US20110052708A1 - Methods and formulations for the delivery of pharmacologically active agents - Google Patents

Methods and formulations for the delivery of pharmacologically active agents Download PDF

Info

Publication number
US20110052708A1
US20110052708A1 US12/713,092 US71309210A US2011052708A1 US 20110052708 A1 US20110052708 A1 US 20110052708A1 US 71309210 A US71309210 A US 71309210A US 2011052708 A1 US2011052708 A1 US 2011052708A1
Authority
US
United States
Prior art keywords
paclitaxel
formulation
cremophor
administration
albumin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/713,092
Inventor
Patrick Soon-Shiong
Neil P. Desai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abraxis Bioscience LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/720,756 external-priority patent/US5916596A/en
Priority claimed from US08/926,155 external-priority patent/US6096331A/en
Priority claimed from US10/146,706 external-priority patent/US20030068362A1/en
Priority claimed from US12/051,782 external-priority patent/US20090048331A1/en
Application filed by Individual filed Critical Individual
Priority to US12/713,092 priority Critical patent/US20110052708A1/en
Assigned to AMERICAN BIOSCIENCE, INC. reassignment AMERICAN BIOSCIENCE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SOON-SHIONG, PATRICK, DESAI, NEIL P.
Assigned to ABRAXIS BIOSCIENCE, INC. reassignment ABRAXIS BIOSCIENCE, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: AMERICAN BIOSCIENCE, INC.
Assigned to ABRAXIS BIOSCIENCE, LLC reassignment ABRAXIS BIOSCIENCE, LLC MERGER (SEE DOCUMENT FOR DETAILS). Assignors: ABRAXIS BIOSCIENCE, INC.
Publication of US20110052708A1 publication Critical patent/US20110052708A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0026Blood substitute; Oxygen transporting formulations; Plasma extender
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/40Complete food formulations for specific consumer groups or specific purposes, e.g. infant formula
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6925Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a microcapsule, nanocapsule, microbubble or nanobubble
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0002General or multifunctional contrast agents, e.g. chelated agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/223Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/226Solutes, emulsions, suspensions, dispersions, semi-solid forms, e.g. hydrogels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5052Proteins, e.g. albumin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention relates to novel formulations of pharmacologically active agents and methods for the delivery of such agents to subjects in need thereof.
  • cremophor formulation of paclitaxel is associated with significant side-effects including life-threatening allergic reactions requiring the need for steroid pre-treatment for every patient receiving the drug, and severe infections as a result of lowering of white blood cells requiring the need for expensive blood cell growth factors. Ultimately these toxicities result in dose-limitation of cremophor-based paclitaxel formulations, thus limiting the full potential of the very effective paclitaxel molecule.
  • cremophor paclitaxel formulations While the above toxic side effects of cremophor paclitaxel formulations are well known, it has not been widely recognized by scientists in the field that the presence of cremophor creates a more serious impediment to realizing the maximal potential of paclitaxel by entrapping paclitaxel within the hydrophobic cores of cremophor micelles within microdroplets in the blood-stream. The entrapment effect of cremophor is dependent on cremophor concentration.
  • cremophor solutions of paclitaxel can potentially worsen the entrapment by raising the concentration of cremophor, leading to higher toxicities but none of the potential benefits of higher doses of paclitaxel, since much of the active molecule is unavailable to the intra-cellular space, where it is needed to act.
  • inventions have been developed which are much more effective for the delivery of hydrophobic drugs to patients in need thereof than are prior art formulations.
  • invention formulations are capable of delivering more drug in shorter periods of time, with reduced side effects caused by the pharmaceutical carrier employed for delivery.
  • FIG. 1 collectively compares the plasma kinetics of radiolabelled paclitaxel when administered to a mouse model as part of a Taxol formulation (closed squares) or as part of in invention formulation (diamonds; ABI-007).
  • FIG. 1A indicates plasma radioactivity measured up to 0.5 hours after administration.
  • FIG. 1B indicates plasma radioactivity measured up to 24 hours after administration. Inspection of the figure reveals that 2-5 fold higher levels of paclitaxel are retained in the plasma up to 3 hours after administration when paclitaxel is administered in a cremophor-based formulation (Taxol). Due to the reduced rate of metabolism for ABI-007, plasma levels of paclitaxel are higher after 8 hours when administered in an invention formulation, relative to a cremophor-based formulation.
  • FIG. 2 compares the partitioning of paclitaxel between red blood cells and plasma when administered to a mouse model as part of a Taxol formulation (closed squares) or as part of in invention formulation (diamonds; ABI-007). Inspection of the figure reveals that the blood/plasma ratio for paclitaxel administered as part of a cremophor-based formulation (Taxol) in the first 3 hours after administration is about 1.5-2, indicating that the majority of paclitaxel is retained in the plasma due to micellar formation with cremophor. In addition, it is seen that paclitaxel in a cremophor-based formulation does not significantly partition into the red blood cells. In contrast, paclitaxel administered as part of an invention formulation readily partitions into the red blood cells.
  • FIG. 3 summarizes tumor/plasma partitioning kinetics of paclitaxel when administered to a mouse model as part of a Taxol formulation (closed squares) or as part of in invention formulation (diamonds; ABI-007). It is seen that the tumor/plasma ratio of paclitaxel increases significantly over the first 3 hours when as part of an invention formulation, as opposed to a Taxol formulation.
  • FIG. 4 compares the response of mammary carcinoma in a mouse model to exposure to ABI-007 or Taxol.
  • FIG. 5 compares the response of ovarian carcinoma in a mouse model to exposure to ABI-007 or Taxol.
  • FIG. 6 compares the response of prostate tumors in a mouse model to exposure to ABI-007 or Taxol.
  • FIG. 7 compares the response of colon tumors in a mouse model to exposure to ABI-007 or Taxol.
  • FIG. 8 compares the response of lung tumors in a mouse model to exposure to ABI-007 or Taxol.
  • a substantially water insoluble pharmacologically active agent to a subject in need thereof, said method comprising combining said agent with an effective amount of a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, and administering an effective amount of said combination to said subject.
  • pharmacologically active agents are contemplated for use in the practice of the present invention.
  • a presently preferred agent contemplated for use herein is paclitaxel.
  • compositions contemplated for use in the practice of the present invention are biocompatible materials such as albumin.
  • Micelle-forming components which are preferably avoided in the practice of the present invention are surface active materials which are commonly used to assist in solubilizing substantially insoluble compounds in aqueous media, such as, for example, cremophor.
  • Invention combination of active agent and pharmaceutically acceptable carrier can be administered in a variety of ways, such as, for example, by oral, intravenous, subcutaneous, intraperitoneal, intrathecal, intramuscular, intracranial, inhalational, topical, transdermal, rectal, or pessary routes of administration, and the like.
  • a substantially water insoluble pharmacologically active agent in vehicle employed for delivery thereof comprising combining said agent with a pharmaceutically acceptable carrier which is substantially free of micelle-forming components prior to delivery thereof.
  • Presently preferred pharmaceutically acceptable carriers contemplated for use herein are those having substantially lower affinity for said agent than does the micelle-forming component.
  • cremophor has the benefit of aiding in the solubilization of agent, it has the disadvantage of having a substantial affinity for the agent, so that release of the agent from the carrier becomes a limitation on the bioavailability of the agent.
  • carriers contemplated herein, such as, for example, albumin readily release the active agent to the active site and are thus much more effective for treatment of a variety of conditions.
  • a substantially water insoluble pharmacologically active agent upon administration thereof to a subject in need thereof, said method comprising combining said agent with pharmaceutically acceptable carrier(s) which is (are) substantially free of micelle-forming components prior to delivery thereof.
  • a substantially water insoluble pharmacologically active agent across cell membranes upon administration thereof to a subject in need thereof, said method comprising combining said agent with pharmaceutically acceptable carrier(s) which is (are) substantially free of micelle-forming components prior to delivery thereof.
  • a substantially water insoluble pharmacologically active agent into the cellular compartment upon administration thereof to a subject in need thereof, said method comprising combining said agent with pharmaceutically acceptable carrier(s) which is (are) substantially free of micelle-forming components prior to delivery thereof.
  • formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a higher concentration of said agent in the cellular compartment than a formulation of the same agent with a micelle-forming component.
  • formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides increased intra-cellular availability of said agent relative to a formulation of the same agent with a micelle-forming component.
  • formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides prolonged activity of said agent relative to a formulation of the same agent with a micelle-forming component.
  • formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation facilitates delivery of said agent to red blood cells.
  • formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation releases a portion of said agent contained therein to the lipid membrane of a cell.
  • formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides reduced levels of said agent in the bloodstream relative to a formulation of the same agent with a micelle-forming component.
  • formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation delivers said agent to the bloodstream over an extended period of time relative to a formulation of the same agent with a micelle-forming component.
  • formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein the rate of metabolism of said agent in said formulation is reduced relative to the rate of metabolism of said agent in a formulation with a micelle-forming component.
  • formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said agent has a longer half life in said formulation relative to the half life of said agent in a formulation with a micelle-forming component.
  • formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a higher red blood cell/plasma ratio of said agent than does a formulation of the same agent with a micelle-forming component.
  • formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a higher tumor/plasma ratio of said agent than does a formulation of the same agent with a micelle-forming component.
  • formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein the area under the curve for delivery of said agent to a tumor via said formulation is higher than the area under the curve for delivery of said agent to a tumor via a formulation of the same agent with a micelle-forming component.
  • formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a higher concentration maximum (C max ) for said agent in tumor cells than does a formulation of the same agent with a micelle-forming component.
  • formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a lower concentration maximum (C max ) for said agent in plasma than does a formulation of the same agent with a micelle-forming component.
  • formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides more rapid uptake of said agent by tumor cells than does a formulation of the same agent with a micelle-forming component.
  • formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation enhances delivery of said agent to tissue, relative to a formulation of the same agent with a micelle-forming component.
  • Tissues contemplated for treatment according to the invention include tumors, peritoneal tissue, bladder tissue, lung tissue, and the like.
  • ABI-007 is a proprietary, cremophor-free, albumin-based paclitaxel nanoparticle, 1/100 th the size of a single red blood cell. Based on several Phase I studies, it has been shown that ABI-007 can be administered rapidly without the need for steroid pre-treatment and without the need for G-CSF at a maximum tolerated dose of 300 mg/m 2 given every 3 weeks. This is a significantly higher dose than is approved for cremophor-based paclitaxel formulations (Taxol) of 175 mg/m 2 .
  • ABI-007 acts as a novel biologic nano-transporter for hydrophobic drugs such as paclitaxel, with the capabilities of rapidly releasing paclitaxel to the cellular compartment and increasing intra-cellular availability of the active drug, where it is needed in order to have its chemo-therapeutic effect. Furthermore, through the use of the red blood cell as a secondary storage vehicle it has been discovered that in addition to the rapid and increased availability of paclitaxel at the intra-cellullar level, by the recruitment of circulating red blood cells, ABI-007 further provides a significant prolonged activity of the parent molecule with sustained in-vivo release.
  • the drug-bearing albumin nanoparticle (ABI-007) would rapidly release a portion of its hydrophobic paclitaxel cargo to the lipid membrane of a cell.
  • the first cell encountered is the red blood cell.
  • the red blood cell has been found to rapidly compartmentalize the paclitaxel molecule. Since the red blood cell has no nucleus and hence no microtubulin to which the paclitaxel molecule can bind, nor any degradation machinery within its core, this cell serves as an ideal secondary storage vehicle for the active paclitaxel, accounting in part for the prolonged activity of paclitaxel noted with ABI-007.
  • the nanoparticle is carried by the blood-stream to the hypervasular tumor, where paclitaxel is rapidly transferred to the tumor cell-membrane, again due to the differences in binding affinity. It has been well established by other groups that the hydrostatic pressure within these tumor cells is abnormally higher than the surrounding interstitium and vascular space. This abnormally high pressure, together with the fact that the vessels associated with tumors are also abnormally leaky, creates a barrier to the delivery of chemotherapeutic agents to the tumor cell.
  • paclitaxel As the nanoparticle depeletes itself of paclitaxel into the cellular compartment within the first 3-8 hours following infusion, the plasma concentration of paclitaxel diminshes. At this juncture, paclitaxel (still in its active, non-metabolized form) follows the concentration gradient and is now transferred to albumin again, and is again carried to the tumor bed. Thus, a prolonged half-life of paclitaxel has been achieved, with sustained release and ultimately higher tumor concentration of the drug.
  • human MX-1 mammary tumor fragments were implanted subcutaneously in female athymic mice. Radiolabelled drug was administered when tumors reached about 500 mm 3 . Tritium-labelled ABI-007 or tritium-labelled Taxol were administered at a dose of 20 mg/kg. Both groups received about 7-10 ⁇ Ci/mouse of tritium-labelled paclitaxel. Saline was used as the diluent for both drugs. At various time points (5 min, 15 min, 30 min, 1 hr, 3 hr, 8 hr and 24 hr), 4 animals were sacrificed, then blood samples and tumor were recovered for radioactivity assessment.
  • Radioactivity was determined as nCi/ml of whole blood and plasma, and nCi/g of tumor tissue. Results are presented in FIGS. 1 , 2 and 3 , and are standardized for radioactivity and paclitaxel dose. The data from these studies are also presented in the following tables.
  • t max (hours) t1 ⁇ 2 e (hours) Vdss (mL/kg) Blood Plasma Tumor Blood Plasma Tumor Blood Plasma Tumor ABI-007 0 0 0.5 ABI-007 17.1 16.1 40.2 ABI-007 6939 5180 NA Taxol 0 0 3 Taxol 4.0 3.3 24.1 Taxol 1409 692 NA Ratio 4.28 4.88 1.67 Ratio 4.92 7.49 ABI-007: Substantially lower tumor tmax indicates rapid uptake of paclitaxel into tumor relative to taxol ABI-007: Prolonged half life relative to Taxol in blood, plasma and tumor may result in higher antitumor activity ABI-007: Substantially higher volume of distribution indicating extrensive distribution into tissues relative to Taxol
  • Toxicity was assessed for Taxol, cremophor and ABI-007.
  • ABI-007 was found to be 50-fold less toxic than Taxol, and 30-fold less toxic than the cremophor vehicle alone, as illustrated in the following table:
  • Agent LD 50 mg/kg Taxol 9.4 Cremophor 13.7 ABI-007 448.5
  • mice Human tumor fragments were implanted subcutaneously in female athymic mice. Treatment was initiated when tumors reached about 150 mm 3 . The mice received either CONTROL (saline), ABI-007 (4 dose levels: 13.4, 20, 30 and 45 mg/kg) or TAXOL (3 dose levels: 13.4, 20, and 30 mg/kg) administered I.V. daily for 5 days. Saline was used as the diluent for both drugs.
  • the Equitoxic dose or MTD for each drug was determined by satisfying one of the following criteria:
  • cremophor causes a profound alteration of paclitaxel accumulation in erythrocytes in a concentration-dependant manner by reducing the free drug fraction available for cellular partitioning.” He has further found that the drug trapping occurs in micelles and that these micelles act as the principal carrier of paclitaxel in the systemic circulation. Since that publication these findings have been independently confirmed by two other groups.

Abstract

In accordance with the present invention, novel formulations have been developed which are much more effective for the delivery of hydrophobic drugs to patients in need thereof than are prior art formulations. Invention formulations are capable of delivering more drug in shorter periods of time, with reduced side effects caused by the pharmaceutical carrier employed for delivery.

Description

    RELATED APPLICATIONS
  • The present application is a continuation of U.S. Ser. No. 11/240,940, filed Sep. 29, 2005, now pending, which is a continuation of U.S. Ser. No. 10/146,706, filed May 14, 2002, now abandoned, which is a continuation-in-part of U.S. Ser. No. 09/628,388, filed Aug. 1, 2000, now issued U.S. Pat. No. 6,506,405, which is a divisional of U.S. Ser. No. 08/926,155, filed Sep. 9, 1997, now issued as U.S. Pat. No. 6,096,331, which is a continuation-in-part of U.S. Ser. No. 08/720,756, filed Oct. 1, 1996, now issued as U.S. Pat. No. 5,916,596, and U.S. Ser. No. 08/485,448, filed Jun. 7, 1995, now U.S. Pat. No. 5,665,382, which is, in turn, a continuation-in-part of U.S. Ser. No. 08/200,235, filed Feb. 22, 1994, now issued as U.S. Pat. No. 5,498,421, which is, in turn, a continuation-in-part of U.S. Ser. No. 08/023,698, filed Feb. 22, 1993, now issued as U.S. Pat. No. 5,439,686 and U.S. Ser. No. 08/035,150, filed Mar. 26, 1993, now issued as U.S. Pat. No. 5,362,478, the content of each of which are hereby incorporated by reference therein in their entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to novel formulations of pharmacologically active agents and methods for the delivery of such agents to subjects in need thereof.
  • BACKGROUND OF THE INVENTION
  • In the quest for next generation therapies to treat cancer, scientist often discover promising compounds only to find that the molecule is highly insoluble in water, and hence impossible to deliver intravenously. Such was the problem with paclitaxel, an extremely effective anti-tumor agent discovered over a quarter century ago by the Nation Cancer Institute. Despite almost 30 years of effort, the only method currently approved to address this problem of water-insolubility of paclitaxel is the use of a toxic solvent (cremophor) to dissolve the drug, and administer this solvent-paclitaxel mixture over many hours using specialized intra-venous tubing sets to prevent the leaching of plasticizers. This solvent-drug mixture, currently marketed in branded and generic forms, has become the most widely used anti-cancer agent as it has shown activity in breast, lung and ovarian cancer and is undergoing multiple clinical trials exploring its application in combination with other drugs for other solid tumors.
  • The cremophor formulation of paclitaxel is associated with significant side-effects including life-threatening allergic reactions requiring the need for steroid pre-treatment for every patient receiving the drug, and severe infections as a result of lowering of white blood cells requiring the need for expensive blood cell growth factors. Ultimately these toxicities result in dose-limitation of cremophor-based paclitaxel formulations, thus limiting the full potential of the very effective paclitaxel molecule.
  • While the above toxic side effects of cremophor paclitaxel formulations are well known, it has not been widely recognized by scientists in the field that the presence of cremophor creates a more serious impediment to realizing the maximal potential of paclitaxel by entrapping paclitaxel within the hydrophobic cores of cremophor micelles within microdroplets in the blood-stream. The entrapment effect of cremophor is dependent on cremophor concentration. Thus, increasing the doses of cremophor solutions of paclitaxel can potentially worsen the entrapment by raising the concentration of cremophor, leading to higher toxicities but none of the potential benefits of higher doses of paclitaxel, since much of the active molecule is unavailable to the intra-cellular space, where it is needed to act.
  • This entrapment of paclitaxel by cremophor has a profound effect on the intra-cellular availability of the active molecule and hence may have significant clinical implications in terms of clinical outcome. Accordingly, there is a need in the art for new formulations for the delivery of substantially water insoluble pharmacologically active agents, such as paclitaxel, which do not suffer from the drawbacks of cremophor.
  • BRIEF DESCRIPTION OF THE INVENTION
  • In accordance with the present invention, novel formulations have been developed which are much more effective for the delivery of hydrophobic drugs to patients in need thereof than are prior art formulations. Invention formulations are capable of delivering more drug in shorter periods of time, with reduced side effects caused by the pharmaceutical carrier employed for delivery.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 collectively compares the plasma kinetics of radiolabelled paclitaxel when administered to a mouse model as part of a Taxol formulation (closed squares) or as part of in invention formulation (diamonds; ABI-007). FIG. 1A indicates plasma radioactivity measured up to 0.5 hours after administration. FIG. 1B indicates plasma radioactivity measured up to 24 hours after administration. Inspection of the figure reveals that 2-5 fold higher levels of paclitaxel are retained in the plasma up to 3 hours after administration when paclitaxel is administered in a cremophor-based formulation (Taxol). Due to the reduced rate of metabolism for ABI-007, plasma levels of paclitaxel are higher after 8 hours when administered in an invention formulation, relative to a cremophor-based formulation.
  • FIG. 2 compares the partitioning of paclitaxel between red blood cells and plasma when administered to a mouse model as part of a Taxol formulation (closed squares) or as part of in invention formulation (diamonds; ABI-007). Inspection of the figure reveals that the blood/plasma ratio for paclitaxel administered as part of a cremophor-based formulation (Taxol) in the first 3 hours after administration is about 1.5-2, indicating that the majority of paclitaxel is retained in the plasma due to micellar formation with cremophor. In addition, it is seen that paclitaxel in a cremophor-based formulation does not significantly partition into the red blood cells. In contrast, paclitaxel administered as part of an invention formulation readily partitions into the red blood cells.
  • FIG. 3 summarizes tumor/plasma partitioning kinetics of paclitaxel when administered to a mouse model as part of a Taxol formulation (closed squares) or as part of in invention formulation (diamonds; ABI-007). It is seen that the tumor/plasma ratio of paclitaxel increases significantly over the first 3 hours when as part of an invention formulation, as opposed to a Taxol formulation.
  • FIG. 4 compares the response of mammary carcinoma in a mouse model to exposure to ABI-007 or Taxol.
  • FIG. 5 compares the response of ovarian carcinoma in a mouse model to exposure to ABI-007 or Taxol.
  • FIG. 6 compares the response of prostate tumors in a mouse model to exposure to ABI-007 or Taxol.
  • FIG. 7 compares the response of colon tumors in a mouse model to exposure to ABI-007 or Taxol.
  • FIG. 8 compares the response of lung tumors in a mouse model to exposure to ABI-007 or Taxol.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In accordance with the present invention, there are provided methods for the delivery of a substantially water insoluble pharmacologically active agent to a subject in need thereof, said method comprising combining said agent with an effective amount of a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, and administering an effective amount of said combination to said subject.
  • As readily recognized by those of skill in the art, a wide variety of pharmacologically active agents are contemplated for use in the practice of the present invention. A presently preferred agent contemplated for use herein is paclitaxel.
  • Pharmaceutically acceptable carriers contemplated for use in the practice of the present invention are biocompatible materials such as albumin.
  • Micelle-forming components which are preferably avoided in the practice of the present invention are surface active materials which are commonly used to assist in solubilizing substantially insoluble compounds in aqueous media, such as, for example, cremophor.
  • Invention combination of active agent and pharmaceutically acceptable carrier can be administered in a variety of ways, such as, for example, by oral, intravenous, subcutaneous, intraperitoneal, intrathecal, intramuscular, intracranial, inhalational, topical, transdermal, rectal, or pessary routes of administration, and the like.
  • In accordance with another embodiment of the present invention, there are provided methods to reduce entrapment of a substantially water insoluble pharmacologically active agent in vehicle employed for delivery thereof, said method comprising combining said agent with a pharmaceutically acceptable carrier which is substantially free of micelle-forming components prior to delivery thereof.
  • Presently preferred pharmaceutically acceptable carriers contemplated for use herein are those having substantially lower affinity for said agent than does the micelle-forming component. Thus, for example, while cremophor has the benefit of aiding in the solubilization of agent, it has the disadvantage of having a substantial affinity for the agent, so that release of the agent from the carrier becomes a limitation on the bioavailability of the agent. In contrast, carriers contemplated herein, such as, for example, albumin, readily release the active agent to the active site and are thus much more effective for treatment of a variety of conditions.
  • In accordance with yet another embodiment of the present invention, there are provided methods to reduce entrapment of a substantially water insoluble pharmacologically active agent in vehicle employed for delivery thereof, said method comprising employing pharmaceutically acceptable carriers which are substantially free of micelle-forming components in aqueous media as the vehicle for delivery of said agent.
  • In accordance with still another embodiment of the present invention, there are provided methods to prolong exposure of a subject to a substantially water insoluble pharmacologically active agent upon administration thereof to a subject in need thereof, said method comprising combining said agent with pharmaceutically acceptable carrier(s) which is (are) substantially free of micelle-forming components prior to delivery thereof.
  • In accordance with a further embodiment of the present invention, there are provided methods to facilitate transport of a substantially water insoluble pharmacologically active agent across cell membranes upon administration thereof to a subject in need thereof, said method comprising combining said agent with pharmaceutically acceptable carrier(s) which is (are) substantially free of micelle-forming components prior to delivery thereof.
  • In accordance with a still further embodiment of the present invention, there are provided methods to facilitate transport of a substantially water insoluble pharmacologically active agent into the cellular compartment upon administration thereof to a subject in need thereof, said method comprising combining said agent with pharmaceutically acceptable carrier(s) which is (are) substantially free of micelle-forming components prior to delivery thereof.
  • In accordance with another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a higher concentration of said agent in the cellular compartment than a formulation of the same agent with a micelle-forming component.
  • In accordance with yet another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides increased intra-cellular availability of said agent relative to a formulation of the same agent with a micelle-forming component.
  • In accordance with still another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides prolonged activity of said agent relative to a formulation of the same agent with a micelle-forming component.
  • In accordance with a further embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation facilitates delivery of said agent to red blood cells.
  • In accordance with another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation releases a portion of said agent contained therein to the lipid membrane of a cell.
  • In accordance with yet another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides reduced levels of said agent in the bloodstream relative to a formulation of the same agent with a micelle-forming component.
  • In accordance with still another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation delivers said agent to the bloodstream over an extended period of time relative to a formulation of the same agent with a micelle-forming component.
  • In accordance with a further embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein the rate of metabolism of said agent in said formulation is reduced relative to the rate of metabolism of said agent in a formulation with a micelle-forming component.
  • In accordance with another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said agent has a longer half life in said formulation relative to the half life of said agent in a formulation with a micelle-forming component.
  • In accordance with yet another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a higher red blood cell/plasma ratio of said agent than does a formulation of the same agent with a micelle-forming component.
  • In accordance with still another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a higher tumor/plasma ratio of said agent than does a formulation of the same agent with a micelle-forming component.
  • In accordance with a further embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein the area under the curve for delivery of said agent to a tumor via said formulation is higher than the area under the curve for delivery of said agent to a tumor via a formulation of the same agent with a micelle-forming component.
  • In accordance with a still further embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a higher concentration maximum (Cmax) for said agent in tumor cells than does a formulation of the same agent with a micelle-forming component.
  • In accordance with another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides a lower concentration maximum (Cmax) for said agent in plasma than does a formulation of the same agent with a micelle-forming component.
  • In accordance with still another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation provides more rapid uptake of said agent by tumor cells than does a formulation of the same agent with a micelle-forming component.
  • In accordance with yet another embodiment of the present invention, there are provided formulations comprising a substantially water insoluble pharmacologically active agent and a pharmaceutically acceptable carrier which is substantially free of micelle-forming components, wherein said formulation enhances delivery of said agent to tissue, relative to a formulation of the same agent with a micelle-forming component.
  • Tissues contemplated for treatment according to the invention include tumors, peritoneal tissue, bladder tissue, lung tissue, and the like.
  • ABI-007 is a proprietary, cremophor-free, albumin-based paclitaxel nanoparticle, 1/100th the size of a single red blood cell. Based on several Phase I studies, it has been shown that ABI-007 can be administered rapidly without the need for steroid pre-treatment and without the need for G-CSF at a maximum tolerated dose of 300 mg/m2 given every 3 weeks. This is a significantly higher dose than is approved for cremophor-based paclitaxel formulations (Taxol) of 175 mg/m2.
  • In accordance with the present invention, it has been discovered that ABI-007 acts as a novel biologic nano-transporter for hydrophobic drugs such as paclitaxel, with the capabilities of rapidly releasing paclitaxel to the cellular compartment and increasing intra-cellular availability of the active drug, where it is needed in order to have its chemo-therapeutic effect. Furthermore, through the use of the red blood cell as a secondary storage vehicle it has been discovered that in addition to the rapid and increased availability of paclitaxel at the intra-cellullar level, by the recruitment of circulating red blood cells, ABI-007 further provides a significant prolonged activity of the parent molecule with sustained in-vivo release. These novel mechanisms for rapid and increased intra-cellular availabilty of the drug at the tumor site, together with sustained trafficking of the non-metabolized paclitaxel, has potentially significant implications for the clinical outcome in the treatment of solid tumors. Indeed, the pre-clinical and Phase II clinical data presented below supports this notion.
  • By taking advantage of the differences in binding affinities of albumin and the lipid bi-layer of cell membranes for hydrophobic paclitaxel, the drug-bearing albumin nanoparticle (ABI-007) would rapidly release a portion of its hydrophobic paclitaxel cargo to the lipid membrane of a cell.
  • In the vascular compartment, the first cell encountered is the red blood cell. In accordance with the present invention, the red blood cell has been found to rapidly compartmentalize the paclitaxel molecule. Since the red blood cell has no nucleus and hence no microtubulin to which the paclitaxel molecule can bind, nor any degradation machinery within its core, this cell serves as an ideal secondary storage vehicle for the active paclitaxel, accounting in part for the prolonged activity of paclitaxel noted with ABI-007.
  • Following partitioning of a portion of its paclitaxel payload to the circulating red blood cells, the nanoparticle is carried by the blood-stream to the hypervasular tumor, where paclitaxel is rapidly transferred to the tumor cell-membrane, again due to the differences in binding affinity. It has been well established by other groups that the hydrostatic pressure within these tumor cells is abnormally higher than the surrounding interstitium and vascular space. This abnormally high pressure, together with the fact that the vessels associated with tumors are also abnormally leaky, creates a barrier to the delivery of chemotherapeutic agents to the tumor cell. Thus, under these circumstances it is imperative that the hydrophobic paclitaxel be released rapidly to the lipid cell membrane and be bound by the microtubules within the nuclues before the drug is ejected from the tumor. Evidence presented herein indicates that ABI-007 provides that opportunity by the ability to rapidly release the hydrophobic molecule. In contrast, cremophor-based formulations entrap the paclitaxel, limiting the ability of the drug to partition into cells. This difference may have important clinical implications and may account in part for the positive data noted in the Phase II studies of ABI-007 in metastatic breast cancer and the evidence for responses in patients who had previously failed Taxol therapy
  • As the nanoparticle depeletes itself of paclitaxel into the cellular compartment within the first 3-8 hours following infusion, the plasma concentration of paclitaxel diminshes. At this juncture, paclitaxel (still in its active, non-metabolized form) follows the concentration gradient and is now transferred to albumin again, and is again carried to the tumor bed. Thus, a prolonged half-life of paclitaxel has been achieved, with sustained release and ultimately higher tumor concentration of the drug.
  • The invention will now be described in greater detail by reference to the following non-limiting examples.
  • Example 1 Preclinical Studies Confirm the Modulation of Paclitaxel Release by the Protein Nanosphere and Increased Efficacy of Equi-dose of ABI-007 vs Taxol
  • Using radio labeled paclitaxel, the enahanced intra-cellular availability of paclitaxel has been confirmed following injection of ABI-007. In addition, the entrapment of Cremophor-bound paclitaxel has also been confirmed. This difference in findings correlates with in-vivo studies in mice bearing human breast cancer, with the finding that ABI-007 at equi-dose to Taxol, resulted in improved outcomes that these 130 nanometer size particles distributed throughout the body.
  • Thus, human MX-1 mammary tumor fragments were implanted subcutaneously in female athymic mice. Radiolabelled drug was administered when tumors reached about 500 mm3. Tritium-labelled ABI-007 or tritium-labelled Taxol were administered at a dose of 20 mg/kg. Both groups received about 7-10 μCi/mouse of tritium-labelled paclitaxel. Saline was used as the diluent for both drugs. At various time points (5 min, 15 min, 30 min, 1 hr, 3 hr, 8 hr and 24 hr), 4 animals were sacrificed, then blood samples and tumor were recovered for radioactivity assessment.
  • Radioactivity was determined as nCi/ml of whole blood and plasma, and nCi/g of tumor tissue. Results are presented in FIGS. 1, 2 and 3, and are standardized for radioactivity and paclitaxel dose. The data from these studies are also presented in the following tables.
  • Pharmacokinetic Parameters for Whole-Blood, Plasma and Tumor Distribution of 3H-Paclitaxel in ABI-007 vs Taxol
  • New
    AUC0-inf AUC0-24
    (nCi hr/mL or g) (nCi hr/mL or g) Cmax (nCi/mL or g)
    Blood Plasma Tumor Blood Plasma Tumor Blood Plasma Tumor
    ABI-007 939 1161 5869 ABI-007 656 836 2156 ABI-007 328 473 144
    Taxol 871 1438 3716 Taxol 849 1415 1804 Taxol 752 1427 117
    Ratio 1.08 0.81 1.58 Ratio 0.77 0.59 1.20 Ratio 0.44 0.33 1.23
    TAXOL: high Plasma AUC - paclitaxel is trapped in cremophor micelles
    ABI-007: higher Tumor AUC (exposure), pac distributed into cells/tissues
    ABI-007: Substantially lower Cmax in Plasma, blood Implies rapid distribution into cells and tissues
    ABI-007: higher Tumor Cmax - more effective tumor kill
  • tmax (hours) e (hours) Vdss (mL/kg)
    Blood Plasma Tumor Blood Plasma Tumor Blood Plasma Tumor
    ABI-007 0 0 0.5 ABI-007 17.1 16.1 40.2 ABI-007 6939 5180 NA
    Taxol
    0 0 3 Taxol 4.0 3.3 24.1 Taxol 1409 692 NA
    Ratio 4.28 4.88 1.67 Ratio 4.92 7.49
    ABI-007: Substantially lower tumor tmax indicates rapid uptake of paclitaxel into tumor relative to taxol
    ABI-007: Prolonged half life relative to Taxol in blood, plasma and tumor may result in higher antitumor activity
    ABI-007: Substantially higher volume of distribution indicating extrensive distribution into tissues relative to Taxol
  • Further studies demonstrate that after 24 hours, the active ingredient of the parent molecule, paclitaxel, remains present in the bloodstream, at double the concentration of Taxol. In studies comparing radiolabelled paclitaxel in Taxol vs ABI-007, direct measurements reveal increased and prolonged levels of paclitaxel in the tumors of animals receiving ABI-007.
  • Example 2 Toxicity Studies
  • Toxicity was assessed for Taxol, cremophor and ABI-007. ABI-007 was found to be 50-fold less toxic than Taxol, and 30-fold less toxic than the cremophor vehicle alone, as illustrated in the following table:
  • Agent LD50, mg/kg
    Taxol 9.4
    Cremophor 13.7
    ABI-007 448.5
  • Example 3 In vivo Tumor Xenografts
  • Human tumor fragments were implanted subcutaneously in female athymic mice. Treatment was initiated when tumors reached about 150 mm3. The mice received either CONTROL (saline), ABI-007 (4 dose levels: 13.4, 20, 30 and 45 mg/kg) or TAXOL (3 dose levels: 13.4, 20, and 30 mg/kg) administered I.V. daily for 5 days. Saline was used as the diluent for both drugs.
  • Determination of Equitoxic dose or MTD: The Equitoxic dose or MTD for each drug was determined by satisfying one of the following criteria:
      • a) Dose for each drug that resulted in similar body weight loss (≦20%) if no deaths were seen;
      • b) If body weight loss could not be matched, the highest dose at which no deaths were seen;
      • If neither a) nor b) could be satisfied, the lowest dose that resulted in similar death rate.
  • Tumor response to the drugs was compared at the Equitoxic dose or MTD established as above. Results for several different tumor types are presented in FIGS. 4-8.
  • Example 4 Clinical Studies
  • i. Entrappment of Paclitaxel By Cremophor
  • Working independently at Rotterdam Cancer Institute, Dr Alex Sparreboom has reported in a series of pharmacokinetic studies involving patients receiving Taxol that cremophor “causes a profound alteration of paclitaxel accumulation in erythrocytes in a concentration-dependant manner by reducing the free drug fraction available for cellular partitioning.” He has further found that the drug trapping occurs in micelles and that these micelles act as the principal carrier of paclitaxel in the systemic circulation. Since that publication these findings have been independently confirmed by two other groups.
  • ii. Improved Clinical Activity With ABI-007
  • Data from Phase II shows both increased effiacacy in metastatic breast cancer patients. When compared to the published literature of response rates to Taxol, the study results showed a dramatic difference in both response rates and time of response as well as evidence of reduced toxicities associated with ABI-007. Further details can be obtained by reviewing the posters presented at ASCO.
  • Although the present invention has been described in conjunction with the embodiments above, it is to be noted that various changes and modifications are apparent to those who are skilled in the art. Such changes and modifications are to be understood as included within the scope of the present invention defined by the appended claims.

Claims (17)

That which is claimed is:
1. A formulation comprising nanoparticles comprising paclitaxel and albumin which is free of cremophor, wherein the size of the nanoparticles is in the range of 20-400 nm, and wherein said formulation is characterized by one or more of the following:
wherein said formulation provides a higher concentration of paclitaxel in the cellular compartment than a formulation of paclitaxel with cremophor;
wherein said formulation provides increased intra-cellular availability of paclitaxel relative to a formulation of paclitaxel with cremophor;
wherein said formulation provides a higher concentration maximum (Cmax) for paclitaxel in tumor cells than does a formulation of paclitaxel with cremophor;
wherein said formulation enhances delivery of paclitaxel to a tumor tissue relative to a formulation of paclitaxel with cremophor; and
wherein said formulation enhances delivery of paclitaxel to pancreas, prostate, kidney, lung, heart, bone, or spleen relative to a formulation of paclitaxel with cremophor.
2. The formulation of claim 1, wherein the albumin is human serum albumin.
3. The formulation of claim 1, wherein said formulation enhances delivery of paclitaxel to a tumor tissue relative to a formulation of paclitaxel with cremophor.
4. The formulation of claim 3, wherein said formulation enhances delivery of paclitaxel to pancreas, kidney, lung, heart, bone, or spleen relative to a formulation of paclitaxel with cremophor.
5. A formulation comprising nanoparticles comprising paclitaxel and albumin which is free of cremophor, wherein the size of the nanoparticles is in the range of 20-400 nm, wherein upon administration of said formulation the area under curve of paclitaxel increases proportionally with the dose of paclitaxel between about 55 mg/m2 and about 158 mg/m2.
6. The formulation of claim 5, wherein the albumin is human serum albumin.
7. The formulation of claim 5, wherein upon administration of said formulation the area under curve of paclitaxel increases proportionally with the dose of paclitaxel between about 55 mg/m2 and about 700 mg/m2.
8. The formulation of claim 5, wherein said administration is intravenous administration.
9. A method of administration comprising administering formulation comprising nanoparticles comprising paclitaxel and albumin which is free of cremophor, wherein the size of the nanoparticles is in the range of 20-400 nm, and wherein said formulation is characterized by one or more of the following:
wherein said formulation provides a higher concentration of paclitaxel in the cellular compartment than a formulation of paclitaxel with cremophor;
wherein said formulation provides increased intra-cellular availability of paclitaxel relative to a formulation of paclitaxel with cremophor;
wherein said formulation provides a higher concentration maximum (Cmax) for paclitaxel in tumor cells than does a formulation of paclitaxel with cremophor;
wherein said formulation enhances delivery of paclitaxel to a tumor tissue relative to a formulation of paclitaxel with cremophor; and
wherein said formulation enhances delivery of paclitaxel to pancreas, prostate, kidney, lung, heart, bone, or spleen relative to a formulation of paclitaxel with cremophor.
10. The method of claim 9, wherein the albumin is human serum albumin.
11. The method of claim 9, wherein said formulation enhances delivery of paclitaxel to a tumor tissue relative to a formulation of paclitaxel with cremophor.
12. The method of claim 11, wherein said formulation enhances delivery of paclitaxel to pancreas, kidney, lung, heart, bone, or spleen relative to a formulation of paclitaxel with cremophor.
13. The method of claim 9, wherein said administration is intravenous administration.
14. A method of administration comprising administering a formulation comprising nanoparticles comprising paclitaxel and albumin which is free of cremophor, wherein the size of the nanoparticles is in the range of 20-400 nm, and upon administration of said formulation the area under curve of paclitaxel increases proportionally with the dose of paclitaxel between about 55 mg/m2 and about 158 mg/m2.
15. The method of claim 14, wherein the albumin is human serum albumin.
16. The method of claim 14, wherein upon administration of said formulation the area under curve of paclitaxel increases proportionally with the dose of paclitaxel between about 55 mg/m2 and about 700 mg/m2.
17. The method of claim 14, wherein said administration is intravenous administration.
US12/713,092 1993-02-22 2010-02-25 Methods and formulations for the delivery of pharmacologically active agents Abandoned US20110052708A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/713,092 US20110052708A1 (en) 1993-02-22 2010-02-25 Methods and formulations for the delivery of pharmacologically active agents

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US08/023,698 US5439686A (en) 1993-02-22 1993-02-22 Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor
US08/412,726 US5560933A (en) 1993-02-22 1995-03-29 Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor
US08/720,756 US5916596A (en) 1993-02-22 1996-10-01 Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
US08/926,155 US6096331A (en) 1993-02-22 1997-09-09 Methods and compositions useful for administration of chemotherapeutic agents
US09/628,388 US6506405B1 (en) 1993-02-22 2000-08-01 Methods and formulations of cremophor-free taxanes
US10/146,706 US20030068362A1 (en) 1993-02-22 2002-05-14 Methods and formulations for the delivery of pharmacologically active agents
US11/240,940 US20060073175A1 (en) 1993-02-22 2005-09-29 Methods and formulations for delivery of pharmacologically active agents
US12/051,782 US20090048331A1 (en) 1993-02-22 2008-03-19 Methods and formulations for the delivery of pharmacologically active agents
US12/713,092 US20110052708A1 (en) 1993-02-22 2010-02-25 Methods and formulations for the delivery of pharmacologically active agents

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/051,782 Continuation US20090048331A1 (en) 1993-02-22 2008-03-19 Methods and formulations for the delivery of pharmacologically active agents

Publications (1)

Publication Number Publication Date
US20110052708A1 true US20110052708A1 (en) 2011-03-03

Family

ID=21816707

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/023,698 Expired - Lifetime US5439686A (en) 1993-02-22 1993-02-22 Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor
US08/412,726 Expired - Lifetime US5560933A (en) 1993-02-22 1995-03-29 Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor
US12/713,092 Abandoned US20110052708A1 (en) 1993-02-22 2010-02-25 Methods and formulations for the delivery of pharmacologically active agents

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/023,698 Expired - Lifetime US5439686A (en) 1993-02-22 1993-02-22 Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor
US08/412,726 Expired - Lifetime US5560933A (en) 1993-02-22 1995-03-29 Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor

Country Status (2)

Country Link
US (3) US5439686A (en)
CN (1) CN1839806B (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030199425A1 (en) * 1997-06-27 2003-10-23 Desai Neil P. Compositions and methods for treatment of hyperplasia
US20070087022A1 (en) * 1996-10-01 2007-04-19 Abraxis Bioscience, Inc. Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US20070093547A1 (en) * 1997-06-27 2007-04-26 Desai Neil P Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US20090263483A1 (en) * 2008-04-10 2009-10-22 Desai Neil P Nanoparticle formulations and uses thereof
US20090304805A1 (en) * 2005-02-18 2009-12-10 Desai Neil P Combinations and modes of administration of therapeutic agents and combination therapy
US20100048499A1 (en) * 2006-12-14 2010-02-25 Desai Neil P Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxane
US20100166869A1 (en) * 2007-05-03 2010-07-01 Desai Neil P Methods and compositions for treating pulmonary hypertension
US20100183728A1 (en) * 2007-03-07 2010-07-22 Desai Neil P Nanoparticle comprising rapamycin and albumin as anticancer agent
US20100215751A1 (en) * 2007-06-01 2010-08-26 Desai Neil P Methods and compositions for treating recurrent cancer
US20110052706A1 (en) * 2009-08-28 2011-03-03 Nordmark Arzeimittel GmbH & Co. KG Pancreatine pellets and method of producing same
US20110118342A1 (en) * 2005-08-31 2011-05-19 Tapas De Compositions and methods for preparation of poorly water soluble drugs with increased stability
US8034375B2 (en) 2005-02-18 2011-10-11 Abraxis Bioscience, Llc Combinations and modes of administration of therapeutic agents and combination therapy
US8138229B2 (en) 2002-12-09 2012-03-20 Abraxis Bioscience, Llc Compositions and methods of delivery of pharmacological agents
US9149455B2 (en) 2012-11-09 2015-10-06 Abraxis Bioscience, Llc Methods of treating melanoma
US9370494B2 (en) 2010-03-26 2016-06-21 Abraxis Bioscience, Llc Methods for treating hepatocellular carcinoma
US9393318B2 (en) 2010-03-29 2016-07-19 Abraxis Bioscience, Llc Methods of treating cancer
US9399072B2 (en) 2010-06-04 2016-07-26 Abraxis Bioscience, Llc Methods of treatment of pancreatic cancer
US9446003B2 (en) 2009-04-15 2016-09-20 Abraxis Bioscience, Llc Prion free nanoparticle compositions and methods of making thereof
US9585960B2 (en) 2011-12-14 2017-03-07 Abraxis Bioscience, Llc Use of polymeric excipients for lyophilization or freezing of particles
US9962373B2 (en) 2013-03-14 2018-05-08 Abraxis Bioscience, Llc Methods of treating bladder cancer
US10527604B1 (en) 2015-03-05 2020-01-07 Abraxis Bioscience, Llc Methods of assessing suitability of use of pharmaceutical compositions of albumin and paclitaxel
US10660965B2 (en) 2010-03-29 2020-05-26 Abraxis Bioscience, Llc Methods of enhancing drug delivery and effectiveness of therapeutic agents
US10705070B1 (en) 2015-03-05 2020-07-07 Abraxis Bioscience, Llc Methods of assessing suitability of use of pharmaceutical compositions of albumin and poorly water soluble drug
US10744110B2 (en) 2013-03-12 2020-08-18 Abraxis Bioscience, Llc Methods of treating lung cancer
US10973806B2 (en) 2015-06-29 2021-04-13 Abraxis Bioscience, Llc Methods of treating epithelioid cell tumors comprising administering a composition comprising nanoparticles comprising an mTOR inhibitor and an albumin
US11497737B2 (en) 2019-10-28 2022-11-15 Abraxis Bioscience, Llc Pharmaceutical compositions of albumin and rapamycin
US11944708B2 (en) 2018-03-20 2024-04-02 Abraxis Bioscience, Llc Methods of treating central nervous system disorders via administration of nanoparticles of an mTOR inhibitor and an albumin

Families Citing this family (259)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843089A (en) 1990-12-28 1998-12-01 Boston Scientific Corporation Stent lining
US5714167A (en) 1992-06-15 1998-02-03 Emisphere Technologies, Inc. Active agent transport systems
US5578323A (en) 1992-06-15 1996-11-26 Emisphere Technologies, Inc. Proteinoid carriers and methods for preparation and use thereof
WO1994023767A1 (en) 1993-04-22 1994-10-27 Emisphere Technologies, Inc. Oral drug delivery compositions and methods
US5693338A (en) 1994-09-29 1997-12-02 Emisphere Technologies, Inc. Diketopiperazine-based delivery systems
US6099856A (en) 1992-06-15 2000-08-08 Emisphere Technologies, Inc. Active agent transport systems
US6221367B1 (en) 1992-06-15 2001-04-24 Emisphere Technologies, Inc. Active agent transport systems
DE69433723T3 (en) * 1993-02-22 2008-10-30 Abraxis Bioscience, Inc., Los Angeles PROCESS FOR IN VIVO ADMINISTRATION OF BIOLOGICAL SUBSTANCES AND COMPOSITIONS USED THEREFROM
US20030073642A1 (en) * 1993-02-22 2003-04-17 American Bioscience, Inc. Methods and formulations for delivery of pharmacologically active agents
US5916596A (en) * 1993-02-22 1999-06-29 Vivorx Pharmaceuticals, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
US5997904A (en) * 1993-02-22 1999-12-07 American Bioscience, Inc. Total nutrient admixtures as stable multicomponent liquids or dry powders and methods for the preparation thereof
US6096331A (en) 1993-02-22 2000-08-01 Vivorx Pharmaceuticals, Inc. Methods and compositions useful for administration of chemotherapeutic agents
US5665383A (en) * 1993-02-22 1997-09-09 Vivorx Pharmaceuticals, Inc. Methods for the preparation of immunostimulating agents for in vivo delivery
US6537579B1 (en) 1993-02-22 2003-03-25 American Bioscience, Inc. Compositions and methods for administration of pharmacologically active compounds
US5439686A (en) * 1993-02-22 1995-08-08 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor
US20030133955A1 (en) * 1993-02-22 2003-07-17 American Bioscience, Inc. Methods and compositions useful for administration of chemotherapeutic agents
US6528067B1 (en) 1993-02-22 2003-03-04 American Bioscience, Inc. Total nutrient admixtures as stable multicomponent liquids or dry powders and methods for the preparation thereof
US5650156A (en) * 1993-02-22 1997-07-22 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of nutriceuticals and compositions useful therefor
US6753006B1 (en) 1993-02-22 2004-06-22 American Bioscience, Inc. Paclitaxel-containing formulations
US6749868B1 (en) 1993-02-22 2004-06-15 American Bioscience, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
US20030068362A1 (en) * 1993-02-22 2003-04-10 American Bioscience, Inc. Methods and formulations for the delivery of pharmacologically active agents
US20070117862A1 (en) * 1993-02-22 2007-05-24 Desai Neil P Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
HU213200B (en) * 1993-05-12 1997-03-28 Chinoin Gyogyszer Es Vegyeszet The cyclodextrin or cyclodextrin derivative cluster complexes of taxol, taxotere, or taxus, pharmaceutical preparations containing them and process for their production
US5701899A (en) * 1993-05-12 1997-12-30 The Board Of Regents Of The University Of Nebraska Perfluorobutane ultrasound contrast agent and methods for its manufacture and use
US5855865A (en) * 1993-07-02 1999-01-05 Molecular Biosystems, Inc. Method for making encapsulated gas microspheres from heat denatured protein in the absence of oxygen gas
CN100998869A (en) * 1993-07-19 2007-07-18 血管技术药物公司 Anti-angiogene compositions and methods of use
US20030203976A1 (en) 1993-07-19 2003-10-30 William L. Hunter Anti-angiogenic compositions and methods of use
US5994341A (en) * 1993-07-19 1999-11-30 Angiogenesis Technologies, Inc. Anti-angiogenic Compositions and methods for the treatment of arthritis
US5965566A (en) * 1993-10-20 1999-10-12 Enzon, Inc. High molecular weight polymer-based prodrugs
US5965109A (en) * 1994-08-02 1999-10-12 Molecular Biosystems, Inc. Process for making insoluble gas-filled microspheres containing a liquid hydrophobic barrier
US5626862A (en) 1994-08-02 1997-05-06 Massachusetts Institute Of Technology Controlled local delivery of chemotherapeutic agents for treating solid tumors
US5989539A (en) 1995-03-31 1999-11-23 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6001347A (en) 1995-03-31 1999-12-14 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6090958A (en) 1995-03-31 2000-07-18 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
CN1151836C (en) 1995-03-31 2004-06-02 艾米斯菲尔技术有限公司 Compound and compositions for delivering active agents
US5606973A (en) * 1995-06-07 1997-03-04 Molecular Biosystems, Inc. Liquid core microdroplets for ultrasound imaging
US5824345A (en) 1995-06-07 1998-10-20 Emisphere Technologies, Inc. Fragrances and flavorants
US6565842B1 (en) 1995-06-07 2003-05-20 American Bioscience, Inc. Crosslinkable polypeptide compositions
US5750147A (en) 1995-06-07 1998-05-12 Emisphere Technologies, Inc. Method of solubilizing and encapsulating itraconazole
CA2195119C (en) * 1995-06-09 2001-09-11 Mark Chasin Formulations and methods for providing prolonged local anesthesia
DE19681560T1 (en) 1995-09-11 1998-08-20 Emisphere Tech Inc Process for the preparation of omega-aminoalkanoic acid derivatives from cycloalkanones
US6395770B1 (en) * 1995-10-26 2002-05-28 Baker Norton Pharmaceuticals, Inc. Method and compositions for administering taxanes orally to human patients
US6245747B1 (en) 1996-03-12 2001-06-12 The Board Of Regents Of The University Of Nebraska Targeted site specific antisense oligodeoxynucleotide delivery method
AU1855297A (en) * 1996-03-26 1997-10-17 Vivorx Pharmaceuticals, Inc. Storage articles for prolonged viability and function of living cells
EP1616563A3 (en) * 1996-05-24 2006-01-25 Angiotech Pharmaceuticals, Inc. Perivascular administration of anti-angiogenic factors for treating or preventing vascular diseases
JP2000512671A (en) 1996-06-14 2000-09-26 エミスフェアー テクノロジーズ インク Microencapsulated fragrance and preparation method
US5849727A (en) 1996-06-28 1998-12-15 Board Of Regents Of The University Of Nebraska Compositions and methods for altering the biodistribution of biological agents
US6515016B2 (en) 1996-12-02 2003-02-04 Angiotech Pharmaceuticals, Inc. Composition and methods of paclitaxel for treating psoriasis
AU741439B2 (en) 1996-12-30 2001-11-29 Battelle Memorial Institute Formulation and method for treating neoplasms by inhalation
US5990166A (en) 1997-02-07 1999-11-23 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5804688A (en) 1997-02-07 1998-09-08 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6313088B1 (en) 1997-02-07 2001-11-06 Emisphere Technologies, Inc. 8-[(2-hydroxy-4-methoxy benzoyl) amino]-octanoic acid compositions for delivering active agents
US5773647A (en) * 1997-02-07 1998-06-30 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6060513A (en) 1997-02-07 2000-05-09 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6358504B1 (en) 1997-02-07 2002-03-19 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
ES2388248T3 (en) 1997-03-31 2012-10-11 Boston Scientific Scimed Limited Dosage form comprising taxol in crystalline form
US5863944A (en) 1997-04-30 1999-01-26 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5962710A (en) 1997-05-09 1999-10-05 Emisphere Technologies, Inc. Method of preparing salicyloylamino acids
KR100789008B1 (en) * 1997-06-27 2007-12-26 아브락시스 바이오사이언스 인크. Novel Formulations of Pharmacological Agents
EP1007673B1 (en) 1997-07-30 2008-12-17 Emory University Novel bone mineralization proteins, dna, vectors, expression systems
US7923250B2 (en) 1997-07-30 2011-04-12 Warsaw Orthopedic, Inc. Methods of expressing LIM mineralization protein in non-osseous cells
HUP9701554D0 (en) 1997-09-18 1997-11-28 Human Oltoanyagtermeloe Gyogys Pharmaceutical composition containing plazma proteins
US7208011B2 (en) 2001-08-20 2007-04-24 Conor Medsystems, Inc. Implantable medical device with drug filled holes
US20040254635A1 (en) 1998-03-30 2004-12-16 Shanley John F. Expandable medical device for delivery of beneficial agent
US6241762B1 (en) 1998-03-30 2001-06-05 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US7208010B2 (en) 2000-10-16 2007-04-24 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US6086915A (en) * 1998-04-01 2000-07-11 Bioresponse L.L.C. Compositions and methods of adjusting steroid hormone metabolism through phytochemicals
US6190699B1 (en) 1998-05-08 2001-02-20 Nzl Corporation Method of incorporating proteins or peptides into a matrix and administration thereof through mucosa
US6500461B2 (en) 1998-05-20 2002-12-31 The Liposome Company Particulate formulations
US6221153B1 (en) * 1998-06-09 2001-04-24 Trevor Percival Castor Method for producing large crystals of complex molecules
US7087236B1 (en) * 1998-09-01 2006-08-08 Merrion Research I Limited Method for inducing a cell-mediated immune response and improved parenteral vaccine formulations thereof
US6293967B1 (en) 1998-10-29 2001-09-25 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US20020065546A1 (en) * 1998-12-31 2002-05-30 Machan Lindsay S. Stent grafts with bioactive coatings
US20050171594A1 (en) * 1998-12-31 2005-08-04 Angiotech International Ag Stent grafts with bioactive coatings
US6290673B1 (en) 1999-05-20 2001-09-18 Conor Medsystems, Inc. Expandable medical device delivery system and method
CA2684454A1 (en) * 1999-05-21 2000-11-18 American Bioscience, Llc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
US7919119B2 (en) * 1999-05-27 2011-04-05 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
US20020009466A1 (en) * 1999-08-31 2002-01-24 David J. Brayden Oral vaccine compositions
US6656504B1 (en) 1999-09-09 2003-12-02 Elan Pharma International Ltd. Nanoparticulate compositions comprising amorphous cyclosporine and methods of making and using such compositions
US6713454B1 (en) * 1999-09-13 2004-03-30 Nobex Corporation Prodrugs of etoposide and etoposide analogs
US6380405B1 (en) 1999-09-13 2002-04-30 Nobex Corporation Taxane prodrugs
US6541508B2 (en) * 1999-09-13 2003-04-01 Nobex Corporation Taxane prodrugs
US6348215B1 (en) 1999-10-06 2002-02-19 The Research Foundation Of State University Of New York Stabilization of taxane-containing dispersed systems
US6638906B1 (en) 1999-12-13 2003-10-28 Nobex Corporation Amphiphilic polymers and polypeptide conjugates comprising same
US20030206958A1 (en) * 2000-12-22 2003-11-06 Cattaneo Maurizio V. Chitosan biopolymer for the topical delivery of active agents
US6638973B2 (en) * 2000-02-02 2003-10-28 Fsu Research Foundation, Inc. Taxane formulations
US6749865B2 (en) * 2000-02-15 2004-06-15 Genzyme Corporation Modification of biopolymers for improved drug delivery
WO2001064164A2 (en) 2000-02-28 2001-09-07 Genesegues, Inc. Nanocapsule encapsulation system and method
US7674480B2 (en) * 2000-06-23 2010-03-09 Teva Pharmaceutical Industries Ltd. Rapidly expanding composition for gastric retention and controlled release of therapeutic agents, and dosage forms including the composition
US6881420B2 (en) 2000-06-23 2005-04-19 Teva Pharmaceutical Industries Ltd. Compositions and dosage forms for gastric delivery of irinotecan and methods of treatment that use it to inhibit cancer cell proliferation
US6506408B1 (en) * 2000-07-13 2003-01-14 Scimed Life Systems, Inc. Implantable or insertable therapeutic agent delivery device
US6764507B2 (en) 2000-10-16 2004-07-20 Conor Medsystems, Inc. Expandable medical device with improved spatial distribution
AU9463401A (en) 2000-10-16 2002-04-29 Conor Medsystems Inc Expandable medical device for delivery of beneficial agent
US8067032B2 (en) * 2000-12-22 2011-11-29 Baxter International Inc. Method for preparing submicron particles of antineoplastic agents
US7193084B2 (en) 2000-12-22 2007-03-20 Baxter International Inc. Polymorphic form of itraconazole
US20030072807A1 (en) * 2000-12-22 2003-04-17 Wong Joseph Chung-Tak Solid particulate antifungal compositions for pharmaceutical use
US6951656B2 (en) * 2000-12-22 2005-10-04 Baxter International Inc. Microprecipitation method for preparing submicron suspensions
US20040022862A1 (en) * 2000-12-22 2004-02-05 Kipp James E. Method for preparing small particles
US6977085B2 (en) * 2000-12-22 2005-12-20 Baxter International Inc. Method for preparing submicron suspensions with polymorph control
US20030096013A1 (en) * 2000-12-22 2003-05-22 Jane Werling Preparation of submicron sized particles with polymorph control
US20050048126A1 (en) 2000-12-22 2005-03-03 Barrett Rabinow Formulation to render an antimicrobial drug potent against organisms normally considered to be resistant to the drug
US6869617B2 (en) * 2000-12-22 2005-03-22 Baxter International Inc. Microprecipitation method for preparing submicron suspensions
US9700866B2 (en) 2000-12-22 2017-07-11 Baxter International Inc. Surfactant systems for delivery of organic compounds
US6884436B2 (en) * 2000-12-22 2005-04-26 Baxter International Inc. Method for preparing submicron particle suspensions
US7115565B2 (en) 2001-01-18 2006-10-03 Pharmacia & Upjohn Company Chemotherapeutic microemulsion compositions of paclitaxel with improved oral bioavailability
US6964680B2 (en) 2001-02-05 2005-11-15 Conor Medsystems, Inc. Expandable medical device with tapered hinge
US20040073294A1 (en) * 2002-09-20 2004-04-15 Conor Medsystems, Inc. Method and apparatus for loading a beneficial agent into an expandable medical device
US6509027B2 (en) 2001-02-12 2003-01-21 Supergen, Inc. Injectable pharmaceutical composition comprising coated particles of camptothecin
US6497896B2 (en) 2001-02-12 2002-12-24 Supergen, Inc. Method for administering camptothecins via injection of a pharmaceutical composition comprising microdroplets containing a camptothecin
US20020150615A1 (en) * 2001-02-12 2002-10-17 Howard Sands Injectable pharmaceutical composition comprising microdroplets of a camptothecin
US20040185101A1 (en) * 2001-03-27 2004-09-23 Macromed, Incorporated. Biodegradable triblock copolymers as solubilizing agents for drugs and method of use thereof
US6869618B2 (en) * 2001-04-10 2005-03-22 Kiel Laboratories, Inc. Process for preparing tannate liquid and semi-solid dosage forms
AR033711A1 (en) * 2001-05-09 2004-01-07 Novartis Ag PHARMACEUTICAL COMPOSITIONS
US6797257B2 (en) * 2001-06-26 2004-09-28 The Board Of Trustees Of The University Of Illinois Paramagnetic polymerized protein microspheres and methods of preparation thereof
TWI297335B (en) 2001-07-10 2008-06-01 Synta Pharmaceuticals Corp Taxol enhancer compounds
TWI332943B (en) * 2001-07-10 2010-11-11 Synta Pharmaceuticals Corp Taxol enhancer compounds
TWI252847B (en) * 2001-07-10 2006-04-11 Synta Pharmaceuticals Corp Synthesis of taxol enhancers
US7056338B2 (en) 2003-03-28 2006-06-06 Conor Medsystems, Inc. Therapeutic agent delivery device with controlled therapeutic agent release rates
US20030054042A1 (en) * 2001-09-14 2003-03-20 Elaine Liversidge Stabilization of chemical compounds using nanoparticulate formulations
EP1429819B1 (en) * 2001-09-24 2010-11-24 Boston Scientific Limited Optimized dosing for paclitaxel coated stents
US20060003012A9 (en) 2001-09-26 2006-01-05 Sean Brynjelsen Preparation of submicron solid particle suspensions by sonication of multiphase systems
BR0212833A (en) 2001-09-26 2004-10-13 Baxter Int Preparation of submicron sized nanoparticles by dispersion and solvent or liquid phase removal
CA2461556A1 (en) * 2001-10-15 2003-04-24 Crititech, Inc. Compositions and methods for delivery of microparticles of poorly water soluble drugs and methods of treatment
US7112340B2 (en) * 2001-10-19 2006-09-26 Baxter International Inc. Compositions of and method for preparing stable particles in a frozen aqueous matrix
US20050069549A1 (en) 2002-01-14 2005-03-31 William Herman Targeted ligands
US20030181426A1 (en) * 2002-02-11 2003-09-25 Eisenach James C. Compositions and methods for treating pain using cyclooxygenase-1 inhibitors
CA2479665C (en) * 2002-03-20 2011-08-30 Elan Pharma International Ltd. Nanoparticulate compositions of angiogenesis inhibitors
ITMI20020680A1 (en) * 2002-03-29 2003-09-29 Acs Dobfar Spa IMPROVED ANTI-TUMOR COMPOSITION BASED ON PACLITAXEL AND METHOD FOR ITS OBTAINING
ITMI20020681A1 (en) * 2002-03-29 2003-09-29 Acs Dobfar Spa PROCEDURE FOR THE PRODUCTION OF PACLITAXEL AND ALBUMINA NANOPARTICLES
US20040038303A1 (en) * 2002-04-08 2004-02-26 Unger Gretchen M. Biologic modulations with nanoparticles
WO2003086356A1 (en) * 2002-04-09 2003-10-23 Kiel Laboratories, Inc. Diphenhydramine tannate solid dose compositions and methods of use
US8501232B2 (en) * 2002-04-23 2013-08-06 Nanotherapeutics, Inc. Process of forming and modifying particles and compositions produced thereby
US20040126400A1 (en) * 2002-05-03 2004-07-01 Iversen Patrick L. Delivery of therapeutic compounds via microparticles or microbubbles
US8313760B2 (en) 2002-05-24 2012-11-20 Angiotech International Ag Compositions and methods for coating medical implants
EP1509256B1 (en) 2002-05-24 2009-07-22 Angiotech International Ag Compositions and methods for coating medical implants
US7649023B2 (en) * 2002-06-11 2010-01-19 Novartis Ag Biodegradable block copolymeric compositions for drug delivery
ES2321083T3 (en) * 2002-07-15 2009-06-02 Alcon, Inc. BIOEROSIONABLE FILM FOR THE OPHTHALMIC ADMINISTRATION OF PHARMACOS.
EP2277551B1 (en) 2002-09-06 2013-05-08 Cerulean Pharma Inc. Cyclodextrin-based polymers for delivering the therapeutic agents covalently bound thereto
US20040127976A1 (en) * 2002-09-20 2004-07-01 Conor Medsystems, Inc. Method and apparatus for loading a beneficial agent into an expandable medical device
US7923032B2 (en) * 2002-11-26 2011-04-12 Seacoast Neuroscience, Inc. Buoyant polymer particles for delivery of therapeutic agents to the central nervous system
KR20050095826A (en) * 2002-12-09 2005-10-04 아메리칸 바이오사이언스, 인크. Compositions and methods of delivery of pharmacological agents
AU2003300022A1 (en) * 2002-12-30 2004-07-29 Angiotech International Ag Silk-containing stent graft
TWI330079B (en) * 2003-01-15 2010-09-11 Synta Pharmaceuticals Corp Treatment for cancers
US7623908B2 (en) 2003-01-24 2009-11-24 The Board Of Trustees Of The University Of Illinois Nonlinear interferometric vibrational imaging
WO2004093867A2 (en) * 2003-03-25 2004-11-04 Kiel Laboratories, Inc. Phenolic acid salts of gabapentin in liquid and/or semi-solid dosage forms and methods of use
WO2004093866A1 (en) * 2003-03-25 2004-11-04 Kiel Laboratories, Inc. Process for preparing phenolic acid salts of gabapentin
EP1622603A4 (en) 2003-03-25 2010-03-24 Kiel Lab Inc Phenolic acid salts of gabapentin in solid dosage forms and methods of use
AU2004226327A1 (en) 2003-03-28 2004-10-14 Innovational Holdings, Llc Implantable medical device with beneficial agent concentration gradient
US20040225022A1 (en) * 2003-05-09 2004-11-11 Desai Neil P. Propofol formulation containing reduced oil and surfactants
US7169179B2 (en) 2003-06-05 2007-01-30 Conor Medsystems, Inc. Drug delivery device and method for bi-directional drug delivery
US7217410B2 (en) * 2003-06-17 2007-05-15 The Board Of Trustees Of The Universtiy Of Illinois Surface modified protein microparticles
US7198777B2 (en) * 2003-06-17 2007-04-03 The Board Of Trustees Of The University Of Illinois Optical contrast agents for optically modifying incident radiation
US8476010B2 (en) 2003-07-10 2013-07-02 App Pharmaceuticals Llc Propofol formulations with non-reactive container closures
US20050181018A1 (en) * 2003-09-19 2005-08-18 Peyman Gholam A. Ocular drug delivery
US7785653B2 (en) 2003-09-22 2010-08-31 Innovational Holdings Llc Method and apparatus for loading a beneficial agent into an expandable medical device
CA2536168A1 (en) * 2003-11-10 2005-05-26 Angiotech International Ag Intravascular devices and fibrosis-inducing agents
AU2004293463A1 (en) * 2003-11-20 2005-06-09 Angiotech International Ag Implantable sensors and implantable pumps and anti-scarring agents
US7610074B2 (en) * 2004-01-08 2009-10-27 The Board Of Trustees Of The University Of Illinois Multi-functional plasmon-resonant contrast agents for optical coherence tomography
US20060141046A1 (en) * 2004-05-06 2006-06-29 Ivrea Pharmaceuticals, Inc. Particles for the delivery of active agents
US20050281886A1 (en) * 2004-05-06 2005-12-22 Ivrea Pharmaceuticals, Inc. Particles for the delivery of active agents
AU2006249235B2 (en) 2004-05-14 2010-11-11 Abraxis Bioscience, Llc Sparc and methods of use thereof
US20090004277A1 (en) * 2004-05-18 2009-01-01 Franchini Miriam K Nanoparticle dispersion containing lactam compound
EP1773303A2 (en) * 2004-05-25 2007-04-18 Chimeracore, Inc. Self-assembling nanoparticle drug delivery system
KR101313027B1 (en) * 2004-06-23 2013-10-02 신타 파마슈티칼스 코프. Bis(thio-hydrazide amide) salts for treatment of cancers
KR100578382B1 (en) 2004-07-16 2006-05-11 나재운 Water soluble chitosan nanoparticle for delivering a anticance agent and preparing method thereof
US8557861B2 (en) * 2004-09-28 2013-10-15 Mast Therapeutics, Inc. Low oil emulsion compositions for delivering taxoids and other insoluble drugs
US8415388B2 (en) * 2005-02-22 2013-04-09 Savvipharm Inc. Pharmaceutical compositions containing paclitaxel orotate
US7586618B2 (en) * 2005-02-28 2009-09-08 The Board Of Trustees Of The University Of Illinois Distinguishing non-resonant four-wave-mixing noise in coherent stokes and anti-stokes Raman scattering
AU2005100176A4 (en) * 2005-03-01 2005-04-07 Gym Tv Pty Ltd Garbage bin clip
US20060229585A1 (en) * 2005-04-11 2006-10-12 Minu, L.L.C. Drug delivery to the crystalline lens and other ocular structures
US7722581B2 (en) * 2005-04-11 2010-05-25 Gholam A. Peyman Crystalline lens drug delivery
NZ562572A (en) * 2005-04-15 2011-01-28 Synta Pharmaceuticals Corp Combination cancer therapy with BIS (thiohydrazide) amide compounds
US7725169B2 (en) * 2005-04-15 2010-05-25 The Board Of Trustees Of The University Of Illinois Contrast enhanced spectroscopic optical coherence tomography
KR101457834B1 (en) * 2005-08-31 2014-11-05 아브락시스 바이오사이언스, 엘엘씨 Compositions and methods for preparation of poorly water soluble drugs with increased stability
WO2007067417A1 (en) 2005-12-05 2007-06-14 Nitto Denko Corporation Polyglutamate-amino acid conjugates and methods
AU2006329554C1 (en) 2005-12-28 2013-06-20 Fresenius Kabi Oncology Limited A biocompatible, non-biodegradable, non-toxic polymer useful for nanoparticle pharmaceutical compositions
US7787129B2 (en) 2006-01-31 2010-08-31 The Board Of Trustees Of The University Of Illinois Method and apparatus for measurement of optical properties in tissue
TWI376239B (en) * 2006-02-01 2012-11-11 Andrew Xian Chen Vitamin e succinate stabilized pharmaceutical compositions, methods for the preparation and the use thereof
DE602007005366D1 (en) * 2006-04-07 2010-04-29 Chimeros Inc COMPOSITIONS AND METHOD FOR THE TREATMENT OF B-CELL MALIGNOMES
US7458953B2 (en) * 2006-06-20 2008-12-02 Gholam A. Peyman Ocular drainage device
EP2054036B1 (en) 2006-07-24 2019-12-18 Singh-Broemer and Company, Inc. Solid nanoparticle formulation of water insoluble pharmaceutical substances with reduced ostwald ripening
CA2660524A1 (en) 2006-08-21 2008-02-28 Synta Pharmaceutical Corp. Compounds for treating proliferative disorders
US20100055459A1 (en) * 2006-08-30 2010-03-04 Liquidia Technologies, Inc. Nanoparticles Having Functional Additives for Self and Directed Assembly and Methods of Fabricating Same
US20080280987A1 (en) * 2006-08-31 2008-11-13 Desai Neil P Methods of inhibiting angiogenesis and treating angiogenesis-associated diseases
AU2007290490B2 (en) * 2006-08-31 2011-09-08 Synta Pharmaceuticals Corp. Combination with bis(thiohydrazide amides) for treating cancer
US9498528B2 (en) * 2006-09-13 2016-11-22 Genzyme Corporation Treatment of multiple sclerosis (MS)
EP2061583B1 (en) * 2006-09-14 2019-04-10 Yissum Research Development Company, of The Hebrew University of Jerusalem Organic nanoparticles obtained from microemulsions by solvent evaporation
AR063704A1 (en) 2006-09-14 2009-02-11 Makhteshim Chem Works Ltd PESTICIDE NANOPARTICLES OBTAINED OBTAINED FROM MICROEMULSIONS AND NANOEMULSIONS
JP2010516625A (en) 2007-01-24 2010-05-20 インサート セラピューティクス, インコーポレイテッド Polymer-drug conjugates with tether groups for controlled drug delivery
US20080181852A1 (en) * 2007-01-29 2008-07-31 Nitto Denko Corporation Multi-functional Drug Carriers
WO2008124632A1 (en) * 2007-04-04 2008-10-16 Massachusetts Institute Of Technology Amphiphilic compound assisted nanoparticles for targeted delivery
WO2008124165A2 (en) * 2007-04-09 2008-10-16 Chimeros, Inc. Self-assembling nanoparticle drug delivery system
JP2010526159A (en) * 2007-04-10 2010-07-29 日東電工株式会社 Multifunctional polyglutamate drug carrier
PT2155255E (en) 2007-05-09 2013-10-15 Nitto Denko Corp Compositions that include a hydrophobic compound and a polyamino acid conjugate
US8426467B2 (en) 2007-05-22 2013-04-23 Baxter International Inc. Colored esmolol concentrate
US8722736B2 (en) 2007-05-22 2014-05-13 Baxter International Inc. Multi-dose concentrate esmolol with benzyl alcohol
SI2644594T1 (en) 2007-09-28 2017-10-30 Pfizer Inc. Cancer Cell Targeting Using Nanoparticles
US8115934B2 (en) 2008-01-18 2012-02-14 The Board Of Trustees Of The University Of Illinois Device and method for imaging the ear using optical coherence tomography
US8983580B2 (en) 2008-01-18 2015-03-17 The Board Of Trustees Of The University Of Illinois Low-coherence interferometry and optical coherence tomography for image-guided surgical treatment of solid tumors
US7751057B2 (en) 2008-01-18 2010-07-06 The Board Of Trustees Of The University Of Illinois Magnetomotive optical coherence tomography
KR20100122510A (en) * 2008-03-06 2010-11-22 닛토덴코 가부시키가이샤 Polymer paclitaxel conjugates and methods for treating cancer
TWI573806B (en) 2008-04-17 2017-03-11 巴克斯歐塔公司 Biologically active peptides
ES2773766T3 (en) * 2008-12-19 2020-07-14 Baxalta GmbH TFPI inhibitors and methods of use
US8450275B2 (en) 2010-03-19 2013-05-28 Baxter International Inc. TFPI inhibitors and methods of use
WO2010120874A2 (en) 2009-04-14 2010-10-21 Chimeros, Inc. Chimeric therapeutics, compositions, and methods for using same
WO2011017835A1 (en) * 2009-08-11 2011-02-17 Nanjing University Preparation method of protein or peptide nanoparticles for in vivo drug delivery by unfolding and refolding
PT2501234T (en) * 2009-11-20 2017-12-13 Tonix Pharma Holdings Ltd Methods and compositions for treating symptoms associated with post-traumatic stress disorder using cyclobenzaprine
CN102781237A (en) * 2009-11-23 2012-11-14 天蓝制药公司 Cyclodextrin-based polymers for therapeutic delivery
US9333189B2 (en) * 2010-02-03 2016-05-10 Oncbiomune, Inc. Taxane- and taxoid-protein compositions
TWI438009B (en) * 2010-02-19 2014-05-21 Teikoku Pharma Usa Inc Taxane pro-emulsion formulations and methods making and using the same
EA027666B1 (en) 2010-05-03 2017-08-31 ТЕИКОКУ ФАРМА ЮСЭй, ИНК. Non-aqueous taxane pro-emulsion formulations and methods of making and using the same
US20110319389A1 (en) 2010-06-24 2011-12-29 Tonix Pharmaceuticals, Inc. Methods and compositions for treating fatigue associated with disordered sleep using very low dose cyclobenzaprine
KR101130754B1 (en) 2010-06-25 2012-03-28 제일약품주식회사 Pharmaceutical compositions having improved solubility of poorly soluble tricyclic derivative compounds
AU2011336632B2 (en) 2010-11-30 2015-09-03 Gilead Pharmasset Llc Compounds
SG193505A1 (en) 2011-04-01 2013-10-30 Astrazeneca Ab Therapeutic treatment
CN109288789A (en) 2011-04-28 2019-02-01 阿布拉科斯生物科学有限公司 The intravascular delivering and its application of Nanoparticulate compositions
CA2838387A1 (en) 2011-06-06 2012-12-13 Chevron Phillips Chemical Company Lp Use of metallocene compounds for cancer treatment
LT2717898T (en) 2011-06-10 2019-03-25 Bioverativ Therapeutics Inc. Pro-coagulant compounds and methods of use thereof
WO2013036973A2 (en) 2011-09-09 2013-03-14 Biomed Realty, L.P. Methods and compositions for controlling assembly of viral proteins
SG11201401471PA (en) 2011-11-30 2014-08-28 Astrazeneca Ab Combination treatment of cancer
WO2013084207A1 (en) 2011-12-07 2013-06-13 Universidade Do Minho Formulations for micelle formation comprising a protein and methods preparation thereof
KR101455921B1 (en) * 2012-01-30 2014-11-12 성균관대학교산학협력단 Albumin nanoparticles containing poorly water soluble drugs and its preparation method and application thereof
DK2827883T3 (en) 2012-03-21 2019-07-29 Baxalta GmbH TFPI INHIBITORS AND METHODS OF USE
PT2833905T (en) 2012-04-04 2018-08-06 Halozyme Inc Combination therapy with hyaluronidase and a tumor-targeted taxane
AU2013204533B2 (en) 2012-04-17 2017-02-02 Astrazeneca Ab Crystalline forms
JP2015521589A (en) 2012-06-08 2015-07-30 バイオジェン・エムエイ・インコーポレイテッドBiogen MA Inc. Procoagulant compounds
CN102784109B (en) * 2012-08-22 2014-08-06 复旦大学 Taxane medicines albumin nanoparticle preparation for injection and preparation method thereof
JO3685B1 (en) 2012-10-01 2020-08-27 Teikoku Pharma Usa Inc Non-aqueous taxane nanodispersion formulations and methods of using the same
US20140094432A1 (en) 2012-10-02 2014-04-03 Cerulean Pharma Inc. Methods and systems for polymer precipitation and generation of particles
WO2014085633A1 (en) 2012-11-30 2014-06-05 Novomedix, Llc Substituted biaryl sulfonamides and the use thereof
PT106738B (en) * 2013-01-09 2015-06-08 Hovione Farmaciencia Sa METHOD FOR THE CONTROL OF OSTWALD DIFUSIONAL DEGRADATION PHENOMENON (OSTWALD RIPENING) IN THE PROCESSING OF PARTICLES OF A PHARMACEUTICAL INGREDIENT
US9511046B2 (en) 2013-01-11 2016-12-06 Abraxis Bioscience, Llc Methods of treating pancreatic cancer
AU2014224445C1 (en) 2013-03-04 2017-07-27 Astrazeneca Ab Combination treatment
CN110152005B (en) 2013-03-15 2023-08-04 通尼克斯制药控股有限公司 Eutectic formulation of cyclobenzaprine and amitriptyline hydrochloride
JP2016528217A (en) 2013-07-26 2016-09-15 スレッショルド ファーマシューティカルズ,インコーポレイテッド Treatment of pancreatic cancer using a combination of hypoxia activated prodrug and taxane
US10064940B2 (en) 2013-12-11 2018-09-04 Siva Therapeutics Inc. Multifunctional radiation delivery apparatus and method
US9669137B2 (en) * 2014-02-04 2017-06-06 Abbott Cardiovascular Systems Inc. Modified polylactide polymers
CN111803698B (en) 2014-02-14 2022-05-27 波士顿科学国际有限公司 Rapidly degrading embolic particles with therapeutic agent release
CN104434808A (en) 2014-07-03 2015-03-25 石药集团中奇制药技术(石家庄)有限公司 Therapeutic nanoparticles and preparation method thereof
CN107072963B (en) 2014-09-03 2020-07-07 吉倪塞思公司 Therapeutic nanoparticles and related compositions, methods and systems
AU2015317336B2 (en) 2014-09-18 2021-01-21 Tonix Pharma Holdings Limited Eutectic formulations of Cyclobenzaprine hydrochloride
US10052394B2 (en) 2014-11-21 2018-08-21 General Electric Company Microbubble tether for diagnostic and therapeutic applications
WO2018200393A1 (en) * 2017-04-24 2018-11-01 Zy Therapeutics Inc. Pharmaceutical composition for in vivo delivery, method of preparation of a substantially waterinsoluble pharmacologically active agent
BR112020011345A2 (en) 2017-12-11 2020-11-17 Tonix Pharma Holdings Limited cyclobenzaprine treatment for agitation, psychosis and cognitive decline in dementia and neurodegenerative conditions
TWI660728B (en) 2018-02-09 2019-06-01 國立交通大學 Quinazolinamine derivatives and pharmaceutical compositions and uses thereof
WO2019222435A1 (en) 2018-05-16 2019-11-21 Halozyme, Inc. Methods of selecting subjects for combination cancer therapy with a polymer-conjugated soluble ph20
WO2020047766A1 (en) * 2018-09-05 2020-03-12 Jmd Innovation Inc. Position marker and delivery system
WO2020114615A1 (en) 2018-12-07 2020-06-11 Baxalta GmbH Bispecific antibodies binding factor ixa and factor x
WO2020115283A1 (en) 2018-12-07 2020-06-11 Baxalta GmbH Bispecific antibodies binding factor ixa and factor x
US11298336B2 (en) 2019-05-30 2022-04-12 Soluble Technologies, Inc. Water soluble formulation
US11786475B2 (en) 2020-07-22 2023-10-17 Soluble Technologies Inc. Film-based dosage form
EP4036581A1 (en) 2021-02-01 2022-08-03 Oxford University Innovation Limited Cavitation agent
EP4035655A1 (en) 2021-02-01 2022-08-03 Oxford University Innovation Limited Immune modulating particles
EP4035676A1 (en) 2021-02-01 2022-08-03 Oxford University Innovation Limited Vaccine compositions
EP4035673A1 (en) 2021-02-01 2022-08-03 Oxford University Innovation Limited Transdermal vaccine
EP4036580A1 (en) 2021-02-01 2022-08-03 Oxford University Innovation Limited Drug loaded cavitation agent
CN114159554B (en) * 2021-11-22 2022-12-13 广州优理氏生物科技有限公司 Preparation method and application of fibronectin-polyvinyl alcohol microspheres
WO2023194441A1 (en) 2022-04-05 2023-10-12 Istituto Nazionale Tumori Irccs - Fondazione G. Pascale Combination of hdac inhibitors and statins for use in the treatment of pancreatic cancer
WO2024046999A1 (en) * 2022-08-31 2024-03-07 Johann Wolfgang Goethe-Universität Frankfurt am Main Lecithin-modified nanoscale oxygen carriers (lenox)

Citations (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534899A (en) * 1981-07-20 1985-08-13 Lipid Specialties, Inc. Synthetic phospholipid compounds
US5059699A (en) * 1990-08-28 1991-10-22 Virginia Tech Intellectual Properties, Inc. Water soluble derivatives of taxol
US5362478A (en) * 1993-03-26 1994-11-08 Vivorx Pharmaceuticals, Inc. Magnetic resonance imaging with fluorocarbons encapsulated in a cross-linked polymeric shell
US5399363A (en) * 1991-01-25 1995-03-21 Eastman Kodak Company Surface modified anticancer nanoparticles
US5407683A (en) * 1990-06-01 1995-04-18 Research Corporation Technologies, Inc. Pharmaceutical solutions and emulsions containing taxol
US5415869A (en) * 1993-11-12 1995-05-16 The Research Foundation Of State University Of New York Taxol formulation
US5424073A (en) * 1992-03-23 1995-06-13 Georgetown University Liposome encapsulated taxol and a method of using the same
US5440056A (en) * 1992-04-17 1995-08-08 Abbott Laboratories 9-deoxotaxane compounds
US5439686A (en) * 1993-02-22 1995-08-08 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor
US5498421A (en) * 1993-02-22 1996-03-12 Vivorx Pharmaceuticals, Inc. Composition useful for in vivo delivery of biologics and methods employing same
US5565478A (en) * 1994-03-14 1996-10-15 The United States Of America As Represented By The Department Of Health & Human Services Combination therapy using signal transduction inhibitors with paclitaxel and other taxane analogs
US5567434A (en) * 1989-03-31 1996-10-22 The Regents Of The University Of California Preparation of liposome and lipid complex compositions
US5616608A (en) * 1993-07-29 1997-04-01 The United States Of America As Represented By The Department Of Health And Human Services Method of treating atherosclerosis or restenosis using microtubule stabilizing agent
US5616330A (en) * 1994-07-19 1997-04-01 Hemagen/Pfc Stable oil-in-water emulsions incorporating a taxine (taxol) and method of making same
US5626867A (en) * 1992-03-17 1997-05-06 Max-Planck Gesellschaft Zur Forderung Der Wissenschaften E.V. Liposomes with a negative excess charge
US5626862A (en) * 1994-08-02 1997-05-06 Massachusetts Institute Of Technology Controlled local delivery of chemotherapeutic agents for treating solid tumors
US5650156A (en) * 1993-02-22 1997-07-22 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of nutriceuticals and compositions useful therefor
US5665383A (en) * 1993-02-22 1997-09-09 Vivorx Pharmaceuticals, Inc. Methods for the preparation of immunostimulating agents for in vivo delivery
US5665382A (en) * 1993-02-22 1997-09-09 Vivorx Pharmaceuticals, Inc. Methods for the preparation of pharmaceutically active agents for in vivo delivery
US5670536A (en) * 1994-04-25 1997-09-23 Rhone-Poulenc Rorer S.A. Pharmaceutical composition based on taxoids
US5681846A (en) * 1995-03-17 1997-10-28 Board Of Regents, The University Of Texas System Extended stability formulations for paclitaxel
US5716981A (en) * 1993-07-19 1998-02-10 Angiogenesis Technologies, Inc. Anti-angiogenic compositions and methods of use
US5725804A (en) * 1991-01-15 1998-03-10 Hemosphere, Inc. Non-crosslinked protein particles for therapeutic and diagnostic use
US5731334A (en) * 1994-01-11 1998-03-24 The Scripps Research Institute Method for treating cancer using taxoid onium salt prodrugs
US5733925A (en) * 1993-01-28 1998-03-31 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5756537A (en) * 1996-11-08 1998-05-26 Parkash S. Gill, M.D., Inc. Regime for paclitaxel in Kaposi's sarcoma patients
US5766635A (en) * 1991-06-28 1998-06-16 Rhone-Poulenc Rorer S.A. Process for preparing nanoparticles
US5795909A (en) * 1996-05-22 1998-08-18 Neuromedica, Inc. DHA-pharmaceutical agent conjugates of taxanes
US5916596A (en) * 1993-02-22 1999-06-29 Vivorx Pharmaceuticals, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
US5928669A (en) * 1992-07-28 1999-07-27 Danbiosyst Uk Limited Lymphatic delivery methods
US5945033A (en) * 1991-01-15 1999-08-31 Hemosphere, Inc. Method for making non-crosslinked protein particles for therapeutic and diagnostic use
US6051600A (en) * 1995-09-12 2000-04-18 Mayhew; Eric Liposomal hydrolysis-promoting hydrophobic taxane derivatives
US6066668A (en) * 1994-11-14 2000-05-23 Bionumerik Pharmaceuticals, Inc. Formulations and methods of reducing toxicity of antineoplastic agents
US6090925A (en) * 1993-03-09 2000-07-18 Epic Therapeutics, Inc. Macromolecular microparticles and methods of production and use
US6096331A (en) * 1993-02-22 2000-08-01 Vivorx Pharmaceuticals, Inc. Methods and compositions useful for administration of chemotherapeutic agents
US6107332A (en) * 1995-09-12 2000-08-22 The Liposome Company, Inc. Hydrolysis-promoting hydrophobic taxane derivatives
US6120805A (en) * 1990-04-06 2000-09-19 Rhone-Poulenc Rorer Sa Microspheres, process for their preparation and their use
US6179817B1 (en) * 1995-02-22 2001-01-30 Boston Scientific Corporation Hybrid coating for medical devices
US6197051B1 (en) * 1997-06-18 2001-03-06 Boston Scientific Corporation Polycarbonate-polyurethane dispersions for thromobo-resistant coatings
US6197349B1 (en) * 1993-08-12 2001-03-06 Knoll Aktiengesellschaft Particles with modified physicochemical properties, their preparation and uses
US6306421B1 (en) * 1992-09-25 2001-10-23 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US6432928B1 (en) * 1994-11-11 2002-08-13 Chinoin Gyogyszer Es Vegyeszeti Termekek Gyara Rt. Complexes and their compositions
US6441025B2 (en) * 1996-03-12 2002-08-27 Pg-Txl Company, L.P. Water soluble paclitaxel derivatives
US6458373B1 (en) * 1997-01-07 2002-10-01 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
US6528067B1 (en) * 1993-02-22 2003-03-04 American Bioscience, Inc. Total nutrient admixtures as stable multicomponent liquids or dry powders and methods for the preparation thereof
US6537579B1 (en) * 1993-02-22 2003-03-25 American Bioscience, Inc. Compositions and methods for administration of pharmacologically active compounds
US20030087985A1 (en) * 1990-10-15 2003-05-08 Hubbell Jeffrey A. Gels for encapsulation of biological materials
US6565842B1 (en) * 1995-06-07 2003-05-20 American Bioscience, Inc. Crosslinkable polypeptide compositions
US6610735B2 (en) * 1995-10-26 2003-08-26 Baker Norton Pharmaceuticals, Inc. Method, compositions and kits for increasing the oral bioavailability of pharmaceutical agents
US20030199425A1 (en) * 1997-06-27 2003-10-23 Desai Neil P. Compositions and methods for treatment of hyperplasia
US6743826B1 (en) * 1997-09-18 2004-06-01 Human Rt Pharmaceutical compositions containing plasma protein
US6749868B1 (en) * 1993-02-22 2004-06-15 American Bioscience, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
US6753006B1 (en) * 1993-02-22 2004-06-22 American Bioscience, Inc. Paclitaxel-containing formulations
US6759431B2 (en) * 1996-05-24 2004-07-06 Angiotech Pharmaceuticals, Inc. Compositions and methods for treating or preventing diseases of body passageways
US20050004002A1 (en) * 2002-12-09 2005-01-06 American Bioscience, Inc. Compositions and methods of delivery of pharmacological agents
US20060073175A1 (en) * 1993-02-22 2006-04-06 American Bioscience, Inc. Methods and formulations for delivery of pharmacologically active agents
US20070082838A1 (en) * 2005-08-31 2007-04-12 Abraxis Bioscience, Inc. Compositions and methods for preparation of poorly water soluble drugs with increased stability
US20070087022A1 (en) * 1996-10-01 2007-04-19 Abraxis Bioscience, Inc. Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US20070093547A1 (en) * 1997-06-27 2007-04-26 Desai Neil P Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US20070117744A1 (en) * 2005-08-31 2007-05-24 Desai Neil P Compositions comprising poorly water soluble pharmaceutical agents and antimicrobial agents
US20070117133A1 (en) * 2004-05-14 2007-05-24 Abraxis Bioscience, Inc. Sparc and methods of use thereof
US20070116774A1 (en) * 2005-02-18 2007-05-24 Abraxis Bioscience, Inc. Methods and compositions for treating proliferative diseases
US7238369B2 (en) * 1997-03-12 2007-07-03 The Regents Of The University Of California Cationic liposome delivery of taxanes to angiogenic blood vessels
US20070166388A1 (en) * 2005-02-18 2007-07-19 Desai Neil P Combinations and modes of administration of therapeutic agents and combination therapy
US7332568B2 (en) * 2005-02-18 2008-02-19 Abraxis Bioscience, Inc. Q3 SPARC deletion mutant and uses thereof
US20080161382A1 (en) * 1993-02-22 2008-07-03 Neil Desai Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US20090263483A1 (en) * 2008-04-10 2009-10-22 Desai Neil P Nanoparticle formulations and uses thereof
US20100035800A1 (en) * 1993-02-22 2010-02-11 Desai Neil P Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US20100048499A1 (en) * 2006-12-14 2010-02-25 Desai Neil P Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxane
US20100112077A1 (en) * 2006-11-06 2010-05-06 Abraxis Bioscience, Llc Nanoparticles of paclitaxel and albumin in combination with bevacizumab against cancer
US20100166869A1 (en) * 2007-05-03 2010-07-01 Desai Neil P Methods and compositions for treating pulmonary hypertension
US20100183728A1 (en) * 2007-03-07 2010-07-22 Desai Neil P Nanoparticle comprising rapamycin and albumin as anticancer agent
US20100215751A1 (en) * 2007-06-01 2010-08-26 Desai Neil P Methods and compositions for treating recurrent cancer

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526074A (en) * 1969-03-17 1970-09-01 Stanley Works Serpentine cross section frame assembly
US3959457A (en) * 1970-06-05 1976-05-25 Temple University Microparticulate material and method of making such material
US4073943A (en) * 1974-09-11 1978-02-14 Apoteksvarucentralen Vitrum Ab Method of enhancing the administration of pharmalogically active agents
US4247406A (en) * 1979-04-23 1981-01-27 Widder Kenneth J Intravascularly-administrable, magnetically-localizable biodegradable carrier
US4718433A (en) * 1983-01-27 1988-01-12 Feinstein Steven B Contrast agents for ultrasonic imaging
US4572203A (en) * 1983-01-27 1986-02-25 Feinstein Steven B Contact agents for ultrasonic imaging
US4622219A (en) * 1983-06-17 1986-11-11 Haynes Duncan H Method of inducing local anesthesia using microdroplets of a general anesthetic
DE3376660D1 (en) * 1983-06-22 1988-06-23 Stolle Res & Dev Encapsulated cells, their method of preparation and use
US4671954A (en) * 1983-12-13 1987-06-09 University Of Florida Microspheres for incorporation of therapeutic substances and methods of preparation thereof
CA1215922A (en) * 1984-05-25 1986-12-30 Connaught Laboratories Limited Microencapsulation of living tissue and cells
US4753788A (en) * 1985-01-31 1988-06-28 Vestar Research Inc. Method for preparing small vesicles using microemulsification
SE459005B (en) * 1985-07-12 1989-05-29 Aake Rikard Lindahl SET TO MANUFACTURE SPHERICAL POLYMER PARTICLES
US5023271A (en) * 1985-08-13 1991-06-11 California Biotechnology Inc. Pharmaceutical microemulsions
EP0321481B1 (en) * 1986-08-28 1994-06-01 Enzacor Properties Limited Microgranular preparation useful in the delivery of biologically active materials to the intestinal regions of animals
US4925678A (en) * 1987-04-01 1990-05-15 Ranney David F Endothelial envelopment drug carriers
IE59934B1 (en) * 1987-06-19 1994-05-04 Elan Corp Plc Liquid suspension for oral administration
SE8704158L (en) * 1987-10-26 1989-04-27 Carbomatrix Ab C O Ulf Schroed MICROSPHERE, PROCEDURES FOR PREPARING IT AND USING THEREOF
US4844882A (en) * 1987-12-29 1989-07-04 Molecular Biosystems, Inc. Concentrated stabilized microbubble-type ultrasonic imaging agent
US4929446A (en) * 1988-04-19 1990-05-29 American Cyanamid Company Unit dosage form
NO176278C (en) * 1988-08-24 1995-03-08 Allied Colloids Ltd Process for the preparation of a particulate mixture of active ingredient in a polymeric material
US5026559A (en) * 1989-04-03 1991-06-25 Kinaform Technology, Inc. Sustained-release pharmaceutical preparation
US5019400A (en) * 1989-05-01 1991-05-28 Enzytech, Inc. Very low temperature casting of controlled release microspheres
ATE99546T1 (en) * 1989-05-01 1994-01-15 Alkermes Inc PROCESS FOR PRODUCTION OF SMALL PARTICLES OF BIOLOGICALLY ACTIVE MOLECULES.
FR2651680B1 (en) * 1989-09-14 1991-12-27 Medgenix Group Sa NOVEL PROCESS FOR THE PREPARATION OF LIPID MICROPARTICLES.
WO1991015947A1 (en) * 1990-04-17 1991-10-31 Isp Investments Inc. Preparation of discrete microdroplets of an oil in water stabilized by in situ polymerization of a water-soluble vinyl monomer
US5110606A (en) * 1990-11-13 1992-05-05 Affinity Biotech, Inc. Non-aqueous microemulsions for drug delivery
US5370901A (en) * 1991-02-15 1994-12-06 Bracco International B.V. Compositions for increasing the image contrast in diagnostic investigations of the digestive tract of patients
US5344640A (en) * 1991-10-22 1994-09-06 Mallinckrodt Medical, Inc. Preparation of apatite particles for medical diagnostic imaging

Patent Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534899A (en) * 1981-07-20 1985-08-13 Lipid Specialties, Inc. Synthetic phospholipid compounds
US5567434A (en) * 1989-03-31 1996-10-22 The Regents Of The University Of California Preparation of liposome and lipid complex compositions
US6120805A (en) * 1990-04-06 2000-09-19 Rhone-Poulenc Rorer Sa Microspheres, process for their preparation and their use
US5407683A (en) * 1990-06-01 1995-04-18 Research Corporation Technologies, Inc. Pharmaceutical solutions and emulsions containing taxol
US5059699A (en) * 1990-08-28 1991-10-22 Virginia Tech Intellectual Properties, Inc. Water soluble derivatives of taxol
US20030087985A1 (en) * 1990-10-15 2003-05-08 Hubbell Jeffrey A. Gels for encapsulation of biological materials
US5725804A (en) * 1991-01-15 1998-03-10 Hemosphere, Inc. Non-crosslinked protein particles for therapeutic and diagnostic use
US5945033A (en) * 1991-01-15 1999-08-31 Hemosphere, Inc. Method for making non-crosslinked protein particles for therapeutic and diagnostic use
US5399363A (en) * 1991-01-25 1995-03-21 Eastman Kodak Company Surface modified anticancer nanoparticles
US5766635A (en) * 1991-06-28 1998-06-16 Rhone-Poulenc Rorer S.A. Process for preparing nanoparticles
US6074659A (en) * 1991-09-27 2000-06-13 Noerx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US6268390B1 (en) * 1991-09-27 2001-07-31 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5626867A (en) * 1992-03-17 1997-05-06 Max-Planck Gesellschaft Zur Forderung Der Wissenschaften E.V. Liposomes with a negative excess charge
US5648090A (en) * 1992-03-23 1997-07-15 Georgetown University Liposome encapsulated toxol and a method of using the same
US5424073A (en) * 1992-03-23 1995-06-13 Georgetown University Liposome encapsulated taxol and a method of using the same
US5440056A (en) * 1992-04-17 1995-08-08 Abbott Laboratories 9-deoxotaxane compounds
US5928669A (en) * 1992-07-28 1999-07-27 Danbiosyst Uk Limited Lymphatic delivery methods
US6306421B1 (en) * 1992-09-25 2001-10-23 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5811447A (en) * 1993-01-28 1998-09-22 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5733925A (en) * 1993-01-28 1998-03-31 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US6753006B1 (en) * 1993-02-22 2004-06-22 American Bioscience, Inc. Paclitaxel-containing formulations
US5439686A (en) * 1993-02-22 1995-08-08 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor
US5635207A (en) * 1993-02-22 1997-06-03 Vivorx Pharmaceuticals, Inc. Methods for the preparation of blood substitutes for in vivo delivery
US5650156A (en) * 1993-02-22 1997-07-22 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of nutriceuticals and compositions useful therefor
US6528067B1 (en) * 1993-02-22 2003-03-04 American Bioscience, Inc. Total nutrient admixtures as stable multicomponent liquids or dry powders and methods for the preparation thereof
US5665383A (en) * 1993-02-22 1997-09-09 Vivorx Pharmaceuticals, Inc. Methods for the preparation of immunostimulating agents for in vivo delivery
US5665382A (en) * 1993-02-22 1997-09-09 Vivorx Pharmaceuticals, Inc. Methods for the preparation of pharmaceutically active agents for in vivo delivery
US6537579B1 (en) * 1993-02-22 2003-03-25 American Bioscience, Inc. Compositions and methods for administration of pharmacologically active compounds
US20100035800A1 (en) * 1993-02-22 2010-02-11 Desai Neil P Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US5639473A (en) * 1993-02-22 1997-06-17 Vivorx Pharmaceuticals, Inc. Methods for the preparation of nucleic acids for in vivo delivery
US6506405B1 (en) * 1993-02-22 2003-01-14 American Bioscience, Inc. Methods and formulations of cremophor-free taxanes
US5560933A (en) * 1993-02-22 1996-10-01 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor
US5498421A (en) * 1993-02-22 1996-03-12 Vivorx Pharmaceuticals, Inc. Composition useful for in vivo delivery of biologics and methods employing same
US20080161382A1 (en) * 1993-02-22 2008-07-03 Neil Desai Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US5916596A (en) * 1993-02-22 1999-06-29 Vivorx Pharmaceuticals, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
US20060073175A1 (en) * 1993-02-22 2006-04-06 American Bioscience, Inc. Methods and formulations for delivery of pharmacologically active agents
US6749868B1 (en) * 1993-02-22 2004-06-15 American Bioscience, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
US6096331A (en) * 1993-02-22 2000-08-01 Vivorx Pharmaceuticals, Inc. Methods and compositions useful for administration of chemotherapeutic agents
US6090925A (en) * 1993-03-09 2000-07-18 Epic Therapeutics, Inc. Macromolecular microparticles and methods of production and use
US5505932A (en) * 1993-03-26 1996-04-09 Vivorx Pharmaceuticals, Inc. Method for the preparation of fluorocarbon-containing polymeric shells for medical imaging
US5508021A (en) * 1993-03-26 1996-04-16 Vivorx Pharmaceuticals, Inc. Non-fluorinated polymeric shells for medical imaging
US5512268A (en) * 1993-03-26 1996-04-30 Vivorx Pharmaceuticals, Inc. Polymeric shells for medical imaging prepared from synthetic polymers, and methods for the use thereof
US5362478A (en) * 1993-03-26 1994-11-08 Vivorx Pharmaceuticals, Inc. Magnetic resonance imaging with fluorocarbons encapsulated in a cross-linked polymeric shell
US5716981A (en) * 1993-07-19 1998-02-10 Angiogenesis Technologies, Inc. Anti-angiogenic compositions and methods of use
US5886026A (en) * 1993-07-19 1999-03-23 Angiotech Pharmaceuticals Inc. Anti-angiogenic compositions and methods of use
US5616608A (en) * 1993-07-29 1997-04-01 The United States Of America As Represented By The Department Of Health And Human Services Method of treating atherosclerosis or restenosis using microtubule stabilizing agent
US6197349B1 (en) * 1993-08-12 2001-03-06 Knoll Aktiengesellschaft Particles with modified physicochemical properties, their preparation and uses
US5415869A (en) * 1993-11-12 1995-05-16 The Research Foundation Of State University Of New York Taxol formulation
US5731334A (en) * 1994-01-11 1998-03-24 The Scripps Research Institute Method for treating cancer using taxoid onium salt prodrugs
US5565478A (en) * 1994-03-14 1996-10-15 The United States Of America As Represented By The Department Of Health & Human Services Combination therapy using signal transduction inhibitors with paclitaxel and other taxane analogs
US5670536A (en) * 1994-04-25 1997-09-23 Rhone-Poulenc Rorer S.A. Pharmaceutical composition based on taxoids
US5616330A (en) * 1994-07-19 1997-04-01 Hemagen/Pfc Stable oil-in-water emulsions incorporating a taxine (taxol) and method of making same
US5626862A (en) * 1994-08-02 1997-05-06 Massachusetts Institute Of Technology Controlled local delivery of chemotherapeutic agents for treating solid tumors
US5651986A (en) * 1994-08-02 1997-07-29 Massachusetts Institute Of Technology Controlled local delivery of chemotherapeutic agents for treating solid tumors
US6432928B1 (en) * 1994-11-11 2002-08-13 Chinoin Gyogyszer Es Vegyeszeti Termekek Gyara Rt. Complexes and their compositions
US6066668A (en) * 1994-11-14 2000-05-23 Bionumerik Pharmaceuticals, Inc. Formulations and methods of reducing toxicity of antineoplastic agents
US6179817B1 (en) * 1995-02-22 2001-01-30 Boston Scientific Corporation Hybrid coating for medical devices
US5681846A (en) * 1995-03-17 1997-10-28 Board Of Regents, The University Of Texas System Extended stability formulations for paclitaxel
US6565842B1 (en) * 1995-06-07 2003-05-20 American Bioscience, Inc. Crosslinkable polypeptide compositions
US6107332A (en) * 1995-09-12 2000-08-22 The Liposome Company, Inc. Hydrolysis-promoting hydrophobic taxane derivatives
US6051600A (en) * 1995-09-12 2000-04-18 Mayhew; Eric Liposomal hydrolysis-promoting hydrophobic taxane derivatives
US6610735B2 (en) * 1995-10-26 2003-08-26 Baker Norton Pharmaceuticals, Inc. Method, compositions and kits for increasing the oral bioavailability of pharmaceutical agents
US6441025B2 (en) * 1996-03-12 2002-08-27 Pg-Txl Company, L.P. Water soluble paclitaxel derivatives
US5795909A (en) * 1996-05-22 1998-08-18 Neuromedica, Inc. DHA-pharmaceutical agent conjugates of taxanes
US6759431B2 (en) * 1996-05-24 2004-07-06 Angiotech Pharmaceuticals, Inc. Compositions and methods for treating or preventing diseases of body passageways
US20070087022A1 (en) * 1996-10-01 2007-04-19 Abraxis Bioscience, Inc. Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US5756537A (en) * 1996-11-08 1998-05-26 Parkash S. Gill, M.D., Inc. Regime for paclitaxel in Kaposi's sarcoma patients
US6458373B1 (en) * 1997-01-07 2002-10-01 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
US7238369B2 (en) * 1997-03-12 2007-07-03 The Regents Of The University Of California Cationic liposome delivery of taxanes to angiogenic blood vessels
US6197051B1 (en) * 1997-06-18 2001-03-06 Boston Scientific Corporation Polycarbonate-polyurethane dispersions for thromobo-resistant coatings
US20030199425A1 (en) * 1997-06-27 2003-10-23 Desai Neil P. Compositions and methods for treatment of hyperplasia
US20110165256A1 (en) * 1997-06-27 2011-07-07 Desai Neil P Compositions and methods for treatment of hyperplasia
US20070093547A1 (en) * 1997-06-27 2007-04-26 Desai Neil P Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US6743826B1 (en) * 1997-09-18 2004-06-01 Human Rt Pharmaceutical compositions containing plasma protein
US20050004002A1 (en) * 2002-12-09 2005-01-06 American Bioscience, Inc. Compositions and methods of delivery of pharmacological agents
US20070129448A1 (en) * 2002-12-09 2007-06-07 Abraxis Bioscience, Inc. Compositions and methods of delivery of pharmacological agents
US7820788B2 (en) * 2002-12-09 2010-10-26 Abraxis Bioscience, Llc Compositions and methods of delivery of pharmacological agents
US7923536B2 (en) * 2002-12-09 2011-04-12 Abraxis Bioscience, Llc Compositions and methods of delivery of pharmacological agents
US20070117133A1 (en) * 2004-05-14 2007-05-24 Abraxis Bioscience, Inc. Sparc and methods of use thereof
US20070166388A1 (en) * 2005-02-18 2007-07-19 Desai Neil P Combinations and modes of administration of therapeutic agents and combination therapy
US7758891B2 (en) * 2005-02-18 2010-07-20 Abraxis Bioscience, Llc Combinations and modes of administration of therapeutic agents and combination therapy
US20080063724A1 (en) * 2005-02-18 2008-03-13 Desai Neil P Methods and compostions for treating proliferative diseases
US7332568B2 (en) * 2005-02-18 2008-02-19 Abraxis Bioscience, Inc. Q3 SPARC deletion mutant and uses thereof
US20070116774A1 (en) * 2005-02-18 2007-05-24 Abraxis Bioscience, Inc. Methods and compositions for treating proliferative diseases
US7780984B2 (en) * 2005-02-18 2010-08-24 Abraxis Bioscience, Llc Methods and compositions for treating proliferative diseases
US20070117744A1 (en) * 2005-08-31 2007-05-24 Desai Neil P Compositions comprising poorly water soluble pharmaceutical agents and antimicrobial agents
US7771751B2 (en) * 2005-08-31 2010-08-10 Abraxis Bioscience, Llc Compositions comprising poorly water soluble pharmaceutical agents and antimicrobial agents
US20110118342A1 (en) * 2005-08-31 2011-05-19 Tapas De Compositions and methods for preparation of poorly water soluble drugs with increased stability
US20110151012A1 (en) * 2005-08-31 2011-06-23 Desai Neil P Compositions comprising poorly water soluble pharmaceutical agents and antimicrobial agents
US20070082838A1 (en) * 2005-08-31 2007-04-12 Abraxis Bioscience, Inc. Compositions and methods for preparation of poorly water soluble drugs with increased stability
US7981445B2 (en) * 2005-08-31 2011-07-19 Abraxis Bioscience, Llc Compositions and methods for preparation of poorly water soluble drugs with increased stability
US20110196026A1 (en) * 2005-08-31 2011-08-11 Abraxis Bioscience, Inc. Compositions and methods for preparation of poorly water soluble drugs with increased stability
US20100112077A1 (en) * 2006-11-06 2010-05-06 Abraxis Bioscience, Llc Nanoparticles of paclitaxel and albumin in combination with bevacizumab against cancer
US20100048499A1 (en) * 2006-12-14 2010-02-25 Desai Neil P Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxane
US20100183728A1 (en) * 2007-03-07 2010-07-22 Desai Neil P Nanoparticle comprising rapamycin and albumin as anticancer agent
US20100166869A1 (en) * 2007-05-03 2010-07-01 Desai Neil P Methods and compositions for treating pulmonary hypertension
US20100215751A1 (en) * 2007-06-01 2010-08-26 Desai Neil P Methods and compositions for treating recurrent cancer
US20090263483A1 (en) * 2008-04-10 2009-10-22 Desai Neil P Nanoparticle formulations and uses thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Fan et al. "Formulation Optimization of Paclitaxel Carried by Paginated Emulsions based on Artificial Neural Network," in Pharmaceutical Research, Vol. 21, No. 9, September 2004 discloses injectable paclitaxel carried by Paginated emulsions. *
Felix Kratz, "Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles," in Journal of controlled Release, 132, (2008), 171-183. *
Gradishar et al. ("Phase III Trial of Nanoparticle Albumin-Bound Paclitaxel compared with polyethylated Castor Oil-Based Paclitaxel in Women With Breast Cancer," in Journal of clinical oncology, vol. 23, no. 31, November 1 2005). *
Suri et al. (Nanotechnology-based drug delivery systems," in Journal of Occupational Medicine and Toxicology, Dec. 2007). *

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070087022A1 (en) * 1996-10-01 2007-04-19 Abraxis Bioscience, Inc. Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US8137684B2 (en) 1996-10-01 2012-03-20 Abraxis Bioscience, Llc Formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US20110165256A1 (en) * 1997-06-27 2011-07-07 Desai Neil P Compositions and methods for treatment of hyperplasia
US20070093547A1 (en) * 1997-06-27 2007-04-26 Desai Neil P Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US20030199425A1 (en) * 1997-06-27 2003-10-23 Desai Neil P. Compositions and methods for treatment of hyperplasia
US8853260B2 (en) 1997-06-27 2014-10-07 Abraxis Bioscience, Llc Formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US8314156B2 (en) 2002-12-09 2012-11-20 Abraxis Bioscience, Llc Compositions and methods of delivery of pharmacological agents
US8138229B2 (en) 2002-12-09 2012-03-20 Abraxis Bioscience, Llc Compositions and methods of delivery of pharmacological agents
US9012518B2 (en) 2002-12-09 2015-04-21 Abraxis Bioscience, Llc Compositions and methods of delivery of pharmacological agents
US9012519B2 (en) 2002-12-09 2015-04-21 Abraxis Bioscience, Llc Compositions and methods of delivery of pharmacological agents
US8846771B2 (en) 2002-12-09 2014-09-30 Abraxis Bioscience, Llc Compositions and methods of delivery of pharmacological agents
US20090304805A1 (en) * 2005-02-18 2009-12-10 Desai Neil P Combinations and modes of administration of therapeutic agents and combination therapy
US8034375B2 (en) 2005-02-18 2011-10-11 Abraxis Bioscience, Llc Combinations and modes of administration of therapeutic agents and combination therapy
US9101543B2 (en) 2005-02-18 2015-08-11 Abraxis Bioscience, Llc Combinations and modes of administration of therapeutic agents and combination therapy
US8735394B2 (en) 2005-02-18 2014-05-27 Abraxis Bioscience, Llc Combinations and modes of administration of therapeutic agents and combination therapy
US8268348B2 (en) 2005-02-18 2012-09-18 Abraxis Bioscience, Llc Combinations and modes of administration of therapeutic agents and combination therapy
US9561288B2 (en) 2005-02-18 2017-02-07 Abraxis Bioscience, Llc Combinations and modes of administration of therapeutic agents and combination therapy
US9308180B2 (en) 2005-08-31 2016-04-12 Abraxis Bioscience, Llc Compositions and methods for preparation of poorly water soluble drugs with increased stability
US20110118342A1 (en) * 2005-08-31 2011-05-19 Tapas De Compositions and methods for preparation of poorly water soluble drugs with increased stability
US9675578B2 (en) 2006-12-14 2017-06-13 Abraxis Bioscience, Llc Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxane
US20100048499A1 (en) * 2006-12-14 2010-02-25 Desai Neil P Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxane
US8999396B2 (en) 2006-12-14 2015-04-07 Abraxis Bioscience, Llc Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxane
US9724323B2 (en) 2006-12-14 2017-08-08 Abraxis Bioscience, Llc Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxane
US10682420B2 (en) 2006-12-14 2020-06-16 Abraxis Bioscience, Llc Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxane
US20100183728A1 (en) * 2007-03-07 2010-07-22 Desai Neil P Nanoparticle comprising rapamycin and albumin as anticancer agent
US8911786B2 (en) 2007-03-07 2014-12-16 Abraxis Bioscience, Llc Nanoparticle comprising rapamycin and albumin as anticancer agent
US20100166869A1 (en) * 2007-05-03 2010-07-01 Desai Neil P Methods and compositions for treating pulmonary hypertension
US20100215751A1 (en) * 2007-06-01 2010-08-26 Desai Neil P Methods and compositions for treating recurrent cancer
US8927019B2 (en) 2007-06-01 2015-01-06 Abraxis Bioscience, Llc Methods and compositions for treating recurrent cancer
US20090263483A1 (en) * 2008-04-10 2009-10-22 Desai Neil P Nanoparticle formulations and uses thereof
US10206887B2 (en) 2009-04-15 2019-02-19 Abraxis Bioscience, Llc Prion free nanoparticle compositions and methods of making thereof
US9446003B2 (en) 2009-04-15 2016-09-20 Abraxis Bioscience, Llc Prion free nanoparticle compositions and methods of making thereof
US20110052706A1 (en) * 2009-08-28 2011-03-03 Nordmark Arzeimittel GmbH & Co. KG Pancreatine pellets and method of producing same
US9370494B2 (en) 2010-03-26 2016-06-21 Abraxis Bioscience, Llc Methods for treating hepatocellular carcinoma
US10660965B2 (en) 2010-03-29 2020-05-26 Abraxis Bioscience, Llc Methods of enhancing drug delivery and effectiveness of therapeutic agents
US9597409B2 (en) 2010-03-29 2017-03-21 Abraxis Bioscience, Llc Methods of treating cancer
US9393318B2 (en) 2010-03-29 2016-07-19 Abraxis Bioscience, Llc Methods of treating cancer
US9399071B2 (en) 2010-06-04 2016-07-26 Abraxis Bioscience, Llc Methods of treatment of pancreatic cancer
US9399072B2 (en) 2010-06-04 2016-07-26 Abraxis Bioscience, Llc Methods of treatment of pancreatic cancer
US9820949B2 (en) 2010-06-04 2017-11-21 Abraxis Bioscience, Llc Methods of treatment of pancreatic cancer
US9585960B2 (en) 2011-12-14 2017-03-07 Abraxis Bioscience, Llc Use of polymeric excipients for lyophilization or freezing of particles
US10076501B2 (en) 2011-12-14 2018-09-18 Abraxis Bioscience, Llc Use of polymeric excipients for lyophilization or freezing of particles
US10555912B2 (en) 2011-12-14 2020-02-11 Abraxis Bioscience, Llc Use of polymeric excipients for lyophilization or freezing of particles
US9149455B2 (en) 2012-11-09 2015-10-06 Abraxis Bioscience, Llc Methods of treating melanoma
US10744110B2 (en) 2013-03-12 2020-08-18 Abraxis Bioscience, Llc Methods of treating lung cancer
US9962373B2 (en) 2013-03-14 2018-05-08 Abraxis Bioscience, Llc Methods of treating bladder cancer
US10413531B2 (en) 2013-03-14 2019-09-17 Abraxis Bioscience, Llc Methods of treating bladder cancer
US10527604B1 (en) 2015-03-05 2020-01-07 Abraxis Bioscience, Llc Methods of assessing suitability of use of pharmaceutical compositions of albumin and paclitaxel
US10705070B1 (en) 2015-03-05 2020-07-07 Abraxis Bioscience, Llc Methods of assessing suitability of use of pharmaceutical compositions of albumin and poorly water soluble drug
US10900951B1 (en) 2015-03-05 2021-01-26 Abraxis Bioscience, Llc Methods of assessing suitability of use of pharmaceutical compositions of albumin and paclitaxel
US11320416B1 (en) 2015-03-05 2022-05-03 Abraxis Bioscience, Llc Methods of assessing suitability of use of pharmaceutical compositions of albumin and poorly water soluble drug
US10973806B2 (en) 2015-06-29 2021-04-13 Abraxis Bioscience, Llc Methods of treating epithelioid cell tumors comprising administering a composition comprising nanoparticles comprising an mTOR inhibitor and an albumin
US11944708B2 (en) 2018-03-20 2024-04-02 Abraxis Bioscience, Llc Methods of treating central nervous system disorders via administration of nanoparticles of an mTOR inhibitor and an albumin
US11497737B2 (en) 2019-10-28 2022-11-15 Abraxis Bioscience, Llc Pharmaceutical compositions of albumin and rapamycin

Also Published As

Publication number Publication date
US5560933A (en) 1996-10-01
US5439686A (en) 1995-08-08
CN1839806A (en) 2006-10-04
CN1839806B (en) 2011-04-13

Similar Documents

Publication Publication Date Title
US20110052708A1 (en) Methods and formulations for the delivery of pharmacologically active agents
US20090048331A1 (en) Methods and formulations for the delivery of pharmacologically active agents
US20060073175A1 (en) Methods and formulations for delivery of pharmacologically active agents
Tian et al. Co-delivery of paclitaxel and cisplatin with biocompatible PLGA–PEG nanoparticles enhances chemoradiotherapy in non-small cell lung cancer models
US20150342872A1 (en) Use of Paclitaxel Particles
Strickley Solubilizing excipients in oral and injectable formulations
Brigger et al. Negative preclinical results with stealth® nanospheres-encapsulated doxorubicin in an orthotopic murine brain tumor model
Seo et al. Self-assembled 20-nm 64Cu-micelles enhance accumulation in rat glioblastoma
RU2492863C2 (en) Agent improving anti-cancer effect and containing liposomal agent containing oxaliplatin, and anti-cancer agent containing liposomal agent
US11166913B2 (en) Tumor therapeutic agent and kit containing gemcitabine liposome composition
US20080293796A1 (en) Parenteral and oral formulations of benzimidazoles
Siegal Which drug or drug delivery system can change clinical practice for brain tumor therapy?
US20090196918A1 (en) Liposomal formulations of hydrophobic lactone drugs in the presence of metal ions
US9259390B2 (en) Parenteral and oral formulations of benzimidazoles
Ismail et al. Targeted liposomes for combined delivery of artesunate and temozolomide to resistant glioblastoma
CN102579337B (en) Long circulation lipid nano-suspension containing docetaxel and preparation method thereof
US20120052115A1 (en) Nanocarrier therapy for treating invasive tumors
Zhang et al. Pharmacokinetics, distribution and anti-tumor efficacy of liposomal mitoxantrone modified with a luteinizing hormone-releasing hormone receptor-specific peptide
US20240041769A1 (en) Compositions and methods for delivery of anticancer agents with improved therapeutic index
US20230172856A1 (en) Liposome formulations for treatment of cancers and drug resistance of cancers
US11806330B2 (en) PACA and cabazitaxel for anti-cancer treatment
US20220257525A1 (en) Drug delivery system for treatment of cancer
WO2022124898A1 (en) Auristatin-loaded liposomes and uses thereof.
Hong et al. Therapy of central nervous system leukemia in mice by liposome-entrapped 1-β-D-arabinofuranosylcytosine
Oborotova et al. Role of new pharmaceutical technologies in enhancing the selectivity of antitumor drugs

Legal Events

Date Code Title Description
AS Assignment

Owner name: ABRAXIS BIOSCIENCE, LLC, CALIFORNIA

Free format text: MERGER;ASSIGNOR:ABRAXIS BIOSCIENCE, INC.;REEL/FRAME:025016/0255

Effective date: 20071113

Owner name: ABRAXIS BIOSCIENCE, INC., CALIFORNIA

Free format text: MERGER;ASSIGNOR:AMERICAN BIOSCIENCE, INC.;REEL/FRAME:025016/0248

Effective date: 20060418

Owner name: AMERICAN BIOSCIENCE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SOON-SHIONG, PATRICK;DESAI, NEIL P.;SIGNING DATES FROM 20020612 TO 20020702;REEL/FRAME:025016/0240

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION