US20110066123A1 - Medical dressings, systems, and methods employing sealants - Google Patents

Medical dressings, systems, and methods employing sealants Download PDF

Info

Publication number
US20110066123A1
US20110066123A1 US12/870,535 US87053510A US2011066123A1 US 20110066123 A1 US20110066123 A1 US 20110066123A1 US 87053510 A US87053510 A US 87053510A US 2011066123 A1 US2011066123 A1 US 2011066123A1
Authority
US
United States
Prior art keywords
seal
tissue site
drape
fluid
reduced pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/870,535
Inventor
Aidan Marcus Tout
Timothy Mark Robinson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43731275&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20110066123(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US12/870,535 priority Critical patent/US20110066123A1/en
Priority to EP10766145.6A priority patent/EP2477674B2/en
Priority to AU2010295855A priority patent/AU2010295855A1/en
Priority to JP2012528929A priority patent/JP2013504385A/en
Priority to EP13173894.0A priority patent/EP2644214B2/en
Priority to CA2774208A priority patent/CA2774208A1/en
Priority to CN2010800503316A priority patent/CN102711856A/en
Priority to PCT/US2010/048432 priority patent/WO2011034789A1/en
Priority to TW099131308A priority patent/TW201121597A/en
Publication of US20110066123A1 publication Critical patent/US20110066123A1/en
Priority to US14/139,518 priority patent/US9814627B2/en
Priority to US15/782,075 priority patent/US10792192B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • A61F13/05
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive plasters or dressings
    • A61F13/0246Adhesive plasters or dressings characterised by the skin adhering layer
    • A61F13/0253Adhesive plasters or dressings characterised by the skin adhering layer characterized by the adhesive material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/58Adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/91Suction aspects of the dressing
    • A61M1/915Constructional details of the pressure distribution manifold
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/91Suction aspects of the dressing
    • A61M1/916Suction aspects of the dressing specially adapted for deep wounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/94Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing with gas supply means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/84Drainage tubes; Aspiration tips
    • A61M1/85Drainage tubes; Aspiration tips with gas or fluid supply means, e.g. for supplying rinsing fluids or anticoagulants

Definitions

  • the present invention relates generally to medical treatment systems, and more particularly, medical dressings, systems, and methods employing sealants.
  • a system for treating a wound at a tissue site of a patient comprising a reduced-pressure source to supply reduced pressure, a drape adhering to the tissue site to cover the wound where possible leak passages between the drape and tissue site may occur, and a seal disposed between the drape and the tissue site, is disclosed.
  • the seal is adapted to react with a fluid to form a sealant substantially filling the passages in response to air leaking through the passages from outside the drape when reduced pressure is applied to the wound.
  • an apparatus includes a seal having a first side and a second, tissue-facing side.
  • the seal is adapted for placement adjacent the tissue site and is operable to expand in a presence of a fluid to form a substantially sealed space at the tissue site.
  • the apparatus also includes a drape for covering the sealant and further forming the substantially sealed space.
  • a method for sealing a drape to a tissue site for treating a wound at the tissue site comprising applying the drape to cover the tissue site whereby passages are formed between the drape and the tissue site, positioning a seal between the drape and the tissue site wherein the seal is adapted to react with a fluid to form a sealant for substantially filling the passages, is also disclosed.
  • FIG. 1 is a schematic, cross-sectional view of a reduced-pressure treatment system including dressing that utilizes a sealant according to one illustrative embodiment
  • FIG. 2 is a schematic, plan view of the sealant and the wound shown in the embodiment of FIG. 1 ;
  • FIG. 3 is a schematic, cross-sectional view of the dressing and the sealant shown in FIG. 1 after the sealant has transformed to a gelatinous or liquid state;
  • FIG. 4 is a schematic, cross-sectional view of another embodiment of dressing that utilizes a sealant in the reduced-pressure treatment system of FIG. 1 ;
  • FIG. 5 is a schematic, perspective view of a drape, sealant, and release liner for use with dressing of FIG. 4 according to one illustrative embodiment.
  • reduced pressure generally refers to a pressure less than the ambient pressure at a tissue site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Alternatively, the reduced pressure may be less than a hydrostatic pressure associated with tissue at the tissue site. Although the terms “vacuum” and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure reduction applied to the tissue site may be significantly less than the pressure reduction normally associated with a complete vacuum. Reduced pressure may initially generate fluid flow in the area of the tissue site. As the hydrostatic pressure around the tissue site approaches the desired reduced pressure, the flow may subside, and the reduced pressure is then maintained. Unless otherwise indicated, values of pressure stated herein are gauge pressures. Similarly, references to increases in reduced pressure typically refer to a decrease in absolute pressure, while decreases in reduced pressure typically refer to an increase in absolute pressure.
  • tissue site includes, without limitation, a wound or defect located on or within any tissue, including but not limited to, bone tissue, adipose tissue, muscle tissue, neural tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, or ligaments.
  • tissue site may further refer to areas of any tissue that are not necessarily wounded or defective, but are instead areas in which it is desired to add or promote the growth of additional tissue.
  • reduced pressure tissue treatment may be used in certain tissue areas to grow additional tissue that may be harvested and transplanted to another tissue location.
  • the tissue may be that of any mammal, such as a mouse, rat, rabbit, cat, dog, or primate, including humans, that are being treated as patients.
  • the wound at the tissue site may be due to a variety of causes, including trauma, surgery, degeneration, and other causes.
  • a reduced pressure treatment system 100 for applying a reduced pressure to a tissue site 101 of a patient according to an illustrative embodiment where the tissue site 101 includes a wound 102 surrounded by healthy tissue including, without limitation, an epidermis 103 of such tissue.
  • the system 100 comprises a canister 104 having a filter (not shown) contained within the canister 104 and a fluid supply 106 for delivering a fluid 105 to the tissue site 101 .
  • the canister 104 is positioned in fluid communication with a reduced pressure source 108 and a reduced pressure dressing 110 that is positioned at the tissue site 101 .
  • the reduced pressure dressing 110 is fluidly connected to the canister 104 by a conduit 112 .
  • the conduit 112 may fluidly communicate with the reduced pressure dressing 110 through a tubing adapter 114 .
  • a second conduit 116 fluidly connects the canister 104 with the reduced pressure source 108 .
  • the canister 104 may be a fluid reservoir, or collection member, to filter or hold exudates and other fluids removed from the tissue site 101 .
  • the canister 104 and the reduced pressure source 108 are integrated into a single housing structure.
  • the fluid supply 106 is fluidly connected to the reduced pressure dressing 110 by a third conduit 118 that may be connected directly to the reduced pressure dressing 110 (not shown) or indirectly via the conduit 112 which requires valves 122 and 124 for controlling the delivery of reduced pressure from the reduced pressure source 108 and/or the fluid 105 from the fluid supply 106 , respectively.
  • the fluid 105 may be any gas or liquid, and may contain growth factors, healing factors, or other substances to treat the wound 102 at the tissue site 101 .
  • the fluid 105 may be air, water, saline, or dye saline.
  • the reduced pressure source 108 is an electrically-driven vacuum pump.
  • the reduced pressure source 108 may instead be a manually-actuated or manually-charged pump that does not require electrical power.
  • the reduced pressure source 108 instead may be any other type of reduced pressure pump, or alternatively a wall suction port such as those available in hospitals and other medical facilities.
  • the reduced pressure source 108 may be housed within or used in conjunction with a reduced pressure treatment unit 128 , which may also contain sensors, processing units, alarm indicators, memory, databases, software, display unites, and user interfaces that further facilitate the application of reduced pressure treatment to the tissue site 101 .
  • a sensor or switch may be disposed at or near the reduced pressure source 108 to determine a source pressure generated by the reduced pressure source 108 .
  • the sensor may communicate with a processing unit that monitors and controls the reduced pressure that is delivered by the reduced pressure source 108 .
  • the reduced pressure dressing 110 includes a distribution manifold 130 adapted to be positioned at the tissue site 101 , and a drape 132 that covers the distribution manifold 130 to maintain reduced pressure beneath the drape 132 at the tissue site 101 .
  • the drape 132 includes an aperture 134 through which the tubing adapter 114 extends to provide fluid communication between the conduit 112 and the distribution manifold 130 .
  • the drape 132 further includes a periphery portion 136 that may extend beyond a perimeter of the tissue site 101 and may include an adhesive or bonding agent (not shown) to secure the drape 132 to tissue adjacent the tissue site 101 .
  • the adhesive disposed on the drape 132 may be used to provide a seal between the epidermis 103 and the drape 132 to prevent leakage of reduced pressure from the tissue site 101 .
  • a seal layer such as, for example, a hydrogel or other material may be disposed between the drape 132 and the epidermis 103 to augment or substitute for the sealing properties of the adhesive.
  • the distribution manifold 130 of the reduced pressure dressing 110 is adapted to contact the tissue site 101 .
  • the distribution manifold 130 may be partially or fully in contact with the tissue site 101 being treated by the reduced pressure dressing 110 .
  • the distribution manifold 130 may partially or fully fill the wound 102 .
  • the distribution manifold 130 may be any size, shape, or thickness depending on a variety of factors, such as the type of treatment being implemented or the nature and size of the tissue site 101 or the wound 102 .
  • the size and shape of the distribution manifold 130 may be customized by a user to cover a particular portion of the tissue site 101 , or to fill or partially fill the tissue site 101 or the wound 102 .
  • the distribution manifold 130 may have, for example, a square shape, or may be shaped as a circle, oval, polygon, an irregular shape, or any other shape.
  • the distribution manifold 130 may further promote granulation at the tissue site 101 when a reduced pressure is applied through the reduced pressure dressing 110 .
  • any or all of the surfaces of the distribution manifold 130 may have an uneven, coarse, or jagged profile that causes microstrains and stresses at the tissue site 101 when reduced pressure is applied through the distribution manifold 130 . These microstrains and stresses have been shown to increase new tissue growth.
  • the distribution manifold 130 is a foam material that distributes reduced pressure to the tissue site 101 when the distribution manifold 130 is in contact with or near the tissue site 101 .
  • the foam material may be either hydrophobic or hydrophilic.
  • the distribution manifold 130 is an open-cell, reticulated polyurethane foam such as GranuFoam® dressing available from Kinetic Concepts, Inc. of San Antonio, Tex.
  • the distribution manifold 130 also functions to wick fluid away from the tissue site 101 , while continuing to provide reduced pressure to the tissue site 101 as a manifold.
  • the wicking properties of the distribution manifold 130 draw fluid away from the tissue site 101 by capillary flow or other wicking mechanisms.
  • a hydrophilic foam is a polyvinyl alcohol, open-cell foam such as V.A.C. WhiteFoam® dressing available from Kinetic Concepts, Inc. of San Antonio, Tex.
  • Other hydrophilic foams may include those made from polyether.
  • Other foams that may exhibit hydrophilic characteristics include hydrophobic foams that have been treated or coated to provide hydrophilicity.
  • the distribution manifold 130 may be constructed from bioresorbable materials that do not have to be removed from a patient's body following use of the reduced pressure dressing 110 .
  • Suitable bioresorbable materials may include, without limitation, a polymeric blend of polylactic acid (PLA) and polyglycolic acid (PGA).
  • the polymeric blend may also include, without limitation, polycarbonates, polyfumarates, and capralactones.
  • the distribution manifold 130 may further serve as a scaffold for new cell-growth, or a scaffold material may be used in conjunction with the distribution manifold 130 to promote cell-growth.
  • a scaffold is a substance or structure used to enhance or promote the growth of cells or formation of tissue, such as a three-dimensional porous structure that provides a template for cell growth.
  • Illustrative examples of scaffold materials include calcium phosphate, collagen, PLA/PGA, coral hydroxy apatites, carbonates, or processed allograft materials.
  • the drape 132 may be any material that provides a pneumatic or fluid seal.
  • the drape 132 may, for example, be an impermeable or semi-permeable, elastomeric material.
  • “Elastomeric” means having the properties of an elastomer, and generally refers to a polymeric material that has rubber-like properties. More specifically, most elastomers have elongation rates greater than 100% and a significant amount of resilience. The resilience of a material refers to the material's ability to recover from an elastic deformation.
  • elastomers may include, but are not limited to, natural rubbers, polyisoprene, styrene butadiene rubber, chloroprene rubber, polybutadiene, nitrile rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene monomer, chlorosulfonated polyethylene, polysulfide rubber, polyurethane, EVA film, co-polyester, and silicones.
  • drape materials include a silicone drape, 3M Tegaderm® drape, acrylic drape such as one available from Avery Dennison, or an incise drape.
  • the reduced pressure dressing 110 further includes a seal 140 that is generally annular in shape and disposed between the tissue site 101 and the drape 132 thereby having a tissue-facing side 142 and a drape-facing side 144 when positioned on the tissue site 101 .
  • the drape 132 covers the seal 140 such that the periphery portion 136 of the drape 132 extends beyond the seal 140 so that the adhesive portion of the drape 132 adheres to the tissue surrounding the wound 102 at the tissue site 101 .
  • the seal 140 is substantially solid in form and substantially surrounds the wound 102 so that the tissue-facing side 142 is positioned adjacent the epidermis 103 of the tissue site 101 .
  • the epidermis 103 may have recesses and cracks or other discontinuities on the surface, i.e., epidermal discontinuities 150 , extending beyond the periphery portion 136 .
  • These epidermal discontinuities 150 form passages 152 through which air from outside the reduced pressure dressing 110 (“external air”) may leak into the tissue site 101 when reduced pressure is delivered to the distribution manifold 130 .
  • folds or buckles in the drape 132 may also form the passages 152 through which external air may leak into the tissue site 101 when reduced pressure is delivered to the distribution manifold 130 .
  • the seal 140 is initially solid in form that is made from material adapted to react with fluid such as, for example, the flow of external air as indicated by arrows 155 .
  • This reaction transforms the seal 140 from solid phase to either liquid or gel which flows or expands to fill the passages 152 created by the epidermal discontinuities 150 and/or the drape discontinuities 154 . Consequently, the transformed seal 140 forms a sealant 160 that fills the passages 152 and prevents the external air from leaking into the tissue site 101 when reduced pressure is delivered to the distribution manifold 130 .
  • the sealant 160 substantially blocks the passages 152 to prevent the external air from being drawn into the wound 102 by the reduced pressure, thereby maintaining the level of reduced pressure being delivered by the distribution manifold 130 to the tissue site 101 .
  • the seal 140 may be fabricated from a material containing isocyanate that reacts with water vapor content of the external air to create carbon dioxide gas within the material causing the material to expand and fill the passages 152 forming the sealant 160 that plugs the passages 152 created by the epidermal discontinuities 150 and the drape discontinuities 154 .
  • Water-sensitive polymers may also be used to form the seal 140 .
  • the seal 140 may be formed from an uncrosslinked water-sensitive polymer to liquify when exposed to moisture.
  • the seal 140 may also be formed from a crosslinked water-sensitive polymer to swell when exposed to moisture.
  • Water-sensitive polymers include polyacrylates, polyvinylpyrrolidone, polyvinyl alcohol, alginates, and carboxymethyl cellulose.
  • the seal 140 may be formed from water-sensitive materials that liberate gases such as metal hydrides and carbides. Further, hygroscopic materials, such as anhydrides, may be used to form the seal 140 some of which may also increase in volume as moisture is absorbed.
  • the transformation of a water-sensitive seal 140 to form the sealant 160 may be initiated or accelerated by first using a sponge or other application device to wet the surfaces of the seal 140 with water. Further transformation results when the water vapor content of the external air reacts with the water-sensitive material being utilized for the seal 140 .
  • the fluid supply 106 may provide the fluid 105 to the tissue site 101 via the distribution manifold 130 as described above and further indicated by arrows 164 wherein the fluid 105 includes an agent that facilitates the transformation of the seal 140 into the sealant 160 when exposed to the leakage of external air that comes in contact with the seal 140 .
  • the fluid supply 106 may provide the fluid 105 to the tissue site 101 via the distribution manifold 130 as described above and further indicated by the arrows 164 wherein the fluid 105 includes an agent that causes the transformation of the seal 140 into the sealant 160 without being exposed to the leakage of external air that comes in contact with the seal 140 .
  • solvents may be introduced as solutions that cause the seal 140 to liquefy or swell.
  • the transformation of a water-sensitive seal 140 to form the sealant 160 may be initiated or accelerated by first using a sponge or other application device to wet the surfaces of the seal 140 with either water or the solvent.
  • solvents examples include alcohols, glycols, polyethylene glycols, and glycerine that react with a seal 140 that is fabricated from materials such as modified polyurethanes, acrylics, and acetates.
  • Other solvents, incompatible with water, may also be used and introduced as emulsions or dispersions that are absorbed by the seal 140 which liquefies or swells as a result of the reaction.
  • these water-incompatible solvents include esters, phthalates, trimellitates, citrates, and vegetable oils.
  • the seal 140 may also be formed from polyurethane that contains an active substance that expands upon contact with the fluid 105 .
  • the polyurethane may also function as an adhesive so that the sealant 160 adheres more tightly to the drape 132 and the patient's epidermis 103 .
  • the seal 140 may also include isocyanate, tartaric acid and sodium bicarbonate, super absorbent fiber that expands when exposed to a fluid, or water-absorbing polymers that swell when exposed to a fluid.
  • the fiber may form a mesh such that the fibers are oriented along at least two directions and intersect with one another.
  • the expansion of the seal 140 may be caused by the formation of bubbles within the seal 140 after it transforms into the sealant 160 . These bubbles may be caused by the release of carbon dioxide upon contact between the seal 140 and the fluid 105 .
  • the specific material used for the seal 140 may depend upon the manner in which the expansion of the seal 140 is activated. Also, the shape of the seal 140 can vary depending on the manner in which the seal 140 is used or applied.
  • the expansion of the seal 140 can be activated using any of a variety of mechanisms depending on the embodiment employed, and several non-limiting examples follow.
  • the seal 140 expands in the presence of the fluid 105 delivered from the fluid supply 106 via the distribution manifold 130 as indicated by the arrows 164 in FIG. 3 .
  • the fluid 105 flows through the distribution manifold 130 and contacts the seal 140 causing it to expand to fill the passages 152 created by the epidermal discontinuities 150 and the drape discontinuities 154 as described above.
  • the fluid 105 may continue to be supplied to the sealant 160 after the expansion of the seal 140 to provide therapy to the wound 102 .
  • the fluid used to activate and expand the seal 140 may originate from sources other than the fluid supply 106 .
  • the fluid supplied to the seal 140 may be exudate from the wound 102 .
  • the exudate flows to the seal 140 as indicated by exudate flow arrows 157 .
  • fluid may be supplied to the seal 140 by pre-applying the fluid to the tissue site 101 with a sponge or other application device and, more specifically, the surface layer of the epidermis 103 , before applying the reduced pressure dressing 110 to the tissue site 101 .
  • This pre-applied fluid may be a gel or liquid sufficient to activate the expansion of the seal 140 .
  • a fluid may be applied to the seal 140 from under the periphery portion 136 of the drape 132 after the reduced pressure dressing 110 has been applied to the tissue site 101 .
  • the fluid may be sprayed, injected, or otherwise applied onto or into the seal 140 by a care giver, including the patient.
  • the care giver may desire to expose all or a substantial portion of the seal 140 to the fluid, the care giver may also apply the fluid to targeted regions of the seal 140 based on an assessment of the areas in the reduced pressure dressing 110 where the passages 152 are detected. Using this technique, a care giver may determine the areas at which a fluid lead exists in the reduced pressure dressing 110 , and apply the fluid to those portions of the seal 140 that are adjacent the passages 152 .
  • reduced pressure may be applied to the distribution manifold 130 so that the external air is drawn to the seal 140 from the outside of the reduced pressure dressing 110 through the passages 152 as described above and as indicated by the arrows 155 .
  • the seal 140 may be formed from material that reacts with the air or component thereof.
  • the seal 140 may react with oxygen, carbon dioxide, or other component of the gas to cause the expansion of the seal 140 .
  • the seal 140 may be formed from material that reacts to gases other than air that may be externally injected into the passages 152 causing the seal 140 to expand.
  • Examples of materials that increase in volume when absorbing a gas include iron that reacts with oxygen to form iron oxide (Fe 2 O 3 ), and zinc oxide that reacts with carbon dioxide to form zinc carbonate. Amines and alcohol amines may also be used in the seal 140 to absorb carbon dioxide.
  • reduced pressure can be applied to the distribution manifold 130 to create a pressure differential under the drape 132 of sufficient magnitude to cause the expansion of the seal 140 .
  • the seal 140 is formed from a material that expands when a pressure drop exists across the length of the material.
  • the seal 140 may be a composition comprising a material containing polymer spheres or bubbles (e.g., Expancel® from Akzo Nobel N.V. located at Strawinskylaan 2555, 1077 ZZ Amsterdam, Postbus 75730) that are filled with low boiling point liquids. Upon heating, the polymer softens and the spheres expand so that the seal 140 fills any of the passages 152 .
  • the polymer spheres may soften into an elastic state without a significant change in the internal pressure or the corresponding size of the spheres.
  • the elastic spheres When a reduced pressure is applied to the seal 140 , however, the elastic spheres are subjected to a pressure differential causing them to expand so that the seal 140 fills the passages 152 .
  • the pressure differential may be increased further causing the spheres to expand and ultimately rupture releasing their contents, such as gels or adhesives, to fill any of the passages 152 and bind the spheres together to form a tighter seal.
  • the exposed contents may be oxygen sensitive and harden over a period of time to increase the stability of the seal.
  • the seal 140 and the drape 132 may be applied to the tissue site 101 as a unit, or a care giver can cover the seal 140 with the drape 132 after the seal 140 has been applied.
  • the care giver may insert all or a portion of the seal 140 under the periphery portion 136 of the drape 132 after the drape 132 has been applied to the tissue site 101 .
  • a reduced pressure dressing 210 that includes the drape 132 , a seal 240 (as shown in FIG. 5 ) and the distribution manifold 130 .
  • the drape 132 includes a first side 250 and a second, tissue-facing side 252 .
  • the seal 240 is different from the seal 140 of FIG. 1 only in shape which covers a substantial portion of the second, tissue-facing side 252 of the drape 132 .
  • the seal 240 transforms to a gelatinous or liquid state to form a sealant 260 as shown in FIG.
  • the sealant 260 covers a larger surface area of the epidermis 103 to plug more of the passages 152 (not shown) resulting from the epidermal discontinuities 150 and drape discontinuities (not shown) as described above.
  • Using a sealant that covers a larger area of contact between the drape 132 and the epidermis 103 may further reduce the number and severity of the passages 152 caused by both discontinuities.
  • a release liner 254 as shown in FIG. 5 may be utilized to cover a tissue-facing side 212 of the seal 240 , prior to application of the reduced pressure dressing 210 to the tissue site 101 .
  • the release liner 254 preserves the adhesiveness of the seal 240 prior to the seal's 240 contact with the epidermis 103 .
  • the release liner 254 also prevents fluid from contacting the seal 240 prior to application of the reduced pressure dressing 210 to the tissue site 101 .
  • the release liner 254 may be formed from any gas or liquid impermeable material to prevent the seal 240 from being contaminated or from transforming to a gelatinous or liquid state before being applied to the tissue site 101 .
  • the release liner 254 may also have tabs (not shown) so that a care giver can easily peel the release liner 254 from the seal 240 when desired.
  • the seal 240 may be inserted in separate pieces between the drape 132 and the epidermis 103 after the reduced pressure dressing 110 is applied to the tissue site 101 .
  • the drape 132 may be applied to the tissue site 101 and held in place by an adhesive (not shown) that may also function as a sealant.
  • the peripheral portion of the drape 132 is free from adhesive to leave a space for inserting pieces of the seal 240 between the drape 132 and the epidermis 103 to plug any of the passages 152 that may be detected after reduced pressure is applied to the wound 102 .
  • the separate pieces of the seal 240 do not need to be annular in shape as shown in FIGS. 1 and 4 , but rather may be whatever shape necessary to plug the passages 152 that is detected.
  • the separate piece or pieces of seal 240 are inserted under the drape 132 at the desired location and then exposed to any of the stimuli described above, e.g., reduced pressure or fluids, to transform the seal to the sealant 160 , 260 as shown in FIGS. 3 and 4 , respectively.

Abstract

According to an illustrative embodiment, a system for treating a wound at a tissue site of a patient comprising a reduced-pressure source to supply reduced pressure, a drape adhering to the tissue site to cover the wound where possible leak passages between the drape and the tissue site may occur, and a seal disposed between the drape and the tissue site, is disclosed. The seal is adapted to react with a fluid to form a sealant substantially filling the passages in response to air leaking through the passages from outside the drape when reduced pressure is applied to the wound. According to another illustrative embodiment, a method for sealing a drape to a tissue site for treating a wound at the tissue site comprising applying the drape to cover the tissue site whereby passages are formed between the drape and the tissue site, positioning a seal between the drape and the tissue site wherein the seal is adapted to react with a fluid to form a sealant for substantially filling the passages, is also disclosed.

Description

    RELATED APPLICATION
  • The present invention claims the benefit, under 35 USC §119(e), of the filing of U.S. Provisional Patent Application Ser. No. 61/242,488, entitled “System and Method for Sealing a Wound,” filed Sep. 15, 2009, which is incorporated herein by reference for all purposes.
  • BACKGROUND
  • The present invention relates generally to medical treatment systems, and more particularly, medical dressings, systems, and methods employing sealants.
  • Clinical studies and practice have shown that providing a reduced pressure in proximity to a tissue site augments and accelerates the growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but application of reduced pressure has been particularly successful in treating wounds. This treatment (frequently referred to in the medical community as “negative pressure wound therapy,” “reduced pressure therapy,” or “vacuum therapy”) provides a number of benefits, which may include faster healing and increased formulation of granulation tissue. Unless otherwise indicated, as used herein, “or” does not require mutual exclusivity.
  • SUMMARY
  • According to an illustrative embodiment, a system for treating a wound at a tissue site of a patient comprising a reduced-pressure source to supply reduced pressure, a drape adhering to the tissue site to cover the wound where possible leak passages between the drape and tissue site may occur, and a seal disposed between the drape and the tissue site, is disclosed. The seal is adapted to react with a fluid to form a sealant substantially filling the passages in response to air leaking through the passages from outside the drape when reduced pressure is applied to the wound.
  • According to another illustrative embodiment, an apparatus includes a seal having a first side and a second, tissue-facing side. The seal is adapted for placement adjacent the tissue site and is operable to expand in a presence of a fluid to form a substantially sealed space at the tissue site. The apparatus also includes a drape for covering the sealant and further forming the substantially sealed space.
  • According to another illustrative embodiment, a method for sealing a drape to a tissue site for treating a wound at the tissue site comprising applying the drape to cover the tissue site whereby passages are formed between the drape and the tissue site, positioning a seal between the drape and the tissue site wherein the seal is adapted to react with a fluid to form a sealant for substantially filling the passages, is also disclosed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic, cross-sectional view of a reduced-pressure treatment system including dressing that utilizes a sealant according to one illustrative embodiment;
  • FIG. 2 is a schematic, plan view of the sealant and the wound shown in the embodiment of FIG. 1;
  • FIG. 3 is a schematic, cross-sectional view of the dressing and the sealant shown in FIG. 1 after the sealant has transformed to a gelatinous or liquid state;
  • FIG. 4 is a schematic, cross-sectional view of another embodiment of dressing that utilizes a sealant in the reduced-pressure treatment system of FIG. 1; and
  • FIG. 5 is a schematic, perspective view of a drape, sealant, and release liner for use with dressing of FIG. 4 according to one illustrative embodiment.
  • DETAILED DESCRIPTION
  • In the following detailed description of the illustrative embodiments, reference is made to the accompanying drawings that form a part hereof. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the illustrative embodiments are defined only by the appended claims.
  • The term “reduced pressure” as used herein generally refers to a pressure less than the ambient pressure at a tissue site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Alternatively, the reduced pressure may be less than a hydrostatic pressure associated with tissue at the tissue site. Although the terms “vacuum” and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure reduction applied to the tissue site may be significantly less than the pressure reduction normally associated with a complete vacuum. Reduced pressure may initially generate fluid flow in the area of the tissue site. As the hydrostatic pressure around the tissue site approaches the desired reduced pressure, the flow may subside, and the reduced pressure is then maintained. Unless otherwise indicated, values of pressure stated herein are gauge pressures. Similarly, references to increases in reduced pressure typically refer to a decrease in absolute pressure, while decreases in reduced pressure typically refer to an increase in absolute pressure.
  • The term “tissue site” as used herein includes, without limitation, a wound or defect located on or within any tissue, including but not limited to, bone tissue, adipose tissue, muscle tissue, neural tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, or ligaments. The term “tissue site” may further refer to areas of any tissue that are not necessarily wounded or defective, but are instead areas in which it is desired to add or promote the growth of additional tissue. For example, reduced pressure tissue treatment may be used in certain tissue areas to grow additional tissue that may be harvested and transplanted to another tissue location. The tissue may be that of any mammal, such as a mouse, rat, rabbit, cat, dog, or primate, including humans, that are being treated as patients. Also, the wound at the tissue site may be due to a variety of causes, including trauma, surgery, degeneration, and other causes.
  • Referring to FIGS. 1 and 2, a reduced pressure treatment system 100 for applying a reduced pressure to a tissue site 101 of a patient according to an illustrative embodiment where the tissue site 101 includes a wound 102 surrounded by healthy tissue including, without limitation, an epidermis 103 of such tissue. The system 100 comprises a canister 104 having a filter (not shown) contained within the canister 104 and a fluid supply 106 for delivering a fluid 105 to the tissue site 101. The canister 104 is positioned in fluid communication with a reduced pressure source 108 and a reduced pressure dressing 110 that is positioned at the tissue site 101. The reduced pressure dressing 110 is fluidly connected to the canister 104 by a conduit 112. The conduit 112 may fluidly communicate with the reduced pressure dressing 110 through a tubing adapter 114. A second conduit 116 fluidly connects the canister 104 with the reduced pressure source 108.
  • The canister 104 may be a fluid reservoir, or collection member, to filter or hold exudates and other fluids removed from the tissue site 101. In one embodiment, the canister 104 and the reduced pressure source 108 are integrated into a single housing structure. The fluid supply 106 is fluidly connected to the reduced pressure dressing 110 by a third conduit 118 that may be connected directly to the reduced pressure dressing 110 (not shown) or indirectly via the conduit 112 which requires valves 122 and 124 for controlling the delivery of reduced pressure from the reduced pressure source 108 and/or the fluid 105 from the fluid supply 106, respectively. The fluid 105 may be any gas or liquid, and may contain growth factors, healing factors, or other substances to treat the wound 102 at the tissue site 101. For example, the fluid 105 may be air, water, saline, or dye saline.
  • In the embodiment illustrated in FIG. 1, the reduced pressure source 108 is an electrically-driven vacuum pump. In another implementation, the reduced pressure source 108 may instead be a manually-actuated or manually-charged pump that does not require electrical power. The reduced pressure source 108 instead may be any other type of reduced pressure pump, or alternatively a wall suction port such as those available in hospitals and other medical facilities. The reduced pressure source 108 may be housed within or used in conjunction with a reduced pressure treatment unit 128, which may also contain sensors, processing units, alarm indicators, memory, databases, software, display unites, and user interfaces that further facilitate the application of reduced pressure treatment to the tissue site 101. In one example, a sensor or switch (not shown) may be disposed at or near the reduced pressure source 108 to determine a source pressure generated by the reduced pressure source 108. The sensor may communicate with a processing unit that monitors and controls the reduced pressure that is delivered by the reduced pressure source 108.
  • The reduced pressure dressing 110 includes a distribution manifold 130 adapted to be positioned at the tissue site 101, and a drape 132 that covers the distribution manifold 130 to maintain reduced pressure beneath the drape 132 at the tissue site 101. The drape 132 includes an aperture 134 through which the tubing adapter 114 extends to provide fluid communication between the conduit 112 and the distribution manifold 130. The drape 132 further includes a periphery portion 136 that may extend beyond a perimeter of the tissue site 101 and may include an adhesive or bonding agent (not shown) to secure the drape 132 to tissue adjacent the tissue site 101. In one embodiment, the adhesive disposed on the drape 132 may be used to provide a seal between the epidermis 103 and the drape 132 to prevent leakage of reduced pressure from the tissue site 101. In another embodiment, a seal layer (not shown) such as, for example, a hydrogel or other material may be disposed between the drape 132 and the epidermis 103 to augment or substitute for the sealing properties of the adhesive.
  • The distribution manifold 130 of the reduced pressure dressing 110 is adapted to contact the tissue site 101. The distribution manifold 130 may be partially or fully in contact with the tissue site 101 being treated by the reduced pressure dressing 110. When the distribution manifold 130 is in contact with the wound 102 at the tissue site 101, the distribution manifold 130 may partially or fully fill the wound 102. The distribution manifold 130 may be any size, shape, or thickness depending on a variety of factors, such as the type of treatment being implemented or the nature and size of the tissue site 101 or the wound 102. For example, the size and shape of the distribution manifold 130 may be customized by a user to cover a particular portion of the tissue site 101, or to fill or partially fill the tissue site 101 or the wound 102. The distribution manifold 130 may have, for example, a square shape, or may be shaped as a circle, oval, polygon, an irregular shape, or any other shape. The distribution manifold 130 may further promote granulation at the tissue site 101 when a reduced pressure is applied through the reduced pressure dressing 110. For example, any or all of the surfaces of the distribution manifold 130 may have an uneven, coarse, or jagged profile that causes microstrains and stresses at the tissue site 101 when reduced pressure is applied through the distribution manifold 130. These microstrains and stresses have been shown to increase new tissue growth.
  • In one illustrative embodiment, the distribution manifold 130 is a foam material that distributes reduced pressure to the tissue site 101 when the distribution manifold 130 is in contact with or near the tissue site 101. The foam material may be either hydrophobic or hydrophilic. In one non-limiting example, the distribution manifold 130 is an open-cell, reticulated polyurethane foam such as GranuFoam® dressing available from Kinetic Concepts, Inc. of San Antonio, Tex. In the example in which the distribution manifold 130 is made from a hydrophilic material, the distribution manifold 130 also functions to wick fluid away from the tissue site 101, while continuing to provide reduced pressure to the tissue site 101 as a manifold. The wicking properties of the distribution manifold 130 draw fluid away from the tissue site 101 by capillary flow or other wicking mechanisms. An example of a hydrophilic foam is a polyvinyl alcohol, open-cell foam such as V.A.C. WhiteFoam® dressing available from Kinetic Concepts, Inc. of San Antonio, Tex. Other hydrophilic foams may include those made from polyether. Other foams that may exhibit hydrophilic characteristics include hydrophobic foams that have been treated or coated to provide hydrophilicity.
  • In one embodiment, the distribution manifold 130 may be constructed from bioresorbable materials that do not have to be removed from a patient's body following use of the reduced pressure dressing 110. Suitable bioresorbable materials may include, without limitation, a polymeric blend of polylactic acid (PLA) and polyglycolic acid (PGA). The polymeric blend may also include, without limitation, polycarbonates, polyfumarates, and capralactones. The distribution manifold 130 may further serve as a scaffold for new cell-growth, or a scaffold material may be used in conjunction with the distribution manifold 130 to promote cell-growth. A scaffold is a substance or structure used to enhance or promote the growth of cells or formation of tissue, such as a three-dimensional porous structure that provides a template for cell growth. Illustrative examples of scaffold materials include calcium phosphate, collagen, PLA/PGA, coral hydroxy apatites, carbonates, or processed allograft materials.
  • The drape 132 may be any material that provides a pneumatic or fluid seal. The drape 132 may, for example, be an impermeable or semi-permeable, elastomeric material.
  • “Elastomeric” means having the properties of an elastomer, and generally refers to a polymeric material that has rubber-like properties. More specifically, most elastomers have elongation rates greater than 100% and a significant amount of resilience. The resilience of a material refers to the material's ability to recover from an elastic deformation. Examples of elastomers may include, but are not limited to, natural rubbers, polyisoprene, styrene butadiene rubber, chloroprene rubber, polybutadiene, nitrile rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene monomer, chlorosulfonated polyethylene, polysulfide rubber, polyurethane, EVA film, co-polyester, and silicones. Specific examples of drape materials include a silicone drape, 3M Tegaderm® drape, acrylic drape such as one available from Avery Dennison, or an incise drape.
  • The reduced pressure dressing 110 further includes a seal 140 that is generally annular in shape and disposed between the tissue site 101 and the drape 132 thereby having a tissue-facing side 142 and a drape-facing side 144 when positioned on the tissue site 101. The drape 132 covers the seal 140 such that the periphery portion 136 of the drape 132 extends beyond the seal 140 so that the adhesive portion of the drape 132 adheres to the tissue surrounding the wound 102 at the tissue site 101. The seal 140 is substantially solid in form and substantially surrounds the wound 102 so that the tissue-facing side 142 is positioned adjacent the epidermis 103 of the tissue site 101. Even though the periphery portion 136 of the drape 132 functions as an adhesive with some sealing capability as described above, the epidermis 103 may have recesses and cracks or other discontinuities on the surface, i.e., epidermal discontinuities 150, extending beyond the periphery portion 136. These epidermal discontinuities 150 form passages 152 through which air from outside the reduced pressure dressing 110 (“external air”) may leak into the tissue site 101 when reduced pressure is delivered to the distribution manifold 130. Additionally, when the drape 132 is positioned on the tissue site 101, folds or buckles in the drape 132, i.e., drape discontinuities 154, may also form the passages 152 through which external air may leak into the tissue site 101 when reduced pressure is delivered to the distribution manifold 130.
  • Referring to FIGS. 1 and 3, the seal 140 is initially solid in form that is made from material adapted to react with fluid such as, for example, the flow of external air as indicated by arrows 155. This reaction transforms the seal 140 from solid phase to either liquid or gel which flows or expands to fill the passages 152 created by the epidermal discontinuities 150 and/or the drape discontinuities 154. Consequently, the transformed seal 140 forms a sealant 160 that fills the passages 152 and prevents the external air from leaking into the tissue site 101 when reduced pressure is delivered to the distribution manifold 130. The sealant 160 substantially blocks the passages 152 to prevent the external air from being drawn into the wound 102 by the reduced pressure, thereby maintaining the level of reduced pressure being delivered by the distribution manifold 130 to the tissue site 101.
  • The seal 140 may be fabricated from a material containing isocyanate that reacts with water vapor content of the external air to create carbon dioxide gas within the material causing the material to expand and fill the passages 152 forming the sealant 160 that plugs the passages 152 created by the epidermal discontinuities 150 and the drape discontinuities 154. Water-sensitive polymers may also be used to form the seal 140. For example, the seal 140 may be formed from an uncrosslinked water-sensitive polymer to liquify when exposed to moisture. The seal 140 may also be formed from a crosslinked water-sensitive polymer to swell when exposed to moisture. Water-sensitive polymers include polyacrylates, polyvinylpyrrolidone, polyvinyl alcohol, alginates, and carboxymethyl cellulose. In another example, the seal 140 may be formed from water-sensitive materials that liberate gases such as metal hydrides and carbides. Further, hygroscopic materials, such as anhydrides, may be used to form the seal 140 some of which may also increase in volume as moisture is absorbed. The transformation of a water-sensitive seal 140 to form the sealant 160 may be initiated or accelerated by first using a sponge or other application device to wet the surfaces of the seal 140 with water. Further transformation results when the water vapor content of the external air reacts with the water-sensitive material being utilized for the seal 140.
  • In another embodiment, the fluid supply 106 may provide the fluid 105 to the tissue site 101 via the distribution manifold 130 as described above and further indicated by arrows 164 wherein the fluid 105 includes an agent that facilitates the transformation of the seal 140 into the sealant 160 when exposed to the leakage of external air that comes in contact with the seal 140. In another embodiment, the fluid supply 106 may provide the fluid 105 to the tissue site 101 via the distribution manifold 130 as described above and further indicated by the arrows 164 wherein the fluid 105 includes an agent that causes the transformation of the seal 140 into the sealant 160 without being exposed to the leakage of external air that comes in contact with the seal 140. For example, solvents may be introduced as solutions that cause the seal 140 to liquefy or swell. As described above, the transformation of a water-sensitive seal 140 to form the sealant 160 may be initiated or accelerated by first using a sponge or other application device to wet the surfaces of the seal 140 with either water or the solvent.
  • Examples of solvents that may be used include alcohols, glycols, polyethylene glycols, and glycerine that react with a seal 140 that is fabricated from materials such as modified polyurethanes, acrylics, and acetates. Other solvents, incompatible with water, may also be used and introduced as emulsions or dispersions that are absorbed by the seal 140 which liquefies or swells as a result of the reaction. Examples of these water-incompatible solvents include esters, phthalates, trimellitates, citrates, and vegetable oils. The seal 140 may also be formed from polyurethane that contains an active substance that expands upon contact with the fluid 105. The polyurethane may also function as an adhesive so that the sealant 160 adheres more tightly to the drape 132 and the patient's epidermis 103.
  • In another embodiment, the seal 140 may also include isocyanate, tartaric acid and sodium bicarbonate, super absorbent fiber that expands when exposed to a fluid, or water-absorbing polymers that swell when exposed to a fluid. In the example in which the seal 140 is formed from a fiber, the fiber may form a mesh such that the fibers are oriented along at least two directions and intersect with one another. In one embodiment, the expansion of the seal 140 may be caused by the formation of bubbles within the seal 140 after it transforms into the sealant 160. These bubbles may be caused by the release of carbon dioxide upon contact between the seal 140 and the fluid 105. The specific material used for the seal 140 may depend upon the manner in which the expansion of the seal 140 is activated. Also, the shape of the seal 140 can vary depending on the manner in which the seal 140 is used or applied.
  • The expansion of the seal 140 can be activated using any of a variety of mechanisms depending on the embodiment employed, and several non-limiting examples follow. In one example, as discussed above, the seal 140 expands in the presence of the fluid 105 delivered from the fluid supply 106 via the distribution manifold 130 as indicated by the arrows 164 in FIG. 3. The fluid 105 flows through the distribution manifold 130 and contacts the seal 140 causing it to expand to fill the passages 152 created by the epidermal discontinuities 150 and the drape discontinuities 154 as described above. The fluid 105 may continue to be supplied to the sealant 160 after the expansion of the seal 140 to provide therapy to the wound 102.
  • The fluid used to activate and expand the seal 140 may originate from sources other than the fluid supply 106. In one embodiment, the fluid supplied to the seal 140 may be exudate from the wound 102. In this example, the exudate flows to the seal 140 as indicated by exudate flow arrows 157. In another example, fluid may be supplied to the seal 140 by pre-applying the fluid to the tissue site 101 with a sponge or other application device and, more specifically, the surface layer of the epidermis 103, before applying the reduced pressure dressing 110 to the tissue site 101. This pre-applied fluid may be a gel or liquid sufficient to activate the expansion of the seal 140. In yet another example, a fluid may be applied to the seal 140 from under the periphery portion 136 of the drape 132 after the reduced pressure dressing 110 has been applied to the tissue site 101. In this example the fluid may be sprayed, injected, or otherwise applied onto or into the seal 140 by a care giver, including the patient. Although the care giver may desire to expose all or a substantial portion of the seal 140 to the fluid, the care giver may also apply the fluid to targeted regions of the seal 140 based on an assessment of the areas in the reduced pressure dressing 110 where the passages 152 are detected. Using this technique, a care giver may determine the areas at which a fluid lead exists in the reduced pressure dressing 110, and apply the fluid to those portions of the seal 140 that are adjacent the passages 152.
  • In another example of a mechanism by which the seal 140 may be exposed to a fluid, reduced pressure may be applied to the distribution manifold 130 so that the external air is drawn to the seal 140 from the outside of the reduced pressure dressing 110 through the passages 152 as described above and as indicated by the arrows 155. When contacting the seal 140, the vapor or humidity within the air reacts with the seal 140 as described above. The seal 140 may be formed from material that reacts with the air or component thereof. For example, the seal 140 may react with oxygen, carbon dioxide, or other component of the gas to cause the expansion of the seal 140. In another embodiment, the seal 140 may be formed from material that reacts to gases other than air that may be externally injected into the passages 152 causing the seal 140 to expand. Examples of materials that increase in volume when absorbing a gas include iron that reacts with oxygen to form iron oxide (Fe2O3), and zinc oxide that reacts with carbon dioxide to form zinc carbonate. Amines and alcohol amines may also be used in the seal 140 to absorb carbon dioxide.
  • In yet another example, reduced pressure can be applied to the distribution manifold 130 to create a pressure differential under the drape 132 of sufficient magnitude to cause the expansion of the seal 140. In this example, the seal 140 is formed from a material that expands when a pressure drop exists across the length of the material. In one embodiment, the seal 140 may be a composition comprising a material containing polymer spheres or bubbles (e.g., Expancel® from Akzo Nobel N.V. located at Strawinskylaan 2555, 1077 ZZ Amsterdam, Postbus 75730) that are filled with low boiling point liquids. Upon heating, the polymer softens and the spheres expand so that the seal 140 fills any of the passages 152. Alternatively, the polymer spheres may soften into an elastic state without a significant change in the internal pressure or the corresponding size of the spheres. When a reduced pressure is applied to the seal 140, however, the elastic spheres are subjected to a pressure differential causing them to expand so that the seal 140 fills the passages 152. The pressure differential may be increased further causing the spheres to expand and ultimately rupture releasing their contents, such as gels or adhesives, to fill any of the passages 152 and bind the spheres together to form a tighter seal. Also, the exposed contents may be oxygen sensitive and harden over a period of time to increase the stability of the seal.
  • The seal 140 and the drape 132 may be applied to the tissue site 101 as a unit, or a care giver can cover the seal 140 with the drape 132 after the seal 140 has been applied. In another embodiment, the care giver may insert all or a portion of the seal 140 under the periphery portion 136 of the drape 132 after the drape 132 has been applied to the tissue site 101. By inserting the seal 140 to the reduced pressure dressing 110 after the reduced pressure dressing 110 has been applied to the tissue site 101, the seal 140 may be used in conjunction with existing wound dressings.
  • Referring now to FIGS. 4 and 5, a reduced pressure dressing 210 is shown that includes the drape 132, a seal 240 (as shown in FIG. 5) and the distribution manifold 130. The drape 132 includes a first side 250 and a second, tissue-facing side 252. The seal 240 is different from the seal 140 of FIG. 1 only in shape which covers a substantial portion of the second, tissue-facing side 252 of the drape 132. When the seal 240 transforms to a gelatinous or liquid state to form a sealant 260 as shown in FIG. 4, the sealant 260 covers a larger surface area of the epidermis 103 to plug more of the passages 152 (not shown) resulting from the epidermal discontinuities 150 and drape discontinuities (not shown) as described above. Using a sealant that covers a larger area of contact between the drape 132 and the epidermis 103 may further reduce the number and severity of the passages 152 caused by both discontinuities.
  • A release liner 254 as shown in FIG. 5 may be utilized to cover a tissue-facing side 212 of the seal 240, prior to application of the reduced pressure dressing 210 to the tissue site 101. The release liner 254 preserves the adhesiveness of the seal 240 prior to the seal's 240 contact with the epidermis 103. The release liner 254 also prevents fluid from contacting the seal 240 prior to application of the reduced pressure dressing 210 to the tissue site 101. The release liner 254 may be formed from any gas or liquid impermeable material to prevent the seal 240 from being contaminated or from transforming to a gelatinous or liquid state before being applied to the tissue site 101. The release liner 254 may also have tabs (not shown) so that a care giver can easily peel the release liner 254 from the seal 240 when desired.
  • In an alternative embodiment, the seal 240 may be inserted in separate pieces between the drape 132 and the epidermis 103 after the reduced pressure dressing 110 is applied to the tissue site 101. The drape 132 may be applied to the tissue site 101 and held in place by an adhesive (not shown) that may also function as a sealant. The peripheral portion of the drape 132 is free from adhesive to leave a space for inserting pieces of the seal 240 between the drape 132 and the epidermis 103 to plug any of the passages 152 that may be detected after reduced pressure is applied to the wound 102. The separate pieces of the seal 240 do not need to be annular in shape as shown in FIGS. 1 and 4, but rather may be whatever shape necessary to plug the passages 152 that is detected. The separate piece or pieces of seal 240 are inserted under the drape 132 at the desired location and then exposed to any of the stimuli described above, e.g., reduced pressure or fluids, to transform the seal to the sealant 160, 260 as shown in FIGS. 3 and 4, respectively.
  • Although the present invention and its advantages have been disclosed in the context of certain illustrative, non-limiting embodiments, it should be understood that various changes, substitutions, permutations, and alterations can be made without departing from the scope of the invention as defined by the appended claims.

Claims (29)

1. A system for treating a wound at a tissue site, the system comprising:
a pressure source to supply reduced pressure;
a manifold in fluid communication with said pressure source to provide reduced pressure to the wound;
a drape adhering to the tissue site to cover the wound and said manifold, there being passages between said drape and the tissue site; and,
a seal disposed between said drape and the tissue site, said seal adapted to react with a fluid to form a sealant substantially filling the passages in response to air leaking through the passages from outside said drape when said manifold provides reduced pressure to the wound.
2. The system of claim 1, wherein said seal contains an isocyanate material and the fluid is water vapor contained in the air that leaks from outside said drape to contact said seal.
3. The system of claim 1, wherein said seal is a water-sensitive polymer and the fluid is water vapor contained in the air that leaks from outside said drape to contact said seal.
4. The system of claim 3, wherein the water-sensitive polymer is polyacrylate, polyvinylpyrrolidone, polyvinyl alcohol, alginates, or carboxymethyl cellulose.
5. The system of claim 1, wherein said seal is a water-sensitive polymer and the fluid is exudates from the wound that contact said seal.
6. The system of claim 1, wherein said seal is a water-sensitive polymer and the fluid is water applied to said seal.
7. The system of claim 1, wherein said seal is a water-sensitive material that liberates gases to form the sealant and the fluid is water vapor contained in the air that leaks from outside said drape to contact said seal.
8. The system of claim 7, wherein the water-sensitive material is a metal hydride or a metal carbide.
9. The system of claim 1, further comprising a fluid supply for providing the fluid to the tissue site.
10. The system of claim 9, wherein the seal is polyurethane, acrylic, or acetate and the fluid is a solvent.
11. The system of claim 10, wherein the solvent is alcohol, glycol, polyethylene glycol, or glycerine.
12. The system of claim 1, wherein the fluid is a gas drawn into said manifold in response to application of reduced pressure to the tissue site, wherein the gas reacts with said seal to expand said seal to form the sealant.
13. The system of claim 1, wherein the fluid is pre-applied to the tissue site.
14. The system of claim 1, wherein said seal is a material comprising polymer spheres responsive to reduced pressure and expanding in response to a pressure differential provided by said pressure source to form the sealant.
15. The system of claim 1, wherein said seal has a first side and a second side facing the tissue site, further comprising:
a release liner covering at least one of the first side and the second side of the seal, the release liner adapted to prevent said seal from forming the sealant prior to application of the seal and the drape to the tissue site.
16. The system of claim 1, wherein said seal expands to form the sealant for filling the passages.
17. The system of claim 1, wherein the sealant at least partially fills the passages formed by a fold in said drape to substantially seal the passages.
18. The system of claim 1, wherein the seal forms an annulus at least partially surrounding the wound at the tissue site.
19. The system of claim 1, wherein said drape has a first side and a second side facing the tissue site, and wherein said seal substantially covers the second side of said drape.
20. The system of claim 1, wherein the sealant is adhesive and operable to cause said drape to adhere to the tissue site.
21. An apparatus for treating a wound at a tissue site, the apparatus comprising:
a manifold adapted to provide reduced pressure to the wound;
a drape having an adhesive surface for adhering to the tissue site to cover the wound and said manifold, there being passages between said drape and the tissue site; and,
a seal adjacent the adhesive surface of said drape, said seal disposed between said drape and the tissue site when applied to the tissue site and transformable to form a sealant substantially filling the passages between said drape and the tissue site when said manifold provides reduced pressure to the wound;
whereby air leaks from outside said drape are reduced when said manifold provides reduced pressure to the wound.
22. The apparatus of claim 21, wherein said seal contains an isocyanate material reactive with water vapor and transforms to form the sealant in response to water vapor contained in air when air leaks from outside said drape and contacts said seal.
23. The apparatus of claim 21, wherein said seal is a water-sensitive polymer that transforms to form the sealant in response to water vapor contained in air when air leaks from outside said drape and contacts said seal.
24. The apparatus of claim 23, wherein the water-sensitive polymer is polyacrylate, polyvinylpyrrolidone, polyvinyl alcohol, alginates, or carboxymethyl cellulose.
25-40. (canceled)
41. A method for sealing a drape to a tissue site for treating a wound at the tissue site, the method comprising:
applying the drape to cover the tissue site whereby passages are formed between the drape and the tissue site;
positioning a seal between the drape and the tissue site wherein the seal is adapted to react with a fluid to form a sealant for substantially filling the passages;
applying reduced pressure to the tissue site; and,
applying the fluid to the seal to form the sealant, whereby the sealant substantially fills the passages and reduces air leaking from outside said drape when reduced pressure is applied to the tissue site.
42-50. (canceled)
51. A method for treating a tissue site of a patient, the method comprising:
applying a dressing to the tissue site, the dressing comprising:
a seal having a first side and a second, tissue-facing side, the seal adapted for placement adjacent the tissue site, the seal operable to expand in a presence of a fluid to form a substantially sealed space at the tissue site; and
a drape for covering the seal and further forming the substantially sealed space.
52-58. (canceled)
US12/870,535 2009-09-15 2010-08-27 Medical dressings, systems, and methods employing sealants Abandoned US20110066123A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US12/870,535 US20110066123A1 (en) 2009-09-15 2010-08-27 Medical dressings, systems, and methods employing sealants
PCT/US2010/048432 WO2011034789A1 (en) 2009-09-15 2010-09-10 Medical dressings, systems, and methods employing sealants
EP13173894.0A EP2644214B2 (en) 2009-09-15 2010-09-10 Medical dressings, systems, and methods employing sealants
AU2010295855A AU2010295855A1 (en) 2009-09-15 2010-09-10 Medical dressings, systems, and methods employing sealants
JP2012528929A JP2013504385A (en) 2009-09-15 2010-09-10 Therapeutic dressings, systems, and methods using sealants
EP10766145.6A EP2477674B2 (en) 2009-09-15 2010-09-10 Medical dressings, systems, and methods employing sealants
CA2774208A CA2774208A1 (en) 2009-09-15 2010-09-10 Medical dressings, systems, and methods employing sealants
CN2010800503316A CN102711856A (en) 2009-09-15 2010-09-10 Medical dressings, systems, and methods employing sealants
TW099131308A TW201121597A (en) 2009-09-15 2010-09-15 Medical dressings, systems, and methods employing sealants
US14/139,518 US9814627B2 (en) 2009-09-15 2013-12-23 Medical dressings, systems, and methods employing sealants
US15/782,075 US10792192B2 (en) 2009-09-15 2017-10-12 Medical dressings, systems, and methods employing sealants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24248809P 2009-09-15 2009-09-15
US12/870,535 US20110066123A1 (en) 2009-09-15 2010-08-27 Medical dressings, systems, and methods employing sealants

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/139,518 Division US9814627B2 (en) 2009-09-15 2013-12-23 Medical dressings, systems, and methods employing sealants

Publications (1)

Publication Number Publication Date
US20110066123A1 true US20110066123A1 (en) 2011-03-17

Family

ID=43731275

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/870,535 Abandoned US20110066123A1 (en) 2009-09-15 2010-08-27 Medical dressings, systems, and methods employing sealants
US14/139,518 Active 2031-06-22 US9814627B2 (en) 2009-09-15 2013-12-23 Medical dressings, systems, and methods employing sealants
US15/782,075 Active 2031-11-13 US10792192B2 (en) 2009-09-15 2017-10-12 Medical dressings, systems, and methods employing sealants

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/139,518 Active 2031-06-22 US9814627B2 (en) 2009-09-15 2013-12-23 Medical dressings, systems, and methods employing sealants
US15/782,075 Active 2031-11-13 US10792192B2 (en) 2009-09-15 2017-10-12 Medical dressings, systems, and methods employing sealants

Country Status (8)

Country Link
US (3) US20110066123A1 (en)
EP (2) EP2477674B2 (en)
JP (1) JP2013504385A (en)
CN (1) CN102711856A (en)
AU (1) AU2010295855A1 (en)
CA (1) CA2774208A1 (en)
TW (1) TW201121597A (en)
WO (1) WO2011034789A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110125113A1 (en) * 2008-06-23 2011-05-26 Carmeli Adahan Tissue enclosure
US20140276174A1 (en) * 2013-03-15 2014-09-18 Elwha Llc Correlating a condition of a subject with a degree of sleep apnea being experienced by the subject
KR20140112082A (en) * 2012-01-18 2014-09-22 월드와이드 이노베이티브 헬쓰케어, 인코포레이티드 Modifiable occlusive skin dressing
EP2804635A4 (en) * 2012-01-18 2015-09-02 Worldwide Innovative Healthcare Inc Modifiable occlusive skin dressing
US9526920B2 (en) 2010-10-12 2016-12-27 Smith & Nephew, Inc. Medical device
US9737649B2 (en) 2013-03-14 2017-08-22 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
US20170348154A1 (en) * 2011-06-24 2017-12-07 Kci Licensing, Inc. Reduced-pressure dressings employing tissue-fixation elements
GB2557732A (en) * 2016-12-02 2018-06-27 Apex Medical Corp Wound management assembly and negative pressure wound therapy system
US10155070B2 (en) 2013-08-13 2018-12-18 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
US10328188B2 (en) 2013-03-14 2019-06-25 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
US10507141B2 (en) 2012-05-23 2019-12-17 Smith & Nephew Plc Apparatuses and methods for negative pressure wound therapy
US10537657B2 (en) 2010-11-25 2020-01-21 Smith & Nephew Plc Composition I-II and products and uses thereof
US10744239B2 (en) 2014-07-31 2020-08-18 Smith & Nephew, Inc. Leak detection in negative pressure wound therapy system
US10780017B2 (en) 2013-03-15 2020-09-22 Somne Llc Treating sleep apnea with negative pressure
CN111839658A (en) * 2014-05-09 2020-10-30 凯希特许有限公司 Destructive dressing for use with negative pressure and fluid instillation
US11306224B2 (en) 2015-08-31 2022-04-19 3M Innovative Properties Company Articles comprising (meth)acrylate pressure-sensitive adhesive with enhanced adhesion to wet surfaces
US11602461B2 (en) 2016-05-13 2023-03-14 Smith & Nephew, Inc. Automatic wound coupling detection in negative pressure wound therapy systems
US11638666B2 (en) 2011-11-25 2023-05-02 Smith & Nephew Plc Composition, apparatus, kit and method and uses thereof
US11660371B2 (en) 2015-08-31 2023-05-30 3M Innovative Properties Company Negative pressure wound therapy dressings comprising (meth)acrylate pressure-sensitive adhesive with enhanced adhesion to wet surfaces
US11931226B2 (en) 2013-03-15 2024-03-19 Smith & Nephew Plc Wound dressing sealant and use thereof
US11938231B2 (en) 2010-11-25 2024-03-26 Smith & Nephew Plc Compositions I-I and products and uses thereof
US11944519B2 (en) 2012-01-18 2024-04-02 Worldwide Innovative Healthcare, Inc. Unbacked and modifiable tapes and skin dressings

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0808376D0 (en) 2008-05-08 2008-06-18 Bristol Myers Squibb Co Wound dressing
GB0817796D0 (en) 2008-09-29 2008-11-05 Convatec Inc wound dressing
US20110066123A1 (en) 2009-09-15 2011-03-17 Aidan Marcus Tout Medical dressings, systems, and methods employing sealants
GB201020236D0 (en) 2010-11-30 2011-01-12 Convatec Technologies Inc A composition for detecting biofilms on viable tissues
JP5965409B2 (en) 2010-12-08 2016-08-03 コンバテック・テクノロジーズ・インコーポレイテッドConvatec Technologies Inc Integrated system for assessing wound exudate
US9526816B2 (en) 2010-12-08 2016-12-27 Convatec Technologies Inc. Wound exudate monitor accessory
GB201115182D0 (en) 2011-09-02 2011-10-19 Trio Healthcare Ltd Skin contact material
GB2497406A (en) 2011-11-29 2013-06-12 Webtec Converting Llc Dressing with a perforated binder layer
GB201120693D0 (en) 2011-12-01 2012-01-11 Convatec Technologies Inc Wound dressing for use in vacuum therapy
WO2013085891A1 (en) * 2011-12-09 2013-06-13 Avery Dennison Corporation Fast curing polymeric sealant for negative pressure wound therapy
EP3406231B1 (en) 2012-08-01 2022-04-13 Smith & Nephew plc Wound dressing and method of treatment
WO2014020440A1 (en) 2012-08-01 2014-02-06 Smith & Nephew Plc Wound dressing
EP2935688A2 (en) 2012-12-20 2015-10-28 ConvaTec Technologies Inc. Processing of chemically modified cellulosic fibres
US10493184B2 (en) 2013-03-15 2019-12-03 Smith & Nephew Plc Wound dressing and method of treatment
US10695226B2 (en) 2013-03-15 2020-06-30 Smith & Nephew Plc Wound dressing and method of treatment
JP5550775B1 (en) * 2013-10-01 2014-07-16 合同会社Syndeo Encapsulant delivery device
WO2017019939A1 (en) 2015-07-29 2017-02-02 Innovative Therapies, Inc. Wound therapy device pressure monitoring and control system
CA3019445A1 (en) 2016-03-30 2017-12-14 Synovo Gmbh Detecting microbial infection in wounds
UY37178A (en) 2016-03-30 2017-10-31 Convatec Technologies Inc DETECTION OF MICROBIAL INFECTION IN WOUNDS
CA3030153C (en) 2016-07-08 2023-10-24 Convatec Technologies Inc. Fluid flow sensing
US11596554B2 (en) 2016-07-08 2023-03-07 Convatec Technologies Inc. Flexible negative pressure system
KR20190028467A (en) 2016-07-08 2019-03-18 컨바텍 테크놀러지스 인크 Body fluid collecting device
US10046095B1 (en) * 2017-04-04 2018-08-14 Aatru Medical, LLC Wound therapy device and method
CN107981978A (en) * 2017-12-28 2018-05-04 广州润虹医药科技股份有限公司 A kind of sucked type negative pressure drainage trauma care device
US11331221B2 (en) 2019-12-27 2022-05-17 Convatec Limited Negative pressure wound dressing
US11771819B2 (en) 2019-12-27 2023-10-03 Convatec Limited Low profile filter devices suitable for use in negative pressure wound therapy systems
EP4106695A4 (en) 2020-02-18 2024-03-20 Shifamed Holdings Llc Adjustable flow glaucoma shunts having non-linearly arranged flow control elements, and associated systems and methods
EP4281144A1 (en) 2021-01-22 2023-11-29 Shifamed Holdings, LLC Adjustable shunting systems with plate assemblies, and associated systems and methods
WO2023107486A1 (en) * 2021-12-06 2023-06-15 Shifamed Holdings, Llc Adjustable shunting systems and associated systems, devices, and methods

Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1355846A (en) * 1920-02-06 1920-10-19 David A Rannells Medical appliance
US2547758A (en) * 1949-01-05 1951-04-03 Wilmer B Keeling Instrument for treating the male urethra
US2632443A (en) * 1949-04-18 1953-03-24 Eleanor P Lesher Surgical dressing
US2682873A (en) * 1952-07-30 1954-07-06 Johnson & Johnson General purpose protective dressing
US2910763A (en) * 1955-08-17 1959-11-03 Du Pont Felt-like products
US2969057A (en) * 1957-11-04 1961-01-24 Brady Co W H Nematodic swab
US3367332A (en) * 1965-08-27 1968-02-06 Gen Electric Product and process for establishing a sterile area of skin
US3520300A (en) * 1967-03-15 1970-07-14 Amp Inc Surgical sponge and suction device
US3568675A (en) * 1968-08-30 1971-03-09 Clyde B Harvey Fistula and penetrating wound dressing
US3648692A (en) * 1970-12-07 1972-03-14 Parke Davis & Co Medical-surgical dressing for burns and the like
US3682180A (en) * 1970-06-08 1972-08-08 Coilform Co Inc Drain clip for surgical drain
US3826254A (en) * 1973-02-26 1974-07-30 Verco Ind Needle or catheter retaining appliance
US4080970A (en) * 1976-11-17 1978-03-28 Miller Thomas J Post-operative combination dressing and internal drain tube with external shield and tube connector
US4096853A (en) * 1975-06-21 1978-06-27 Hoechst Aktiengesellschaft Device for the introduction of contrast medium into an anus praeter
US4139004A (en) * 1977-02-17 1979-02-13 Gonzalez Jr Harry Bandage apparatus for treating burns
US4165748A (en) * 1977-11-07 1979-08-28 Johnson Melissa C Catheter tube holder
US4184510A (en) * 1977-03-15 1980-01-22 Fibra-Sonics, Inc. Valued device for controlling vacuum in surgery
US4233969A (en) * 1976-11-11 1980-11-18 Lock Peter M Wound dressing materials
US4245630A (en) * 1976-10-08 1981-01-20 T. J. Smith & Nephew, Ltd. Tearable composite strip of materials
US4256109A (en) * 1978-07-10 1981-03-17 Nichols Robert L Shut off valve for medical suction apparatus
US4261363A (en) * 1979-11-09 1981-04-14 C. R. Bard, Inc. Retention clips for body fluid drains
US4275721A (en) * 1978-11-28 1981-06-30 Landstingens Inkopscentral Lic, Ekonomisk Forening Vein catheter bandage
US4284079A (en) * 1979-06-28 1981-08-18 Adair Edwin Lloyd Method for applying a male incontinence device
US4297995A (en) * 1980-06-03 1981-11-03 Key Pharmaceuticals, Inc. Bandage containing attachment post
US4333468A (en) * 1980-08-18 1982-06-08 Geist Robert W Mesentery tube holder apparatus
US4373519A (en) * 1981-06-26 1983-02-15 Minnesota Mining And Manufacturing Company Composite wound dressing
US4382441A (en) * 1978-12-06 1983-05-10 Svedman Paul Device for treating tissues, for example skin
US4392853A (en) * 1981-03-16 1983-07-12 Rudolph Muto Sterile assembly for protecting and fastening an indwelling device
US4392858A (en) * 1981-07-16 1983-07-12 Sherwood Medical Company Wound drainage device
US4465485A (en) * 1981-03-06 1984-08-14 Becton, Dickinson And Company Suction canister with unitary shut-off valve and filter features
US4475909A (en) * 1982-05-06 1984-10-09 Eisenberg Melvin I Male urinary device and method for applying the device
US4480638A (en) * 1980-03-11 1984-11-06 Eduard Schmid Cushion for holding an element of grafted skin
US4525374A (en) * 1984-02-27 1985-06-25 Manresa, Inc. Treating hydrophobic filters to render them hydrophilic
US4525166A (en) * 1981-11-21 1985-06-25 Intermedicat Gmbh Rolled flexible medical suction drainage device
US4540412A (en) * 1983-07-14 1985-09-10 The Kendall Company Device for moist heat therapy
US4543100A (en) * 1983-11-01 1985-09-24 Brodsky Stuart A Catheter and drain tube retainer
US4548202A (en) * 1983-06-20 1985-10-22 Ethicon, Inc. Mesh tissue fasteners
US4551139A (en) * 1982-02-08 1985-11-05 Marion Laboratories, Inc. Method and apparatus for burn wound treatment
US4569348A (en) * 1980-02-22 1986-02-11 Velcro Usa Inc. Catheter tube holder strap
US4605399A (en) * 1984-12-04 1986-08-12 Complex, Inc. Transdermal infusion device
US4608041A (en) * 1981-10-14 1986-08-26 Frese Nielsen Device for treatment of wounds in body tissue of patients by exposure to jets of gas
US4640688A (en) * 1985-08-23 1987-02-03 Mentor Corporation Urine collection catheter
US4655754A (en) * 1984-11-09 1987-04-07 Stryker Corporation Vacuum wound drainage system and lipids baffle therefor
US4664662A (en) * 1984-08-02 1987-05-12 Smith And Nephew Associated Companies Plc Wound dressing
US4733659A (en) * 1986-01-17 1988-03-29 Seton Company Foam bandage
US4743232A (en) * 1986-10-06 1988-05-10 The Clinipad Corporation Package assembly for plastic film bandage
US4758220A (en) * 1985-09-26 1988-07-19 Alcon Laboratories, Inc. Surgical cassette proximity sensing and latching apparatus
US4787888A (en) * 1987-06-01 1988-11-29 University Of Connecticut Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a)
US4826494A (en) * 1984-11-09 1989-05-02 Stryker Corporation Vacuum wound drainage system
US4838883A (en) * 1986-03-07 1989-06-13 Nissho Corporation Urine-collecting device
US4840187A (en) * 1986-09-11 1989-06-20 Bard Limited Sheath applicator
US4863449A (en) * 1987-07-06 1989-09-05 Hollister Incorporated Adhesive-lined elastic condom cathether
US4872450A (en) * 1984-08-17 1989-10-10 Austad Eric D Wound dressing and method of forming same
US4878901A (en) * 1986-10-10 1989-11-07 Sachse Hans Ernst Condom catheter, a urethral catheter for the prevention of ascending infections
US4897081A (en) * 1984-05-25 1990-01-30 Thermedics Inc. Percutaneous access device
US4906233A (en) * 1986-05-29 1990-03-06 Terumo Kabushiki Kaisha Method of securing a catheter body to a human skin surface
US4906240A (en) * 1988-02-01 1990-03-06 Matrix Medica, Inc. Adhesive-faced porous absorbent sheet and method of making same
US4919654A (en) * 1988-08-03 1990-04-24 Kalt Medical Corporation IV clamp with membrane
US4941882A (en) * 1987-03-14 1990-07-17 Smith And Nephew Associated Companies, P.L.C. Adhesive dressing for retaining a cannula on the skin
US4953565A (en) * 1986-11-26 1990-09-04 Shunro Tachibana Endermic application kits for external medicines
US4985019A (en) * 1988-03-11 1991-01-15 Michelson Gary K X-ray marker
US5037397A (en) * 1985-05-03 1991-08-06 Medical Distributors, Inc. Universal clamp
US5086170A (en) * 1989-01-16 1992-02-04 Roussel Uclaf Process for the preparation of azabicyclo compounds
US5092858A (en) * 1990-03-20 1992-03-03 Becton, Dickinson And Company Liquid gelling agent distributor device
US5100396A (en) * 1989-04-03 1992-03-31 Zamierowski David S Fluidic connection system and method
US5134994A (en) * 1990-02-12 1992-08-04 Say Sam L Field aspirator in a soft pack with externally mounted container
US5149331A (en) * 1991-05-03 1992-09-22 Ariel Ferdman Method and device for wound closure
US5176663A (en) * 1987-12-02 1993-01-05 Pal Svedman Dressing having pad with compressibility limiting elements
US5215522A (en) * 1984-07-23 1993-06-01 Ballard Medical Products Single use medical aspirating device and method
US5232453A (en) * 1989-07-14 1993-08-03 E. R. Squibb & Sons, Inc. Catheter holder
US5278100A (en) * 1991-11-08 1994-01-11 Micron Technology, Inc. Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers
US5279550A (en) * 1991-12-19 1994-01-18 Gish Biomedical, Inc. Orthopedic autotransfusion system
US5298015A (en) * 1989-07-11 1994-03-29 Nippon Zeon Co., Ltd. Wound dressing having a porous structure
US5342376A (en) * 1993-05-03 1994-08-30 Dermagraphics, Inc. Inserting device for a barbed tissue connector
US5344415A (en) * 1993-06-15 1994-09-06 Deroyal Industries, Inc. Sterile system for dressing vascular access site
US5358494A (en) * 1989-07-11 1994-10-25 Svedman Paul Irrigation dressing
US5437651A (en) * 1993-09-01 1995-08-01 Research Medical, Inc. Medical suction apparatus
US5437622A (en) * 1992-04-29 1995-08-01 Laboratoire Hydrex (Sa) Transparent adhesive dressing with reinforced starter cuts
US5527293A (en) * 1989-04-03 1996-06-18 Kinetic Concepts, Inc. Fastening system and method
US5549584A (en) * 1994-02-14 1996-08-27 The Kendall Company Apparatus for removing fluid from a wound
US5556375A (en) * 1994-06-16 1996-09-17 Hercules Incorporated Wound dressing having a fenestrated base layer
US5591447A (en) * 1990-10-01 1997-01-07 Hollister Incorporated Wound dressing having a contoured adhesive layer
US5607388A (en) * 1994-06-16 1997-03-04 Hercules Incorporated Multi-purpose wound dressing
US5636643A (en) * 1991-11-14 1997-06-10 Wake Forest University Wound treatment employing reduced pressure
US5645081A (en) * 1991-11-14 1997-07-08 Wake Forest University Method of treating tissue damage and apparatus for same
US6071267A (en) * 1998-02-06 2000-06-06 Kinetic Concepts, Inc. Medical patient fluid management interface system and method
US6135116A (en) * 1997-07-28 2000-10-24 Kci Licensing, Inc. Therapeutic method for treating ulcers
US6241747B1 (en) * 1993-05-03 2001-06-05 Quill Medical, Inc. Barbed Bodily tissue connector
US6287316B1 (en) * 1999-03-26 2001-09-11 Ethicon, Inc. Knitted surgical mesh
US6345623B1 (en) * 1997-09-12 2002-02-12 Keith Patrick Heaton Surgical drape and suction head for wound treatment
US20020077661A1 (en) * 2000-12-20 2002-06-20 Vahid Saadat Multi-barbed device for retaining tissue in apposition and methods of use
US20020115951A1 (en) * 2001-02-22 2002-08-22 Core Products International, Inc. Ankle brace providing upper and lower ankle adjustment
US20020120185A1 (en) * 2000-05-26 2002-08-29 Kci Licensing, Inc. System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure
US20020143286A1 (en) * 2001-03-05 2002-10-03 Kci Licensing, Inc. Vacuum assisted wound treatment apparatus and infection identification system and method
US20070225663A1 (en) * 2004-06-21 2007-09-27 Watt Paul W Wound dressings for vacuum therapy
US20090177133A1 (en) * 2008-01-04 2009-07-09 Kristine Kieswetter Reduced pressure dressing coated with biomolecules
US20090216170A1 (en) * 2008-02-27 2009-08-27 Timothy Mark Robinson System and method for healing a wound at a tissue site
US20090299251A1 (en) * 2008-05-27 2009-12-03 John Buan Negative pressure wound therapy device
US20100272784A1 (en) * 2009-04-28 2010-10-28 3M Innovative Properties Company Water-soluble pressure sensitive adhesives

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB692578A (en) 1949-09-13 1953-06-10 Minnesota Mining & Mfg Improvements in or relating to drape sheets for surgical use
US3066672A (en) 1960-09-27 1962-12-04 Jr William H Crosby Method and apparatus for serial sampling of intestinal juice
DE2640413C3 (en) 1976-09-08 1980-03-27 Richard Wolf Gmbh, 7134 Knittlingen Catheter monitor
GB1586182A (en) * 1977-03-04 1981-03-18 Rhodes J Adhesive compositions suitable for application to the skin and surgical products incorporating same
US4266545A (en) 1979-04-06 1981-05-12 Moss James P Portable suction device for collecting fluids from a closed wound
US4419097A (en) 1981-07-31 1983-12-06 Rexar Industries, Inc. Attachment for catheter tube
AU550575B2 (en) 1981-08-07 1986-03-27 Richard Christian Wright Wound drainage device
EP0100148B1 (en) 1982-07-06 1986-01-08 Dow Corning Limited Medical-surgical dressing and a process for the production thereof
NZ206837A (en) 1983-01-27 1986-08-08 Johnson & Johnson Prod Inc Thin film adhesive dressing:backing material in three sections
GB2157958A (en) 1984-05-03 1985-11-06 Ernest Edward Austen Bedding Ball game net support
US4710165A (en) 1985-09-16 1987-12-01 Mcneil Charles B Wearable, variable rate suction/collection device
EP0256060A1 (en) 1986-01-31 1988-02-24 OSMOND, Roger L. W. Suction system for wound and gastro-intestinal drainage
GB2195255B (en) 1986-09-30 1991-05-01 Vacutec Uk Limited Apparatus for vacuum treatment of an epidermal surface
GB8628564D0 (en) 1986-11-28 1987-01-07 Smiths Industries Plc Anti-foaming agent suction apparatus
GB8812803D0 (en) 1988-05-28 1988-06-29 Smiths Industries Plc Medico-surgical containers
US5000741A (en) 1988-08-22 1991-03-19 Kalt Medical Corporation Transparent tracheostomy tube dressing
GB8906100D0 (en) 1989-03-16 1989-04-26 Smith & Nephew Laminates
US4969880A (en) 1989-04-03 1990-11-13 Zamierowski David S Wound dressing and treatment method
US5261893A (en) 1989-04-03 1993-11-16 Zamierowski David S Fastening system and method
GB2235877A (en) 1989-09-18 1991-03-20 Antonio Talluri Closed wound suction apparatus
JP2941918B2 (en) 1990-09-19 1999-08-30 テルモ株式会社 Weighing device
DE4102341A1 (en) 1991-01-26 1992-07-30 Bayer Ag ETHER AND ESTER GROUPS HAVING ISOCYANATE PRAEPOLYMERS, A METHOD FOR THEIR PRODUCTION AND THEIR USE
US5167613A (en) 1992-03-23 1992-12-01 The Kendall Company Composite vented wound dressing
DE4306478A1 (en) 1993-03-02 1994-09-08 Wolfgang Dr Wagner Drainage device, in particular pleural drainage device, and drainage method
US5664270A (en) 1994-07-19 1997-09-09 Kinetic Concepts, Inc. Patient interface system
JP3687794B2 (en) 1994-08-22 2005-08-24 キネティック コンセプツ インコーポレイテッド Wound drainage technology
DE4433450A1 (en) 1994-09-20 1996-03-21 Wim Dr Med Fleischmann Device for sealing a wound area
DE29504378U1 (en) 1995-03-15 1995-09-14 Mtg Medizinisch Tech Geraeteba Electronically controlled low-vacuum pump for chest and wound drainage
US5704905A (en) * 1995-10-10 1998-01-06 Jensen; Ole R. Wound dressing having film-backed hydrocolloid-containing adhesive layer with linear depressions
GB9523253D0 (en) 1995-11-14 1996-01-17 Mediscus Prod Ltd Portable wound treatment apparatus
DE59809764D1 (en) 1997-05-27 2003-11-06 Wilhelm Fleischmann Device for applying active substances to a wound surface
AU755496B2 (en) 1997-09-12 2002-12-12 Kci Licensing, Inc. Surgical drape and suction head for wound treatment
US6488643B1 (en) 1998-10-08 2002-12-03 Kci Licensing, Inc. Wound healing foot wrap
TR200401397T4 (en) 2000-02-24 2004-07-21 Venetec International, Inc. Universal catheter insertion system.
US6979324B2 (en) * 2002-09-13 2005-12-27 Neogen Technologies, Inc. Closed wound drainage system
US9511536B2 (en) * 2002-10-18 2016-12-06 The Boeing Company Method and apparatus to assist with removing an adhesive system
US7976519B2 (en) 2002-12-31 2011-07-12 Kci Licensing, Inc. Externally-applied patient interface system and method
US7285576B2 (en) 2003-03-12 2007-10-23 3M Innovative Properties Co. Absorbent polymer compositions, medical articles, and methods
GB0508531D0 (en) * 2005-04-27 2005-06-01 Smith & Nephew Sai with ultrasound
JP5088894B2 (en) 2005-12-06 2012-12-05 タイコ ヘルスケア グループ リミテッド パートナーシップ Biocompatible tissue sealant and adhesive
WO2007092405A2 (en) 2006-02-07 2007-08-16 Tyco Healthcare Group Lp Surgical wound dressing
US7779625B2 (en) 2006-05-11 2010-08-24 Kalypto Medical, Inc. Device and method for wound therapy
MX2009003870A (en) 2006-10-13 2009-04-30 Kci Licensing Inc Reduced pressure delivery system having a manually-activated pump for providing treatment to low-severity wounds.
US7790946B2 (en) 2007-07-06 2010-09-07 Tyco Healthcare Group Lp Subatmospheric pressure wound therapy dressing
GB0722820D0 (en) 2007-11-21 2008-01-02 Smith & Nephew Vacuum assisted wound dressing
KR101608548B1 (en) 2008-03-05 2016-04-01 케이씨아이 라이센싱 인코포레이티드 Dressing and method for applying reduced pressure to and collecting and storing fluid from a tissue site
PL2424948T3 (en) * 2009-04-27 2017-08-31 Avery Dennison Corporation Releasable adhesive having a multilayer substrate
US9421309B2 (en) 2009-06-02 2016-08-23 Kci Licensing, Inc. Reduced-pressure treatment systems and methods employing hydrogel reservoir members
US20110066123A1 (en) 2009-09-15 2011-03-17 Aidan Marcus Tout Medical dressings, systems, and methods employing sealants

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1355846A (en) * 1920-02-06 1920-10-19 David A Rannells Medical appliance
US2547758A (en) * 1949-01-05 1951-04-03 Wilmer B Keeling Instrument for treating the male urethra
US2632443A (en) * 1949-04-18 1953-03-24 Eleanor P Lesher Surgical dressing
US2682873A (en) * 1952-07-30 1954-07-06 Johnson & Johnson General purpose protective dressing
US2910763A (en) * 1955-08-17 1959-11-03 Du Pont Felt-like products
US2969057A (en) * 1957-11-04 1961-01-24 Brady Co W H Nematodic swab
US3367332A (en) * 1965-08-27 1968-02-06 Gen Electric Product and process for establishing a sterile area of skin
US3520300A (en) * 1967-03-15 1970-07-14 Amp Inc Surgical sponge and suction device
US3568675A (en) * 1968-08-30 1971-03-09 Clyde B Harvey Fistula and penetrating wound dressing
US3682180A (en) * 1970-06-08 1972-08-08 Coilform Co Inc Drain clip for surgical drain
US3648692A (en) * 1970-12-07 1972-03-14 Parke Davis & Co Medical-surgical dressing for burns and the like
US3826254A (en) * 1973-02-26 1974-07-30 Verco Ind Needle or catheter retaining appliance
US4096853A (en) * 1975-06-21 1978-06-27 Hoechst Aktiengesellschaft Device for the introduction of contrast medium into an anus praeter
US4245630A (en) * 1976-10-08 1981-01-20 T. J. Smith & Nephew, Ltd. Tearable composite strip of materials
US4233969A (en) * 1976-11-11 1980-11-18 Lock Peter M Wound dressing materials
US4080970A (en) * 1976-11-17 1978-03-28 Miller Thomas J Post-operative combination dressing and internal drain tube with external shield and tube connector
US4139004A (en) * 1977-02-17 1979-02-13 Gonzalez Jr Harry Bandage apparatus for treating burns
US4184510A (en) * 1977-03-15 1980-01-22 Fibra-Sonics, Inc. Valued device for controlling vacuum in surgery
US4165748A (en) * 1977-11-07 1979-08-28 Johnson Melissa C Catheter tube holder
US4256109A (en) * 1978-07-10 1981-03-17 Nichols Robert L Shut off valve for medical suction apparatus
US4275721A (en) * 1978-11-28 1981-06-30 Landstingens Inkopscentral Lic, Ekonomisk Forening Vein catheter bandage
US4382441A (en) * 1978-12-06 1983-05-10 Svedman Paul Device for treating tissues, for example skin
US4284079A (en) * 1979-06-28 1981-08-18 Adair Edwin Lloyd Method for applying a male incontinence device
US4261363A (en) * 1979-11-09 1981-04-14 C. R. Bard, Inc. Retention clips for body fluid drains
US4569348A (en) * 1980-02-22 1986-02-11 Velcro Usa Inc. Catheter tube holder strap
US4480638A (en) * 1980-03-11 1984-11-06 Eduard Schmid Cushion for holding an element of grafted skin
US4297995A (en) * 1980-06-03 1981-11-03 Key Pharmaceuticals, Inc. Bandage containing attachment post
US4333468A (en) * 1980-08-18 1982-06-08 Geist Robert W Mesentery tube holder apparatus
US4465485A (en) * 1981-03-06 1984-08-14 Becton, Dickinson And Company Suction canister with unitary shut-off valve and filter features
US4392853A (en) * 1981-03-16 1983-07-12 Rudolph Muto Sterile assembly for protecting and fastening an indwelling device
US4373519A (en) * 1981-06-26 1983-02-15 Minnesota Mining And Manufacturing Company Composite wound dressing
US4392858A (en) * 1981-07-16 1983-07-12 Sherwood Medical Company Wound drainage device
US4608041A (en) * 1981-10-14 1986-08-26 Frese Nielsen Device for treatment of wounds in body tissue of patients by exposure to jets of gas
US4525166A (en) * 1981-11-21 1985-06-25 Intermedicat Gmbh Rolled flexible medical suction drainage device
US4551139A (en) * 1982-02-08 1985-11-05 Marion Laboratories, Inc. Method and apparatus for burn wound treatment
US4475909A (en) * 1982-05-06 1984-10-09 Eisenberg Melvin I Male urinary device and method for applying the device
US4548202A (en) * 1983-06-20 1985-10-22 Ethicon, Inc. Mesh tissue fasteners
US4540412A (en) * 1983-07-14 1985-09-10 The Kendall Company Device for moist heat therapy
US4543100A (en) * 1983-11-01 1985-09-24 Brodsky Stuart A Catheter and drain tube retainer
US4525374A (en) * 1984-02-27 1985-06-25 Manresa, Inc. Treating hydrophobic filters to render them hydrophilic
US4897081A (en) * 1984-05-25 1990-01-30 Thermedics Inc. Percutaneous access device
US5215522A (en) * 1984-07-23 1993-06-01 Ballard Medical Products Single use medical aspirating device and method
US4664662A (en) * 1984-08-02 1987-05-12 Smith And Nephew Associated Companies Plc Wound dressing
US4872450A (en) * 1984-08-17 1989-10-10 Austad Eric D Wound dressing and method of forming same
US4655754A (en) * 1984-11-09 1987-04-07 Stryker Corporation Vacuum wound drainage system and lipids baffle therefor
US4826494A (en) * 1984-11-09 1989-05-02 Stryker Corporation Vacuum wound drainage system
US4605399A (en) * 1984-12-04 1986-08-12 Complex, Inc. Transdermal infusion device
US5037397A (en) * 1985-05-03 1991-08-06 Medical Distributors, Inc. Universal clamp
US4640688A (en) * 1985-08-23 1987-02-03 Mentor Corporation Urine collection catheter
US4758220A (en) * 1985-09-26 1988-07-19 Alcon Laboratories, Inc. Surgical cassette proximity sensing and latching apparatus
US4733659A (en) * 1986-01-17 1988-03-29 Seton Company Foam bandage
US4838883A (en) * 1986-03-07 1989-06-13 Nissho Corporation Urine-collecting device
US4906233A (en) * 1986-05-29 1990-03-06 Terumo Kabushiki Kaisha Method of securing a catheter body to a human skin surface
US4840187A (en) * 1986-09-11 1989-06-20 Bard Limited Sheath applicator
US4743232A (en) * 1986-10-06 1988-05-10 The Clinipad Corporation Package assembly for plastic film bandage
US4878901A (en) * 1986-10-10 1989-11-07 Sachse Hans Ernst Condom catheter, a urethral catheter for the prevention of ascending infections
US4953565A (en) * 1986-11-26 1990-09-04 Shunro Tachibana Endermic application kits for external medicines
US4941882A (en) * 1987-03-14 1990-07-17 Smith And Nephew Associated Companies, P.L.C. Adhesive dressing for retaining a cannula on the skin
US4787888A (en) * 1987-06-01 1988-11-29 University Of Connecticut Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a)
US4863449A (en) * 1987-07-06 1989-09-05 Hollister Incorporated Adhesive-lined elastic condom cathether
US5176663A (en) * 1987-12-02 1993-01-05 Pal Svedman Dressing having pad with compressibility limiting elements
US4906240A (en) * 1988-02-01 1990-03-06 Matrix Medica, Inc. Adhesive-faced porous absorbent sheet and method of making same
US4985019A (en) * 1988-03-11 1991-01-15 Michelson Gary K X-ray marker
US4919654A (en) * 1988-08-03 1990-04-24 Kalt Medical Corporation IV clamp with membrane
US5086170A (en) * 1989-01-16 1992-02-04 Roussel Uclaf Process for the preparation of azabicyclo compounds
US5100396A (en) * 1989-04-03 1992-03-31 Zamierowski David S Fluidic connection system and method
US5527293A (en) * 1989-04-03 1996-06-18 Kinetic Concepts, Inc. Fastening system and method
US5298015A (en) * 1989-07-11 1994-03-29 Nippon Zeon Co., Ltd. Wound dressing having a porous structure
US5358494A (en) * 1989-07-11 1994-10-25 Svedman Paul Irrigation dressing
US5232453A (en) * 1989-07-14 1993-08-03 E. R. Squibb & Sons, Inc. Catheter holder
US5134994A (en) * 1990-02-12 1992-08-04 Say Sam L Field aspirator in a soft pack with externally mounted container
US5092858A (en) * 1990-03-20 1992-03-03 Becton, Dickinson And Company Liquid gelling agent distributor device
US5591447A (en) * 1990-10-01 1997-01-07 Hollister Incorporated Wound dressing having a contoured adhesive layer
US5149331A (en) * 1991-05-03 1992-09-22 Ariel Ferdman Method and device for wound closure
US5278100A (en) * 1991-11-08 1994-01-11 Micron Technology, Inc. Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers
US5645081A (en) * 1991-11-14 1997-07-08 Wake Forest University Method of treating tissue damage and apparatus for same
US5636643A (en) * 1991-11-14 1997-06-10 Wake Forest University Wound treatment employing reduced pressure
US5279550A (en) * 1991-12-19 1994-01-18 Gish Biomedical, Inc. Orthopedic autotransfusion system
US5437622A (en) * 1992-04-29 1995-08-01 Laboratoire Hydrex (Sa) Transparent adhesive dressing with reinforced starter cuts
US6241747B1 (en) * 1993-05-03 2001-06-05 Quill Medical, Inc. Barbed Bodily tissue connector
US5342376A (en) * 1993-05-03 1994-08-30 Dermagraphics, Inc. Inserting device for a barbed tissue connector
US5344415A (en) * 1993-06-15 1994-09-06 Deroyal Industries, Inc. Sterile system for dressing vascular access site
US5437651A (en) * 1993-09-01 1995-08-01 Research Medical, Inc. Medical suction apparatus
US5549584A (en) * 1994-02-14 1996-08-27 The Kendall Company Apparatus for removing fluid from a wound
US5607388A (en) * 1994-06-16 1997-03-04 Hercules Incorporated Multi-purpose wound dressing
US5556375A (en) * 1994-06-16 1996-09-17 Hercules Incorporated Wound dressing having a fenestrated base layer
US6135116A (en) * 1997-07-28 2000-10-24 Kci Licensing, Inc. Therapeutic method for treating ulcers
US6345623B1 (en) * 1997-09-12 2002-02-12 Keith Patrick Heaton Surgical drape and suction head for wound treatment
US6553998B2 (en) * 1997-09-12 2003-04-29 Kci Licensing, Inc. Surgical drape and suction head for wound treatment
US6071267A (en) * 1998-02-06 2000-06-06 Kinetic Concepts, Inc. Medical patient fluid management interface system and method
US6287316B1 (en) * 1999-03-26 2001-09-11 Ethicon, Inc. Knitted surgical mesh
US20020120185A1 (en) * 2000-05-26 2002-08-29 Kci Licensing, Inc. System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure
US20020077661A1 (en) * 2000-12-20 2002-06-20 Vahid Saadat Multi-barbed device for retaining tissue in apposition and methods of use
US20020115951A1 (en) * 2001-02-22 2002-08-22 Core Products International, Inc. Ankle brace providing upper and lower ankle adjustment
US20020143286A1 (en) * 2001-03-05 2002-10-03 Kci Licensing, Inc. Vacuum assisted wound treatment apparatus and infection identification system and method
US20070225663A1 (en) * 2004-06-21 2007-09-27 Watt Paul W Wound dressings for vacuum therapy
US20090177133A1 (en) * 2008-01-04 2009-07-09 Kristine Kieswetter Reduced pressure dressing coated with biomolecules
US20090216170A1 (en) * 2008-02-27 2009-08-27 Timothy Mark Robinson System and method for healing a wound at a tissue site
US20090299251A1 (en) * 2008-05-27 2009-12-03 John Buan Negative pressure wound therapy device
US20100272784A1 (en) * 2009-04-28 2010-10-28 3M Innovative Properties Company Water-soluble pressure sensitive adhesives

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110125113A1 (en) * 2008-06-23 2011-05-26 Carmeli Adahan Tissue enclosure
US10086216B2 (en) 2010-10-12 2018-10-02 Smith & Nephew, Inc. Medical device
US11565134B2 (en) 2010-10-12 2023-01-31 Smith & Nephew, Inc. Medical device
US9526920B2 (en) 2010-10-12 2016-12-27 Smith & Nephew, Inc. Medical device
US10639502B2 (en) 2010-10-12 2020-05-05 Smith & Nephew, Inc. Medical device
US11938231B2 (en) 2010-11-25 2024-03-26 Smith & Nephew Plc Compositions I-I and products and uses thereof
US11730876B2 (en) 2010-11-25 2023-08-22 Smith & Nephew Plc Composition I-II and products and uses thereof
US10537657B2 (en) 2010-11-25 2020-01-21 Smith & Nephew Plc Composition I-II and products and uses thereof
US11364152B2 (en) * 2011-06-24 2022-06-21 Kci Licensing, Inc. Reduced-pressure dressings employing tissue-fixation elements
US10973696B2 (en) 2011-06-24 2021-04-13 Kci Licensing, Inc. Reduced-pressure dressings employing tissue-fixation elements
US11850351B2 (en) 2011-06-24 2023-12-26 3M Innovative Properties Company Reduced-pressure dressings employing tissue-fixation elements
US20170348154A1 (en) * 2011-06-24 2017-12-07 Kci Licensing, Inc. Reduced-pressure dressings employing tissue-fixation elements
US11638666B2 (en) 2011-11-25 2023-05-02 Smith & Nephew Plc Composition, apparatus, kit and method and uses thereof
KR102067472B1 (en) 2012-01-18 2020-01-20 월드와이드 이노베이티브 헬쓰케어, 인코포레이티드 Kit and method of modifiable occlusive skin dressing
KR20140112082A (en) * 2012-01-18 2014-09-22 월드와이드 이노베이티브 헬쓰케어, 인코포레이티드 Modifiable occlusive skin dressing
KR20200010566A (en) * 2012-01-18 2020-01-30 월드와이드 이노베이티브 헬쓰케어, 인코포레이티드 Kit and method of modifiable occlusive skin dressing
JP2015509756A (en) * 2012-01-18 2015-04-02 ワールドワイド イノベーティブ ヘルスケア,インコーポレイテッド Correctable skin closure dressing
EP2804635A4 (en) * 2012-01-18 2015-09-02 Worldwide Innovative Healthcare Inc Modifiable occlusive skin dressing
KR102304995B1 (en) 2012-01-18 2021-09-28 월드와이드 이노베이티브 헬쓰케어, 인코포레이티드 Kit and method of modifiable occlusive skin dressing
US11944519B2 (en) 2012-01-18 2024-04-02 Worldwide Innovative Healthcare, Inc. Unbacked and modifiable tapes and skin dressings
US10507141B2 (en) 2012-05-23 2019-12-17 Smith & Nephew Plc Apparatuses and methods for negative pressure wound therapy
US11590029B2 (en) 2012-05-23 2023-02-28 Smith & Nephew Plc Apparatuses and methods for negative pressure wound therapy
US10905806B2 (en) 2013-03-14 2021-02-02 Smith & Nephew, Inc. Reduced pressure wound therapy control and data communication
US10610624B2 (en) 2013-03-14 2020-04-07 Smith & Nephew, Inc. Reduced pressure therapy blockage detection
US9737649B2 (en) 2013-03-14 2017-08-22 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
US10328188B2 (en) 2013-03-14 2019-06-25 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
US11633533B2 (en) 2013-03-14 2023-04-25 Smith & Nephew, Inc. Control architecture for reduced pressure wound therapy apparatus
US10548760B2 (en) * 2013-03-15 2020-02-04 Somne Llc Correlating a condition of a subject with a degree of sleep apnea being experienced by the subject
US10780017B2 (en) 2013-03-15 2020-09-22 Somne Llc Treating sleep apnea with negative pressure
US20140276174A1 (en) * 2013-03-15 2014-09-18 Elwha Llc Correlating a condition of a subject with a degree of sleep apnea being experienced by the subject
US11931226B2 (en) 2013-03-15 2024-03-19 Smith & Nephew Plc Wound dressing sealant and use thereof
US10874577B2 (en) 2013-03-15 2020-12-29 Somne Llc Obtaining, with a sleep-apnea device, information related to sleep-apnea events and sleep-apnea treatment, and correlating sleep apnea events and sleep-apnea treatment with subject lifestyle and wellbeing
US9707121B2 (en) 2013-03-15 2017-07-18 Elwha Llc Treating sleep apnea with negative pressure
US9655766B2 (en) 2013-03-15 2017-05-23 Elwha Llc Sleep-apnea-treatment system that changes the treatment pressure over a period that begins or ends at a settable time
US10155070B2 (en) 2013-08-13 2018-12-18 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
US10912870B2 (en) 2013-08-13 2021-02-09 Smith & Nephew, Inc. Canister fluid level detection in reduced pressure therapy systems
CN111839658A (en) * 2014-05-09 2020-10-30 凯希特许有限公司 Destructive dressing for use with negative pressure and fluid instillation
US10744239B2 (en) 2014-07-31 2020-08-18 Smith & Nephew, Inc. Leak detection in negative pressure wound therapy system
US11660371B2 (en) 2015-08-31 2023-05-30 3M Innovative Properties Company Negative pressure wound therapy dressings comprising (meth)acrylate pressure-sensitive adhesive with enhanced adhesion to wet surfaces
US11306224B2 (en) 2015-08-31 2022-04-19 3M Innovative Properties Company Articles comprising (meth)acrylate pressure-sensitive adhesive with enhanced adhesion to wet surfaces
US11602461B2 (en) 2016-05-13 2023-03-14 Smith & Nephew, Inc. Automatic wound coupling detection in negative pressure wound therapy systems
GB2557732A (en) * 2016-12-02 2018-06-27 Apex Medical Corp Wound management assembly and negative pressure wound therapy system

Also Published As

Publication number Publication date
US10792192B2 (en) 2020-10-06
CN102711856A (en) 2012-10-03
WO2011034789A1 (en) 2011-03-24
EP2644214A2 (en) 2013-10-02
TW201121597A (en) 2011-07-01
AU2010295855A1 (en) 2012-03-29
CA2774208A1 (en) 2011-03-24
JP2013504385A (en) 2013-02-07
EP2644214B2 (en) 2019-03-13
EP2477674A1 (en) 2012-07-25
US9814627B2 (en) 2017-11-14
US20180028366A1 (en) 2018-02-01
EP2477674B2 (en) 2022-01-05
EP2477674B1 (en) 2013-07-03
EP2644214A3 (en) 2013-10-23
US20140114264A1 (en) 2014-04-24
EP2644214B1 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
US10792192B2 (en) Medical dressings, systems, and methods employing sealants
US11529453B2 (en) Reduced-pressure treatment and debridement systems and methods
CA2844663C (en) Reduced-pressure systems and methods employing a leak-detection member
AU2015202851B2 (en) Reduced-pressure dressings, systems, and methods employing desolidifying barrier layers
US20180318138A1 (en) Re-Epithelialization Wound Dressings And Systems

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION