the vehicle 200 and to select a desired gear for engagement in a transmission based, at least in part, on the estimated vehicle mass.
  • Alternatively, the signal device 203 may be an electronic and/or mechanical component operable to monitor a PTO component of the PTO assembly 213. For example, the signal device 203 may be a sensor and/or controller that may continuously or periodically monitor whether a PTO component is engaged in operation. The signal device 203 may transmit a signal to the processor 201 indicating whether or not the PTO component is engaged.
  • The processor 201 also may determine whether or not a vehicle trailer is attached to a vehicle tractor based on the PTO operation. For example, the PTO component of the PTO assembly 213 may be used to operate a PTO pump or generator in conjunction with the vehicle trailer. During the occurrence of the PTO operation, the signal device 203 may periodically or continuously monitor the PTO component and transmit a PTO message signal to the processor 201. Based on the presence or absence of the PTO message signal, the processor 201 may determine whether or not a vehicle trailer is attached to the vehicle tractor. The processor 201 may retrieve a predetermined value of the mass of the vehicle trailer or the vehicle 200 from the memory 205 as previously described. The predetermined value of the mass may be used to estimate a total mass of the vehicle 200. A desired gear ratio may be selected for engagement in a transmission based, at least in part, on the estimated vehicle mass.
  • However, a PTO operation may occur even when a vehicle trailer may not be attached to a vehicle tractor. In this situation, additional information may be transmitted in the PTO message signal or another signal alerting the system that a vehicle trailer is not attached. Alternatively, a manual input may be used to indicate the difference between a PTO operation using a vehicle trailer and a PTO operation without a vehicle trailer.
  • Also, the PTO message signal may be used to calculate a time period of the PTO operation. For example, the PTO component may be used to drive a PTO pump that pumps fluid into and out of a vehicle trailer. As the fluid is being pumped, the processor 201 may continuously or periodically receive the PTO message signal indicating that a vehicle trailer is attached to the vehicle tractor, and based on the reception of the PTO message signal, the processor 201 may estimate the amount of time the PTO operation has been occurring.
  • Based on the operation time period as well as payload data (e.g., type of payload, density of payload material), the processor 201 may determine a change in the mass of the vehicle trailer. For example, the material and other information of the payload, such as density and/or volume, or dimensional characteristics of the PTO pump may be stored in the memory 205 or may be coded or entered into the vehicle mass estimation system. As time passes, the processor 201 may determine the volumetric flow rate of the liquid being pumped in and/or out of the vehicle trailer. The processor 201 may determine the amount of liquid entering or exiting the vehicle trailer based on pump or PTO component characteristics (e.g., features such as area, volume, or power) and/or information related to the payload (e.g., density, volume, quantity) in relation to a time of operation. Alternatively, the PTO message signal itself may include information indicative of the time of the PTO operation and/or the payload material or amount entry and exit rates. Based on the amount of liquid removed from the vehicle trailer and the material information of the payload, the processor 201 may determine the change in mass of the vehicle trailer. The processor 201 may estimate a vehicle mass based, at least in part, on the change in mass and select a desired gear ratio for engagement in a transmission based, at least in part, on the estimated vehicle mass.
  • As previously mentioned, the vehicle estimation system may also include the weighing device 217. The weighing device 217 may be one or more strain gauges, weight sensors, pressure or temperature sensors, or any other known or future weighing device located on a suspension, in a wheel, or any other part of the vehicle 200. The weighing device 217 may be operable to measure a mass of at least a portion of the vehicle 200. The weighing device 217 may transmit a mass signal indicative of a mass of at least the portion of the vehicle to the processor 201.
  • The mass information determined by the weighing device 217 as well as other mass information derived from force/acceleration calculations may be used with any other vehicle mass estimation technique previously described. For example, the processor 201 may use the mass information to select a desired gear ratio for engagement in a transmission in conjunction with the estimation techniques. Alternatively, the mass estimated by the techniques previously described may be replaced or confirmed by the mass determined by the weighing device 217 and/or force/acceleration calculations or vice versa.
  • Any measured or estimated mass may be displayed on the display 221. The display 221 may be any mechanical and/or electronic display positioned for accessible viewing by a driver, operator, and/or passenger of the vehicle 200. For example, the display 221 may be a light emitting diode, (“LED”), display, liquid crystal display, (“LCD”), or a cathode ray tube (“CRT”) display, or any other known or future display in the cab of the vehicle tractor or at any other location in or on the vehicle 200. The display 221 may be capable of showing or illuminating various measurements or estimations including mass values of all or some of the vehicle 200.
  • FIG. 3 is a diagram illustrating an alternate exemplary embodiment of a vehicle mass estimation system. The vehicle mass estimation system of FIG. 3 may include a vehicle 300, such as the vehicle 100 or 200 previously described, and the vehicle 300 may be operable to communicate with a remote station 304. A processor 308 and a receiver circuit 312 may be on or in the vehicle 300. The processor 308 may be substantially similar to the processor 201. More components, such as the transmission system 209, the power take-off assembly 213, the memory 205, the signal device 203, the weighing device 217, and the display 221 of FIG. 2, may be included in or on the vehicle 300. Alternatively, fewer components may be utilized. For example, the vehicle mass estimation system may not include the receiver circuit 312.
  • The remote station 304 may be an area, a scale, an unmanned structure, a manned structure, and/or any known or future facility to measure or estimate a mass of a vehicle, such as the vehicle 300. The remote station 304 may be located by a loading dock of a shipping company, retailer, and/or manufacturer, or it may be located on the premises of a vehicle company that designs, tests, repairs, and/or manufactures vehicles, such as trucks. Alternatively, the remote station may be located on public highways, weigh stations, and/or rest areas.
  • The remote station 304 may include an area for all or part of a vehicle to be weighed, such as a scale. For example, the vehicle 300, including a vehicle tractor and a vehicle trailer, may park on top of the scale, and the scale may measure the mass of the vehicle 300. Alternatively, the vehicle tractor and/or the vehicle trailer may be weighed separately.
  • The weight measurement may be stored in a memory of the remote station 304 and may be transmitted to the processor 308 by a wired or wireless transmission. For example, a cable or wire may be connected to the vehicle 300 during, before, or after the weighing of the vehicle 300. The wire connection may be any known or future connection, such as plug or jack connection. The cable or wire connection may be made on the vehicle trailer and/or the vehicle tractor.
  • Alternatively, a wireless communication may be utilized. For example, after the mass of the vehicle 300 is measured, the remote station 304 may wirelessly transmit the mass information via a mass signal to the vehicle 300. For example, the mass signal may be a radio frequency (“RF”) signal, an infrared (“IR”) signal, a Wi-Fi signal, a Bluetooth signal, and/or any other known or future wireless signal.
  • The mass signal may be received by the receiver circuit 312 on or in the vehicle 300. The receiver circuit 312 may include an optical sensor or any other wireless sensor and/or an antenna. Also, the receiver circuit 312 may include electrical components, such as resistors, capacitors, inductors, filters, and/or power amplifiers. Such components may be discrete components on a circuit board or may be integrated on or in a semiconductor device. Portions or all of the receiver circuit 312 may be manufactured as an integrated circuit (“IC”) module.
  • The receiver circuit 312 may receive the mass signal from the remote station 304 and transmit the mass signal or a portion of the signal including the mass information to the processor 308. For example, the receiver circuit 312 may receive the mass signal and amplify the mass signal via a power amplifier. The amplified signal may then be converted into a digital signal via an analog-to-digital converter (“ADC”). The digital signal may include one or more data indicative of the mass of the portion of the vehicle 300 that was weighed. The digital signal may then be transmitted to the processor 308.
  • Regardless of whether the mass information is received via a wired or wireless communication, the processor 308 may use the mass information in a shifting logic or algorithm to select a desired gear ratio for engagement in a transmission. For example, the measured mass information may be used to select a desired gear ratio for engagement in a transmission in conjunction with the estimation techniques previously discussed. Alternatively, the mass measured by the remote station 304 may replace or confirm any of the mass values estimated by the techniques previously discussed or vice versa.
  • As previously mentioned, the vehicle 300 or a portion of the vehicle 300 may be weighed in a resting state. However, using a wireless transmission, the remote station 304 may weigh the vehicle 300 or a portion of the vehicle 300 while the vehicle 300 is in motion. For example, the vehicle 300 may pass by or through the remote station 304. The remote station 304 may make a mass measurement of all or part of the vehicle 300 during this time and then transmit the mass information to the vehicle 300 in substantially real time or at a delayed time. Velocity sensors and/or calculations may be used by the remote station 304 to determine accurate mass information of the passing vehicle.
  • FIG. 4 is a diagram illustrating another alternate exemplary embodiment of a vehicle mass estimation system. The vehicle mass estimation system of FIG. 4 may include a vehicle 400, such as the vehicle 100, 200, or 300 previously described. A processor 403, an input device 407, and a weighing device 411 may be on or in the vehicle 400. The processor 403 may be substantially similar to the processor 201 or 308, and the weighing device 411 may be substantially similar to the weighing device 217. The vehicle 400 also may include other components, such as the transmission system 209, the power take-off assembly 213, the memory 205, the signal device 203, and the display 221 of FIG. 2.
  • The input device 407 may be any mechanical and/or electrical device enabling an operator or passenger of the vehicle 400 to enter mass information for all or a portion of the vehicle 400. For example, the input device 407 may be a mechanical and/or electrical switch, such as a button or a lever, on or in the vehicle tractor and/or the vehicle trailer. An operator of the vehicle 400 may activate the switch a number of times to indicate a specific mass value. The number of activations may correspond to the mass of the vehicle 400 including both the vehicle tractor and the vehicle trailer. For example, if a vehicle trailer is attached to the vehicle tractor and the operator knows that the vehicle trailer is 9,000 kg, then the operator may push a button nine times or pull a lever nine times. Each time the button is pushed or the lever is pulled, a signal may be generated and transmitted to the processor 403 or an intermediate component, such as a counter. Alternatively, the input device 407 may transmit a signal indicative of the number of activations after all of the activations have been made.
  • Alternatively, the input device 407 may be a keyboard or a voice recognition circuit in or on the vehicle 400. The keyboard may be a pad having a plurality of buttons or a touch screen. The operator may input the mass of all or part of the vehicle 400 using the keyboard. Also, the voice recognition circuit may be any known or future voice recognition circuit used to extract one or more data from an audible signal. The voice recognition circuit may include electrical components, such as resistors, capacitors, inductors, filters, power amplifiers, ADC's, and/or beamformers. Such components may be discrete components on a circuit board or may be integrated on or in a semiconductor device. Portions or all of the voice recognition circuit may be manufactured as an integrated circuit (“IC”) or module.
  • An operator may verbally recite the mass of the vehicle as an audible signal. The audible signal may be received by the voice recognition circuit via a microphone, a plurality of microphones, or any other known or future audible signal receiver. The audible signal may be sampled and converted into a digital signal by an ADC. The digital signal may be indicative of the mass of the vehicle 400 and may be transmitted to the processor 403. The processor 403 may interpret the digital signal to acquire mass information, such as processing text data from the speech to obtain a mass value. Various voice encryption and security features may be utilized to allow for certain operators to use the voice recognition circuit.
  • The processor 403 may use the mass information obtained from the input device 407 in a shifting logic or algorithm to select a desired gear ratio for engagement in a transmission. For example, the inputted mass information may be used to select a desired gear ratio for engagement in a transmission in conjunction with the estimation techniques previously discussed. Alternatively, the inputted mass information may replace or confirm any of the mass values estimated by the techniques previously discussed or vice versa.
  • The weighing device 411 and/or force/acceleration calculations may also be used in conjunction with the input device 407. For example, the weighing device 411 may determine the mass of the vehicle trailer or the whole vehicle 400, such as the weighing device 217. The mass information measured by the weighing device 411 may replace or confirm the mass information generated by the input device and/or any of the estimation techniques previously discussed or vice versa.
  • FIG. 5 is a flowchart illustrating an example of a method of estimating a vehicle mass. Fewer or more steps may be provided, and the steps may be arranged in different orders. In step 500, an indication signal may be received. For example, the indication signal may indicate that a vehicle trailer is attached to a vehicle tractor. The indication signal may be a low or high AC or DC signal and/or a MID137 signal. Alternatively, the indication signal may be indicative of a type of the vehicle trailer and/or may be indicative of a mass of all or a portion of a vehicle, such as the vehicle trailer. Also, the indication signal may indicate that a PTO operation is occurring and/or indicate a time period of the PTO operation, such as how long the PTO operation has been occurring. The indication signal may also indicate a type and/or amount of payload that may be entering or exiting the vehicle trailer during the PTO operation. In step 504, a determination is made based on the indication signal whether or not a vehicle trailer is connected to a vehicle tractor.
  • In step 508, a vehicle mass may be estimated based, at least in part, on the indication signal. For example, when an indication signal indicates that a vehicle trailer is present, a predetermined value indicative of the mass of the vehicle trailer or the entire vehicle may be retrieved from a memory to estimate the vehicle mass. The retrieval of the predetermined value may be based on the vehicle trailer type, the type of payload, and/or the amount of payload in or on the vehicle trailer. Alternatively, the indication signal itself may include one or more data indicative of the vehicle trailer mass. Also, a change in mass may be estimated based on how long a PTO operation is occurring and whether a payload is exiting or entering the vehicle trailer due to the PTO operation.
  • In step 512, a mass signal generated by an onboard weighing device may be received. The mass signal may be indicative of at least a portion of the vehicle, such as the vehicle trailer. The onboard weighing device may be any weighing device previously described.
  • In step 516, the vehicle mass may be estimated based in part on the mass signal. For example, the mass information from the mass signal may replace or confirm the mass information estimated in step 508 or vice versa.
  • In step 520, the vehicle mass may be estimated using force and acceleration calculations previously mentioned. The estimated mass based on the force and acceleration calculations may replace or confirm the mass information estimated in steps 508 and 516 or vice versa.
  • In step 524, a desired gear ratio may be selected for engagement in a transmission based, at least in part, on the estimated vehicle mass. A shifting logic or algorithm may utilize the estimated vehicle mass in selecting the gear ratio by replacing or confirming a previous or simultaneous mass determination.
  • FIG. 6 is a flowchart illustrating an alternate example of a method of estimating a vehicle mass. Fewer or more steps may be provided, and the steps may be arranged in different orders. In step 601, a mass signal may be received from a remote station. The remote station may be any remote station previously described. The mass signal may be indicative of a mass of at least a portion of the vehicle. The mass signal may be received wirelessly or via a wired transmission as previously described. Also, the mass signal may be received while the vehicle may be at rest or in motion.
  • In step 605, the vehicle mass may be estimated using force and acceleration calculations previously mentioned. The estimated mass based on the force and acceleration calculations may replace or confirm the mass information in step 601 or vice versa. Alternatively, any other mass estimation technique may be used, such as utilizing an onboard weighing device and/or an indication signal, as previously mentioned.
  • In step 609, a desired gear ratio may be selected for engagement in a transmission based, at least in part, on the mass signal from the remote station and/or the estimated vehicle mass. A shifting logic or algorithm may utilize the vehicle mass information in selecting the gear ratio by replacing or confirming a previous or simultaneous mass determination or estimation.
  • FIG. 7 is a flowchart illustrating another alternate example of a method of estimating a vehicle mass. Fewer or more steps may be provided, and the steps may be arranged in different orders. In step 700, an input may be received from an operator. The operator may be a driver, a passenger, or any other person or machine working on or with the vehicle. The input may be activations of a mechanical and/or electrical device. For example, the input may be a switch, such as a button or a lever, and the number of activations of the switch may correspond to a specific mass value of all or a portion of the vehicle. Alternatively, the input may be a manual entry or an audible signal of the mass of the vehicle. For example, an operator may verbally recite the mass of the vehicle.
  • In step 704, a first mass signal may be generated based on the input. The first mass signal may be indicative of a mass of at least a portion of the vehicle. For example, a signal may be generated every time an input device, such as the input device 407, is activated, or a signal indicative of the number of activations may be generated. Alternatively, the operator may enter a specific mass using a keyboard, and a signal may be generated based on the entered mass. Also, a voice or audible signal from the operator may be converted into the first mass signal. Any known or future voice recognition technique may be utilized.
  • In step 708, a vehicle mass may be estimated based, at least in part, on the first mass signal. For example, the mass value entered by the operator may be used as the actual mass of all or a portion of the vehicle, such as a vehicle trailer. The entered value may be an estimation because the input may not exactly correspond to the actual mass. For example, an operator may activate a switch nine times corresponding to 9,000 kg when the actual mass may be 9,400 kg. Alternatively, only a vehicle trailer mass may be entered, and the total mass of the vehicle may be estimated by using any known or future mathematical calculation.
  • In step 712, a second mass signal generated by an onboard weighing device may be received. The second mass signal may be indicative of at least a portion of the vehicle, such as the vehicle trailer. The onboard weighing device may be any weighing device previously described.
  • In step 716, the vehicle mass may be estimated based in part on the second mass signal. For example, the mass information from the second mass signal may replace or confirm the mass information estimated in step 708 or vice versa.
  • In step 720, the vehicle mass may be estimated using force and acceleration calculations previously mentioned. The estimated mass based on the force and acceleration calculations may replace or confirm the mass information in steps 708 and 716 or vice versa. Alternatively, any other mass estimation technique may be used, such as utilizing a remote station and/or an indication signal, as previously mentioned.
  • In step 724, a desired gear ratio may be selected for engagement in a transmission based, at least in part, on the estimated vehicle mass. A shifting logic or algorithm may utilize the estimated vehicle mass in selecting the gear ratio by replacing or confirming a previous or simultaneous mass determination.
  • FIG. 8 is a flowchart illustrating an example of a method of updating a vehicle mass estimation. Fewer or more steps may be provided, and the steps may be arranged in different orders. In step 801, conditions for determining if a remote station may be utilized for estimating a vehicle mass may be determined. For example, the conditions may include, but are not limited to, detection of a mass signal from a remote station, user input or programmed condition, an environmental condition, or any other condition criteria. If the use of a remote station is confirmed by a condition, a vehicle mass is estimated or determined based on the remote station, in step 805, such as previously described in step 601.
  • In step 809, conditions for determining if an indication signal may be utilized for estimating a vehicle mass may be determined. For example, the conditions may include, but are not limited to, detection of an indication signal, as previously described, user input or programmed condition, an environmental condition, or any other condition criteria. If the use of an indication signal is confirmed by a condition, a vehicle mass is determined based on the indication signal, in step 813, such as previously described in steps 500, 504, and 508.
  • In step 817, conditions for determining if an operator input may be utilized for estimating a vehicle mass may be determined. For example, the conditions may include, but are not limited to, detection of a mass signal from an input device, as previously described, a programmed setting enabling the system to accept a mass signal from an input device, an environmental condition, or any other condition criteria. If the use of a mass signal from an input device is confirmed by a condition, a vehicle mass is determined based on the mass signal, in step 821, such as previously described in steps 700, 704, and 708.
  • In step 825, conditions for determining if an onboard weighing device may be utilized for estimating a vehicle mass may be determined. For example, the conditions may include, but are not limited to, detection of a mass signal from an onboard weighing device, as previously described, detection of the onboard weighing device itself, a programmed setting enabling the system to accept a mass signal from an onboard weighing device, an environmental condition, or any other condition criteria. If the use of a mass signal from an onboard weighing device is confirmed by a condition, a vehicle mass is determined based on the mass signal, in step 829, such as previously described in steps 512, 516, 712, and 716.
  • In step 833, conditions for determining if force and acceleration calculations, as previously mentioned, may be utilized for estimating a vehicle mass may be determined. For example, the conditions may include, but are not limited to, detection of programmed logic or functions to calculate force and acceleration, detection of sensors for supplying information for the calculations, user input or a programmed setting enabling the system to accept force and acceleration calculations, an environmental condition, or any other condition criteria. If the use of force and acceleration calculations are confirmed by a condition, a vehicle mass is determined based on the calculations, in step 837, such as previously described in steps 520, 605, and 720.
  • In step 841, updating shifting based on an estimated or determined vehicle mass may be determined. For example, if none of the conditions previously mentioned are met, then the system may continue to use the present mass information in the shifting logic for the transmission. However, if a condition is met, then the shifting logic may be updated by updating the present vehicle mass information with a more recent estimated vehicle mass. A priority or hierarchy order may be programmed into the system for choosing a vehicle mass estimation of one method over another. For example, if a condition associated with an indication signal is confirmed as well as a condition associated with a remote station, preprogrammed logic may assign a higher priority to a vehicle mass determination by a remote station. Therefore, the vehicle mass determined by the remote station may be used for selecting a desired gear ratio for engagement in the transmission. The priority logic may be based on the precision of estimation of each of the different techniques, environmental conditions, or any other criteria.
  • The vehicle mass estimation system previously described may include instructions that may be executable by the processor 201, 308, or 403. The instructions may be stored in a computer-readable medium, such as the memory 205. The instructions may implement the methods, acts, and processes previously described. The instructions for implementing the processes, methods and/or techniques previously discussed may be provided on computer-readable storage media or memories, such as a cache, buffer, RAM, removable media, hard drive or other computer readable storage media. Computer readable storage media may include various types of volatile and nonvolatile storage media. The functions, acts, or tasks illustrated in the figures or described herein may be executed in response to one or more sets of instructions stored in or on computer readable storage media. The functions, acts, or tasks may be independent of the particular type of instructions set, storage media, processor or processing strategy and may be performed by software, hardware, integrated circuits, firmware, micro code and the like, operating alone or in combination. Likewise, processing strategies may include multiprocessing, multitasking, parallel processing and the like. In one embodiment, the instructions may be stored on a removable media device for reading by local or remote systems. In other embodiments, the instructions may be stored in a remote location for transfer through a computer network or over telephone lines. In yet other embodiments, the instructions may be stored within a given computer, CPU, GPU, or system.
  • Any of the features, steps, processes, or methods previously discussed may be mixed and matched together to create a variety of mass estimation systems and/or methods for a vehicle.
  • It is intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that the following claims, including all equivalents, are intended to define the scope of this invention. The claims may include the phrase “one of A and B” as an alternative expression that means one or more of A or one or more of B.

Claims (20)

1. A vehicle mass estimation system, comprising:
a processor in a vehicle having a transmission, the processor operable to:
communicate with a remote station that transmits a mass signal indicative of the mass of at least a portion of the vehicle;
receive the mass signal; and
select a desired gear ratio for engagement in the transmission based, at least in part, on the mass signal.
2. The system of claim 1, further comprising:
a receiver circuit in or on the vehicle operable to wirelessly receive the mass signal from the remote station,
wherein the processor receives the mass signal from the receiver circuit.
3. The system of claim 1, further comprising:
a receiver circuit in or on the vehicle operable to receive the mass signal from the remote station over a selectively coupled wired connection,
wherein the processor receives the mass signal from the receiver circuit.
4. The system of claim 1, wherein the mass signal is received while the vehicle is in motion.
5. The system of claim 1, wherein the mass signal comprises a plurality of mass signal portions, and receiving the mass signal comprises:
receiving a first mass signal portion; and
receiving a second mass signal portion.
6. The system of claim 1, wherein the processor is further operable to confirm the mass signal using another vehicle mass signal, and wherein the desired gear ratio is selected if the mass signal is confirmed.
7. The system of claim 1, wherein the processor is further operable to replace a prior vehicle mass signal with the mass signal.
8. The system of claim 1, wherein the desired gear ratio for engagement in the transmission is selected if a priority assigned to the mass signal is higher than a priority assigned to a vehicle mass determined at another time or using another method.
9. A method of estimating a vehicle mass, comprising:
in a vehicle having a processor and a transmission, performing by the processor:
communicating with a remote station, the remote station operable to transmit a mass signal indicative of the mass of at least a portion of the vehicle;
receiving the mass signal; and
selecting a desired gear ratio for engagement in the transmission based, at least in part, on the mass signal.
10. The method of claim 9, wherein the mass signal is received via a receiver circuit in or on the vehicle, and the receiver circuit is operable to wirelessly receive the mass signal from the remote station.
11. The method of claim 9, wherein the mass signal is received via a receiver circuit in or on the vehicle, and the receiver circuit is operable to receive the mass signal from the remote station over a selectively coupled wired connection.
12. The method of claim 9, wherein the mass signal is received while the vehicle is in motion.
13. The method of claim 9, wherein the mass signal comprises a plurality of mass signal portions, and wherein receiving the mass signal comprises:
receiving a first mass signal portion; and
receiving a second mass signal portion.
14. The method of claim 9, further comprising confirming the mass signal using another vehicle mass signal, wherein the desired gear ratio is selected if the mass signal is confirmed.
15. The method of claim 9, wherein the processor is further operable to replace a prior vehicle mass signal with the mass signal.
16. The method of claim 9, wherein the desired gear ratio for engagement in the transmission is selected if a priority assigned to the mass signal is higher than a priority assigned to a vehicle mass determined at another time or using another method.
17. A vehicle, comprising:
a transmission;
a receiver circuit operable to receive a mass signal from a remote station that transmits a mass signal indicative of the mass of at least a portion of the vehicle;
a processor operable to:
receive the mass signal via the receiver circuit; and
select a desired gear ratio for engagement in the transmission based, at least in part, on the mass signal.
18. The vehicle of claim 17, wherein the receiver circuit receives the mass signal from the remote station over a wireless connection.
19. The vehicle of claim 17, wherein the receiver circuit receives the mass signal from the remote station over a selectively coupled wired connection.
20. The vehicle of claim 17, wherein the mass signal is received while the vehicle is in motion.
US12/883,959 2008-01-29 2010-09-16 System for estimating a vehicle mass Abandoned US20110015808A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/883,959 US20110015808A1 (en) 2008-01-29 2010-09-16 System for estimating a vehicle mass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/021,972 US7818140B2 (en) 2008-01-29 2008-01-29 System for estimating a vehicle mass
US12/883,959 US20110015808A1 (en) 2008-01-29 2010-09-16 System for estimating a vehicle mass

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/021,972 Division US7818140B2 (en) 2008-01-29 2008-01-29 System for estimating a vehicle mass

Publications (1)

Publication Number Publication Date
US20110015808A1 true US20110015808A1 (en) 2011-01-20

Family

ID=40547953

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/021,972 Expired - Fee Related US7818140B2 (en) 2008-01-29 2008-01-29 System for estimating a vehicle mass
US12/883,959 Abandoned US20110015808A1 (en) 2008-01-29 2010-09-16 System for estimating a vehicle mass
US12/883,968 Abandoned US20110004382A1 (en) 2008-01-29 2010-09-16 System for estimating a vehicle mass

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/021,972 Expired - Fee Related US7818140B2 (en) 2008-01-29 2008-01-29 System for estimating a vehicle mass

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/883,968 Abandoned US20110004382A1 (en) 2008-01-29 2010-09-16 System for estimating a vehicle mass

Country Status (2)

Country Link
US (3) US7818140B2 (en)
EP (1) EP2085656A3 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130138288A1 (en) * 2011-11-30 2013-05-30 GM Global Technology Operations LLC System and method for estimating the mass of a vehicle
US20140214958A1 (en) * 2013-01-25 2014-07-31 Apple Inc. Hybrid unicast/multicast dns-based service discovery
US9429463B2 (en) 2013-03-04 2016-08-30 International Road Dynamics, Inc. System and method for measuring moving vehicle information using electrical time domain reflectometry
US10166980B2 (en) 2013-02-28 2019-01-01 Ford Global Technologies, Llc Vehicle mass computation

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9395233B2 (en) * 2010-01-08 2016-07-19 Fca Us Llc Mass, drag coefficient and inclination determination using accelerometer sensor
AU2011200095B2 (en) * 2010-02-15 2015-07-16 Transport Certification Australia Limited System and method for monitoring vehicle mass tamper events
SE536031C2 (en) * 2010-07-09 2013-04-09 Scania Cv Ab Method and apparatus for estimating the mass of a vehicle
US8983752B2 (en) * 2011-08-22 2015-03-17 Trimble Navigation Limited System and method for identifying characteristics of a vehicle
US8768587B2 (en) 2012-07-25 2014-07-01 Caterpillar Inc. Worksite management system with gear recommendation
US10570839B2 (en) * 2012-11-29 2020-02-25 Ford Global Technologies, Llc System and method for improving vehicle performance
US20140324302A1 (en) * 2013-04-26 2014-10-30 Caterpillar Inc. Method of Estimating Mass of a Payload in a Hauling Machine
WO2015194999A1 (en) * 2014-06-17 2015-12-23 Volvo Construction Equipment Ab A control unit and a method for controlling a vehicle comprising a platform for carrying a load.
JP2017096639A (en) * 2015-11-18 2017-06-01 アイシン精機株式会社 Vehicle weight estimation device
DE102016210222A1 (en) 2016-06-09 2017-12-14 Schaeffler Technologies AG & Co. KG Method for determining a mass of a vehicle
US10214222B2 (en) * 2016-10-20 2019-02-26 Hall Labs Llc Determining weight of a vehicle in reverse gear
US10071742B2 (en) * 2017-01-09 2018-09-11 Newvistas Capital, Llc Determining weight of electric and hybrid vehicles
EP3379222B1 (en) 2017-03-22 2020-12-30 Methode Electronics Malta Ltd. Magnetoelastic based sensor assembly
US10583736B2 (en) * 2017-12-11 2020-03-10 Caterpillar Inc. System for controlling a drive operation of a machine
US10612961B2 (en) * 2017-12-20 2020-04-07 Gm Global Technology Operateons Llc Method for real-time mass estimation of a vehicle system
US11084342B2 (en) 2018-02-27 2021-08-10 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
EP3758959A4 (en) 2018-02-27 2022-03-09 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11014417B2 (en) 2018-02-27 2021-05-25 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11135882B2 (en) 2018-02-27 2021-10-05 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11491832B2 (en) 2018-02-27 2022-11-08 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11221262B2 (en) 2018-02-27 2022-01-11 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11821781B2 (en) 2020-07-20 2023-11-21 Progress Mfg. Llc Apparatus and method for determining weight distribution

Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465151A (en) * 1981-03-10 1984-08-14 Gorman Leonard F Weighstations and remote control thereof
US4548079A (en) * 1982-12-14 1985-10-22 Wabco Westinghouse Fahrzeugbremsen Gmbh Method and apparatus to automatically determine the weight or mass of a moving vehicle
US4656876A (en) * 1984-08-08 1987-04-14 Daimler-Benz Aktiengesellschaft Apparatus for measuring the mass of a motor vehicle
US4706768A (en) * 1986-03-03 1987-11-17 Gagik Kozozian Onboard truck scale
US4839835A (en) * 1984-04-27 1989-06-13 Hagenbuch Roy George Le Apparatus and method responsive to the on-board measuring of the load carried by a truck body
US4941365A (en) * 1988-12-24 1990-07-17 Daimler-Benz Ag Device for determining the mass of a motor vehicle
US5272939A (en) * 1992-07-06 1993-12-28 Eaton Corporation Shift enable control method/system
US5335566A (en) * 1992-07-06 1994-08-09 Eaton Corporation Shift control method/system
US5482359A (en) * 1994-04-22 1996-01-09 Eaton Corporation System and method for determining relative vehicle mass
US5490063A (en) * 1994-02-07 1996-02-06 Eaton Corporation Control method/system including determination of an updated value indicative of gross combination weight of vehicles
US5877455A (en) * 1998-01-21 1999-03-02 Meritor Heavy Vehicle Systems, Llc Payload monitoring for a tractor-trailer
US5970435A (en) * 1996-03-22 1999-10-19 Yazaki Corporation Automatic load measuring device
US6037550A (en) * 1997-09-30 2000-03-14 Weigh-Tronix, Inc. On-board vehicle weighing apparatus and method
US6118083A (en) * 1996-11-08 2000-09-12 Creative Microsystems Weight measurement apparatus for vehicles
US6149545A (en) * 1999-01-14 2000-11-21 Eaton Corporation Automated transmission upshift control
US6167357A (en) * 1998-04-23 2000-12-26 Cummins Engine Company, Inc. Recursive vehicle mass estimation
US6339749B1 (en) * 1998-01-24 2002-01-15 Daimlerchrysler Ag Device for determining the weight of a motor vehicle
US20020091481A1 (en) * 2000-10-28 2002-07-11 Ulrich Hessmert Determination of road gradient and determination of trailer load
US6449582B1 (en) * 2000-05-09 2002-09-10 The University Of British Columbia Vehicle weight and cargo load determination using tire pressure
US20030014214A1 (en) * 2001-07-11 2003-01-16 Uri Zefira Method for achieving accurate measurement of true weight
US20030040861A1 (en) * 2001-08-23 2003-02-27 Bellinger Steven M. System and method for estimating vehicle mass
US20030040885A1 (en) * 2001-08-14 2003-02-27 Schoess Jeffrey N. Apparatus and method for determining vehicle load weight status
US20030154798A1 (en) * 2002-02-15 2003-08-21 Ford Global Technologies, Inc. Vehicle weight observation system
US6633006B1 (en) * 1998-08-18 2003-10-14 Zf Friedrichshafen Ag Method and device for determining the mass of a vehicle
US20040025617A1 (en) * 2000-07-26 2004-02-12 Fowler Martin Stanley Automatic selection of start gear
US6778895B1 (en) * 1999-09-29 2004-08-17 Zf Friedrichshafen Ag Control of an automatic or automated gearbox using voice command
US20040181317A1 (en) * 2001-09-28 2004-09-16 Bmw Ag. Method for determining the mass of a motor vehicle while taking into account different driving situations
US6803530B2 (en) * 2003-03-15 2004-10-12 International Truck Intellectual Property Company, Llc System and method for vehicle axle load measurement with hysteresis compensation and acceleration filter
US20050010356A1 (en) * 2003-03-28 2005-01-13 Aisin Seiki Kabushiki Kaisha Vehicle weight estimating device
US20050065695A1 (en) * 2003-09-24 2005-03-24 Joerg Grieser Method for determining an estimate of the mass of a motor vehicle
US20050081649A1 (en) * 2003-10-15 2005-04-21 Yazaki Corporation Vehicle weight meter
US20050246256A1 (en) * 2004-04-29 2005-11-03 Ford Motor Company Method and system for assessing the risk of a vehicle dealership defaulting on a financial obligation
US6980093B2 (en) * 2002-05-07 2005-12-27 The Johns Hopkins University Commercial vehicle electronic screening hardware/software system with primary and secondary sensor sets
US20060108154A1 (en) * 2002-09-19 2006-05-25 Frank Mack Device for determining the overall mass of a vehicle
US20060149424A1 (en) * 2003-02-21 2006-07-06 Falk Hecker Method and device for effecting a computer-aided estimation of the mass of a vehicle, particularly of a goods-carrying vehicle
US7141746B1 (en) * 2005-07-18 2006-11-28 Scott Dale W Device for determining on board weight of tractor-trailers and method
US20070030169A1 (en) * 2005-07-07 2007-02-08 Mcnay James H Security, tracking, and damage control system for cargo containers
US20070271017A1 (en) * 2006-05-18 2007-11-22 Farzad Samie Weight dependent trailering switch
US7430491B2 (en) * 2005-10-11 2008-09-30 International Truck Intecllectual Property Company, Llc Tractor-trailer having self-contained apparatus on-board tractor for estimating trailer weight
US7899584B2 (en) * 2007-02-28 2011-03-01 Caterpillar Inc. Method of controlling a vehicle based on operation characteristics

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644489A (en) * 1984-04-27 1997-07-01 Hagenbuch; Leroy G. Apparatus and method for identifying containers from which material is collected and loaded onto a haulage vehicle
DE3815625A1 (en) * 1988-05-07 1989-11-16 Koelner Verkehrs Betriebe Ag METHOD FOR AUTOMATICALLY PRESENTING DRIVE PARAMETERS IN THE DRIVETRAIN OF A LINE BUS WITH AN AUTOMATIC TRANSMISSION, AND DEVICE FOR IMPLEMENTING THE METHOD
US5803502A (en) * 1994-12-23 1998-09-08 Noll; Virginia Method and structure for properly positioning freight in a trailer, container or other freight receptacle
US5727939A (en) * 1996-08-19 1998-03-17 Praxair Technology, Inc. Deflector system for reducing air infiltration into a furnace
SE527573C2 (en) * 2004-06-24 2006-04-11 Scania Cv Abp Method, system, computer program and electronic control unit for estimating the weight of a vehicle
ATE550579T1 (en) * 2005-09-08 2012-04-15 Volvo Lastvagnar Ab METHOD FOR ADJUSTING A GEAR SELECTION IN A VEHICLE
US7445079B2 (en) * 2005-11-21 2008-11-04 Gm Global Technology Operations, Inc. Automatic calibration of vehicle transmission using load sensing

Patent Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465151A (en) * 1981-03-10 1984-08-14 Gorman Leonard F Weighstations and remote control thereof
US4548079A (en) * 1982-12-14 1985-10-22 Wabco Westinghouse Fahrzeugbremsen Gmbh Method and apparatus to automatically determine the weight or mass of a moving vehicle
US4839835B1 (en) * 1984-04-27 1994-01-25 G. Hagenbuch Leroy
US4839835A (en) * 1984-04-27 1989-06-13 Hagenbuch Roy George Le Apparatus and method responsive to the on-board measuring of the load carried by a truck body
US4656876A (en) * 1984-08-08 1987-04-14 Daimler-Benz Aktiengesellschaft Apparatus for measuring the mass of a motor vehicle
US4706768A (en) * 1986-03-03 1987-11-17 Gagik Kozozian Onboard truck scale
US4941365A (en) * 1988-12-24 1990-07-17 Daimler-Benz Ag Device for determining the mass of a motor vehicle
US5272939A (en) * 1992-07-06 1993-12-28 Eaton Corporation Shift enable control method/system
US5335566A (en) * 1992-07-06 1994-08-09 Eaton Corporation Shift control method/system
US5272939B1 (en) * 1992-07-06 1994-12-06 Eaton Corp Shift enable control method/system
US5490063A (en) * 1994-02-07 1996-02-06 Eaton Corporation Control method/system including determination of an updated value indicative of gross combination weight of vehicles
US5482359A (en) * 1994-04-22 1996-01-09 Eaton Corporation System and method for determining relative vehicle mass
US5970435A (en) * 1996-03-22 1999-10-19 Yazaki Corporation Automatic load measuring device
US6118083A (en) * 1996-11-08 2000-09-12 Creative Microsystems Weight measurement apparatus for vehicles
US6037550A (en) * 1997-09-30 2000-03-14 Weigh-Tronix, Inc. On-board vehicle weighing apparatus and method
US5877455A (en) * 1998-01-21 1999-03-02 Meritor Heavy Vehicle Systems, Llc Payload monitoring for a tractor-trailer
US6339749B1 (en) * 1998-01-24 2002-01-15 Daimlerchrysler Ag Device for determining the weight of a motor vehicle
US20010001138A1 (en) * 1998-04-23 2001-05-10 Zhu G. George Recursive vehicle mass estimation apparatus and method
US6167357A (en) * 1998-04-23 2000-12-26 Cummins Engine Company, Inc. Recursive vehicle mass estimation
US6438510B2 (en) * 1998-04-23 2002-08-20 Cummins Engine Company, Inc. Recursive vehicle mass estimation system
US6633006B1 (en) * 1998-08-18 2003-10-14 Zf Friedrichshafen Ag Method and device for determining the mass of a vehicle
US6149545A (en) * 1999-01-14 2000-11-21 Eaton Corporation Automated transmission upshift control
US6778895B1 (en) * 1999-09-29 2004-08-17 Zf Friedrichshafen Ag Control of an automatic or automated gearbox using voice command
US6449582B1 (en) * 2000-05-09 2002-09-10 The University Of British Columbia Vehicle weight and cargo load determination using tire pressure
US20040025617A1 (en) * 2000-07-26 2004-02-12 Fowler Martin Stanley Automatic selection of start gear
US6655222B2 (en) * 2000-10-28 2003-12-02 Robert Bosch Gmbh Determination of road gradient and determination of trailer load
US20020091481A1 (en) * 2000-10-28 2002-07-11 Ulrich Hessmert Determination of road gradient and determination of trailer load
US20030014214A1 (en) * 2001-07-11 2003-01-16 Uri Zefira Method for achieving accurate measurement of true weight
US20030040885A1 (en) * 2001-08-14 2003-02-27 Schoess Jeffrey N. Apparatus and method for determining vehicle load weight status
US20030040861A1 (en) * 2001-08-23 2003-02-27 Bellinger Steven M. System and method for estimating vehicle mass
US6567734B2 (en) * 2001-08-23 2003-05-20 Cummins, Inc. System and method for estimating vehicle mass
US20040181317A1 (en) * 2001-09-28 2004-09-16 Bmw Ag. Method for determining the mass of a motor vehicle while taking into account different driving situations
US20030154798A1 (en) * 2002-02-15 2003-08-21 Ford Global Technologies, Inc. Vehicle weight observation system
US6980093B2 (en) * 2002-05-07 2005-12-27 The Johns Hopkins University Commercial vehicle electronic screening hardware/software system with primary and secondary sensor sets
US20060108154A1 (en) * 2002-09-19 2006-05-25 Frank Mack Device for determining the overall mass of a vehicle
US20060149424A1 (en) * 2003-02-21 2006-07-06 Falk Hecker Method and device for effecting a computer-aided estimation of the mass of a vehicle, particularly of a goods-carrying vehicle
US6803530B2 (en) * 2003-03-15 2004-10-12 International Truck Intellectual Property Company, Llc System and method for vehicle axle load measurement with hysteresis compensation and acceleration filter
US7039519B2 (en) * 2003-03-28 2006-05-02 Aisin Seiki Kabushiki Kaisha Vehicle weight estimating device
US20050010356A1 (en) * 2003-03-28 2005-01-13 Aisin Seiki Kabushiki Kaisha Vehicle weight estimating device
US20050065695A1 (en) * 2003-09-24 2005-03-24 Joerg Grieser Method for determining an estimate of the mass of a motor vehicle
US6980900B2 (en) * 2003-09-24 2005-12-27 Robert Bosch Gmbh Method for determining an estimate of the mass of a motor vehicle
US20050081649A1 (en) * 2003-10-15 2005-04-21 Yazaki Corporation Vehicle weight meter
US20050246256A1 (en) * 2004-04-29 2005-11-03 Ford Motor Company Method and system for assessing the risk of a vehicle dealership defaulting on a financial obligation
US20070030169A1 (en) * 2005-07-07 2007-02-08 Mcnay James H Security, tracking, and damage control system for cargo containers
US7141746B1 (en) * 2005-07-18 2006-11-28 Scott Dale W Device for determining on board weight of tractor-trailers and method
US7430491B2 (en) * 2005-10-11 2008-09-30 International Truck Intecllectual Property Company, Llc Tractor-trailer having self-contained apparatus on-board tractor for estimating trailer weight
US20070271017A1 (en) * 2006-05-18 2007-11-22 Farzad Samie Weight dependent trailering switch
US7899584B2 (en) * 2007-02-28 2011-03-01 Caterpillar Inc. Method of controlling a vehicle based on operation characteristics

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130138288A1 (en) * 2011-11-30 2013-05-30 GM Global Technology Operations LLC System and method for estimating the mass of a vehicle
US8798887B2 (en) * 2011-11-30 2014-08-05 GM Global Technology Operations LLC System and method for estimating the mass of a vehicle
US20140214958A1 (en) * 2013-01-25 2014-07-31 Apple Inc. Hybrid unicast/multicast dns-based service discovery
US10166980B2 (en) 2013-02-28 2019-01-01 Ford Global Technologies, Llc Vehicle mass computation
US9429463B2 (en) 2013-03-04 2016-08-30 International Road Dynamics, Inc. System and method for measuring moving vehicle information using electrical time domain reflectometry
US9880045B2 (en) 2013-03-04 2018-01-30 International Road Dynamics Sensor including electrical transmission-line parameter that changes responsive to vehicular load
US10006799B2 (en) * 2013-03-04 2018-06-26 International Road Dynamics Inc. System and method for measuring moving vehicle information using electrical time domain reflectometry
US20180340816A1 (en) * 2013-03-04 2018-11-29 International Road Dynamics, Inc. System and method for measuring moving vehicle information using electrical time domain reflectometry
US10859430B2 (en) 2013-03-04 2020-12-08 International Road Dynamics Sensor including electrical transmission-line parameter that changes responsive to vehicular load
US10876884B2 (en) * 2013-03-04 2020-12-29 International Road Dynamics Inc. System and method for measuring moving vehicle information using electrical time domain reflectometry

Also Published As

Publication number Publication date
EP2085656A3 (en) 2011-11-02
US7818140B2 (en) 2010-10-19
EP2085656A2 (en) 2009-08-05
US20090192760A1 (en) 2009-07-30
US20110004382A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
US7818140B2 (en) System for estimating a vehicle mass
CN1866265B (en) System and method for warm tire fill pressure adjust
US20130253814A1 (en) System and Method for Gauging Safe Towing Parameters
US6784794B1 (en) Method and apparatus for reminding the vehicle operator to refill the spare tire in a tire pressure monitoring system
US7572988B1 (en) Method for onboard vehicle weight measurement
EP2038131B1 (en) Hand held tire pressure monitoring system
US7092804B2 (en) Method and apparatus for providing refill or bleed alerts in a tire pressure monitoring system
US20050200464A1 (en) Method and system of notifying of use of a tire in a tire pressure monitoring system for an automotive vehicle
US9870653B1 (en) Vehicle and trailer weight balance and force indication system and method of use
CN111693128A (en) Method for controlling weight distribution
US11138813B2 (en) Apparatus, systems, and methods for estimating and reporting electric vehicle range while towing
US20130338848A1 (en) Method and Apparatus for Leveling Recreational Vehicles
US20150019165A1 (en) Weight detection by tire pressure sensing
US6449582B1 (en) Vehicle weight and cargo load determination using tire pressure
US6771169B1 (en) Tire pressure monitoring system with a signal initiator
MX2008010211A (en) On-board truck scale.
US7026922B1 (en) Method and apparatus for automatically identifying the location of pressure sensors in a tire pressure monitoring system
WO2009001039A1 (en) A sensor unit and a vehicle load and parking warning system incorporating such sensor units
EP1388438A2 (en) A Method and System for Monitoring Tyre Pressure
US6850155B1 (en) Method and system of notifying of overuse of a mini-spare tire in a tire pressure monitoring system for an automotive vehicle
US20100212798A1 (en) Tire pressure inflation system
CN103459303A (en) Automatic supply system for consumable material
US20210155060A1 (en) Method and apparatus for inflation of a vehicle tire
US11718308B2 (en) Commercial vehicle and method of operating a commercial vehicle
KR101270641B1 (en) Load amount measuring apparatus for vehicle

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION