US20110065256A1 - System and method for increasing breakdown voltage of locos isolated devices - Google Patents

System and method for increasing breakdown voltage of locos isolated devices Download PDF

Info

Publication number
US20110065256A1
US20110065256A1 US12/955,194 US95519410A US2011065256A1 US 20110065256 A1 US20110065256 A1 US 20110065256A1 US 95519410 A US95519410 A US 95519410A US 2011065256 A1 US2011065256 A1 US 2011065256A1
Authority
US
United States
Prior art keywords
integrated circuit
field oxide
breakdown voltage
bird
beak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/955,194
Inventor
Richard W. Foote, Jr.
Terry Lee Lines
Alexei Sadovnikov
Andy Strachan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Semiconductor Corp
Original Assignee
National Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Semiconductor Corp filed Critical National Semiconductor Corp
Priority to US12/955,194 priority Critical patent/US20110065256A1/en
Assigned to NATIONAL SEMICONDUCTOR CORPORATION reassignment NATIONAL SEMICONDUCTOR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FOOTE, RICHARD W., LINES, TERRY LEE, SADOVNIKOV, ALEXEI, STRACHAN, ANDY
Publication of US20110065256A1 publication Critical patent/US20110065256A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76205Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO in a region being recessed from the surface, e.g. in a recess, groove, tub or trench region

Definitions

  • the present invention is generally directed to semiconductor technology and, in particular, to a method for increasing the breakdown voltage of integrated circuit devices that are isolated by a local oxidation of silicon (LOCOS) process.
  • LOCS local oxidation of silicon
  • LOCS process local oxidation of silicon process
  • FIG. 1 The creation of a prior art LOCOS isolation structure is illustrated in FIG. 1 and in FIG. 2 .
  • the structure 100 shown in FIG. 1 comprises a silicon substrate 100 .
  • a layer of pad oxide 120 made up of silicon dioxide (SiO 2 ) is placed on the silicon substrate 100 .
  • a layer 130 of silicon nitride (Si 3 N 4 ) is placed on the layer pad oxide 120 .
  • a mask and etch procedure is used to etch an aperture 140 through the silicon nitride layer 130 and through the pad oxide layer 120 down to the silicon substrate 100 .
  • the application of the mask and etch procedure creates the structure 100 shown in FIG. 1 .
  • the portions of the silicon substrate 100 that are exposed through aperture 140 are exposed to steam (H 2 , O 2 ) at a relatively high temperature (e.g., one thousand degrees Celsius (1000° C.)).
  • the oxygen in the steam oxidizes the silicon substrate 100 to form silicon dioxide (SiO 2 ).
  • the oxidation process causes the oxidized portion of the silicon substrate 100 increase in size.
  • the resulting structure 200 is shown in FIG. 2 .
  • the oxidized portion of the silicon substrate 100 is designated with reference numeral 210 .
  • the oxidized portion 210 of the silicon substrate 100 is sometimes referred to as a field oxide.
  • the field oxide 210 forms an isolation structure or isolation barrier that electrically separates and isolates portions of the integrated circuit chip.
  • the thickness of the field oxide tapers off.
  • the maximum thickness of the field oxide 210 gradually decreases near edges of the field oxide 210 and tapers down to the thickness of the pad oxide 120 .
  • the tapering profile of the edges of the field oxide 210 forms a portion of the field oxide 210 that is known as a “bird's beak.”
  • the bird's beak portion of the field oxide 210 in FIG. 2 is designated with reference numeral 220 .
  • the resulting bird's beak profile will have the bird's peak profile 300 shown in FIG. 3 .
  • the bird's beak profile 300 will be referred to as a “graded” bird's beak.
  • the resulting bird's beak profile will have the bird's beak profile 400 shown in FIG. 4 .
  • the bird's beak profile 400 will be referred to as an “abrupt” bird's beak.
  • a thick pad oxide and/or a thin silicon nitride layer will create a graded bird's beak 300 .
  • a thin pad oxide and/or a thick silicon nitride layer will create an abrupt bird's beak 400 .
  • a significant advantage of the abrupt bird's beak is that the abrupt bird's beak takes up less lateral space than a graded bird's beak. This means that there is less space required to form the field oxide isolation structure. Therefore there is more space remaining in the integrated circuit chip for the integrated circuit devices (e.g., transistors). This concept is usually expressed by stating that the abrupt bird's beak provides a better packing density for the integrated circuit devices.
  • a major drawback of the abrupt bird's beak is that the abrupt bird's beak has a lower breakdown voltage.
  • graded bird's beak provides a higher breakdown voltage. But the graded bird's beak takes up more lateral space than an abrupt bird's beak. This means that the graded bird's beak has a correspondingly worse packing density in the integrated circuit chip for the integrated circuit devices (e.g., transistors).
  • the present invention provides an efficient method for increasing the breakdown voltage in a LOCOS isolation integrated circuit device.
  • the method comprises forming a portion of a field oxide in the integrated circuit so that the field oxide has a gradual profile.
  • the gradual profile of the field oxide reduces the value of impact ionization in the field oxide by creating a reduced value of electric field for a given value of applied voltage.
  • the reduction in the value of impact ionization increases the breakdown voltage of the integrated circuit.
  • an advantageous embodiment of the method of the invention forms the gradual profile of the portion of the field oxide by using an increased thickness of pad oxide and a reduced thickness of silicon nitride during the field oxide oxidation process that creates the field oxide.
  • FIG. 1 illustrates an exemplary prior art structure for illustrating a local oxidation of silicon (LOCOS) process
  • FIG. 2 illustrates an exemplary prior art structure that results from applying a LOCOS process to the structure shown in FIG. 1 ;
  • FIG. 3 illustrates an exemplary profile of a prior art graded bird's beak
  • FIG. 4 illustrates an exemplary profile of a prior art abrupt bird's beak
  • FIG. 5 illustrates an initial stage of a method for manufacturing a prior art integrated circuit device
  • FIGS. 6 through 10 illustrate successive stages of a manufacturing method of the present invention for manufacturing an integrated circuit device of the present invention.
  • FIGS. 5 through 10 discussed below, and the various embodiments used to describe the principles of the present invention in this patent document are by way of illustration only and should not be construed in any way to limit the scope of the invention. Persons who are skilled in the art will understand that the principles of the present invention may be implemented in any type of suitably arranged semiconductor device.
  • FIG. 5 illustrates a first stage of a manufacturing method for a prior art integrated circuit device.
  • the structure 500 shown in FIG. 5 comprises a layer of silicon substrate 510 .
  • a layer of pad oxide 520 made up of silicon dioxide (SiO 2 ) is placed on the silicon substrate 510 .
  • the thickness of the pad oxide 520 is approximately two hundred fifty ⁇ ngstroms (250 ⁇ ).
  • An ⁇ ngstrom is 10 ⁇ 10 meter.
  • a layer 530 of silicon nitride (Si 3 N 4 ) is placed on the layer pad oxide 520 .
  • the thickness of the layer of silicon nitride 530 is approximately one thousand three hundred fifty ⁇ ngstroms (1350 ⁇ ).
  • the method of the present invention uses different values of thickness for the pad oxide layer and the silicon nitride layer.
  • the method of the present invention uses an increased thickness for the pad oxide and a decreased thickness for the silicon nitride.
  • the method of the present invention creates a bird's beak that minimizes impact ionization. A decrease in the impact ionization increases the breakdown voltage of the integrated circuit device for a given value of applied voltage.
  • FIG. 6 illustrates a first stage of a manufacturing method of the present invention for manufacturing an integrated circuit device of the present invention.
  • the structure 600 shown in FIG. 6 comprises a layer of silicon substrate 510 .
  • a layer of pad oxide 610 made up of silicon dioxide (SiO 2 ) is placed on the silicon substrate 510 .
  • the thickness of the pad oxide 610 is approximately one thousand six hundred ⁇ ngstroms (1600 ⁇ ).
  • the 1600 ⁇ thickness of the pad oxide 610 represents an increase of approximately one thousand three hundred fifty ⁇ ngstroms (1350 ⁇ ) over the typical prior art thickness of two hundred fifty ⁇ ngstroms (250 ⁇ ).
  • the thickness of the layer of silicon nitride 620 is approximately eight hundred fifty ⁇ ngstroms (850 ⁇ ).
  • the 850 ⁇ thickness of the silicon nitride 620 represents a decrease of approximately five hundred ⁇ ngstroms (500 ⁇ ) from the typical prior art thickness of one thousand three hundred fifty ⁇ ngstroms (1350 ⁇ ).
  • a mask and etch procedure is used to etch the layer of silicon nitride 620 away from the areas of the integrated circuit chip that will require a high breakdown voltage.
  • the portions of the layer of silicon nitride 620 over the areas of the integrated circuit chip that will require a high packing density are left in place.
  • the resulting structure 700 is shown in FIG. 7 .
  • a field oxide is grown on the structure 700 by subjecting the structure 700 to steam (H 2 , O 2 ) at a relatively high temperature (e.g., one thousand degrees Celsius (1000° C.)).
  • the oxygen in the steam oxidizes the portions of the silicon substrate 510 that underlie the exposed portions of pad oxide layer 610 to form silicon dioxide (SiO 2 ).
  • the oxidation process causes the oxidized portions of the silicon substrate 510 increase in size.
  • the resulting structure 800 is shown in FIG. 8 .
  • the field oxide portions are designated with reference numeral 810 .
  • the bird's beak profile of the field oxide 810 will have a graded and gradual profile.
  • the silicon nitride layer 620 is removed. Specifically, the remaining portion of the silicon nitride layer 620 is removed from the portion of the integrated circuit that will require a high breakdown voltage.
  • the resulting structure 900 is shown in FIG. 9 .
  • the pad oxide layer 610 is removed. Specifically, the relatively thick pad oxide layer 610 is stripped away. The resulting structure 1000 is shown in FIG. 10 .
  • the edge portions of the field oxide 810 in the portions of the integrated circuit that will require a high breakdown voltage comprise a first graded bird's beak 1010 and a second graded bird's beak 1020 .
  • the first graded bird's beak 1010 and the second graded bird's beak 1020 each have a graded and gradual profile.
  • the presence of a graded and gradual profile in a bird's beak minimizes the impact ionization for a given value of applied voltage.
  • the method of the present invention minimizes the impact ionization (for a given value of applied voltage) and correspondingly increases the breakdown voltage (for the given value of applied voltage).
  • One prior art method increases the breakdown voltage in an integrated circuit device by increasing the lateral distance between junctions. This type of prior art method incurs a penalty in that the device size must be correspondingly increased. Furthermore, this type of prior art method also incurs a penalty in that it increases the “on resistance” (“Rdson”) of the device.
  • the “on resistance” is the resistance between the source and the drain when the device is in an “on” condition.
  • the method of the present invention provides a novel and efficient method for increasing the breakdown voltage in an integrated circuit device that is LOCOS isolated.
  • the method of the present invention gives an integrated circuit designer the flexibility to create an appropriate field oxide profile where an increased breakdown voltage is desired. Specifically, the designer can create a graded bird's beak profile in those areas where it is more important to have a higher breakdown voltage than a high packing density.
  • the method of the present invention creates integrated circuit chips that comprise field oxide portions that facilitate the creation of integrated circuit devices that have a high is breakdown voltage.

Abstract

An efficient method is disclosed for increasing the breakdown voltage of an integrated circuit device that is isolated by a local oxidation of silicon (LOCOS) process. The method comprises forming a portion of a field oxide in an integrated circuit so that the field oxide has a gradual profile. The gradual profile of the field oxide reduces impact ionization in the field oxide by creating a reduced value of electric field for a given value of applied voltage. The reduction in impact ionization increases the breakdown voltage of the integrated circuit. The gradual profile is formed by using an increased thickness of pad oxide and a reduced thickness of silicon nitride during a field oxide oxidation process.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This patent application is related to U.S. patent application Ser. No. (Attorney Docket Number P06588) entitled “System and Method for Creating Different Field Oxide Profiles in a LOCOS Process” that is being filed concurrently with this patent application. This patent application and U.S. patent application Ser. No. (Attorney Docket Number P06588) are both owned by the same assignee.
  • TECHNICAL FIELD OF THE INVENTION
  • The present invention is generally directed to semiconductor technology and, in particular, to a method for increasing the breakdown voltage of integrated circuit devices that are isolated by a local oxidation of silicon (LOCOS) process.
  • BACKGROUND OF THE INVENTION
  • In recent years, there have been great advancements in the speed, power, and complexity of integrated circuits. Large scale integrated circuits comprise thousands of devices placed on a single integrated circuit chip. A standard process for electrically isolating the devices on an integrated circuit chip is the local oxidation of silicon process (LOCOS process).
  • The creation of a prior art LOCOS isolation structure is illustrated in FIG. 1 and in FIG. 2. The structure 100 shown in FIG. 1 comprises a silicon substrate 100. A layer of pad oxide 120 made up of silicon dioxide (SiO2) is placed on the silicon substrate 100. Then a layer 130 of silicon nitride (Si3N4) is placed on the layer pad oxide 120. A mask and etch procedure is used to etch an aperture 140 through the silicon nitride layer 130 and through the pad oxide layer 120 down to the silicon substrate 100. The application of the mask and etch procedure creates the structure 100 shown in FIG. 1.
  • Then the portions of the silicon substrate 100 that are exposed through aperture 140 are exposed to steam (H2, O2) at a relatively high temperature (e.g., one thousand degrees Celsius (1000° C.)). The oxygen in the steam oxidizes the silicon substrate 100 to form silicon dioxide (SiO2). The oxidation process causes the oxidized portion of the silicon substrate 100 increase in size.
  • The resulting structure 200 is shown in FIG. 2. The oxidized portion of the silicon substrate 100 is designated with reference numeral 210. As shown in FIG. 2, the oxidized portion 210 of the silicon substrate 100 is sometimes referred to as a field oxide. The field oxide 210 forms an isolation structure or isolation barrier that electrically separates and isolates portions of the integrated circuit chip.
  • At the edges of the field oxide 210 (near the edges of the silicon nitride portions 130) the thickness of the field oxide tapers off. The maximum thickness of the field oxide 210 (shown by double arrows in FIG. 2) gradually decreases near edges of the field oxide 210 and tapers down to the thickness of the pad oxide 120.
  • The tapering profile of the edges of the field oxide 210 forms a portion of the field oxide 210 that is known as a “bird's beak.” The bird's beak portion of the field oxide 210 in FIG. 2 is designated with reference numeral 220.
  • If the bird's peak portion of the field oxide has a relatively graded slow tapering profile the resulting bird's beak profile will have the bird's peak profile 300 shown in FIG. 3. For convenience in description the bird's beak profile 300 will be referred to as a “graded” bird's beak.
  • If the bird's beak portion of the field oxide has a relatively short quick tapering profile the resulting bird's beak profile will have the bird's beak profile 400 shown in FIG. 4. For convenience in description the bird's beak profile 400 will be referred to as an “abrupt” bird's beak.
  • In prior art manufacturing processes a thick pad oxide and/or a thin silicon nitride layer will create a graded bird's beak 300. Similarly, in prior art manufacturing processes a thin pad oxide and/or a thick silicon nitride layer will create an abrupt bird's beak 400.
  • A significant advantage of the abrupt bird's beak is that the abrupt bird's beak takes up less lateral space than a graded bird's beak. This means that there is less space required to form the field oxide isolation structure. Therefore there is more space remaining in the integrated circuit chip for the integrated circuit devices (e.g., transistors). This concept is usually expressed by stating that the abrupt bird's beak provides a better packing density for the integrated circuit devices. A major drawback of the abrupt bird's beak is that the abrupt bird's beak has a lower breakdown voltage.
  • Conversely, a major advantage of the graded bird's beak is that it provides a higher breakdown voltage. But the graded bird's beak takes up more lateral space than an abrupt bird's beak. This means that the graded bird's beak has a correspondingly worse packing density in the integrated circuit chip for the integrated circuit devices (e.g., transistors).
  • In an integrated circuit device that is isolated by a LOCOS process it is well known that the bird's beak is one of the areas that has a high value of impact ionization. It is also well known that the presence of increased impact ionization reduces the breakdown voltage of the integrated circuit device. Therefore, in order to increase the breakdown voltage of a LOCOS isolated device, it would be desirable to decrease the amount of impact ionization in the LOCOS isolated device.
  • There is a need in the art for an efficient method for manufacturing an integrated circuit that has an increased breakdown voltage. In particular, there is a need in the art for a method that is capable of increasing a breakdown voltage in a LOCOS isolated device by reducing the amount of impact ionization that is present in a bird's beak of the device.
  • The present invention provides an efficient method for increasing the breakdown voltage in a LOCOS isolation integrated circuit device. The method comprises forming a portion of a field oxide in the integrated circuit so that the field oxide has a gradual profile. The gradual profile of the field oxide reduces the value of impact ionization in the field oxide by creating a reduced value of electric field for a given value of applied voltage. The reduction in the value of impact ionization increases the breakdown voltage of the integrated circuit.
  • As will be described more fully below, an advantageous embodiment of the method of the invention forms the gradual profile of the portion of the field oxide by using an increased thickness of pad oxide and a reduced thickness of silicon nitride during the field oxide oxidation process that creates the field oxide.
  • It is an object of the present invention to provide a method for efficiently manufacturing an integrated circuit that has an increased breakdown voltage.
  • It is an object of the present invention to provide a manufacturing method for an integrated circuit that increases a breakdown voltage in a LOCOS isolated device by reducing the amount of impact ionization that is present in a bird's beak of the LOCOS isolated device.
  • It is another object of the present invention to provide a manufacturing method for an integrated circuit that creates a gradual profile in a bird's beak field oxide in an area where it is important to have a high breakdown voltage.
  • The foregoing has outlined rather broadly the features and technical advantages of the present invention so that those persons who are skilled in the art may better understand the detailed description of the invention that follows. Additional features and advantages of the invention will be described hereinafter that form the subject of the claims of the invention. Persons who are skilled in the art should appreciate that they may readily use the conception and the specific embodiment disclosed as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. Persons who are skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the invention in its broadest form.
  • Before undertaking the Detailed Description of the Invention below, it may be advantageous to set forth definitions of certain words and phrases used throughout this patent document: the terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation; the term “or,” is inclusive, meaning and/or; the phrases “associated with” and “associated therewith,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like.
  • Definitions for certain words and phrases are provided throughout this patent document, those persons of ordinary skill in the art should understand that in many, if not most instances, such definitions apply to prior uses, as well as future uses, of such defined words and phrases.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the present invention and its advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, in which like reference numerals represent like parts:
  • FIG. 1 illustrates an exemplary prior art structure for illustrating a local oxidation of silicon (LOCOS) process;
  • FIG. 2 illustrates an exemplary prior art structure that results from applying a LOCOS process to the structure shown in FIG. 1;
  • FIG. 3 illustrates an exemplary profile of a prior art graded bird's beak;
  • FIG. 4 illustrates an exemplary profile of a prior art abrupt bird's beak;
  • FIG. 5 illustrates an initial stage of a method for manufacturing a prior art integrated circuit device; and
  • FIGS. 6 through 10 illustrate successive stages of a manufacturing method of the present invention for manufacturing an integrated circuit device of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIGS. 5 through 10, discussed below, and the various embodiments used to describe the principles of the present invention in this patent document are by way of illustration only and should not be construed in any way to limit the scope of the invention. Persons who are skilled in the art will understand that the principles of the present invention may be implemented in any type of suitably arranged semiconductor device.
  • FIG. 5 illustrates a first stage of a manufacturing method for a prior art integrated circuit device. The structure 500 shown in FIG. 5 comprises a layer of silicon substrate 510. A layer of pad oxide 520 made up of silicon dioxide (SiO2) is placed on the silicon substrate 510. In a typical prior art integrated circuit device the thickness of the pad oxide 520 is approximately two hundred fifty Ångstroms (250 Å). An Ångstrom is 10−10 meter.
  • Then a layer 530 of silicon nitride (Si3N4) is placed on the layer pad oxide 520. In a typical prior art integrated circuit device the thickness of the layer of silicon nitride 530 is approximately one thousand three hundred fifty Ångstroms (1350 Å).
  • The method of the present invention uses different values of thickness for the pad oxide layer and the silicon nitride layer. In particular, the method of the present invention uses an increased thickness for the pad oxide and a decreased thickness for the silicon nitride. As will be discussed more fully below, the method of the present invention creates a bird's beak that minimizes impact ionization. A decrease in the impact ionization increases the breakdown voltage of the integrated circuit device for a given value of applied voltage.
  • FIG. 6 illustrates a first stage of a manufacturing method of the present invention for manufacturing an integrated circuit device of the present invention. The structure 600 shown in FIG. 6 comprises a layer of silicon substrate 510. A layer of pad oxide 610 made up of silicon dioxide (SiO2) is placed on the silicon substrate 510. In one advantageous embodiment of the method of the present invention the thickness of the pad oxide 610 is approximately one thousand six hundred Ångstroms (1600 Å). The 1600 Å thickness of the pad oxide 610 represents an increase of approximately one thousand three hundred fifty Ångstroms (1350 Å) over the typical prior art thickness of two hundred fifty Ångstroms (250 Å).
  • Then a layer 620 of silicon nitride (Si3N4) is placed on the layer of pad oxide 610. In one advantageous embodiment of the method of the present invention the thickness of the layer of silicon nitride 620 is approximately eight hundred fifty Ångstroms (850 Å). The 850 Å thickness of the silicon nitride 620 represents a decrease of approximately five hundred Ångstroms (500 Å) from the typical prior art thickness of one thousand three hundred fifty Ångstroms (1350 Å).
  • A mask and etch procedure is used to etch the layer of silicon nitride 620 away from the areas of the integrated circuit chip that will require a high breakdown voltage. The portions of the layer of silicon nitride 620 over the areas of the integrated circuit chip that will require a high packing density are left in place. The resulting structure 700 is shown in FIG. 7.
  • In the next step of the method of the present invention a field oxide is grown on the structure 700 by subjecting the structure 700 to steam (H2, O2) at a relatively high temperature (e.g., one thousand degrees Celsius (1000° C.)). The oxygen in the steam oxidizes the portions of the silicon substrate 510 that underlie the exposed portions of pad oxide layer 610 to form silicon dioxide (SiO2).
  • The oxidation process causes the oxidized portions of the silicon substrate 510 increase in size. The resulting structure 800 is shown in FIG. 8. The field oxide portions are designated with reference numeral 810.
  • During the oxidation process in the area with the relatively thick pad oxide 610 and the silicon nitride layer 620 the bird's beak profile of the field oxide 810 will have a graded and gradual profile.
  • In the next step of the method of the present invention the silicon nitride layer 620 is removed. Specifically, the remaining portion of the silicon nitride layer 620 is removed from the portion of the integrated circuit that will require a high breakdown voltage. The resulting structure 900 is shown in FIG. 9.
  • In the last step of the method of the present invention the pad oxide layer 610 is removed. Specifically, the relatively thick pad oxide layer 610 is stripped away. The resulting structure 1000 is shown in FIG. 10.
  • As shown in FIG. 10, the edge portions of the field oxide 810 in the portions of the integrated circuit that will require a high breakdown voltage comprise a first graded bird's beak 1010 and a second graded bird's beak 1020.
  • The first graded bird's beak 1010 and the second graded bird's beak 1020 each have a graded and gradual profile. The presence of a graded and gradual profile in a bird's beak minimizes the impact ionization for a given value of applied voltage. By providing a graded and gradual profile for the bird's beak structure the method of the present invention minimizes the impact ionization (for a given value of applied voltage) and correspondingly increases the breakdown voltage (for the given value of applied voltage).
  • One prior art method increases the breakdown voltage in an integrated circuit device by increasing the lateral distance between junctions. This type of prior art method incurs a penalty in that the device size must be correspondingly increased. Furthermore, this type of prior art method also incurs a penalty in that it increases the “on resistance” (“Rdson”) of the device. The “on resistance” is the resistance between the source and the drain when the device is in an “on” condition.
  • The method of the present invention provides a novel and efficient method for increasing the breakdown voltage in an integrated circuit device that is LOCOS isolated. The method of the present invention gives an integrated circuit designer the flexibility to create an appropriate field oxide profile where an increased breakdown voltage is desired. Specifically, the designer can create a graded bird's beak profile in those areas where it is more important to have a higher breakdown voltage than a high packing density.
  • The method of the present invention creates integrated circuit chips that comprise field oxide portions that facilitate the creation of integrated circuit devices that have a high is breakdown voltage.
  • Although the present invention has been described with an exemplary embodiment, various changes and modifications may be suggested to one skilled in the art. It is intended that the present invention encompass such changes and modifications as fall within the scope of the appended claims.

Claims (2)

1. A method for increasing a breakdown voltage in an integrated circuit, said method comprising the steps of:
forming a portion of a field oxide in said integrated circuit so that said portion of said field oxide has a gradual profile; and
using said gradual profile of said portion of said field oxide to reduce impact ionization in said portion of field oxide to increase said breakdown voltage of said integrated circuit
2-20. (canceled)
US12/955,194 2006-07-13 2010-11-29 System and method for increasing breakdown voltage of locos isolated devices Abandoned US20110065256A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/955,194 US20110065256A1 (en) 2006-07-13 2010-11-29 System and method for increasing breakdown voltage of locos isolated devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/486,952 US7867871B1 (en) 2006-07-13 2006-07-13 System and method for increasing breakdown voltage of LOCOS isolated devices
US12/955,194 US20110065256A1 (en) 2006-07-13 2010-11-29 System and method for increasing breakdown voltage of locos isolated devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/486,952 Continuation US7867871B1 (en) 2006-07-13 2006-07-13 System and method for increasing breakdown voltage of LOCOS isolated devices

Publications (1)

Publication Number Publication Date
US20110065256A1 true US20110065256A1 (en) 2011-03-17

Family

ID=43415619

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/486,952 Active US7867871B1 (en) 2006-07-13 2006-07-13 System and method for increasing breakdown voltage of LOCOS isolated devices
US12/955,194 Abandoned US20110065256A1 (en) 2006-07-13 2010-11-29 System and method for increasing breakdown voltage of locos isolated devices

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/486,952 Active US7867871B1 (en) 2006-07-13 2006-07-13 System and method for increasing breakdown voltage of LOCOS isolated devices

Country Status (1)

Country Link
US (2) US7867871B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140035140A1 (en) * 2011-01-19 2014-02-06 Macronix International Co., Ltd. Semiconductor Structure and Method for Manufacturing the Same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721687A (en) * 1986-05-31 1988-01-26 Kabushiki Kaisha Toshiba Method of increasing the thickness of a field oxide
US4764248A (en) * 1987-04-13 1988-08-16 Cypress Semiconductor Corporation Rapid thermal nitridized oxide locos process
US5110756A (en) * 1991-07-03 1992-05-05 At&T Bell Laboratories Method of semiconductor integrated circuit manufacturing which includes processing for reducing defect density
US5128274A (en) * 1989-08-01 1992-07-07 Matsushita Electric Industrial Co., Ltd. Method for producing a semiconductor device having a LOCOS insulating film with at least two different thickness
US5369052A (en) * 1993-12-06 1994-11-29 Motorola, Inc. Method of forming dual field oxide isolation
US5614421A (en) * 1994-03-11 1997-03-25 United Microelectronics Corp. Method of fabricating junction termination extension structure for high-voltage diode devices
US6355532B1 (en) * 1999-10-06 2002-03-12 Lsi Logic Corporation Subtractive oxidation method of fabricating a short-length and vertically-oriented channel, dual-gate, CMOS FET
US20030057514A1 (en) * 1997-08-21 2003-03-27 Chapek David L. Integrated circuit formed by removing undesrable second oxide while minimally affecting a desirable first oxide
US20070164379A1 (en) * 2006-01-17 2007-07-19 Honeywell International Inc. Isolation scheme for reducing film stress in a MEMS device
US7390722B1 (en) * 2004-08-18 2008-06-24 National Semiconductor Corporation System and method for using an oxidation process to create a stepper alignment structure on semiconductor wafers

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721687A (en) * 1986-05-31 1988-01-26 Kabushiki Kaisha Toshiba Method of increasing the thickness of a field oxide
US4764248A (en) * 1987-04-13 1988-08-16 Cypress Semiconductor Corporation Rapid thermal nitridized oxide locos process
US5128274A (en) * 1989-08-01 1992-07-07 Matsushita Electric Industrial Co., Ltd. Method for producing a semiconductor device having a LOCOS insulating film with at least two different thickness
US5110756A (en) * 1991-07-03 1992-05-05 At&T Bell Laboratories Method of semiconductor integrated circuit manufacturing which includes processing for reducing defect density
US5369052A (en) * 1993-12-06 1994-11-29 Motorola, Inc. Method of forming dual field oxide isolation
US5614421A (en) * 1994-03-11 1997-03-25 United Microelectronics Corp. Method of fabricating junction termination extension structure for high-voltage diode devices
US20030057514A1 (en) * 1997-08-21 2003-03-27 Chapek David L. Integrated circuit formed by removing undesrable second oxide while minimally affecting a desirable first oxide
US6355532B1 (en) * 1999-10-06 2002-03-12 Lsi Logic Corporation Subtractive oxidation method of fabricating a short-length and vertically-oriented channel, dual-gate, CMOS FET
US7390722B1 (en) * 2004-08-18 2008-06-24 National Semiconductor Corporation System and method for using an oxidation process to create a stepper alignment structure on semiconductor wafers
US20070164379A1 (en) * 2006-01-17 2007-07-19 Honeywell International Inc. Isolation scheme for reducing film stress in a MEMS device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140035140A1 (en) * 2011-01-19 2014-02-06 Macronix International Co., Ltd. Semiconductor Structure and Method for Manufacturing the Same
US9087825B2 (en) * 2011-01-19 2015-07-21 Macronix International Co., Ltd. Semiconductor structure and method for manufacturing the same

Also Published As

Publication number Publication date
US7867871B1 (en) 2011-01-11

Similar Documents

Publication Publication Date Title
US7767579B2 (en) Protection of SiGe during etch and clean operations
US5330920A (en) Method of controlling gate oxide thickness in the fabrication of semiconductor devices
JP3273636B2 (en) Integrated circuit and manufacturing method thereof
US6717213B2 (en) Creation of high mobility channels in thin-body SOI devices
US6949420B1 (en) Silicon-on-insulator (SOI) substrate having dual surface crystallographic orientations and method of forming same
JP3506694B1 (en) MOSFET device and manufacturing method thereof
JP3790763B2 (en) On-chip decoupling trench capacitor for silicon-on-insulator device and method of forming the same
US7410874B2 (en) Method of integrating triple gate oxide thickness
US8912073B2 (en) Method of manufacturing semiconductor device
US20180158738A1 (en) Semiconductor device structure
US4981813A (en) Pad oxide protect sealed interface isolation process
US6686059B2 (en) Semiconductor device manufacturing method and semiconductor device
EP0284456B1 (en) Pad oxide protect sealed interface isolation process
US7867871B1 (en) System and method for increasing breakdown voltage of LOCOS isolated devices
US6849508B2 (en) Method of forming multiple gate insulators on a strained semiconductor heterostructure
US6303521B1 (en) Method for forming oxide layers with different thicknesses
TW346664B (en) Mixed-mode IC separated spacer structure and process for producing the same
US7863153B1 (en) System and method for creating different field oxide profiles in a locos process
US9478457B2 (en) Shallow trench isolation structures in semiconductor device and method for manufacturing the same
JP4472434B2 (en) Manufacturing method of semiconductor device
US20060226480A1 (en) Method for fabricating oxygen-implanted silicon on insulation type semiconductor and semiconductor formed therefrom
US7879694B1 (en) System and method for applying a pre-gate plasma etch in a semiconductor device manufacturing process
US20160133524A1 (en) Methods for fabricating integrated circuits with improved active regions
JP2005286141A (en) Manufacturing method of semiconductor device
US6812148B2 (en) Preventing gate oxice thinning effect in a recess LOCOS process

Legal Events

Date Code Title Description
AS Assignment

Owner name: NATIONAL SEMICONDUCTOR CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FOOTE, RICHARD W.;LINES, TERRY LEE;SADOVNIKOV, ALEXEI;AND OTHERS;SIGNING DATES FROM 20060705 TO 20060727;REEL/FRAME:025401/0944

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION