US20110016602A1 - Uniform Compression Garment and Method of Manufacturing Garment - Google Patents

Uniform Compression Garment and Method of Manufacturing Garment Download PDF

Info

Publication number
US20110016602A1
US20110016602A1 US12/841,829 US84182910A US2011016602A1 US 20110016602 A1 US20110016602 A1 US 20110016602A1 US 84182910 A US84182910 A US 84182910A US 2011016602 A1 US2011016602 A1 US 2011016602A1
Authority
US
United States
Prior art keywords
garment
elongation
measurements
model
individuals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/841,829
Other versions
US8548622B2 (en
Inventor
Jason Berns
William Mickle
Mari Lucero
David Ayers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Under Armour Inc
Original Assignee
Under Armour Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Under Armour Inc filed Critical Under Armour Inc
Priority to US12/841,829 priority Critical patent/US8548622B2/en
Assigned to UNDER ARMOUR, INC. reassignment UNDER ARMOUR, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AYERS, DAVID, LUCERO, MARI, BERNS, JASON, MICKLE, WILLIAM
Assigned to UNDER ARMOUR, INC reassignment UNDER ARMOUR, INC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AYERS, DAVID, LUCERO, MARI, BERNS, JASON, MICKLE, WILLIAM
Publication of US20110016602A1 publication Critical patent/US20110016602A1/en
Priority to US14/013,519 priority patent/US20140000005A1/en
Application granted granted Critical
Publication of US8548622B2 publication Critical patent/US8548622B2/en
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UNDER ARMOUR, INC.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/0015Sports garments other than provided for in groups A41D13/0007 - A41D13/088
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/12Surgeons' or patients' gowns or dresses
    • A41D13/1236Patients' garments
    • A41D13/1263Suits
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/18Elastic

Definitions

  • This application relates to the field of athletic garments and other apparel and particularly to compression garments.
  • Compression garments are generally comprised of one or more stretchable fabric segments characterized by a particular modulus of elasticity. When a wearer places the garment on his or her body, the fabric stretches around various body parts and applies a compressive force to the body parts.
  • Compression garments are sometimes used to facilitate post workout or post game recovery of particular body parts. For example, an athlete experiencing trauma to a knee during a sporting event may wear compression pants to help reduce swelling around the knee.
  • the use of compression garments is sometimes preferred over the more traditional use of ice bags to control swelling, since compression garments may be used over a relatively long period without relative discomfort, dripping ice bags or other mess and inconvenience commonly associated with ice treatment.
  • compression garments are sometimes used to treat injuries and trauma, traditional compression garments have certain downsides.
  • traditional compression garments tend to provide different amounts of pressure to different parts of the body.
  • some current compression garments implement a graduated compression arrangement where the garment applies greater pressure to body parts at the extremities and generally less pressure to body parts closer to the heart.
  • a compression pant may provide more compressive pressure in a calf area than in a quadriceps area.
  • Other compression garments are simply cut in a manner that randomly applies different levels of compressive pressure to various body parts. This uneven compression is not ideal for recovery following physical trauma experienced from normal wear and tear from working out, as certain body parts may not be properly supported by the garment in a manner that promotes healing.
  • Another factor compounding the varying pressure offered by current compression garments is that different body types within a given size range may cause the garment to provide greater or less pressure to various body parts. For example, a first male requiring a size large pant may have relatively wide thighs, while a second male requiring the same size large pant may have relatively thin thighs, both having the same leg length. Thus, the first male with wide thighs wearing the large size pant will typically encounter significantly more compression in the thigh area than the second male with thin thighs wearing the same large size pant.
  • the plurality of stretchable fabric segments are designed and dimensioned such that substantially the entire main body is stretched in order to cover the plurality of human body parts.
  • the plurality of stretchable fabric segments are also designed and dimensioned to apply a uniform compression force to each of the plurality of body parts when substantially the entire main body is stretched to cover the plurality of human body parts.
  • a method of manufacturing the compression garment comprises first obtaining a plurality of model measurements at various locations on a model body.
  • the model body represents a typical body configuration for a particular sized body.
  • a plurality of garment dimensions are calculated for various locations on the garment.
  • Each calculation of a garment dimension is based at least in part on one of the plurality of model measurements and at least in part on a target elongation for the garment.
  • calculations for various garment dimensions are performed by inserting the plurality of model measurements into a pattern equation that includes a model measurement variable and a target elongation variable.
  • a plurality of fabric segments are prepared for the garment based on the calculated dimensions.
  • Each of the plurality of fabric sections comprise elastane and are characterized by a modulus of elasticity.
  • a uniform compression garment manufactured according to the disclosed method comprises a plurality of fabric segments connected together.
  • Each of the plurality of fabric segments comprise about 22-30% elastic fibers, such as elastane or thermoplastic elastic fibers, with the elastic fibers having a linear mass density of about 40 to 80 denier.
  • each of the plurality of fabric segments has a modulus of elasticity that is substantially the same in both a length direction and a width direction. The modulus of elasticity is such that a 0.5 to 3.0 pound load results in about 50% or more elongation of the fabric.
  • the modulus of elasticity is substantially the same for each of the plurality of fabric segments, and the modulus of elasticity is such that the load at an elongation between 20% and 80% is relatively consistent.
  • the 0.5 to 3.0 pound load may preferably be a 1.4 to 2.0 pound load.
  • the modulus of elasticity for the garment is such that a 25 to 35 pound load results in about 140% to 180% or more elongation.
  • FIG. 1 shows an anterior view of a uniform compression garment in the form of a body suit
  • FIG. 2 shows a side view of the uniform compression garment of FIG. 1 with arms extended;
  • FIG. 3 shows a posterior view of the uniform compression garment of FIG. 1 ;
  • FIG. 4 shows a stress-strain curve for the uniform compression garment of FIG. 1 ;
  • FIG. 5 shows a flowchart of a method for manufacturing the uniform compression garment of FIG. 1 ;
  • FIG. 6 shows a model body for use in manufacturing the garment of FIG. 1 , and a plurality of measurement locations along the leg of the model body.
  • a uniform compression garment 10 is shown in the form of a full body suit.
  • the garment 10 includes an upper body portion 12 and a lower body portion 14 .
  • the garment 10 is comprised of a plurality of fabric segments 16 connected at various seams 18 to form the garment 10 .
  • the upper body portion 12 includes two arms 20 connected to a torso portion 22 .
  • the arms 20 are full length arms in the embodiment of FIGS. 1-3 , extending from the shoulder to the wrists.
  • the torso portion 22 includes anterior and posterior portions.
  • a neck opening 24 is formed near the upper part of the torso portion.
  • a zipper 26 extends downward from the neck opening 24 on the anterior of the torso portion. The zipper 26 acts to selectively enlarge or decrease the size of the neck opening 24 to allow the wearer to more easily get into or out of the body suit 10 .
  • the lower body portion 14 is connected to the upper body portion 12 .
  • the lower body portion is generally comprised of two legs 28 extending from the torso portion 22 .
  • the legs 28 are full length legs in the embodiment of FIGS. 1-3 , extending from the torso portion 22 , through the thighs and to the ankles.
  • the legs may also include stirrups near the ankles.
  • the garment 10 has been described as a unitary body suit in the exemplary embodiment of FIGS. 1-3 , it will be recognized that the garment may take on any of numerous other forms.
  • the body suit may be comprised of separate upper and/or lower garments.
  • the garment 10 has been described as long sleeved and long legged, in other embodiments, the garment may be short sleeved or short legged.
  • the garment 10 may also be provided as a single upper garment or a single lower garment.
  • the garment 10 is formed from a plurality of fabric segments 16 of various shapes.
  • the fabric segments 16 are joined along the seams 18 to form the main body of the garment. Any acceptable means may be used to join the fabric segments, including stitching, adhesives, heat bonding, or any other connection means or combination thereof known to those in the art.
  • Each of the fabric segments 16 provide a substantially uniform degree of compression to the parts of the body covered by the garment 10 .
  • the modulus of elasticity is substantially the same for each of the plurality of fabric segments 16 . Accordingly, substantially equivalent forces will stretch each of the fabric segments an equivalent amount.
  • the modulus of elasticity for each fabric segment is substantially the same in both a length direction and a width direction such that the fabric has a balanced stretch.
  • the fabric segments 16 are also be cut to particular dimensions such that the each location on the garment 10 will stretch to approximately the same degree of elongation when placed on the body of a typical wearer. Accordingly, different locations on the garment 10 will have different circumferential measurements. For example, the garment 10 will be cut such that the bicep area has a greater circumference than the forearm area. Thus, even though the bicep of the wearer is typically larger than the forearm, the garment will be stretched to roughly the same degree in each area. Furthermore, the modulus of elasticity of the fabric segments is such that a normal deviation from a model size measurement may occur while still allowing the garment to provide a uniform degree of compression to the body parts of the wearer.
  • a stress-strain curve for the fabric segments 16 having an exemplary modulus of elasticity is shown in FIG. 4 .
  • the stress-strain curve shows stress on the fabric along the y-axis in pounds-force and strain on the fabric along the x-axis in percentage elongation of the fabric.
  • the curve of FIG. 4 shows an embodiment where a stress between 0.5 and 3.0 pounds-force is experienced at a strain of about 50% elongation of the fabric. More specifically, in the embodiment of FIG. 4 a stress between 1.4 and 2.0 pounds-force is experienced at a strain of about 50% elongation of the fabric.
  • the modulus of elasticity of the fabric segments 16 is such that a given stress range covers a wide range of strain. This is especially true for strain below 100% elongation.
  • a 50% elongation is associated with a stress range between 1.4 and 2.0 pounds-force
  • the stress range between 1.4 and 2.0 pounds-force is not limited to only 50% elongation.
  • a stress range between 1.4 and 2.0 pounds-force is also experienced at strain ranges between 20% to 80% elongation of the fabric.
  • a 1.4 pound-force may be experienced at 20% elongation of the fabric.
  • a 1.7 pound-force may be experienced at 50% elongation.
  • a 2.0 pound-force may be experienced at 80% elongation. Accordingly, when moving from the 50% elongation point B, to the 20% elongation point A or the 80% elongation point C, the 1.7 pound-force does not vary by more than 50%. More specifically, in the embodiment of FIG. 4 , when moving from the 50% elongation point B to the 20% elongation point A, the 1.7 pound-force does not vary by more than even 20% (i.e., (1.7 ⁇ 1.4)1.7 ⁇ 0.20). Also, when moving from the 50% elongation point B to the 80% elongation point C, the 1.7 pound-force does not vary by more than 20% (i.e., (2.0 ⁇ 1.7)1.7 ⁇ 0.20).
  • the modulus of elasticity for the fabric segments 16 is such that the force required to achieve elongation of the fabric anywhere between 20% and 80% is relatively uniform.
  • the load required to achieve 20% elongation of each fabric segment 16 is about a 1.4 pounds-force
  • the load required to achieve 80% elongation of each fabric segment is about a 2.0 pounds-force.
  • the fabric segments 16 are properly designed and dimensioned, they are capable of holding a target modulus through a range of body types within a size.
  • a properly designed garment may be used to apply a relatively uniform compressive force to a human body part through a relatively wide range of body part dimensions within the size.
  • the modulus of elasticity curve changes past the 100% strain point such that a relatively small range of stress does not cover a relatively wide range of strain.
  • the plurality of fabric segments 16 has a modulus of elasticity such that a 20 to 35 pounds-force results in about 140% to 180% elongation of the fabric. More particularly, a load of 30 pounds results in about 150% to 170% elongation of the fabric.
  • the modulus of elasticity curve of FIG. 4 also shows that the fabric is constructed such that the stress does not begin to “spike” until about 3 ⁇ 4 of the total elongation cycle is achieved.
  • the slope of the modulus of elasticity curve does not reach a critical slope greater than 1.0 until the fabric is stretched to about 75% or more of the possible degree of stretch.
  • Fabric segments 16 having this type of a modulus of elasticity curve as shown in FIG. 4 are generally useful in providing a garment capable of applying a uniform degree of compression over a wide range of body types within a size.
  • the stretchable fabric segments 16 make up a substantial majority of the garment.
  • the garment may comprise some minor portion of additional segments that are different from the fabric segments 16 that make up the main body of the garment.
  • additional segments include decorative segments or functional segments that provide ventilation for the garment or targeted compression.
  • the substantial majority of the garment remains comprised of the fabric segments 16 that make up the main body portion.
  • the term “primary fabric segments” is also used herein to refer to these fabric segments 16 that make up the main body portion of the garment 10 .
  • the primary fabric segments 16 that make up the main body of the garment 10 are comprised of elastane fibers that are knit together with other fibers to form the fabric segments.
  • the other fibers in the fabric segments 16 may comprise, for example, cotton, polyester, or any of other known fibers commonly used to produce compression garments.
  • the primary fabric segments 16 are formed using a circular knit single jersey construction.
  • the primary fabric segments 16 may be formed using a balanced circular knit interlock construction, tricot/raschel warp knit construction, or any of various other known fabric constructions, including knit, woven and non-woven fabrics.
  • the elastane fibers comprise about 22-30% of the fibers in the primary fabric segments 16 . More particularly, the primary fabric segments 16 may be comprised of 24% to 28% elastane, and preferably about 26% elastane. In at least one embodiment, the elastane fibers have a linear mass density of about 40 to 90 denier. More particularly, the elastane fibers have a linear mass density of 55 to 70 denier, and preferably a linear mass density of about 70 denier.
  • the garment 10 is capable of providing a uniform compression force around the limbs and torso of a wearer.
  • This uniform compression applies power and support evenly throughout the body and facilitates recovery from physical exertion by preventing water from rushing into and around damaged tissue and muscle fibers.
  • the application of uniform pressure around the body also assists with muscle alignment and posturing, thus helping to reconnect broken muscle fibers and hold the muscles in place.
  • the uniform compression garment is advantageously designed to apply a consistent compression force to a range of body types within a size.
  • the primary fabric segments are capable of holding a target modulus of elasticity through a range of fabric elongations.
  • the primary fabric segments may be constructed such that a 20% to 80% elongation of the primary fabric segments results in a compressive force in a range between 1.4 to 2.0 pounds-force.
  • the method begins at step 101 by obtaining model measurements at multiple locations on a model body.
  • the model body represents a typical body configuration for a particular sized body.
  • a manufacturer will typically have several model bodies available, each relating to different garment sizes, such as models representing small, medium, large and extra-large sizes.
  • the manufacturer/designer uses measurements from that particular model (e.g., the medium size model).
  • Each model provides typical measurements for a range of body types within the garment size.
  • the model will typically represent median or average measurements for individuals wearing that size garment.
  • measurements are taken at particular locations for a large population of individuals in a given garment size (e.g., an XL size).
  • Individuals wearing a particular size garment are typically identified by a combination of height and weight of the individual.
  • the measurements at a particular body location may then be presented in a bell curve format in order to find the median measurements for the population at that particular measurement location.
  • Each measurement in the model represents this median measurement at the particular measurement location for the population of similarly sized individuals. For example, if mid-thigh circumference measurements for the group range between 20 and 30 inches with a median measurement of 24, the mid-thigh measurement of the model would be 24 inches.
  • the model In addition to exhibiting median measurements within a size, the model also typically includes numerous measurements for various body parts.
  • FIG. 6 shows an exemplary model with various measurement locations along a leg represented by m 1 , m 2 . . . m n .
  • the designer/manufacturer of the garment may choose to consider all of these measurements or only some of the measurements when designing and manufacturing the garment.
  • the model and its associated measurements are typically stored in electronic form in a computer memory.
  • a graphical representation of the model such as the one in FIG. 6 , may be printed and viewed by the manufacturer/designer. This graphical representation would also typically include the measurements at various measurement locations on the model.
  • a physical model may also be used to allow the designer/manufacturer to view a prototype garment on the model.
  • the designer/manufacturer calculates actual garment dimensions in step 102 .
  • the garment dimensions are calculated at various locations on the garment that correlate with the area where measurements were obtained from the model.
  • three different garment dimensions may be calculated for the thigh area. For example, if an upper thigh measurement (m 1 ), mid-thigh measurement (m 2 ), and lower thigh measurement (m 3 ) are all obtained from the model, an upper thigh dimension, mid-thigh dimension, and lower thigh dimension may all be calculated for the garment.
  • the garment dimension calculation is also based in part on a target elongation for the garment.
  • the target elongation is an amount of stretch for the garment that is required to apply a predetermined compressive force to the model body. Because this amount of stretch can occur anywhere within a range, the target elongation may be expressed as a medial amount of stretch within a range. Thus, if stretch amounts between 20% and 80% are capable of applying the desired compressive force to the model body, the target elongation may be at the center of this range, i.e., at 50% elongation. When the target elongation falls within a range of elongation amounts capable of delivering the desired compression force, the desired amount of fabric stretch and related compressive force will still be delivered to various body sizes that differ from the model body.
  • the calculation of garment dimensions is performed according to the following pattern equation:
  • M the flat dimension for the garment at a particular garment location (i.e., 1 ⁇ 2 the actual pattern measurement); B equals the model measurement (i.e., circumference of the model at a model location that is associated with the garment location); and E equals a target elongation (i.e., a target percentage of fabric stretch expressed as a decimal).
  • the flat dimension for the garment (M) means the dimension across the garment when the garment is lying on a flat surface, or in other words, 1 ⁇ 2 the garment circumference at the garment location.
  • a pattern may be created based on the calculated garment dimensions, as noted in step 103 .
  • M 8 inches at the upper thigh location and 6 inches at the lower thigh location.
  • Such a pattern would include a gradual transition between the 8 inch diameter and 6 inch diameter portions.
  • the calculated variable M is equal to the width dimension across the garment when the garment is lying on a flat surface (i.e., 1 ⁇ 2 the garment circumference)
  • the pattern for the garment is designed such that the garment circumference will be twice this flat measurement at the corresponding body locations (i.e., the actual garment circumference at the corresponding body location is 2M).
  • Various strategies may be used to double the calculated width, such as cutting fabric segments to twice the calculated width and joining the opposing ends, or cutting two equally sized fabric segments and joining the segments along the edges.
  • the final circumference of the garment at any given body location should equal twice the calculated flat measurement (M) for that body location.
  • the next step is preparation of actual primary fabric segments 16 for the garment according to the pattern, as noted in step 104 of FIG. 6 .
  • the primary fabric segments are typically cut from a long swath of fabric. However, it is also possible to create the primary fabric segments in the desired segment shape and size (i.e., according to the pattern) at the same time the fabric is made.
  • the garment is assembled in step 105 .
  • Assembly of the garment involves connecting the edges of the primary fabric segments along seams.
  • the edges of the primary fabric segments may be connected in any of various manners known in the art, including sewing, thermal bonding, adhesive bonding or any other known connection method.
  • Assembly of the garment in step 105 also includes connecting any other fabric segments or accessories to the garment, such as zipper 26 shown in FIG. 1 , and any garment finishing, such as decorative components or reinforcement of bottom hems in leg portions 14 .
  • a model for a given size range may be created based on median measurements from a population of individuals.
  • a garment may be created that is capable of applying a relatively uniform compressive force to a human body part through a relatively wide range of body part dimensions within a particular size.
  • the dimensions of the garment coupled with the stretch characteristics of the fabric allow the garment to apply a uniform compressive force to nearly all individuals within a given size range (e.g., from about 5% to 95% of individuals on the bell curve for a given size range).
  • the garment may be designed to apply the same compressive force to all body parts and locations (e.g., the leg receives the same compressive force as the abdomen).
  • the uniform compressive force may vary between body parts and locations (e.g., the leg receives a greater compressive force than the abdomen).
  • the garment is capable of applying a relatively uniform compressive force at each garment location to the vast majority of individuals who fit within the garment size.

Abstract

A method of manufacturing a compression garment comprises obtaining a plurality of model measurements at various locations on a model body. Thereafter, a plurality of garment dimensions are calculated for various locations on the garment. Each calculation of a garment dimension is based at least in part on one of the plurality of model measurements and at least in part on a target elongation for the garment. In at least one embodiment, calculations for various garment dimensions are performed by inserting the plurality of model measurements into a pattern equation that includes a model measurement variable and a target elongation variable. After calculating garment dimensions, a plurality of fabric segments are prepared for the garment based on the calculated dimensions. Each of the plurality of fabric sections comprise elastane and are characterized by a modulus of elasticity.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority from U.S. Provisional Patent Application Ser. No. 61/227,667, filed Jul. 22, 2009.
  • FIELD
  • This application relates to the field of athletic garments and other apparel and particularly to compression garments.
  • BACKGROUND
  • Compression garments are generally comprised of one or more stretchable fabric segments characterized by a particular modulus of elasticity. When a wearer places the garment on his or her body, the fabric stretches around various body parts and applies a compressive force to the body parts.
  • Compression garments are sometimes used to facilitate post workout or post game recovery of particular body parts. For example, an athlete experiencing trauma to a knee during a sporting event may wear compression pants to help reduce swelling around the knee. The use of compression garments is sometimes preferred over the more traditional use of ice bags to control swelling, since compression garments may be used over a relatively long period without relative discomfort, dripping ice bags or other mess and inconvenience commonly associated with ice treatment.
  • While compression garments are sometimes used to treat injuries and trauma, traditional compression garments have certain downsides. In particular, traditional compression garments tend to provide different amounts of pressure to different parts of the body. For example, some current compression garments implement a graduated compression arrangement where the garment applies greater pressure to body parts at the extremities and generally less pressure to body parts closer to the heart. Thus, a compression pant may provide more compressive pressure in a calf area than in a quadriceps area. Other compression garments are simply cut in a manner that randomly applies different levels of compressive pressure to various body parts. This uneven compression is not ideal for recovery following physical trauma experienced from normal wear and tear from working out, as certain body parts may not be properly supported by the garment in a manner that promotes healing.
  • Another factor compounding the varying pressure offered by current compression garments is that different body types within a given size range may cause the garment to provide greater or less pressure to various body parts. For example, a first male requiring a size large pant may have relatively wide thighs, while a second male requiring the same size large pant may have relatively thin thighs, both having the same leg length. Thus, the first male with wide thighs wearing the large size pant will typically encounter significantly more compression in the thigh area than the second male with thin thighs wearing the same large size pant.
  • In view of the foregoing, it would be advantageous to provide a compression garment that provides a relatively consistent and precise compression force to substantially the entire body. It would also be advantageous if such garment could be manufactured to provide consistent compression performance across a wide variety of body types. Furthermore, it would be advantageous if such garment could be easily worn following a workout or other physical exertion activity in order to promote a relatively quick recovery with improved vitality, reduced swelling, increased power output and reduced muscle damage.
  • SUMMARY
  • A compression garment configured to be worn on a human body having a plurality of human body parts comprises a main body including a plurality stretchable fabric segments. The plurality of stretchable fabric segments are designed and dimensioned such that substantially the entire main body is stretched in order to cover the plurality of human body parts. The plurality of stretchable fabric segments are also designed and dimensioned to apply a uniform compression force to each of the plurality of body parts when substantially the entire main body is stretched to cover the plurality of human body parts.
  • A method of manufacturing the compression garment comprises first obtaining a plurality of model measurements at various locations on a model body. The model body represents a typical body configuration for a particular sized body. Next, a plurality of garment dimensions are calculated for various locations on the garment. Each calculation of a garment dimension is based at least in part on one of the plurality of model measurements and at least in part on a target elongation for the garment. In at least one embodiment, calculations for various garment dimensions are performed by inserting the plurality of model measurements into a pattern equation that includes a model measurement variable and a target elongation variable. After calculating garment dimensions, a plurality of fabric segments are prepared for the garment based on the calculated dimensions. Each of the plurality of fabric sections comprise elastane and are characterized by a modulus of elasticity.
  • In at least one embodiment, the equation used in calculating garment dimensions is M=½ B/(E+1), where M equals the flat measurement for the garment (i.e., ½ the pattern measurement); B equals the model measurement; and E equals the target elongation, the target elongation being a target percentage of fabric stretch expressed as a decimal.
  • In at least one embodiment, a uniform compression garment manufactured according to the disclosed method comprises a plurality of fabric segments connected together. Each of the plurality of fabric segments comprise about 22-30% elastic fibers, such as elastane or thermoplastic elastic fibers, with the elastic fibers having a linear mass density of about 40 to 80 denier. In addition, each of the plurality of fabric segments has a modulus of elasticity that is substantially the same in both a length direction and a width direction. The modulus of elasticity is such that a 0.5 to 3.0 pound load results in about 50% or more elongation of the fabric. In addition, the modulus of elasticity is substantially the same for each of the plurality of fabric segments, and the modulus of elasticity is such that the load at an elongation between 20% and 80% is relatively consistent. The 0.5 to 3.0 pound load may preferably be a 1.4 to 2.0 pound load. In at least one embodiment, the modulus of elasticity for the garment is such that a 25 to 35 pound load results in about 140% to 180% or more elongation.
  • The above described features and advantages, as well as others, will become more readily apparent to those of ordinary skill in the art by reference to the following detailed description and accompanying drawings. While it would be desirable to provide a garment that provides one or more of these or other advantageous features, the teachings disclosed herein extend to those embodiments which fall within the scope of any appended claims, regardless of whether they accomplish one or more of the above-mentioned advantages.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows an anterior view of a uniform compression garment in the form of a body suit;
  • FIG. 2 shows a side view of the uniform compression garment of FIG. 1 with arms extended;
  • FIG. 3 shows a posterior view of the uniform compression garment of FIG. 1;
  • FIG. 4 shows a stress-strain curve for the uniform compression garment of FIG. 1;
  • FIG. 5 shows a flowchart of a method for manufacturing the uniform compression garment of FIG. 1; and
  • FIG. 6 shows a model body for use in manufacturing the garment of FIG. 1, and a plurality of measurement locations along the leg of the model body.
  • DESCRIPTION
  • With reference to FIGS. 1-3, a uniform compression garment 10 is shown in the form of a full body suit. The garment 10 includes an upper body portion 12 and a lower body portion 14. The garment 10 is comprised of a plurality of fabric segments 16 connected at various seams 18 to form the garment 10.
  • The upper body portion 12 includes two arms 20 connected to a torso portion 22. The arms 20 are full length arms in the embodiment of FIGS. 1-3, extending from the shoulder to the wrists. The torso portion 22 includes anterior and posterior portions. A neck opening 24 is formed near the upper part of the torso portion. A zipper 26 extends downward from the neck opening 24 on the anterior of the torso portion. The zipper 26 acts to selectively enlarge or decrease the size of the neck opening 24 to allow the wearer to more easily get into or out of the body suit 10.
  • The lower body portion 14 is connected to the upper body portion 12. The lower body portion is generally comprised of two legs 28 extending from the torso portion 22. The legs 28 are full length legs in the embodiment of FIGS. 1-3, extending from the torso portion 22, through the thighs and to the ankles. In at least one alternative embodiment, the legs may also include stirrups near the ankles.
  • Although the garment 10 has been described as a unitary body suit in the exemplary embodiment of FIGS. 1-3, it will be recognized that the garment may take on any of numerous other forms. For example, the body suit may be comprised of separate upper and/or lower garments. Furthermore, while the garment 10 has been described as long sleeved and long legged, in other embodiments, the garment may be short sleeved or short legged. The garment 10 may also be provided as a single upper garment or a single lower garment.
  • The garment 10 is formed from a plurality of fabric segments 16 of various shapes. The fabric segments 16 are joined along the seams 18 to form the main body of the garment. Any acceptable means may be used to join the fabric segments, including stitching, adhesives, heat bonding, or any other connection means or combination thereof known to those in the art.
  • Each of the fabric segments 16 provide a substantially uniform degree of compression to the parts of the body covered by the garment 10. To this end, the modulus of elasticity is substantially the same for each of the plurality of fabric segments 16. Accordingly, substantially equivalent forces will stretch each of the fabric segments an equivalent amount. Furthermore, the modulus of elasticity for each fabric segment is substantially the same in both a length direction and a width direction such that the fabric has a balanced stretch.
  • In order to provide a substantially uniform degree of compression, the fabric segments 16 are also be cut to particular dimensions such that the each location on the garment 10 will stretch to approximately the same degree of elongation when placed on the body of a typical wearer. Accordingly, different locations on the garment 10 will have different circumferential measurements. For example, the garment 10 will be cut such that the bicep area has a greater circumference than the forearm area. Thus, even though the bicep of the wearer is typically larger than the forearm, the garment will be stretched to roughly the same degree in each area. Furthermore, the modulus of elasticity of the fabric segments is such that a normal deviation from a model size measurement may occur while still allowing the garment to provide a uniform degree of compression to the body parts of the wearer.
  • A stress-strain curve for the fabric segments 16 having an exemplary modulus of elasticity is shown in FIG. 4. The stress-strain curve shows stress on the fabric along the y-axis in pounds-force and strain on the fabric along the x-axis in percentage elongation of the fabric. The curve of FIG. 4 shows an embodiment where a stress between 0.5 and 3.0 pounds-force is experienced at a strain of about 50% elongation of the fabric. More specifically, in the embodiment of FIG. 4 a stress between 1.4 and 2.0 pounds-force is experienced at a strain of about 50% elongation of the fabric.
  • It will be noted that the modulus of elasticity of the fabric segments 16 is such that a given stress range covers a wide range of strain. This is especially true for strain below 100% elongation. For example, in FIG. 4, while a 50% elongation is associated with a stress range between 1.4 and 2.0 pounds-force, the stress range between 1.4 and 2.0 pounds-force is not limited to only 50% elongation. Instead, as shown in FIG. 4, a stress range between 1.4 and 2.0 pounds-force is also experienced at strain ranges between 20% to 80% elongation of the fabric. In particular, at point A, a 1.4 pound-force may be experienced at 20% elongation of the fabric. At point B, a 1.7 pound-force may be experienced at 50% elongation. At point C, a 2.0 pound-force may be experienced at 80% elongation. Accordingly, when moving from the 50% elongation point B, to the 20% elongation point A or the 80% elongation point C, the 1.7 pound-force does not vary by more than 50%. More specifically, in the embodiment of FIG. 4, when moving from the 50% elongation point B to the 20% elongation point A, the 1.7 pound-force does not vary by more than even 20% (i.e., (1.7−1.4)1.7<0.20). Also, when moving from the 50% elongation point B to the 80% elongation point C, the 1.7 pound-force does not vary by more than 20% (i.e., (2.0−1.7)1.7<0.20).
  • From the example of points A, B and C in FIG. 4, it can be seen that the modulus of elasticity for the fabric segments 16 is such that the force required to achieve elongation of the fabric anywhere between 20% and 80% is relatively uniform. In particular, the load required to achieve 20% elongation of each fabric segment 16 is about a 1.4 pounds-force, and the load required to achieve 80% elongation of each fabric segment is about a 2.0 pounds-force. Accordingly, if the fabric segments 16 are properly designed and dimensioned, they are capable of holding a target modulus through a range of body types within a size. In other words, a properly designed garment may be used to apply a relatively uniform compressive force to a human body part through a relatively wide range of body part dimensions within the size.
  • With continued reference to FIG. 4, it can also be seen that the modulus of elasticity curve changes past the 100% strain point such that a relatively small range of stress does not cover a relatively wide range of strain. For example, in the curve of FIG. 4, the plurality of fabric segments 16 has a modulus of elasticity such that a 20 to 35 pounds-force results in about 140% to 180% elongation of the fabric. More particularly, a load of 30 pounds results in about 150% to 170% elongation of the fabric. The modulus of elasticity curve of FIG. 4 also shows that the fabric is constructed such that the stress does not begin to “spike” until about ¾ of the total elongation cycle is achieved. In other words, the slope of the modulus of elasticity curve (with stress is plotted against elongation) does not reach a critical slope greater than 1.0 until the fabric is stretched to about 75% or more of the possible degree of stretch. Fabric segments 16 having this type of a modulus of elasticity curve as shown in FIG. 4 are generally useful in providing a garment capable of applying a uniform degree of compression over a wide range of body types within a size.
  • With reference again to FIGS. 1-3, the stretchable fabric segments 16 make up a substantial majority of the garment. Accordingly, in various embodiments, the garment may comprise some minor portion of additional segments that are different from the fabric segments 16 that make up the main body of the garment. Examples of such additional segments include decorative segments or functional segments that provide ventilation for the garment or targeted compression. However, the substantial majority of the garment remains comprised of the fabric segments 16 that make up the main body portion. The term “primary fabric segments” is also used herein to refer to these fabric segments 16 that make up the main body portion of the garment 10.
  • The primary fabric segments 16 that make up the main body of the garment 10 are comprised of elastane fibers that are knit together with other fibers to form the fabric segments. The other fibers in the fabric segments 16 may comprise, for example, cotton, polyester, or any of other known fibers commonly used to produce compression garments. In at least one embodiment, the primary fabric segments 16 are formed using a circular knit single jersey construction. However, in other embodiments, the primary fabric segments 16 may be formed using a balanced circular knit interlock construction, tricot/raschel warp knit construction, or any of various other known fabric constructions, including knit, woven and non-woven fabrics.
  • In at least one embodiment, the elastane fibers comprise about 22-30% of the fibers in the primary fabric segments 16. More particularly, the primary fabric segments 16 may be comprised of 24% to 28% elastane, and preferably about 26% elastane. In at least one embodiment, the elastane fibers have a linear mass density of about 40 to 90 denier. More particularly, the elastane fibers have a linear mass density of 55 to 70 denier, and preferably a linear mass density of about 70 denier.
  • With a garment 10 having primary fabric segments 16 as described in the above embodiments, the garment 10 is capable of providing a uniform compression force around the limbs and torso of a wearer. This uniform compression applies power and support evenly throughout the body and facilitates recovery from physical exertion by preventing water from rushing into and around damaged tissue and muscle fibers. The application of uniform pressure around the body also assists with muscle alignment and posturing, thus helping to reconnect broken muscle fibers and hold the muscles in place. The uniform compression garment is advantageously designed to apply a consistent compression force to a range of body types within a size. In particular, the primary fabric segments are capable of holding a target modulus of elasticity through a range of fabric elongations. For example, as described above, in at least one embodiment, the primary fabric segments may be constructed such that a 20% to 80% elongation of the primary fabric segments results in a compressive force in a range between 1.4 to 2.0 pounds-force.
  • With reference now to FIG. 5 a flow-chart is shown representing a method of manufacturing the garment of FIGS. 1-3. The method begins at step 101 by obtaining model measurements at multiple locations on a model body. The model body represents a typical body configuration for a particular sized body. Thus, a manufacturer will typically have several model bodies available, each relating to different garment sizes, such as models representing small, medium, large and extra-large sizes. When making a particular sized garment (e.g., a medium size), the manufacturer/designer uses measurements from that particular model (e.g., the medium size model).
  • Each model provides typical measurements for a range of body types within the garment size. Thus, the model will typically represent median or average measurements for individuals wearing that size garment. To obtain these median measurements within a particular garment size and create the model, measurements are taken at particular locations for a large population of individuals in a given garment size (e.g., an XL size). Individuals wearing a particular size garment are typically identified by a combination of height and weight of the individual. Once measurements are obtained, the measurements at a particular body location may then be presented in a bell curve format in order to find the median measurements for the population at that particular measurement location. Each measurement in the model represents this median measurement at the particular measurement location for the population of similarly sized individuals. For example, if mid-thigh circumference measurements for the group range between 20 and 30 inches with a median measurement of 24, the mid-thigh measurement of the model would be 24 inches.
  • In addition to exhibiting median measurements within a size, the model also typically includes numerous measurements for various body parts. For example, FIG. 6 shows an exemplary model with various measurement locations along a leg represented by m1, m2 . . . mn. The designer/manufacturer of the garment may choose to consider all of these measurements or only some of the measurements when designing and manufacturing the garment.
  • The model and its associated measurements are typically stored in electronic form in a computer memory. A graphical representation of the model, such as the one in FIG. 6, may be printed and viewed by the manufacturer/designer. This graphical representation would also typically include the measurements at various measurement locations on the model. In addition to the computer model, a physical model may also be used to allow the designer/manufacturer to view a prototype garment on the model.
  • With reference again to the flowchart of FIG. 5, once measurements are obtained from the model body, the designer/manufacturer calculates actual garment dimensions in step 102. The garment dimensions are calculated at various locations on the garment that correlate with the area where measurements were obtained from the model. Thus, if three different thigh measurements are obtained from the model, three different garment dimensions may be calculated for the thigh area. For example, if an upper thigh measurement (m1), mid-thigh measurement (m2), and lower thigh measurement (m3) are all obtained from the model, an upper thigh dimension, mid-thigh dimension, and lower thigh dimension may all be calculated for the garment. It will be recognized that any number of measurements may be taken for a given body part and calculated as garment dimensions, limited only by practical considerations. Thus, although an infinite number of measurements are theoretically possible along the thigh, the designer/manufacturer may only choose to select a limited number of measurements, such as interval measurements every six inches along the thigh.
  • In addition to the model measurements, the garment dimension calculation is also based in part on a target elongation for the garment. The target elongation is an amount of stretch for the garment that is required to apply a predetermined compressive force to the model body. Because this amount of stretch can occur anywhere within a range, the target elongation may be expressed as a medial amount of stretch within a range. Thus, if stretch amounts between 20% and 80% are capable of applying the desired compressive force to the model body, the target elongation may be at the center of this range, i.e., at 50% elongation. When the target elongation falls within a range of elongation amounts capable of delivering the desired compression force, the desired amount of fabric stretch and related compressive force will still be delivered to various body sizes that differ from the model body.
  • In at least one embodiment, the calculation of garment dimensions is performed according to the following pattern equation:

  • M=½B/(E+1)
  • Where M equals the flat dimension for the garment at a particular garment location (i.e., ½ the actual pattern measurement); B equals the model measurement (i.e., circumference of the model at a model location that is associated with the garment location); and E equals a target elongation (i.e., a target percentage of fabric stretch expressed as a decimal). The flat dimension for the garment (M) means the dimension across the garment when the garment is lying on a flat surface, or in other words, ½ the garment circumference at the garment location.
  • As an example calculation using the above equation, consider a particular garment where the designer/manufacturer has determined that the primary fabric segments 16 should stretch anywhere between 30% and 70% in order to deliver the desired compressive force when placed on a body within a given size. The target elongation is in the middle of this 30-70% range at 50% elongation (i.e., E=0.50). Using the measurements obtained from various locations on the model, the manufacturer/designer can calculate the flat dimensions at related locations on the garment using the equation M=½ B/(E+1). If the upper thigh measurement on the model is 24 inches, the flat dimension of the garment at this upper thigh location can be calculated as M=(½)24 (in.)/(0.50+1)=8 (in.). Similarly, if the lower thigh measurement on the model is 18 inches, the flat dimension of the garment at this lower thigh location can be calculated as M=(½)18 (in.)/(0.50+1)=6 (in.).
  • With reference again to FIG. 5, once the garment dimensions have been calculated, a pattern may be created based on the calculated garment dimensions, as noted in step 103. In the above calculation, M=8 inches at the upper thigh location and 6 inches at the lower thigh location. Such a pattern would include a gradual transition between the 8 inch diameter and 6 inch diameter portions. In addition, since the calculated variable M is equal to the width dimension across the garment when the garment is lying on a flat surface (i.e., ½ the garment circumference), the pattern for the garment is designed such that the garment circumference will be twice this flat measurement at the corresponding body locations (i.e., the actual garment circumference at the corresponding body location is 2M). Various strategies may be used to double the calculated width, such as cutting fabric segments to twice the calculated width and joining the opposing ends, or cutting two equally sized fabric segments and joining the segments along the edges. In any event, the final circumference of the garment at any given body location should equal twice the calculated flat measurement (M) for that body location.
  • After the pattern is created in step 103, the next step is preparation of actual primary fabric segments 16 for the garment according to the pattern, as noted in step 104 of FIG. 6. The primary fabric segments are typically cut from a long swath of fabric. However, it is also possible to create the primary fabric segments in the desired segment shape and size (i.e., according to the pattern) at the same time the fabric is made.
  • After the primary fabric segments are created in step 104, the garment is assembled in step 105. Assembly of the garment involves connecting the edges of the primary fabric segments along seams. The edges of the primary fabric segments may be connected in any of various manners known in the art, including sewing, thermal bonding, adhesive bonding or any other known connection method. Assembly of the garment in step 105 also includes connecting any other fabric segments or accessories to the garment, such as zipper 26 shown in FIG. 1, and any garment finishing, such as decorative components or reinforcement of bottom hems in leg portions 14.
  • As set forth above, a model for a given size range may be created based on median measurements from a population of individuals. Using the model measurements, a garment may be created that is capable of applying a relatively uniform compressive force to a human body part through a relatively wide range of body part dimensions within a particular size. The dimensions of the garment coupled with the stretch characteristics of the fabric allow the garment to apply a uniform compressive force to nearly all individuals within a given size range (e.g., from about 5% to 95% of individuals on the bell curve for a given size range). In some embodiments, the garment may be designed to apply the same compressive force to all body parts and locations (e.g., the leg receives the same compressive force as the abdomen). In other embodiments, the uniform compressive force may vary between body parts and locations (e.g., the leg receives a greater compressive force than the abdomen). However, in either embodiment, the garment is capable of applying a relatively uniform compressive force at each garment location to the vast majority of individuals who fit within the garment size.
  • Although the present invention has been described with respect to certain preferred embodiments, it will be appreciated by those of skill in the art that other implementations and adaptations are possible. For example, although an embodiment with seams has been described herein, a seamless embodiment is also possible. Moreover, there are advantages to individual advancements described herein that may be obtained without incorporating other aspects described above. Therefore, the spirit and scope of any appended claims should not be limited to the description of the preferred embodiments contained herein.

Claims (20)

1. A method of manufacturing a garment comprising:
obtaining a plurality of model measurements, each of the model measurements associated with a location on a model body, the model body representing normal body dimensions for a range of bodies within a particular garment size;
calculating a plurality of garment measurements for various locations on the garment, wherein each garment measurement calculation is based at least in part on one of the plurality of model measurements and at least in part on a target elongation for the garment; and
preparing a plurality of fabric segments for the garment based on the calculated garment measurements.
2. The method of claim 1 wherein the model measurements from the model body are median measurements from a population of individuals having bodies that fit within the particular garment size.
3. The method of claim 2 wherein the target elongation for the garment is determined based on an elongation that will provide a uniform compressive force to most of the population of individuals wearing the garment.
4. The method of claim 3 wherein the target elongation for the garment is determined based on an elongation that will provide a uniform compressive force to about 90% of the population of individuals having bodies that fit within the particular garment size.
5. The method of claim 1 wherein calculating the plurality of garment measurements is performed by inserting the plurality of model measurements into a pattern equation, the pattern equation comprising a model measurement variable and a target elongation variable, wherein a value of the model measurement variable differs based on a model measurement associated with a garment location.
6. The method of claim 5 wherein the pattern equation is

M=½B/(E+1)
wherein M equals the flat measurement for the garment at the garment location,
wherein B equals the model measurement associated with the garment location, and
wherein E equals the target elongation.
7. The method of claim 3 wherein E is a constant such that the target elongation is uniform for the entire garment.
8. The method of claim 1 wherein the model body is a graphical model body and the model measurements are obtained by referencing a database of model measurements stored in a memory.
9. The method of claim 1 wherein each of the plurality of fabric segments has a modulus of elasticity that is substantially the same in both a length direction and a width direction.
10. The method of claim 1 wherein the modulus of elasticity is substantially the same for each of the plurality of fabric segments and wherein the modulus of elasticity is such that a 0.5 to 3.0 pound force results in at least 50% elongation of the fabric segment.
11. A garment configured to be worn on a human body having a plurality of human body parts, the garment comprising:
a main body comprised of a plurality stretchable fabric segments, wherein the plurality of stretchable fabric segments are designed and dimensioned such that substantially the entire main body is stretched in order to cover the plurality of human body parts, and wherein the plurality of stretchable fabric segments are also designed and dimensioned to apply a substantially uniform compression force to each of the plurality of body parts when substantially the entire main body is stretched to cover the plurality of human body parts.
12. The garment of claim 11 wherein the main body is configured to cover the arms, legs and torso of the human body.
13. The garment of claim 11 wherein each of the stretchable fabric segments has a modulus of elasticity such that a first stress force required to achieve 20% elongation of the stretchable fabric segment does not vary by more than 50% from a second stress force required to achieve 50% elongation of the stretchable fabric segment, and a third stress force required to achieve 80% elongation of the stretchable fabric segment does not vary by more than 50% from the second stress force.
14. The garment of claim 13 wherein the modulus of elasticity is such that a first stress force required to achieve 20% elongation of the stretchable fabric segment does not vary by more than 20% from a second stress force required to achieve 50% elongation of the stretchable fabric segment, and a third stress force required to achieve 80% elongation of the stretchable fabric segment does not vary by more than 20% from the second stress force
15. The garment of claim 11 wherein a flat measurement of the garment at any location on the main body is provided by the following pattern equation:

M=½B/(E+1)
wherein M equals the flat measurement for the garment at a garment location,
wherein B equals a model measurement associated with the garment location, and
wherein E equals a target elongation.
16. The garment of claim 15 wherein the modulus of elasticity is such that a 0.5 to 3.0 pound force results in at least 50% elongation of the fabric segment.
17. The garment of claim 11 wherein the plurality of stretchable fabric segments are further designed and dimensioned to apply the substantially uniform compression force to each of a plurality of different individuals wearing the garment, the different individuals having bodies that fit within the particular garment size.
18. The garment of claim 17 wherein the garment is further designed and dimensioned to stretch within a target elongation range, the target elongation range such that the garment will apply the substantially uniform compressive force to most of a population of individuals having bodies that fit within the particular garment size.
19. The method of claim 18 wherein the target elongation for the garment is determined based on an elongation that will provide the substantially uniform compressive force to be applied to about 90% of the population of individuals having bodies that fit within the particular garment size.
20. A method of manufacturing a garment comprising:
obtaining a plurality body measurements from a population of individuals having bodies that fit within a particular garment size;
determining a plurality of median measurements from the population of individuals;
calculating a plurality of garment measurements for various locations on the garment, each of the plurality of garment measurements based at least in part on one of the plurality of median measurements and a target elongation for the garment, wherein the target elongation for the garment is within an elongation range that will provide a uniform compressive force to a substantial majority of the population of individuals; and
preparing a plurality of fabric segments for the garment based on the calculated garment measurements.
US12/841,829 2009-07-22 2010-07-22 Uniform compression garment and method of manufacturing garment Active 2031-11-18 US8548622B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/841,829 US8548622B2 (en) 2009-07-22 2010-07-22 Uniform compression garment and method of manufacturing garment
US14/013,519 US20140000005A1 (en) 2009-07-22 2013-08-29 Uniform Compression Garment and Method of Manufacturing Garment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22766709P 2009-07-22 2009-07-22
US12/841,829 US8548622B2 (en) 2009-07-22 2010-07-22 Uniform compression garment and method of manufacturing garment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/013,519 Division US20140000005A1 (en) 2009-07-22 2013-08-29 Uniform Compression Garment and Method of Manufacturing Garment

Publications (2)

Publication Number Publication Date
US20110016602A1 true US20110016602A1 (en) 2011-01-27
US8548622B2 US8548622B2 (en) 2013-10-01

Family

ID=43495983

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/841,829 Active 2031-11-18 US8548622B2 (en) 2009-07-22 2010-07-22 Uniform compression garment and method of manufacturing garment
US14/013,519 Abandoned US20140000005A1 (en) 2009-07-22 2013-08-29 Uniform Compression Garment and Method of Manufacturing Garment

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/013,519 Abandoned US20140000005A1 (en) 2009-07-22 2013-08-29 Uniform Compression Garment and Method of Manufacturing Garment

Country Status (1)

Country Link
US (2) US8548622B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110088137A1 (en) * 2009-10-21 2011-04-21 Under Armour, Inc. Revesible Garment with Warming Side and Cooling Side
US20120222187A1 (en) * 2009-05-21 2012-09-06 Skins Intemational Trading Ag Compression garments and method of manufacture
US20130227758A1 (en) * 2012-03-01 2013-09-05 Daniel L. DONEY Shirt with an Elastic Lower Portion and a Lower Protruding Band
CN103462248A (en) * 2013-09-25 2013-12-25 李宁体育(上海)有限公司 Agonist utilizing compression tights and production method for same
FR3008854A1 (en) * 2013-07-29 2015-01-30 Dribbling UNDERWEAR CONTENT
US8973168B2 (en) 2011-06-17 2015-03-10 Travis Amburgey Athletic pants
US20150247268A1 (en) * 2012-09-29 2015-09-03 Ac Carpi Apparel Company Ltd. Fabric manufacturing method, manufacturing control method, manufacturing control device and manufacturing system
PT107186B (en) * 2013-09-23 2015-12-02 Sapec Agro S A HERBICIDE FORMULATION COMPOSING NICHOSULFUR AND SULCOTRIONE AND PREPARATION PROCESS OF THE SAME
US20160095366A1 (en) * 2014-10-07 2016-04-07 Viola L. PRUITT Garments for Dialysis Patients
US9801420B2 (en) 2013-03-15 2017-10-31 Spanx, Inc. Abdominal-restraint garment and methods of assembling the same
US9919032B2 (en) 2012-11-20 2018-03-20 Phasebio Pharmaceuticals, Inc. Method for administering a sustained release formulation
US20180310639A1 (en) * 2013-11-05 2018-11-01 Spanx, Inc. Abdominal-restraint garment comprising a first elastic support structure and a second elastic support structure, and methods of assembling the same
US10123573B2 (en) 2013-03-15 2018-11-13 Spanx, Inc. Abdominal-restraint garment and methods of assembling the same
US20200249657A1 (en) * 2019-02-05 2020-08-06 Medi Gmbh & Co. Kg Method and system for determining a tension value of a limb of a person and computer program
CN111616430A (en) * 2015-02-27 2020-09-04 霍尼韦尔安全产品美国股份有限公司 Apparatus, system, and method for optimizing and masking compression in biosensing garments
US20200288797A1 (en) * 2019-03-15 2020-09-17 Kimberly Ann Krysinski Compression garment
USD928456S1 (en) * 2017-08-16 2021-08-24 Under Armour, Inc. Athletic suit
US11547163B2 (en) 2016-09-28 2023-01-10 Under Armour, Inc. Apparel for athletic activities
US11934174B2 (en) * 2019-02-05 2024-03-19 Medi Gmbh & Co. Kg Method and system for determining a tension value of a limb of a person and computer program

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2844463A1 (en) * 2013-11-26 2015-05-26 Nygard International Partnership Pants
EP3297469B1 (en) * 2015-05-22 2020-06-17 NIKE Innovate C.V. Running tight with preconfigured compression zones and integrated structure patterns
CA2986586C (en) 2015-05-22 2022-05-31 Nike Innovate C.V. Recovery tight with preconfigured compression zones and integrated structure patterns
EP3298186B1 (en) 2015-05-22 2020-07-29 NIKE Innovate C.V. Training tight with preconfigured compression zones and integrated structure patterns
USD793032S1 (en) 2016-01-25 2017-08-01 Jockey International, Inc. Garment
US10548358B2 (en) 2016-08-16 2020-02-04 Under Armour, Inc. Suit for athletic activities
US11213082B1 (en) * 2017-05-18 2022-01-04 Paul Yang Seamless compression garments
USD858035S1 (en) * 2017-12-21 2019-09-03 Nike, Inc. Garment
USD891037S1 (en) * 2018-02-13 2020-07-28 Kimberly Okie McDonough Dance apparel
CN113242698A (en) * 2018-06-15 2021-08-10 彪马欧洲公司 Sports garment for team sports
AU2019374730A1 (en) * 2018-11-05 2021-06-03 Cape Bionics Pty Ltd Tailored compression garments and methods of tailoring compression garments for individuals
US11445774B2 (en) 2019-08-06 2022-09-20 Puma SE Compressive garment having an outer layer
USD916431S1 (en) 2019-09-27 2021-04-20 Puma SE Shorts
USD916432S1 (en) 2019-09-27 2021-04-20 Puma SE Pants
USD916433S1 (en) * 2019-10-04 2021-04-20 Puma SE Athletic garment
USD916434S1 (en) 2019-10-08 2021-04-20 Puma SE Athletic garment

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5163007A (en) * 1990-11-13 1992-11-10 Halim Slilaty System for measuring custom garments
US5257956A (en) * 1992-04-14 1993-11-02 Ewen Carol J Post-mastectomy garment
US5782790A (en) * 1996-05-31 1998-07-21 Allen; Cheryl L. Flexible compression and stabilizing orthotics
US6101424A (en) * 1996-10-24 2000-08-08 New Lady Co., Ltd. Method for manufacturing foundation garment
US6353770B1 (en) * 1999-05-26 2002-03-05 Levi Strauss & Co. Apparatus and method for the remote production of customized clothing
US6546309B1 (en) * 2000-06-29 2003-04-08 Kinney & Lange, P.A. Virtual fitting room
US6564118B1 (en) * 2000-12-28 2003-05-13 Priscilla Swab System for creating customized patterns for apparel
US6711455B1 (en) * 2001-07-20 2004-03-23 Archetype Solutions, Inc. Method for custom fitting of apparel
US20040078285A1 (en) * 2000-10-30 2004-04-22 Michel Bijvoet Production of made to order clothing
US20040186611A1 (en) * 2001-05-11 2004-09-23 Wang Kenneth Kuk-Kei Universal method for identifying human body profiles
US20050009445A1 (en) * 2002-07-01 2005-01-13 Lightening2 Llc Compression garment
US20050049741A1 (en) * 2001-11-06 2005-03-03 Tilak Dias Pressure garment
US6907310B2 (en) * 2001-01-19 2005-06-14 Virtual Mirrors Limited Production and visualization of garments
US6936021B1 (en) * 2004-08-09 2005-08-30 Veronica C. Smith Compression garment for dorsocervical surgeries
US7020538B2 (en) * 2003-03-06 2006-03-28 Jeffrey Luhnow Look-up table method for custom fitting of apparel
US7149665B2 (en) * 2000-04-03 2006-12-12 Browzwear International Ltd System and method for simulation of virtual wear articles on virtual models
US20070149093A1 (en) * 2003-10-15 2007-06-28 Thomas Lutz Garment
US20090025115A1 (en) * 2004-09-23 2009-01-29 Skins Compression Garments Pty Limited Compression Garments And A Method Of Manufacture

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171211A (en) * 1990-05-07 1992-12-15 Deasy Jr John F Method of beneficially affecting the human body
GB9929867D0 (en) * 1999-12-17 2000-02-09 Speedo International Limited Articles of clothing
DE102004006485A1 (en) * 2004-02-10 2005-08-25 Adidas International Marketing B.V. garment
DE102004036344B4 (en) 2004-07-27 2007-05-24 Bsn-Jobst Gmbh Knitted fabric for supporting and / or compressing and / or compression treatment of body parts and method for producing such a knitted fabric
JP2006144210A (en) * 2004-10-19 2006-06-08 Onyone Kk Sportswear
FR2879900B1 (en) * 2004-12-24 2007-10-12 Promiles Sa TIGHTS WITH LOCALIZED CONTENT EFFECT FOR THE PRACTICE OF A SPORT
FR2889033B1 (en) * 2005-07-29 2007-12-28 Salomon Sa CLOTHED GARMENT
US20090038047A1 (en) * 2007-04-17 2009-02-12 Joseph Di Lorenzo Swimsuit having compression panels
FR2915851B1 (en) * 2007-05-11 2009-08-21 Promiles Snc HETEROGENEOUS CONTENT CONTENT CLOTHING ARTICLE FOR THE PRACTICE OF A SPORT
CA2651412A1 (en) * 2008-01-28 2009-07-28 Denise M. Wells Apparel item for compressive treatment of edema

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5163007A (en) * 1990-11-13 1992-11-10 Halim Slilaty System for measuring custom garments
US5257956A (en) * 1992-04-14 1993-11-02 Ewen Carol J Post-mastectomy garment
US5782790A (en) * 1996-05-31 1998-07-21 Allen; Cheryl L. Flexible compression and stabilizing orthotics
US6101424A (en) * 1996-10-24 2000-08-08 New Lady Co., Ltd. Method for manufacturing foundation garment
US6353770B1 (en) * 1999-05-26 2002-03-05 Levi Strauss & Co. Apparatus and method for the remote production of customized clothing
US7149665B2 (en) * 2000-04-03 2006-12-12 Browzwear International Ltd System and method for simulation of virtual wear articles on virtual models
US6546309B1 (en) * 2000-06-29 2003-04-08 Kinney & Lange, P.A. Virtual fitting room
US20040078285A1 (en) * 2000-10-30 2004-04-22 Michel Bijvoet Production of made to order clothing
US6564118B1 (en) * 2000-12-28 2003-05-13 Priscilla Swab System for creating customized patterns for apparel
US6907310B2 (en) * 2001-01-19 2005-06-14 Virtual Mirrors Limited Production and visualization of garments
US20040186611A1 (en) * 2001-05-11 2004-09-23 Wang Kenneth Kuk-Kei Universal method for identifying human body profiles
US6711455B1 (en) * 2001-07-20 2004-03-23 Archetype Solutions, Inc. Method for custom fitting of apparel
US20050049741A1 (en) * 2001-11-06 2005-03-03 Tilak Dias Pressure garment
US20050009445A1 (en) * 2002-07-01 2005-01-13 Lightening2 Llc Compression garment
US7020538B2 (en) * 2003-03-06 2006-03-28 Jeffrey Luhnow Look-up table method for custom fitting of apparel
US7623938B2 (en) * 2003-03-06 2009-11-24 Archtype Solutions, Inc. Look-up table method for custom fitting of apparel
US20070149093A1 (en) * 2003-10-15 2007-06-28 Thomas Lutz Garment
US6936021B1 (en) * 2004-08-09 2005-08-30 Veronica C. Smith Compression garment for dorsocervical surgeries
US20090025115A1 (en) * 2004-09-23 2009-01-29 Skins Compression Garments Pty Limited Compression Garments And A Method Of Manufacture

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120222187A1 (en) * 2009-05-21 2012-09-06 Skins Intemational Trading Ag Compression garments and method of manufacture
US8813525B2 (en) * 2009-10-21 2014-08-26 Under Armour, Inc. Revesible garment with warming side and cooling side
US20110088137A1 (en) * 2009-10-21 2011-04-21 Under Armour, Inc. Revesible Garment with Warming Side and Cooling Side
US8973168B2 (en) 2011-06-17 2015-03-10 Travis Amburgey Athletic pants
US20130227758A1 (en) * 2012-03-01 2013-09-05 Daniel L. DONEY Shirt with an Elastic Lower Portion and a Lower Protruding Band
US20150247268A1 (en) * 2012-09-29 2015-09-03 Ac Carpi Apparel Company Ltd. Fabric manufacturing method, manufacturing control method, manufacturing control device and manufacturing system
US10287716B2 (en) * 2012-09-29 2019-05-14 Ac Carpi Apparel Company Ltd. Fabric manufacturing method, manufacturing control method, manufacturing control device and manufacturing system
US9919032B2 (en) 2012-11-20 2018-03-20 Phasebio Pharmaceuticals, Inc. Method for administering a sustained release formulation
US9801420B2 (en) 2013-03-15 2017-10-31 Spanx, Inc. Abdominal-restraint garment and methods of assembling the same
US10123573B2 (en) 2013-03-15 2018-11-13 Spanx, Inc. Abdominal-restraint garment and methods of assembling the same
EP2856894A1 (en) * 2013-07-29 2015-04-08 Dribbling Support undergarment
FR3008854A1 (en) * 2013-07-29 2015-01-30 Dribbling UNDERWEAR CONTENT
PT107186B (en) * 2013-09-23 2015-12-02 Sapec Agro S A HERBICIDE FORMULATION COMPOSING NICHOSULFUR AND SULCOTRIONE AND PREPARATION PROCESS OF THE SAME
CN103462248A (en) * 2013-09-25 2013-12-25 李宁体育(上海)有限公司 Agonist utilizing compression tights and production method for same
US20180310639A1 (en) * 2013-11-05 2018-11-01 Spanx, Inc. Abdominal-restraint garment comprising a first elastic support structure and a second elastic support structure, and methods of assembling the same
US20160095366A1 (en) * 2014-10-07 2016-04-07 Viola L. PRUITT Garments for Dialysis Patients
US11877614B2 (en) 2015-02-27 2024-01-23 Honeywell Safety Products Usa, Inc. Apparatus, systems and methods for optimizing and masking compression in a biosensing garment
CN111616430A (en) * 2015-02-27 2020-09-04 霍尼韦尔安全产品美国股份有限公司 Apparatus, system, and method for optimizing and masking compression in biosensing garments
US11547163B2 (en) 2016-09-28 2023-01-10 Under Armour, Inc. Apparel for athletic activities
USD928456S1 (en) * 2017-08-16 2021-08-24 Under Armour, Inc. Athletic suit
US20200249657A1 (en) * 2019-02-05 2020-08-06 Medi Gmbh & Co. Kg Method and system for determining a tension value of a limb of a person and computer program
US11934174B2 (en) * 2019-02-05 2024-03-19 Medi Gmbh & Co. Kg Method and system for determining a tension value of a limb of a person and computer program
US20200288797A1 (en) * 2019-03-15 2020-09-17 Kimberly Ann Krysinski Compression garment
US11819075B2 (en) * 2019-03-15 2023-11-21 Kimberly Ann Krysinski Compression garment

Also Published As

Publication number Publication date
US8548622B2 (en) 2013-10-01
US20140000005A1 (en) 2014-01-02

Similar Documents

Publication Publication Date Title
US8548622B2 (en) Uniform compression garment and method of manufacturing garment
EP2552555B1 (en) Physical fitness garments
KR101343115B1 (en) Compression garments and method of manufacturing the same
EP2713786B1 (en) Sports garment
CA2748299C (en) Caloric burn undergarment
US20040107479A1 (en) Exercise garment
AU712131B2 (en) Weight loss garment
JP4295188B2 (en) Sports wear
WO2016192135A1 (en) Leg-protecting apparatus having dynamic biological function
JP2005248389A (en) Garment having leg part
WO2012120255A1 (en) An article of apparel
AU2013206022B2 (en) Compression garments and a method of manufacture
EP4011228A1 (en) Wearable resistive pant member and method of forming a wearable resistive pant member

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNDER ARMOUR, INC., MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BERNS, JASON;MICKLE, WILLIAM;LUCERO, MARI;AND OTHERS;SIGNING DATES FROM 20100826 TO 20100927;REEL/FRAME:025045/0272

AS Assignment

Owner name: UNDER ARMOUR, INC, MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BERNS, JASON;MICKLE, WILLIAM;LUCERO, MARI;AND OTHERS;SIGNING DATES FROM 20100826 TO 20100927;REEL/FRAME:025100/0370

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNOR:UNDER ARMOUR, INC.;REEL/FRAME:052654/0756

Effective date: 20200512

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8