US20110072638A1 - Method and System for Manufacturing Electrosurgical Seal Plates - Google Patents

Method and System for Manufacturing Electrosurgical Seal Plates Download PDF

Info

Publication number
US20110072638A1
US20110072638A1 US12/568,199 US56819909A US2011072638A1 US 20110072638 A1 US20110072638 A1 US 20110072638A1 US 56819909 A US56819909 A US 56819909A US 2011072638 A1 US2011072638 A1 US 2011072638A1
Authority
US
United States
Prior art keywords
seal plate
manufacture
end effector
effector assembly
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/568,199
Other versions
US8266783B2 (en
Inventor
Kim V. Brandt
Allan G. Aquino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Tyco Healthcare Group LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tyco Healthcare Group LP filed Critical Tyco Healthcare Group LP
Priority to US12/568,199 priority Critical patent/US8266783B2/en
Assigned to TYCO HEALTHCARE GROUP LP reassignment TYCO HEALTHCARE GROUP LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRANDT, KIM V., AQUINO, ALLAN G.
Priority to EP11184307.4A priority patent/EP2425793B1/en
Priority to EP10181034.9A priority patent/EP2301467B1/en
Priority to EP14150294.8A priority patent/EP2719352B1/en
Publication of US20110072638A1 publication Critical patent/US20110072638A1/en
Application granted granted Critical
Publication of US8266783B2 publication Critical patent/US8266783B2/en
Assigned to COVIDIEN LP reassignment COVIDIEN LP CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: TYCO HEALTHCARE GROUP LP
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1412Blade
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B2018/1452Probes having pivoting end effectors, e.g. forceps including means for cutting
    • A61B2018/1455Probes having pivoting end effectors, e.g. forceps including means for cutting having a moving blade for cutting tissue grasped by the jaws
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49995Shaping one-piece blank by removing material

Definitions

  • the present disclosure relates to a method and system for manufacturing electrosurgical seal plates and, more particularly, to a method and system that employs photolithographic processes and systems operatively associated therewith to manufacture seal plates.
  • Electrosurgical forceps e.g., bipolar or monopolar forceps
  • the electrosurgical forceps are commonly known in the medical art.
  • the electrosurgical forceps are configured to, amongst other things, grasp and subsequently seal tissue.
  • the electrosurgical forceps typically, include a pair of movable jaw members each having a respective seal plate operatively disposed thereon.
  • the seal plates disposed on the jaw members are configured to transfer electrosurgical energy having one or more frequencies to tissue to electrosurgically treat the tissue (e.g., seal tissue) and, in conjunction with a cutting element (e.g., knife blade), subsequently sever the sealed tissue.
  • tissue e.g., seal tissue
  • a cutting element e.g., knife blade
  • the seal plates may be configured to maintain a certain gap distance between the seal plates when the jaw members are in a closed position and tissue is grasped therebetween.
  • the seal plates may be configured to perform and/or provide additional functions not described herein.
  • the seal plates frequently are designed to include one or more features operatively disposed thereon or formed therewith.
  • one or both of the seal plates may include a knife slot configured to receive a knife blade.
  • one or both of the seal plates may include one or more stop members. In either instance, forming the seal plates during the manufacture process requires extremely high precession, which may lead to high tolerance stack-ups (e.g., knife blade to knife slot width ratios).
  • conventional means for positioning a stop member on a seal plate include bonding the stop member to a seal surface of the seal plate.
  • the bond and/or stop member that secures the stop member to the seal surface of the seal plate is susceptible to shear stresses associated with opening and closing the jaw members of an end effector assembly.
  • seal plates may include stamping, punching, blanking, embossing, bending, flanging, coining, etc. In some instances, however, these manufacturing process may not be suitable for unique and/or complex jaw member and/or seal plate geometries, such as, for example, when one or both of the seal plates requires a knife slot or stop member formed thereon. Additionally, manufacture of the seal plates via the aforementioned process, in certain instances, may not be cost effective.
  • the present disclosure provides a method of manufacture for an end effector assembly configured for use with an electrosurgical instrument configured for performing an electrosurgical procedure.
  • the method includes providing a pair of jaw members.
  • a step of the method includes forming one or more seal plates positionable on one of the pair of jaw members.
  • Etching a dam along a side of the one or more seal plates is a step of the method, wherein the etched dam inhibits the flow of a plastic on the one or more seal plate such that a height of the plastic with respect to the at least one seal plate during an overmolding process may be controlled.
  • the method includes positioning the one or more seal plates on the one of the pair of jaw members; and overmolding the seal plate to one or more of the pair of jaw members.
  • the present disclosure provides a method of manufacture for an end effector assembly configured for use with an electrosurgical instrument configured for performing an electrosurgical procedure.
  • the method includes providing a pair of jaw members.
  • a step of the method includes forming one or more seal plates positionable on one or more of a pair of jaw members associated with the end effector assembly.
  • Etching a dam along a side of the one or more seal plates is a step of the method, wherein the etched dam inhibits the flow of a plastic on the one or more seal plates such that a height of the plastic with respect to the one or more seal plates during an overmolding process may be controlled.
  • Etching a targeted retention feature along the side of the one or more seal plates is another step of the method.
  • Etching one or more pockets on a seal surface of the one or more seal plates is yet another step of the method.
  • the method includes depositing an adhesive into the one or more pockets on the one or more seal plates.
  • a step of the method includes transferring a spacer from a location remote from the one or more pockets on the one or more seal plates to the one or more pockets on the at least one seal plate. Curing the adhesive and positioning the one or more seal plates on one of the pair of jaw members are steps of the method. Overmolding the seal plate to jaw member is still another step of the method.
  • the present disclosure also provides a system for the manufacture of an end effector assembly configured for use with an electrosurgical instrument configured for performing an electrosurgical procedure.
  • the system includes a photolithography module configured to etch one or more pockets on a seal surface of the seal plate.
  • the system includes a vacuum module configured to raise, transfer and lower a spacer from a location remote from the one or more pockets on the seal plate to the one or more pockets on the seal plate.
  • the system includes an adhesive dispensing module configured to dispense an adhesive into the one or more pockets on the seal plate and allowing the adhesive to cure.
  • the system may include an optical module configured to monitor a volume of adhesive dispensed within the one or more pockets and monitor placement of the spacer within the one or more pockets.
  • FIG. 1 is a flowchart illustrating steps for manufacturing a seal plate in accordance with an embodiment of the present disclosure
  • FIG. 2 is a side, perspective view of a seal plate according to an embodiment of the present disclosure and formed via the method of FIG. 1 ;
  • FIGS. 3A and 3B are perspective views of a seal plate according to an alternate embodiment of the present disclosure and formed via the method of FIG. 1 ;
  • FIG. 4 is a perspective view of a seal plate according to an alternate embodiment of the present disclosure and formed via the method of FIG. 1 ;
  • FIGS. 5A and 5B are respective cross-sectional views of a seal plate shown in a pre-formed and formed condition according to an alternate embodiment of the present disclosure and formed via the method of FIG. 1 ;
  • FIG. 6 is a perspective view of the seal plate of FIGS. 5A and 5B ;
  • FIG. 7 is a perspective view of a seal plate according to an alternate embodiment of the present disclosure and formed via the method of FIG. 1 ;
  • FIG. 8 is a cross-sectional view of a laminated seal plate according to an alternate embodiment of the present disclosure and funned via the method of FIG. 1 ;
  • FIGS. 9A-9C is a seal plate including one or more points of electrical contact according to an alternate embodiment of the present disclosure and formed via the method of FIG. 1 ;
  • FIG. 10 is an area of detail of the seal plate illustrated in FIG. 1 ;
  • FIGS. 11A-11F are various configurations of spacers adapted for use with a seal plate formed via the method of FIG. 1 ;
  • FIG. 12 illustrates a block diagram of a system adapted for use with the method of FIG. 1 and configured to position one of the various spacers depicted in FIGS. 11A-11F within a seal plate formed via the method of FIG. 1 ;
  • FIGS. 13A and 13B are functional block diagrams of a method of use of the system of FIG. 12 .
  • distal refers to that portion which is further from the user while the term “proximal” refers to that portion which is closer to the user.
  • the method and system of the present disclosure implements photolithographic processes in combination with etching processes to create specific, unique, complex geometries and/or features for seal plates used in the design of electrosurgical instruments, such as, for example, bipolar and monopolar electrosurgical devices.
  • possible features may include knife blade slots, recessed features, fine delicate features, and half etched features; all of which to be discussed in greater detail below.
  • the precision of etching allows for greatly reduced tolerance stack-ups which could reduce issues with, for example, knife blade to knife slot ratios.
  • the seal plates of the present disclosure are formed via suitable photolithographic and etching processes, the seal plates may be processed in lead frames that may be used in automated processes, which reduces costs associated with the aforementioned conventional manufacturing processes (e.g., stamping).
  • etch recipes associated with a given etch process allow a user to enter practical data relating to the seal plate that may facilitate forming the seal plate during the etch process.
  • etch recipes associated with a given etch process may be tuned to have both vertical and non-vertical profiles, such as, when forming a knife slot on the seal plate.
  • FIG. 1 a flowchart illustrating a method of manufacture for an end effector assembly that includes a pair of jaw members each including a seal plate disposed thereon and configured for use with an electrosurgical instrument, e.g., electrosurgical forceps, in accordance with an embodiment of the present disclosure is shown designated 200 .
  • an electrosurgical instrument e.g., electrosurgical forceps
  • An initial step of the method 200 includes providing a pair of jaw members (step 202 ) associated with an end effector adapted to connect to an electrosurgical forceps, such as, for example, a bipolar forceps.
  • the jaw members may be formed by any suitable means, e.g., molding, casting, stamping, etc.
  • seal plate is described herein as a single seal plate formed from a single sheet of material. Those skilled in the art will appreciate that a plurality of seal plates may be manufactured from a single sheet of material.
  • a step of method 200 includes forming a seal plate 102 (see step 204 , in FIG. 1 ).
  • Seal plate 102 may be formed from any suitable material, such as, for example, from a sheet of metal.
  • a seal plate 102 formed according to method 200 is shown in FIG. 2 .
  • seal plate 102 may be fully or partially etched (see step 206 , in FIG. 1 ).
  • seal plate 102 may be etched to include one or more types of retention features 106 .
  • retention features 106 include a plurality etched flanges 110 that extend along one of a pair of sides 108 of the seal plate 102 .
  • retention features 106 may be partially etched in and/or fully etched through the seal plate 102 .
  • An example of partially etched retention features 106 is illustrated in FIG. 3A . More particularly, the partially etched retention features may be partially etched slots 112 , partially etched cavities 114 , and/or partially etched curved channels 116 .
  • An example of fully etched retention features 106 is illustrated in FIG. 3B . More particularly, the fully etched retention features 106 may be fully etched apertures 118 . In either of the embodiments illustrated in FIGS. 2-3B , retention features 106 may be configured to securely retain the seal plate 102 to a respective jaw member of an end effector assembly associated with an electrosurgical forceps.
  • a step of method 200 includes positioning the seal plate 102 on a respective jaw member and subsequently overmolding the seal plate 102 to a respective jaw member (see steps 208 and 210 respectively in FIG. 1 ).
  • the photolithographic and etch processes in accordance with the method 200 of the present disclosure may be implemented to create partial etch dams along a side 108 of the seal plate 102 .
  • one or more partial etch dams 116 may be disposed and/or formed along one of the sides 108 of seal plate 102 , see FIG. 4 .
  • Partial etch dam 116 is configured to control the height of an overmold during the overmolding process of the seal plate 102 to a respective jaw member of the end effector assembly.
  • the partial dam 116 is configured to inhibit the flow of a plastic during the overmolding process ensuring that the height of the plastic does not exceed a predetermined height on the seal plate 102 and/or the respective jaw member. Controlling and/or preventing the height of the plastic from exceeding a predetermined height on the seal plate 102 and/or a respective jaw member, e.g., jaw member 110 or 120 , during the overmolding process, minimizes or “tightens” distribution of thermal spread during an electrosurgical procedure, e.g., electrosurgical sealing procedure.
  • the partial etch dam 116 creates a seal plate 102 having a consistent height across a length of the seal plate 102 , which, in turn, provides a consistent seal across tissue and minimizes thermal spread to adjacent tissue.
  • Experimentation on urethane coating processes confirms a relationship between seal plates having consistent (or inconsistent) seal plate heights and thermal spread. More particularly, thermal spread as a result of seal plates having consistent heights across a length of the seal plate was negligible when compared to seal plates having inconsistent heights across a length of the seal plate.
  • the photolithographic and etching processes in accordance with the method 200 of the present disclosure may be employed to create one or more textured patterns on the seal plate 102 .
  • one type of textured pattern may include, for example, a textured pattern 134 having a plurality of raised dots with varying dimensions etched on a portion of a seal surface 102 a of the seal plate 102 , see FIGS. 2 and 10 .
  • seal plate 102 is illustrated pre-formed and formed, respectively.
  • the photolithographic and etching processes in accordance with the method 200 of the present disclosure may be implemented to facilitate forming of the seal plate 102 .
  • selectively and/or partially etching the seal plate 102 lightens the overall structure of the seal plate 102 , which, in turn, facilitates bending of the seal plate 102 during the forming process.
  • one or more areas of the seal plate 102 may be selectively and/or partially etched. More particularly, selectively and/or partially etched areas 118 of the seal plate 102 may be located at predetermined locations on the seal plate 102 , see FIGS. 5A and 6 .
  • partial etching may be implemented to create curves 120 with small, tight radii, see FIGS. 5B and 7 , which also makes forming seal plate 102 easier.
  • the photolithographic and etching processes in accordance with the method 200 of the present disclosure may be implemented to create a knife slot 104 on the seal plate 102 .
  • a knife slot 104 may be fully etched through the seal plate 102 .
  • the high precision that is associated with known photolithographic and etching processes, allows a manufacturer to form a fully etched knife slot 104 with various geometries.
  • the fully etched knife slot 104 may be defined by a pair of inner facing walls 104 a and 104 b . Inner facing walls 104 a and 104 b may be etched to have any suitable configuration.
  • inner facing walls 104 a and 104 b may be determined by a manufacturer and subsequently entered into an etch recipe for a given etch process.
  • inner facing walls 104 a and 104 b are illustrated perpendicular with respect to the seal surface 102 b of the seal plate 102 .
  • inner facing walls 104 a and 104 b are illustrated slanted or angled with respect to the seal surface 102 b of the seal plate 102 .
  • the photolithographic and etching processes in accordance with the method 200 of the present disclosure may be implemented to create selectively and/or partially etched areas on the seal plate 102 that are configured to provide one or more electrical points of contact on the seal plate 102 such that electrosurgical energy may be provided to the seal plate 102 and/or other electrical components associated therewith.
  • one or more materials may be laminated together and, subsequently, selectively and/or partially etched.
  • the materials laminated together may be conductive, partially-conductive, or non-conductive. Suitable materials may include but are not limited to stainless steel, copper, silver, and the like.
  • a portion of the seal plate 102 includes layers of stainless steel 122 and copper 124 laminated together.
  • the layer of copper 124 is selectively etched. Etching the copper 124 in this manner may be used to create one or more etched areas 126 configured to receive one or more types of electrical interfaces. More particularly, an etched area 126 may be configured to receive integrated flex, e.g., a polyimide flex circuit 128 that is configured to provide electrosurgical energy to the seal plate 102 , see FIG. 9A . In this instance, one or more through holes 130 may be fully etched to create electrical interconnections through dialectic material located on the polyimide flex ( FIG. 9B ).
  • seal plate 102 may include one or more partially or fully etched areas configured to receive a bead of solder 132 to create one or more electrical interconnections on the seal plate 102 which may result in electrical wiring being an integral component of the seal plate 102 .
  • laminating layers of material together and, subsequently, etching (e.g., partially or fully) one of the layers of material may be used to create heat sinks (not explicitly shown) at specific locations on the seal plate 102 .
  • the seal plates are configured to maintain a desired gap distance.
  • the photolithographic and etching processes in accordance with the method 200 of the present disclosure may be implemented to create one or more different types of insulation barriers, e.g., stop members, between seal plates associated with an end effector assembly More particularly, photolithographic and etching processes of the present disclosure may be implemented to create one or more partially or fully etched recesses or pockets 136 a on seal surface 102 a of the seal plate 102 (see FIG. 11A , for example), wherein the pockets 136 a is configured to receive one or more types of corresponding spacers 136 b ( FIG. 11A ).
  • An etched recess 136 a may include an etch depth of 0.002 inches.
  • Spacer 136 b may be any suitable type of spacer known in the art. Spacer 136 may extend from seal surface 102 a a distance that ranges from about 0.005 inches to about 0.01 inches.
  • spacer 136 b may be a ceramic spacer made from aluminum titanium carbide, commonly referred to in the art and hereinafter referred to as AlTiC).
  • Etched recesses 136 a and corresponding spacers 136 b may have any suitable geometric configuration and may be dimension to fit within a 0.030 ⁇ 0.030 inch area ( FIG. 11B ).
  • FIG. 11A illustrates an etched recess 136 a and corresponding spacer 136 b each including a hemispherical configuration.
  • FIG. 11B illustrates an etched recess 138 a and corresponding spacer 138 b each including a cylindrical configuration.
  • FIG. 11C illustrates an etched recess 140 a and corresponding spacer 140 b each including a square configuration.
  • FIG. 11D illustrates an etched recess 142 a and corresponding spacer 142 b each including a triangular configuration.
  • FIG. 11A illustrates an etched recess 136 a and corresponding spacer 136 b each including a hemispherical configuration.
  • FIG. 11B illustrates an etched recess 138 a and corresponding spacer 138
  • FIG. 11E illustrates a plurality of etched recesses 144 a and corresponding spacers 144 b in an intermittent or staggered configuration.
  • any of the aforementioned etched recesses and corresponding spacers may be arranged in a grid like configuration, see FIG. 11F for example.
  • the combination of any of the aforementioned etched recesses, e.g., recess 138 a and spacers, e.g., spacer 138 b provides a user with the ability to manipulate how the jaw members 110 and 120 come together.
  • cylindrical shaped recess 138 a and corresponding spacer 138 b may be configured to force one of the jaw members, e.g., a upper jaw member 110 to roll along an axis of the spacer 138 b when the upper jaw member 110 and a bottom jaw member 120 of an end effector assembly are moved toward each other, which, in turn, results in a more precise alignment of the upper and lower jaw members 110 and 120 , respectively.
  • any of the aforementioned etched recesses, e.g., recess 136 a and spacers, e.g., spacer 136 b increases the integrity of a bond between the seal surface 102 a and spacer 136 b in that the spacer 136 b is encased within a recess 136 b , as opposed to only being bonded to the seal surface 102 a of the seal plate 102 .
  • the photolithographic and etching processes in accordance with the method 200 of the present disclosure allows a manufacturer to position any of the aforementioned spacers, e.g., spacer 136 b within a corresponding pocket 136 a to within a 0.0005 inch tolerance.
  • a step of the method 200 may include etching one or more recesses, e.g., 136 a on the seal surface 102 a of the seal plate 102 and positioning a spacer, e.g., spacer 136 b in the recess 136 a .
  • an automated system 300 is provided and includes a plurality of modules 400 that includes a vacuum module 600 , an adhesive dispensing module 700 , and an optional optical module 800 .
  • Each of the foregoing modules is fully automated and in operative communication with a photolithography module 500 (configured to provide functions previously described herein) that is also fully automated.
  • Photolithography module 500 is configured to fully, partially, and/or selectively etch one or more pockets 136 b on the seal surface 102 a of the seal plate 102 . After the pockets 136 b have been etched into the seal surface 102 a of the seal plate 102 , the seal plate 102 is transferred to adhesive dispensing module 700 where a bead of adhesive 702 will be dispensed into the pocket 136 b such that a spacer 136 a may be positioned into the pocket 136 b and bonded therein.
  • Vacuum module 600 is configured to raise and transfer a spacer, e.g., spacer 136 b from a loading module 900 (a loading table 900 , for example) to the one or more pockets 136 a on the seal plate 102 and lower the spacer 136 b within the pocket 136 a on the seal plate 102 .
  • the vacuum module 600 includes one or more vacuum transfer devices 602 operatively connected to a vacuum source 604 .
  • Vacuum transfer device 602 may be any suitable device that is capable of raising, transferring and lowering a spacer 136 b .
  • vacuum devices typically associated with the manufacture process of disk drives, auto slider bond, SMT automated assembly and PCB assembly may be utilized in combination with vacuum module 600 .
  • the vacuum transfer device 602 (e.g., vacuum device typically utilized in the manufacture process PCB assembly) includes a distal end 606 configured to raise a spacer 136 b ( FIG. 13 ) from loading table 900 , transfer the spacer 136 b to the recess 136 a , and, subsequently, lower the spacer 136 b within the recess 136 a.
  • Adhesive dispensing module 700 is configured to dispense a bead of suitable adhesive 702 into the one or more pockets 136 a on the seal plate 102 .
  • the adhesive dispensing module includes a device 704 configured to heat cure the adhesive 702 after the spacer 136 b has been positioned within the pocket 136 a.
  • an optical module 800 is provided and is configured to monitor the volume of adhesive 702 dispensed within the pocket 136 a , monitor alignment of the spacer 136 b with respect to pocket 136 a and/or monitor placement of the spacer 136 b within the pocket 136 a .
  • optical module 800 may include one or more types of camera 802 located at or near the adhesive dispensing module 700 .
  • System 300 includes one or more microprocessors 1100 including one or more algorithms 1200 configured to control and monitor each of the above-referenced modules during transferring and positioning of the spacers 136 b within the pockets 136 a .
  • System 300 employs an x-y coordinate axis system to facilitate properly aligning a spacer 136 b and pocket 136 a ( FIG. 13A ).
  • the vacuum transfer device 602 of vacuum module 600 is used to raise one of a plurality of spacers 136 b from a loading table 900 to an adhesive station 1000 where the seal plate 102 is located.
  • adhesive dispensing module 700 dispenses a bead of adhesive 702 ( FIG. 13B ) within a pocket 136 a .
  • the time the bead of adhesive 702 is dispensed will depend on such parameters as type of adhesive, cure time of adhesive, volume of adhesive, etc.
  • Camera 802 of optical module 800 may be employed to ensure that the spacer 136 b and pocket 136 a are properly aligned.
  • the vacuum transfer device 602 may be employed to lower the spacer 136 b into pocket 136 a .
  • Camera 802 of optical module 800 may again be employed to ensure that the spacer 136 b seats at a proper height above pocket 136 a ( FIG. 13B ).
  • spacer 136 b seats at a height above the pocket 136 a that ranges from about 0.001 inches to about 0.006 inches.

Abstract

A method of manufacture for an end effector assembly is provided. The method includes providing a pair of jaw members. A step of the method includes forming one or more seal plates positionable on one of the pair of jaw members. Etching a dam along a side of the one or more seal plates is a step of the method, wherein the etched dam inhibits the flow of a plastic on the one or more seal plate such that a height of the plastic with respect to the at least one seal plate during an overmolding process may be controlled. The method includes positioning the one or more seal plates on the one of the pair of jaw members; and overmolding the seal plate to one or more of the pair of jaw members.

Description

    BACKGROUND
  • 1. Technical Field
  • The present disclosure relates to a method and system for manufacturing electrosurgical seal plates and, more particularly, to a method and system that employs photolithographic processes and systems operatively associated therewith to manufacture seal plates.
  • 2. Background of Related Art
  • Electrosurgical forceps, e.g., bipolar or monopolar forceps, are commonly known in the medical art. Typically, the electrosurgical forceps are configured to, amongst other things, grasp and subsequently seal tissue. With this purpose in mind, the electrosurgical forceps, typically, include a pair of movable jaw members each having a respective seal plate operatively disposed thereon.
  • Typically, the seal plates disposed on the jaw members are configured to transfer electrosurgical energy having one or more frequencies to tissue to electrosurgically treat the tissue (e.g., seal tissue) and, in conjunction with a cutting element (e.g., knife blade), subsequently sever the sealed tissue. In certain instances, the seal plates may be configured to maintain a certain gap distance between the seal plates when the jaw members are in a closed position and tissue is grasped therebetween. As can be appreciated by one skilled in the art, the seal plates may be configured to perform and/or provide additional functions not described herein.
  • To provide the seal plates with the capability to seal, subsequently sever, and/or maintain a desired gap distance, the seal plates frequently are designed to include one or more features operatively disposed thereon or formed therewith. For example, in the instance where the seal plates are configured to subsequently sever tissue, one or both of the seal plates may include a knife slot configured to receive a knife blade. In the instance where the seal plates are configured to maintain a desired gap distance, one or both of the seal plates may include one or more stop members. In either instance, forming the seal plates during the manufacture process requires extremely high precession, which may lead to high tolerance stack-ups (e.g., knife blade to knife slot width ratios). Additionally, conventional means for positioning a stop member on a seal plate include bonding the stop member to a seal surface of the seal plate. In this instance, however, the bond and/or stop member that secures the stop member to the seal surface of the seal plate is susceptible to shear stresses associated with opening and closing the jaw members of an end effector assembly.
  • Conventional manufacture processes for seal plates may include stamping, punching, blanking, embossing, bending, flanging, coining, etc. In some instances, however, these manufacturing process may not be suitable for unique and/or complex jaw member and/or seal plate geometries, such as, for example, when one or both of the seal plates requires a knife slot or stop member formed thereon. Additionally, manufacture of the seal plates via the aforementioned process, in certain instances, may not be cost effective.
  • SUMMARY
  • The present disclosure provides a method of manufacture for an end effector assembly configured for use with an electrosurgical instrument configured for performing an electrosurgical procedure. The method includes providing a pair of jaw members. A step of the method includes forming one or more seal plates positionable on one of the pair of jaw members. Etching a dam along a side of the one or more seal plates is a step of the method, wherein the etched dam inhibits the flow of a plastic on the one or more seal plate such that a height of the plastic with respect to the at least one seal plate during an overmolding process may be controlled. The method includes positioning the one or more seal plates on the one of the pair of jaw members; and overmolding the seal plate to one or more of the pair of jaw members.
  • The present disclosure provides a method of manufacture for an end effector assembly configured for use with an electrosurgical instrument configured for performing an electrosurgical procedure. The method includes providing a pair of jaw members. A step of the method includes forming one or more seal plates positionable on one or more of a pair of jaw members associated with the end effector assembly. Etching a dam along a side of the one or more seal plates is a step of the method, wherein the etched dam inhibits the flow of a plastic on the one or more seal plates such that a height of the plastic with respect to the one or more seal plates during an overmolding process may be controlled. Etching a targeted retention feature along the side of the one or more seal plates is another step of the method. Etching one or more pockets on a seal surface of the one or more seal plates is yet another step of the method. The method includes depositing an adhesive into the one or more pockets on the one or more seal plates. A step of the method includes transferring a spacer from a location remote from the one or more pockets on the one or more seal plates to the one or more pockets on the at least one seal plate. Curing the adhesive and positioning the one or more seal plates on one of the pair of jaw members are steps of the method. Overmolding the seal plate to jaw member is still another step of the method.
  • The present disclosure also provides a system for the manufacture of an end effector assembly configured for use with an electrosurgical instrument configured for performing an electrosurgical procedure. The system includes a photolithography module configured to etch one or more pockets on a seal surface of the seal plate. The system includes a vacuum module configured to raise, transfer and lower a spacer from a location remote from the one or more pockets on the seal plate to the one or more pockets on the seal plate. The system includes an adhesive dispensing module configured to dispense an adhesive into the one or more pockets on the seal plate and allowing the adhesive to cure. The system may include an optical module configured to monitor a volume of adhesive dispensed within the one or more pockets and monitor placement of the spacer within the one or more pockets.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various embodiments of the present disclosure are described hereinbelow with references to the drawings, wherein:
  • FIG. 1 is a flowchart illustrating steps for manufacturing a seal plate in accordance with an embodiment of the present disclosure;
  • FIG. 2 is a side, perspective view of a seal plate according to an embodiment of the present disclosure and formed via the method of FIG. 1;
  • FIGS. 3A and 3B are perspective views of a seal plate according to an alternate embodiment of the present disclosure and formed via the method of FIG. 1;
  • FIG. 4 is a perspective view of a seal plate according to an alternate embodiment of the present disclosure and formed via the method of FIG. 1;
  • FIGS. 5A and 5B are respective cross-sectional views of a seal plate shown in a pre-formed and formed condition according to an alternate embodiment of the present disclosure and formed via the method of FIG. 1;
  • FIG. 6 is a perspective view of the seal plate of FIGS. 5A and 5B;
  • FIG. 7 is a perspective view of a seal plate according to an alternate embodiment of the present disclosure and formed via the method of FIG. 1;
  • FIG. 8 is a cross-sectional view of a laminated seal plate according to an alternate embodiment of the present disclosure and funned via the method of FIG. 1;
  • FIGS. 9A-9C is a seal plate including one or more points of electrical contact according to an alternate embodiment of the present disclosure and formed via the method of FIG. 1;
  • FIG. 10 is an area of detail of the seal plate illustrated in FIG. 1;
  • FIGS. 11A-11F are various configurations of spacers adapted for use with a seal plate formed via the method of FIG. 1;
  • FIG. 12 illustrates a block diagram of a system adapted for use with the method of FIG. 1 and configured to position one of the various spacers depicted in FIGS. 11A-11F within a seal plate formed via the method of FIG. 1; and
  • FIGS. 13A and 13B are functional block diagrams of a method of use of the system of FIG. 12.
  • DETAILED DESCRIPTION
  • Embodiments of the presently disclosed method and system are described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. As used herein, the term “distal” refers to that portion which is further from the user while the term “proximal” refers to that portion which is closer to the user.
  • The method and system of the present disclosure implements photolithographic processes in combination with etching processes to create specific, unique, complex geometries and/or features for seal plates used in the design of electrosurgical instruments, such as, for example, bipolar and monopolar electrosurgical devices. For example, possible features may include knife blade slots, recessed features, fine delicate features, and half etched features; all of which to be discussed in greater detail below. In addition to creating the aforementioned features, the precision of etching allows for greatly reduced tolerance stack-ups which could reduce issues with, for example, knife blade to knife slot ratios. Moreover, because the seal plates of the present disclosure are formed via suitable photolithographic and etching processes, the seal plates may be processed in lead frames that may be used in automated processes, which reduces costs associated with the aforementioned conventional manufacturing processes (e.g., stamping). Further, etch recipes associated with a given etch process, allow a user to enter practical data relating to the seal plate that may facilitate forming the seal plate during the etch process. For example, etch recipes associated with a given etch process may be tuned to have both vertical and non-vertical profiles, such as, when forming a knife slot on the seal plate.
  • With reference to FIG. 1, a flowchart illustrating a method of manufacture for an end effector assembly that includes a pair of jaw members each including a seal plate disposed thereon and configured for use with an electrosurgical instrument, e.g., electrosurgical forceps, in accordance with an embodiment of the present disclosure is shown designated 200.
  • An initial step of the method 200 includes providing a pair of jaw members (step 202) associated with an end effector adapted to connect to an electrosurgical forceps, such as, for example, a bipolar forceps. The jaw members may be formed by any suitable means, e.g., molding, casting, stamping, etc.
  • So as not to obscure the following disclosure with redundant information, manufacture of the seal plate is described herein as a single seal plate formed from a single sheet of material. Those skilled in the art will appreciate that a plurality of seal plates may be manufactured from a single sheet of material.
  • A step of method 200 includes forming a seal plate 102 (see step 204, in FIG. 1). Seal plate 102 may be formed from any suitable material, such as, for example, from a sheet of metal. A seal plate 102 formed according to method 200 is shown in FIG. 2. During formation of seal plate 102, seal plate 102 may be fully or partially etched (see step 206, in FIG. 1). For example, seal plate 102 may be etched to include one or more types of retention features 106. In the embodiment illustrated in FIG. 2, retention features 106 include a plurality etched flanges 110 that extend along one of a pair of sides 108 of the seal plate 102. In embodiments, retention features 106 may be partially etched in and/or fully etched through the seal plate 102. An example of partially etched retention features 106 is illustrated in FIG. 3A. More particularly, the partially etched retention features may be partially etched slots 112, partially etched cavities 114, and/or partially etched curved channels 116. An example of fully etched retention features 106 is illustrated in FIG. 3B. More particularly, the fully etched retention features 106 may be fully etched apertures 118. In either of the embodiments illustrated in FIGS. 2-3B, retention features 106 may be configured to securely retain the seal plate 102 to a respective jaw member of an end effector assembly associated with an electrosurgical forceps.
  • A step of method 200 includes positioning the seal plate 102 on a respective jaw member and subsequently overmolding the seal plate 102 to a respective jaw member (see steps 208 and 210 respectively in FIG. 1). In an embodiment, the photolithographic and etch processes in accordance with the method 200 of the present disclosure may be implemented to create partial etch dams along a side 108 of the seal plate 102. More particularly, one or more partial etch dams 116 may be disposed and/or formed along one of the sides 108 of seal plate 102, see FIG. 4. Partial etch dam 116 is configured to control the height of an overmold during the overmolding process of the seal plate 102 to a respective jaw member of the end effector assembly. More particularly, the partial dam 116 is configured to inhibit the flow of a plastic during the overmolding process ensuring that the height of the plastic does not exceed a predetermined height on the seal plate 102 and/or the respective jaw member. Controlling and/or preventing the height of the plastic from exceeding a predetermined height on the seal plate 102 and/or a respective jaw member, e.g., jaw member 110 or 120, during the overmolding process, minimizes or “tightens” distribution of thermal spread during an electrosurgical procedure, e.g., electrosurgical sealing procedure. More particularly, the partial etch dam 116 creates a seal plate 102 having a consistent height across a length of the seal plate 102, which, in turn, provides a consistent seal across tissue and minimizes thermal spread to adjacent tissue. Experimentation on urethane coating processes confirms a relationship between seal plates having consistent (or inconsistent) seal plate heights and thermal spread. More particularly, thermal spread as a result of seal plates having consistent heights across a length of the seal plate was negligible when compared to seal plates having inconsistent heights across a length of the seal plate.
  • In an embodiment, the photolithographic and etching processes in accordance with the method 200 of the present disclosure may be employed to create one or more textured patterns on the seal plate 102. More particularly, one type of textured pattern may include, for example, a textured pattern 134 having a plurality of raised dots with varying dimensions etched on a portion of a seal surface 102 a of the seal plate 102, see FIGS. 2 and 10.
  • With reference to FIGS. 5A and 5B, seal plate 102 is illustrated pre-formed and formed, respectively. In an embodiment, the photolithographic and etching processes in accordance with the method 200 of the present disclosure may be implemented to facilitate forming of the seal plate 102. More particularly, selectively and/or partially etching the seal plate 102 lightens the overall structure of the seal plate 102, which, in turn, facilitates bending of the seal plate 102 during the forming process. To this end, one or more areas of the seal plate 102 may be selectively and/or partially etched. More particularly, selectively and/or partially etched areas 118 of the seal plate 102 may be located at predetermined locations on the seal plate 102, see FIGS. 5A and 6. Additionally, partial etching may be implemented to create curves 120 with small, tight radii, see FIGS. 5B and 7, which also makes forming seal plate 102 easier.
  • With reference again to FIG. 2, in an embodiment, the photolithographic and etching processes in accordance with the method 200 of the present disclosure may be implemented to create a knife slot 104 on the seal plate 102. More particularly, a knife slot 104 may be fully etched through the seal plate 102. The high precision that is associated with known photolithographic and etching processes, allows a manufacturer to form a fully etched knife slot 104 with various geometries. More particularly, in embodiments, the fully etched knife slot 104 may be defined by a pair of inner facing walls 104 a and 104 b. Inner facing walls 104 a and 104 b may be etched to have any suitable configuration. The precise configuration of the inner facing walls 104 a and 104 b may be determined by a manufacturer and subsequently entered into an etch recipe for a given etch process. In the embodiment illustrated in FIG. 2, inner facing walls 104 a and 104 b are illustrated perpendicular with respect to the seal surface 102 b of the seal plate 102. In the embodiment illustrated in FIGS. 5A and 5B, inner facing walls 104 a and 104 b are illustrated slanted or angled with respect to the seal surface 102 b of the seal plate 102.
  • With reference to FIGS. 8-9B, in an embodiment, the photolithographic and etching processes in accordance with the method 200 of the present disclosure may be implemented to create selectively and/or partially etched areas on the seal plate 102 that are configured to provide one or more electrical points of contact on the seal plate 102 such that electrosurgical energy may be provided to the seal plate 102 and/or other electrical components associated therewith. More particularly, one or more materials may be laminated together and, subsequently, selectively and/or partially etched. The materials laminated together may be conductive, partially-conductive, or non-conductive. Suitable materials may include but are not limited to stainless steel, copper, silver, and the like.
  • In the embodiment illustrated in FIG. 8, a portion of the seal plate 102 includes layers of stainless steel 122 and copper 124 laminated together. In this embodiment, the layer of copper 124 is selectively etched. Etching the copper 124 in this manner may be used to create one or more etched areas 126 configured to receive one or more types of electrical interfaces. More particularly, an etched area 126 may be configured to receive integrated flex, e.g., a polyimide flex circuit 128 that is configured to provide electrosurgical energy to the seal plate 102, see FIG. 9A. In this instance, one or more through holes 130 may be fully etched to create electrical interconnections through dialectic material located on the polyimide flex (FIG. 9B). Additionally, seal plate 102 may include one or more partially or fully etched areas configured to receive a bead of solder 132 to create one or more electrical interconnections on the seal plate 102 which may result in electrical wiring being an integral component of the seal plate 102. In addition to the foregoing, laminating layers of material together and, subsequently, etching (e.g., partially or fully) one of the layers of material may be used to create heat sinks (not explicitly shown) at specific locations on the seal plate 102.
  • As noted above, in certain instances the seal plates are configured to maintain a desired gap distance. With reference to FIGS. 11A-11F, in an embodiment, the photolithographic and etching processes in accordance with the method 200 of the present disclosure may be implemented to create one or more different types of insulation barriers, e.g., stop members, between seal plates associated with an end effector assembly More particularly, photolithographic and etching processes of the present disclosure may be implemented to create one or more partially or fully etched recesses or pockets 136 a on seal surface 102 a of the seal plate 102 (see FIG. 11A, for example), wherein the pockets 136 a is configured to receive one or more types of corresponding spacers 136 b (FIG. 11A). An etched recess 136 a may include an etch depth of 0.002 inches. Spacer 136 b may be any suitable type of spacer known in the art. Spacer 136 may extend from seal surface 102 a a distance that ranges from about 0.005 inches to about 0.01 inches. In an embodiment, spacer 136 b may be a ceramic spacer made from aluminum titanium carbide, commonly referred to in the art and hereinafter referred to as AlTiC).
  • Etched recesses 136 a and corresponding spacers 136 b may have any suitable geometric configuration and may be dimension to fit within a 0.030×0.030 inch area (FIG. 11B). For example, FIG. 11A illustrates an etched recess 136 a and corresponding spacer 136 b each including a hemispherical configuration. FIG. 11B illustrates an etched recess 138 a and corresponding spacer 138 b each including a cylindrical configuration. FIG. 11C illustrates an etched recess 140 a and corresponding spacer 140 b each including a square configuration. FIG. 11D illustrates an etched recess 142 a and corresponding spacer 142 b each including a triangular configuration. FIG. 11E illustrates a plurality of etched recesses 144 a and corresponding spacers 144 b in an intermittent or staggered configuration. In embodiments, any of the aforementioned etched recesses and corresponding spacers may be arranged in a grid like configuration, see FIG. 11F for example. The combination of any of the aforementioned etched recesses, e.g., recess 138 a and spacers, e.g., spacer 138 b provides a user with the ability to manipulate how the jaw members 110 and 120 come together. For example, cylindrical shaped recess 138 a and corresponding spacer 138 b may be configured to force one of the jaw members, e.g., a upper jaw member 110 to roll along an axis of the spacer 138 b when the upper jaw member 110 and a bottom jaw member 120 of an end effector assembly are moved toward each other, which, in turn, results in a more precise alignment of the upper and lower jaw members 110 and 120, respectively.
  • Moreover, the combination of any of the aforementioned etched recesses, e.g., recess 136 a and spacers, e.g., spacer 136 b increases the integrity of a bond between the seal surface 102 a and spacer 136 b in that the spacer 136 b is encased within a recess 136 b, as opposed to only being bonded to the seal surface 102 a of the seal plate 102. The photolithographic and etching processes in accordance with the method 200 of the present disclosure allows a manufacturer to position any of the aforementioned spacers, e.g., spacer 136 b within a corresponding pocket 136 a to within a 0.0005 inch tolerance.
  • With reference now to FIGS. 12-13B, in an embodiment, a step of the method 200 may include etching one or more recesses, e.g., 136 a on the seal surface 102 a of the seal plate 102 and positioning a spacer, e.g., spacer 136 b in the recess 136 a. In this instance, an automated system 300 is provided and includes a plurality of modules 400 that includes a vacuum module 600, an adhesive dispensing module 700, and an optional optical module 800. Each of the foregoing modules is fully automated and in operative communication with a photolithography module 500 (configured to provide functions previously described herein) that is also fully automated.
  • Photolithography module 500 is configured to fully, partially, and/or selectively etch one or more pockets 136 b on the seal surface 102 a of the seal plate 102. After the pockets 136 b have been etched into the seal surface 102 a of the seal plate 102, the seal plate 102 is transferred to adhesive dispensing module 700 where a bead of adhesive 702 will be dispensed into the pocket 136 b such that a spacer 136 a may be positioned into the pocket 136 b and bonded therein.
  • Vacuum module 600 is configured to raise and transfer a spacer, e.g., spacer 136 b from a loading module 900 (a loading table 900, for example) to the one or more pockets 136 a on the seal plate 102 and lower the spacer 136 b within the pocket 136 a on the seal plate 102. With this purpose mind, the vacuum module 600 includes one or more vacuum transfer devices 602 operatively connected to a vacuum source 604. Vacuum transfer device 602 may be any suitable device that is capable of raising, transferring and lowering a spacer 136 b. For example, vacuum devices typically associated with the manufacture process of disk drives, auto slider bond, SMT automated assembly and PCB assembly may be utilized in combination with vacuum module 600. In an embodiment, the vacuum transfer device 602 (e.g., vacuum device typically utilized in the manufacture process PCB assembly) includes a distal end 606 configured to raise a spacer 136 b (FIG. 13) from loading table 900, transfer the spacer 136 b to the recess 136 a, and, subsequently, lower the spacer 136 b within the recess 136 a.
  • Adhesive dispensing module 700 is configured to dispense a bead of suitable adhesive 702 into the one or more pockets 136 a on the seal plate 102. In an embodiment, the adhesive dispensing module includes a device 704 configured to heat cure the adhesive 702 after the spacer 136 b has been positioned within the pocket 136 a.
  • In an embodiment, an optical module 800 is provided and is configured to monitor the volume of adhesive 702 dispensed within the pocket 136 a, monitor alignment of the spacer 136 b with respect to pocket 136 a and/or monitor placement of the spacer 136 b within the pocket 136 a. To this end, optical module 800 may include one or more types of camera 802 located at or near the adhesive dispensing module 700.
  • System 300 includes one or more microprocessors 1100 including one or more algorithms 1200 configured to control and monitor each of the above-referenced modules during transferring and positioning of the spacers 136 b within the pockets 136 a. System 300 employs an x-y coordinate axis system to facilitate properly aligning a spacer 136 b and pocket 136 a (FIG. 13A).
  • In use, the vacuum transfer device 602 of vacuum module 600 is used to raise one of a plurality of spacers 136 b from a loading table 900 to an adhesive station 1000 where the seal plate 102 is located. At a time prior to the spacer 136 b arriving at the adhesive station 1000, adhesive dispensing module 700 dispenses a bead of adhesive 702 (FIG. 13B) within a pocket 136 a. The time the bead of adhesive 702 is dispensed will depend on such parameters as type of adhesive, cure time of adhesive, volume of adhesive, etc. Camera 802 of optical module 800 may be employed to ensure that the spacer 136 b and pocket 136 a are properly aligned. Once it is determined that the spacer 136 a and pocket 136 b are properly aligned, the vacuum transfer device 602 may be employed to lower the spacer 136 b into pocket 136 a. Camera 802 of optical module 800 may again be employed to ensure that the spacer 136 b seats at a proper height above pocket 136 a (FIG. 13B). In accordance with the present disclosure spacer 136 b seats at a height above the pocket 136 a that ranges from about 0.001 inches to about 0.006 inches. Once it is determined that the spacer 136 b seats at a proper height above pocket 136 a, ultra violet heat may be applied to facilitate the curing process.
  • From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same.
  • While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims (12)

1. A method of manufacture for an end effector assembly, the method including:
providing a pair of jaw members;
forming at least one seal plate positionable on at least one of the pair of jaw members;
etching a dam along a side of the at least one seal plate, wherein the etched darn inhibits the flow of a plastic on the at least one seal plate such that a height of the plastic with respect to the at least one seal plate during an overmolding process may be controlled;
positioning the at least one seal plate on at least one of the pair of jaw members; and
overmolding the seal plate to the at least one of the pair of jaw Members.
2. A method of manufacture for an end effector assembly according to claim 1, wherein the step of etching is performed via a photolithographic process.
3. A method of manufacture for an end effector assembly according to claim 1, further including the step of etching a knife slot on the at least one seal plate.
4. A method of manufacture for an end effector assembly according to claim 1, wherein the step of etching further includes etching a plurality of targeted retention features along the side of the at least one seal plate.
5. A method of manufacture for an end effector assembly according to claim 4, wherein the plurality of targeted retention features are etched through a side of the at least one seal plate.
6. A method of manufacture for an end effector assembly according to claim 4, wherein the plurality of targeted retention features are etched partially through a side of the at least one seal plate.
7. A method of manufacture for an end effector assembly according to claim 1, wherein the step of forming at least one seal plate includes laminating at least two materials together, wherein at least one of the two materials is electrically conductive.
8. A method of manufacture for an end effector assembly according to claim 7, wherein at least one of the at least two materials is selected from the group consisting of stainless steel, copper and ceramic.
9. A method of manufacture for an end effector assembly according to claim 1, wherein the step of etching includes selectively etching copper such that heat sinks are formed at predetermined locations on the at least one seal plate.
10. A method of manufacture for an end effector assembly according to claim 9, further including the step of securing a polyimide flex circuit to the at least one seal plate, wherein the polyimide flex circuit is configured to provide electrical communication between the at least one seal plate and a source of electrosurgical energy.
11. A method of manufacture for an end effector assembly according to claim 10, wherein the step of etching includes etching at least one through hole configured to create an electrical interconnection through a dialectic material on the polyimide flex circuit.
12. A method of manufacture for an end effector assembly according to claim 1, wherein the step of etching includes etching at least one of a textured surface, logo, and ruler on the at least one seal plate.
US12/568,199 2009-09-28 2009-09-28 Method and system for manufacturing electrosurgical seal plates Active 2030-12-04 US8266783B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/568,199 US8266783B2 (en) 2009-09-28 2009-09-28 Method and system for manufacturing electrosurgical seal plates
EP11184307.4A EP2425793B1 (en) 2009-09-28 2010-09-28 Method for manufacturing electrosurgical seal plates
EP10181034.9A EP2301467B1 (en) 2009-09-28 2010-09-28 Method for manufacturing electrosurgical seal plates
EP14150294.8A EP2719352B1 (en) 2009-09-28 2010-09-28 Method for manufacturing electrosurgical seal plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/568,199 US8266783B2 (en) 2009-09-28 2009-09-28 Method and system for manufacturing electrosurgical seal plates

Publications (2)

Publication Number Publication Date
US20110072638A1 true US20110072638A1 (en) 2011-03-31
US8266783B2 US8266783B2 (en) 2012-09-18

Family

ID=43416846

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/568,199 Active 2030-12-04 US8266783B2 (en) 2009-09-28 2009-09-28 Method and system for manufacturing electrosurgical seal plates

Country Status (2)

Country Link
US (1) US8266783B2 (en)
EP (3) EP2719352B1 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110087221A1 (en) * 2009-10-09 2011-04-14 Tyco Healthcare Group Lp Vessel Sealer and Divider With Captured Cutting Element
US8147489B2 (en) 2005-01-14 2012-04-03 Covidien Ag Open vessel sealing instrument
US8197633B2 (en) 2005-09-30 2012-06-12 Covidien Ag Method for manufacturing an end effector assembly
US8246618B2 (en) 2009-07-08 2012-08-21 Tyco Healthcare Group Lp Electrosurgical jaws with offset knife
WO2013025432A1 (en) * 2011-08-18 2013-02-21 Covidien Lp Surgical instruments with removable components
US8394096B2 (en) 2003-11-19 2013-03-12 Covidien Ag Open vessel sealing instrument with cutting mechanism
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US8454602B2 (en) 2009-05-07 2013-06-04 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8551091B2 (en) 2002-10-04 2013-10-08 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US8568444B2 (en) 2008-10-03 2013-10-29 Covidien Lp Method of transferring rotational motion in an articulating surgical instrument
US8591506B2 (en) 1998-10-23 2013-11-26 Covidien Ag Vessel sealing system
US8597296B2 (en) 2003-11-17 2013-12-03 Covidien Ag Bipolar forceps having monopolar extension
US8852228B2 (en) 2009-01-13 2014-10-07 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8887373B2 (en) 2012-02-24 2014-11-18 Covidien Lp Vessel sealing instrument with reduced thermal spread and method of manufacture therefor
US8898888B2 (en) 2009-09-28 2014-12-02 Covidien Lp System for manufacturing electrosurgical seal plates
US8945125B2 (en) 2002-11-14 2015-02-03 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US9011435B2 (en) 2012-02-24 2015-04-21 Covidien Lp Method for manufacturing vessel sealing instrument with reduced thermal spread
US9028493B2 (en) 2009-09-18 2015-05-12 Covidien Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US9113898B2 (en) 2008-10-09 2015-08-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US9198717B2 (en) 2005-08-19 2015-12-01 Covidien Ag Single action tissue sealer
JP2016034489A (en) * 2014-08-04 2016-03-17 エルベ エレクトロメディジン ゲーエムベーハーErbe Elektromedizin GmbH Method for producing branch, and surgical instrument comprising tool having branch
US20160199120A1 (en) * 2015-01-14 2016-07-14 Gyrus Medical Limited Manufacturing electrosurgical instruments
US20170319266A1 (en) * 2013-02-19 2017-11-09 Covidien Lp Method for manufacturing an electrode assembly configured for use with an electrosurgical instrument
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US9962221B2 (en) 2013-08-07 2018-05-08 Covidien Lp Bipolar surgical instrument
US10213250B2 (en) 2015-11-05 2019-02-26 Covidien Lp Deployment and safety mechanisms for surgical instruments
USD843574S1 (en) 2017-06-08 2019-03-19 Covidien Lp Knife for open vessel sealer
US10251696B2 (en) 2001-04-06 2019-04-09 Covidien Ag Vessel sealer and divider with stop members
USD854149S1 (en) 2017-06-08 2019-07-16 Covidien Lp End effector for open vessel sealer
USD854684S1 (en) 2017-06-08 2019-07-23 Covidien Lp Open vessel sealer with mechanical cutter
US10426543B2 (en) 2016-01-23 2019-10-01 Covidien Lp Knife trigger for vessel sealer
US10631887B2 (en) 2016-08-15 2020-04-28 Covidien Lp Electrosurgical forceps for video assisted thoracoscopic surgery and other surgical procedures
US10751110B2 (en) 2013-08-07 2020-08-25 Covidien Lp Bipolar surgical instrument with tissue stop
US10966779B2 (en) 2013-08-07 2021-04-06 Covidien Lp Bipolar surgical instrument
US10973567B2 (en) 2017-05-12 2021-04-13 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue
US10987159B2 (en) 2015-08-26 2021-04-27 Covidien Lp Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread
US11172980B2 (en) 2017-05-12 2021-11-16 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue
US11350982B2 (en) 2018-12-05 2022-06-07 Covidien Lp Electrosurgical forceps
US11376062B2 (en) 2018-10-12 2022-07-05 Covidien Lp Electrosurgical forceps
US11471211B2 (en) 2018-10-12 2022-10-18 Covidien Lp Electrosurgical forceps
US11523861B2 (en) 2019-03-22 2022-12-13 Covidien Lp Methods for manufacturing a jaw assembly for an electrosurgical forceps
US11628008B2 (en) 2020-03-16 2023-04-18 Covidien Lp Forceps with linear trigger kickout mechanism
US11660109B2 (en) 2020-09-08 2023-05-30 Covidien Lp Cutting elements for surgical instruments such as for use in robotic surgical systems

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276068B2 (en) 2002-10-04 2007-10-02 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
CA2561034C (en) 2005-09-30 2014-12-09 Sherwood Services Ag Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
US8475453B2 (en) 2006-10-06 2013-07-02 Covidien Lp Endoscopic vessel sealer and divider having a flexible articulating shaft
WO2009005850A1 (en) * 2007-06-29 2009-01-08 Tyco Healthcare Group, Lp Method and system for monitoring tissue during an electrosurgical procedure
US8357158B2 (en) 2008-04-22 2013-01-22 Covidien Lp Jaw closure detection system
US8968358B2 (en) 2009-08-05 2015-03-03 Covidien Lp Blunt tissue dissection surgical instrument jaw designs
US8357159B2 (en) 2009-09-03 2013-01-22 Covidien Lp Open vessel sealing instrument with pivot assembly
US8568412B2 (en) * 2009-09-09 2013-10-29 Covidien Lp Apparatus and method of controlling cutting blade travel through the use of etched features
US8439911B2 (en) 2009-09-09 2013-05-14 Coviden Lp Compact jaw including through bore pivot pin
US8480671B2 (en) 2010-01-22 2013-07-09 Covidien Lp Compact jaw including split pivot pin
US8858553B2 (en) * 2010-01-29 2014-10-14 Covidien Lp Dielectric jaw insert for electrosurgical end effector
US8597295B2 (en) 2010-04-12 2013-12-03 Covidien Lp Surgical instrument with non-contact electrical coupling
US8623018B2 (en) * 2010-04-13 2014-01-07 Covidien Lp Sealing plate temperature control
US8439913B2 (en) 2010-04-29 2013-05-14 Covidien Lp Pressure sensing sealing plate
US10265118B2 (en) 2010-05-04 2019-04-23 Covidien Lp Pinion blade drive mechanism for a laparoscopic vessel dissector
US8672939B2 (en) 2010-06-01 2014-03-18 Covidien Lp Surgical device for performing an electrosurgical procedure
US8409247B2 (en) 2010-06-02 2013-04-02 Covidien Lp Apparatus for performing an electrosurgical procedure
US8409246B2 (en) 2010-06-02 2013-04-02 Covidien Lp Apparatus for performing an electrosurgical procedure
US8469991B2 (en) 2010-06-02 2013-06-25 Covidien Lp Apparatus for performing an electrosurgical procedure
US8540749B2 (en) 2010-06-02 2013-09-24 Covidien Lp Apparatus for performing an electrosurgical procedure
US8430877B2 (en) 2010-06-02 2013-04-30 Covidien Lp Apparatus for performing an electrosurgical procedure
US8469992B2 (en) 2010-06-02 2013-06-25 Covidien Lp Apparatus for performing an electrosurgical procedure
US8491625B2 (en) 2010-06-02 2013-07-23 Covidien Lp Apparatus for performing an electrosurgical procedure
US8491626B2 (en) 2010-06-02 2013-07-23 Covidien Lp Apparatus for performing an electrosurgical procedure
US8585736B2 (en) 2010-06-02 2013-11-19 Covidien Lp Apparatus for performing an electrosurgical procedure
US8491624B2 (en) 2010-06-02 2013-07-23 Covidien Lp Apparatus for performing an electrosurgical procedure
US8647343B2 (en) 2010-06-23 2014-02-11 Covidien Lp Surgical forceps for sealing and dividing tissue
US9028495B2 (en) 2010-06-23 2015-05-12 Covidien Lp Surgical instrument with a separable coaxial joint
US8795269B2 (en) 2010-07-26 2014-08-05 Covidien Lp Rotary tissue sealer and divider
US8814864B2 (en) 2010-08-23 2014-08-26 Covidien Lp Method of manufacturing tissue sealing electrodes
US9005200B2 (en) 2010-09-30 2015-04-14 Covidien Lp Vessel sealing instrument
US9017372B2 (en) 2010-10-01 2015-04-28 Covidien Lp Blade deployment mechanisms for surgical forceps
US9844384B2 (en) 2011-07-11 2017-12-19 Covidien Lp Stand alone energy-based tissue clips
US9192421B2 (en) 2012-07-24 2015-11-24 Covidien Lp Blade lockout mechanism for surgical forceps
ITFI20120233A1 (en) * 2012-10-29 2014-04-30 Esanastri S R L MICRO-EXPLORATION DEVICE OF PLASTIC OR PAPER FILMS WITH ONE OR MORE LAYERS OF SELF-ADHESIVE, BIADESIVIZED OR ELECTROSTATIC MATCHED WITH AN NON-STICK SUPPORT LINER
US9649151B2 (en) 2013-05-31 2017-05-16 Covidien Lp End effector assemblies and methods of manufacturing end effector assemblies for treating and/or cutting tissue
US9687295B2 (en) * 2014-04-17 2017-06-27 Covidien Lp Methods of manufacturing a pair of jaw members of an end-effector assembly for a surgical instrument
US20150324317A1 (en) 2014-05-07 2015-11-12 Covidien Lp Authentication and information system for reusable surgical instruments
US10478243B2 (en) 2014-08-11 2019-11-19 Covidien Lp Surgical instruments and methods for performing tonsillectomy and adenoidectomy procedures
US20160038220A1 (en) 2014-08-11 2016-02-11 Covidien Lp Surgical instruments and methods for performing tonsillectomy and adenoidectomy procedures
US10231777B2 (en) 2014-08-26 2019-03-19 Covidien Lp Methods of manufacturing jaw members of an end-effector assembly for a surgical instrument
US10813685B2 (en) 2014-09-25 2020-10-27 Covidien Lp Single-handed operable surgical instrument including loop electrode with integrated pad electrode
US10828084B2 (en) 2015-05-22 2020-11-10 Covidien Lp Surgical instruments and methods for performing tonsillectomy, adenoidectomy, and other surgical procedures
US9918781B2 (en) 2015-05-22 2018-03-20 Covidien Lp Surgical instruments and methods for performing tonsillectomy, adenoidectomy, and other surgical procedures
US9918780B2 (en) 2015-05-22 2018-03-20 Covidien Lp Surgical instruments and methods for performing tonsillectomy, adenoidectomy, and other surgical procedures
US10624662B2 (en) 2015-05-22 2020-04-21 Covidien Lp Surgical instruments and methods for performing tonsillectomy, adenoidectomy, and other surgical procedures
US9795435B2 (en) 2015-05-22 2017-10-24 Covidien Lp Surgical instruments and methods for performing tonsillectomy, adenoidectomy, and other surgical procedures
US10219818B2 (en) 2015-07-24 2019-03-05 Covidien Lp Shaft-based surgical forceps and method of manufacturing the same
US10098689B2 (en) 2016-02-24 2018-10-16 Covidien Lp Methods of manufacturing jaw members of surgical forceps
US10682154B2 (en) 2016-08-02 2020-06-16 Covidien Lp Cutting mechanisms for surgical end effector assemblies, instruments, and systems
US11007003B2 (en) * 2016-11-17 2021-05-18 Covidien Lp Surgical instruments and methods of manufacturing surgical instruments for performing tonsillectomy, adenoidectomy, and other surgical procedures
US11272947B2 (en) 2016-11-17 2022-03-15 Covidien Lp Surgical instruments for performing tonsillectomy, adenoidectomy, and other surgical procedures
US10639093B2 (en) 2016-12-01 2020-05-05 Covidien Lp Surgical instrument including a wire guide
US10492852B2 (en) 2017-02-27 2019-12-03 Covidien Lp Wire guide for surgical instruments and surgical instruments including a wire guide
US11123133B2 (en) 2018-04-24 2021-09-21 Covidien Lp Method of reprocessing a surgical instrument
US11026710B2 (en) 2019-01-10 2021-06-08 Covidien Lp Surgical instruments and methods of manufacturing surgical instruments for performing tonsillectomy, adenoidectomy, and other surgical procedures
US11259864B2 (en) 2019-06-06 2022-03-01 Covidien Lp Surgical instrument with enhanced trigger
US11877790B2 (en) 2020-01-07 2024-01-23 Covidien Lp Surgical forceps having jaw members
US11844562B2 (en) 2020-03-23 2023-12-19 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030181910A1 (en) * 1998-10-23 2003-09-25 Dycus Sean T. Bipolar electrosurgical forceps with non-conductive stop members
US20040236326A1 (en) * 2001-01-24 2004-11-25 Schulze Dale R. Electrosurgical instrument with closing tube for conducting RF energy and moving jaws
US20060271038A1 (en) * 2002-10-04 2006-11-30 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US20070074807A1 (en) * 2005-09-30 2007-04-05 Sherwood Services Ag Method for manufacturing an end effector assembly
US20090012520A1 (en) * 2006-01-24 2009-01-08 Tyco Healthcare Group Lp Vessel Sealer and Divider for Large Tissue Structures
US20090209960A1 (en) * 2008-02-14 2009-08-20 Tyco Healthcare Group Lp End Effector Assembly for Electrosurgical Device
US20090254081A1 (en) * 2008-04-08 2009-10-08 Tyco Electronics Corporation System and method for surgical jaw assembly
US20110073246A1 (en) * 2009-09-28 2011-03-31 Tyco Healthcare Group Lp Method and System for Manufacturing Electrosurgical Seal Plates
US7931649B2 (en) * 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB623316A (en) 1947-04-29 1949-05-16 Thomas Wallace Parker Improvements in and relating to building units
SU401367A1 (en) 1971-10-05 1973-10-12 Тернопольский государственный медицинский институт BIAKTIVNYE ELECTRO SURGICAL INSTRUMENT
DE2415263A1 (en) 1974-03-29 1975-10-02 Aesculap Werke Ag Surgical H.F. coagulation probe has electrode tongs - with exposed ends of insulated conductors forming tong-jaws
DE7418576U (en) 1974-05-30 1974-09-12 Richard Wolf Gmbh Catheter with a loop that can be put under tension
DE2514501A1 (en) 1975-04-03 1976-10-21 Karl Storz Bipolar coagulation instrument for endoscopes - has two high frequency electrodes looped over central insulating piece
FR2315286A2 (en) 1975-06-26 1977-01-21 Lamidey Marcel H.F. blood coagulating dissecting forceps - with adjustable stops to vary clamping space and circuit making contacts
DE3490633C2 (en) 1984-01-30 1988-06-23 Cahr Kovskij Ni Skij I Obscej Bipolar electrosurgical instrument
US4657016A (en) 1984-08-20 1987-04-14 Garito Jon C Electrosurgical handpiece for blades, needles and forceps
DE8712328U1 (en) 1987-09-11 1988-02-18 Jakoubek, Franz, 7201 Emmingen-Liptingen, De
GB2213416B (en) 1987-12-11 1991-12-18 Stanley Works Ltd Blade-carriers for retractable-blade knives
GB8801177D0 (en) 1988-01-20 1988-02-17 Goble N M Diathermy unit
JP2806511B2 (en) 1990-07-31 1998-09-30 松下電工株式会社 Manufacturing method of sintered alloy
US5282799A (en) 1990-08-24 1994-02-01 Everest Medical Corporation Bipolar electrosurgical scalpel with paired loop electrodes
US5190541A (en) 1990-10-17 1993-03-02 Boston Scientific Corporation Surgical instrument and method
JP2951418B2 (en) 1991-02-08 1999-09-20 トキコ株式会社 Sample liquid component analyzer
US6277112B1 (en) 1996-07-16 2001-08-21 Arthrocare Corporation Methods for electrosurgical spine surgery
US5683366A (en) 1992-01-07 1997-11-04 Arthrocare Corporation System and method for electrosurgical tissue canalization
JPH05258641A (en) 1992-03-16 1993-10-08 Matsushita Electric Ind Co Ltd Panel switch
US5562720A (en) 1992-05-01 1996-10-08 Vesta Medical, Inc. Bipolar/monopolar endometrial ablation device and method
CA2104423A1 (en) 1992-08-24 1994-02-25 Boris Zvenyatsky Handle for endoscopic instruments and jaw structure
DE4303882C2 (en) 1993-02-10 1995-02-09 Kernforschungsz Karlsruhe Combination instrument for separation and coagulation for minimally invasive surgery
GB9309142D0 (en) 1993-05-04 1993-06-16 Gyrus Medical Ltd Laparoscopic instrument
US5512721A (en) 1993-09-28 1996-04-30 Unisurge, Inc. Autoclavable electrical switch assembly for use with a medical device and medical device using the same
GB9322464D0 (en) 1993-11-01 1993-12-22 Gyrus Medical Ltd Electrosurgical apparatus
DE4403252A1 (en) 1994-02-03 1995-08-10 Michael Hauser Instrument shaft for min. invasive surgery
US5505730A (en) 1994-06-24 1996-04-09 Stuart D. Edwards Thin layer ablation apparatus
GB9413070D0 (en) 1994-06-29 1994-08-17 Gyrus Medical Ltd Electrosurgical apparatus
GB9425781D0 (en) 1994-12-21 1995-02-22 Gyrus Medical Ltd Electrosurgical instrument
US6602248B1 (en) 1995-06-07 2003-08-05 Arthro Care Corp. Methods for repairing damaged intervertebral discs
DE19515914C1 (en) 1995-05-02 1996-07-25 Aesculap Ag Tong or scissor-shaped surgical instrument
US7179255B2 (en) 1995-06-07 2007-02-20 Arthrocare Corporation Methods for targeted electrosurgery on contained herniated discs
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
US5792137A (en) 1995-10-27 1998-08-11 Lacar Microsystems, Inc. Coagulating microsystem
US6126656A (en) 1996-01-30 2000-10-03 Utah Medical Products, Inc. Electrosurgical cutting device
DE19608716C1 (en) 1996-03-06 1997-04-17 Aesculap Ag Bipolar surgical holding instrument
DE29616210U1 (en) 1996-09-18 1996-11-14 Winter & Ibe Olympus Handle for surgical instruments
US5923475A (en) 1996-11-27 1999-07-13 Eastman Kodak Company Laser printer using a fly's eye integrator
US5925043A (en) 1997-04-30 1999-07-20 Medquest Products, Inc. Electrosurgical electrode with a conductive, non-stick coating
DE19738457B4 (en) 1997-09-03 2009-01-02 Celon Ag Medical Instruments Method and device for in vivo deep coagulation of biological tissue volumes while sparing the tissue surface with high frequency alternating current
DE19751108A1 (en) 1997-11-18 1999-05-20 Beger Frank Michael Dipl Desig Electrosurgical operation tool, especially for diathermy
EP0923907A1 (en) 1997-12-19 1999-06-23 Gyrus Medical Limited An electrosurgical instrument
US6106542A (en) 1998-01-23 2000-08-22 Microsurgical Laboratories, Inc. Surgical forceps
US6049650A (en) * 1998-04-17 2000-04-11 Seagate Technology, Inc. Structure for micro-machine optical tooling and method for making and using
US6508815B1 (en) 1998-05-08 2003-01-21 Novacept Radio-frequency generator for powering an ablation device
GB9911956D0 (en) 1999-05-21 1999-07-21 Gyrus Medical Ltd Electrosurgery system and method
GB9911954D0 (en) 1999-05-21 1999-07-21 Gyrus Medical Ltd Electrosurgery system and instrument
GB9912625D0 (en) 1999-05-28 1999-07-28 Gyrus Medical Ltd An electrosurgical generator and system
GB9912627D0 (en) 1999-05-28 1999-07-28 Gyrus Medical Ltd An electrosurgical instrument
GB9913652D0 (en) 1999-06-11 1999-08-11 Gyrus Medical Ltd An electrosurgical generator
JP4233742B2 (en) 1999-10-05 2009-03-04 エシコン・エンド−サージェリィ・インコーポレイテッド Connecting curved clamp arms and tissue pads used with ultrasonic surgical instruments
JP2001126225A (en) * 1999-10-21 2001-05-11 Tdk Corp Method for manufacturing magnetic head slider, method for fixing bar and curing agent
US6953461B2 (en) 2002-05-16 2005-10-11 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
US6558385B1 (en) 2000-09-22 2003-05-06 Tissuelink Medical, Inc. Fluid-assisted medical device
DE10027727C1 (en) 2000-06-03 2001-12-06 Aesculap Ag & Co Kg Scissors-shaped or forceps-shaped surgical instrument
US7083618B2 (en) * 2001-04-06 2006-08-01 Sherwood Services Ag Vessel sealer and divider
EP1435865A4 (en) 2001-09-05 2007-03-14 Tissuelink Medical Inc Fluid assisted medical devices, fluid delivery systems and controllers for such devices, and methods
US20040030330A1 (en) 2002-04-18 2004-02-12 Brassell James L. Electrosurgery systems
DE60329625D1 (en) 2002-11-27 2009-11-19 Pulmonx Corp INTRODUCTION FOR IMPLANTABLE BRONCHIAL INSULATION DEVICES
US7909820B2 (en) 2003-03-06 2011-03-22 Salient Surgical Technologies, Inc. Electrosurgical generator and bipolar electrosurgical device adaptors
US7150097B2 (en) 2003-06-13 2006-12-19 Sherwood Services Ag Method of manufacturing jaw assembly for vessel sealer and divider
US7686804B2 (en) * 2005-01-14 2010-03-30 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US7491202B2 (en) * 2005-03-31 2009-02-17 Covidien Ag Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
US20060283093A1 (en) 2005-06-15 2006-12-21 Ivan Petrovic Planarization composition
US7846158B2 (en) 2006-05-05 2010-12-07 Covidien Ag Apparatus and method for electrode thermosurgery
US7877852B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing an end effector assembly for sealing tissue

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030181910A1 (en) * 1998-10-23 2003-09-25 Dycus Sean T. Bipolar electrosurgical forceps with non-conductive stop members
US20040236326A1 (en) * 2001-01-24 2004-11-25 Schulze Dale R. Electrosurgical instrument with closing tube for conducting RF energy and moving jaws
US20060271038A1 (en) * 2002-10-04 2006-11-30 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7270664B2 (en) * 2002-10-04 2007-09-18 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US20080045947A1 (en) * 2002-10-04 2008-02-21 Johnson Kristin D Vessel sealing instrument with electrical cutting mechanism
US7931649B2 (en) * 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
US20110178519A1 (en) * 2002-10-04 2011-07-21 Covidien Ag Vessel Sealing Instrument with Electrical Cutting Mechanism
US20070074807A1 (en) * 2005-09-30 2007-04-05 Sherwood Services Ag Method for manufacturing an end effector assembly
US20090012520A1 (en) * 2006-01-24 2009-01-08 Tyco Healthcare Group Lp Vessel Sealer and Divider for Large Tissue Structures
US20090209960A1 (en) * 2008-02-14 2009-08-20 Tyco Healthcare Group Lp End Effector Assembly for Electrosurgical Device
US20090254081A1 (en) * 2008-04-08 2009-10-08 Tyco Electronics Corporation System and method for surgical jaw assembly
US20110073246A1 (en) * 2009-09-28 2011-03-31 Tyco Healthcare Group Lp Method and System for Manufacturing Electrosurgical Seal Plates

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8591506B2 (en) 1998-10-23 2013-11-26 Covidien Ag Vessel sealing system
US9463067B2 (en) 1998-10-23 2016-10-11 Covidien Ag Vessel sealing system
US9375270B2 (en) 1998-10-23 2016-06-28 Covidien Ag Vessel sealing system
US9375271B2 (en) 1998-10-23 2016-06-28 Covidien Ag Vessel sealing system
US10251696B2 (en) 2001-04-06 2019-04-09 Covidien Ag Vessel sealer and divider with stop members
US10265121B2 (en) 2001-04-06 2019-04-23 Covidien Ag Vessel sealer and divider
US10687887B2 (en) 2001-04-06 2020-06-23 Covidien Ag Vessel sealer and divider
US8551091B2 (en) 2002-10-04 2013-10-08 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US8945125B2 (en) 2002-11-14 2015-02-03 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US10441350B2 (en) 2003-11-17 2019-10-15 Covidien Ag Bipolar forceps having monopolar extension
US8597296B2 (en) 2003-11-17 2013-12-03 Covidien Ag Bipolar forceps having monopolar extension
US8394096B2 (en) 2003-11-19 2013-03-12 Covidien Ag Open vessel sealing instrument with cutting mechanism
US8147489B2 (en) 2005-01-14 2012-04-03 Covidien Ag Open vessel sealing instrument
US9198717B2 (en) 2005-08-19 2015-12-01 Covidien Ag Single action tissue sealer
US10188452B2 (en) 2005-08-19 2019-01-29 Covidien Ag Single action tissue sealer
US8197633B2 (en) 2005-09-30 2012-06-12 Covidien Ag Method for manufacturing an end effector assembly
US8568444B2 (en) 2008-10-03 2013-10-29 Covidien Lp Method of transferring rotational motion in an articulating surgical instrument
US9113898B2 (en) 2008-10-09 2015-08-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8852228B2 (en) 2009-01-13 2014-10-07 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US9655674B2 (en) 2009-01-13 2017-05-23 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US9345535B2 (en) 2009-05-07 2016-05-24 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8454602B2 (en) 2009-05-07 2013-06-04 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US10085794B2 (en) 2009-05-07 2018-10-02 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8858554B2 (en) 2009-05-07 2014-10-14 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8523898B2 (en) 2009-07-08 2013-09-03 Covidien Lp Endoscopic electrosurgical jaws with offset knife
US8246618B2 (en) 2009-07-08 2012-08-21 Tyco Healthcare Group Lp Electrosurgical jaws with offset knife
US9028493B2 (en) 2009-09-18 2015-05-12 Covidien Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US9931131B2 (en) 2009-09-18 2018-04-03 Covidien Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US8898888B2 (en) 2009-09-28 2014-12-02 Covidien Lp System for manufacturing electrosurgical seal plates
US9265552B2 (en) 2009-09-28 2016-02-23 Covidien Lp Method of manufacturing electrosurgical seal plates
US11490955B2 (en) 2009-09-28 2022-11-08 Covidien Lp Electrosurgical seal plates
US11026741B2 (en) 2009-09-28 2021-06-08 Covidien Lp Electrosurgical seal plates
US10188454B2 (en) 2009-09-28 2019-01-29 Covidien Lp System for manufacturing electrosurgical seal plates
US9750561B2 (en) 2009-09-28 2017-09-05 Covidien Lp System for manufacturing electrosurgical seal plates
US20110087221A1 (en) * 2009-10-09 2011-04-14 Tyco Healthcare Group Lp Vessel Sealer and Divider With Captured Cutting Element
US8343151B2 (en) 2009-10-09 2013-01-01 Covidien Lp Vessel sealer and divider with captured cutting element
US11660108B2 (en) 2011-01-14 2023-05-30 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US10383649B2 (en) 2011-01-14 2019-08-20 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
WO2013025432A1 (en) * 2011-08-18 2013-02-21 Covidien Lp Surgical instruments with removable components
US9028492B2 (en) 2011-08-18 2015-05-12 Covidien Lp Surgical instruments with removable components
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US9867659B2 (en) 2012-02-24 2018-01-16 Covidien Lp Vessel sealing instrument with reduced thermal spread and method of manufacture therefor
US9011435B2 (en) 2012-02-24 2015-04-21 Covidien Lp Method for manufacturing vessel sealing instrument with reduced thermal spread
US9161806B2 (en) 2012-02-24 2015-10-20 Covidien Lp Vessel sealing instrument with reduced thermal spread and method of manufacture therefor
US9468491B2 (en) 2012-02-24 2016-10-18 Covidien Lp Vessel sealing instrument with reduced thermal spread and method of manufacture therefor
US8887373B2 (en) 2012-02-24 2014-11-18 Covidien Lp Vessel sealing instrument with reduced thermal spread and method of manufacture therefor
US9204919B2 (en) 2012-02-24 2015-12-08 Covidien Lp Vessel sealing instrument with reduced thermal spread and method of manufacturing therefor
US10806508B2 (en) * 2013-02-19 2020-10-20 Covidien Lp Method for manufacturing an electrode assembly configured for use with an electrosurgical instrument
US20170319266A1 (en) * 2013-02-19 2017-11-09 Covidien Lp Method for manufacturing an electrode assembly configured for use with an electrosurgical instrument
US9962221B2 (en) 2013-08-07 2018-05-08 Covidien Lp Bipolar surgical instrument
US11612428B2 (en) 2013-08-07 2023-03-28 Covidien Lp Bipolar surgical instrument
US10751110B2 (en) 2013-08-07 2020-08-25 Covidien Lp Bipolar surgical instrument with tissue stop
US11826090B2 (en) 2013-08-07 2023-11-28 Covidien Lp Bipolar surgical instrument
US10959770B2 (en) 2013-08-07 2021-03-30 Covidien Lp Method of assembling an electrosurgical instrument
US10966779B2 (en) 2013-08-07 2021-04-06 Covidien Lp Bipolar surgical instrument
JP2016034489A (en) * 2014-08-04 2016-03-17 エルベ エレクトロメディジン ゲーエムベーハーErbe Elektromedizin GmbH Method for producing branch, and surgical instrument comprising tool having branch
US11007002B2 (en) * 2015-01-14 2021-05-18 Gyrus Medical Limited Manufacturing electrosurgical instruments
US20160199120A1 (en) * 2015-01-14 2016-07-14 Gyrus Medical Limited Manufacturing electrosurgical instruments
US10987159B2 (en) 2015-08-26 2021-04-27 Covidien Lp Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread
US10213250B2 (en) 2015-11-05 2019-02-26 Covidien Lp Deployment and safety mechanisms for surgical instruments
US10426543B2 (en) 2016-01-23 2019-10-01 Covidien Lp Knife trigger for vessel sealer
US10631887B2 (en) 2016-08-15 2020-04-28 Covidien Lp Electrosurgical forceps for video assisted thoracoscopic surgery and other surgical procedures
US11576697B2 (en) 2016-08-15 2023-02-14 Covidien Lp Electrosurgical forceps for video assisted thoracoscopic surgery and other surgical procedures
US11172980B2 (en) 2017-05-12 2021-11-16 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue
US10973567B2 (en) 2017-05-12 2021-04-13 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue
USD854149S1 (en) 2017-06-08 2019-07-16 Covidien Lp End effector for open vessel sealer
USD854684S1 (en) 2017-06-08 2019-07-23 Covidien Lp Open vessel sealer with mechanical cutter
USD843574S1 (en) 2017-06-08 2019-03-19 Covidien Lp Knife for open vessel sealer
US11376062B2 (en) 2018-10-12 2022-07-05 Covidien Lp Electrosurgical forceps
US11471211B2 (en) 2018-10-12 2022-10-18 Covidien Lp Electrosurgical forceps
US11350982B2 (en) 2018-12-05 2022-06-07 Covidien Lp Electrosurgical forceps
US11523861B2 (en) 2019-03-22 2022-12-13 Covidien Lp Methods for manufacturing a jaw assembly for an electrosurgical forceps
US11628008B2 (en) 2020-03-16 2023-04-18 Covidien Lp Forceps with linear trigger kickout mechanism
US11660109B2 (en) 2020-09-08 2023-05-30 Covidien Lp Cutting elements for surgical instruments such as for use in robotic surgical systems

Also Published As

Publication number Publication date
EP2425793A1 (en) 2012-03-07
US8266783B2 (en) 2012-09-18
EP2301467B1 (en) 2014-02-19
EP2301467A1 (en) 2011-03-30
EP2425793B1 (en) 2014-01-15
EP2719352A1 (en) 2014-04-16
EP2719352B1 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
US11490955B2 (en) Electrosurgical seal plates
US8266783B2 (en) Method and system for manufacturing electrosurgical seal plates
JP6834000B2 (en) Flexible connector
CN102194716B (en) Method for manufacturing a semiconductor device and a semiconductor device
US8441808B2 (en) Interposer with microspring contacts
TWI544590B (en) Semiconductor device package and method of manufacturing thereof
WO1990010321A1 (en) Method of forming contact bumps in contact pads
CN101599446B (en) Electronic device and method of manufacturing the same
EP1564811B1 (en) Dual-sided substrate integrated circuit package including a leadframe having leads with increased thickness
US6309910B1 (en) Microelectronic components with frangible lead sections
US6632733B2 (en) Components and methods with nested leads
US6274822B1 (en) Manufacture of semiconductor connection components with frangible lead sections
US8471335B2 (en) Semiconductor structure with alignment control mask
JP2009521815A (en) Incorporation and method of flexible terminal having opening (bent)
TW200925611A (en) Manufacturing method of probe contact
CN220172125U (en) Integrated circuit board and integrated circuit carrier plate
TW571426B (en) Manufacturing method of non-optical etched thin film resistor
JP6699827B2 (en) Method for manufacturing diamond-based conducting structure
US6218213B1 (en) Microelectronic components with frangible lead sections
JPH1140943A (en) Manufacture of ceramic mold
JPH06120303A (en) Inner lead bonder
Peterson et al. Continuing Challenges in LTCC.
KR101301739B1 (en) Method for producing probe card
JP2004013649A (en) Manufacturing method of ic card and the ic card
KR20020061549A (en) the method of manufacturing mesh pannel

Legal Events

Date Code Title Description
AS Assignment

Owner name: TYCO HEALTHCARE GROUP LP, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRANDT, KIM V.;AQUINO, ALLAN G.;SIGNING DATES FROM 20090924 TO 20090928;REEL/FRAME:023291/0222

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: COVIDIEN LP, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:TYCO HEALTHCARE GROUP LP;REEL/FRAME:029065/0403

Effective date: 20120928

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12