US20110018034A1 - Heterogeneous integration of low noise amplifiers with power amplifiers or switches - Google Patents

Heterogeneous integration of low noise amplifiers with power amplifiers or switches Download PDF

Info

Publication number
US20110018034A1
US20110018034A1 US12/873,027 US87302710A US2011018034A1 US 20110018034 A1 US20110018034 A1 US 20110018034A1 US 87302710 A US87302710 A US 87302710A US 2011018034 A1 US2011018034 A1 US 2011018034A1
Authority
US
United States
Prior art keywords
active layer
layer
gallium arsenide
transistor
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/873,027
Inventor
Berinder Brar
Joshua I. Bergman
Amal Ikhlassi
Gabor Nagy
Gerard J. Sullivan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/873,027 priority Critical patent/US20110018034A1/en
Publication of US20110018034A1 publication Critical patent/US20110018034A1/en
Priority to US13/031,997 priority patent/US20110143518A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV

Definitions

  • the invention relates generally to High Electron Mobility Transistors (HEMTs). More particularly, the invention relates to a heterogeneous integration of low noise HEMT amplifiers with Pseudomorphic HEMT (PHEMT) power amplifiers or switches.
  • HEMT High Electron Mobility Transistors
  • HEMT High Electron Mobility Transistors
  • HEMTs require at least two materials: barrier and channel materials.
  • the barrier material that contains the donor must have a higher conduction band energy, but also improves the device breakdown by having a wider bandgap to accommodate high fields.
  • the channel material that makes up the conducting layer is selected based on the transport properties of the electrons, with the bandgap also being a consideration to support high fields and hence high voltages.
  • a HEMT system is made from Gallium Arsenide (GaAs) with Aluminum Gallium Arsenide (AlGaAs).
  • the donor-containing wide bandgap material is AlGaAs and the conducting channel is GaAs.
  • HEMTs can be used for Monolithic Microwave Integrated Circuits (MMICs) such as low-noise amplifiers for receivers and power amplifiers for transmitters.
  • MMICs Monolithic Microwave Integrated Circuits
  • parasitic device resistance is small due to the high electron mobility (5,000-35,000 cm 2 /Vs) and carrier concentrations (about 1 ⁇ 10 12 cm ⁇ 2 to about 5 ⁇ 10 12 cm ⁇ 2 ) achievable across the various material choices.
  • the electron velocities for the channel materials are high with peak values between about 1 ⁇ 10 7 cm 2 /s to about 5 ⁇ 10 7 cm 2 /s.
  • the technology has enjoyed relatively simple performance gains through gate-length scaling with 100 nm long gates now in production and down to 25 nm in development.
  • the HEMTs offer useable breakdown voltages and do not suffer from thermal runaway, which is a weakness of competing bipolar technologies.
  • PHEMT Pseudomorphic HEMT
  • Indium (In) added to the GaAs channel.
  • the growth of the channel is constrained to a critical thickness, that if exceeded, dislocations nucleate and the device properties degrade, and if maintained below the critical thickness, the channel material remains pseudomorphic with the same in-plane lattice constant as the GaAs host substrate but a larger lattice constant in the growth direction.
  • the advantage of using a PHEMT device is higher conductivity channels with higher electron velocities and improved minimum noise figures.
  • the disadvantage of using a PHEMT is a lower breakdown voltage when the concentration of Indium (In) is greater than the amount required for lattice matching to the substrate or barrier.
  • transistors can be optimized for either a low-noise amplifier for receivers or a power amplifier for transmitters, they cannot be optimized simultaneously with one another on the same substrate. This is because the low-noise amplifier cannot withstand large voltages used for the power amplifier without sacrificing its low noise characteristics.
  • Separate substrates are typically used when a device, such as a telephone, utilizes a receiver and a transmitter. With an increasing demand for improved transistors, there remains a continuing need in the art for transistor that can simultaneously sustain high power drive and high sensitivity as in a low-noise amplifier.
  • FIG. 1 schematically shows in cross section a step of a method for manufacturing a heterogeneous integration of low noise amplifiers with power amplifiers or switches on the same substrate in accordance with one embodiment of the invention.
  • FIG. 2 schematically shows in cross section a step of a method for manufacturing a heterogeneous integration of low noise amplifiers with power amplifiers or switches on the same substrate in accordance with one embodiment of the invention.
  • FIG. 3 schematically shows in cross section a step of a method for manufacturing a heterogeneous integration of low noise amplifiers with power amplifiers or switches on the same substrate in accordance with one embodiment of the invention.
  • FIG. 4 schematically shows in cross section a step of a method for manufacturing a heterogeneous integration of low noise amplifiers with power amplifiers or switches on the same substrate in accordance with one embodiment of the invention.
  • FIG. 5 schematically shows in cross section a step of a method for manufacturing a heterogeneous integration of low noise amplifiers with power amplifiers or switches on the same substrate in accordance with one embodiment of the invention.
  • FIG. 6 schematically shows in cross section a step of a method for manufacturing a heterogeneous integration of low noise amplifiers with power amplifiers or switches on the same substrate in accordance with one embodiment of the invention.
  • FIG. 7 schematically shows in cross section a step of a method for manufacturing a heterogeneous integration of low noise amplifiers with power amplifiers or switches on the same substrate in accordance with one embodiment of the invention.
  • FIG. 8 schematically shows in cross section a step of a method for manufacturing a heterogeneous integration of low noise amplifiers with power amplifiers or switches on the same substrate in accordance with one embodiment of the invention.
  • One embodiment of the invention includes a transistor heterogeneously integrating a power amplifier or switch with a low-noise amplifier having a substrate wafer suitable for high electron mobility transistors.
  • the substrate wafer has a first end and a second end, a conducting layer above the first end of the substrate wafer, an isolation implant that renders the conducting layer insulating, a buffer layer deposited above the conducting layer and configured for the low-noise amplifier, and an active layer deposited above the second end of the substrate wafer and configured for the low-noise amplifier.
  • the substrate wafer can be Gallium Arsenide (GaAs), Indium Phosphide (InP) or Gallium Antimonide (GaSb).
  • the active layer can include a layer of Indium Arsenide (InAs) and/or a layer of Aluminum Antimonide (AlSb).
  • the conducting layer may be a pseudomorphic high electron mobility layer such as an active Gallium Arsenide (GaAs) layer.
  • the method for heterogeneously integrating the power amplifier or switch with the low-noise amplifier includes depositing conducting layer above a substrate wafer suitable for high electron mobility transistors, implanting ions in a first end of the conducting layer, depositing a first active layer above the first end of the conducting layer and configured for the low-noise amplifier, and depositing metal contacts for the low-noise amplifier at the first end of the conducting layer and for the power amplifier or switch at a second end of the conducting layer.
  • Prior art transistors are typically used for either a low-noise amplifier for receivers or a power amplifier for transmitters.
  • Low-noise amplifiers and power amplifiers were not combined together on the same substrate because the low-noise amplifier cannot withstand large voltages used for the power amplifier.
  • Separate substrates were typically used when a device, such as a cell phone, utilizes a receiver and a transmitter.
  • the invention allows for low-noise amplifiers to be heterogeneously integrated with power amplifiers or switches.
  • the fabrication of this heterogeneous integration is illustrated in FIGS. 1-8 , according to one method embodying the invention.
  • FIG. 1 shows a substrate wafer 100 , such as Gallium Arsenide (GaAs), Indium Phosphide (InP) or Gallium Antimonide (GaSb) substrates, used as the base substrate for integrating low noise amplifiers with power amplifiers.
  • the substrate wafer 100 is semi-insulating and suitable for high electron mobility transistors (HEMT).
  • HEMT high electron mobility transistors
  • the PHEMT region 105 has a lattice constant approximately the same as the substrate wafer 100 .
  • the PHEMT region 105 has a buffer layer, an active layer and a cap layer.
  • Gallium Arsenide/Aluminum Gallium Arsenide (GaAs/AlGaAs) is used as a buffer layer when the substrate wafer 100 is GaAs.
  • the buffer layer typically has a thickness of about 0.3 ⁇ m.
  • the active layer has barrier and channel materials, for example, about 0.03 ⁇ m of AlGaAs barrier material and about 0.01 ⁇ m of Indium Gallium Arsenide (InGaAs) channel material.
  • the cap layer can have GaAs with n+doping, preferably, having a thickness of about 0.03 ⁇ m.
  • FIG. 3 shows an isolation implant 115 formed by bombarding the PHEMT region 105 with ions.
  • the isolation implant 115 can be rendered insulating by implanting Oxygen (O 2 ), Protons (P + ), Iron (Fe), and the like.
  • the isolation implant 115 is used to provide lateral isolation between the low noise amplifier and the power amplifier.
  • the isolation implant 115 is positioned below one amplifier if that amplifier is at a higher elevation from a subsequent layer than the other, or between the amplifiers if they are located beside each other. This configuration also applies if a switch is heterogeneously integrated with a low noise amplifier.
  • the thickness of implant 115 can be less than or greater than the thickness of the PHEMT region 105 , preferably having a length of about 10 ⁇ m to about 10,000 ⁇ m, a width of about 10 ⁇ m to about 1000 ⁇ m and a depth of about 1 ⁇ m to about 2 ⁇ m.
  • the isolation implant 115 can be introduced by forming a cavity in the PHEMT region 105 and selectively growing the isolation layer 115 inside the cavity.
  • FIG. 4 shows a buffer layer 120 deposited on the top surface of the PHEMT region 105 .
  • the buffer layer 120 is an insulating material, such as Aluminum Gallium Antimonide (AlGaSb).
  • an active layer 125 can be grown or deposited on the buffer layer 120 , as shown in FIG. 5 .
  • the active layer 125 has channel and barrier layers, for example, the channel is Indium Arsenide (InAs) with a thickness of about 0.15 ⁇ n, and the barrier is Aluminum Antimonide (AlSb) with a thickness of about 0.02 ⁇ m.
  • the active layer 125 is deposited on top of the buffer layer 120 to allow for high electron mobility. It can be envisioned that multiple layers of AlSb and InAs can be grown or stacked on top of one another, for example, in the following sequence: AlSb, InAs, AlSb.
  • a protective cap (not shown) of Indium Aluminum Arsenide (InAlAs), Indium Arsenide (InAs), Gallium Antimonide (GaSb) or Aluminum Gallium Antimonide (AlGaSb) is grown on top of the active layer 125 .
  • InAlAs Indium Aluminum Arsenide
  • InAs Indium Arsenide
  • GaSb Gallium Antimonide
  • AlGaSb Aluminum Gallium Antimonide
  • the active layer 125 is etched in the region 130 on a second end 132 of the substrate 100 where the power amplifier is located.
  • the resulting exposed buffer layer 120 on the second end 132 is further etched to provide a cavity 135 that extends to the PHEMT region 105 , as shown in FIG. 7 .
  • the region 130 and the cavity 135 can be formed by selectively depositing the buffer layer 120 and the active layer 125 on the first end 112 using masking and growth techniques known in the art.
  • metal contacts shown generally as 140 and 160 in FIG. 8 , are deposited on the active layer 125 and the PHEMT region 105 , respectively.
  • Metal contact 140 has a drain contact 145 , a gate contact 150 and a source contact 155 .
  • metal contact 160 has a drain contact 165 , a gate contact 170 and a source contact 175 .
  • the resulting configuration is a bi-level device 180 that heterogeneously integrate a low-noise amplifier with contacts 140 on the first end 112 and a power amplifier with contacts 160 on the second end 132 .
  • the bi-level device 180 can heterogeneously integrate a low-noise amplifier on the first end 112 and a switch on the second end 132 .
  • the power amplifier can be positioned on the first end 112 above the isolation implant 115 , while the low-noise amplifier is located on the second end 132 inside the cavity 135 .
  • more than one implant 105 can be used to isolate the power amplifier and the low-noise amplifier from one another. If a one level configuration is used instead of the bi-level configuration, the implant 115 can be positioned in between the power amplifier or switch and the low-noise amplifier at a predetermined depth sufficient to isolate the large voltages used for the power amplifier.
  • the conducting layer is described in the context of a pseudomorphic high electron mobility transistor, the conducting layer may be used for other applications, such as, but not limited to, Metal-Semiconductor Field Effect Transistors (MESFETs), Metal-Insulator-Semiconductor Field-Effect Transistor (MISFET), or Heterostructure Field Effect Transistors (HFETs).
  • MESFETs Metal-Semiconductor Field Effect Transistors
  • MISFET Metal-Insulator-Semiconductor Field-Effect Transistor
  • HFETs Heterostructure Field Effect Transistors

Abstract

A transistor heterogeneously integrating a power amplifier or switch with a low-noise amplifier having a substrate wafer selected from a group consisting of Gallium Arsenide (GaAs), Indium Phosphate (InP) and Gallium Antimonide (GaSb), the substrate having a first end and a second end, a conducting layer above the first end of the substrate, an isolation implant providing lateral isolation in the conducting layer, a first active layer deposited above the conducting layer and configured for the low-noise amplifier, and a buffer layer deposited above the conducting layer and configured for the low-noise amplifier.

Description

    CLAIM OF PRIORITY UNDER 35 U.S.C. §120
  • This application is a continuation of and claims the benefit and priority of U.S. application Ser. No. 11/521,011, now U.S. Pat. No. 7,808,016, entitled “HETEROGENEOUS INTEGRATION OF LOW NOISE AMPLIFIERS WITH POWER AMPLIFIERS OR SWITCHES,” filed Sep. 14, 2006, which is assigned to the assignee hereof and hereby expressly incorporated by reference herein.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates generally to High Electron Mobility Transistors (HEMTs). More particularly, the invention relates to a heterogeneous integration of low noise HEMT amplifiers with Pseudomorphic HEMT (PHEMT) power amplifiers or switches.
  • 2. Description of Related Art
  • When donors are placed in a material with a higher conduction band energy than the channel, and close to the channel, they create an electron gas with high electron mobility in the channel. Transistors that implement this concept are known in the art as High Electron Mobility Transistors (HEMT).
  • Most HEMTs require at least two materials: barrier and channel materials. The barrier material that contains the donor must have a higher conduction band energy, but also improves the device breakdown by having a wider bandgap to accommodate high fields. The channel material that makes up the conducting layer is selected based on the transport properties of the electrons, with the bandgap also being a consideration to support high fields and hence high voltages. Typically, a HEMT system is made from Gallium Arsenide (GaAs) with Aluminum Gallium Arsenide (AlGaAs). The donor-containing wide bandgap material is AlGaAs and the conducting channel is GaAs.
  • HEMTs can be used for Monolithic Microwave Integrated Circuits (MMICs) such as low-noise amplifiers for receivers and power amplifiers for transmitters. There are four main reasons for their resilience. First, parasitic device resistance is small due to the high electron mobility (5,000-35,000 cm2/Vs) and carrier concentrations (about 1×1012 cm−2 to about 5×1012 cm−2) achievable across the various material choices. Second, the electron velocities for the channel materials are high with peak values between about 1×107 cm2/s to about 5×107 cm2/s. Third, the technology has enjoyed relatively simple performance gains through gate-length scaling with 100 nm long gates now in production and down to 25 nm in development. Fourth, for power amplifiers, the HEMTs offer useable breakdown voltages and do not suffer from thermal runaway, which is a weakness of competing bipolar technologies.
  • High performance MMICs of up to 100 GHz use a Pseudomorphic HEMT (PHEMT) technology. PHEMT devices have a small amount of Indium (In) added to the GaAs channel. The growth of the channel is constrained to a critical thickness, that if exceeded, dislocations nucleate and the device properties degrade, and if maintained below the critical thickness, the channel material remains pseudomorphic with the same in-plane lattice constant as the GaAs host substrate but a larger lattice constant in the growth direction. The advantage of using a PHEMT device is higher conductivity channels with higher electron velocities and improved minimum noise figures. However, the disadvantage of using a PHEMT is a lower breakdown voltage when the concentration of Indium (In) is greater than the amount required for lattice matching to the substrate or barrier.
  • While prior art transistors can be optimized for either a low-noise amplifier for receivers or a power amplifier for transmitters, they cannot be optimized simultaneously with one another on the same substrate. This is because the low-noise amplifier cannot withstand large voltages used for the power amplifier without sacrificing its low noise characteristics. Separate substrates are typically used when a device, such as a telephone, utilizes a receiver and a transmitter. With an increasing demand for improved transistors, there remains a continuing need in the art for transistor that can simultaneously sustain high power drive and high sensitivity as in a low-noise amplifier.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The exact nature of this invention, as well as the objects and advantages thereof, will become readily apparent from consideration of the following specification in conjunction with the accompanying drawings in which like reference numerals designate like parts throughout the figures thereof and wherein:
  • FIG. 1 schematically shows in cross section a step of a method for manufacturing a heterogeneous integration of low noise amplifiers with power amplifiers or switches on the same substrate in accordance with one embodiment of the invention.
  • FIG. 2 schematically shows in cross section a step of a method for manufacturing a heterogeneous integration of low noise amplifiers with power amplifiers or switches on the same substrate in accordance with one embodiment of the invention.
  • FIG. 3 schematically shows in cross section a step of a method for manufacturing a heterogeneous integration of low noise amplifiers with power amplifiers or switches on the same substrate in accordance with one embodiment of the invention.
  • FIG. 4 schematically shows in cross section a step of a method for manufacturing a heterogeneous integration of low noise amplifiers with power amplifiers or switches on the same substrate in accordance with one embodiment of the invention.
  • FIG. 5 schematically shows in cross section a step of a method for manufacturing a heterogeneous integration of low noise amplifiers with power amplifiers or switches on the same substrate in accordance with one embodiment of the invention.
  • FIG. 6 schematically shows in cross section a step of a method for manufacturing a heterogeneous integration of low noise amplifiers with power amplifiers or switches on the same substrate in accordance with one embodiment of the invention.
  • FIG. 7 schematically shows in cross section a step of a method for manufacturing a heterogeneous integration of low noise amplifiers with power amplifiers or switches on the same substrate in accordance with one embodiment of the invention.
  • FIG. 8 schematically shows in cross section a step of a method for manufacturing a heterogeneous integration of low noise amplifiers with power amplifiers or switches on the same substrate in accordance with one embodiment of the invention.
  • SUMMARY OF THE INVENTION
  • One embodiment of the invention includes a transistor heterogeneously integrating a power amplifier or switch with a low-noise amplifier having a substrate wafer suitable for high electron mobility transistors. The substrate wafer has a first end and a second end, a conducting layer above the first end of the substrate wafer, an isolation implant that renders the conducting layer insulating, a buffer layer deposited above the conducting layer and configured for the low-noise amplifier, and an active layer deposited above the second end of the substrate wafer and configured for the low-noise amplifier.
  • In one embodiment, the substrate wafer can be Gallium Arsenide (GaAs), Indium Phosphide (InP) or Gallium Antimonide (GaSb). The active layer can include a layer of Indium Arsenide (InAs) and/or a layer of Aluminum Antimonide (AlSb). In addition, the conducting layer may be a pseudomorphic high electron mobility layer such as an active Gallium Arsenide (GaAs) layer.
  • The method for heterogeneously integrating the power amplifier or switch with the low-noise amplifier includes depositing conducting layer above a substrate wafer suitable for high electron mobility transistors, implanting ions in a first end of the conducting layer, depositing a first active layer above the first end of the conducting layer and configured for the low-noise amplifier, and depositing metal contacts for the low-noise amplifier at the first end of the conducting layer and for the power amplifier or switch at a second end of the conducting layer.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Methods and systems that implement the embodiments of the various features of the invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the invention and not to limit the scope of the invention. Reference in the specification to “one embodiment” or “an embodiment” is intended to indicate that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least an embodiment of the invention. The appearances of the phrase “in one embodiment” or “an embodiment” in various places in the specification are not necessarily all referring to the same embodiment. Throughout the drawings, reference numbers are re-used to indicate correspondence between referenced elements.
  • Prior art transistors are typically used for either a low-noise amplifier for receivers or a power amplifier for transmitters. Low-noise amplifiers and power amplifiers were not combined together on the same substrate because the low-noise amplifier cannot withstand large voltages used for the power amplifier. Separate substrates were typically used when a device, such as a cell phone, utilizes a receiver and a transmitter.
  • The invention allows for low-noise amplifiers to be heterogeneously integrated with power amplifiers or switches. The fabrication of this heterogeneous integration is illustrated in FIGS. 1-8, according to one method embodying the invention.
  • FIG. 1 shows a substrate wafer 100, such as Gallium Arsenide (GaAs), Indium Phosphide (InP) or Gallium Antimonide (GaSb) substrates, used as the base substrate for integrating low noise amplifiers with power amplifiers. Preferably, the substrate wafer 100 is semi-insulating and suitable for high electron mobility transistors (HEMT).
  • Deposited on the top surface of the substrate wafer 100 is conductive layer, such as a PHEMT region 105 shown in FIG. 2. The PHEMT region 105 has a lattice constant approximately the same as the substrate wafer 100. In one embodiment, the PHEMT region 105 has a buffer layer, an active layer and a cap layer. Gallium Arsenide/Aluminum Gallium Arsenide (GaAs/AlGaAs) is used as a buffer layer when the substrate wafer 100 is GaAs. The buffer layer typically has a thickness of about 0.3 μm. The active layer has barrier and channel materials, for example, about 0.03 μm of AlGaAs barrier material and about 0.01 μm of Indium Gallium Arsenide (InGaAs) channel material. The cap layer can have GaAs with n+doping, preferably, having a thickness of about 0.03 μm.
  • FIG. 3 shows an isolation implant 115 formed by bombarding the PHEMT region 105 with ions. The isolation implant 115 can be rendered insulating by implanting Oxygen (O2), Protons (P+), Iron (Fe), and the like. The isolation implant 115 is used to provide lateral isolation between the low noise amplifier and the power amplifier. In one embodiment, the isolation implant 115 is positioned below one amplifier if that amplifier is at a higher elevation from a subsequent layer than the other, or between the amplifiers if they are located beside each other. This configuration also applies if a switch is heterogeneously integrated with a low noise amplifier. The thickness of implant 115 can be less than or greater than the thickness of the PHEMT region 105, preferably having a length of about 10 μm to about 10,000 μm, a width of about 10 μm to about 1000 μm and a depth of about 1 μm to about 2 μm.
  • It can be envisioned by a person skilled in the art that instead of bombarding ions to form an isolation implant 115, the isolation implant 115 can be introduced by forming a cavity in the PHEMT region 105 and selectively growing the isolation layer 115 inside the cavity.
  • FIG. 4 shows a buffer layer 120 deposited on the top surface of the PHEMT region 105. In one embodiment, the buffer layer 120 is an insulating material, such as Aluminum Gallium Antimonide (AlGaSb).
  • To build low-noise amplifiers, an active layer 125 can be grown or deposited on the buffer layer 120, as shown in FIG. 5. In one embodiment, the active layer 125 has channel and barrier layers, for example, the channel is Indium Arsenide (InAs) with a thickness of about 0.15 μn, and the barrier is Aluminum Antimonide (AlSb) with a thickness of about 0.02 μm. The active layer 125 is deposited on top of the buffer layer 120 to allow for high electron mobility. It can be envisioned that multiple layers of AlSb and InAs can be grown or stacked on top of one another, for example, in the following sequence: AlSb, InAs, AlSb. In one embodiment, a protective cap (not shown) of Indium Aluminum Arsenide (InAlAs), Indium Arsenide (InAs), Gallium Antimonide (GaSb) or Aluminum Gallium Antimonide (AlGaSb) is grown on top of the active layer 125.
  • In FIG. 6, the active layer 125 is etched in the region 130 on a second end 132 of the substrate 100 where the power amplifier is located. The resulting exposed buffer layer 120 on the second end 132 is further etched to provide a cavity 135 that extends to the PHEMT region 105, as shown in FIG. 7. In one embodiment, the region 130 and the cavity 135 can be formed by selectively depositing the buffer layer 120 and the active layer 125 on the first end 112 using masking and growth techniques known in the art.
  • Next, metal contacts, shown generally as 140 and 160 in FIG. 8, are deposited on the active layer 125 and the PHEMT region 105, respectively. Metal contact 140 has a drain contact 145, a gate contact 150 and a source contact 155. Similarly, metal contact 160 has a drain contact 165, a gate contact 170 and a source contact 175. The resulting configuration is a bi-level device 180 that heterogeneously integrate a low-noise amplifier with contacts 140 on the first end 112 and a power amplifier with contacts 160 on the second end 132. In one embodiment, the bi-level device 180 can heterogeneously integrate a low-noise amplifier on the first end 112 and a switch on the second end 132.
  • It can be envisioned that alternate configurations can be used to heterogeneously integrate a low-noise amplifier with a power amplifier or switch. For example, the power amplifier can be positioned on the first end 112 above the isolation implant 115, while the low-noise amplifier is located on the second end 132 inside the cavity 135. Furthermore, more than one implant 105 can be used to isolate the power amplifier and the low-noise amplifier from one another. If a one level configuration is used instead of the bi-level configuration, the implant 115 can be positioned in between the power amplifier or switch and the low-noise amplifier at a predetermined depth sufficient to isolate the large voltages used for the power amplifier.
  • While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other changes, combinations, omissions, modifications and substitutions, in addition to those set forth in the above paragraphs, are possible. For example, while the conducting layer is described in the context of a pseudomorphic high electron mobility transistor, the conducting layer may be used for other applications, such as, but not limited to, Metal-Semiconductor Field Effect Transistors (MESFETs), Metal-Insulator-Semiconductor Field-Effect Transistor (MISFET), or Heterostructure Field Effect Transistors (HFETs).
  • Those skilled in the art will appreciate that various adaptations and modifications of the just described preferred embodiment can be configured without departing from the scope and spirit of the invention. Therefore, it is to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described herein.

Claims (29)

1. A transistor heterogeneously integrating a power amplifier or switch with a low-noise amplifier, the transistor comprising:
a substrate suitable for high electron mobility transistors and having a first region and a second region;
a first active layer deposited above the substrate;
an isolation implant deposited within the first region of the substrate, the isolation implant extending through the first active layer; and
a second active layer deposited above the isolation implant, the second active layer covering only the first region of the substrate.
2. The transistor of claim 1, wherein the substrate is selected from a group consisting of Gallium Arsenide (GaAs), Indium Phosphate (InP) and Gallium Antimonide (GaSb).
3. The transistor of claim 1, wherein the first active layer includes a pseudomorphic high electron mobility (PHEM) region.
4. The transistor of claim 1, wherein the first active layer actuates the power amplifier or switch, and wherein the second active layer actuates the low noise amplifier.
5. The transistor of claim 4, wherein the first active layer has an Indium Gallium Arsenide (InGaAs) channel layer and an Aluminum Gallium Arsenide (AlGaAs) barrier layer.
6. The transistor of claim 5, further comprising a first buffer layer deposited between the first active layer and the substrate, the first buffer layer is formed with a material selected from a group consisting of Gallium Arsenide (GaAs), Aluminum Gallium Arsenide (AlGaAs), and combinations thereof, wherein the isolated implant extends through the first buffer layer.
7. The transistor of claim 4, wherein the second active layer has an Indium Arsenide (InAs) channel layer and an Aluminum Antimonide (AlSb) barrier layer.
8. The transistor of claim 7, further comprising a second buffer layer deposited between the isolation implant and the second active layer, the second buffer layer is formed with Aluminum Gallium Antimonide (AlGaSb), wherein the second buffer layer and the first active layer define a well.
9. The transistor of claim 1, wherein the first active layer actuates the low noise amplifier and the second active layer actuates the power amplifier or switch.
10. The transistor of claim 9, wherein the first active layer has an Indium Arsenide (InAs) channel layer and an Aluminum Antimonide (AlSb) barrier layer.
11. The transistor of claim 10, further comprising a first buffer layer deposited between the first active layer and the substrate, the first buffer layer is formed with Aluminum Gallium Antimonide (AlGaSb), wherein the isolated implant extends through the first buffer layer.
12. The transistor of claim 9, wherein the second active layer has an Indium Gallium Arsenide (InGaAs) channel layer and an Aluminum Gallium Arsenide (AlGaAs) barrier layer.
13. The transistor of claim 12, further comprising a second buffer layer deposited between the isolation implant and the second active layer, the second buffer layer is formed with a material selected from a group consisting of Gallium Arsenide (GaAs), Aluminum Gallium Arsenide (AlGaAs), and combinations thereof, wherein the second buffer layer and the first active layer define a well.
14. The transistor of claim 1, further comprising metal contacts deposited above the first and second active layers.
15. A transistor heterogeneously integrating a power amplifier or switch with a low-noise amplifier comprising:
a substrate having a first region and a second region;
a first active layer deposited above the substrate;
an isolation implant deposited within the first region of the substrate, the isolation implant providing lateral isolation for the first active layer;
a second active layer deposited above the isolation implant, the second active layer configured to be substantially free from covering the first active layer; and
a plurality of metal contacts disposed on the first and second active layers.
16. The transistor of claim 15, wherein the substrate is selected from a group consisting of Gallium Arsenide (GaAs), Indium Phosphate (InP) and Gallium Antimonide (GaSb), and wherein the first active layer includes a pseudomorphic high electron mobility (PHEM) region.
17. The transistor of claim 15, further comprising:
a first buffer layer deposited between the first active layer and the substrate, such that the isolated implant extends through the first buffer layer; and
a second buffer layer deposited between the isolation implant and the second active layer, such that the second buffer layer and the first active layer define a well.
18. The transistor of claim 17, wherein the first active layer actuates the power amplifier or switch, and wherein the second active layer actuates the low noise amplifier.
19. The transistor of claim 18, wherein:
the first active layer has an Indium Gallium Arsenide (InGaAs) channel layer and an Aluminum Gallium Arsenide (AlGaAs) barrier layer,
the first buffer layer is formed with a material selected from a group consisting of Gallium Arsenide (GaAs), Aluminum Gallium Arsenide (AlGaAs), and combinations thereof,
the second active layer has an Indium Arsenide (InAs) channel layer and an Aluminum Antimonide (AlSb) barrier layer, and
the second buffer layer is formed with Aluminum Gallium Antimonide (AlGaSb).
20. The transistor of claim 17, wherein the first active layer actuates the low noise amplifier and the second active layer actuates the power amplifier or switch.
21. The transistor of claim 20, wherein:
the first active layer has an Indium Arsenide (InAs) channel layer and an Aluminum Antimonide (AlSb) barrier layer,
the first buffer layer is formed with Aluminum Gallium Antimonide (AlGaSb), wherein the isolated implant extends through the first buffer layer,
the second active layer has an Indium Gallium Arsenide (InGaAs) channel layer and an Aluminum Gallium Arsenide (AlGaAs) barrier layer, and
the second buffer layer is formed with a material selected from a group consisting of Gallium Arsenide (GaAs), Aluminum Gallium Arsenide (AlGaAs), and combinations thereof.
22. A method for heterogeneously integrating a power amplifier or switch with a low-noise amplifier, comprising the steps of:
depositing a first active layer above a substrate suitable for high electron mobility transistors;
implanting ions in a first region of the first active layer to form an isolation implant;
depositing a second active layer above the isolation implant; and
depositing metal contacts on the second active layer and on a second region of the first active layer.
23. The method of claim 22, wherein the substrate is selected from a group consisting of Gallium Arsenide (GaAs), Indium Phosphate (InP) and Gallium Antimonide (GaSb).
24. The method of claim 22, further comprising depositing a first buffer layer on the substrate before depositing the first active layer.
25. The method of claim 22, further comprising depositing a second buffer layer on the isolation implant and substantially within the first region of the first active layer.
26. The method of claim 22, wherein the first active layer actuates the power amplifier or switch, and the second active layer activates the low noise amplifier.
27. The method of claim 26, further comprising:
depositing a first buffer layer on the substrate before depositing the first active layer, the first buffer layer formed with a material selected from a group consisting of Gallium Arsenide (GaAs), Aluminum Gallium Arsenide (AlGaAs), and combinations thereof; and
depositing a second buffer layer on isolation implant and substantially within the first region of the first active layer, the second buffer layer formed with Aluminum Gallium Antimonide (AlGaSb),
wherein the first active layer has an Indium Gallium Arsenide (InGaAs) channel layer and an Aluminum Gallium Arsenide (AlGaAs) barrier layer, and
wherein the second active layer has an Indium Arsenide (InAs) channel layer and an Aluminum Antimonide (AlSb) barrier layer.
28. The method of claim 22, wherein the second active layer actuates the power amplifier or switch, and the first active layer activates the low noise amplifier.
29. The method of claim 28, further comprising:
depositing a first buffer layer on the substrate before depositing the first active layer, the first buffer layer formed with Aluminum Gallium Antimonide (AlGaSb); and
depositing a second buffer layer on isolation implant and substantially within the first region of the first active layer, the second buffer layer formed with a material selected from a group consisting of Gallium Arsenide (GaAs), Aluminum Gallium Arsenide (AlGaAs), and combinations thereof,
wherein the second active layer has an Indium Gallium Arsenide (InGaAs) channel layer and an Aluminum Gallium Arsenide (AlGaAs) barrier layer, and
wherein the first active layer has an Indium Arsenide (InAs) channel layer and an Aluminum Antimonide (AlSb) barrier layer.
US12/873,027 2006-09-14 2010-08-31 Heterogeneous integration of low noise amplifiers with power amplifiers or switches Abandoned US20110018034A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/873,027 US20110018034A1 (en) 2006-09-14 2010-08-31 Heterogeneous integration of low noise amplifiers with power amplifiers or switches
US13/031,997 US20110143518A1 (en) 2006-09-14 2011-02-22 Heterogeneous integration of low noise amplifiers with power amplifiers or switches

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/521,011 US7808016B2 (en) 2006-09-14 2006-09-14 Heterogeneous integration of low noise amplifiers with power amplifiers or switches
US12/873,027 US20110018034A1 (en) 2006-09-14 2010-08-31 Heterogeneous integration of low noise amplifiers with power amplifiers or switches

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/521,011 Continuation US7808016B2 (en) 2006-09-14 2006-09-14 Heterogeneous integration of low noise amplifiers with power amplifiers or switches

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/031,997 Division US20110143518A1 (en) 2006-09-14 2011-02-22 Heterogeneous integration of low noise amplifiers with power amplifiers or switches

Publications (1)

Publication Number Publication Date
US20110018034A1 true US20110018034A1 (en) 2011-01-27

Family

ID=39187671

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/521,011 Expired - Fee Related US7808016B2 (en) 2006-09-14 2006-09-14 Heterogeneous integration of low noise amplifiers with power amplifiers or switches
US12/873,027 Abandoned US20110018034A1 (en) 2006-09-14 2010-08-31 Heterogeneous integration of low noise amplifiers with power amplifiers or switches
US13/031,997 Abandoned US20110143518A1 (en) 2006-09-14 2011-02-22 Heterogeneous integration of low noise amplifiers with power amplifiers or switches

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/521,011 Expired - Fee Related US7808016B2 (en) 2006-09-14 2006-09-14 Heterogeneous integration of low noise amplifiers with power amplifiers or switches

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/031,997 Abandoned US20110143518A1 (en) 2006-09-14 2011-02-22 Heterogeneous integration of low noise amplifiers with power amplifiers or switches

Country Status (1)

Country Link
US (3) US7808016B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7808016B2 (en) * 2006-09-14 2010-10-05 Teledyne Licensing, Llc Heterogeneous integration of low noise amplifiers with power amplifiers or switches
GB2533767B (en) * 2014-12-16 2019-06-19 Leonardo Mw Ltd Integrated circuits and methods of manufacturing.

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733283A (en) * 1983-03-14 1988-03-22 Fujitsu Limited GaAs semiconductor device
US5412224A (en) * 1992-06-08 1995-05-02 Motorola, Inc. Field effect transistor with non-linear transfer characteristic
US5430310A (en) * 1991-03-28 1995-07-04 Asahi Kasei Kogyo Kabushiki Kaisha Field effect transistor
US5448084A (en) * 1991-05-24 1995-09-05 Raytheon Company Field effect transistors on spinel substrates
US5739559A (en) * 1994-03-17 1998-04-14 Hitachi, Ltd. Compound semiconductor integrated circuit with a particular high resistance layer
US6153897A (en) * 1993-04-30 2000-11-28 Fujitsu Limited Heterojunction compound semiconductor device and method of manufacturing the same
US6215136B1 (en) * 1992-11-10 2001-04-10 Texas Instruments Incorporated Integrated circuit capable of low-noise and high-power microwave operation
US20020131462A1 (en) * 2001-03-15 2002-09-19 Chao-Kun Lin Intracavity contacted long wavelength VCSELs with buried antimony layers
US20030015767A1 (en) * 2001-07-17 2003-01-23 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices with integrated control components
US6703638B2 (en) * 2001-05-21 2004-03-09 Tyco Electronics Corporation Enhancement and depletion-mode phemt device having two ingap etch-stop layers
US20060035467A1 (en) * 2004-08-12 2006-02-16 Nam Peter S Method for etching mesa isolation in antimony-based compound semiconductor structures
US20060215718A1 (en) * 2005-03-28 2006-09-28 Nat. Inst. Of Inf. & Comm. Tech., Inc. Admin. Agcy Quantum cascade laser
US20060246700A1 (en) * 1998-12-21 2006-11-02 Johnson Ralph H Migration enhanced epitaxy fabrication of active regions having quantum wells
US7808016B2 (en) * 2006-09-14 2010-10-05 Teledyne Licensing, Llc Heterogeneous integration of low noise amplifiers with power amplifiers or switches

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7655529B1 (en) * 2004-08-20 2010-02-02 Hrl Laboratories, Llc InP based heterojunction bipolar transistors with emitter-up and emitter-down profiles on a common wafer

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733283A (en) * 1983-03-14 1988-03-22 Fujitsu Limited GaAs semiconductor device
US5430310A (en) * 1991-03-28 1995-07-04 Asahi Kasei Kogyo Kabushiki Kaisha Field effect transistor
US5448084A (en) * 1991-05-24 1995-09-05 Raytheon Company Field effect transistors on spinel substrates
US5412224A (en) * 1992-06-08 1995-05-02 Motorola, Inc. Field effect transistor with non-linear transfer characteristic
US6215136B1 (en) * 1992-11-10 2001-04-10 Texas Instruments Incorporated Integrated circuit capable of low-noise and high-power microwave operation
US6153897A (en) * 1993-04-30 2000-11-28 Fujitsu Limited Heterojunction compound semiconductor device and method of manufacturing the same
US5739559A (en) * 1994-03-17 1998-04-14 Hitachi, Ltd. Compound semiconductor integrated circuit with a particular high resistance layer
US20060246700A1 (en) * 1998-12-21 2006-11-02 Johnson Ralph H Migration enhanced epitaxy fabrication of active regions having quantum wells
US20020131462A1 (en) * 2001-03-15 2002-09-19 Chao-Kun Lin Intracavity contacted long wavelength VCSELs with buried antimony layers
US6703638B2 (en) * 2001-05-21 2004-03-09 Tyco Electronics Corporation Enhancement and depletion-mode phemt device having two ingap etch-stop layers
US20030015767A1 (en) * 2001-07-17 2003-01-23 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices with integrated control components
US20060035467A1 (en) * 2004-08-12 2006-02-16 Nam Peter S Method for etching mesa isolation in antimony-based compound semiconductor structures
US20060215718A1 (en) * 2005-03-28 2006-09-28 Nat. Inst. Of Inf. & Comm. Tech., Inc. Admin. Agcy Quantum cascade laser
US7808016B2 (en) * 2006-09-14 2010-10-05 Teledyne Licensing, Llc Heterogeneous integration of low noise amplifiers with power amplifiers or switches

Also Published As

Publication number Publication date
US20110143518A1 (en) 2011-06-16
US20080067559A1 (en) 2008-03-20
US7808016B2 (en) 2010-10-05

Similar Documents

Publication Publication Date Title
US8643118B2 (en) Bipolar field effect transistor structures and methods of forming the same
US8120066B2 (en) Single voltage supply pseudomorphic high electron mobility transistor (PHEMT) power device and process for manufacturing the same
US7655962B2 (en) Enhancement mode insulated gate heterostructure field-effect transistor with electrically isolated RF-enhanced source contact
US20040021152A1 (en) Ga/A1GaN Heterostructure Field Effect Transistor with dielectric recessed gate
US20120175681A1 (en) Method and Layer Structure for Preventing Intermixing of Semiconductor Layers
US20090230431A1 (en) Semiconductor device and manufacturing method thereof
US11869887B2 (en) Semiconductor device and manufacturing method thereof
JP2008117885A (en) Field-effect transistor and method of manufacturing the same
US20220375925A1 (en) Semiconductor device and manufacturing method thereof
CN111868931A (en) Highly scaled linear GaN HEMT structure
US20100314695A1 (en) Self-aligned vertical group III-V transistor and method for fabricated same
US4652896A (en) Modulation doped GaAs/AlGaAs field effect transistor
US20110018034A1 (en) Heterogeneous integration of low noise amplifiers with power amplifiers or switches
US5670804A (en) PN-junction gate FET
WO2009040509A1 (en) A multilayer semiconductor structure, a bifet includin such a structure, and a multilayer semiconductor substrate
US20220375927A1 (en) Semiconductor device and manufacturing method thereof
JPS6242569A (en) Field effect transistor
KR100553963B1 (en) Field effect transistor
JP5417700B2 (en) Semiconductor device and manufacturing method thereof
Xu et al. 50-nm metamorphic high-electron-mobility transistors with high gain and high breakdown voltages
US20030080348A1 (en) Heterojunction field-effect transistor
US5942772A (en) Semiconductor device and method of manufacturing the same
JP2000195871A (en) Semiconductor device and manufacture thereof
JP2000307102A (en) Field-effect transistor and manufacture thereof
Lin et al. 0.1 um n+-InAs-AlSb-InAs HEMT MMIC Technology for Phased-Array Applications

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION