US20110042887A1 - Document deskewing module and methods of operating a document deskewing module for a self-service bunch document depositing terminal - Google Patents

Document deskewing module and methods of operating a document deskewing module for a self-service bunch document depositing terminal Download PDF

Info

Publication number
US20110042887A1
US20110042887A1 US12/543,095 US54309509A US2011042887A1 US 20110042887 A1 US20110042887 A1 US 20110042887A1 US 54309509 A US54309509 A US 54309509A US 2011042887 A1 US2011042887 A1 US 2011042887A1
Authority
US
United States
Prior art keywords
document
drive rollers
rollers
transport path
bunch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/543,095
Inventor
Fredrik L.N. Kallin
Robert J. Ross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NCR Voyix Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/543,095 priority Critical patent/US20110042887A1/en
Assigned to NCR CORPORATION reassignment NCR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KALLIN, FREDRIK L.N., ROSS, ROBERT J.
Priority to EP10172091.0A priority patent/EP2287099B1/en
Publication of US20110042887A1 publication Critical patent/US20110042887A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H9/00Registering, e.g. orientating, articles; Devices therefor
    • B65H9/16Inclined tape, roller, or like article-forwarding side registers
    • B65H9/166Roller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/10Rollers
    • B65H2404/13Details of longitudinal profile
    • B65H2404/131Details of longitudinal profile shape
    • B65H2404/1313Details of longitudinal profile shape concave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/10Rollers
    • B65H2404/13Details of longitudinal profile
    • B65H2404/131Details of longitudinal profile shape
    • B65H2404/1316Details of longitudinal profile shape stepped or grooved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/10Rollers
    • B65H2404/14Roller pairs
    • B65H2404/141Roller pairs with particular shape of cross profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/10Rollers
    • B65H2404/14Roller pairs
    • B65H2404/144Roller pairs with relative movement of the rollers to / from each other
    • B65H2404/1442Tripping arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/19Specific article or web
    • B65H2701/1912Banknotes, bills and cheques or the like

Definitions

  • the present invention relates to self-service document depositing terminals, and is particularly directed to a document deskewing module for a self-service bunch document depositing terminal, such as a bunch document depositing automated teller machine (ATM), and method of operating such a deskewing module.
  • a document deskewing module for a self-service bunch document depositing terminal, such as a bunch document depositing automated teller machine (ATM), and method of operating such a deskewing module.
  • ATM automated teller machine
  • an ATM customer In a typical bunch document depositing ATM, an ATM customer is allowed to deposit a bunch of documents of the same type such as currency notes or checks (without having to place any of the documents in a deposit envelope) in a publicly accessible, unattended environment.
  • the ATM customer inserts a user identification card through a user card slot at the ATM, enters the amount of the bunch of documents being deposited, and inserts the bunch of documents to be deposited through a slot of a bunch document acceptor.
  • a document transport mechanism receives the inserted bunch of documents and transports the documents one-by-one in a forward direction along a document transport path to a number of locations within the ATM to process the documents.
  • the document transport mechanism transports the entire bunch of documents in a manner to return the bunch of documents to the ATM customer. If the entire bunch of documents is accepted for deposit, the amount of the bunch of documents is deposited into the ATM customer's account and the documents are transported one-by one to a number of storage bins within the ATM. If a bunch of documents is a bunch of checks, an endorser printer prints an endorsement onto each check as the check is being transported to and stored in a check storage bin. If a bunch of documents is a bunch of currency notes, then each currency note is transported to and stored in a currency storage bin. Documents in the different storage bins within the ATM are periodically picked up and physically transported via courier to a back office facility of a financial institution for further processing.
  • a document may become skewed as the document is being transported along the document transport path to the different locations with the ATM to process the document.
  • Document deskewing mechanisms are known. However, these known document deskewing mechanisms are designed to deskew only one type of document (e.g., either a currency note or a check, but not both). When a document deskewing mechanism is designed to deskew only one type of document, the mechanism is effective in deskewing a document of only that particular type. This is because different types of documents are of different sizes, different thicknesses, different paper grades, or the like, for examples. It would be desirable to provide a document deskewing mechanism which is effective to deskew a bunch of documents containing multiple types of documents such as a mixture of checks and currency notes.
  • a document deskewing module for a self-service bunch document depositing terminal.
  • the document deskewing module comprises a set of sensors arranged to detect when a document transported along a document transport path from a mixed bunch of documents including documents of a first type and documents of a second type which is different from the first type is deskewed, a first set of drive rollers in the form of hard drive rollers disposed along the document transport path, a first set of idler rollers moveable towards and away from the hard drive rollers, a second set of drive rollers in the form of soft drive rollers disposed along the document transport path, a second set of idler rollers moveable towards and away from the soft drive rollers, and a controller arranged to control operation of the first and second sets of idler rollers in response to a number of signals from the set of sensors such that either only the first set of idlers are interacting with the hard drive rollers or only the second set of idlers is interacting with the soft drive rollers at any one
  • FIG. 1 is a left-front perspective view of a bunch document depositing automated teller machine (ATM) constructed in accordance with one embodiment of the present invention
  • FIG. 2 is a simplified schematic diagram, looking approximately in the direction of arrow X in FIG. 1 , and illustrating a scalable deposit module (SDM) configured to operate in the ATM of FIG. 1 ;
  • SDM scalable deposit module
  • FIG. 3 is a left-front perspective view of the SDM of FIG. 2 ;
  • FIG. 4 is a top perspective view, looking approximately in the direction of arrow Y in FIG. 3 ;
  • FIG. 5 is a view similar to the top perspective view of FIG. 4 , with some parts removed to better illustrate parts of a document deskewing module constructed in accordance with one embodiment of the present invention.
  • FIG. 6 is a bottom view, looking approximately in the direction of arrow Z shown in FIG. 5 .
  • the present invention is directed to a document deskewing module for a self-service bunch document depositing terminal, such as a bunch document depositing automated teller machine (ATM), and methods of operating such a deskewing module.
  • a self-service bunch document depositing terminal such as a bunch document depositing automated teller machine (ATM)
  • ATM automated teller machine
  • a self-service bunch document depositing terminal in the form of an image-based bunch document depositing automated teller machine (ATM) 10 is illustrated.
  • the check depositing ATM 10 comprises a fascia 12 coupled to a chassis (not shown).
  • the fascia 12 defines an aperture 16 through which a camera (not shown) images a customer of the ATM 10 .
  • the fascia 12 also defines a number of slots for receiving and dispensing media items, and a tray 40 into which coins can be dispensed.
  • the slots include a statement output slot 42 , a receipt slot 44 , a card reader slot 46 , a cash slot 48 , another cash slot 50 , and a bunch document input/output slot 52 .
  • the slots 42 to 52 and tray 40 are arranged such that the slots and tray align with corresponding ATM modules mounted within the chassis of the ATM 10 .
  • the fascia 12 provides a user interface for allowing an ATM customer to execute a transaction.
  • the fascia 12 includes an encrypting keyboard 34 for allowing an ATM customer to enter transaction details.
  • a display 36 is provided for presenting screens to an ATM customer.
  • a fingerprint reader 38 is provided for reading a fingerprint of an ATM customer to identify the ATM customer.
  • the user interface features described above are all provided on an NCR PERSONAS (trademark) 6676 ATM, available from NCR Financial Solutions Group Limited, Discovery Centre, 3 Fulton Road, Dundee, DD2 4SW, Scotland.
  • FIG. 2 is a simplified schematic diagram (looking approximately in the direction of arrow X in FIG. 1 ) of part of the fascia 12 and main parts of the SDM 60 .
  • FIG. 3 is a left-front perspective view of the SDM 60 shown in FIG. 2 .
  • the SDM 60 of FIGS. 2 and 3 comprises five main units which include an infeed module 70 , a transport module 80 , a pocket module 90 , an escrow re-bunch module (ERBM) 99 , and a document deskewing module 200 .
  • the infeed module 70 receives a bunch of documents deposited into the bunch document input/output slot 52 , and transports the documents one-by-one to an inlet of the transport module 80 .
  • the dimensions of the infeed module 70 such as its run length, may vary depending upon the particular model ATM the SDM 60 is installed.
  • the structure and operation of the infeed module 70 are conventional and well known and, therefore, will not be described.
  • the transport module 80 includes a document transport mechanism which receives a document from the inlet adjacent to the infeed module 70 , and transports the document along a first document track portion 61 which is the main track portion.
  • the transport module 80 further includes a document diverter 82 which is operable to divert a document along a second document track portion 62 to the pocket module 90 , and a third document track portion 63 which leads to the ERBM 99 and then back to the infeed module 70 .
  • the third document track 103 allows a bunch of documents which has accumulated in the ERBM 99 to be transported back to the infeed module 70 .
  • the structure and operation of diverter 82 shown in FIG. 2 may be any suitable diverter which is capable of diverting a document along one of two different document transport paths. The structure and operation of diverter 82 are conventional and well known and, therefore, will not be described.
  • the transport module 80 further includes a magnetic ink character recognition (MICR) head 83 for reading magnetic details on a code line of a check.
  • the transport module 80 also includes an imager 84 including a front imaging camera 85 and a rear imaging camera 86 for capturing an image of each side of a check (front and rear).
  • An endorser printer 88 is provided for printing endorsements onto checks.
  • An image data memory 94 is provided for storing images of checks.
  • a controller 95 is provided for controlling the operation of the elements within the SDM 60 .
  • the pocket module 90 includes a check storage bin 91 ( FIG. 3 ) for storing processed checks.
  • the pocket module 90 further includes a currency storage bin 92 for storing processed currency notes.
  • the pocket module 90 also includes a reject bin 93 for storing rejected documents.
  • the structure and operation of the pocket module 90 are conventional and well known and, therefore, will not be described.
  • the SDM 60 processes a bunch of documents of different types (such as currency notes, checks, or a combination thereof).
  • a bunch of documents When a bunch of documents is being processed, each document of the bunch is separated at the infeed module 70 before it is individually processed. Each processed document is then re-assembled at the ERBM 99 to bunch the documents back together.
  • Bunch processing of different types of documents is sometimes referred to as “multiple-document processing”. Since individual documents are being bunched back together, an escrow module (such as the ERBM 99 shown in FIGS. 2 and 3 ) is needed.
  • the ERBM 99 is manufactured and available from Glory Products, located in Himeji, Japan. The ERBM 99 allows a bunch of documents to be processed in a single transaction.
  • the bunch of documents is transported via the third document track portion 63 back to the infeed module 70 to return the unprocessed bunch of documents to the ATM customer.
  • the document deskewing module 200 includes a top guide assembly 202 ( FIG. 4 ) which guides a document in the direction of arrow A along the first document track portion 61 ( FIG. 5 ).
  • FIG. 4 is a top perspective view, looking approximately in the direction of arrow Y in FIG. 3 .
  • FIG. 5 is a view similar to the top perspective view of FIG. 4 , with some parts including the top guide assembly 202 removed to better illustrate certain parts of the document deskewing module 200 .
  • FIG. 6 is a bottom view, looking approximately in the direction of arrow Z shown in FIG. 5 .
  • the document deskewing module 200 has a relatively straight reference surface or edge 204 against which a document abuts as the document is being transported along the first document track portion 61 in the direction of arrow A.
  • the reference surface 204 is referred to herein as the track bottom.
  • a first set of track sensors 206 a , 206 b , 206 c detects progress of the document as the document is being transported from an upstream end of the first document track portion 61 to a downstream end of the first document track portion.
  • a second set of track sensors 208 a , 208 b , 208 c , 208 d detects when the document has been deskewed in a manner to be described hereinbelow.
  • a first set of drive rollers 210 a , 210 b , 210 c ( FIG. 5 ) cooperates with a first set of idler rollers 212 a , 212 b , 212 c ( FIG. 4 ) to advance the document downstream along the first document track portion 61 .
  • the first set of drive rollers 210 a , 210 b , 210 c operate in direct contact with the opposing idlers 212 a , 212 b , 212 c giving a large drive force and is referred to herein as the hard drive rollers.
  • the first set of idler rollers 212 a , 212 b , 212 c is referred to herein as the hard drive idlers.
  • the hard drive rollers 210 a , 210 b , 210 c lie “parallel” to the direction of document movement as indicated by arrow A shown in FIG. 5 .
  • a set of compression springs 214 a , 214 b , 214 c maintains the set of hard drive idlers 212 a , 212 b , 212 c in contact with the opposing set of hard drive rollers 210 a , 210 b , 210 c .
  • a first set of lifter arms 314 a , 314 b , 314 c allows the set of hard drive idlers 212 a , 212 b , 212 c to be disengaged from the set of hard drive rollers 210 a , 210 b , 210 c , in a manner to be described later herein.
  • a second set of drive rollers 310 a , 310 b cooperates with a second set of idler rollers 312 a , 312 b ( FIG. 4 ) to direct the document against the track bottom 204 .
  • the second set of drive rollers 310 a , 310 b do not contact the opposing idlers 312 a , 312 b directly while operating giving a much lighter drive force and is referred to herein as the soft drive rollers.
  • the second set of idler rollers 312 a , 312 b is referred to herein as the soft drive idlers.
  • the soft drive rollers 310 a , 310 b are “angled” relative to the hard drive rollers 210 a , 210 b , 210 c as shown in FIG. 5 . Accordingly, the soft drive rollers 310 a , 310 b , 310 c lie “angled” to the direction of document movement as indicated by arrow A shown in FIG. 5 .
  • a second set of lifter arms 316 a , 316 b allows the set of soft drive idlers 312 a , 312 b to move away from the set of soft drive rollers 310 a , 310 b , in a manner to be described later herein.
  • each of the soft drive rollers 310 a , 310 b has a corresponding one of U-shaped depressions 322 a , 322 b .
  • the U-shaped depression 322 a is associated with the soft drive roller 310 a and is disposed between a pair of tire surfaces 324 a of the soft drive roller 310 a .
  • the corresponding soft drive idler 312 a ( FIG. 4 ) runs inside the U-shaped depression 322 a of the soft drive roller 310 a , and does not contact soft drive roller 310 a .
  • the U-shaped depression 322 b is associated with the soft drive roller 310 b and is disposed between a pair of tire surfaces 324 b of the soft drive roller 310 b .
  • the corresponding soft drive idler 312 b ( FIG. 4 ) runs inside the U-shaped depression 322 b of the soft drive roller 310 b , and does not contact soft drive roller 310 b .
  • a corresponding set of adjustment screws 318 a , 318 b allows the positions of the set of soft drive idlers 312 a , 312 b to be adjusted relative to the positions of the set of soft drive rollers 310 a , 310 b.
  • the soft drive idler deflects the document into the U-shaped depression 322 a .
  • the amount of drive force from the tire surfaces 324 a acting on the document depends upon the amount of deflection force from the document.
  • the amount of deflection force from the document depends upon the extent to which the soft drive idler 312 a is running inside of the U-shaped depression 322 a (as determined by position of the adjustment screw 318 a ).
  • the amount of deflection force from the document also depends upon the relative stiffness (or relative limpness) of the particular document. For example, a relative stiffer document provides a greater amount of deflection force and, therefore, provides a greater amount of drive force (from the tire surfaces 324 a ) which acts on the document. Similarly, a relative limper document provides a lesser amount of deflection force and, therefore, provides a lesser amount of drive force (from the tire surfaces 324 a ) which acts on the document. The angle of the tire surfaces 324 a relative to the direction of travel (as indicated by arrow A) of document causes the document to abut against the track bottom 204 .
  • variable drive force which acts on the document being transported along the first document track portion 61 .
  • the variable drive force provided is such that relatively thicker or stiffer documents are driven harder, and relatively thinner or limper documents are driven more lightly.
  • This variable drive force is advantageous because (i) a relatively thicker or stiffer document (such as one that has been folded, curled or crumpled) requires more drive force to overcome the friction of travelling down the first document track portion 61 , and (ii) a relatively thinner or limper document is less likely to deform as the document is more lightly pushed against the track bottom 204 .
  • a first actuatable solenoid 230 ( FIG. 4 ) having an armature link 232 is operatively coupled through the first set of lifter arms 314 a , 314 b , 314 c to the hard drive idlers 212 a , 212 b , 212 c .
  • a second actuatable solenoid 234 having an armature link 236 is operatively coupled through the second set of lifter arms 316 a , 316 b to the soft drive idlers 312 a , 312 b .
  • the hard drive idlers 212 a , 212 b , 212 c are moved away from the hard drive rollers 210 a , 210 b , 210 c .
  • the second solenoid 234 is actuated and the soft drive idlers 312 a , 312 b are moved towards and running inside the U-shaped depressions 322 a , 322 b of the soft drive rollers 310 a , 310 b.
  • the armature link 232 releases the first set of lifter arms 314 a , 314 b , 314 c .
  • the second solenoid 234 is de-actuated and the second set of lifter arms 316 a , 316 b are lifted.
  • These two actions cause the hard drive idlers 212 a , 212 b , 212 c to engage the hard drive rollers 210 a , 210 b , 210 c , and at the same time, the soft drive idlers 312 a , 312 b to move away from or “disengage” the soft drive rollers 310 a , 310 b . Accordingly, only one function of either hard drive rollers 210 a , 210 b , 210 c or the soft drive rollers 310 a , 310 b is normally provided at any one time.
  • the document When a document first comes out the infeed module 70 , the document encounters the soft drive rollers 310 a , 310 b and the soft drive idlers 312 a , 312 b (i.e., the function of the soft drive rollers 310 a , 310 b is provided).
  • the soft drive rollers 310 a , 310 b and the soft drive idlers 312 a , 312 b push the document against the track bottom 204 until at least two of the deskew sensors 208 a , 208 b , 208 c , 208 d are blocked.
  • the second solenoid 234 is de-actuated to “disengage” the soft drive rollers 310 a , 310 b and the solenoid 230 is de-actuated to engage the hard drive rollers 210 a , 210 b 210 c .
  • the soft drive rollers 310 a , 310 b need to be disengaged at this point. Otherwise, a relative thin or limp document will begin to curl and jam if it travels any significant distance with the angled soft drive rollers 310 a , 310 b engaged.
  • the document is now deskewed and is transported to other parts of the SDM 60 under control of the hard drive rollers 210 a , 210 b , 210 c.
  • the hard drive rollers 210 a , 210 b , 210 c be momentarily engaged if the document is detected to hesitate while under control of the soft drive rollers 310 a , 310 b .
  • This momentary engagement of the hard drive rollers 210 a , 210 b , 210 c would act as a small “nudge” or “kick” to the document in an attempt to correct what is causing the document to hesitate.
  • Self-service bunch document depositing terminals are generally public-access devices that are designed to allow a user to conduct a bunch document deposit transaction in an unassisted manner and/or in an unattended environment.
  • Self-service bunch document depositing terminals typically include some form of tamper resistance so that they are inherently resilient.

Abstract

A document deskewing module is provided for a self-service bunch document depositing terminal. The document deskewing module comprises a set of sensors arranged to detect when a document transported along a document transport path from a mixed bunch of documents including documents of a first type and documents of a second type which is different from the first type is deskewed, a first set of drive rollers in the form of hard drive rollers disposed along the document transport path, a first set of idler rollers moveable towards and away from the hard drive rollers, a second set of drive rollers in the form of soft drive rollers disposed along the document transport path, a second set of idler rollers moveable towards and away from the soft drive rollers, and a controller arranged to control operation of the first and second sets of idler rollers in response to a number of signals from the set of sensors such that either only the first set of idlers are interacting with the hard drive rollers or only the second set of idlers is interacting with the soft drive rollers at any one time to deskew either a document of the first type or a document of the second type which is different from the first type.

Description

    BACKGROUND
  • The present invention relates to self-service document depositing terminals, and is particularly directed to a document deskewing module for a self-service bunch document depositing terminal, such as a bunch document depositing automated teller machine (ATM), and method of operating such a deskewing module.
  • In a typical bunch document depositing ATM, an ATM customer is allowed to deposit a bunch of documents of the same type such as currency notes or checks (without having to place any of the documents in a deposit envelope) in a publicly accessible, unattended environment. To deposit a bunch of documents, the ATM customer inserts a user identification card through a user card slot at the ATM, enters the amount of the bunch of documents being deposited, and inserts the bunch of documents to be deposited through a slot of a bunch document acceptor. A document transport mechanism receives the inserted bunch of documents and transports the documents one-by-one in a forward direction along a document transport path to a number of locations within the ATM to process the documents.
  • If a particular document is not accepted for deposit, the document transport mechanism transports the entire bunch of documents in a manner to return the bunch of documents to the ATM customer. If the entire bunch of documents is accepted for deposit, the amount of the bunch of documents is deposited into the ATM customer's account and the documents are transported one-by one to a number of storage bins within the ATM. If a bunch of documents is a bunch of checks, an endorser printer prints an endorsement onto each check as the check is being transported to and stored in a check storage bin. If a bunch of documents is a bunch of currency notes, then each currency note is transported to and stored in a currency storage bin. Documents in the different storage bins within the ATM are periodically picked up and physically transported via courier to a back office facility of a financial institution for further processing.
  • From time to time, a document may become skewed as the document is being transported along the document transport path to the different locations with the ATM to process the document. When a document becomes skewed along the document transport path, it is desirable to deskew the skewed document before it is processed at the different locations within the ATM. Otherwise, the skewed document may cause a document jam condition resulting in ATM downtime.
  • Document deskewing mechanisms are known. However, these known document deskewing mechanisms are designed to deskew only one type of document (e.g., either a currency note or a check, but not both). When a document deskewing mechanism is designed to deskew only one type of document, the mechanism is effective in deskewing a document of only that particular type. This is because different types of documents are of different sizes, different thicknesses, different paper grades, or the like, for examples. It would be desirable to provide a document deskewing mechanism which is effective to deskew a bunch of documents containing multiple types of documents such as a mixture of checks and currency notes.
  • SUMMARY
  • In accordance with one embodiment of the present invention, a document deskewing module is provided for a self-service bunch document depositing terminal. The document deskewing module comprises a set of sensors arranged to detect when a document transported along a document transport path from a mixed bunch of documents including documents of a first type and documents of a second type which is different from the first type is deskewed, a first set of drive rollers in the form of hard drive rollers disposed along the document transport path, a first set of idler rollers moveable towards and away from the hard drive rollers, a second set of drive rollers in the form of soft drive rollers disposed along the document transport path, a second set of idler rollers moveable towards and away from the soft drive rollers, and a controller arranged to control operation of the first and second sets of idler rollers in response to a number of signals from the set of sensors such that either only the first set of idlers are interacting with the hard drive rollers or only the second set of idlers is interacting with the soft drive rollers at any one time to deskew either a document of the first type or a document of the second type which is different from the first type.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the accompanying drawings:
  • FIG. 1 is a left-front perspective view of a bunch document depositing automated teller machine (ATM) constructed in accordance with one embodiment of the present invention;
  • FIG. 2 is a simplified schematic diagram, looking approximately in the direction of arrow X in FIG. 1, and illustrating a scalable deposit module (SDM) configured to operate in the ATM of FIG. 1;
  • FIG. 3 is a left-front perspective view of the SDM of FIG. 2;
  • FIG. 4 is a top perspective view, looking approximately in the direction of arrow Y in FIG. 3;
  • FIG. 5 is a view similar to the top perspective view of FIG. 4, with some parts removed to better illustrate parts of a document deskewing module constructed in accordance with one embodiment of the present invention; and
  • FIG. 6 is a bottom view, looking approximately in the direction of arrow Z shown in FIG. 5.
  • DETAILED DESCRIPTION
  • The present invention is directed to a document deskewing module for a self-service bunch document depositing terminal, such as a bunch document depositing automated teller machine (ATM), and methods of operating such a deskewing module.
  • Referring to FIG. 1, a self-service bunch document depositing terminal in the form of an image-based bunch document depositing automated teller machine (ATM) 10 is illustrated. The check depositing ATM 10 comprises a fascia 12 coupled to a chassis (not shown). The fascia 12 defines an aperture 16 through which a camera (not shown) images a customer of the ATM 10. The fascia 12 also defines a number of slots for receiving and dispensing media items, and a tray 40 into which coins can be dispensed. The slots include a statement output slot 42, a receipt slot 44, a card reader slot 46, a cash slot 48, another cash slot 50, and a bunch document input/output slot 52. The slots 42 to 52 and tray 40 are arranged such that the slots and tray align with corresponding ATM modules mounted within the chassis of the ATM 10.
  • The fascia 12 provides a user interface for allowing an ATM customer to execute a transaction. The fascia 12 includes an encrypting keyboard 34 for allowing an ATM customer to enter transaction details. A display 36 is provided for presenting screens to an ATM customer. A fingerprint reader 38 is provided for reading a fingerprint of an ATM customer to identify the ATM customer. The user interface features described above are all provided on an NCR PERSONAS (trademark) 6676 ATM, available from NCR Financial Solutions Group Limited, Discovery Centre, 3 Fulton Road, Dundee, DD2 4SW, Scotland.
  • Referring to FIGS. 2 and 3, one embodiment of a scalable deposit module (SDM) 60 is illustrated. FIG. 2 is a simplified schematic diagram (looking approximately in the direction of arrow X in FIG. 1) of part of the fascia 12 and main parts of the SDM 60. FIG. 3 is a left-front perspective view of the SDM 60 shown in FIG. 2.
  • The SDM 60 of FIGS. 2 and 3 comprises five main units which include an infeed module 70, a transport module 80, a pocket module 90, an escrow re-bunch module (ERBM) 99, and a document deskewing module 200. The infeed module 70 receives a bunch of documents deposited into the bunch document input/output slot 52, and transports the documents one-by-one to an inlet of the transport module 80. The dimensions of the infeed module 70, such as its run length, may vary depending upon the particular model ATM the SDM 60 is installed. The structure and operation of the infeed module 70 are conventional and well known and, therefore, will not be described.
  • The transport module 80 includes a document transport mechanism which receives a document from the inlet adjacent to the infeed module 70, and transports the document along a first document track portion 61 which is the main track portion. The transport module 80 further includes a document diverter 82 which is operable to divert a document along a second document track portion 62 to the pocket module 90, and a third document track portion 63 which leads to the ERBM 99 and then back to the infeed module 70. The third document track 103 allows a bunch of documents which has accumulated in the ERBM 99 to be transported back to the infeed module 70. The structure and operation of diverter 82 shown in FIG. 2 may be any suitable diverter which is capable of diverting a document along one of two different document transport paths. The structure and operation of diverter 82 are conventional and well known and, therefore, will not be described.
  • The transport module 80 further includes a magnetic ink character recognition (MICR) head 83 for reading magnetic details on a code line of a check. The transport module 80 also includes an imager 84 including a front imaging camera 85 and a rear imaging camera 86 for capturing an image of each side of a check (front and rear). An endorser printer 88 is provided for printing endorsements onto checks. An image data memory 94 is provided for storing images of checks. A controller 95 is provided for controlling the operation of the elements within the SDM 60.
  • The pocket module 90 includes a check storage bin 91 (FIG. 3) for storing processed checks. The pocket module 90 further includes a currency storage bin 92 for storing processed currency notes. The pocket module 90 also includes a reject bin 93 for storing rejected documents. The structure and operation of the pocket module 90 are conventional and well known and, therefore, will not be described.
  • The SDM 60 processes a bunch of documents of different types (such as currency notes, checks, or a combination thereof). When a bunch of documents is being processed, each document of the bunch is separated at the infeed module 70 before it is individually processed. Each processed document is then re-assembled at the ERBM 99 to bunch the documents back together. Bunch processing of different types of documents is sometimes referred to as “multiple-document processing”. Since individual documents are being bunched back together, an escrow module (such as the ERBM 99 shown in FIGS. 2 and 3) is needed. The ERBM 99 is manufactured and available from Glory Products, located in Himeji, Japan. The ERBM 99 allows a bunch of documents to be processed in a single transaction. If a bunch of documents has accumulated in the ERBM 99 and is unable to be processed further within the SDM 60, then the bunch of documents is transported via the third document track portion 63 back to the infeed module 70 to return the unprocessed bunch of documents to the ATM customer.
  • Referring to FIGS. 4, 5, and 6, the document deskewing module 200 includes a top guide assembly 202 (FIG. 4) which guides a document in the direction of arrow A along the first document track portion 61 (FIG. 5). FIG. 4 is a top perspective view, looking approximately in the direction of arrow Y in FIG. 3. FIG. 5 is a view similar to the top perspective view of FIG. 4, with some parts including the top guide assembly 202 removed to better illustrate certain parts of the document deskewing module 200. FIG. 6 is a bottom view, looking approximately in the direction of arrow Z shown in FIG. 5.
  • As shown in FIG. 5, the document deskewing module 200 has a relatively straight reference surface or edge 204 against which a document abuts as the document is being transported along the first document track portion 61 in the direction of arrow A. The reference surface 204 is referred to herein as the track bottom. A first set of track sensors 206 a, 206 b, 206 c detects progress of the document as the document is being transported from an upstream end of the first document track portion 61 to a downstream end of the first document track portion. A second set of track sensors 208 a, 208 b, 208 c, 208 d detects when the document has been deskewed in a manner to be described hereinbelow.
  • A first set of drive rollers 210 a, 210 b, 210 c (FIG. 5) cooperates with a first set of idler rollers 212 a, 212 b, 212 c (FIG. 4) to advance the document downstream along the first document track portion 61. The first set of drive rollers 210 a, 210 b, 210 c operate in direct contact with the opposing idlers 212 a, 212 b, 212 c giving a large drive force and is referred to herein as the hard drive rollers. The first set of idler rollers 212 a, 212 b, 212 c is referred to herein as the hard drive idlers. The hard drive rollers 210 a, 210 b, 210 c lie “parallel” to the direction of document movement as indicated by arrow A shown in FIG. 5. A set of compression springs 214 a, 214 b, 214 c (FIG. 4) maintains the set of hard drive idlers 212 a, 212 b, 212 c in contact with the opposing set of hard drive rollers 210 a, 210 b, 210 c. A first set of lifter arms 314 a, 314 b, 314 c allows the set of hard drive idlers 212 a, 212 b, 212 c to be disengaged from the set of hard drive rollers 210 a, 210 b, 210 c, in a manner to be described later herein.
  • A second set of drive rollers 310 a, 310 b (FIG. 5) cooperates with a second set of idler rollers 312 a, 312 b (FIG. 4) to direct the document against the track bottom 204. The second set of drive rollers 310 a, 310 b do not contact the opposing idlers 312 a, 312 b directly while operating giving a much lighter drive force and is referred to herein as the soft drive rollers. The second set of idler rollers 312 a, 312 b is referred to herein as the soft drive idlers. The soft drive rollers 310 a, 310 b are “angled” relative to the hard drive rollers 210 a, 210 b, 210 c as shown in FIG. 5. Accordingly, the soft drive rollers 310 a, 310 b, 310 c lie “angled” to the direction of document movement as indicated by arrow A shown in FIG. 5. A second set of lifter arms 316 a, 316 b allows the set of soft drive idlers 312 a, 312 b to move away from the set of soft drive rollers 310 a, 310 b, in a manner to be described later herein.
  • As shown in FIG. 5, each of the soft drive rollers 310 a, 310 b has a corresponding one of U-shaped depressions 322 a, 322 b. The U-shaped depression 322 a is associated with the soft drive roller 310 a and is disposed between a pair of tire surfaces 324 a of the soft drive roller 310 a. The corresponding soft drive idler 312 a (FIG. 4) runs inside the U-shaped depression 322 a of the soft drive roller 310 a, and does not contact soft drive roller 310 a. Similarly, the U-shaped depression 322 b is associated with the soft drive roller 310 b and is disposed between a pair of tire surfaces 324 b of the soft drive roller 310 b. The corresponding soft drive idler 312 b (FIG. 4) runs inside the U-shaped depression 322 b of the soft drive roller 310 b, and does not contact soft drive roller 310 b. A corresponding set of adjustment screws 318 a, 318 b allows the positions of the set of soft drive idlers 312 a, 312 b to be adjusted relative to the positions of the set of soft drive rollers 310 a, 310 b.
  • Cooperation between the soft drive roller 310 a and the soft drive idler 312 a and cooperation between the soft drive roller 310 b and the soft drive idler 312 b are the same. For simplicity, only cooperation between the soft drive roller 310 a and the soft drive idler 312 a will be described hereinbelow.
  • When a document is transported along the first document track portion 61 and moves between the soft drive roller 310 a and the soft drive idler 312 a, the soft drive idler deflects the document into the U-shaped depression 322 a. The amount of drive force from the tire surfaces 324 a acting on the document depends upon the amount of deflection force from the document. The amount of deflection force from the document depends upon the extent to which the soft drive idler 312 a is running inside of the U-shaped depression 322 a (as determined by position of the adjustment screw 318 a).
  • The amount of deflection force from the document also depends upon the relative stiffness (or relative limpness) of the particular document. For example, a relative stiffer document provides a greater amount of deflection force and, therefore, provides a greater amount of drive force (from the tire surfaces 324 a) which acts on the document. Similarly, a relative limper document provides a lesser amount of deflection force and, therefore, provides a lesser amount of drive force (from the tire surfaces 324 a) which acts on the document. The angle of the tire surfaces 324 a relative to the direction of travel (as indicated by arrow A) of document causes the document to abut against the track bottom 204.
  • It should be apparent that the cooperation between the soft drive roller 310 a and the soft drive idler 312 a provides a variable drive force which acts on the document being transported along the first document track portion 61. The variable drive force provided is such that relatively thicker or stiffer documents are driven harder, and relatively thinner or limper documents are driven more lightly. This variable drive force is advantageous because (i) a relatively thicker or stiffer document (such as one that has been folded, curled or crumpled) requires more drive force to overcome the friction of travelling down the first document track portion 61, and (ii) a relatively thinner or limper document is less likely to deform as the document is more lightly pushed against the track bottom 204.
  • A first actuatable solenoid 230 (FIG. 4) having an armature link 232 is operatively coupled through the first set of lifter arms 314 a, 314 b, 314 c to the hard drive idlers 212 a, 212 b, 212 c. A second actuatable solenoid 234 having an armature link 236 is operatively coupled through the second set of lifter arms 316 a, 316 b to the soft drive idlers 312 a, 312 b. When the first solenoid 230 is actuated, the hard drive idlers 212 a, 212 b, 212 c are moved away from the hard drive rollers 210 a, 210 b, 210 c. At the same time, the second solenoid 234 is actuated and the soft drive idlers 312 a, 312 b are moved towards and running inside the U-shaped depressions 322 a, 322 b of the soft drive rollers 310 a, 310 b.
  • When the first solenoid 230 is de-actuated, the armature link 232 releases the first set of lifter arms 314 a, 314 b, 314 c. At the same time, the second solenoid 234 is de-actuated and the second set of lifter arms 316 a, 316 b are lifted. These two actions cause the hard drive idlers 212 a, 212 b, 212 c to engage the hard drive rollers 210 a, 210 b, 210 c, and at the same time, the soft drive idlers 312 a, 312 b to move away from or “disengage” the soft drive rollers 310 a, 310 b. Accordingly, only one function of either hard drive rollers 210 a, 210 b, 210 c or the soft drive rollers 310 a, 310 b is normally provided at any one time.
  • When a document first comes out the infeed module 70, the document encounters the soft drive rollers 310 a, 310 b and the soft drive idlers 312 a, 312 b (i.e., the function of the soft drive rollers 310 a, 310 b is provided). The soft drive rollers 310 a, 310 b and the soft drive idlers 312 a, 312 b push the document against the track bottom 204 until at least two of the deskew sensors 208 a, 208 b, 208 c, 208 d are blocked. When at least two of the deskew sensors 208 a, 208 b, 208 c, 208 d are blocked, the second solenoid 234 is de-actuated to “disengage” the soft drive rollers 310 a, 310 b and the solenoid 230 is de-actuated to engage the hard drive rollers 210 a, 210 b 210 c. It should be noted that the soft drive rollers 310 a, 310 b need to be disengaged at this point. Otherwise, a relative thin or limp document will begin to curl and jam if it travels any significant distance with the angled soft drive rollers 310 a, 310 b engaged. The document is now deskewed and is transported to other parts of the SDM 60 under control of the hard drive rollers 210 a, 210 b, 210 c.
  • By using a document deskewing module as described hereinabove, it is conceivable that the hard drive rollers 210 a, 210 b, 210 c be momentarily engaged if the document is detected to hesitate while under control of the soft drive rollers 310 a, 310 b. This momentary engagement of the hard drive rollers 210 a, 210 b, 210 c would act as a small “nudge” or “kick” to the document in an attempt to correct what is causing the document to hesitate.
  • Although the above description describes the PERSONAS (trademark) 6676 NCR ATM embodying the present invention, it is conceivable that other models of ATMs, other types of ATMs, or other types of self-service bunch document depositing terminals may embody the present invention. Self-service bunch document depositing terminals are generally public-access devices that are designed to allow a user to conduct a bunch document deposit transaction in an unassisted manner and/or in an unattended environment. Self-service bunch document depositing terminals typically include some form of tamper resistance so that they are inherently resilient.
  • The particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention. From the above description, those skilled in the art to which the present invention relates will perceive improvements, changes and modifications. Numerous substitutions and modifications can be undertaken without departing from the true spirit and scope of the invention. Such improvements, changes and modifications within the skill of the art to which the present invention relates are intended to be covered by the appended claims.

Claims (14)

1. A method of operating a document deskewing module for a self-service bunch document depositing terminal having a document transport path along which a document can be transported, the method comprising:
at a first time, moving a first set of idler rollers towards a first set of drive rollers in the form of hard drive rollers to drive the document between first set of idler rollers and the hard drive rollers to move the document in a first direction of document travel from an upstream end of the document transport path to a downstream end of the document transport path;
at a second time which is different from the first time, moving a second set of idler rollers towards a second set of drive rollers in the form of soft drive rollers to drive the document between the second set of idler rollers and the soft drive rollers to move the document towards a reference edge in a second direction of document travel which is transverse to the first direction of document travel so as to deskew the document relative to the first direction of document travel; and
detecting when the document transported being along a document transport path is deskewed and providing a deskew signal indicative thereof.
2. A method according to claim 1, wherein only either the first set of idler rollers is moving towards the hard drive rollers or the second set of idler rollers is moving towards the soft drive rollers at any one time.
3. A method according to claim 1, wherein the reference edge extends in a direction parallel to the first direction of document travel from the upstream end of the document transport path to the downstream end of the document transport path.
4. A method according to claim 3, wherein the second direction of document travel is perpendicular to the first direction of document travel.
5. A method according to claim 1, wherein detecting includes (i) detecting at least a first signal from one of a plurality of sensors, and (ii) a second signal from another one of the plurality of sensors such that the deskew signal which is indicative of the document being deskewed varies as a function of both the first and second signals from the plurality of sensors.
6. A method according to claim 1, wherein the self-service bunch document depositing terminal comprises a bunch document depositing automated teller machine (ATM).
7. A document deskewing module for a self-service bunch document depositing terminal, the document deskewing module comprising:
a set of sensors arranged to detect when a document transported along a document transport path from a mixed bunch of documents including documents of a first type and documents of a second type which is different from the first type is deskewed;
a first set of drive rollers in the form of hard drive rollers disposed along the document transport path;
a first set of idler rollers moveable towards and away from the hard drive rollers;
a second set of drive rollers in the form of soft drive rollers disposed along the document transport path;
a second set of idler rollers moveable towards and away from the soft drive rollers; and
a controller arranged to control operation of the first and second sets of idler rollers in response to a number of signals from the set of sensors such that either only the first set of idlers are interacting with the hard drive rollers or only the second set of idlers is interacting with the soft drive rollers at any one time to deskew either a document of the first type or a document of the second type which is different from the first type.
8. A document deskewing module according to claim 7, further comprising two actuatable solenoids each having an armature link, one which is operatively coupled through a first set of arms to the first set of idler rollers and the other one through a second set of arms to the second set of idlers.
9. A document deskewing module according to claim 8, wherein the controller is arranged to actuate the solenoids to cause the armature links to act on the first and second sets of arms such that the first set of idlers move towards the hard drive rollers to engage the hard drive rollers and the second set of idlers move away from the soft drive rollers to disengage the soft drive rollers.
10. A document deskewing module according to claim 9, wherein the set of sensors comprises a plurality of sensors.
11. A document deskewing module according to claim 10, wherein the controller is arranged to de-actuate the solenoids only when at least two of the plurality of sensors provide an associated signal indicative of a deskewed document.
12. A bunch document depositing automated teller machine (ATM) for processing a mixed bunch documents including checks and currency notes, the bunch document depositing ATM comprising:
a set of sensors arranged to detect when a document transported along a document transport path from the mixed bunch of documents is deskewed relative to a first direction of travel from an upstream end of the document transport path to a downstream end of the document transport path;
a first set of drive rollers in the form of hard drive rollers disposed along the document transport path;
a first set of idler rollers moveable towards and away from the hard drive rollers;
a second set of drive rollers in the form of soft drive rollers disposed along the document transport path;
a second set of idler rollers moveable towards and away from the soft drive rollers;
a pair of actuatable solenoids each having an armature link, one solenoid being operatively coupled through its armature link to a first set of arms to the first set of idler rollers and the other solenoid being operatively coupled through its armature link to a second set of arms to the second set of idlers; and
a controller arranged to control actuation of the solenoids and thereby to control the first and second sets of idler rollers such that the first set of idlers move away from the hard drive rollers to disengage the hard drive rollers and the second set of idlers move towards the soft drive rollers to engage the soft drive rollers to deskew either a check or a currency note which is being transported along the document transport path from the upstream end to the downstream end of the document transport path.
13. A bunch document depositing ATM according to claim 12, wherein the set of sensors comprise a plurality of sensors.
14. A bunch document depositing ATM according to claim 13, wherein the controller is arrange to actuate the solenoids only when at least two of the plurality of sensors provide an associated signal indicative of a deskewed document.
US12/543,095 2009-08-18 2009-08-18 Document deskewing module and methods of operating a document deskewing module for a self-service bunch document depositing terminal Abandoned US20110042887A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/543,095 US20110042887A1 (en) 2009-08-18 2009-08-18 Document deskewing module and methods of operating a document deskewing module for a self-service bunch document depositing terminal
EP10172091.0A EP2287099B1 (en) 2009-08-18 2010-08-05 Document Deskewing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/543,095 US20110042887A1 (en) 2009-08-18 2009-08-18 Document deskewing module and methods of operating a document deskewing module for a self-service bunch document depositing terminal

Publications (1)

Publication Number Publication Date
US20110042887A1 true US20110042887A1 (en) 2011-02-24

Family

ID=43086177

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/543,095 Abandoned US20110042887A1 (en) 2009-08-18 2009-08-18 Document deskewing module and methods of operating a document deskewing module for a self-service bunch document depositing terminal

Country Status (2)

Country Link
US (1) US20110042887A1 (en)
EP (1) EP2287099B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130032995A1 (en) * 2011-08-02 2013-02-07 Nautilus Hyosung Inc. Apparatus to align media
US20140236344A1 (en) * 2013-02-20 2014-08-21 Ncr Corporation Media alignment
US20160055700A1 (en) * 2013-04-23 2016-02-25 Grg Banking Equipment Co., Ltd. Automatic teller machine and deflection correcting apparatus thereof
US9555992B2 (en) * 2015-03-27 2017-01-31 Fuji Xerox Co., Ltd. Sheet transport device and image forming apparatus
US10093500B2 (en) * 2014-09-17 2018-10-09 Grg Banking Equipment Co., Ltd. Correction device and automated teller machine
US10266358B2 (en) * 2016-06-30 2019-04-23 Ncr Corporation Ejecting damaged/deformed media

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4875670A (en) * 1988-11-17 1989-10-24 Ncr Corporation Floating idler wheel arm assembly for a document transport
US6042110A (en) * 1996-12-09 2000-03-28 Laurel Bank Machines Co., Ltd. Bill alignment device for bill handling machine
US6877741B2 (en) * 2001-12-20 2005-04-12 Mars, Incorporated Method and apparatus for aligning a banknote
US7306221B2 (en) * 2004-04-28 2007-12-11 Canon Kabushiki Kaisha Sheet conveying apparatus and image forming apparatus
US7445208B2 (en) * 2005-07-28 2008-11-04 Canon Kabushiki Kaisha Sheet conveying apparatus
US7611142B2 (en) * 2006-04-07 2009-11-03 Canon Kabushiki Kaisha Sheet conveying apparatus and image forming apparatus equipped therewith
US7658379B2 (en) * 2007-10-05 2010-02-09 Canon Kabushiki Kaisha Sheet conveyance apparatus and image forming apparatus
US7686300B2 (en) * 2006-09-27 2010-03-30 Canon Kabushiki Kaisha Driving device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4744555A (en) * 1986-12-22 1988-05-17 Xerox Corporation Sheet transport and registration apparatus
JPH0543092A (en) * 1991-08-06 1993-02-23 Fuji Xerox Co Ltd Arranging device for form
JPH09315652A (en) * 1996-05-23 1997-12-09 Toyo Commun Equip Co Ltd Straightening mechanism for paper sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4875670A (en) * 1988-11-17 1989-10-24 Ncr Corporation Floating idler wheel arm assembly for a document transport
US6042110A (en) * 1996-12-09 2000-03-28 Laurel Bank Machines Co., Ltd. Bill alignment device for bill handling machine
US6877741B2 (en) * 2001-12-20 2005-04-12 Mars, Incorporated Method and apparatus for aligning a banknote
US7306221B2 (en) * 2004-04-28 2007-12-11 Canon Kabushiki Kaisha Sheet conveying apparatus and image forming apparatus
US7445208B2 (en) * 2005-07-28 2008-11-04 Canon Kabushiki Kaisha Sheet conveying apparatus
US7611142B2 (en) * 2006-04-07 2009-11-03 Canon Kabushiki Kaisha Sheet conveying apparatus and image forming apparatus equipped therewith
US7686300B2 (en) * 2006-09-27 2010-03-30 Canon Kabushiki Kaisha Driving device
US7658379B2 (en) * 2007-10-05 2010-02-09 Canon Kabushiki Kaisha Sheet conveyance apparatus and image forming apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130032995A1 (en) * 2011-08-02 2013-02-07 Nautilus Hyosung Inc. Apparatus to align media
US8534667B2 (en) * 2011-08-02 2013-09-17 Nautilus Hyosung Inc. Apparatus to align media
US20140236344A1 (en) * 2013-02-20 2014-08-21 Ncr Corporation Media alignment
US9098089B2 (en) * 2013-02-20 2015-08-04 Ncr Corporation Media alignment
US20160055700A1 (en) * 2013-04-23 2016-02-25 Grg Banking Equipment Co., Ltd. Automatic teller machine and deflection correcting apparatus thereof
US9540199B2 (en) * 2013-04-23 2017-01-10 Grg Banking Equipment Co., Ltd. Automatic teller machine and deflection correcting apparatus thereof
US10093500B2 (en) * 2014-09-17 2018-10-09 Grg Banking Equipment Co., Ltd. Correction device and automated teller machine
US9555992B2 (en) * 2015-03-27 2017-01-31 Fuji Xerox Co., Ltd. Sheet transport device and image forming apparatus
US10266358B2 (en) * 2016-06-30 2019-04-23 Ncr Corporation Ejecting damaged/deformed media

Also Published As

Publication number Publication date
EP2287099A3 (en) 2013-03-06
EP2287099B1 (en) 2014-12-31
EP2287099A2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
US8113511B2 (en) Document deskewing module with a moving track bottom and methods of operating a document deskewing module
EP1671909B1 (en) Document stacker apparatus and method of stacking documents
EP2287099B1 (en) Document Deskewing
US20070007103A1 (en) Apparatus and a method for processing paper currency
JP5091628B2 (en) Paper sheet handling equipment
EP2866209B1 (en) Circulation-type banknote/check deposit/withdrawal apparatus using lateral deposit/withdrawal scheme and method of handling banknotes and checks applied thereto
US10773912B2 (en) Center de-skew subassembly to center align documents
US20150034457A1 (en) Clamping of media items
US10710827B2 (en) Contact stripper/feed wheel implementation
US10665064B2 (en) Single continuous belt in an escrow subassembly
KR101903951B1 (en) Movable Platen in Document Handling Systems for Automatic Teller Machines
KR20090069050A (en) Check deposit device of automatic teller machine
US7886965B2 (en) Scaleable check processing module for a self-service check depositing terminal
US20220028202A1 (en) Bundle module of medium deposit device
US20200407181A1 (en) Center de-skew subassembly to center align documents
JP2009151703A (en) Paper money processor
US9990793B2 (en) Media item separation
KR101508338B1 (en) Medium separating apparatus for automatic teller machine
US20100019027A1 (en) Methods of processing a last check of a bunch of checks deposited at a self-service terminal during a bunch-check deposit transaction
US20090159660A1 (en) Document diverter apparatus for use in a check processing module of a self-service check depositing terminal
US8777222B2 (en) Document stacking
US9472041B2 (en) Clamping of media items
JPH11208932A (en) Paper sheet conveying device
JP7404642B2 (en) Printing device and automatic transaction device using the printing device
JP3822036B2 (en) Medium transport device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION