US20110105084A1 - Back-channeled packeted data - Google Patents

Back-channeled packeted data Download PDF

Info

Publication number
US20110105084A1
US20110105084A1 US12/914,825 US91482510A US2011105084A1 US 20110105084 A1 US20110105084 A1 US 20110105084A1 US 91482510 A US91482510 A US 91482510A US 2011105084 A1 US2011105084 A1 US 2011105084A1
Authority
US
United States
Prior art keywords
data
network
content
processor node
set forth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/914,825
Inventor
Anand Chandrasekaran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unwired Planet LLC
Unwired Planet IP Manager LLC
Original Assignee
Openwave Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Openwave Systems Inc filed Critical Openwave Systems Inc
Priority to US12/914,825 priority Critical patent/US20110105084A1/en
Assigned to OPENWAVE SYSTEMS INC. reassignment OPENWAVE SYSTEMS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANDRASEKARAN, ANAND
Publication of US20110105084A1 publication Critical patent/US20110105084A1/en
Assigned to UNWIRED PLANET, INC. reassignment UNWIRED PLANET, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: OPENWAVE SYSTEMS INC.
Assigned to UNWIRED PLANET IP MANAGER, LLC reassignment UNWIRED PLANET IP MANAGER, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UNWIRED PLANET, INC.
Assigned to UNWIRED PLANET, LLC reassignment UNWIRED PLANET, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UNWIRED PLANET IP MANAGER, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/08Access security
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/10Network architectures or network communication protocols for network security for controlling access to devices or network resources
    • H04L63/107Network architectures or network communication protocols for network security for controlling access to devices or network resources wherein the security policies are location-dependent, e.g. entities privileges depend on current location or allowing specific operations only from locally connected terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/18Information format or content conversion, e.g. adaptation by the network of the transmitted or received information for the purpose of wireless delivery to users or terminals
    • H04W4/185Information format or content conversion, e.g. adaptation by the network of the transmitted or received information for the purpose of wireless delivery to users or terminals by embedding added-value information into content, e.g. geo-tagging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data

Definitions

  • the present disclosure is related to computers, communication networks and the use of traffic data in a communication network having network elements that are implemented with wireless technology. Aspects of the disclosure relate to location-indicative information provided on behalf of terminals and used in such a communication network.
  • a wireless communication network may include a communication system using one or more of various radio-communication schemes such as represented in recent implementations and proposals of digital (e.g., 3G/4G) cellular, wireless peer-peer, PCS and satellite communication systems.
  • digital e.g., 3G/4G
  • Wireless communication networks generally include a network of base stations that communicate with various wireless communication devices.
  • wireless communication devices include telephony devices, wireless readers, radios, personal digital assistants (PDAs), palmtops, notebook computers, and other devices that have wireless communication capability.
  • Each base station provides communication services within its respective network zone, such that the network of base stations provides a number of network zones that can cover a large geographic area.
  • the network zones and their respective coverage areas occasionally change as base stations are improved and added within the wireless communication network. Nearly all of the United States is covered by cellular communication networks, with many of the base stations now providing various forms of the above-mentioned communication systems.
  • location-based service applications have been implemented or proposed for wireless communication networks.
  • location-based service applications include: emergency service, location-dependent call routing, location-dependent billing, location tracking, and the like.
  • emergency applications the call and the exact location of the wireless communication device may be routed to the closest provider of emergency services, thus reducing emergency response time and possibly saving lives.
  • location-dependent billing applications different billing rates may be charged to a customer for operating the wireless communication device in different geographical areas.
  • Each location-based service application utilizes the location of the wireless communication device.
  • Location systems sometimes utilize conventional system reference location methods for determining or characterizing the location of the wireless communication device. Such reference location methods operate by relating the location of the wireless communication device to a network zone, e.g., cell or cell sector of the wireless communication network.
  • a network zone e.g., cell or cell sector of the wireless communication network.
  • mobile operators face specific and real problems with network resources that may hinder widespread deployment of commercial location-based services. For example, consider a situation where a mobile operator is offering a mix of location-based services to its subscribers. The application mix includes services like fleet tracking, child finder, push advertising, and traffic alerts. These applications generally would like to be notified with location updates when the subscriber is moving, and perhaps with greater frequency when the subscriber is moving more rapidly.
  • aspects of the present disclosure can be useful for addressing these various needs and for providing various advantages and uses of location-based information in networks involving mobile terminals. While the present disclosure is not necessarily limited to such aspects, the instant disclosure may be appreciated through a discussion of examples using these and other contexts.
  • aspects of the present disclosure are directed to various embodiments involving back-channel location-based data available to an operator of the wireless network.
  • Some of these aspects are: 1) architectural aspects of wireless communication networks for routing and processing location-based mobile-terminal data within the network; 2) routing and processing location-based mobile-terminal data by a wireless communication network in cooperation with a local or hot-spot network; 3) processing location-based mobile-terminal data by a wireless communication network for controlling aspects of mobile terminals; 4) Mobile terminal operation based on input from a wireless communication network processing location-based mobile-terminal data; 5) a wireless communication network adapted for routing and processing location-based mobile-terminal data to monitor (suspicious) calls; 6) providing telephony terminals network access (e.g., call-screening) on behalf of 3 rd parties; 7) a wireless communication network adapted for using and processing location-based mobile-terminal data as (geo-tagged) information sources for third parties and adaptively reprocessing such location-based data within the network with third party
  • the processor node provides one or more of the above-noted controls on access to communications channels according to government-related standards which are similarly stored and used as mobile-terminal profiles. Where government employees are prohibited from keyboarding/texting on a mobile terminal while driving (as recently enacted in one federal level), the processor node controls the communications to block/monitor such keyboarding/texting while the mobile terminal is being tracked using the user's mobile-identification information with the location-access point as part of a mandatory government-based authorization subscriber protocol and/or another authorized procedure.
  • government-related controls can similarly discriminate access of some or all types of communications (as discussed above) based on one or more of the following: the location-data indicating movement in a vehicle moving at all, on specific highways, or at specific speeds; alone or in combination with: the user's age as extracted and assumed from the subscriber data for the mobile equipment, the time (e.g., after curfew), or the day (e.g., New Year's Eve).
  • a processor node in the communications network provides one or more of the above-noted controls access to communications channels where the communication is initiated from or involves certain types of mobile terminal or uses of mobile terminals in certain suspicious situations.
  • These mobile terminal types, uses and suspicious situations are defined by government entities and also recorded/updated as one or more profiles in memory for access by the processor node. Examples of such situations might include a high or severe threat alert by the Homeland Security Advisory System in combination with mobile terminal calls issued to suspicious classes of individuals from specific venues of concern.
  • the processor node can add such pin-pointing information by drawing from government-published databases and recording and/or real-time reporting of the added information as required in the government-defined profiles.
  • another communication channel in the network can be activated to provide a real-time connection to enable the processor node with the video-based biometrics (e.g., facial recognition) as another data parameter for monitoring and/or comparing with the aforesaid parameters for assessing whether or not to provide additional operations such as alerting or further controlling aspects via the communications channels.
  • biometrics e.g., facial recognition
  • other databases and analysis/reporting centers are used cooperatively to provide inputs and to analyze results of the processor node(s) configured to monitor or control such suspicious/flagged calls.
  • processor node(s) configured to monitor or control such suspicious/flagged calls.
  • national banks are required to report known or suspected criminal offenses, at specified thresholds, or transactions over $5,000 that they suspect involve money laundering or violate the Bank Secrecy Act.
  • SAR Suspicious Activity Reports
  • Similar regulations by other regulators apply to other financial institutions.
  • these types of databases are used to provide parameters for use by a wireless communication system configured to monitor channels involving certain mobile terminals in certain locations.
  • the wireless communication system manages a memory circuit that stores: on behalf of an operator for the communication network, user profiles that include wireless network subscriber data useful for providing network access to mobile terminals associated with the subscriber data; and on behalf of a third party, communication rules relevant to geographic regions of service provided by the communication network and relevant to designated telephony terminals called by the mobile terminals.
  • a processor node optionally configured within the wireless-technology equipment, is configured and software-programmed for assimilating current location data regarding the mobile terminals with the user profiles, and using the assimilated current location data and the communication rules to control access or effect communication with the designated telephony terminals through the network communication.
  • FIG. 1A depicts a block diagram of a system and various configurations optionally involving external data-processing/data-access nodes, consistent with embodiments of the present disclosure.
  • FIG. 1B depicts a block diagram of a system and various specialized processor-node configurations, consistent with embodiments of the present disclosure.
  • FIG. 2A shows a block diagram for data flow relative to certain network accesses by mobile devices, and including an expanded block diagram of a specialized processing node, consistent with embodiments of the present disclosure.
  • FIG. 2B shows a block diagram for a publisher API relative to certain network accesses by mobile devices, and for use with one or more of the internal or external nodes shown in the block diagrams of one or more of the above figures, also consistent with embodiments of the present disclosure.
  • FIG. 3 depicts an example wireless network consistent with various cellular systems and embodiments of the present disclosure.
  • FIG. 4 depicts an example network, including a wireless network, consistent with various cellular systems and embodiments of the present disclosure and further including expanded example block diagrams to illustrate aspects of the user devices and processor-node circuitry useful for many of the embodiments discussed and illustrated herein.
  • FIG. 5 depicts an example network, including a wireless network, consistent with various cellular systems and embodiments of the present disclosure including many discussed and illustrated herein.
  • a wireless data/communication network includes access networks in multiple geographies interconnected by a core network, where the wireless data network includes one or more specially-configured processor modules (herein referred to as processor nodes) that operate on location-based data and user profile data as this type of data is developed and/or passed along the channels of the network. While not necessarily limited thereto, aspects of the present disclosure are directed to uses of this type of data, referred to herein as back channel data.
  • processor nodes specially-configured processor modules
  • the location-based data can be developed upon registration of the mobile terminals which occurs through the radio-access equipment, such as base stations and, in certain configurations and in addition to or in lieu of, the location of the mobile terminal is refined or provided by another device such as by the mobile terminal pushing its GPS location to the wireless network or by the above-mentioned processor node assimilating the mobile terminal's communication history (e.g., last-known GPS coordinates and/or last linked-to WiFi server).
  • the radio-access equipment such as base stations
  • the location of the mobile terminal is refined or provided by another device such as by the mobile terminal pushing its GPS location to the wireless network or by the above-mentioned processor node assimilating the mobile terminal's communication history (e.g., last-known GPS coordinates and/or last linked-to WiFi server).
  • the user profile data is largely pre-stored in the wireless network based on contractual rights implemented before the user gains access the wireless network. These contractual rights specify the identity of the mobile terminal and other miscellaneous information which is useful for the user of the mobile terminal, for the operator of the wireless network as well as for certain third parties.
  • a SIM-type card can contain one or more unique serial numbers for the mobile user, security authentication and ciphering information, temporary information related to the local network such as a temporary local identification number that has been issued to the user, certain passwords and a list of the user-accessible services made available by the wireless network to the user.
  • This information referred to as user-profile data, is retrieved and processed by the above-mentioned processor nodes, in channels of wireless network channels for the user to communicate.
  • such communications networks may include a wireless network and another local or periphery-region network, where the wireless network has such a processor node operating on back channel data and where the local or periphery-region network includes a wireless link (e.g., in the last mile of the network) connecting user client devices to a radio transceiver with additional core network elements connecting the access network to the Internet backbone.
  • the core network may employ wired or wireless technologies or a combination thereof.
  • the access network includes a femtocell that acts as the access network's transceiver with a user's broadband connection acting as the backhaul link to the core network and the Internet backbone.
  • the access network is terminated by a wireless WAN router that has one or more client devices connected to it over a wired connection (e.g., 3G router) or a wireless connection (e.g., 3G WiFi router).
  • a wireless WAN router that has one or more client devices connected to it over a wired connection (e.g., 3G router) or a wireless connection (e.g., 3G WiFi router).
  • the access and core networks together can be operated by a wireless service provider that manages the network and charges users for the service.
  • aspects of the present disclosure relate to use of processor nodes within the wireless network that are configured to provide specialized information, drawing from the back channel data, to the user of the mobile terminal, to the operator of the wireless network and to certain third parties which may be charged for the services relying on the special information.
  • these specialized services can be provided to an operator of the wireless network to provide location-based, user-profile based detailed analytics for performing optimizations of the data traffic in a wireless network by (re)routing in a proactive/predictive manner or reactively based on dynamics learned while users are accessing the network.
  • the wireless network is aware of its own capabilities for handling data flow, such as where a cache memory might be available at a periphery region of the network about to be congested by a myriad of users (e.g., a breaking event drawing crowds to a region and to news-related web pages characterizing the event), communication between its specialized processor nodes can exploit this back channel data by delivering redundantly-requested content from the cache rather than from a resource on the other side of the network.
  • another set of related back channel data e.g., pertaining to the number and age groups of people suddenly appearing at the event, can be processed by the processor node(s) and published as geographically-tagged information for third parties.
  • FIG. 1A depicts a block diagram for a data control module within a communication system, consistent with embodiments of the present disclosure.
  • a data flow controller 180 controls the flow of data between user devices 184 and content providers (or databases) 188 a - 188 c .
  • User devices 184 also referred to as user terminals, user equipment, user devices, mobile stations, mobile devices, mobile terminals, mobile equipment
  • a communications network 182 examples of suitable networks are provided herein.
  • Content providers can be connected to the data flow controller through a communications network 186 (e.g., a wired/wireless, public/private packet-enabled network).
  • Communication involving user devices 184 includes wireless communication via radio access network (RAN) equipment 194 which partly defines the wireless network part of the communication system.
  • RAN radio access network
  • user devices 184 can request content from a variety of sources including for example, website providers, servers, and other user devices which can be individual endpoint devices, such as smart phones which can also be content providers for another smart phone.
  • One of more specialized processor nodes 190 (with designated memory circuits 192 ) are selectively incorporated into the network at one or many locations and are communicatively coupled to the access channels provided via the RAN equipment 194 . From these access channels, the processor nodes 190 are programmed to look for and intercept location-based data and related user profile data for specialized operations.
  • the processor nodes are programmed to access (receive from and/or write to) databases internal to the wireless network such as a 3G/4G cellular network.
  • databases external to the wireless network are also available.
  • FIG. 1A illustrates a database 196 which is depicted labeled as a “geo-tagged” information source because, in the example, the processor node 190 has stored therein location-based back channel data regarding the locations of certain user devices.
  • the database 196 can be implemented external to the wireless network for review and processing by third parties, and can be implemented internal to the wireless network for review and processing by an operator of the wireless network.
  • management of the data accesses by a third party can be controlled by the same or different processor nodes processing the data to protect the user's identity and other confidential information which is at least initially present in the form of back channel data.
  • This privacy is maintained through the use of “tokens” in place of such confidential user information, sometimes referred to as “anonymizing” certain back channel data.
  • FIG. 1A illustrates databases 188 a - 188 c as providing or using a form of the back channel data.
  • Database 188 a contains certain anonymized back channel data.
  • Database 188 b contains certain back channel data that is not anonymized, e.g., for applications internal to the wireless network.
  • Database 188 c contains pseudo-anonymized back channel data which is demographically enhanced to hide highly-sensitive information such as the user's identity while providing significant other information to characterize the user and/or the user's behavior insofar as such appropriate information is procured, in various ways, by the processor node(s) via the wireless network.
  • use of the specialized processor nodes can become integral with other network processing elements used in the wireless network. For instance, based on expectations of increased or decreased types of users in a certain region, data that is being uploaded through the network to a website or service may be blocked, expedited, delayed or throttled. Blocking traffic disrupts the user activity driving the network usage and forces the responsibility of handling the network connectivity interruption on the user or the user's application/service. Blocking may be accomplished by terminating a request for TCP connection. Delaying traffic postpones data traffic to a future time. This may be motivated by congestion in the network at a given time or by operator defined policies.
  • Delaying may be accomplished by blocking initial requests for communication followed by allowing the communication to proceed at a later time based on pre-defined policies or observed increase in network availability. Throttling slows down traffic in a network allowing the user to continue use of the network but at a reduced throughput. Throttling may be accomplished by delaying the transmission of TCP SYN packets in the case of a TCP/IP network effectively simulating a lower available bandwidth. Blocking, delaying and throttling may be implemented using a combination of client device and network element functionality. The client device component of the functionality may be implemented with a native client resident on the client device or an embedded client delivered as part of the data stream for execution in a browser environment.
  • the user profiles can include a paid-for expedited-communication service which the specialized processor nodes can access and utilize for the user when the back channel data indicates that the user is in that region and, optionally, at such times.
  • Data flow controller(s) 180 of FIG. 1A can provide various location-related functions useful for controlling and providing delivery of content to user devices 184 .
  • An example of such functions is limiting access to the content based on where one or more user devices 184 are located. Access can be limited in a number of different manners including, for example, denial of content, denial of a form of content (e.g., voice, email, mms or short message), and delay in providing the content, and/or throttling of the speed at which the content is provided.
  • the selection and implementation of these functions can be effected by monitoring, for certain user devices in certain locations, a number of context parameters including, for instance, parameters that define the current state of the network. This allows for data flow controller 180 to actively respond to changing network conditions and facilitate control over and allow for fair use of bandwidth between content providers and/or for critical content or services to remain available.
  • data flow controller 180 can take several forms and may involve using two or more such controllers 180 .
  • the network items 182 and 194 are merely two aspects generally characterizing a potential larger network system, perhaps with other data flow controllers distributed near the periphery of the network system, e.g., near the initial connection point of user devices 184 .
  • Each data flow controller 180 can monitor and assess network loading, content overuse and similar parameters (discussed in more detail herein). This can be particularly useful for providing data flow control that is tailored toward a particular data path. For instance, content can be device specific, geographically specific, language specific or otherwise tend to be unevenly accessed between different users. Thus, one data flow controller may see a very high rate of content access whereas another data flow controller sees very low rate of content access.
  • monitoring and controlling data flow as a function of location-based data regarding user devices 184 can be advantageous.
  • Certain implementations use one or more centralized analysis devices to provide location-based content control indicators to data flow controllers 180 for assessing and predicting content accesses across different data paths.
  • cache storage devices can be implemented for caching content as a function of location-based back channel data, an example of which is use of a cache for a category of communications to and from a designated group of mobile terminals heading to a large sporting event.
  • the location, control and usage of the cache storage devices can be implemented largely based on predictive analysis of location-based data regarding user devices 184 .
  • the user profiles can include different paid-for business-levels for expediting communication services.
  • the specialized processor nodes dynamically identify the regions of such public situations, by tracking samples of mobile terminals converging in such regions or via an external news feed, and access the business-level user profiles when the back channel data indicates that such users are in the region at such times.
  • the application and/or user profile may call for opening a voice channel or for permitting a real-time live data stream to be transported through the network.
  • a video stream may be required on the downlink for consumption by a number of users simultaneously, and the network may need to react by employing multicasting or other relatively rare channel routing at least for a time until the congestion in the region's radio equipment (the base stations) clears.
  • traffic management ensuing from the processor node operations may lead to and directly involve operations by other portions of the network.
  • the downstream traffic may be converted for transport over radio broadcast/multicast technologies such as MediaFlo or DVB-H, information can be sent to designated devices using other than the requested forms, e.g., using a WAP push, SMS, MMS or the like. Some of these redirections can be particularly useful for sending emergency information and less time-critical data such as targeted advertising.
  • back channel data can be shared between user devices directly (e.g., direct point-to-point connection via Bluetooth), through a local area network (LAN) or otherwise.
  • LAN local area network
  • This can be accomplished, for instance, by replacing user identity information with a token, which can range from an entirely un-informing piece of data, to a mid-level demographic (male or female) or a much more detailed demographic (gender, age, zip code, favorite hobby and music, political party, etc.).
  • Third parties can use such networks to gather and exchange such “tokenized” back channel data provided from the wireless network and optionally request that the wireless network provide geo-tagged notifications when similarly tokenized users approach the regions covered by these third-party networks. For instance, two retailers in the same mall might be separately tracking purchases of certain goods and services around a holiday and discover from “tokenized” back channel data, exchanged and otherwise, important demographics to assist in further sales for the next holiday.
  • FIG. 1B depicts a block diagram of a system and various possible specialized processor node configurations, consistent with an embodiment of the present disclosure.
  • User devices, or user equipment, 152 connect to content providers, to each other, or to other data sources through a variety of data paths.
  • Non-limiting examples of user devices include cellular phones, smart phones, personal digital assistants (PDA), handheld gaming devices, laptops, home computers, vehicle computers and other devices that connect through wireless networks. For simplicity many components within the data path have been excluded from the diagram.
  • PDA personal digital assistants
  • the user device(s) 152 could be, for example, a smart phone connecting through a cellular communication scheme, such as Global System for Mobile communications (GSM), Universal Mobile Telecommunications System (UMTS), Code Division Multiple Access (CDMA) and communications protocols as defined by the 3 rd Generation Partnership Project (3GPP) or the 3 rd Generation Partnership Project 2 (3GPP2), 4G Long Term Evolution (LTE) and IEEE 802.16 standards bodies.
  • GSM Global System for Mobile communications
  • UMTS Universal Mobile Telecommunications System
  • CDMA Code Division Multiple Access
  • 3GPP 3 rd Generation Partnership Project
  • 3GPP2 3 rd Generation Partnership Project 2
  • LTE Long Term Evolution
  • IEEE 802.16 IEEE 802.16
  • Gateways 162 can be used to connect between the RAN interface and devices using another protocol, such as Internet-based protocols.
  • the gateway could translate data between the Wireless Application Protocol (WAP) protocol and the world-wide web protocols e.g., from various Internet protocols to Wireless Markup Language (WML).
  • WAP Wireless Application Protocol
  • WML Wireless Markup Language
  • the data gateways can be configured to use GPRS Tunneling Protocol (GTP) to communicate with the radio access network.
  • GTP GPRS Tunneling Protocol
  • Other conventional operations of the data gateways are known.
  • the data gateways enable users of mobile stations to roam between cells, for example, to move between different locations within the radio access network, by tracking the mobile station's identity across the network.
  • the data gateway may also provide authentication and data formatting functions.
  • multiple RAN connection points can use a common gateway.
  • various memory circuits 192 for storing and retrieving banks of data used by the processor nodes 190 .
  • the memory circuits 192 include one or more cache storage devices 170 located at certain of the gateways 162 . This allows for sharing of cache storage between multiple RANs as a function of and directed by algorithms executed by the processor nodes 190 .
  • Femtocells are often implemented as a low power cellular base station that is connected to a cellular provider's network, often through a broadband connection (e.g., DSL or T1) link. Femtocells can be particularly useful for providing local cellular coverage to areas that otherwise have inadequate coverage, e.g., indoors.
  • a broadband connection e.g., DSL or T1
  • a gateway 162 provides an interface between user devices and another protocol, such as the Internet.
  • This gateway 162 is a possible location for such a specialized processor node 190 .
  • the gateway 162 can be located within a cellular provider's network and thereby shared (or similar to the gateway) with RAN-based data paths from larger/traditional cellular base stations.
  • the cache storage device can be situated between the gateway and the user device.
  • a processor node and storage device can be located at the femtocell base station location. This can be particularly useful for controlling data bandwidth between the femtocell and the remainder of the network as this can be limited by the capacity of the broadband data link (sometimes shared with a variety of other devices).
  • a third data path uses wireless network interface 158 to connect and request data.
  • This interface can be, for example, Worldwide Interoperability for Microwave Access (WiMax), 802.11x or the like.
  • WiMax Worldwide Interoperability for Microwave Access
  • user devices can connect using wireless hotspots or other local networks.
  • the data path may include a gateway 162 and other device 170 and/or 190 .
  • the gateway can sometimes be located at a cellular provider's location, but need not be so located.
  • cache storage device 170 is located between the gateway and the user device. In this manner, such devices are located as part of and within control of the wireless network.
  • a user device can sometimes be simultaneously capable of connecting to multiple data paths.
  • a user device 152 may be in range of a wireless hotspot while also having a connection to a 3G-type data interface.
  • the decision on how to retrieve the necessary data can be made based upon a number of criteria, one of which can be whether or not a specialized processor node has assessed from location-based back channel data that there is available data likely residing in a memory (or cache) of a particular data path.
  • access-analyzing-control functions 166 These functions can be used to accurately and effectively control what and where content is to be routed and/or cached based on back-channel location information provided by the processor nodes 190 .
  • network communications are routed and/or cached reactively and/or predictively, based on such back-channel location information.
  • a cache located in a region is deemed “highly-populated by mobile users interested in airline arrival times, football scores, bus schedules” by assessing the presence of an excessive volume of types (ages of users) having user devices: currently registering on in the region so as to reactively process; and having locations converging on the region so as to predictively process.
  • the network nodes cooperate to store data in a FIFO fashion for serving this high population of mobile users before their requests would otherwise be overtaking the network's available bandwidth (e.g., as limited by the RAN equipment) by providing the same largely-redundant information across the network to the same region. If particular content is accessed multiple times before leaving the FIFO cache, it is provided from the cache and then moved back to the front of the cache.
  • a network data analyzer identifies content that is being accessed in high-volume and that is consuming considerable bandwidth.
  • the data can then be cached according to the network impact of storing in a particular cache storage device.
  • the system can thereby prioritize what data is stored according to network impact. This can be particularly useful for maintaining high priority content in the cache.
  • Yet another reactive implementation involves receiving region-specific indications of media content's popularity from 3 rd parties, such as the content providers. This can be implemented using an indication of the number of requested downloads within a predefined time period or using more complex parameters and algorithms.
  • the analyzer uses data to predict future network demands for content. This can include predicting downloads related to breaking news stories or detecting access patterns that indicate that particular content is likely to increase in usage. For instance, as many video clips are accessed via a network, more users see the data and the demand increases rapidly as the users forward or otherwise send the video clip to other users.
  • Another example relates to sporting events in which a large group of people attempt to access content at approximately the same time, such as near the end of a game. Large news events, such as natural disasters, can also result in a spike in content requests for related information.
  • Another aspect relates to determining how content is distributed between various storage elements.
  • the processor nodes can make determinations on where to store data based upon numerous parameters. For instance, for a particular data path, the network analyzer can identify the most likely bottleneck for the data and chose to store the content accordingly. As another example, the analyzer might determine that certain content is related to another geographical region and thereby send the content to correspondingly located cache storage devices.
  • Another example involves content that is associated with a particular type of device, e.g., smart phone application for a particular type of phone. This can also provide valuable information about where the content is best stored.
  • a few examples may include user data, device characteristics, network characteristics, environmental factors and socio-cultural factors.
  • user data include the data service price plan a user is subscribed to (e.g., premium vs. standard).
  • device characteristics include screen size and supported audio and video codecs.
  • network characteristics include network technology (e.g., HSPA, LTE), network topology (e.g., microwave vs. metro Ethernet backhaul) and available network capacity.
  • Examples of environmental factors include time of day, location of sender and recipient and weather conditions.
  • Examples of socio-cultural factors include holidays, sporting event schedules, etc.
  • One or more of the context parameters may be combined to form a context which in turn is used to determine the management of the content in the cache storage elements. For instance, a video clip of breaking news may be automatically moved to cache storage elements nearer the edge of networks from the cloud cache or core network cache storage elements as the day breaks around the globe anticipating user requests for playback of the video clip.
  • a user device requests content that is highly-demanded and/or that consumes large amounts of bandwidth, access to the content can be delayed. Access by other user devices requesting the data is also delayed.
  • the user devices are presented with information for connection to a multicast session. The user devices then connect to the same multicast session and receive the content therefrom.
  • the multicast session can be initiated for the group by presenting a synchronization time for the session to each of the user devices or can simply be periodically repeated (e.g., in the case of very-highly demanded content) thereby allowing devices to connect as necessary.
  • Synchronization/multicast information can be sent as part of the delay mechanism through a variety of suitable mechanisms.
  • Multicast information e.g., session initiation information
  • This can be particularly useful for sending emergency information, targeted advertising or even software updates to a large group of user devices.
  • the content can be cached and sent to groups of devices until all desired devices receive the content. This can allow for updates to be sent and received over time and to devices that may subsequently connect to the network.
  • Multicasting can be particularly useful for efficient use of radio signal bandwidth.
  • a group of mobile stations can be configured to listen to the packet notification channel (PNCH) on which a point to multipoint-multicast (PTM-M) notification is sent. Data can then be sent to the group of mobile stations using a shared packet data traffic channel (PDTCH).
  • PNCH packet notification channel
  • PTM-M point to multipoint-multicast
  • PDTCH packet data traffic channel
  • These operations can be important for many contexts including, for example, emergency situations where specifically-equipped or configured groups of mobile stations need to monitor the situations on a priority basis.
  • This type of multipoint-multicast mode can be initiated in response to certain of the processor nodes executing processes to track externally-reported events (from other databases and networks) and/or converging populations of user devices to predict and/or react to location-based back channel data.
  • a user application can be installed/downloaded to a mobile station in response to a user or third-party profile accessed by the processor node.
  • the processor node uses the profile information as a reference for identifying that the mobile station should be tracked as it approaches a favorite region, such as “home.”
  • the user application can facilitate the intelligent control and delivery of content to the device by cooperation with and in response to the device location being monitored by the processor node.
  • the application provides configuration options for accessing/downloading content.
  • the application controls delivery options based upon content type and/or content source as determined by the user. Such delivery options might include expedited delivery for rich media (recently published e-books of videos).
  • aspects of the present disclosure e.g., available caching locations or access limitations.
  • Other aspects of the application allow a user to modify delivery settings dynamically.
  • the user can use the application to route content delivery to e-mail, to delay delivery, to use bandwidth throttled, or to access a preferred/premium service which allows access to cache locations and similar functionality. This can be particularly useful for changing deliver options as may be desirable when a user is travelling and has limited access to other network resources (e.g., home computer access or email).
  • the application can modify content requests to denote user preferences (e.g., by modifying routing data for access request or adding preference indications thereby instructing how a remote device should control content delivery).
  • user profile data can be stored by a service provider. The application then updates the user profile data according to user preferences. Access to user profile data can also be provided via other interfaces, such as via a website.
  • the user may indicate that a first website contains content that is to be afforded a relatively low priority and for which delivery can be delayed or otherwise slowed.
  • the user may indicate that another website is to be afforded high priority, and delivery should be prioritized.
  • the cache/data control device(s) process access requests for each website accordingly. For billing purposes, the user may be charged a premium fee for the high priority accesses.
  • the mobile device when a mobile device requests access to content, the mobile device presents the user with content delivery options. These options can be a priority indication and/or more detailed options, such as accepting delayed delivery for a reduced price and/or paying extra for access to a cached version. Other options include transcoding options, such as indicating the acceptability of different video resolutions or coding schemes.
  • the application includes programmed instructions that, when executed by a computer/processor, perform one or more of the methods and/or steps of the disclosure.
  • the instructions can be programmed on a computer readable medium including non-volatile or volatile memory circuitry.
  • FIG. 2A illustrates a block diagram useful for discussing examples of such data flow relative to content access by mobile devices, consistent with embodiments of the present disclosure.
  • the system depicted in FIG. 2A includes mobile stations 202 , radio access networks 204 , data gateways 206 , an Internet gateway 208 , and data intermediation modules 220 which are used to illustrate an example structure for providing specialized back channel operations by the processor nodes.
  • the system is depicted and described with certain components and functionality, other embodiments of the system may include fewer or more components to implement less or more functionality.
  • the mobile stations 202 requests multimedia, or other, content and one of the data intermediation modules 220 receives the requests.
  • the mobile stations 202 can include handheld wireless devices, such as cell phones, mobile phones, smartphones, personal digital assistants (PDA), handheld gaming devices etc, that can wirelessly communicate using radio frequency (RF) communications signals.
  • PDA personal digital assistants
  • RF radio frequency
  • the radio access networks 204 facilitate radio communications between the mobile stations 202 and a core network that includes the data gateways 206 , the Internet gateways 208 , and the data intermediation modules 220 .
  • the radio access networks include one or more base stations to facilitate communications among the mobile stations that are within a communication range of the base stations. Each base station has at least one RF transceiver and the base stations communicate with the mobile stations using RF communication signals.
  • the radio access network facilitates network communications among multiple mobile stations within the same radio access network and between mobile stations in other radio access networks and provides interfaces to facilitate communications with other entities, such as a Public Switched Telephone Network (PSTN), a Wide Area Network (WAN), the Internet, Internet servers, hosts, etc., which are outside of the radio access network.
  • PSTN Public Switched Telephone Network
  • WAN Wide Area Network
  • the Internet Internet servers, hosts, etc.
  • FIGS. 1A and 1B are part of a wireless network that is operated by a single wireless service provider.
  • Data signals communicated between the mobile stations 202 and the radio access networks 204 include, but are not limited to, analog and/or digital RF signals (i.e., radio waves) for any type of communication mode, including text messaging, multimedia messaging, voice calling, and Internet browsing.
  • the radio access network can support various different RF communications protocols, including without limitation, GSM, UMTS, CDMA, WiMax and communications protocols as defined by 3GPP, 3GPP2, or IEEE 802.16. Although some wireless communications protocols are identified herein, it should be understood that present disclosure is not limited to the cited wireless communications protocols.
  • the data gateways 206 configure outgoing data access requests for use with one or more networks and configure incoming data for use by or display on a mobile station 202 . As shown, each data gateway interfaces directly with a radio access network 204 and a data intermediation module 220 , although other embodiments may include other intermediate functional elements.
  • the Internet gateway 208 provides a gateway for receiving data from content providers 262 (or optionally between mobile stations 202 ).
  • the content providers 262 can be Internet-connected hosts and/or servers.
  • the Internet gateway can be a Wireless Application Protocol (WAP) gateway that converts the WAP protocol used by the radio access network to the Hypertext Transfer Protocol (HTTP) protocol used by the Internet.
  • WAP Wireless Application Protocol
  • HTTP Hypertext Transfer Protocol
  • the Internet gateway enables mobile stations to access multimedia content, such as Hyper Text Markup Language (HTML), compact HTML (cHTML), and extensible HTML (xHTML), which is stored on Internet-connected hosts and/or servers.
  • HTML Hyper Text Markup Language
  • cHTML compact HTML
  • xHTML extensible HTML
  • alternative gateway/service 210 can be a custom interface provided by a wireless service provider.
  • the wireless service provider can use the custom interface to provide content to mobile devices.
  • the content could be movies, applications, music, games or other downloadable data.
  • the wireless service provider can store the content at one or more centralized locations and then distribute the content to cache locations as desired and discussed herein.
  • Mobile device users can be charged for access to the content and at the same time realize an improved quality of experience due to intelligent caching and/or delivery of the content.
  • the wireless service provider can provide data content originating from other content providers.
  • the other content providers purchase access to the caching/data control aspects of the present disclosure, thereby providing improved quality of experience for mobile users attempting to access their content.
  • the FCC may impose (“net neutrality”) rules that would prohibit Internet service providers from slowing or blocking of information and certain applications over their networks.
  • network neutrality it should be noted that even for content that is allowed equal access to network bandwidth; however, subscribers to the intelligent data control of the instance disclosure can provide a higher quality of experience for their respective content.
  • a mobile station 202 in a data acquisition process, a mobile station 202 generates a data request message (e.g., HTTP, SIP, RTP) that identifies a content provider and desired content (e.g., by entering a URL or other identifier).
  • the data intermediation modules 220 can be located between gateways 206 on one side and the Internet gateway on the other side.
  • each data intermediation module is functionally located in a data path that is between the respective data gateway on one side and the Internet gateway on the other side.
  • the data/caching module 220 manages the flow of content between content providers and mobile stations.
  • the modules can include, or have access to, a cache storage device for storing content.
  • the data intermediation module 220 intercepts content requests that are sent from a mobile station and processes the requests to determine how to handle the content requests. This can include determining whether the requested data is present in the cache and/or performing various other functions that help to improve the performance of the system.
  • the data intermediation module may perform any of the following functions:
  • the content is part of streaming data that is accessible within the 3GPP end-to-end PS streaming service specification.
  • the content is transported using Real time Transport Protocol (RTP) over User Data Protocol (UDP).
  • RTP Real time Transport Protocol
  • UDP User Data Protocol
  • Session control/setup is implemented using Real Time Streaming Protocol (RTSP).
  • RTSP Real Time Streaming Protocol
  • the streaming session can be effectively intercepted by streaming from the cached location instead of the indicated URL.
  • the cache device can identify requests for streaming sessions for cached URL locations and thereby intercept the connection. This can be accomplished in a number of manners. For instance, connection information is sent to a requesting device using a session description protocol (SDP) file.
  • SDP session description protocol
  • the SDP file can be adjusted based upon the existence of cache data. The adjustment can include changes due to transcoding and or connection information due to cache location.
  • the content can include content (media or otherwise) that is accessible via OMA generic content download over-the-air specification. This access can include either download with separate delivery of download descriptor and media object or download with co-delivery of descriptor and media object.
  • the download descriptor contains information about a media object and instructions on how to download the content. The data flow control can thereby be effected by modifications to the download descriptor.
  • a data network can involve multiple/disparate entities managing nodes/gateways or other content delivery elements.
  • a content control device can initiate content delivery (streaming or otherwise) via a setup request.
  • the content control device modifies the setup request as a function of the current cache state or other network parameters (such as subscriber relationship, content provider agreement or analytics applicable to network environment).
  • the modified request includes options for content delivery that can be acted upon by a downstream node or entity.
  • the data intermediation modules 220 can be particularly useful for improving the performance of live data content delivery by intelligent caching and data flow control. Caching and flow control decisions can be made based upon the status of cache storage devices at various locations. For instance, the data intermediation modules 220 can determine whether or not all or part of a particular requested content is already stored in a cache storage device near the recipient device. In this manner, the cached content can be retrieved from the data cache device and thereby not sent over the core network.
  • a variety of messaging protocols can be used. For instance, the existence of multiple cache locations allows for content retrieval to occur between caches thereby alleviating the need to access the content provider directly. While not limiting, in one example a central cache managing server maintains a list of cached content for the various cache storage devices. A data intermediation module 220 checks with this managing server to determine whether the entire content needs to be transmitted as a function of the status of cache storage devices. In another example implementation, the data intermediation modules 220 communicate directly with one another.
  • the cache checks can be sent within the signaling system 7 (SS7) protocol, thereby facilitating transmission across a number of different network platforms including, for instance, the PSTN.
  • SS7 signaling system 7
  • Other communication protocols are also possible. An example embodiment using such communication flow is discussed more detail in regards to FIG. 3 .
  • Additional improvements in performance can be achieved by processing the content to, for example, optimize the content and to provide value added services.
  • Each one of the data intermediation modules 220 can be a standalone network element, such a distinct network node (e.g., a different “box”) that is connected to the network by wired and/or fiber-optic network connections using network communications protocols such as Internet Protocol and Ethernet.
  • each one of the data intermediation modules 220 may be integrated with one of the other network elements.
  • a data intermediation module may be located in the same “box” as one of the data gateways 206 , the Internet gateway 208 , or other components. Whether the data intermediation module 220 is physically located in a distinct physical network node or in the same network node as another network element, the functionality of the data intermediation module can be similar.
  • radio access networks including, for example, 3GPP, 3GPP2, IEEE 802.16, and 4G radio access networks.
  • radio access networks as defined by the 3GPP include a NodeB, a Radio Network Controller (RNC), a Serving General Packet Radio Service (GPRS) Support Node (SGSN), and a Gateway GPRS Support Node (GGSN). These nodes are discussed briefly as an example system, but the disclosure is not limited thereto.
  • RNC Radio Network Controller
  • GPRS General Packet Radio Service
  • SGSN Serving General Packet Radio Service
  • GGSN Gateway GPRS Support Node
  • a NodeB is a network element that performs base station functionality.
  • a NodeB can use various communication protocols, such as Wideband Code Division Multiple Access (WCDMA)/Time Division Synchronous Code Division Multiple Access (TD-SCDMA), to communicate with the mobile stations.
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • each NodeB includes an RF transceiver that communicates with the mobile stations that are within a service area of the NodeB.
  • the NodeBs have a minimum amount of functionality and are controlled by an RNC.
  • HSDPA High Speed Downlink Packet Access
  • some logic e.g., retransmission
  • Each RNC is a network element that controls the connected NodeBs.
  • the RNC is responsible for radio resource management and mobility management.
  • the RNC is also the element that performs encryption before user data is sent to and from a mobile station.
  • radio resource management operations include outer loop power control, load control, admission control, packet scheduling, handover control, security functions, and mobility management.
  • the Radio Network Controller may also various radio resource optimization operations.
  • Each SGSN is a network element that delivers packets to and from the mobile stations within a corresponding geographical service area. Functionality of the SGSN includes packet routing and transfer, mobility management (e.g., attach/detach and location management), logical link management, and authentication and billing.
  • the SGSN maintains a location register that stores location information, such as the current cell of a mobile station, and user profiles, such as International Mobile Subscriber Identity (IMSI) address used in the packet data network, of all GPRS mobile stations that are registered within the corresponding geographical service area of the SGSN.
  • IMSI International Mobile Subscriber Identity
  • Each GGSN is a network element that provides interworking between the GPRS network and external packet switched networks, such as the Internet and X.25 networks.
  • the GGSN hides the GPRS infrastructure from the external networks.
  • Functionality of the GGSN includes checking to see if specific mobile stations are active in the radio access network and forwarding data packets to the SGSN that is currently supporting a mobile station.
  • the GGSN also converts GPRS packets coming from an SGSN into the needed packet data protocol format (e.g., Internet Protocol or X.25) and forwards packets to the appropriate external network.
  • the GGSN is also responsible for IP address management/assignment and is the default router for the mobile stations.
  • the GGSN may also implement Authentication, Authorization, and Accounting (AAA) and billing functions.
  • AAA Authentication, Authorization, and Accounting
  • FIG. 2A also depicts a detailed example of a data intermediation module 220 in accordance with an embodiment of the disclosure.
  • the data intermediation module 220 includes a sender-side interface 240 , a recipient-side interface 242 , a Value Added Service Provider (VASP) interface 244 , a billing interface 246 , an AAA interface 248 , a cache storage module 250 , a context parameter and analytics database 252 , a media processor 254 for handling 3 rd party requests and reports, recommendation processor 255 , a traffic manager 256 , and a workflow engine 258 .
  • VASP Value Added Service Provider
  • the sender-side interface 240 is an element of the data intermediation module 220 that provides an interface to the sender-side functional elements of the system and is the incoming interface for data content sent to the recipient-side mobile station.
  • the recipient-side interface 242 is an element of the data intermediation module 220 that provides an interface to the recipient-side functional elements of the system and is the outgoing interface for data content destined for a recipient-side mobile station.
  • the recipient-side interface is functionally adjacent to the (Internet) gateway or other network components (e.g., a MSF server), and the receiving data intermediation module.
  • the VASP interface 244 is an interface for value added service providers (e.g., service providers that are distinct from the content provider or the operator of the system and wireless communications network).
  • value added service providers are third-party service providers that provide some additional service, functionality, or data to the system.
  • the VASP interface enables value added service providers to provide direct inputs to the data intermediation module related to, for example, sender parameters, recipient parameters, and optimization parameters.
  • the billing interface 246 of the data intermediation module provides an interface to a billing system or billing systems.
  • the billing interface enables the system to implement a billing program for data services.
  • the billing system can also be used to bill content providers for access to the caching or for preferred content delivery features (e.g., enabling of RAN-based multicasting or reduced throttling).
  • Content providers could request that certain content be stored and easily accessible, thereby improving the user experience for the cached content.
  • the billing program could record such requests and charge content providers as a function of the number of cache requests, the number of accesses to the content, the bandwidth used by accesses to the content and the like.
  • a billing function is directed to a centralized controller (or a hierarchy of important data and/or multiple storage/cache locations at various points within the network) for distributing content to multiple locations based on mobile-terminal population changes in the regions of the locations.
  • Content providers can request distribution of content for improved access based upon defined parameters. These parameters can include, for instance, geographical location, type of wireless service available (e.g., 3G, WiMax), wireless service provider (e.g., AT&T, Verizon) or state/country boundaries.
  • the billing can be accomplished using a centralized model, such as based upon the number of cache locations the content is to be loaded to, and/or a decentralized model where each location tracks usage and generates billing data therefrom.
  • a semi-centralized model involves two or more business entities coordinating and negotiating billing models and content delivery control/caching, bandwidth and quality factors.
  • Another implementation relating to billing methods involves a method of controlling delivery of source data content through a communication network including a wireless-technology network and another network.
  • the wireless-technology network is controlled by a first business entity (e.g., data caching/flow control provider) and the other network being controlled by a second business entity (e.g., Internet Service Provider/content provider).
  • a first business entity e.g., data caching/flow control provider
  • a second business entity e.g., Internet Service Provider/content provider
  • control data is accessed, representing data-delivery conditions agreed to between the first and second business entities.
  • substantially redundant representations of the source data are directed to cache memories located at nodes in the wireless-technology network.
  • the system delivers redundant representations of the source data from the cache memories to comply with the notification while effecting an improved quality of experience or improved system bandwidth allocation in the communication network.
  • a (streaming or otherwise) setup request is modified by one of the business entities to effect delivery as a function of the current cache state or other network parameters (such as subscriber relationship, content provider agreement or analytics applicable to network environment).
  • the AAA interface 248 of the data intermediation module provides an interface to authentication, access control, and accounting information and services.
  • the cache storage module 250 of the data intermediation module 220 provides storage for content (e.g., video, audio, website, messages).
  • content e.g., video, audio, website, messages.
  • the cache storage module enables the data intermediation module 220 to delay communication of content to other network elements when desired.
  • the processor nodes and associated storage modules can communicate with one another to allow for the data intermediation modules to implement an accelerated delivery mechanism by sending content directly between data intermediation modules without passing through an Internet gateway.
  • the context parameter database 252 of the data intermediation module provides a repository for context parameters that can be used to control content caching and/or delivery.
  • context parameters may include user data, device characteristics, network characteristics, environmental factors, and socio-cultural factors.
  • user data include the messaging price plan a user is subscribed to (e.g., premium vs. standard), the age of the user, or the billing location of the user.
  • device characteristics include the screen size and supported audio and video codecs of a mobile station.
  • network characteristics include network technology (e.g., High Speed Packet Access (HSPA), LTE), network topology (e.g., microwave vs. metro Ethernet backhaul), and available network capacity.
  • HSPA High Speed Packet Access
  • LTE Long Term Evolution
  • network topology e.g., microwave vs. metro Ethernet backhaul
  • One or more of the context parameters may be combined to form context information that is used to determine how the data intermediation module processes content. For instance, content provided to a user having a standard rate price plan may not get priority treatment relative when the system is congested due to a wild fire raging in the area.
  • the media processor 254 of the data intermediation module supports the processing of content to modify one or more aspects of the multimedia (and other) content.
  • the media processor transcodes the content.
  • video content may be modified by changing the spatial and temporal resolution, changing the encoding bit rate, and/or changing the codec and/or codec parameters.
  • audio content may be changed by changing the sampling rate, changing the number of channels, changing the encoding bit rate, and/or changing the codec and/or the codec parameters.
  • image content may be changed by changing the spatial resolution, changing the bit depth, changing the encoding bit rate, and/or changing the codec and/or the codec parameters.
  • the media processor 254 processes the content to enhance it.
  • the media processor may insert an advertisement in audio, video, image, or textual format into the content.
  • the media processor may convert textual symbols, such as emoticons, to an equivalent image representation.
  • the recommendation processor 255 of the data intermediation module is configured to proactively push real-time recommendations to mobile users. Using location-based and user-profile back channel data, the recommendation processor 255 can proactively push out location-based recommendations regarding a variety of user preferences and parameters. As indicated further in connection with FIG. 2B , these might include video sources for rich-media downloads, preferred music sources and blog forums, social network friends whose mobile terminals are relatively geographically nearby, and interesting local opportunities to users on the go. As users travel, they can thereby receive reports from the recommendation processor 255 and communicate therewith on a convenient and region-specific basis. In certain systems, these region-specific recommendations and alerts utilize region-specific data sharing and distribution via a region-specific cache, as previously discussed.
  • the traffic manager 256 of the data intermediation module is configured to provide traffic management in the network.
  • the traffic manager regulates the flow of content traffic between the functional elements of the system. For example, when a mobile station requests content from a content provider, the traffic manager regulates the data transfer rate by delaying or throttling back the transmission of the content.
  • the traffic manager delays the transfer of content by terminating the Transmission Control Protocol (TCP) connection when a mobile station initiates the transfer process.
  • TCP Transmission Control Protocol
  • the traffic manager throttles back the transfer of content by delaying the sending of TCP SYN packets from the data intermediation module to the mobile station while the content is being transferred.
  • TCP Transmission Control Protocol
  • Other types of traffic management can be implemented by the traffic manager.
  • the workflow engine 258 of the data intermediation module is configured to process the content and, in response to the processing, to determine where/whether to cache the content based on the aforementioned discussion. In an embodiment, the workflow engine determines where/whether the content currently resides relative to one or more cache locations. This determination can be used to decide how best to retrieve the content, such as whether to access the content provider through the Internet gateway or from another data intermediation module.
  • the workflow engine can access resources from any of the traffic manager, the VASP interface, the billing interface, the AAA interface, the cache storage module, the context parameter database, and the media processor in order to help make routing/caching/control decisions and any of the criteria described above with respect to the traffic manager, the VASP interface, the billing interface, the AAA interface, cache storage module, the context parameter database, and the media processor can be considered by the workflow engine.
  • the workflow engine may dictate how content is processed within the data intermediation node. For example, the workflow engine may specify a particular type of transcoding for the content based on the capabilities of the intended recipient-mobile station.
  • a billing node may be located between the GGSN and the data intermediation module.
  • FIG. 3 depicts an example wireless network consistent with various cellular systems and an embodiment of the present disclosure.
  • Data paths are indicated by solid connection lines and control paths are indicated by broken lines.
  • embodiments of the present disclosure allow for location-based cache control to be implemented using existing control paths.
  • the control data can be sent consistent with the SS7 and related control protocols. This allows for additional flexibility including backward compatibility across disparate systems.
  • the use of the control protocols can be particularly useful in determining this necessity before setting up data path(s).
  • connection to content might be established using HTTP or session-initiation-protocol (SIP).
  • An intervening control server/device can check the status of various storage devices relative to the desired content indicated by the connection request for a given population of mobile terminals in a particular location. If the desired content is indeed readily available and/or cached, the intervening control can intercept the connection request and establish a link with the storage device instead of the destination indicated by the requesting user/mobile device.
  • the storage devices operate to maintain synchronicity with content providers.
  • content providers may change the content and thereby render the versions of the content out-of-date.
  • the synchronicity can be maintained in a number of different manners.
  • One mechanism involves periodically, or in response to user device requests, checking the version/status of the content at the content provider. If the content has changed, the version stored in the storage devices can be updated.
  • Another mechanism is to allow for content providers to push new updates directly to the storage devices. This allows content providers to have more control over the content delivery, but may require more interaction with the content providers, e.g., establishment of preexisting protocols and other agreements.
  • a control processor(s) is configured to access a database of context parameters.
  • the particular parameters and their respective weight in the analysis can be selected according to a number of criteria.
  • a lookup table of desired context parameters is indexed according to the content type.
  • the content type can include such characterizations as media type (e.g., video, audio or text), content source, real-time requirements (e.g., streaming/live data) and/or data size.
  • the lookup table then provides a list of context parameters along with instructions on how to use the context parameters.
  • the control processor uses these parameters to determine whether, to which types of mobile devices, and/or where to send messages, recommendations and/or content.
  • the control processor using the user profile of prospective recipients of such data, can also determine whether or not to limit access thereto based on user preferences and the location-based back channel data.
  • control processor node assesses the propriety of proceeding with such user-directed communications by first rating the message or content and then comparing the content rating to previously stored content as indicated in a user profile. If the new/current content has a higher rating, then the control processor instructs the relevant nodes for delivery of the content and/or its storage for later access.
  • FIG. 4 depicts an example network, including a wireless network, consistent with various cellular systems and embodiments of the present disclosure and further including expanded example block diagrams of relevant hardware-software circuits of both a user device and processor-node circuitry applicable to many of the embodiments discussed and illustrated herein.
  • the mobile or user device 184 includes an Adaptive Autonomous Location Push (AALP) mobile agent 410 to interface with an AALP adapter provided in the mobile positioning center (MPC—internal to the wireless communications network 182 and RAN 194 .
  • the mobile or user device 184 also includes other hardware-software circuits such as client application program interfaces (APIs) 420 , a Secure User Plane for Location (SUPL) interface 422 , and a GPS interface 426 .
  • APIs client application program interfaces
  • SUPL Secure User Plane for Location
  • GPS interface 426 GPS interface
  • the mobile device 184 further includes specialized-privileged application program interfaces 424 and 428 which are configured to permit the mobile device 184 to implement a variety of network-specific and network-cooperative location-based operations.
  • the specialized-privileged application program interface 428 provides feature control for the mobile device, in response to a communication from the wireless-technology equipment that a user-alert indicator should be changed in the mobile terminal when the mobile terminal is in a geographic region.
  • the user-alert indicator can change between modes of an audible alert and a vibrating alert, e.g., when the region designates a worship service, quiet hours such as during classroom time.
  • the specialized-privileged application program interface 424 can provide the wireless communication network 182 user-profile updates such as personal travel calendar information useful for assisting in preparing location-specific processors and (cache) memory devices within the wireless communication network 182 in advance of the anticipated travel.
  • the processor node 190 and its related memory device 192 is also expanded, thereby illustrating the intermediation interface for acquiring and processing the location-based back channel data.
  • the intermediation interface has a front end processor 450 which acts as a gateway for accessing selected user profiles as a function of receipt of regional region-relevant alerts of user devices from the RAN equipment 194 .
  • the intermediation interface has a BCD (back channel data) processor 452 which performs the translations and matching between the back channel data received from the front end processor 450 and other stored data.
  • BCD back channel data
  • the BCD processor 452 For sets of programmed operations that specialize the processor nodes to provide certain features (benefitting the mobile users, the wireless network and/or third parties), the BCD processor 452 carries out immediate local access and (cache-like) processing of the relevant user profiles in processor module 454 , third party profiles and related instructions in processor module 456 and network-specific BCD-related operating and access rules in processor module 458 .
  • Another processor module 460 is generally configured for other functionality such as that discussed above in connection with the lower portion of block 220 of FIG. 2A .
  • FIG. 5 depicts an example network, including a wireless network, consistent with various cellular systems and embodiments of the present disclosure including many discussed herein involving third party requests and BCD-related accesses.
  • An example application involves a communication network with a wireless network 182 that provides access to back channel data to nodes 510 managed by third parties.
  • a processor node 190 in the wireless network uses and processes location-based mobile-terminal data as geographically-tagged information sources for review and possibly further processing and analysis by the third parties.
  • Processor 514 acting as an agent of the network 182 , anonymizes the sensitive BCD data before publishing these geographically-tagged information sources.
  • the processor node 190 receives from third parties' requests and feedback via processor interface, and/or input from other resources such as a server over the Web 520 and privately-held databases 522 which might include adaptively re-processed versions of the data previously provided to the third parties.
  • Database 522 and results analysis processor 530 feed and/or are controlled by a third party, are depicted as receiving instructions and rules from third parties for demographically refining work product received from the processor node 190 with at least one iteration for refining the work product such as by including additional parameters latently obtained regarding the set of demographic information.
  • the processor 514 receives such refined work product from the third party node 510 and reverses the “tokenization” of the sensitive user data; in this manner the processor node 190 is able to re-process in the ensuing iterative steps with more complete information than would otherwise be accessible to the third party.
  • a BCD combiner 540 is a processor node adapted to reconstruct useable data for the processor node 190 based on the (the reverse “tokenization” of the sensitive user data) output from the processor 514 and the refined rules and/or parameters received from the third party node 510 .
  • This methodology can be extremely useful in a variety of situations including, for example, use of the processor node as an independent auditor for a transaction between two parties (bidding auction, business-business dispute settlement, etc.).
  • the processor node 190 acts on behalf of a government entity to monitor suspicious communication activity with reports being issued to a judge in respect of the privacy rights of those being monitored.
  • An example of such suspicious communication activity might entail the government entity providing demographic user-based and location-based rules for monitoring calls where certain terms are used (see related processing in blocks 220 of FIGS. 2A and 190 of FIG. 4 ).
  • Sensitive user data provided by way of the back channel data can be encrypted and delivered in various forms with a key provided to (or accessible by) the judge for decrypting before analyzing the data (e.g., in deciding whether to issue a subpoena for desensitizing the data), or by another entity for reprocessing and further monitoring within the network.
  • a memory circuit stores the above-discussed user profiles (including subscriber data such as identity, age, and other particulars and demographics) on behalf of an operator for the wireless communication network for access to the network. On behalf of a third party, the memory circuit also stores communication rules relevant to a geographic region of service provided by the communication network.
  • the processor node is configured within the wireless-technology equipment for assimilating back channel data, such as current location data regarding the user terminals and with the user profiles, for generating assimilated current location-based and user-characterizing data.
  • the generated data is provided to another processor node (such as at a third party).
  • a modified set of data and a set of rules are received from the third party for generating another set of assimilated current location-based and user-characterizing data.

Abstract

According to certain aspects, a processor node provides controls on access to communications channels according to government-related standards which are similarly stored and used as mobile-terminal profiles. Where government employees are prohibited from keyboarding/texting on a mobile terminal while driving (as recently enacted in one federal level), the processor node controls the communications to block/monitor such keyboarding/texting while the mobile terminal is being track using the user's mobile-identification information with the location-access point as part of a mandatory government-based authorization subscriber protocol and/or another authorized procedure. In other government-related control instances, when automobile accidents are expected to escalate, government-related controls can similarly discriminate access of some or all types of communications (as discussed above) based on one or more of the following: the location-data indicating movement in a vehicle moving at all, on specific highways, or at specific speeds; alone or in combination with: the user's age as extracted and assumed from the subscriber data for the mobile equipment, the time (e.g., after curfew), or the day (e.g., New Year's Eve).

Description

    RELATED PATENT DOCUMENTS
  • This patent document claims the benefit, under 35 U.S.C. §119(e), of U.S. Provisional Patent Application Ser. No. 61/256,565 filed on Oct. 30, 2009, and entitled “Back-Channeled Packeted Data;” this patent document is fully incorporated herein by reference.
  • FIELD OF THE DISCLOSURE
  • The present disclosure is related to computers, communication networks and the use of traffic data in a communication network having network elements that are implemented with wireless technology. Aspects of the disclosure relate to location-indicative information provided on behalf of terminals and used in such a communication network.
  • BACKGROUND
  • Communication networks continue to improve in their abilities to efficiently and practically assist terminal-equipment users and society in general in communicating information, such as voice signals, images, electronic files or data, and video signals, to and from a mobile communication device using radio waves. For example, a wireless communication network may include a communication system using one or more of various radio-communication schemes such as represented in recent implementations and proposals of digital (e.g., 3G/4G) cellular, wireless peer-peer, PCS and satellite communication systems.
  • Wireless communication networks generally include a network of base stations that communicate with various wireless communication devices. Examples of wireless communication devices include telephony devices, wireless readers, radios, personal digital assistants (PDAs), palmtops, notebook computers, and other devices that have wireless communication capability. Each base station provides communication services within its respective network zone, such that the network of base stations provides a number of network zones that can cover a large geographic area. The network zones and their respective coverage areas occasionally change as base stations are improved and added within the wireless communication network. Nearly all of the United States is covered by cellular communication networks, with many of the base stations now providing various forms of the above-mentioned communication systems.
  • More recently, a number of location-based service applications have been implemented or proposed for wireless communication networks. Examples of such existing or proposed location-based service applications include: emergency service, location-dependent call routing, location-dependent billing, location tracking, and the like. In emergency applications the call and the exact location of the wireless communication device may be routed to the closest provider of emergency services, thus reducing emergency response time and possibly saving lives. In location-dependent billing applications, different billing rates may be charged to a customer for operating the wireless communication device in different geographical areas. Each location-based service application utilizes the location of the wireless communication device.
  • Location systems sometimes utilize conventional system reference location methods for determining or characterizing the location of the wireless communication device. Such reference location methods operate by relating the location of the wireless communication device to a network zone, e.g., cell or cell sector of the wireless communication network. However, mobile operators face specific and real problems with network resources that may hinder widespread deployment of commercial location-based services. For example, consider a situation where a mobile operator is offering a mix of location-based services to its subscribers. The application mix includes services like fleet tracking, child finder, push advertising, and traffic alerts. These applications generally would like to be notified with location updates when the subscriber is moving, and perhaps with greater frequency when the subscriber is moving more rapidly.
  • Aspects of the present disclosure can be useful for addressing these various needs and for providing various advantages and uses of location-based information in networks involving mobile terminals. While the present disclosure is not necessarily limited to such aspects, the instant disclosure may be appreciated through a discussion of examples using these and other contexts.
  • SUMMARY
  • Without limitation, aspects of the present disclosure are directed to various embodiments involving back-channel location-based data available to an operator of the wireless network. Some of these aspects are: 1) architectural aspects of wireless communication networks for routing and processing location-based mobile-terminal data within the network; 2) routing and processing location-based mobile-terminal data by a wireless communication network in cooperation with a local or hot-spot network; 3) processing location-based mobile-terminal data by a wireless communication network for controlling aspects of mobile terminals; 4) Mobile terminal operation based on input from a wireless communication network processing location-based mobile-terminal data; 5) a wireless communication network adapted for routing and processing location-based mobile-terminal data to monitor (suspicious) calls; 6) providing telephony terminals network access (e.g., call-screening) on behalf of 3rd parties; 7) a wireless communication network adapted for using and processing location-based mobile-terminal data as (geo-tagged) information sources for third parties and adaptively reprocessing such location-based data within the network with third party applications; and 8) software-based (business) methodology involving income-producing business models.
  • According to other aspects, the processor node provides one or more of the above-noted controls on access to communications channels according to government-related standards which are similarly stored and used as mobile-terminal profiles. Where government employees are prohibited from keyboarding/texting on a mobile terminal while driving (as recently enacted in one federal level), the processor node controls the communications to block/monitor such keyboarding/texting while the mobile terminal is being tracked using the user's mobile-identification information with the location-access point as part of a mandatory government-based authorization subscriber protocol and/or another authorized procedure. In other government-related control instances, when automobile accidents are expected to escalate, government-related controls can similarly discriminate access of some or all types of communications (as discussed above) based on one or more of the following: the location-data indicating movement in a vehicle moving at all, on specific highways, or at specific speeds; alone or in combination with: the user's age as extracted and assumed from the subscriber data for the mobile equipment, the time (e.g., after curfew), or the day (e.g., New Year's Eve).
  • Another important aspect of the disclosure is directed to terrorism and government surveillance of suspicious-origination calls. A processor node in the communications network provides one or more of the above-noted controls access to communications channels where the communication is initiated from or involves certain types of mobile terminal or uses of mobile terminals in certain suspicious situations. These mobile terminal types, uses and suspicious situations are defined by government entities and also recorded/updated as one or more profiles in memory for access by the processor node. Examples of such situations might include a high or severe threat alert by the Homeland Security Advisory System in combination with mobile terminal calls issued to suspicious classes of individuals from specific venues of concern. Where the location-access point for requested communication is being video recorded, the processor node can add such pin-pointing information by drawing from government-published databases and recording and/or real-time reporting of the added information as required in the government-defined profiles. Where the video equipment is linked, another communication channel in the network can be activated to provide a real-time connection to enable the processor node with the video-based biometrics (e.g., facial recognition) as another data parameter for monitoring and/or comparing with the aforesaid parameters for assessing whether or not to provide additional operations such as alerting or further controlling aspects via the communications channels.
  • In more specific embodiments, other databases and analysis/reporting centers are used cooperatively to provide inputs and to analyze results of the processor node(s) configured to monitor or control such suspicious/flagged calls. For example, under certain governmental regulations, national banks are required to report known or suspected criminal offenses, at specified thresholds, or transactions over $5,000 that they suspect involve money laundering or violate the Bank Secrecy Act. These reports, known as Suspicious Activity Reports (SAR) are compiled in databases and then made available electronically to appropriate law enforcement agencies. Similar regulations by other regulators apply to other financial institutions. According to one embodiment, and consistent with the present invention, these types of databases are used to provide parameters for use by a wireless communication system configured to monitor channels involving certain mobile terminals in certain locations. In this context, the wireless communication system manages a memory circuit that stores: on behalf of an operator for the communication network, user profiles that include wireless network subscriber data useful for providing network access to mobile terminals associated with the subscriber data; and on behalf of a third party, communication rules relevant to geographic regions of service provided by the communication network and relevant to designated telephony terminals called by the mobile terminals. A processor node, optionally configured within the wireless-technology equipment, is configured and software-programmed for assimilating current location data regarding the mobile terminals with the user profiles, and using the assimilated current location data and the communication rules to control access or effect communication with the designated telephony terminals through the network communication.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1A depicts a block diagram of a system and various configurations optionally involving external data-processing/data-access nodes, consistent with embodiments of the present disclosure.
  • FIG. 1B depicts a block diagram of a system and various specialized processor-node configurations, consistent with embodiments of the present disclosure.
  • FIG. 2A shows a block diagram for data flow relative to certain network accesses by mobile devices, and including an expanded block diagram of a specialized processing node, consistent with embodiments of the present disclosure.
  • FIG. 2B shows a block diagram for a publisher API relative to certain network accesses by mobile devices, and for use with one or more of the internal or external nodes shown in the block diagrams of one or more of the above figures, also consistent with embodiments of the present disclosure.
  • FIG. 3 depicts an example wireless network consistent with various cellular systems and embodiments of the present disclosure.
  • FIG. 4 depicts an example network, including a wireless network, consistent with various cellular systems and embodiments of the present disclosure and further including expanded example block diagrams to illustrate aspects of the user devices and processor-node circuitry useful for many of the embodiments discussed and illustrated herein.
  • FIG. 5 depicts an example network, including a wireless network, consistent with various cellular systems and embodiments of the present disclosure including many discussed and illustrated herein.
  • DETAILED DESCRIPTION
  • In accordance with various example embodiments, a wireless data/communication network includes access networks in multiple geographies interconnected by a core network, where the wireless data network includes one or more specially-configured processor modules (herein referred to as processor nodes) that operate on location-based data and user profile data as this type of data is developed and/or passed along the channels of the network. While not necessarily limited thereto, aspects of the present disclosure are directed to uses of this type of data, referred to herein as back channel data.
  • The location-based data can be developed upon registration of the mobile terminals which occurs through the radio-access equipment, such as base stations and, in certain configurations and in addition to or in lieu of, the location of the mobile terminal is refined or provided by another device such as by the mobile terminal pushing its GPS location to the wireless network or by the above-mentioned processor node assimilating the mobile terminal's communication history (e.g., last-known GPS coordinates and/or last linked-to WiFi server).
  • The user profile data is largely pre-stored in the wireless network based on contractual rights implemented before the user gains access the wireless network. These contractual rights specify the identity of the mobile terminal and other miscellaneous information which is useful for the user of the mobile terminal, for the operator of the wireless network as well as for certain third parties. For example, a SIM-type card can contain one or more unique serial numbers for the mobile user, security authentication and ciphering information, temporary information related to the local network such as a temporary local identification number that has been issued to the user, certain passwords and a list of the user-accessible services made available by the wireless network to the user. This information, referred to as user-profile data, is retrieved and processed by the above-mentioned processor nodes, in channels of wireless network channels for the user to communicate.
  • Aspects of the present disclosure are useful in a variety of communications networks. As an example, such communications networks may include a wireless network and another local or periphery-region network, where the wireless network has such a processor node operating on back channel data and where the local or periphery-region network includes a wireless link (e.g., in the last mile of the network) connecting user client devices to a radio transceiver with additional core network elements connecting the access network to the Internet backbone. The core network may employ wired or wireless technologies or a combination thereof. In a particular implementation, the access network includes a femtocell that acts as the access network's transceiver with a user's broadband connection acting as the backhaul link to the core network and the Internet backbone. In another implementation, the access network is terminated by a wireless WAN router that has one or more client devices connected to it over a wired connection (e.g., 3G router) or a wireless connection (e.g., 3G WiFi router). The access and core networks together can be operated by a wireless service provider that manages the network and charges users for the service.
  • Aspects of the present disclosure relate to use of processor nodes within the wireless network that are configured to provide specialized information, drawing from the back channel data, to the user of the mobile terminal, to the operator of the wireless network and to certain third parties which may be charged for the services relying on the special information. For example, these specialized services can be provided to an operator of the wireless network to provide location-based, user-profile based detailed analytics for performing optimizations of the data traffic in a wireless network by (re)routing in a proactive/predictive manner or reactively based on dynamics learned while users are accessing the network. As the wireless network is aware of its own capabilities for handling data flow, such as where a cache memory might be available at a periphery region of the network about to be congested by a myriad of users (e.g., a breaking event drawing crowds to a region and to news-related web pages characterizing the event), communication between its specialized processor nodes can exploit this back channel data by delivering redundantly-requested content from the cache rather than from a resource on the other side of the network. Similarly, another set of related back channel data, e.g., pertaining to the number and age groups of people suddenly appearing at the event, can be processed by the processor node(s) and published as geographically-tagged information for third parties.
  • Turning now to the figures, FIG. 1A depicts a block diagram for a data control module within a communication system, consistent with embodiments of the present disclosure. A data flow controller 180 controls the flow of data between user devices 184 and content providers (or databases) 188 a-188 c. User devices 184 (also referred to as user terminals, user equipment, user devices, mobile stations, mobile devices, mobile terminals, mobile equipment) can be wirelessly connected to the data flow controller through a communications network 182 (examples of suitable networks are provided herein). Content providers can be connected to the data flow controller through a communications network 186 (e.g., a wired/wireless, public/private packet-enabled network). Communication involving user devices 184 includes wireless communication via radio access network (RAN) equipment 194 which partly defines the wireless network part of the communication system.
  • Using the RAN equipment 194, user devices 184 can request content from a variety of sources including for example, website providers, servers, and other user devices which can be individual endpoint devices, such as smart phones which can also be content providers for another smart phone. One of more specialized processor nodes 190 (with designated memory circuits 192) are selectively incorporated into the network at one or many locations and are communicatively coupled to the access channels provided via the RAN equipment 194. From these access channels, the processor nodes 190 are programmed to look for and intercept location-based data and related user profile data for specialized operations.
  • In other embodiments, the processor nodes are programmed to access (receive from and/or write to) databases internal to the wireless network such as a 3G/4G cellular network. As permitted and enabled by way of other specialized resources such as those paid for by third parties, databases external to the wireless network are also available. FIG. 1A illustrates a database 196 which is depicted labeled as a “geo-tagged” information source because, in the example, the processor node 190 has stored therein location-based back channel data regarding the locations of certain user devices. In certain example applications, the database 196 can be implemented external to the wireless network for review and processing by third parties, and can be implemented internal to the wireless network for review and processing by an operator of the wireless network.
  • Using the specific application where the database 196 is implemented external to the wireless network, management of the data accesses by a third party can be controlled by the same or different processor nodes processing the data to protect the user's identity and other confidential information which is at least initially present in the form of back channel data. This privacy is maintained through the use of “tokens” in place of such confidential user information, sometimes referred to as “anonymizing” certain back channel data.
  • FIG. 1A illustrates databases 188 a-188 c as providing or using a form of the back channel data. Database 188 a contains certain anonymized back channel data. Database 188 b contains certain back channel data that is not anonymized, e.g., for applications internal to the wireless network. Database 188 c contains pseudo-anonymized back channel data which is demographically enhanced to hide highly-sensitive information such as the user's identity while providing significant other information to characterize the user and/or the user's behavior insofar as such appropriate information is procured, in various ways, by the processor node(s) via the wireless network.
  • Related embodiments and applications involve different aspects and applications certain back channel data, as discussed in more detail herein.
  • As one aspect of the disclosure relates to the specialized use of back channel data for managing the flow of data in the network (or data traffic control), use of the specialized processor nodes can become integral with other network processing elements used in the wireless network. For instance, based on expectations of increased or decreased types of users in a certain region, data that is being uploaded through the network to a website or service may be blocked, expedited, delayed or throttled. Blocking traffic disrupts the user activity driving the network usage and forces the responsibility of handling the network connectivity interruption on the user or the user's application/service. Blocking may be accomplished by terminating a request for TCP connection. Delaying traffic postpones data traffic to a future time. This may be motivated by congestion in the network at a given time or by operator defined policies. Delaying may be accomplished by blocking initial requests for communication followed by allowing the communication to proceed at a later time based on pre-defined policies or observed increase in network availability. Throttling slows down traffic in a network allowing the user to continue use of the network but at a reduced throughput. Throttling may be accomplished by delaying the transmission of TCP SYN packets in the case of a TCP/IP network effectively simulating a lower available bandwidth. Blocking, delaying and throttling may be implemented using a combination of client device and network element functionality. The client device component of the functionality may be implemented with a native client resident on the client device or an embedded client delivered as part of the data stream for execution in a browser environment. As users often become network frustrated in congested times (limited access when the user leaves work in an urban area at the end of the day or leaving a large public event in a frequented area), the user profiles can include a paid-for expedited-communication service which the specialized processor nodes can access and utilize for the user when the back channel data indicates that the user is in that region and, optionally, at such times.
  • Data flow controller(s) 180 of FIG. 1A can provide various location-related functions useful for controlling and providing delivery of content to user devices 184. An example of such functions is limiting access to the content based on where one or more user devices 184 are located. Access can be limited in a number of different manners including, for example, denial of content, denial of a form of content (e.g., voice, email, mms or short message), and delay in providing the content, and/or throttling of the speed at which the content is provided. The selection and implementation of these functions can be effected by monitoring, for certain user devices in certain locations, a number of context parameters including, for instance, parameters that define the current state of the network. This allows for data flow controller 180 to actively respond to changing network conditions and facilitate control over and allow for fair use of bandwidth between content providers and/or for critical content or services to remain available.
  • The implementation of data flow controller 180 can take several forms and may involve using two or more such controllers 180. In this context, the network items 182 and 194 are merely two aspects generally characterizing a potential larger network system, perhaps with other data flow controllers distributed near the periphery of the network system, e.g., near the initial connection point of user devices 184. Each data flow controller 180 can monitor and assess network loading, content overuse and similar parameters (discussed in more detail herein). This can be particularly useful for providing data flow control that is tailored toward a particular data path. For instance, content can be device specific, geographically specific, language specific or otherwise tend to be unevenly accessed between different users. Thus, one data flow controller may see a very high rate of content access whereas another data flow controller sees very low rate of content access.
  • In such contexts, monitoring and controlling data flow as a function of location-based data regarding user devices 184 can be advantageous. Certain implementations use one or more centralized analysis devices to provide location-based content control indicators to data flow controllers 180 for assessing and predicting content accesses across different data paths. In certain embodiments discussed in this disclosure, cache storage devices can be implemented for caching content as a function of location-based back channel data, an example of which is use of a cache for a category of communications to and from a designated group of mobile terminals heading to a large sporting event. As discussed in connection with the data flow controllers 180, the location, control and usage of the cache storage devices can be implemented largely based on predictive analysis of location-based data regarding user devices 184.
  • In a related example, news professionals, safety/medical personnel, government officials and certain businesses may require priority access to the wireless network in times involving special public situations where large crowds gather, whether a newsworthy event, a business convention or a potential public catastrophe. In such instances, the user profiles can include different paid-for business-levels for expediting communication services. For these services, the specialized processor nodes dynamically identify the regions of such public situations, by tracking samples of mobile terminals converging in such regions or via an external news feed, and access the business-level user profiles when the back channel data indicates that such users are in the region at such times. The application and/or user profile may call for opening a voice channel or for permitting a real-time live data stream to be transported through the network. In a high-priority emergency application, a video stream may be required on the downlink for consumption by a number of users simultaneously, and the network may need to react by employing multicasting or other relatively rare channel routing at least for a time until the congestion in the region's radio equipment (the base stations) clears.
  • In some embodiments and as a function of such location-based situations, traffic management ensuing from the processor node operations may lead to and directly involve operations by other portions of the network. As examples, the downstream traffic may be converted for transport over radio broadcast/multicast technologies such as MediaFlo or DVB-H, information can be sent to designated devices using other than the requested forms, e.g., using a WAP push, SMS, MMS or the like. Some of these redirections can be particularly useful for sending emergency information and less time-critical data such as targeted advertising.
  • Other aspects of the disclosure allow for the use of a peer-to-peer (P2P) network and a sharing scheme. In such an implementation, back channel data can be shared between user devices directly (e.g., direct point-to-point connection via Bluetooth), through a local area network (LAN) or otherwise. This can be accomplished, for instance, by replacing user identity information with a token, which can range from an entirely un-informing piece of data, to a mid-level demographic (male or female) or a much more detailed demographic (gender, age, zip code, favorite hobby and music, political party, etc.). Third parties can use such networks to gather and exchange such “tokenized” back channel data provided from the wireless network and optionally request that the wireless network provide geo-tagged notifications when similarly tokenized users approach the regions covered by these third-party networks. For instance, two retailers in the same mall might be separately tracking purchases of certain goods and services around a holiday and discover from “tokenized” back channel data, exchanged and otherwise, important demographics to assist in further sales for the next holiday.
  • FIG. 1B depicts a block diagram of a system and various possible specialized processor node configurations, consistent with an embodiment of the present disclosure. User devices, or user equipment, 152 connect to content providers, to each other, or to other data sources through a variety of data paths. Non-limiting examples of user devices include cellular phones, smart phones, personal digital assistants (PDA), handheld gaming devices, laptops, home computers, vehicle computers and other devices that connect through wireless networks. For simplicity many components within the data path have been excluded from the diagram.
  • One example data path involves radio access networks (RANs) 194. The user device(s) 152 could be, for example, a smart phone connecting through a cellular communication scheme, such as Global System for Mobile communications (GSM), Universal Mobile Telecommunications System (UMTS), Code Division Multiple Access (CDMA) and communications protocols as defined by the 3rd Generation Partnership Project (3GPP) or the 3rd Generation Partnership Project 2 (3GPP2), 4G Long Term Evolution (LTE) and IEEE 802.16 standards bodies. These examples, however, are not limiting and aspects of the disclosure lend themselves to any number of connection protocols and mechanisms.
  • Gateways 162 can be used to connect between the RAN interface and devices using another protocol, such as Internet-based protocols. For example, the gateway could translate data between the Wireless Application Protocol (WAP) protocol and the world-wide web protocols e.g., from various Internet protocols to Wireless Markup Language (WML). The data gateways can be configured to use GPRS Tunneling Protocol (GTP) to communicate with the radio access network. Other embodiments may use other communications protocols. Other conventional operations of the data gateways are known. For example, the data gateways enable users of mobile stations to roam between cells, for example, to move between different locations within the radio access network, by tracking the mobile station's identity across the network. The data gateway may also provide authentication and data formatting functions.
  • As shown in FIG. 1B, multiple RAN connection points (or cells) can use a common gateway. Also shown in the figure are various memory circuits 192 for storing and retrieving banks of data used by the processor nodes 190. In one embodiment, the memory circuits 192 include one or more cache storage devices 170 located at certain of the gateways 162. This allows for sharing of cache storage between multiple RANs as a function of and directed by algorithms executed by the processor nodes 190. At the same time, there can be many gateways that are geographically (and logically) distributed around the cellular network and therefore the cache locations can be implemented with a relatively broad distribution.
  • Another example data path involves the use of femtocells 154. Femtocells are often implemented as a low power cellular base station that is connected to a cellular provider's network, often through a broadband connection (e.g., DSL or T1) link. Femtocells can be particularly useful for providing local cellular coverage to areas that otherwise have inadequate coverage, e.g., indoors.
  • For simplicity, many details of the data path are omitted as they can be implemented in a variety of manners. Often a gateway 162 provides an interface between user devices and another protocol, such as the Internet. This gateway 162 is a possible location for such a specialized processor node 190. The gateway 162 can be located within a cellular provider's network and thereby shared (or similar to the gateway) with RAN-based data paths from larger/traditional cellular base stations. As another possibility, the cache storage device can be situated between the gateway and the user device. For example, a processor node and storage device can be located at the femtocell base station location. This can be particularly useful for controlling data bandwidth between the femtocell and the remainder of the network as this can be limited by the capacity of the broadband data link (sometimes shared with a variety of other devices).
  • A third data path uses wireless network interface 158 to connect and request data. This interface can be, for example, Worldwide Interoperability for Microwave Access (WiMax), 802.11x or the like. Thus, user devices can connect using wireless hotspots or other local networks. As before, the data path may include a gateway 162 and other device 170 and/or 190. The gateway can sometimes be located at a cellular provider's location, but need not be so located. In another implementation, cache storage device 170 is located between the gateway and the user device. In this manner, such devices are located as part of and within control of the wireless network.
  • A user device (or mobile terminal) can sometimes be simultaneously capable of connecting to multiple data paths. For instance, a user device 152 may be in range of a wireless hotspot while also having a connection to a 3G-type data interface. The decision on how to retrieve the necessary data can be made based upon a number of criteria, one of which can be whether or not a specialized processor node has assessed from location-based back channel data that there is available data likely residing in a memory (or cache) of a particular data path.
  • Other embodiments of the present disclosure relate to access-analyzing-control functions 166. These functions can be used to accurately and effectively control what and where content is to be routed and/or cached based on back-channel location information provided by the processor nodes 190.
  • A number of examples are useful in illustrating such methodology. As one example, network communications are routed and/or cached reactively and/or predictively, based on such back-channel location information. In a relatively simple implementation, a cache located in a region is deemed “highly-populated by mobile users interested in airline arrival times, football scores, bus schedules” by assessing the presence of an excessive volume of types (ages of users) having user devices: currently registering on in the region so as to reactively process; and having locations converging on the region so as to predictively process. In either situation, the network nodes cooperate to store data in a FIFO fashion for serving this high population of mobile users before their requests would otherwise be overtaking the network's available bandwidth (e.g., as limited by the RAN equipment) by providing the same largely-redundant information across the network to the same region. If particular content is accessed multiple times before leaving the FIFO cache, it is provided from the cache and then moved back to the front of the cache.
  • As another example of a reactive implementation, a network data analyzer identifies content that is being accessed in high-volume and that is consuming considerable bandwidth. The data can then be cached according to the network impact of storing in a particular cache storage device. The system can thereby prioritize what data is stored according to network impact. This can be particularly useful for maintaining high priority content in the cache.
  • Yet another reactive implementation involves receiving region-specific indications of media content's popularity from 3rd parties, such as the content providers. This can be implemented using an indication of the number of requested downloads within a predefined time period or using more complex parameters and algorithms.
  • In a predictive example, the analyzer uses data to predict future network demands for content. This can include predicting downloads related to breaking news stories or detecting access patterns that indicate that particular content is likely to increase in usage. For instance, as many video clips are accessed via a network, more users see the data and the demand increases rapidly as the users forward or otherwise send the video clip to other users. Another example relates to sporting events in which a large group of people attempt to access content at approximately the same time, such as near the end of a game. Large news events, such as natural disasters, can also result in a spike in content requests for related information.
  • Another aspect relates to determining how content is distributed between various storage elements. In conjunction with the assessment of a region deemed “highly populated,” the processor nodes can make determinations on where to store data based upon numerous parameters. For instance, for a particular data path, the network analyzer can identify the most likely bottleneck for the data and chose to store the content accordingly. As another example, the analyzer might determine that certain content is related to another geographical region and thereby send the content to correspondingly located cache storage devices. Another example involves content that is associated with a particular type of device, e.g., smart phone application for a particular type of phone. This can also provide valuable information about where the content is best stored.
  • Accordingly, these important decisions can be based upon any number of other parameters or factors. A few examples may include user data, device characteristics, network characteristics, environmental factors and socio-cultural factors. Examples of user data include the data service price plan a user is subscribed to (e.g., premium vs. standard). Examples of device characteristics include screen size and supported audio and video codecs. Examples of network characteristics include network technology (e.g., HSPA, LTE), network topology (e.g., microwave vs. metro Ethernet backhaul) and available network capacity. Examples of environmental factors include time of day, location of sender and recipient and weather conditions. Examples of socio-cultural factors include holidays, sporting event schedules, etc. One or more of the context parameters may be combined to form a context which in turn is used to determine the management of the content in the cache storage elements. For instance, a video clip of breaking news may be automatically moved to cache storage elements nearer the edge of networks from the cloud cache or core network cache storage elements as the day breaks around the globe anticipating user requests for playback of the video clip.
  • Other aspects of the present disclosure allow for the use of multicasting in connection with a delay mechanism discussed herein. When a user device requests content that is highly-demanded and/or that consumes large amounts of bandwidth, access to the content can be delayed. Access by other user devices requesting the data is also delayed. As part of the delay mechanism, the user devices are presented with information for connection to a multicast session. The user devices then connect to the same multicast session and receive the content therefrom. The multicast session can be initiated for the group by presenting a synchronization time for the session to each of the user devices or can simply be periodically repeated (e.g., in the case of very-highly demanded content) thereby allowing devices to connect as necessary. Synchronization/multicast information can be sent as part of the delay mechanism through a variety of suitable mechanisms.
  • Yet another implementation is directed to using multicasting for pushing data to large number of devices. Multicast information (e.g., session initiation information) can be sent to groups of devices, e.g., using a WAP push, SMS, MMS or the like, and the devices can respond by connecting to the multicast stream/radio channel. This can be particularly useful for sending emergency information, targeted advertising or even software updates to a large group of user devices. The content can be cached and sent to groups of devices until all desired devices receive the content. This can allow for updates to be sent and received over time and to devices that may subsequently connect to the network.
  • Multicasting can be particularly useful for efficient use of radio signal bandwidth. For instance in a UMTS context, a group of mobile stations can be configured to listen to the packet notification channel (PNCH) on which a point to multipoint-multicast (PTM-M) notification is sent. Data can then be sent to the group of mobile stations using a shared packet data traffic channel (PDTCH). These operations can be important for many contexts including, for example, emergency situations where specifically-equipped or configured groups of mobile stations need to monitor the situations on a priority basis. This type of multipoint-multicast mode can be initiated in response to certain of the processor nodes executing processes to track externally-reported events (from other databases and networks) and/or converging populations of user devices to predict and/or react to location-based back channel data.
  • Consistent with another embodiment, a user application can be installed/downloaded to a mobile station in response to a user or third-party profile accessed by the processor node. The processor node uses the profile information as a reference for identifying that the mobile station should be tracked as it approaches a favorite region, such as “home.” In response, the user application can facilitate the intelligent control and delivery of content to the device by cooperation with and in response to the device location being monitored by the processor node. For instance, the application provides configuration options for accessing/downloading content. In one embodiment, the application controls delivery options based upon content type and/or content source as determined by the user. Such delivery options might include expedited delivery for rich media (recently published e-books of videos). This allows the user to specify which, if any, content is provided using aspects of the present disclosure (e.g., available caching locations or access limitations). Other aspects of the application allow a user to modify delivery settings dynamically. The user can use the application to route content delivery to e-mail, to delay delivery, to use bandwidth throttled, or to access a preferred/premium service which allows access to cache locations and similar functionality. This can be particularly useful for changing deliver options as may be desirable when a user is travelling and has limited access to other network resources (e.g., home computer access or email).
  • To implement such modifications, the application can modify content requests to denote user preferences (e.g., by modifying routing data for access request or adding preference indications thereby instructing how a remote device should control content delivery). Alternatively, user profile data can be stored by a service provider. The application then updates the user profile data according to user preferences. Access to user profile data can also be provided via other interfaces, such as via a website.
  • As a particular example, the user may indicate that a first website contains content that is to be afforded a relatively low priority and for which delivery can be delayed or otherwise slowed. The user may indicate that another website is to be afforded high priority, and delivery should be prioritized. The cache/data control device(s) process access requests for each website accordingly. For billing purposes, the user may be charged a premium fee for the high priority accesses. As another example, when a mobile device requests access to content, the mobile device presents the user with content delivery options. These options can be a priority indication and/or more detailed options, such as accepting delayed delivery for a reduced price and/or paying extra for access to a cached version. Other options include transcoding options, such as indicating the acceptability of different video resolutions or coding schemes.
  • These and other applications can be implemented on mobile stations consistent with the present disclosure. The application includes programmed instructions that, when executed by a computer/processor, perform one or more of the methods and/or steps of the disclosure. The instructions can be programmed on a computer readable medium including non-volatile or volatile memory circuitry.
  • Various aspects of the present disclosure relate to particular types of data flow in response to the location-based operations performed by processor nodes 190. FIG. 2A illustrates a block diagram useful for discussing examples of such data flow relative to content access by mobile devices, consistent with embodiments of the present disclosure. The system depicted in FIG. 2A includes mobile stations 202, radio access networks 204, data gateways 206, an Internet gateway 208, and data intermediation modules 220 which are used to illustrate an example structure for providing specialized back channel operations by the processor nodes. Although the system is depicted and described with certain components and functionality, other embodiments of the system may include fewer or more components to implement less or more functionality.
  • For description purposes, one of the mobile stations 202 requests multimedia, or other, content and one of the data intermediation modules 220 receives the requests. The mobile stations 202 can include handheld wireless devices, such as cell phones, mobile phones, smartphones, personal digital assistants (PDA), handheld gaming devices etc, that can wirelessly communicate using radio frequency (RF) communications signals.
  • In certain embodiments, the radio access networks 204 facilitate radio communications between the mobile stations 202 and a core network that includes the data gateways 206, the Internet gateways 208, and the data intermediation modules 220. In an embodiment, the radio access networks include one or more base stations to facilitate communications among the mobile stations that are within a communication range of the base stations. Each base station has at least one RF transceiver and the base stations communicate with the mobile stations using RF communication signals. The radio access network facilitates network communications among multiple mobile stations within the same radio access network and between mobile stations in other radio access networks and provides interfaces to facilitate communications with other entities, such as a Public Switched Telephone Network (PSTN), a Wide Area Network (WAN), the Internet, Internet servers, hosts, etc., which are outside of the radio access network. In an embodiment, the network elements depicted in FIGS. 1A and 1B are part of a wireless network that is operated by a single wireless service provider.
  • Data signals communicated between the mobile stations 202 and the radio access networks 204 include, but are not limited to, analog and/or digital RF signals (i.e., radio waves) for any type of communication mode, including text messaging, multimedia messaging, voice calling, and Internet browsing. The radio access network can support various different RF communications protocols, including without limitation, GSM, UMTS, CDMA, WiMax and communications protocols as defined by 3GPP, 3GPP2, or IEEE 802.16. Although some wireless communications protocols are identified herein, it should be understood that present disclosure is not limited to the cited wireless communications protocols.
  • The data gateways 206 configure outgoing data access requests for use with one or more networks and configure incoming data for use by or display on a mobile station 202. As shown, each data gateway interfaces directly with a radio access network 204 and a data intermediation module 220, although other embodiments may include other intermediate functional elements.
  • The Internet gateway 208 provides a gateway for receiving data from content providers 262 (or optionally between mobile stations 202). The content providers 262 can be Internet-connected hosts and/or servers. For example, the Internet gateway can be a Wireless Application Protocol (WAP) gateway that converts the WAP protocol used by the radio access network to the Hypertext Transfer Protocol (HTTP) protocol used by the Internet. In an embodiment, the Internet gateway enables mobile stations to access multimedia content, such as Hyper Text Markup Language (HTML), compact HTML (cHTML), and extensible HTML (xHTML), which is stored on Internet-connected hosts and/or servers.
  • The disclosure is not limited to Internet communications and can be used in connection with various other networks and content sources as shown by alternative gateway/service 210. For instance, alternative gateway/service 210 can be a custom interface provided by a wireless service provider. The wireless service provider can use the custom interface to provide content to mobile devices. As an example, the content could be movies, applications, music, games or other downloadable data. The wireless service provider can store the content at one or more centralized locations and then distribute the content to cache locations as desired and discussed herein. Mobile device users can be charged for access to the content and at the same time realize an improved quality of experience due to intelligent caching and/or delivery of the content.
  • In a particular implementation of the disclosure, the wireless service provider can provide data content originating from other content providers. The other content providers purchase access to the caching/data control aspects of the present disclosure, thereby providing improved quality of experience for mobile users attempting to access their content.
  • The FCC may impose (“net neutrality”) rules that would prohibit Internet service providers from slowing or blocking of information and certain applications over their networks. In this context, it should be noted that even for content that is allowed equal access to network bandwidth; however, subscribers to the intelligent data control of the instance disclosure can provide a higher quality of experience for their respective content.
  • With reference to FIG. 2A, in a data acquisition process, a mobile station 202 generates a data request message (e.g., HTTP, SIP, RTP) that identifies a content provider and desired content (e.g., by entering a URL or other identifier). The data intermediation modules 220 can be located between gateways 206 on one side and the Internet gateway on the other side. In particular, each data intermediation module is functionally located in a data path that is between the respective data gateway on one side and the Internet gateway on the other side. In accordance with an embodiment of the disclosure, the data/caching module 220 manages the flow of content between content providers and mobile stations. The modules can include, or have access to, a cache storage device for storing content.
  • In an embodiment, the data intermediation module 220 intercepts content requests that are sent from a mobile station and processes the requests to determine how to handle the content requests. This can include determining whether the requested data is present in the cache and/or performing various other functions that help to improve the performance of the system. For example, the data intermediation module may perform any of the following functions:
  • 1) limit access to content by a requesting mobile station;
  • 2) cache content for delayed delivery;
  • 3) optimize the content by transcoding thereof;
  • 4) provide content directly from the cache without retrieving the content through the Internet gateway; and
  • 5) forward content between data intermediation modules to preemptively populate caches with content.
  • In alternative embodiments, other techniques for media streaming such as HTTP-Progressive Download (PD) and HTTP adaptive bit rate streaming may be utilized. In a particular embodiment, the content is part of streaming data that is accessible within the 3GPP end-to-end PS streaming service specification. Within this specification the content is transported using Real time Transport Protocol (RTP) over User Data Protocol (UDP). Session control/setup is implemented using Real Time Streaming Protocol (RTSP). For cached data, the streaming session can be effectively intercepted by streaming from the cached location instead of the indicated URL. The cache device can identify requests for streaming sessions for cached URL locations and thereby intercept the connection. This can be accomplished in a number of manners. For instance, connection information is sent to a requesting device using a session description protocol (SDP) file. In one instance, the SDP file can be adjusted based upon the existence of cache data. The adjustment can include changes due to transcoding and or connection information due to cache location.
  • In alternative embodiments, other techniques for media streaming such HTTP-Progressive Download (PD) and HTTP adaptive bit rate streaming may be utilized. In another embodiment, the content can include content (media or otherwise) that is accessible via OMA generic content download over-the-air specification. This access can include either download with separate delivery of download descriptor and media object or download with co-delivery of descriptor and media object. The download descriptor contains information about a media object and instructions on how to download the content. The data flow control can thereby be effected by modifications to the download descriptor.
  • As a specific example a data network can involve multiple/disparate entities managing nodes/gateways or other content delivery elements. A content control device can initiate content delivery (streaming or otherwise) via a setup request. In a more particular embodiment, the content control device modifies the setup request as a function of the current cache state or other network parameters (such as subscriber relationship, content provider agreement or analytics applicable to network environment). In some instances, the modified request includes options for content delivery that can be acted upon by a downstream node or entity.
  • The data intermediation modules 220 can be particularly useful for improving the performance of live data content delivery by intelligent caching and data flow control. Caching and flow control decisions can be made based upon the status of cache storage devices at various locations. For instance, the data intermediation modules 220 can determine whether or not all or part of a particular requested content is already stored in a cache storage device near the recipient device. In this manner, the cached content can be retrieved from the data cache device and thereby not sent over the core network.
  • To facilitate this cache-based communication between data intermediation modules 220, a variety of messaging protocols can be used. For instance, the existence of multiple cache locations allows for content retrieval to occur between caches thereby alleviating the need to access the content provider directly. While not limiting, in one example a central cache managing server maintains a list of cached content for the various cache storage devices. A data intermediation module 220 checks with this managing server to determine whether the entire content needs to be transmitted as a function of the status of cache storage devices. In another example implementation, the data intermediation modules 220 communicate directly with one another.
  • These and other various communications can be implemented over the control protocols for telephonic devices. For instance, the cache checks can be sent within the signaling system 7 (SS7) protocol, thereby facilitating transmission across a number of different network platforms including, for instance, the PSTN. Other communication protocols are also possible. An example embodiment using such communication flow is discussed more detail in regards to FIG. 3.
  • Additional improvements in performance can be achieved by processing the content to, for example, optimize the content and to provide value added services.
  • Each one of the data intermediation modules 220 (and/or associated processor nodes and storage devices) can be a standalone network element, such a distinct network node (e.g., a different “box”) that is connected to the network by wired and/or fiber-optic network connections using network communications protocols such as Internet Protocol and Ethernet. Alternatively, each one of the data intermediation modules 220 may be integrated with one of the other network elements. For example, a data intermediation module may be located in the same “box” as one of the data gateways 206, the Internet gateway 208, or other components. Whether the data intermediation module 220 is physically located in a distinct physical network node or in the same network node as another network element, the functionality of the data intermediation module can be similar.
  • Use of a data intermediation module as described herein is applicable to different kinds of radio access networks, including, for example, 3GPP, 3GPP2, IEEE 802.16, and 4G radio access networks. For instance, radio access networks as defined by the 3GPP include a NodeB, a Radio Network Controller (RNC), a Serving General Packet Radio Service (GPRS) Support Node (SGSN), and a Gateway GPRS Support Node (GGSN). These nodes are discussed briefly as an example system, but the disclosure is not limited thereto.
  • A NodeB is a network element that performs base station functionality. A NodeB can use various communication protocols, such as Wideband Code Division Multiple Access (WCDMA)/Time Division Synchronous Code Division Multiple Access (TD-SCDMA), to communicate with the mobile stations. In an embodiment, each NodeB includes an RF transceiver that communicates with the mobile stations that are within a service area of the NodeB. In one embodiment, the NodeBs have a minimum amount of functionality and are controlled by an RNC. In another embodiment in which High Speed Downlink Packet Access (HSDPA) is used, some logic (e.g., retransmission) is handled by the NodeB to achieve shorter response times.
  • Each RNC is a network element that controls the connected NodeBs. In particular, the RNC is responsible for radio resource management and mobility management. The RNC is also the element that performs encryption before user data is sent to and from a mobile station. In an embodiment, radio resource management operations include outer loop power control, load control, admission control, packet scheduling, handover control, security functions, and mobility management. The Radio Network Controller may also various radio resource optimization operations.
  • Each SGSN is a network element that delivers packets to and from the mobile stations within a corresponding geographical service area. Functionality of the SGSN includes packet routing and transfer, mobility management (e.g., attach/detach and location management), logical link management, and authentication and billing. In an embodiment, the SGSN maintains a location register that stores location information, such as the current cell of a mobile station, and user profiles, such as International Mobile Subscriber Identity (IMSI) address used in the packet data network, of all GPRS mobile stations that are registered within the corresponding geographical service area of the SGSN.
  • Each GGSN is a network element that provides interworking between the GPRS network and external packet switched networks, such as the Internet and X.25 networks. In particular, the GGSN hides the GPRS infrastructure from the external networks. Functionality of the GGSN includes checking to see if specific mobile stations are active in the radio access network and forwarding data packets to the SGSN that is currently supporting a mobile station. The GGSN also converts GPRS packets coming from an SGSN into the needed packet data protocol format (e.g., Internet Protocol or X.25) and forwards packets to the appropriate external network. The GGSN is also responsible for IP address management/assignment and is the default router for the mobile stations. The GGSN may also implement Authentication, Authorization, and Accounting (AAA) and billing functions.
  • FIG. 2A also depicts a detailed example of a data intermediation module 220 in accordance with an embodiment of the disclosure. The data intermediation module 220 includes a sender-side interface 240, a recipient-side interface 242, a Value Added Service Provider (VASP) interface 244, a billing interface 246, an AAA interface 248, a cache storage module 250, a context parameter and analytics database 252, a media processor 254 for handling 3rd party requests and reports, recommendation processor 255, a traffic manager 256, and a workflow engine 258. Without loss of generality, some of the content flow is discussed herein in terms of content received over the Internet; however, the data content could be provided via other suitable mechanisms and from other sources.
  • The sender-side interface 240 is an element of the data intermediation module 220 that provides an interface to the sender-side functional elements of the system and is the incoming interface for data content sent to the recipient-side mobile station. The recipient-side interface 242 is an element of the data intermediation module 220 that provides an interface to the recipient-side functional elements of the system and is the outgoing interface for data content destined for a recipient-side mobile station. In the embodiment of FIG. 2A, the recipient-side interface is functionally adjacent to the (Internet) gateway or other network components (e.g., a MSF server), and the receiving data intermediation module.
  • The VASP interface 244 is an interface for value added service providers (e.g., service providers that are distinct from the content provider or the operator of the system and wireless communications network). In an embodiment the value added service providers are third-party service providers that provide some additional service, functionality, or data to the system. In an embodiment, the VASP interface enables value added service providers to provide direct inputs to the data intermediation module related to, for example, sender parameters, recipient parameters, and optimization parameters.
  • The billing interface 246 of the data intermediation module provides an interface to a billing system or billing systems. In an embodiment, the billing interface enables the system to implement a billing program for data services. The billing system can also be used to bill content providers for access to the caching or for preferred content delivery features (e.g., enabling of RAN-based multicasting or reduced throttling). Content providers could request that certain content be stored and easily accessible, thereby improving the user experience for the cached content. The billing program could record such requests and charge content providers as a function of the number of cache requests, the number of accesses to the content, the bandwidth used by accesses to the content and the like.
  • Another implementation involving a billing function is directed to a centralized controller (or a hierarchy of important data and/or multiple storage/cache locations at various points within the network) for distributing content to multiple locations based on mobile-terminal population changes in the regions of the locations. Content providers can request distribution of content for improved access based upon defined parameters. These parameters can include, for instance, geographical location, type of wireless service available (e.g., 3G, WiMax), wireless service provider (e.g., AT&T, Verizon) or state/country boundaries. The billing can be accomplished using a centralized model, such as based upon the number of cache locations the content is to be loaded to, and/or a decentralized model where each location tracks usage and generates billing data therefrom. In yet another embodiment, a semi-centralized model involves two or more business entities coordinating and negotiating billing models and content delivery control/caching, bandwidth and quality factors. These and other aspects can thereby be used with various other parameters and content control functions.
  • Another implementation relating to billing methods involves a method of controlling delivery of source data content through a communication network including a wireless-technology network and another network. The wireless-technology network is controlled by a first business entity (e.g., data caching/flow control provider) and the other network being controlled by a second business entity (e.g., Internet Service Provider/content provider). In response to notification that source data content is to be routed through the communication network, control data is accessed, representing data-delivery conditions agreed to between the first and second business entities. In response to and as a function of the control data, substantially redundant representations of the source data are directed to cache memories located at nodes in the wireless-technology network. The system delivers redundant representations of the source data from the cache memories to comply with the notification while effecting an improved quality of experience or improved system bandwidth allocation in the communication network. In a specific example of such a data network involving multiple/disparate entities managing nodes/gateways or other content delivery elements, a (streaming or otherwise) setup request is modified by one of the business entities to effect delivery as a function of the current cache state or other network parameters (such as subscriber relationship, content provider agreement or analytics applicable to network environment).
  • The AAA interface 248 of the data intermediation module provides an interface to authentication, access control, and accounting information and services.
  • The cache storage module 250 of the data intermediation module 220 provides storage for content (e.g., video, audio, website, messages). In an embodiment, the cache storage module enables the data intermediation module 220 to delay communication of content to other network elements when desired. Additionally, the processor nodes and associated storage modules can communicate with one another to allow for the data intermediation modules to implement an accelerated delivery mechanism by sending content directly between data intermediation modules without passing through an Internet gateway.
  • The context parameter database 252 of the data intermediation module provides a repository for context parameters that can be used to control content caching and/or delivery. In an embodiment, context parameters may include user data, device characteristics, network characteristics, environmental factors, and socio-cultural factors. Examples of user data include the messaging price plan a user is subscribed to (e.g., premium vs. standard), the age of the user, or the billing location of the user. Examples of device characteristics include the screen size and supported audio and video codecs of a mobile station. Examples of network characteristics include network technology (e.g., High Speed Packet Access (HSPA), LTE), network topology (e.g., microwave vs. metro Ethernet backhaul), and available network capacity. Examples of environmental factors include time of day, location of sender and recipient, and weather conditions. Examples of socio-cultural factors include holidays, sporting event schedules, etc. One or more of the context parameters may be combined to form context information that is used to determine how the data intermediation module processes content. For instance, content provided to a user having a standard rate price plan may not get priority treatment relative when the system is congested due to a wild fire raging in the area.
  • The media processor 254 of the data intermediation module supports the processing of content to modify one or more aspects of the multimedia (and other) content. In one embodiment, the media processor transcodes the content. For instance, video content may be modified by changing the spatial and temporal resolution, changing the encoding bit rate, and/or changing the codec and/or codec parameters. In another embodiment, audio content may be changed by changing the sampling rate, changing the number of channels, changing the encoding bit rate, and/or changing the codec and/or the codec parameters. In another embodiment, image content may be changed by changing the spatial resolution, changing the bit depth, changing the encoding bit rate, and/or changing the codec and/or the codec parameters.
  • In another embodiment, the media processor 254 processes the content to enhance it. For example, the media processor may insert an advertisement in audio, video, image, or textual format into the content. In another embodiment, the media processor may convert textual symbols, such as emoticons, to an equivalent image representation.
  • The recommendation processor 255 of the data intermediation module is configured to proactively push real-time recommendations to mobile users. Using location-based and user-profile back channel data, the recommendation processor 255 can proactively push out location-based recommendations regarding a variety of user preferences and parameters. As indicated further in connection with FIG. 2B, these might include video sources for rich-media downloads, preferred music sources and blog forums, social network friends whose mobile terminals are relatively geographically nearby, and interesting local opportunities to users on the go. As users travel, they can thereby receive reports from the recommendation processor 255 and communicate therewith on a convenient and region-specific basis. In certain systems, these region-specific recommendations and alerts utilize region-specific data sharing and distribution via a region-specific cache, as previously discussed.
  • The traffic manager 256 of the data intermediation module is configured to provide traffic management in the network. In an embodiment, the traffic manager regulates the flow of content traffic between the functional elements of the system. For example, when a mobile station requests content from a content provider, the traffic manager regulates the data transfer rate by delaying or throttling back the transmission of the content. In an embodiment, the traffic manager delays the transfer of content by terminating the Transmission Control Protocol (TCP) connection when a mobile station initiates the transfer process. In an embodiment, the traffic manager throttles back the transfer of content by delaying the sending of TCP SYN packets from the data intermediation module to the mobile station while the content is being transferred. Other types of traffic management can be implemented by the traffic manager.
  • The workflow engine 258 of the data intermediation module is configured to process the content and, in response to the processing, to determine where/whether to cache the content based on the aforementioned discussion. In an embodiment, the workflow engine determines where/whether the content currently resides relative to one or more cache locations. This determination can be used to decide how best to retrieve the content, such as whether to access the content provider through the Internet gateway or from another data intermediation module.
  • In one implementation, the workflow engine can access resources from any of the traffic manager, the VASP interface, the billing interface, the AAA interface, the cache storage module, the context parameter database, and the media processor in order to help make routing/caching/control decisions and any of the criteria described above with respect to the traffic manager, the VASP interface, the billing interface, the AAA interface, cache storage module, the context parameter database, and the media processor can be considered by the workflow engine. Additionally, the workflow engine may dictate how content is processed within the data intermediation node. For example, the workflow engine may specify a particular type of transcoding for the content based on the capabilities of the intended recipient-mobile station.
  • In a particular embodiment, a billing node may be located between the GGSN and the data intermediation module.
  • FIG. 3 depicts an example wireless network consistent with various cellular systems and an embodiment of the present disclosure. Data paths are indicated by solid connection lines and control paths are indicated by broken lines. As discussed herein, embodiments of the present disclosure allow for location-based cache control to be implemented using existing control paths. If desired, the control data can be sent consistent with the SS7 and related control protocols. This allows for additional flexibility including backward compatibility across disparate systems. Moreover, since the existence of stored data may eliminate and/or reduce the necessity for an end-to-end data path between source and destination devices, the use of the control protocols can be particularly useful in determining this necessity before setting up data path(s).
  • For instance, connection to content might be established using HTTP or session-initiation-protocol (SIP). An intervening control server/device can check the status of various storage devices relative to the desired content indicated by the connection request for a given population of mobile terminals in a particular location. If the desired content is indeed readily available and/or cached, the intervening control can intercept the connection request and establish a link with the storage device instead of the destination indicated by the requesting user/mobile device.
  • In various embodiments of the present disclosure, the storage devices operate to maintain synchronicity with content providers. In particular, content providers may change the content and thereby render the versions of the content out-of-date. The synchronicity can be maintained in a number of different manners. One mechanism involves periodically, or in response to user device requests, checking the version/status of the content at the content provider. If the content has changed, the version stored in the storage devices can be updated. Another mechanism is to allow for content providers to push new updates directly to the storage devices. This allows content providers to have more control over the content delivery, but may require more interaction with the content providers, e.g., establishment of preexisting protocols and other agreements.
  • Consistent with embodiments of the present disclosure, various processes (algorithms) can be implemented in connection with location-based back channel data features. According to one such process, a control processor(s) is configured to access a database of context parameters. The particular parameters and their respective weight in the analysis can be selected according to a number of criteria. According to one such criterion, a lookup table of desired context parameters is indexed according to the content type. The content type can include such characterizations as media type (e.g., video, audio or text), content source, real-time requirements (e.g., streaming/live data) and/or data size. The lookup table then provides a list of context parameters along with instructions on how to use the context parameters. The control processor uses these parameters to determine whether, to which types of mobile devices, and/or where to send messages, recommendations and/or content. The control processor, using the user profile of prospective recipients of such data, can also determine whether or not to limit access thereto based on user preferences and the location-based back channel data.
  • In a particular implementation, the control processor node assesses the propriety of proceeding with such user-directed communications by first rating the message or content and then comparing the content rating to previously stored content as indicated in a user profile. If the new/current content has a higher rating, then the control processor instructs the relevant nodes for delivery of the content and/or its storage for later access.
  • The above-mentioned processes (algorithms) show the diversity and wide ranging application of embodiments of the present disclosures and therefore are not meant to be limiting. Variations of the above-discussed embodiments, for example, are based on combinations of the disclosed aspects as set forth above and/or in the claims that follow. Variations of the embodiments may be employed for wireless communication networks based on 3G (e.g. CDMA, UMTS, HSPA, HSPA+) or 4G (e.g. WiMax, LTE, LTE-Advanced) standards.
  • FIG. 4 depicts an example network, including a wireless network, consistent with various cellular systems and embodiments of the present disclosure and further including expanded example block diagrams of relevant hardware-software circuits of both a user device and processor-node circuitry applicable to many of the embodiments discussed and illustrated herein. The mobile or user device 184 includes an Adaptive Autonomous Location Push (AALP) mobile agent 410 to interface with an AALP adapter provided in the mobile positioning center (MPC—internal to the wireless communications network 182 and RAN 194. The mobile or user device 184 also includes other hardware-software circuits such as client application program interfaces (APIs) 420, a Secure User Plane for Location (SUPL) interface 422, and a GPS interface 426. Such applications are further described in US Patent Application Publication No. 2007/0026871, assigned to the instant assignee.
  • The mobile device 184 further includes specialized-privileged application program interfaces 424 and 428 which are configured to permit the mobile device 184 to implement a variety of network-specific and network-cooperative location-based operations. For instance, the specialized-privileged application program interface 428 provides feature control for the mobile device, in response to a communication from the wireless-technology equipment that a user-alert indicator should be changed in the mobile terminal when the mobile terminal is in a geographic region. The user-alert indicator can change between modes of an audible alert and a vibrating alert, e.g., when the region designates a worship service, quiet hours such as during classroom time.
  • As another example, the specialized-privileged application program interface 424 can provide the wireless communication network 182 user-profile updates such as personal travel calendar information useful for assisting in preparing location-specific processors and (cache) memory devices within the wireless communication network 182 in advance of the anticipated travel.
  • The processor node 190 and its related memory device 192 is also expanded, thereby illustrating the intermediation interface for acquiring and processing the location-based back channel data. The intermediation interface has a front end processor 450 which acts as a gateway for accessing selected user profiles as a function of receipt of regional region-relevant alerts of user devices from the RAN equipment 194. The intermediation interface has a BCD (back channel data) processor 452 which performs the translations and matching between the back channel data received from the front end processor 450 and other stored data. For sets of programmed operations that specialize the processor nodes to provide certain features (benefitting the mobile users, the wireless network and/or third parties), the BCD processor 452 carries out immediate local access and (cache-like) processing of the relevant user profiles in processor module 454, third party profiles and related instructions in processor module 456 and network-specific BCD-related operating and access rules in processor module 458. Another processor module 460 is generally configured for other functionality such as that discussed above in connection with the lower portion of block 220 of FIG. 2A.
  • FIG. 5 depicts an example network, including a wireless network, consistent with various cellular systems and embodiments of the present disclosure including many discussed herein involving third party requests and BCD-related accesses. An example application involves a communication network with a wireless network 182 that provides access to back channel data to nodes 510 managed by third parties. A processor node 190 in the wireless network uses and processes location-based mobile-terminal data as geographically-tagged information sources for review and possibly further processing and analysis by the third parties. Processor 514, acting as an agent of the network 182, anonymizes the sensitive BCD data before publishing these geographically-tagged information sources. In some configurations, the processor node 190 receives from third parties' requests and feedback via processor interface, and/or input from other resources such as a server over the Web 520 and privately-held databases 522 which might include adaptively re-processed versions of the data previously provided to the third parties. Database 522 and results analysis processor 530, feed and/or are controlled by a third party, are depicted as receiving instructions and rules from third parties for demographically refining work product received from the processor node 190 with at least one iteration for refining the work product such as by including additional parameters latently obtained regarding the set of demographic information. In some configurations, the processor 514 receives such refined work product from the third party node 510 and reverses the “tokenization” of the sensitive user data; in this manner the processor node 190 is able to re-process in the ensuing iterative steps with more complete information than would otherwise be accessible to the third party. A BCD combiner 540 is a processor node adapted to reconstruct useable data for the processor node 190 based on the (the reverse “tokenization” of the sensitive user data) output from the processor 514 and the refined rules and/or parameters received from the third party node 510.
  • This methodology can be extremely useful in a variety of situations including, for example, use of the processor node as an independent auditor for a transaction between two parties (bidding auction, business-business dispute settlement, etc.). In one such independent auditing transaction, the processor node 190 acts on behalf of a government entity to monitor suspicious communication activity with reports being issued to a judge in respect of the privacy rights of those being monitored. An example of such suspicious communication activity might entail the government entity providing demographic user-based and location-based rules for monitoring calls where certain terms are used (see related processing in blocks 220 of FIGS. 2A and 190 of FIG. 4). Sensitive user data provided by way of the back channel data can be encrypted and delivered in various forms with a key provided to (or accessible by) the judge for decrypting before analyzing the data (e.g., in deciding whether to issue a subpoena for desensitizing the data), or by another entity for reprocessing and further monitoring within the network.
  • As a function of subscriber-based agreements or other authorized protocols (examples being provided herein), a memory circuit stores the above-discussed user profiles (including subscriber data such as identity, age, and other particulars and demographics) on behalf of an operator for the wireless communication network for access to the network. On behalf of a third party, the memory circuit also stores communication rules relevant to a geographic region of service provided by the communication network. The processor node is configured within the wireless-technology equipment for assimilating back channel data, such as current location data regarding the user terminals and with the user profiles, for generating assimilated current location-based and user-characterizing data. The generated data is provided to another processor node (such as at a third party). In one configuration, in response thereto, a modified set of data and a set of rules are received from the third party for generating another set of assimilated current location-based and user-characterizing data.
  • Various embodiments described above, in the claims that follow, in the figures and related discussion may be implemented alone, in one or more combinations with other aspects and/or in other manners. One or more of the elements depicted in the figures can also be implemented in a more separated or integrated manner, or removed, as is useful in accordance with particular applications. It is also within the spirit and scope to implement a program or code that can be stored in a machine-readable medium to permit a computer to perform one or more aspects of the approaches described above, such as those involving the storage and retrieval of data. In view of the description herein, those skilled in the art will recognize that many changes may be made thereto without departing from the spirit and scope of the present disclosure.

Claims (20)

1. For use in connection with a communication network having wireless-technology equipment, a system, comprising:
a memory circuit that stores
on behalf of an operator for the communication network, user profiles that include wireless network subscriber data useful for providing network access to mobile terminals associated with the subscriber data,
on behalf of a third party, communication authorization rules relevant to a limited set of conditions including a geographic region of service provided by the communication network, and including data in at least one of the user profiles;
a first processor node configured within the wireless-technology equipment for assimilating current location data regarding the mobile terminals with the user profiles, and using the assimilated current location data to monitor and/or control communication for the mobile terminals, via the communication rules relevant to the geographic region, over the communication network; and
a second processor node configured within the wireless-technology equipment for implementing the communication authorization rules in response to the first processor node assimilating the current location data and to the limited set of conditions being satisfied.
2. The invention set forth in claim 1, wherein the system is configured for monitoring communications over the network, and storing and reviewing communications over the network for text searches or biometric-based searches such as based on voice or facial image.
3. The invention set forth in claim 1, wherein one of the processor nodes is further configured to implement algorithms to search for suspicious communications.
4. The invention set forth in claim 1, wherein the processor node is configured to implement an algorithm to search for suspicious communications and reporting/storing/flagging suspicious communications for review by an external entity.
5. The invention set forth in claim 4, wherein the processor node is configured to encrypt user profile data pertaining to the suspicious communications for reporting to the external entity.
6. The invention set forth in claim 4, wherein the processor node is configured to encrypt user profile data pertaining to the suspicious communications for reporting to an external party for decrypted review of the encrypted user profile data.
7. The invention set forth in claim 1, wherein the second processor node is configured to search databases (internal or external) and uses data therefrom for reporting suspicious communications.
8. The invention set forth in claim 1, wherein the first processor node and the second processor node are co-located, each with access to common databases.
9. The invention set forth in claim 1, wherein the communication authorization rules are defined by a government entity and include rules for searching for specific types of mobile terminals.
10. The invention set forth in claim 1, wherein the communication authorization rules are defined by a government entity, include rules for searching for specific types of mobile terminals, and the rules change automatically in response to a change in a threat alert from Homeland Security Advisory System.
11. For use in connection with a communication network having wireless-technology equipment, a method, comprising:
in a memory circuit, storing
on behalf of an operator for the communication network, user profiles that include wireless network subscriber data useful for providing network access to mobile terminals associated with the subscriber data,
on behalf of a third party, communication authorization rules relevant to a limited set of conditions including a geographic region of service provided by the communication network, and including data in at least one of the user profiles;
using a first processor node configured within the wireless-technology equipment, assimilating current location data regarding the mobile terminals with the user profiles, and using the assimilated current location data to monitor and/or control communication for the mobile terminals, via the communication rules relevant to the geographic region, over the communication network; and
using a second processor node configured within the wireless-technology equipment, implementing the communication authorization rules in response to the first processor node assimilating the current location data and to the limited set of conditions being satisfied.
12. The invention set forth in claim 11, further including monitoring communications over the network, and storing and reviewing communications over the network for text searches or biometric-based searches such as based on voice or facial image.
13. The invention set forth in claim 11, further including using one of the processor nodes to implement algorithms to search for suspicious communications.
14. The invention set forth in claim 11, further including using the processor node to implement an algorithm to search for suspicious communications and reporting/storing/flagging suspicious communications for review by an external entity.
15. The invention set forth in claim 14, wherein the processor node encrypts user profile data pertaining to the suspicious communications for reporting to the external entity.
16. The invention set forth in claim 14, wherein the processor node encrypts user profile data pertaining to the suspicious communications for reporting to an external party for decrypted review of the encrypted user profile data.
17. The invention set forth in claim 11, wherein the second processor node searches databases (internal or external) and uses data therefrom for reporting suspicious communications.
18. The invention set forth in claim 11, wherein the first processor node and the second processor node are co-located, each with access to common databases.
19. The invention set forth in claim 11, wherein the communication authorization rules are defined by a government entity and include rules for searching for specific types of mobile terminals.
20. The invention set forth in claim 11, wherein the communication authorization rules are defined by a government entity, include rules for searching for specific types of mobile terminals, and the rules change automatically in response to a change in a threat alert from Homeland Security Advisory System.
US12/914,825 2009-10-30 2010-10-28 Back-channeled packeted data Abandoned US20110105084A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/914,825 US20110105084A1 (en) 2009-10-30 2010-10-28 Back-channeled packeted data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25656509P 2009-10-30 2009-10-30
US12/914,825 US20110105084A1 (en) 2009-10-30 2010-10-28 Back-channeled packeted data

Publications (1)

Publication Number Publication Date
US20110105084A1 true US20110105084A1 (en) 2011-05-05

Family

ID=43922579

Family Applications (8)

Application Number Title Priority Date Filing Date
US12/914,838 Expired - Fee Related US8831624B2 (en) 2009-10-30 2010-10-28 Back-channeled packeted data
US12/914,832 Abandoned US20110103358A1 (en) 2009-10-30 2010-10-28 Back-channeled packeted data
US12/914,797 Abandoned US20110105145A1 (en) 2009-10-30 2010-10-28 Back-channeled packeted data
US12/914,818 Abandoned US20110103357A1 (en) 2009-10-30 2010-10-28 Back-channeled packeted data
US12/914,815 Abandoned US20110105146A1 (en) 2009-10-30 2010-10-28 Back-channeled packeted data
US12/914,825 Abandoned US20110105084A1 (en) 2009-10-30 2010-10-28 Back-channeled packeted data
US12/914,809 Abandoned US20110103356A1 (en) 2009-10-30 2010-10-28 Back-channeled packeted data
US12/914,829 Abandoned US20110105130A1 (en) 2009-10-30 2010-10-28 Back-channeled packeted data

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US12/914,838 Expired - Fee Related US8831624B2 (en) 2009-10-30 2010-10-28 Back-channeled packeted data
US12/914,832 Abandoned US20110103358A1 (en) 2009-10-30 2010-10-28 Back-channeled packeted data
US12/914,797 Abandoned US20110105145A1 (en) 2009-10-30 2010-10-28 Back-channeled packeted data
US12/914,818 Abandoned US20110103357A1 (en) 2009-10-30 2010-10-28 Back-channeled packeted data
US12/914,815 Abandoned US20110105146A1 (en) 2009-10-30 2010-10-28 Back-channeled packeted data

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/914,809 Abandoned US20110103356A1 (en) 2009-10-30 2010-10-28 Back-channeled packeted data
US12/914,829 Abandoned US20110105130A1 (en) 2009-10-30 2010-10-28 Back-channeled packeted data

Country Status (3)

Country Link
US (8) US8831624B2 (en)
EP (1) EP2494458A4 (en)
WO (1) WO2011053808A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110183601A1 (en) * 2011-01-18 2011-07-28 Marwan Hannon Apparatus, system, and method for detecting the presence and controlling the operation of mobile devices within a vehicle
US8686864B2 (en) 2011-01-18 2014-04-01 Marwan Hannon Apparatus, system, and method for detecting the presence of an intoxicated driver and controlling the operation of a vehicle
US20150046024A1 (en) * 2013-08-07 2015-02-12 Charles Harbison, III Vehicle and Texting Monitoring Device
US9559796B1 (en) * 2015-11-18 2017-01-31 Calvin Jiawei Wang Location sensitive, public security advisory system and method
US20170372593A1 (en) * 2016-06-23 2017-12-28 Intel Corporation Threat monitoring for crowd environments with swarm analytics
US10093229B2 (en) 2016-07-22 2018-10-09 Nouvelle Engines, Inc. System for discouraging distracted driving
US10205819B2 (en) 2015-07-14 2019-02-12 Driving Management Systems, Inc. Detecting the location of a phone using RF wireless and ultrasonic signals

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8380176B2 (en) 2008-08-08 2013-02-19 Websafery, Inc. Method of inhibiting functions of a mobile communications device
US8131266B2 (en) * 2008-12-18 2012-03-06 Alcatel Lucent Short message service communication security
US8391884B2 (en) * 2009-03-26 2013-03-05 Andrew Llc System and method for managing created location contexts in a location server
KR101662251B1 (en) * 2010-06-01 2016-10-04 엘지전자 주식회사 Mobile terminal and control method for mobile terminal
KR101688835B1 (en) * 2010-06-25 2016-12-23 삼성전자주식회사 Apparatus and method for traffic offload in broadband wireless access system
EP2617238B1 (en) * 2010-11-05 2015-01-21 Huawei Technologies Co., Ltd. Method for providing local traffic shortcut in packet-oriented mobile communication network
CN103125139B (en) * 2010-11-05 2015-12-09 华为技术有限公司 A kind of method that quick local communication is provided in the mobile radio communication towards grouping
US20120155558A1 (en) * 2010-12-20 2012-06-21 Nai-Chien Chang Integrating device of wireless charging and wireless network function
US8539086B2 (en) 2011-03-23 2013-09-17 Color Labs, Inc. User device group formation
RU2553663C1 (en) * 2011-05-31 2015-06-20 Хуавэй Текнолоджиз Ко., Лтд. System and device for convergence transmission, method for data offloading and convergence
US8620552B2 (en) * 2011-06-13 2013-12-31 General Electric Company Data communication system and method for communicating data in a vehicle
EP2761902A1 (en) * 2011-09-06 2014-08-06 Telefonaktiebolaget LM Ericsson (Publ) Method and apparatus for ad insertion in cellular networks
US8412772B1 (en) * 2011-09-21 2013-04-02 Color Labs, Inc. Content sharing via social networking
CN103092834A (en) * 2011-10-27 2013-05-08 腾讯科技(深圳)有限公司 Method and client-side device for browsing pictures of web pages
US9125123B2 (en) * 2012-06-13 2015-09-01 All Purpose Networks LLC Efficient delivery of real-time asynchronous services over a wireless network
US9882950B2 (en) 2012-06-13 2018-01-30 All Purpose Networks LLC Methods and systems of an all purpose broadband network
US8565689B1 (en) 2012-06-13 2013-10-22 All Purpose Networks LLC Optimized broadband wireless network performance through base station application server
US9179354B2 (en) 2012-06-13 2015-11-03 All Purpose Networks LLC Efficient delivery of real-time synchronous services over a wireless network
US9031511B2 (en) 2012-06-13 2015-05-12 All Purpose Networks LLC Operational constraints in LTE FDD systems using RF agile beam forming techniques
US9179392B2 (en) 2012-06-13 2015-11-03 All Purpose Networks LLC Efficient delivery of real-time asynchronous services over a wireless network
US9131385B2 (en) 2012-06-13 2015-09-08 All Purpose Networks LLC Wireless network based sensor data collection, processing, storage, and distribution
US9219541B2 (en) 2012-06-13 2015-12-22 All Purpose Networks LLC Baseband data transmission and reception in an LTE wireless base station employing periodically scanning RF beam forming techniques
US9107094B2 (en) 2012-06-13 2015-08-11 All Purpose Networks LLC Methods and systems of an all purpose broadband network
US9084155B2 (en) 2012-06-13 2015-07-14 All Purpose Networks LLC Optimized broadband wireless network performance through base station application server
US9137675B2 (en) 2012-06-13 2015-09-15 All Purpose Networks LLC Operational constraints in LTE TDD systems using RF agile beam forming techniques
US9084143B2 (en) 2012-06-13 2015-07-14 All Purpose Networks LLC Network migration queuing service in a wireless network
US9094803B2 (en) 2012-06-13 2015-07-28 All Purpose Networks LLC Wireless network based sensor data collection, processing, storage, and distribution
US9503927B2 (en) 2012-06-13 2016-11-22 All Purpose Networks LLC Multiple-use wireless network
US9179352B2 (en) 2012-06-13 2015-11-03 All Purpose Networks LLC Efficient delivery of real-time synchronous services over a wireless network
US9144075B2 (en) 2012-06-13 2015-09-22 All Purpose Networks LLC Baseband data transmission and reception in an LTE wireless base station employing periodically scanning RF beam forming techniques
US9125064B2 (en) 2012-06-13 2015-09-01 All Purpose Networks LLC Efficient reduction of inter-cell interference using RF agile beam forming techniques
US9144082B2 (en) 2012-06-13 2015-09-22 All Purpose Networks LLC Locating and tracking user equipment in the RF beam areas of an LTE wireless system employing agile beam forming techniques
WO2014124043A1 (en) 2013-02-05 2014-08-14 Visa International Service Association Integrated communications network for transactions
US20140242954A1 (en) * 2013-02-25 2014-08-28 Microsoft Corporation Location-relevant data
US9928383B2 (en) 2014-10-30 2018-03-27 Pearson Education, Inc. Methods and systems for network-based analysis, intervention, and anonymization
US10516691B2 (en) 2013-03-12 2019-12-24 Pearson Education, Inc. Network based intervention
US11055710B2 (en) 2013-05-02 2021-07-06 Visa International Service Association Systems and methods for verifying and processing transactions using virtual currency
US9161329B2 (en) 2013-06-26 2015-10-13 Qualcomm Incorporated Communication of mobile device locations
US9485206B2 (en) 2013-12-19 2016-11-01 Websafety, Inc. Devices and methods for improving web safety and deterrence of cyberbullying
US9372904B2 (en) * 2014-04-11 2016-06-21 Cellco Partnership Data compass
GB201407614D0 (en) * 2014-04-30 2014-06-11 Piksel Inc Content delivery system
US10136147B2 (en) * 2014-06-11 2018-11-20 Dolby Laboratories Licensing Corporation Efficient transcoding for backward-compatible wide dynamic range codec
US10438009B2 (en) * 2014-12-23 2019-10-08 Rovi Guides, Inc. Systems and methods for managing access to media assets based on a projected location of a user
US9928741B2 (en) * 2015-02-04 2018-03-27 Here Global B.V. Traffic adjustment for variable network state
US9792281B2 (en) * 2015-06-15 2017-10-17 Microsoft Technology Licensing, Llc Contextual language generation by leveraging language understanding
WO2016210327A1 (en) 2015-06-25 2016-12-29 Websafety, Inc. Management and control of mobile computing device using local and remote software agents
WO2017024172A1 (en) * 2015-08-05 2017-02-09 Cronvo Llc Systems and methods for managing telecommunications
JP6712684B2 (en) * 2015-09-24 2020-06-24 キャップクラウド株式会社 Content output device, content output system, program, and content output method
CN107967639A (en) * 2017-08-30 2018-04-27 上海连尚网络科技有限公司 The method and apparatus of hot spot lease
US10827019B2 (en) 2018-01-08 2020-11-03 All Purpose Networks, Inc. Publish-subscribe broker network overlay system
EP3662370B1 (en) 2018-01-08 2023-12-27 All Purpose Networks, Inc. Internet of things system with efficient and secure communications network
JP6973300B2 (en) * 2018-06-04 2021-11-24 日本電信電話株式会社 Service chain design equipment, service chain design method, and service chain design program
US11304253B1 (en) * 2021-01-16 2022-04-12 Skylo Technologies, Inc. Coordinated transmissions over a transient roving wireless communication channel
EP4047959A1 (en) * 2021-02-23 2022-08-24 Telia Company AB Generation of information related to geographical area

Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6202068B1 (en) * 1998-07-02 2001-03-13 Thomas A. Kraay Database display and search method
US20020035605A1 (en) * 2000-01-26 2002-03-21 Mcdowell Mark Use of presence and location information concerning wireless subscribers for instant messaging and mobile commerce
US20020052884A1 (en) * 1995-04-11 2002-05-02 Kinetech, Inc. Identifying and requesting data in network using identifiers which are based on contents of data
US20020099785A1 (en) * 2000-11-14 2002-07-25 Doug Teeple Enhanced multimedia mobile content delivery and message system using cache management
US20030097451A1 (en) * 2001-11-16 2003-05-22 Nokia, Inc. Personal data repository
US20030130893A1 (en) * 2000-08-11 2003-07-10 Telanon, Inc. Systems, methods, and computer program products for privacy protection
US20030145038A1 (en) * 2002-01-25 2003-07-31 Bin Tariq Muhammad Mukarram System for management of cacheable streaming content in a packet based communication network with mobile hosts
US20030204613A1 (en) * 2002-04-26 2003-10-30 Hudson Michael D. System and methods of streaming media files from a dispersed peer network to maintain quality of service
US20040078293A1 (en) * 2000-12-21 2004-04-22 Vaughn Iverson Digital content distribution
US20040098748A1 (en) * 2002-11-20 2004-05-20 Lan Bo MPEG-4 live unicast video streaming system in wireless network with end-to-end bitrate-based congestion control
US6871287B1 (en) * 2000-01-21 2005-03-22 John F. Ellingson System and method for verification of identity
US20050124369A1 (en) * 2003-12-03 2005-06-09 Attar Rashid A. Overload detection in a wireless communication system
US20050165738A1 (en) * 2002-03-21 2005-07-28 Infinite Reason Ltd. Providing location dependent information
US20050166072A1 (en) * 2002-12-31 2005-07-28 Converse Vikki K. Method and system for wireless morphing honeypot
US20050215238A1 (en) * 2004-03-24 2005-09-29 Macaluso Anthony G Advertising on mobile devices
US20070026871A1 (en) * 2005-07-28 2007-02-01 Openwave Systems Inc. Wireless network with adaptive autonomous location push
WO2007048063A2 (en) * 2005-10-21 2007-04-26 Feeva, Inc. Systems and methods of network operation and information processing, including data acquisition, processing and provision and/or interoperability features
US20070133405A1 (en) * 2005-12-08 2007-06-14 Microsoft Corporation Congestion controller for network transmissions
US20070264968A1 (en) * 2006-05-12 2007-11-15 Bellsouth Intellectual Property Corporation Location-Based Targeting
US20070280462A1 (en) * 2006-05-30 2007-12-06 Roger Neil Neece System and method for security monitoring and response delivery
US20070287473A1 (en) * 1998-11-24 2007-12-13 Tracbeam Llc Platform and applications for wireless location and other complex services
US20070294722A1 (en) * 2005-02-25 2007-12-20 Moon-Soon Kang Displaying advertisement on user terminal
US20080133830A1 (en) * 2006-12-01 2008-06-05 Fujitsu Limited Efficient utilization of cache servers in mobile communication system
US20080224862A1 (en) * 2007-03-14 2008-09-18 Seth Cirker Selectively enabled threat based information system
US20080256059A1 (en) * 2007-04-10 2008-10-16 Yahoo! Inc. System for generating query suggestions using a network of users and advertisers
US7496191B1 (en) * 2003-12-17 2009-02-24 Sprint Communications Company L.P. Integrated privacy rules engine and application
US20090094377A1 (en) * 2006-08-03 2009-04-09 Yoram Zahavi Method and system for accelerating browsing sessions
US20090157834A1 (en) * 2007-12-14 2009-06-18 Qualcomm Incorporated Method and system for multi-level distribution information cache management in a mobile environment
US20090160673A1 (en) * 2007-03-14 2009-06-25 Seth Cirker Mobile wireless device with location-dependent capability
US20090196218A1 (en) * 2008-02-01 2009-08-06 Honeywell International Inc. Wireless system gateway cache
US20090210631A1 (en) * 2006-09-22 2009-08-20 Bea Systems, Inc. Mobile application cache system
US20090254657A1 (en) * 2007-07-10 2009-10-08 Melnyk Miguel A Adaptive Bitrate Management for Streaming Media Over Packet Networks
US7606790B2 (en) * 2003-03-03 2009-10-20 Digimarc Corporation Integrating and enhancing searching of media content and biometric databases
US20100034218A1 (en) * 2008-08-06 2010-02-11 Surya Kumar Kovvali Cross-layer Pipelining Optimizations for Reduced Roundtrips and Improving Quality of Experience
US20100034089A1 (en) * 2008-08-06 2010-02-11 Surya Kumar Kovvali Content Caching in the Radio Access Network (RAN)
US20100057883A1 (en) * 2008-08-28 2010-03-04 Sycamore Networks, Inc. Distributed content caching solution for a mobile wireless network
US20100158026A1 (en) * 2008-12-23 2010-06-24 Ravi Valmikam Transparent Interaction with multi-layer protocols via Selective Bridging and Proxying
US7899706B1 (en) * 2006-05-11 2011-03-01 Sprint Communications Company L.P. Systems and methods for dynamic privacy management

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6745243B2 (en) * 1998-06-30 2004-06-01 Nortel Networks Limited Method and apparatus for network caching and load balancing
US20020111172A1 (en) * 2001-02-14 2002-08-15 Dewolf Frederik M. Location based profiling
CA2298194A1 (en) * 2000-02-07 2001-08-07 Profilium Inc. Method and system for delivering and targeting advertisements over wireless networks
US7421278B2 (en) * 2000-03-13 2008-09-02 Intellions, Inc. Method and apparatus for time-aware and location-aware marketing
US6640284B1 (en) * 2000-05-12 2003-10-28 Nortel Networks Limited System and method of dynamic online session caching
US20010056374A1 (en) * 2000-06-22 2001-12-27 Joao Raymond Anthony Apparatus and method for providing compensation for advertisement viewing and/or participation and/or for survey participation
US20020019873A1 (en) * 2000-07-14 2002-02-14 Moises Goldszmidt System and method for modeling and provisioning information system capacity
US20070037605A1 (en) * 2000-08-29 2007-02-15 Logan James D Methods and apparatus for controlling cellular and portable phones
AU2001290874A1 (en) * 2000-09-15 2002-03-26 Mobliss, Inc. System for conducting user-specific promotional campaigns using multiple communications device platforms
US7457608B2 (en) * 2000-10-03 2008-11-25 At&T Mobility Ii Llc Sharing of wireless telephone services for a personal wireless telephone and a vehicular wireless telephone
US6847639B2 (en) * 2000-12-05 2005-01-25 Lucent Technologies Inc. Managing feature interaction among a plurality of independent feature servers in telecommunications servers
US6792507B2 (en) * 2000-12-14 2004-09-14 Maxxan Systems, Inc. Caching system and method for a network storage system
US20040122730A1 (en) * 2001-01-02 2004-06-24 Tucciarone Joel D. Electronic messaging system and method thereof
US6678516B2 (en) * 2001-05-21 2004-01-13 Nokia Corporation Method, system, and apparatus for providing services in a privacy enabled mobile and Ubicom environment
US6750813B2 (en) * 2002-07-24 2004-06-15 Mcnc Research & Development Institute Position optimized wireless communication
US6838572B2 (en) * 2002-09-30 2005-01-04 Degussa Ag Process for the epoxidation of olefins
US20040073482A1 (en) * 2002-10-15 2004-04-15 Wiggins Randall T. Targeted information content delivery using a combination of environmental and demographic information
US20040137886A1 (en) * 2002-11-22 2004-07-15 Monte Ross Method and system for delivering electronic coupons to wireless mobile terminals
US20050043989A1 (en) * 2003-08-19 2005-02-24 Shifrin Daniel G. System and method of facilitating content delivery to a user
US20050096975A1 (en) * 2003-11-05 2005-05-05 Eliahu Moshe Method and system for interactive advertisement
US20050228860A1 (en) * 2004-04-12 2005-10-13 Kimmo Hamynen Methods and apparatus for geographically based Web services
US7733822B2 (en) * 2004-11-30 2010-06-08 Sanjay M. Gidwani Distributed disparate wireless switching network
US7382248B2 (en) * 2005-02-18 2008-06-03 Retriever Industries Llc Tracking system
US20080235351A1 (en) * 2005-08-30 2008-09-25 Feeva Technology, Inc. Apparatus, Systems and Methods for Targeted Content Delivery
US20080214151A1 (en) * 2005-09-14 2008-09-04 Jorey Ramer Methods and systems for mobile coupon placement
US8195133B2 (en) * 2005-09-14 2012-06-05 Jumptap, Inc. Mobile dynamic advertisement creation and placement
US20090234745A1 (en) * 2005-11-05 2009-09-17 Jorey Ramer Methods and systems for mobile coupon tracking
US7899468B2 (en) * 2005-09-30 2011-03-01 Telecommunication Systems, Inc. Location sensitive messaging
US8223938B2 (en) * 2005-09-30 2012-07-17 At&T Intellectual Property I, L.P. Methods, systems, and computer program products for providing caller identification services
US20070274499A1 (en) * 2006-03-08 2007-11-29 Bennett James D Intelligent ring, tone or announcement searching, pickup and forwarding in a mixed VoIP and telephony network
US7519470B2 (en) * 2006-03-15 2009-04-14 Microsoft Corporation Location-based caching for mobile devices
US9251521B2 (en) * 2006-05-12 2016-02-02 At&T Intellectual Property I, L.P. Location-based alerting
US9443243B2 (en) * 2006-05-19 2016-09-13 Idpa Holdings, Inc. Broadcast channel delivery of location-based services information
US20080004954A1 (en) * 2006-06-30 2008-01-03 Microsoft Corporation Methods and architecture for performing client-side directed marketing with caching and local analytics for enhanced privacy and minimal disruption
CA2664370A1 (en) * 2006-09-20 2008-03-27 Useful Networks Providing subscriber specific information across wireless networks
US20080103984A1 (en) * 2006-10-30 2008-05-01 Mobilekash, Inc. System, Method, and Computer-Readable Medium for Mobile Payment Authentication and Authorization
US7890576B2 (en) * 2006-11-13 2011-02-15 Microsoft Corporation Selective communication of targeted information
US8108414B2 (en) * 2006-11-29 2012-01-31 David Stackpole Dynamic location-based social networking
US20080176713A1 (en) * 2006-12-05 2008-07-24 Pablo Olivera Brizzio Method and apparatus for selecting a condition of a fitness machine in relation to a user
US20080177647A1 (en) * 2007-01-19 2008-07-24 Veenstra John W Online Compliance Engine
US20080183575A1 (en) * 2007-01-31 2008-07-31 Vulcan Portals, Inc. Back-channel media delivery system
EP1968243A1 (en) * 2007-03-07 2008-09-10 British Telecommunications Public Limited Company Method of transmitting data to a mobile device
US8229458B2 (en) * 2007-04-08 2012-07-24 Enhanced Geographic Llc Systems and methods to determine the name of a location visited by a user of a wireless device
US20080271072A1 (en) * 2007-04-30 2008-10-30 David Rothschild Systems and methods for providing live, remote location experiences
US8825683B2 (en) * 2007-11-26 2014-09-02 Urban Mapping, Inc. Generating geographical keywords for geotargeting search engine-offered advertisements
US20090247193A1 (en) * 2008-03-26 2009-10-01 Umber Systems System and Method for Creating Anonymous User Profiles from a Mobile Data Network
US20090253419A1 (en) * 2008-04-07 2009-10-08 International Business Machines Corporation Method for redirecting text messages and mobile phone calls
US20100015991A1 (en) * 2008-07-15 2010-01-21 Kota Enterprises, Llc System and method for calling a geosoc
US20100267403A1 (en) * 2009-04-21 2010-10-21 Raymond Van Dyke System, method and apparatus for facilitating content delivery
US20100325127A1 (en) * 2009-06-18 2010-12-23 Nokia Corporation Method and apparatus for automatic geo-location and social group indexing
US8886760B2 (en) * 2009-06-30 2014-11-11 Sandisk Technologies Inc. System and method of predictive data acquisition
EP2892558B1 (en) * 2012-09-07 2019-04-10 The Trustees Of Dartmouth College Vista modulators for diagnosis and treatment of cancer

Patent Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020052884A1 (en) * 1995-04-11 2002-05-02 Kinetech, Inc. Identifying and requesting data in network using identifiers which are based on contents of data
US6202068B1 (en) * 1998-07-02 2001-03-13 Thomas A. Kraay Database display and search method
US20070287473A1 (en) * 1998-11-24 2007-12-13 Tracbeam Llc Platform and applications for wireless location and other complex services
US6871287B1 (en) * 2000-01-21 2005-03-22 John F. Ellingson System and method for verification of identity
US20020035605A1 (en) * 2000-01-26 2002-03-21 Mcdowell Mark Use of presence and location information concerning wireless subscribers for instant messaging and mobile commerce
US20030130893A1 (en) * 2000-08-11 2003-07-10 Telanon, Inc. Systems, methods, and computer program products for privacy protection
US20020099785A1 (en) * 2000-11-14 2002-07-25 Doug Teeple Enhanced multimedia mobile content delivery and message system using cache management
US20040078293A1 (en) * 2000-12-21 2004-04-22 Vaughn Iverson Digital content distribution
US20030097451A1 (en) * 2001-11-16 2003-05-22 Nokia, Inc. Personal data repository
US20030145038A1 (en) * 2002-01-25 2003-07-31 Bin Tariq Muhammad Mukarram System for management of cacheable streaming content in a packet based communication network with mobile hosts
US20050165738A1 (en) * 2002-03-21 2005-07-28 Infinite Reason Ltd. Providing location dependent information
US20030204613A1 (en) * 2002-04-26 2003-10-30 Hudson Michael D. System and methods of streaming media files from a dispersed peer network to maintain quality of service
US20040098748A1 (en) * 2002-11-20 2004-05-20 Lan Bo MPEG-4 live unicast video streaming system in wireless network with end-to-end bitrate-based congestion control
US20050166072A1 (en) * 2002-12-31 2005-07-28 Converse Vikki K. Method and system for wireless morphing honeypot
US7606790B2 (en) * 2003-03-03 2009-10-20 Digimarc Corporation Integrating and enhancing searching of media content and biometric databases
US20050124369A1 (en) * 2003-12-03 2005-06-09 Attar Rashid A. Overload detection in a wireless communication system
US7496191B1 (en) * 2003-12-17 2009-02-24 Sprint Communications Company L.P. Integrated privacy rules engine and application
US20050215238A1 (en) * 2004-03-24 2005-09-29 Macaluso Anthony G Advertising on mobile devices
US20070294722A1 (en) * 2005-02-25 2007-12-20 Moon-Soon Kang Displaying advertisement on user terminal
US20070026871A1 (en) * 2005-07-28 2007-02-01 Openwave Systems Inc. Wireless network with adaptive autonomous location push
WO2007048063A2 (en) * 2005-10-21 2007-04-26 Feeva, Inc. Systems and methods of network operation and information processing, including data acquisition, processing and provision and/or interoperability features
US20070133405A1 (en) * 2005-12-08 2007-06-14 Microsoft Corporation Congestion controller for network transmissions
US7899706B1 (en) * 2006-05-11 2011-03-01 Sprint Communications Company L.P. Systems and methods for dynamic privacy management
US20070264968A1 (en) * 2006-05-12 2007-11-15 Bellsouth Intellectual Property Corporation Location-Based Targeting
US20070280462A1 (en) * 2006-05-30 2007-12-06 Roger Neil Neece System and method for security monitoring and response delivery
US20090094377A1 (en) * 2006-08-03 2009-04-09 Yoram Zahavi Method and system for accelerating browsing sessions
US20090210631A1 (en) * 2006-09-22 2009-08-20 Bea Systems, Inc. Mobile application cache system
US20080133830A1 (en) * 2006-12-01 2008-06-05 Fujitsu Limited Efficient utilization of cache servers in mobile communication system
US20080224862A1 (en) * 2007-03-14 2008-09-18 Seth Cirker Selectively enabled threat based information system
US20090160673A1 (en) * 2007-03-14 2009-06-25 Seth Cirker Mobile wireless device with location-dependent capability
US20080256059A1 (en) * 2007-04-10 2008-10-16 Yahoo! Inc. System for generating query suggestions using a network of users and advertisers
US20090254657A1 (en) * 2007-07-10 2009-10-08 Melnyk Miguel A Adaptive Bitrate Management for Streaming Media Over Packet Networks
US20090157834A1 (en) * 2007-12-14 2009-06-18 Qualcomm Incorporated Method and system for multi-level distribution information cache management in a mobile environment
US20090196218A1 (en) * 2008-02-01 2009-08-06 Honeywell International Inc. Wireless system gateway cache
US20100034218A1 (en) * 2008-08-06 2010-02-11 Surya Kumar Kovvali Cross-layer Pipelining Optimizations for Reduced Roundtrips and Improving Quality of Experience
US20100034089A1 (en) * 2008-08-06 2010-02-11 Surya Kumar Kovvali Content Caching in the Radio Access Network (RAN)
US20100057883A1 (en) * 2008-08-28 2010-03-04 Sycamore Networks, Inc. Distributed content caching solution for a mobile wireless network
US20100158026A1 (en) * 2008-12-23 2010-06-24 Ravi Valmikam Transparent Interaction with multi-layer protocols via Selective Bridging and Proxying

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9854433B2 (en) 2011-01-18 2017-12-26 Driving Management Systems, Inc. Apparatus, system, and method for detecting the presence and controlling the operation of mobile devices within a vehicle
US9758039B2 (en) 2011-01-18 2017-09-12 Driving Management Systems, Inc. Apparatus, system, and method for detecting the presence of an intoxicated driver and controlling the operation of a vehicle
US8718536B2 (en) 2011-01-18 2014-05-06 Marwan Hannon Apparatus, system, and method for detecting the presence and controlling the operation of mobile devices within a vehicle
US20110183601A1 (en) * 2011-01-18 2011-07-28 Marwan Hannon Apparatus, system, and method for detecting the presence and controlling the operation of mobile devices within a vehicle
US9280145B2 (en) 2011-01-18 2016-03-08 Driving Management Systems, Inc. Apparatus, system, and method for detecting the presence of an intoxicated driver and controlling the operation of a vehicle
US9369196B2 (en) 2011-01-18 2016-06-14 Driving Management Systems, Inc. Apparatus, system, and method for detecting the presence and controlling the operation of mobile devices within a vehicle
US8686864B2 (en) 2011-01-18 2014-04-01 Marwan Hannon Apparatus, system, and method for detecting the presence of an intoxicated driver and controlling the operation of a vehicle
US9379805B2 (en) 2011-01-18 2016-06-28 Driving Management Systems, Inc. Apparatus, system, and method for detecting the presence and controlling the operation of mobile devices within a vehicle
US20150046024A1 (en) * 2013-08-07 2015-02-12 Charles Harbison, III Vehicle and Texting Monitoring Device
US10205819B2 (en) 2015-07-14 2019-02-12 Driving Management Systems, Inc. Detecting the location of a phone using RF wireless and ultrasonic signals
US10547736B2 (en) 2015-07-14 2020-01-28 Driving Management Systems, Inc. Detecting the location of a phone using RF wireless and ultrasonic signals
US9559796B1 (en) * 2015-11-18 2017-01-31 Calvin Jiawei Wang Location sensitive, public security advisory system and method
US20170372593A1 (en) * 2016-06-23 2017-12-28 Intel Corporation Threat monitoring for crowd environments with swarm analytics
US10032361B2 (en) * 2016-06-23 2018-07-24 Intel Corporation Threat monitoring for crowd environments with swarm analytics
US10093229B2 (en) 2016-07-22 2018-10-09 Nouvelle Engines, Inc. System for discouraging distracted driving

Also Published As

Publication number Publication date
US20110103357A1 (en) 2011-05-05
WO2011053808A1 (en) 2011-05-05
US20110105130A1 (en) 2011-05-05
US20110105077A1 (en) 2011-05-05
US20110105145A1 (en) 2011-05-05
US20110105146A1 (en) 2011-05-05
EP2494458A1 (en) 2012-09-05
US8831624B2 (en) 2014-09-09
US20110103358A1 (en) 2011-05-05
US20110103356A1 (en) 2011-05-05
EP2494458A4 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
US8831624B2 (en) Back-channeled packeted data
US8825732B2 (en) Scripting/proxy systems, methods and circuit arrangements
KR101432230B1 (en) A system and method for registering network information strings
US10153968B2 (en) Carrier-driven bearer path selection
US20190014458A1 (en) System and method for event based internet of things (iot) device status monitoring and reporting in a mobility network
US10750332B2 (en) Cloud-based device twinning
US9043928B1 (en) Enabling web page tracking
US10051428B2 (en) Subscriber location database
US11546760B2 (en) Caller verification in rich communication services (RCS)
US10255643B2 (en) Classified relation networking optimization platform in open wireless architecture (OWA) mobile cloud terminal device
CN108270827B (en) User location capability opening method and device
US11304034B1 (en) Method and system for collecting evidence leads in a communication system
US8615016B2 (en) Method and system for managing multimedia messages using a message intermediation module
US20230403559A1 (en) System and method for spam detection
KR20170081491A (en) Method and communication system for providing dynamic messaging security in asymmetric multi mobile data network
WO2015163806A1 (en) A toll-free data indication system, an end user device, a toll-free data notification server, and methods therein, for handling a content from a content owner
EP2846552A1 (en) Delivery of digital content to communication devices in a geographical location

Legal Events

Date Code Title Description
AS Assignment

Owner name: OPENWAVE SYSTEMS INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHANDRASEKARAN, ANAND;REEL/FRAME:025220/0754

Effective date: 20101018

AS Assignment

Owner name: UNWIRED PLANET, INC., CALIFORNIA

Free format text: MERGER;ASSIGNOR:OPENWAVE SYSTEMS INC.;REEL/FRAME:028447/0940

Effective date: 20120427

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: UNWIRED PLANET, LLC, NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNWIRED PLANET IP MANAGER, LLC;REEL/FRAME:031030/0115

Effective date: 20130213

Owner name: UNWIRED PLANET IP MANAGER, LLC, NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNWIRED PLANET, INC.;REEL/FRAME:031030/0081

Effective date: 20130213