US20110105754A1 - Novel rhodamine dyes - Google Patents

Novel rhodamine dyes Download PDF

Info

Publication number
US20110105754A1
US20110105754A1 US12/939,009 US93900910A US2011105754A1 US 20110105754 A1 US20110105754 A1 US 20110105754A1 US 93900910 A US93900910 A US 93900910A US 2011105754 A1 US2011105754 A1 US 2011105754A1
Authority
US
United States
Prior art keywords
substituted
alkyl
hydrogen
heterocycloalkyl
alkenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/939,009
Inventor
Michael P. Filosa
John L. Marshall
Richard M. Allen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zink Imaging LLC
Original Assignee
Zink Imaging LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zink Imaging LLC filed Critical Zink Imaging LLC
Priority to US12/939,009 priority Critical patent/US20110105754A1/en
Publication of US20110105754A1 publication Critical patent/US20110105754A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/30Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using chemical colour formers
    • B41M5/323Organic colour formers, e.g. leuco dyes
    • B41M5/327Organic colour formers, e.g. leuco dyes with a lactone or lactam ring
    • B41M5/3275Fluoran compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/30Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using chemical colour formers
    • B41M5/337Additives; Binders
    • B41M5/3375Non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/12Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains three hetero rings
    • C07D493/20Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B11/00Diaryl- or thriarylmethane dyes
    • C09B11/04Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
    • C09B11/10Amino derivatives of triarylmethanes
    • C09B11/24Phthaleins containing amino groups ; Phthalanes; Fluoranes; Phthalides; Rhodamine dyes; Phthaleins having heterocyclic aryl rings; Lactone or lactame forms of triarylmethane dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0025Crystal modifications; Special X-ray patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/30Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using chemical colour formers
    • B41M5/333Colour developing components therefor, e.g. acidic compounds
    • B41M5/3333Non-macromolecular compounds
    • B41M5/3335Compounds containing phenolic or carboxylic acid groups or metal salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/38235Contact thermal transfer or sublimation processes characterised by transferable colour-forming materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/385Contact thermal transfer or sublimation processes characterised by the transferable dyes or pigments

Definitions

  • This invention relates to novel rhodamine color-forming materials and, more particularly, to such color-forming materials that exhibit one color in a crystalline form and a second, different color in an amorphous form.
  • thermal transfer heat is used to move colored material from a donor sheet to a receiver sheet.
  • heat may be used to convert a colorless coating on a single sheet into a colored image, in a process known as “direct thermal” imaging.
  • Direct thermal imaging has the advantage over thermal transfer of the simplicity of a single sheet.
  • direct thermal systems are still sensitive to heat after thermal printing. If a stable image is needed from an unfixed direct thermal system, the temperature for coloration must be higher than any temperature that the image is likely to encounter during normal use.
  • thermal imaging systems wherein an image is formed directly in the imaging member
  • thermal transfer thermal imaging systems wherein image-forming material is transferred, by the application of thermal energy, from a donor member to an image-receiving member.
  • image-forming material is transferred, by the application of thermal energy, from a donor member to an image-receiving member.
  • Japanese Patent No. JP1997241553 discloses an ink jet recording liquid which includes asymmetrical rhodamine dyes.
  • U.S. Pat. No. 4,390,616 discloses thermal imaging members and methods utilizing certain rhodamine dyes.
  • Another object of the invention is to provide such dyes that exhibit different colors when in the crystalline form and in the amorphous liquid form.
  • novel rhodamine dye compounds that exhibit a first color when in a crystalline form and a second color, different from the first color, when in an amorphous form, and which are represented by formula I
  • R 1 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 14 are each independently selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, preferably having from 1 to 18 carbon atoms, alkenyl or substituted alkenyl, preferably having from 1 to 18 carbon atoms, heterocycloalkyl, substituted heterocycloalkyl alkoxy, substituted alkoxy, substituted carbonyl, acylamino and halogen;
  • R 2 is selected from the group consisting of hydrogen, alkyl and substituted alkyl, preferably having from 1 to 18 carbon atoms, alkenyl and substituted alkenyl, preferably having from 1 to 18 carbon atoms, heterocycloalkyl and substituted heterocycloalkyl; or
  • R 2 and R 3 taken together with the nitrogen atom to which they are attached can form a substituted or unsubstituted saturated heterocyclic ring system, such as, for example, substituted and unsubstituted morpholines, pyrrolidines, and piperidines;
  • R 9 is absent or selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, preferably having from 1 to 18 carbon atoms, substituted or unsubstituted alkenyl, preferably having from 1 to 18 carbon atoms, heterocycloalkyl, substituted heterocycloalkyl, alkoxy, substituted alkoxy, substituted carbonyl, halogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, amino, substituted amino, alkylamino, substituted alkylamino, arylamino and substituted arylamino;
  • R 10 , R 11 and R 12 are each independently selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, preferably having from 1 to 18 carbon atoms, substituted or unsubstituted alkenyl, preferably having from 1 to 18 carbon atoms, heterocycloalkyl, substituted heterocycloalkyl, alkoxy, substituted alkoxy, substituted carbonyl, halogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, amino, substituted amino, alkylamino, substituted alkylamino, arylamino and substituted arylamino;
  • R 13 is selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, preferably having from 1 to 18 carbon atoms, substituted or unsubstituted alkenyl, preferably having from 1 to 18 carbon atoms, heterocycloalkyl and substituted heterocycloalkyl;
  • R 14 is selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, preferably having from 1 to 18 carbon atoms, substituted or unsubstituted alkenyl, preferably having from 1 to 18 carbon atoms, heterocycloalkyl and substituted heterocycloalkyl; or
  • R 13 and R 14 taken together with the atoms to which they are attached can form a 5- or 6-membered heterocyclic ring such as, for example, indoline or tetrahydroquinoline;
  • R 15 , R 16 , R 17 and R 18 are each independently selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, preferably having from 1 to 18 carbon atoms, substituted or unsubstituted alkenyl, preferably having from 1 to 18 carbon atoms, heterocycloalkyl, substituted heterocycloalkyl, alkoxy, substituted alkoxy, substituted carbonyl, halogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, amino, substituted amino, alkylamino, substituted alkylamino, arylamino and substituted arylamino; and
  • X 1 is carbon or nitrogen
  • R 2 and R 13 are hydrogen.
  • the substituents are preferably chosen to minimize the water solubility of the compounds and facilitate the formation of a colorless form in non-polar, non-protic solvents.
  • the colorless lactone form of the compounds must be capable of melting to form the colored form.
  • a preferred group of compounds according to the invention are those represented by formula I wherein R 2 and R 3 taken together form a pyrrolidine ring, R 10 , R 11 and R 13 each is hydrogen, X 1 is carbon and R 1 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 12 , R 14 and R 15 -R 18 are as described with respect to formula I.
  • a second preferred group of compounds according to the invention are those represented by formula I wherein R 2 is hydrogen, R 3 is alkyl, R 10 and R 11 are each halogen, R 13 is alkyl, X 1 is carbon and R 1 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 12 , R 14 and R 15 -R 18 are as described with respect to formula I.
  • Particularly preferred rhodamine compounds according to the invention are those represented by formula I in which R 1 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 12 are each hydrogen; R 2 is hydrogen or alkyl having from 1-18 carbon atoms, R 3 is alkyl having from 1-18 carbon atoms, or R 2 and R 3 taken together with the nitrogen atom to which they are attached form a pyrrolidine ring; R 10 and R 11 are each independently hydrogen or halogen; R 13 is hydrogen or alkyl, preferably having from 1-18 carbon atoms, R 14 is hydrogen or alkyl having from 1-18 carbon atoms, X 1 is carbon and R 15 -R 18 are each independently hydrogen, alkyl having from 1-18 carbon atoms, or halogen.
  • thermal imaging methods thermal energy may be applied to the thermal imaging members by any of the techniques known in thermal imaging such as from a thermal print head, a laser, a heated stylus, etc.
  • novel dyes of the invention are useful in a variety of applications including thermal imaging members and thermal imaging methods.
  • Particularly preferred thermal imaging members and thermal imaging methods, which utilize unsymmetrical rhodamine compounds, including the novel compounds of the present invention, are disclosed and claimed in co-pending commonly assigned U.S. patent application Ser. No. ______, Express Mail No.: EV 669114278 US (Attorney Docket No. A-8608).
  • R1, and R3-R18 are as defined above with respect to formula I,
  • R 1 -R 12 and R 14 -R 18 are as defined above with respect to formula I.
  • Compounds in the crystalline state commonly have properties, including color, that are very different from those of the same compounds in an amorphous form.
  • a molecule In a crystal, a molecule is typically held in a single conformation (or, more rarely, in a small number of conformations) by the packing forces of the lattice.
  • the compound In amorphous form or solution, on the other hand, the compound may explore its whole conformational and isomeric space, and only a small proportion of the population of individual molecules of the compound may at any one time exhibit the particular conformation or isomeric form adopted in the crystal.
  • Compounds of the present invention exhibit tautomerism in which at least one tautomeric form is colorless, and at least another tautomeric form is colored.
  • the crystalline form of compounds of the present invention comprises predominantly the colorless tautomer.
  • alkyl refers to saturated straight-chain, branched-chain or cyclic hydrocarbon radicals.
  • alkyl radicals include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, neopentyl, n-hexyl, cyclohexyl, n-octyl, n-decyl, n-dodecyl and n-hexadecyl radicals.
  • alkenyl refers to unsaturated straight-chain, branched-chain or cyclic hydrocarbon radicals.
  • alkenyl radicals include, but are not limited to, allyl, butenyl, hexenyl and cyclohexenyl radicals.
  • alkynyl refers to unsaturated hydrocarbon radicals having at least one carbon-carbon triple bond.
  • Representative alkynyl groups include, but are not limited to, ethynyl, 1-propynyl, 1-butynyl, isopentynyl, 1,3-hexadiynyl, n-hexynyl, 3-pentynyl, 1-hexen-3-ynyl and the like.
  • halo and “halogen,” as used herein, refer to an atom selected from fluorine, chlorine, bromine and iodine.
  • aryl refers to a mono-, bicyclic or tricyclic carbocyclic ring system having one, two or three aromatic rings including, but not limited to, phenyl, naphthyl, anthryl, azulyl, tetrahydronaphthyl, indanyl, indenyl and the like.
  • heteroaryl refers to a cyclic aromatic radical having from five to ten ring atoms of which one ring atom is selected from S, O and N; zero, one or two ring atoms are additional heteroatoms independently selected from S, O and N; and the remaining ring atoms are carbon, the radical being joined to the rest of the molecule via any of the ring atoms, such as, for example, pyridinyl, pyrazinyl, pyrimidinyl, pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isooxazolyl, thiadiazolyl, oxadiazolyl, thiophenyl, furanyl, quinolinyl, isoquinolinyl, and the like.
  • heterocycloalkyl refers to a non-aromatic 3-, 4-, 5-, 6- or 7-membered ring or a bi- or tri-cyclic group comprising fused six-membered rings having between one and three heteroatoms independently selected from oxygen, sulfur and nitrogen, wherein (i) each 5-membered ring has 0 to 1 double bonds and each 6-membered ring has 0 to 2 double bonds, (ii) the nitrogen and sulfur heteroatoms may optionally be oxidized, (iii) the nitrogen heteroatom may optionally be quaternized, and (iv) any of the above heterocyclic rings may be fused to a benzene ring.
  • heterocycles include, but are not limited to, pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, and tetrahydrofuryl.
  • carbonyl refers to a carbonyl group, attached to the parent molecular moiety through the carbon atom, this carbon atom also bearing a hydrogen atom, or in the case of a “substituted carbonyl” a substituent as described in the definition of “substituted” below.
  • acyl refers to groups containing a carbonyl moiety.
  • examples of acyl radicals include, but are not limited to, formyl, acetyl, propionyl, benzoyl and naphthoyl.
  • alkoxy refers to a substituted or unsubstituted alkyl, alkenyl or heterocycloalkyl group, as previously defined, attached to the parent molecular moiety through an oxygen atom.
  • alkoxy radicals include, but are not limited to, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, tert-butoxy, neopentoxy and n-hexoxy.
  • aryloxy refers to a substituted or unsubstituted aryl or heteroaryl group, as previously defined, attached to the parent molecular moiety through an oxygen atom.
  • aryloxy include, but are not limited to, phenoxy, p-methylphenoxy, naphthoxy and the like.
  • alkylamino refers to a substituted or unsubstituted alkyl, alkenyl or heterocycloalkyl group, as previously defined, attached to the parent molecular moiety through a nitrogen atom.
  • alkylamino radicals include, but are not limited to, methylamino, ethylamino, hexylamino and dodecylamino.
  • arylamino refers to a substituted or unsubstituted aryl or heteroaryl group, as previously defined, attached to the parent molecular moiety through a nitrogen atom.
  • substituted refers to independent replacement of one or more of the hydrogen atoms on the substituted moiety with substituents independently selected from, but not limited to, alkyl, alkenyl, heterocycloalkyl, alkoxy, aryloxy, hydroxy, amino, alkylamino, arylamino, cyano, halo, mercapto, nitro, carbonyl, acyl, aryl and heteroaryl groups.
  • substituted nitrogen refers to nitrogen, oxygen or sulfur substituted with alkyl, aryl, or heteroaryl groups.
  • alkyl and aryl ethers such as methoxy, ethoxy or phenoxy
  • alkyl or aryl thioethers such as thiomethoxy, thioethoxy and thiophenyl
  • alkyl or aryl amines such as dimethyl amino, diethylamino, diphenylamino, phenylamino, and N-methyl-N-phenylamino.
  • molecules exhibiting tautomerism in which at least one tautomeric form is colorless, and at least another tautomeric form is colored. Crystallization of the equilibrating mixture of the two tautomeric forms is carried out so as to produce colorless crystals.
  • the solvent chosen to perform the crystallization will typically be one of such polarity (and other chemical properties, such as hydrogen-bonding ability) that the pure colorless crystal form is favored, either in the equilibrium between the colorless and colored forms in solution, or in having lower solubility in the solvent than the colored form.
  • the choice of solvent is usually determined empirically for a particular mixture of tautomers.
  • the proportion of the amorphous material that is colored may vary, but is preferably at least about 10%.
  • the colored and colorless tautomeric forms of the molecules according to the present invention must meet certain criteria for image quality and permanence when used in thermal and other imaging applications.
  • the colorless form which is preferably the crystalline form, should have minimal visible absorption. It should be stable to light, heating below the melting point, humidity, and other environmental factors such as ozone, oxygen, nitrogen oxides, fingerprint oils, etc. These environmental factors are well known to those skilled in the imaging art.
  • the colored, amorphous form should be stable also to the above mentioned conditions, and in addition should not recrystallize to the colorless form under normal handling conditions of the image.
  • the colored form should have a spectral absorption appropriate for digital color rendition.
  • the colored form should be yellow (blue-absorbing), magenta (green-absorbing), cyan (red absorbing), or black, without undue absorption in an unintended spectral region.
  • the colored form may be one of the subtractive primary colors, but rather a particular spot color (for example, orange, blue, etc.).
  • the compounds according to the invention may be prepared by synthetic processes which are known to those skilled in the art, particularly in view of the state of the art and the specific preparatory examples provided below herein.
  • symmetrical rhodamine dyes can be prepared in one step from 3′,6′-dichlorofluorans by reacting two equivalents of an aromatic or aliphatic amine as described in U.S. Pat. No. 4,602,263, GB2311075 and DE81056.
  • the unsymmetrical rhodamine dyes are then prepared by the selective monoalkylation of, symmetrical rhodamines using sodium hydride in dimethyl sulfoxide as described in U.S. Pat. Nos. 4,602,263 and 4,826,976.
  • these novel unsymmetrical rhodamines can be prepared by use of an alternate synthetic pathway in which one equivalent of an N-alkylaniline is reacted selectively with the 3′,6′-dichlorofluoran using aluminum chloride as a catalyst to produce 3′-chloro-6′-N-alkyl-N-arylfluorans.
  • These products are isolated and purified prior to reacting with a second equivalent of an aromatic or aliphatic amine.
  • Zinc chloride is used as the catalyst for the second addition.
  • DE139727 describes the selective addition of anilines to 3′,6′-dichlorofluorans to produce 3′-chloro-6′-arylaminofluorans using a mixture of zinc chloride and zinc oxide at 160° C.
  • Unsymmetrical rhodamines can also be made from 2-benzoyl benzoic acid derivatives by condensation with 3-arylamino phenols or 3-alkylamino phenols as described in Chemistry and Applications of Leuco Dyes , pp. 180-191 R. Muthyala, Ed., Plenum Press, New York and London, 1997 and also U.S. Pat. Nos. 4,390,616 and 4,436,920.
  • the 3′,6′-dichlorofluorans are synthesized from the corresponding fluoresceins using thionyl chloride and dimethylformamide in a variation of the method of Hurd described in the Journal of the Amer. Chemical Soc. 59, 112 (1937).
  • the wet filter cake was stirred with propyl acetate (2 L) and filtered again.
  • the wet cake was dried to a constant weight and placed in the original reaction vessel.
  • Propyl acetate (2 L) was added and the stirred mixture was heated to 90° C. and allowed to cool to room temperature and filtered.
  • the filter cake was washed with acetone (0.4 L) and hexane (0.4 L).
  • the mustard yellow solid was dried to a constant weight in the vacuum oven to afford 930 g (109% yield).
  • 3′,6′-Dichlorofluoran (15.0 g, 40.6 mmol) was taken up in sulfolane (80 mL), heated to 60° C. and aluminum chloride (21.0 g, 157.9 mmol, 3.9 eq.) was added in one portion.
  • N-Butylaniline (15 mL, 98.3 mmol, 2.4 eq.) was then added dropwise over 5 minutes and the reaction was heated at 80° C. for 1 hour.
  • the reaction mixture was poured into 3N hydrochloric acid and ice.
  • the resulting precipitate was filtered, washed with water and dried overnight to afford the crude 3′-N-butylanilino-6′-chlorofluoran (18.9 g, 39.2 mmol, 96%) which was used as such.
  • the reaction mixture was poured into water (100 mL) and the precipitated crude product obtained by filtration, dried in vacuum and directly subjected to chromatography (silica gel, hexane/ethyl acetate as eluent) with methylene chloride as loading solvent, ignoring insoluble solid.
  • the isolated oil product was transformed into Dye V, as light pink crystals by recrystallization from a mixed solution of hexane and ethyl acetate (0.45 g, m.p. 252-254° C.).
  • the product was identified by NMR spectroscopy and mass spectrometry.
  • the mixed DMF solution was poured into 10% ammonium hydroxide (100 mL).
  • the resulting red crude product was subjected to chromatography (silica gel, hexane/ethyl acetate as eluent) for further purification.
  • the isolated oil product was converted into Dye VI as light pink crystals by recrystallization from a mixed solution of hexane and ethyl acetate (0.77 g, m.p. 162-164° C.)
  • the product was identified by NMR spectroscopy and mass spectrometry.
  • the resulting paste was dissolved in dichloromethane (2.0 L) and washed with water. The organic layer was separated, dried over sodium sulfate and evaporated.
  • the crude dye was purified by silica gel chromatography through a short plug. A gradient of ethyl acetate/hexane was used as eluent. The fractions containing pure product were combined, evaporated and recrystallized from acetone to give colorless crystals of Dye VIII (83 g; 33.7% yield, m.p. 283° C.). The product was identified by NMR spectroscopy and mass spectrometry.
  • the resulting paste was dissolved in 400 ml of dichloromethane and washed with water. The organic layer was separated, dried over sodium sulfate and evaporated.
  • the crude dye was purified by silica gel chromatography. A gradient of ethyl acetate/hexanes was used as eluent. The fractions containing pure product were combined, evaporated and recrystallized from a mixture of acetone/hexanes to give colorless crystals of Dye IX (4.12 g, 32.54% yield, m.p. 228° C.). The product was identified by NMR spectroscopy and mass spectrometry.

Abstract

There are described novel rhodamine color-forming compounds. The rhodamine color-forming compounds exhibit a first color when in a crystalline form and a second color, different from the first color, when in an amorphous form.

Description

    REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of priority of provisional patent application Ser. Nos. 60/680,088 and 60/680,212, both filed May 12, 2005, the contents of which are incorporated herein by reference in their entireties.
  • This application is related to the following commonly assigned, United States patent applications and patents, the contents of which are incorporated herein by reference in their entireties:
  • U.S. Pat. No. 6,801,233 B2;
  • U.S. Pat. No. 6,906,735 B2;
  • U.S. Pat. No. 6,951,952 B2;
  • U.S. Pat. No. 7,008,759 B2;
  • U.S. patent application Ser. No. 10/806,749, filed Mar. 23, 2004, which is a division of U.S. Pat. No. 6,801,233 B2;
  • United States Patent Application Publication No. U52004/0176248 A1; (Attorney docket No. A-8544AFP);
  • United States Patent Application Publication No. US2004/0204317 A1; (Attorney Docket No. A-8586AFP);
  • United States Patent Application Publication No. US2004/0171817 A1; (Attorney Docket No. A-8589AFP);
  • U.S. patent application Ser. No. (11/400,735; filed on Apr. 6, 2006 (Attorney Docket No. A-8598);
  • U.S. patent application Ser. No. (11/400,734; filed on Apr. 6, 2006 (Attorney Docket No. A-8606); and
  • U.S. patent application Ser. No. (______ filed on even date herewith, Express Mail No.: EV 669114278 US (Attorney Docket No. A-8608).
  • FIELD OF THE INVENTION
  • This invention relates to novel rhodamine color-forming materials and, more particularly, to such color-forming materials that exhibit one color in a crystalline form and a second, different color in an amorphous form.
  • BACKGROUND OF THE INVENTION
  • The development of thermal print heads (linear arrays of individually-addressable heating elements) has led to the development of a wide variety of thermally-sensitive imaging materials. In some of these, known as “thermal transfer” systems, heat is used to move colored material from a donor sheet to a receiver sheet. Alternatively, heat may be used to convert a colorless coating on a single sheet into a colored image, in a process known as “direct thermal” imaging. Direct thermal imaging has the advantage over thermal transfer of the simplicity of a single sheet. On the other hand, unless a fixing step is incorporated, direct thermal systems are still sensitive to heat after thermal printing. If a stable image is needed from an unfixed direct thermal system, the temperature for coloration must be higher than any temperature that the image is likely to encounter during normal use. A problem arises in that the higher the temperature for coloration, the less sensitive the imaging member will be when printed with the thermal print head. High sensitivity is important for maximum speed of printing, for maximizing the longevity of the print head, and for energy conservation in mobile, battery-powered printers. As described in more detail below, maximizing sensitivity while maintaining stability is more easily achieved if the temperature of coloration of a direct thermal medium is substantially independent of the heating time.
  • Known in the art are direct thermal imaging systems wherein an image is formed directly in the imaging member and thermal transfer thermal imaging systems wherein image-forming material is transferred, by the application of thermal energy, from a donor member to an image-receiving member. Various mechanisms to achieve image formation have been described in the thermal imaging art.
  • U.S. patent application Ser. No. 10/789,648, filed Feb. 27, 2004 (United States Patent Application Publication No. US2004/0176248 A1; Attorney Docket No. A-8544AFP), and assigned to the same assignee as the present application, is directed to a thermal imaging method wherein a dye is converted from one form in which the dye has one color to another form in which the dye has a second color, e.g., from colorless to colored.
  • Japanese Patent No. JP1997241553 discloses an ink jet recording liquid which includes asymmetrical rhodamine dyes. U.S. Pat. No. 4,390,616 discloses thermal imaging members and methods utilizing certain rhodamine dyes.
  • As the state of the imaging art advances and efforts are made to provide new imaging systems that can meet new performance requirements, and to reduce or eliminate some of the undesirable characteristics of the known systems, it would be advantageous to have new dyes which are suitable for use in imaging systems as well as in other applications.
  • SUMMARY OF THE INVENTION
  • It is therefore an object of this invention to provide novel rhodamine dyes.
  • Another object of the invention is to provide such dyes that exhibit different colors when in the crystalline form and in the amorphous liquid form.
  • According to one aspect of the invention there are provided novel rhodamine dye compounds that exhibit a first color when in a crystalline form and a second color, different from the first color, when in an amorphous form, and which are represented by formula I
  • Figure US20110105754A1-20110505-C00001
  • wherein:
  • R1, R3, R4, R5, R6, R7, R8 and R14 are each independently selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, preferably having from 1 to 18 carbon atoms, alkenyl or substituted alkenyl, preferably having from 1 to 18 carbon atoms, heterocycloalkyl, substituted heterocycloalkyl alkoxy, substituted alkoxy, substituted carbonyl, acylamino and halogen;
  • R2 is selected from the group consisting of hydrogen, alkyl and substituted alkyl, preferably having from 1 to 18 carbon atoms, alkenyl and substituted alkenyl, preferably having from 1 to 18 carbon atoms, heterocycloalkyl and substituted heterocycloalkyl; or
  • R2 and R3 taken together with the nitrogen atom to which they are attached can form a substituted or unsubstituted saturated heterocyclic ring system, such as, for example, substituted and unsubstituted morpholines, pyrrolidines, and piperidines;
  • R9 is absent or selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, preferably having from 1 to 18 carbon atoms, substituted or unsubstituted alkenyl, preferably having from 1 to 18 carbon atoms, heterocycloalkyl, substituted heterocycloalkyl, alkoxy, substituted alkoxy, substituted carbonyl, halogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, amino, substituted amino, alkylamino, substituted alkylamino, arylamino and substituted arylamino;
  • R10, R11 and R12 are each independently selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, preferably having from 1 to 18 carbon atoms, substituted or unsubstituted alkenyl, preferably having from 1 to 18 carbon atoms, heterocycloalkyl, substituted heterocycloalkyl, alkoxy, substituted alkoxy, substituted carbonyl, halogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, amino, substituted amino, alkylamino, substituted alkylamino, arylamino and substituted arylamino;
  • R13 is selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, preferably having from 1 to 18 carbon atoms, substituted or unsubstituted alkenyl, preferably having from 1 to 18 carbon atoms, heterocycloalkyl and substituted heterocycloalkyl;
  • R14 is selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, preferably having from 1 to 18 carbon atoms, substituted or unsubstituted alkenyl, preferably having from 1 to 18 carbon atoms, heterocycloalkyl and substituted heterocycloalkyl; or
  • R13 and R14 taken together with the atoms to which they are attached can form a 5- or 6-membered heterocyclic ring such as, for example, indoline or tetrahydroquinoline;
  • R15, R16, R17 and R18 are each independently selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, preferably having from 1 to 18 carbon atoms, substituted or unsubstituted alkenyl, preferably having from 1 to 18 carbon atoms, heterocycloalkyl, substituted heterocycloalkyl, alkoxy, substituted alkoxy, substituted carbonyl, halogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, amino, substituted amino, alkylamino, substituted alkylamino, arylamino and substituted arylamino; and
  • X1 is carbon or nitrogen;
  • and only one of R2 and R13 is hydrogen.
  • The substituents are preferably chosen to minimize the water solubility of the compounds and facilitate the formation of a colorless form in non-polar, non-protic solvents. In turn, the colorless lactone form of the compounds must be capable of melting to form the colored form.
  • A preferred group of compounds according to the invention are those represented by formula I wherein R2 and R3 taken together form a pyrrolidine ring, R10, R11 and R13 each is hydrogen, X1 is carbon and R1, R4, R5, R6, R7, R8, R9, R12, R14 and R15-R18 are as described with respect to formula I.
  • A second preferred group of compounds according to the invention are those represented by formula I wherein R2 is hydrogen, R3 is alkyl, R10 and R11 are each halogen, R13 is alkyl, X1 is carbon and R1, R4, R5, R6, R7, R8, R9, R12, R14 and R15-R18 are as described with respect to formula I.
  • Particularly preferred rhodamine compounds according to the invention are those represented by formula I in which R1, R4, R5, R6, R7, R8, R9 and R12 are each hydrogen; R2 is hydrogen or alkyl having from 1-18 carbon atoms, R3 is alkyl having from 1-18 carbon atoms, or R2 and R3 taken together with the nitrogen atom to which they are attached form a pyrrolidine ring; R10 and R11 are each independently hydrogen or halogen; R13 is hydrogen or alkyl, preferably having from 1-18 carbon atoms, R14 is hydrogen or alkyl having from 1-18 carbon atoms, X1 is carbon and R15-R18 are each independently hydrogen, alkyl having from 1-18 carbon atoms, or halogen.
  • The conversion from the crystalline form to the liquid form, such as in accordance with the use of the compounds in thermal imaging members and thermal imaging methods, is carried out by applying heat to the compounds. In thermal imaging methods, thermal energy may be applied to the thermal imaging members by any of the techniques known in thermal imaging such as from a thermal print head, a laser, a heated stylus, etc.
  • The novel dyes of the invention are useful in a variety of applications including thermal imaging members and thermal imaging methods. Particularly preferred thermal imaging members and thermal imaging methods, which utilize unsymmetrical rhodamine compounds, including the novel compounds of the present invention, are disclosed and claimed in co-pending commonly assigned U.S. patent application Ser. No. ______, Express Mail No.: EV 669114278 US (Attorney Docket No. A-8608).
  • When converted to the colored form the compounds of formula I have the open form illustrated by formula II (for the case where R2 in formula I is hydrogen)
  • Figure US20110105754A1-20110505-C00002
  • wherein R1, and R3-R18 are as defined above with respect to formula I,
  • or formula III (for the case where R13 in formula I is hydrogen)
  • Figure US20110105754A1-20110505-C00003
  • wherein R1-R12 and R14-R18 are as defined above with respect to formula I.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Compounds in the crystalline state commonly have properties, including color, that are very different from those of the same compounds in an amorphous form. In a crystal, a molecule is typically held in a single conformation (or, more rarely, in a small number of conformations) by the packing forces of the lattice. Likewise, if a molecule can exist in more than one interconverting isomeric forms, only one of such isomeric forms is commonly present in the crystalline state. In amorphous form or solution, on the other hand, the compound may explore its whole conformational and isomeric space, and only a small proportion of the population of individual molecules of the compound may at any one time exhibit the particular conformation or isomeric form adopted in the crystal. Compounds of the present invention exhibit tautomerism in which at least one tautomeric form is colorless, and at least another tautomeric form is colored. The crystalline form of compounds of the present invention comprises predominantly the colorless tautomer.
  • Specific representative compounds according to the invention are those of formula I which are shown in Table I in which the substituents R1, R4, R5, R6, R7, R8, R9, R11 and R15-R18 are all hydrogen, X1 is carbon and R2, R3, R10, R11, R13 and R14 are as shown:
  • TABLE I
    DYE R2 R3 R10 R11 R13 R14 (X2)n M.P. λmax
    I n-C10H21 H H H —(CH2)3 H 124 570
    II Cyclohexyl H H H C2H5 H H 212 544
    III Adamantyl H H H C2H5 H H 240 544
    IV Cyclohexyl H Cl Cl C4H9 H H 193 554
    V Adamantyl H Cl Cl C4H9 H H 252 554
    VI Cyclohexyl H Cl Cl C8H17 H H 162 554
    VII —(CH2)4 H H H CH3 H 268 556
    VIII —(CH2)4 H H H CH3 4-F 272 552
    IX —(CH2)3CHCH3 H H H CH3 4-F 228 552
  • DEFINITIONS
  • The term “alkyl” as used herein refers to saturated straight-chain, branched-chain or cyclic hydrocarbon radicals. Examples of alkyl radicals include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, neopentyl, n-hexyl, cyclohexyl, n-octyl, n-decyl, n-dodecyl and n-hexadecyl radicals.
  • The term “alkenyl” as used herein refers to unsaturated straight-chain, branched-chain or cyclic hydrocarbon radicals. Examples of alkenyl radicals include, but are not limited to, allyl, butenyl, hexenyl and cyclohexenyl radicals.
  • The term “alkynyl” as used herein refers to unsaturated hydrocarbon radicals having at least one carbon-carbon triple bond. Representative alkynyl groups include, but are not limited to, ethynyl, 1-propynyl, 1-butynyl, isopentynyl, 1,3-hexadiynyl, n-hexynyl, 3-pentynyl, 1-hexen-3-ynyl and the like.
  • The terms “halo” and “halogen,” as used herein, refer to an atom selected from fluorine, chlorine, bromine and iodine.
  • The term “aryl,” as used herein, refers to a mono-, bicyclic or tricyclic carbocyclic ring system having one, two or three aromatic rings including, but not limited to, phenyl, naphthyl, anthryl, azulyl, tetrahydronaphthyl, indanyl, indenyl and the like.
  • The term “heteroaryl,” as used herein, refers to a cyclic aromatic radical having from five to ten ring atoms of which one ring atom is selected from S, O and N; zero, one or two ring atoms are additional heteroatoms independently selected from S, O and N; and the remaining ring atoms are carbon, the radical being joined to the rest of the molecule via any of the ring atoms, such as, for example, pyridinyl, pyrazinyl, pyrimidinyl, pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isooxazolyl, thiadiazolyl, oxadiazolyl, thiophenyl, furanyl, quinolinyl, isoquinolinyl, and the like.
  • The term “heterocycloalkyl,” as used herein, refers to a non-aromatic 3-, 4-, 5-, 6- or 7-membered ring or a bi- or tri-cyclic group comprising fused six-membered rings having between one and three heteroatoms independently selected from oxygen, sulfur and nitrogen, wherein (i) each 5-membered ring has 0 to 1 double bonds and each 6-membered ring has 0 to 2 double bonds, (ii) the nitrogen and sulfur heteroatoms may optionally be oxidized, (iii) the nitrogen heteroatom may optionally be quaternized, and (iv) any of the above heterocyclic rings may be fused to a benzene ring. Representative heterocycles include, but are not limited to, pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, and tetrahydrofuryl.
  • The term “carbonyl” as used herein refers to a carbonyl group, attached to the parent molecular moiety through the carbon atom, this carbon atom also bearing a hydrogen atom, or in the case of a “substituted carbonyl” a substituent as described in the definition of “substituted” below.
  • The term “acyl” as used herein refers to groups containing a carbonyl moiety. Examples of acyl radicals include, but are not limited to, formyl, acetyl, propionyl, benzoyl and naphthoyl.
  • The term “alkoxy”, as used herein, refers to a substituted or unsubstituted alkyl, alkenyl or heterocycloalkyl group, as previously defined, attached to the parent molecular moiety through an oxygen atom. Examples of alkoxy radicals include, but are not limited to, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, tert-butoxy, neopentoxy and n-hexoxy.
  • The term “aryloxy” as used herein refers to a substituted or unsubstituted aryl or heteroaryl group, as previously defined, attached to the parent molecular moiety through an oxygen atom. Examples of aryloxy include, but are not limited to, phenoxy, p-methylphenoxy, naphthoxy and the like.
  • The term “alkylamino”, as used herein, refers to a substituted or unsubstituted alkyl, alkenyl or heterocycloalkyl group, as previously defined, attached to the parent molecular moiety through a nitrogen atom. Examples of alkylamino radicals include, but are not limited to, methylamino, ethylamino, hexylamino and dodecylamino.
  • The term “arylamino”, as used herein, refers to a substituted or unsubstituted aryl or heteroaryl group, as previously defined, attached to the parent molecular moiety through a nitrogen atom.
  • The term “substituted” as used herein in phrases such as “substituted alkyl”, “substituted alkenyl”, “substituted aryl”, “substituted heteroaryl”, “substituted heterocycloalkyl”, “substituted carbonyl”, “substituted alkoxy”, “substituted acyl”, “substituted amino”, “substituted aryloxy”, and the like, refers to independent replacement of one or more of the hydrogen atoms on the substituted moiety with substituents independently selected from, but not limited to, alkyl, alkenyl, heterocycloalkyl, alkoxy, aryloxy, hydroxy, amino, alkylamino, arylamino, cyano, halo, mercapto, nitro, carbonyl, acyl, aryl and heteroaryl groups.
  • The term “substituted” as used herein in phrases such as “substituted nitrogen”, “substituted oxygen” and “substituted sulfur” refers to nitrogen, oxygen or sulfur substituted with alkyl, aryl, or heteroaryl groups. Examples include, but are not limited to, alkyl and aryl ethers such as methoxy, ethoxy or phenoxy; alkyl or aryl thioethers such as thiomethoxy, thioethoxy and thiophenyl; alkyl or aryl amines such as dimethyl amino, diethylamino, diphenylamino, phenylamino, and N-methyl-N-phenylamino.
  • According to the invention, there are provided molecules exhibiting tautomerism in which at least one tautomeric form is colorless, and at least another tautomeric form is colored. Crystallization of the equilibrating mixture of the two tautomeric forms is carried out so as to produce colorless crystals. The solvent chosen to perform the crystallization will typically be one of such polarity (and other chemical properties, such as hydrogen-bonding ability) that the pure colorless crystal form is favored, either in the equilibrium between the colorless and colored forms in solution, or in having lower solubility in the solvent than the colored form. The choice of solvent is usually determined empirically for a particular mixture of tautomers.
  • Upon conversion of the pure crystalline colorless form to an amorphous form, the equilibrium between the two tautomers is re-established. The proportion of the amorphous material that is colored (i.e., the proportion that is in the colored tautomeric form) may vary, but is preferably at least about 10%.
  • The colored and colorless tautomeric forms of the molecules according to the present invention must meet certain criteria for image quality and permanence when used in thermal and other imaging applications. The colorless form, which is preferably the crystalline form, should have minimal visible absorption. It should be stable to light, heating below the melting point, humidity, and other environmental factors such as ozone, oxygen, nitrogen oxides, fingerprint oils, etc. These environmental factors are well known to those skilled in the imaging art. The colored, amorphous form should be stable also to the above mentioned conditions, and in addition should not recrystallize to the colorless form under normal handling conditions of the image. The colored form should have a spectral absorption appropriate for digital color rendition. Typically, the colored form should be yellow (blue-absorbing), magenta (green-absorbing), cyan (red absorbing), or black, without undue absorption in an unintended spectral region. For non-photographic applications, however, it may be required that the colored form not be one of the subtractive primary colors, but rather a particular spot color (for example, orange, blue, etc.).
  • The compounds according to the invention may be prepared by synthetic processes which are known to those skilled in the art, particularly in view of the state of the art and the specific preparatory examples provided below herein.
  • Generally, symmetrical rhodamine dyes can be prepared in one step from 3′,6′-dichlorofluorans by reacting two equivalents of an aromatic or aliphatic amine as described in U.S. Pat. No. 4,602,263, GB2311075 and DE81056. The unsymmetrical rhodamine dyes are then prepared by the selective monoalkylation of, symmetrical rhodamines using sodium hydride in dimethyl sulfoxide as described in U.S. Pat. Nos. 4,602,263 and 4,826,976.
  • Alternatively these novel unsymmetrical rhodamines can be prepared by use of an alternate synthetic pathway in which one equivalent of an N-alkylaniline is reacted selectively with the 3′,6′-dichlorofluoran using aluminum chloride as a catalyst to produce 3′-chloro-6′-N-alkyl-N-arylfluorans. These products are isolated and purified prior to reacting with a second equivalent of an aromatic or aliphatic amine. Zinc chloride is used as the catalyst for the second addition. DE139727 describes the selective addition of anilines to 3′,6′-dichlorofluorans to produce 3′-chloro-6′-arylaminofluorans using a mixture of zinc chloride and zinc oxide at 160° C.
  • Unsymmetrical rhodamines can also be made from 2-benzoyl benzoic acid derivatives by condensation with 3-arylamino phenols or 3-alkylamino phenols as described in Chemistry and Applications of Leuco Dyes, pp. 180-191 R. Muthyala, Ed., Plenum Press, New York and London, 1997 and also U.S. Pat. Nos. 4,390,616 and 4,436,920.
  • To optimize the chromophore, melting point, degree of coloration, light stability and solubility of the dyes of this application a variety of anilines, N-alkylanilines, aliphatic amines and dichlorofluorans are utilized.
  • The 3′,6′-dichlorofluorans are synthesized from the corresponding fluoresceins using thionyl chloride and dimethylformamide in a variation of the method of Hurd described in the Journal of the Amer. Chemical Soc. 59, 112 (1937).
  • Careful recrystallization from solvent mixtures such as hexanes/acetone or hexanes/ethyl acetate produces white crystalline material that is preferred for use in thermal imaging members.
  • EXAMPLES
  • The invention will now be described further in detail with respect to specific embodiments by way of examples, it being understood that these are intended to be illustrative only and the invention is not limited to the materials, amounts, procedures and process parameters, etc. recited therein. All parts and percentages recited are by weight unless otherwise specified.
  • Example I Synthesis of N-acetyl-N-octylaniline
  • 1-Octyl bromide (39 mL, 224 mmol, 1.12 eq) was added dropwise to a mixture of acetanilide (27 g, 200 mmol, 1 eq.) in dimethylsulfoxide (130 mL), containing potassium hydroxide pellets (18.87 g, 300 mmol, 1.5 eq.), at room temperature. After all the 1-octyl bromide was added the reaction mixture was heated to 50-55° C. for 1.5 hours. The reaction mixture was cooled and poured into water (1 L), stirred for 45 minutes and extracted with hexanes (3×400 mL). The hexane extracts were combined, dried over sodium sulfate and evaporated to give 48.4 g (196 mmol, 98%) of colorless oil. The product was identified by NMR spectroscopy and mass spectrometry and was used without further purification.
  • Synthesis of N-octylaniline
  • To N-acetyl-N-octylaniline (48.4 g, 196 mmol) was added 4N hydrochloric acid (100 mL) and the mixture heated to 100-110° C. and stirred at this temperature for 4 days. The reaction mixture was cooled to ambient temperature, diluted with water (100 mL), and hexanes (200 mL). The pH of the reaction mixture was brought to pH 14 by addition of 45% potassium hydroxide with cooling by an ice bath. The layers were separated and the aqueous layer washed with hexanes (100 mL). The combined organic layers were dried over sodium sulfate and concentrated by rotary evaporation to give the desired product as a light brown oil (40 g, 195 mmol, 99%). The product was identified by NMR spectroscopy and mass spectrometry and in general was used without further purification. Analytically pure product was obtained by distillation at reduced pressure: b.p. 145-150° C. (0.5 mm).
  • Synthesis of 5,6-dichlorofluorescein
  • To a 5 L 3-neck flask fitted with a mechanical stirrer and a thermometer was added 4,5-dichlorophthalic acid (502 g, 2.13 mol) and methanesulfonic acid (2 L). The mixture was stirred at 90° C. for one hour. The mixture was cooled to 80° C. and resorcinol (470 g, 4.27 mol) was added all at once. The dark mixture was heated at 105° C. for one hour. The warm mixture was poured into a stirred mixture of ice (6 kg) and water (5 L). The mixture was stirred for 30 minutes and filtered. The filter cake was washed with water (3×500 mL). The wet filter cake was stirred with propyl acetate (2 L) and filtered again. The wet cake was dried to a constant weight and placed in the original reaction vessel. Propyl acetate (2 L) was added and the stirred mixture was heated to 90° C. and allowed to cool to room temperature and filtered. The filter cake was washed with acetone (0.4 L) and hexane (0.4 L). The mustard yellow solid was dried to a constant weight in the vacuum oven to afford 930 g (109% yield).
  • Synthesis of 3′,6′,5,6-tetrachlorofluoran
  • To a 5 L 3-necked fitted with a mechanical stirrer, a thermometer, and a dropping funnel was added dichlorofluorescein (930 g, ca. 2.13 mol), sulfolane (2.4 L), and dimethylformamide (152 mL, 1.9 moles). The stirred mixture was warmed to 90° C. and phosphorus oxychloride (0.72 L) was added dropwise over one hour while keeping the temperature between 90 and 95° C. After the addition was complete, the mixture was kept at the same temperature for one hour and poured into acetone:water (2:1, 11 L). The mixture was stirred for one hour and filtered. The filter cake was washed with acetone: water (2 L) and dried in a vacuum oven to a constant weight. A beige solid was obtained. (805 g, 1.84 mol, 86% overall yield for two steps).
  • Synthesis of 3′-chloro-6′-tetrahydroquinolinofluoran
  • A mixture of dichlorofluoran (3.7 g, 0.01 mol), aluminum chloride (9 g, 0.07 mol) and tetrahydroquinoline (2.6 g, 0.02 moles) in sulfolane (25 ml) was held at 150° C. for 18 hours. The reaction mixture was quenched into 100 ml of water. The solid was filtered off, washed with water and dried. The product was purified on silica gel using 2% methanol in methylene chloride to yield 3′-chloro-6′-tetrahydroquinolinofluoran (250 mg, 0.54 mmol, 5.4%).
  • Synthesis of 3′-chloro-6′-(N-ethylaniline)-5,6-dichlorofluoran
  • A three-necked flask equipped with mechanic stirrer and thermometer was charged with 3′,6′,5,6-tetrachlorofluoran (8.8 g, 20 mmol) and 40 mL of sulfolane. Aluminum chloride (11.0 g, 80 mmol) was added to the mixture in portions with stirring. At 60° C., N-ethylaniline (6.05 g, 50 mmol, 2.5 eq.) was added dropwise over 15 minutes. The reaction was monitored by HPLC. After the starting materials were consumed, the reaction mixture was cooled and poured into 2 N HCl (500 mL). The precipitated solid was filtered, washed and air-dried. The free base was obtained by dissolving the salt in DMF, followed by pouring into ammonia hydroxide solution. The product was washed with water and dried. (Yield: 9.36 g, 17 mmol, 85%).
  • Synthesis of 3′-N-butylanilino-6′-chlorofluoran
  • 3′,6′-Dichlorofluoran (15.0 g, 40.6 mmol) was taken up in sulfolane (80 mL), heated to 60° C. and aluminum chloride (21.0 g, 157.9 mmol, 3.9 eq.) was added in one portion. N-Butylaniline (15 mL, 98.3 mmol, 2.4 eq.) was then added dropwise over 5 minutes and the reaction was heated at 80° C. for 1 hour. The reaction mixture was poured into 3N hydrochloric acid and ice. The resulting precipitate was filtered, washed with water and dried overnight to afford the crude 3′-N-butylanilino-6′-chlorofluoran (18.9 g, 39.2 mmol, 96%) which was used as such.
  • Synthesis of 3′-chloro-6′-(N-octylaniline)-5,6-dichlorofluoran
  • To a solution of 3′,6′,5,6-tetrachlorofluorescein (8.8 g, 0.02 mol) in sulfolane (40 mL) was added aluminum chloride (11.0 g, 0.08 mol) in portions with stirring. This was followed by the addition of N-octylaniline (4.4 g, 0.022 mol) at 50° C. over 5 minutes. After 30 minutes, triethylamine (6.0 g, 0.06 mol) was added dropwise over 10 minutes. After the starting materials were consumed (HPLC) the reaction mixture was cooled and poured into 2 N HCl (500 mL). The precipitated solid was filtered, washed and air-dried. The free base product was obtained by dissolving the salt in DMF, followed by pouring into ammonium hydroxide solution.
  • Synthesis of 3′-chloro-6′-(2-methylanilino)-fluoran
  • To a suspension of 3′,6′-dichlorofluoran (30 g, 81 mmol) in sulfolane (120 mL) was added AlCl3 (3.0 eq., 244 mmol, 32.4 g) and the mixture was warmed to 60° C. o-Toluidine (1.1 eq., 89.4 mmol 9.6 g) was added and the temperature of the orange solution was maintained at 60° C. for 10 minutes. Neat triethylamine (1.05 eq., 85.4 mmol, 8.64 g) was added dropwise with stirring over a period of 10 minutes. After stirring at 70° C. open to air for 4 hours, the solution was poured into a vigorously stirred beaker of water (1 L). The resulting suspension was filtered, and the collected solids were dissolved in ethyl acetate (500 mL). The organic extracts were dried over sodium sulfate and adsorbed on silica (˜100 g). The product was purified by silica gel column chromatography (1:1 Hexane/ethyl acetate) to yield an orange solid. The product was identified by NMR spectroscopy and mass spectrometry.
  • Example II Synthesis of Dye I
  • A mixture of 3′-chloro-6′-tetrahydroquinolinofluoran (100 mg, 0.2 mmol), decylamine (100 mg, 0.6 mmoles), and zinc chloride (100 mg, 0.7 mmol) in sulfolane (3 mL) was held at 150° C. for 3 hours. The reaction mixture was quenched into 10 ml of water. The solid was filtered off, washed with water and dried. The product was purified by silica gel chromatography using 2% methanol in methylene chloride to yield Dye I, 3′N-decylamino-6-tetrahydroquinoline fluoran as an off-white solid (42 mg, 0.07 mmol, 35%). The product was identified by NMR spectroscopy and mass spectrometry, m.p. 124° C.
  • Example III Synthesis of Dye II
  • To a solution of 3′-N-ethylanilino-6′-chlorofluoran (1.82 g, 4 mmol) in 12 ml of sulfolane was added zinc chloride (1.63 g, 12 mmol), zinc oxide (0.32, 4 mmol) and cyclohexylamine (1.6 g, 16 mmol). The reaction mixture was heated to 140° C. under stirring overnight (18 hours). After being cooled to room temperature, the reaction mixture was poured into water (100 mL) and the precipitated crude product was obtained by filtration, dried in air and dissolved in methylene chloride (50 mL). After removing insoluble solids by filtration, the resulting filtrate was subjected to chromatography (silica gel, hexane/ethyl acetate as eluent). The isolated oil product was recrystallized in a mixed solution of hexane and ethyl acetate to give 0.7 g of Dye II as light pink crystals, m.p. 212-214° C. The product was identified by NMR spectroscopy and mass spectrometry.
  • Example IV Synthesis of Dye III
  • To a solution of 3′-N-ethylanilino-6′-chlorofluoran (1.82 g, 4 mmol) in 12 ml of sulfolane was added zinc chloride (1.63 g, 12 mmol), zinc oxide (0.32, 4 mmol) and 1-adamantylamine (2.4 g, 16 mmol). The reaction mixture was heated to 150° C. under stirring overnight. After being cooled to room temperature, the reaction mixture was poured into 100 ml water, the precipitated crude product obtained by filtration and dried in vacuum and then dissolved in methylene chloride. After removal of insoluble solid, the resulting filtrate was concentrated to the appropriate volume for being loaded on chromatography (silica gel, hexane/ethyl acetate as eluent). The isolated oil, Dye III, crystallized as light pink crystals from a solution of hexane and ethyl acetate (0.55 g, m.p. 240-242° C.). The product was identified by NMR spectroscopy and mass spectrometry.
  • Example V Synthesis of Dye IV
  • To a solution of 3′-chloro-6′-(N-butylanilino)-5,6-dichlorofluoran (2.2 g, 4 mmol) in 12 ml of sulfolane was added zinc chloride (1.63 g, 12 mmol), zinc oxide (0.32, 4 mmol) and cyclohexylamine 1.6 g, 16 mmol). The reaction mixture was heated to 140° C. under stirring overnight. After being cooled to room temperature, the reaction mixture was poured into water (100 mL) and the precipitated crude product was obtained by filtration, subjected to chromatography (silica gel, hexane/ethyl acetate as eluent) using methylene chloride as solvent for loading. The isolated oil product was recrystallized in hexane mixed with 30% of ethyl acetate to give Dye IV (0.56 g) as light pink crystals, m.p. 193-195° C. The product was identified by NMR spectroscopy and mass spectrometry.
  • Example VI Synthesis of Dye V
  • To a solution of 3′-chloro-6′-(N-butylaniline)-5,6-dichlorofluoran (2.2 g, 4 mmol) in 12 ml of sulfolane was added zinc chloride (1.63 g, 12 mmol), zinc oxide (0.32, 4 mmol) and 1-adamantylamine (2.4 g, 16 mmol). The reaction mixture was heated to 150° C. under stirring overnight. After being cooled to room temperature, the reaction mixture was poured into water (100 mL) and the precipitated crude product obtained by filtration, dried in vacuum and directly subjected to chromatography (silica gel, hexane/ethyl acetate as eluent) with methylene chloride as loading solvent, ignoring insoluble solid. The isolated oil product was transformed into Dye V, as light pink crystals by recrystallization from a mixed solution of hexane and ethyl acetate (0.45 g, m.p. 252-254° C.). The product was identified by NMR spectroscopy and mass spectrometry.
  • Example VII Synthesis of Dye VI
  • To a solution of 3′-chloro-6′-(N-octylaniline)-5,6-dichlorofluoran (1.82 g, 3 mmol) in 12 ml of sulfolane was added zinc chloride (1.30 g, 9 mmol), zinc oxide (0.25 g, 3 mmol) and cyclohexylamine (1.2 g, 12 mmol). The reaction mixture was heated to 140° C. under stirring overnight. After being cooled to room temperature, the reaction mixture was poured into 2 N HCl (100 mL), the precipitated crude product obtained by filtration, dried in vacuum and dissolved in DMF (20 mL). The mixed DMF solution was poured into 10% ammonium hydroxide (100 mL). The resulting red crude product was subjected to chromatography (silica gel, hexane/ethyl acetate as eluent) for further purification. The isolated oil product was converted into Dye VI as light pink crystals by recrystallization from a mixed solution of hexane and ethyl acetate (0.77 g, m.p. 162-164° C.) The product was identified by NMR spectroscopy and mass spectrometry.
  • Example VIII Synthesis of Dye VII
  • To a solution of 3′-chloro-6′-(2-methylanilino)fluoran (3 g, 7 mmol) in sulfolane (10 mL) was added 2,6-lutidine (1.1 eq., 7.7 mmol, 0.83 g) followed by ZnO (0.8 eq., 5.6 mmol, 456 mg) and ZnCl2 (3.0 eq., 21 mmol, 2.86 g). The solution was warmed to 100° C. and pyrrolidine (1.5 eq., 10.5 mmol, 747 mg) was added. After 1 hour the red solution was poured into water (500 mL), filtered and the collected solids were dissolved in ethyl acetate (500 mL). The organic extracts were washed with 0.5 N KOH (100 mL) and dried with magnesium sulfate. The solvent was removed under reduced pressure and the product purified by silica gel column chromatography (1:1 Hexanes/ethyl acetate→pure ethyl acetate gradient) to yield Dye VII (2.49 g, 5.25 mmol, 75%). The purified product, Dye VII, was crystallized from acetone/hexanes to yield 1.5 g of pink powder; m.p. 268° C. The product was identified by NMR spectroscopy and mass spectrometry.
  • Example IX Synthesis of Dye VIII
  • To a suspension of 3′,6′-dichlorofluoran (184.5 g; 0.5 mol) in sulfolane (800 mL) was added AlCl3 (3.0 eq., 200 g; 1.5 mol) and the mixture was warmed to 60° C. followed by the addition of 4-fluoro-2-methylaniline (68.8 g, 0.55 mol). The temperature of the orange solution was maintained at 80° C. for 10 minutes. Neat triethylamine (1.21 eq., 82.5 mL; 0.605 mol) was added dropwise with stirring over a period of 10 minutes. After stirring at 80° C. for four hours the completion of the reaction was followed by TLC of an aliquot (1:4 ethyl acetate:hexanes).
  • 2,6-Lutidine (2.2 eq., 127.9 ml; 1.1 mol) and pyrrolidine (39.10 g; 0.55 mol) were added to the warm reaction solution. The reaction mixture was stirred at 80° C. overnight. The reaction did not go to completion based on TLC even if extra 2,6-lutidine and pyrrolidine were added. The reaction mixture was cooled and then poured into ice/water (1.0 L) and stirred for 30 minutes and filtered. The filtrate was washed with of water (1.0 L).
  • The resulting paste was dissolved in dichloromethane (2.0 L) and washed with water. The organic layer was separated, dried over sodium sulfate and evaporated. The crude dye was purified by silica gel chromatography through a short plug. A gradient of ethyl acetate/hexane was used as eluent. The fractions containing pure product were combined, evaporated and recrystallized from acetone to give colorless crystals of Dye VIII (83 g; 33.7% yield, m.p. 283° C.). The product was identified by NMR spectroscopy and mass spectrometry.
  • Example X Synthesis of Dye IX
  • To a suspension of 3′,6′-dichlorofluoran (9.225 g, 25 mmol) in sulfolane (50 mL) was added AlCl3 (3.0 eq., 10 g; 75 mmol) and the mixture was warmed to 60° C. followed by the addition of 4-Fluoro-2-methylaniline (3.44 g; 27.25 mmol). The temperature of the orange solution was maintained at 80° C. for 10 minutes. Neat triethylamine (1.1 eq., 3.75 ml; 27.25 mmol) was added dropwise with stirring over a period of 10 minutes. The reaction was stirred at 80° C. for 4 hours. The completion of the reaction was followed by TLC of an aliquot (1:4 ethyl acetate:hexanes).
  • 2,6-Lutidine (2.0 eq., 7.85 ml; 50 mmol) and 2-methylpyrrolidine (2.32 g; 27.25 mmol) were added to the warm reaction solution. The reaction mixture was stirred at 80° C. overnight. The reaction did not go to completion based on TLC even when extra 2,6-lutidine and 2-methylpyrrolidine were added. The reaction mixture was cooled and then poured into ice/water (500 ml), stirred for 30 min, filtered and washed with water (100 mL).
  • The resulting paste was dissolved in 400 ml of dichloromethane and washed with water. The organic layer was separated, dried over sodium sulfate and evaporated. The crude dye was purified by silica gel chromatography. A gradient of ethyl acetate/hexanes was used as eluent. The fractions containing pure product were combined, evaporated and recrystallized from a mixture of acetone/hexanes to give colorless crystals of Dye IX (4.12 g, 32.54% yield, m.p. 228° C.). The product was identified by NMR spectroscopy and mass spectrometry.
  • Although the invention has been described in detail with respect to various preferred embodiments, it is not intended to be limited thereto, but rather those skilled in the art will recognize that variations and modifications are possible which are within the spirit of the invention and the scope of the appended claims.

Claims (4)

1. A compound represented by the formula
Figure US20110105754A1-20110505-C00004
wherein:
R1, R3, R4, R5, R6, R7, R8 and R14 are each independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, heterocycloalkyl, substituted heterocycloalkyl, alkoxy, substituted alkoxy, substituted carbonyl, acylamino and halogen;
R2 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, heterocycloalkyl and substituted heterocycloalkyl;
or
R2 and R3 taken together with the nitrogen atom to which they are attached form a substituted or unsubstituted saturated heterocyclic ring system;
R9 is absent or selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, heterocycloalkyl, substituted heterocycloalkyl, alkoxy, substituted alkoxy, substituted carbonyl, halogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, amino, substituted amino, alkylamino, substituted alkylamino, arylamino and substituted arylamino;
R10, R11 and R12 are each independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, heterocycloalkyl, substituted heterocycloalkyl, alkoxy, substituted alkoxy, substituted carbonyl, halogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, amino, substituted amino, alkylamino, substituted alkylamino, arylamino and substituted arylamino;
R13 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, heterocycloalkyl and substituted heterocycloalkyl;
R14 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, heterocycloalkyl and substituted heterocycloalkyl;
or
R13 and R14 taken together with the atoms to which they are attached form a 5- or 6-membered heterocyclic ring;
R15, R16, R17 and R18 are each independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, heterocycloalkyl, substituted heterocycloalkyl, alkoxy, substituted alkoxy, substituted carbonyl, halogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, amino, substituted amino, alkylamino, substituted alkylamino, arylamino and substituted arylamino; and
X1 is carbon or nitrogen;
provided that only one of R2 and R13 is hydrogen.
2. A compound as defined in claim 1 wherein R2 and R3 taken together form a pyrrolidine ring, R10, R11 and R13 each is hydrogen, X1 is carbon and R1, R4, R5, R6, R7, R8, R9, R12, R14 and R15-R18 are as defined in claim 1.
3. A compound as defined in claim 1 wherein R2 is hydrogen, R3 is alkyl, R10 and R11 are each halogen, R13 is alkyl, X1 is carbon and R1, R4, R5, R6, R7, R8, R9, R12, R14 and R15-R18 are as defined in claim 1.
4. A compound as defined in claim 1 wherein R1, R4, R5, R6, R7, R8, R9 and R12 are each hydrogen; R2 is hydrogen or alkyl having from 1-18 carbon atoms, R3 is alkyl having from 1-18 carbon atoms, or R2 and R3 taken together with the nitrogen atom to which they are attached form a pyrrolidine ring; R10 and R11 are each independently hydrogen or halogen; R13 is hydrogen or alkyl having from 1-18 carbon atoms, R14 is hydrogen or alkyl having from 1-18 carbon atoms, X1 is carbon and R15-R18 are each independently hydrogen, alkyl having from 1-18 carbon atoms, or halogen.
US12/939,009 2005-05-12 2010-11-03 Novel rhodamine dyes Abandoned US20110105754A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/939,009 US20110105754A1 (en) 2005-05-12 2010-11-03 Novel rhodamine dyes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US68021205P 2005-05-12 2005-05-12
US68008805P 2005-05-12 2005-05-12
US11/433,810 US20060293523A1 (en) 2005-05-12 2006-05-12 Novel rhodamine dyes
US12/939,009 US20110105754A1 (en) 2005-05-12 2010-11-03 Novel rhodamine dyes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/433,810 Continuation US20060293523A1 (en) 2005-05-12 2006-05-12 Novel rhodamine dyes

Publications (1)

Publication Number Publication Date
US20110105754A1 true US20110105754A1 (en) 2011-05-05

Family

ID=37431892

Family Applications (6)

Application Number Title Priority Date Filing Date
US11/433,810 Abandoned US20060293523A1 (en) 2005-05-12 2006-05-12 Novel rhodamine dyes
US11/433,808 Active 2026-07-18 US7829497B2 (en) 2003-02-28 2006-05-12 Thermal imaging members and methods
US12/939,009 Abandoned US20110105754A1 (en) 2005-05-12 2010-11-03 Novel rhodamine dyes
US12/940,709 Abandoned US20110045972A1 (en) 2005-05-12 2010-11-05 Thermal imaging members and methods
US13/458,445 Active US8722574B2 (en) 2005-05-12 2012-04-27 Thermal imaging members and methods
US14/276,395 Active US9505255B2 (en) 2005-05-12 2014-05-13 Thermal imaging members and methods

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/433,810 Abandoned US20060293523A1 (en) 2005-05-12 2006-05-12 Novel rhodamine dyes
US11/433,808 Active 2026-07-18 US7829497B2 (en) 2003-02-28 2006-05-12 Thermal imaging members and methods

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/940,709 Abandoned US20110045972A1 (en) 2005-05-12 2010-11-05 Thermal imaging members and methods
US13/458,445 Active US8722574B2 (en) 2005-05-12 2012-04-27 Thermal imaging members and methods
US14/276,395 Active US9505255B2 (en) 2005-05-12 2014-05-13 Thermal imaging members and methods

Country Status (4)

Country Link
US (6) US20060293523A1 (en)
EP (2) EP1879876A4 (en)
JP (2) JP2008544877A (en)
WO (2) WO2006124560A2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8377844B2 (en) * 2001-05-30 2013-02-19 Zink Imaging, Inc. Thermally-insulating layers and direct thermal imaging members containing same
US7388686B2 (en) 2003-02-25 2008-06-17 Zink Imaging, Llc Image stitching for a multi-head printer
US7830405B2 (en) 2005-06-23 2010-11-09 Zink Imaging, Inc. Print head pulsing techniques for multicolor printers
US7791626B2 (en) 2001-05-30 2010-09-07 Zink Imaging, Inc. Print head pulsing techniques for multicolor printers
US8372782B2 (en) * 2003-02-28 2013-02-12 Zink Imaging, Inc. Imaging system
JP4217244B2 (en) * 2003-02-28 2009-01-28 ズィンク イメージング エルエルシー Imaging system
US7704667B2 (en) * 2003-02-28 2010-04-27 Zink Imaging, Inc. Dyes and use thereof in imaging members and methods
JP2008544877A (en) * 2005-05-12 2008-12-11 ズィンク イメージング エルエルシー Thermal imaging member and method
US7807607B2 (en) * 2006-05-12 2010-10-05 Zink Imaging, Inc. Color-forming compounds and use thereof in imaging members and methods
JP2008070780A (en) * 2006-09-15 2008-03-27 Toshiba Corp Erasable image forming method and method for manufacturing the same
US20090082495A1 (en) * 2007-09-20 2009-03-26 Rene Jean Zimmer Pneumatic Tire
US8114904B2 (en) * 2008-04-05 2012-02-14 Versitech Limited & Morningside Ventures Limited Luminescence quenchers and fluorogenic probes for detection of reactive species
DE102008047689A1 (en) 2008-09-18 2010-03-25 Mark Helm New xanthene derivative useful as a dye in the detection of biomolecules in a sample, preferably useful in the bioanalysis and diagnosis purposes
EP3431480A1 (en) * 2012-01-30 2019-01-23 The University Of Hong Kong Diarylamine-based fluorogenic probes for detection of peroxynitrite
US20140112695A1 (en) 2012-10-19 2014-04-24 Zink Imaging, Inc. Systems and methods for full bleed printing
US10822150B2 (en) * 2015-06-03 2020-11-03 Bemis Company, Inc. Package for indicating heat-seal condition
US11247410B2 (en) 2016-12-02 2022-02-15 Bemis Company, Inc. Package for indicating heat-seal condition
WO2019199330A1 (en) * 2018-04-13 2019-10-17 Hewlett-Packard Development Company, L.P. Imaging medium

Citations (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2417897A (en) * 1945-06-16 1947-03-25 Xdmethylaminophenyl
US3488705A (en) * 1967-12-04 1970-01-06 Eastman Kodak Co Thermally unstable organic acid salts of triarylmethane dyes as sensitizers for organic photoconductors
US3539375A (en) * 1966-06-01 1970-11-10 Ncr Co Thermo-responsive record sheet
US3745009A (en) * 1968-10-09 1973-07-10 Eastman Kodak Co Photographic elements and light-absorbing layers
US3832212A (en) * 1968-10-09 1974-08-27 Eastman Kodak Co Heat-sensitive copying systems
US3939831A (en) * 1974-03-04 1976-02-24 Intreprinderea Flacara Rosie Process for preparing medicinal dressings
USRE29168E (en) * 1968-10-09 1977-04-05 Eastman Kodak Company Photographic elements with light absorbing layers
US4097288A (en) * 1977-02-25 1978-06-27 Lawton William R Heat sensitive recording composition containing a complexed phenolics and a spiropyran or leuco lactone
US4226912A (en) * 1978-02-15 1980-10-07 Kanzaki Paper Manufacturing Co., Ltd. Heat-sensitive recording material
US4232552A (en) * 1978-09-28 1980-11-11 Akzona Incorporated Temperature indicating compositions of matter
US4243052A (en) * 1979-01-08 1981-01-06 Stimtech, Inc. Disposable electrode
US4264701A (en) * 1979-04-24 1981-04-28 Polaroid Corporation Magenta dye developers
US4380629A (en) * 1980-04-21 1983-04-19 Matsushita Electric Industrial Company, Limited Styryl-like compounds showing a color-developing and bleaching behavior with improved stability and prolonged lifetime
US4390616A (en) * 1979-11-30 1983-06-28 Fuji Photo Film Co., Ltd. Image recording members
US4401717A (en) * 1980-11-21 1983-08-30 Fuji Photo Film Co., Ltd. Heat-sensitive recording material
US4405788A (en) * 1979-12-26 1983-09-20 Polaroid Corporation Bicyclo nitrogenheterocyclic substituted sulfofluoresceins, fluoresceins and xanthenes
US4415633A (en) * 1980-08-12 1983-11-15 Fuji Photo Film Co., Ltd. Heat-sensitive recording material
US4544936A (en) * 1982-05-28 1985-10-01 Fuji Xerox Co., Ltd. Heat-sensitive recording sheet
US4554936A (en) * 1984-03-16 1985-11-26 American Sterilizer Company Washing machine container coupling apparatus
US4602263A (en) * 1984-09-04 1986-07-22 Polaroid Corporation Thermal imaging method
US4636819A (en) * 1985-02-01 1987-01-13 Ricoh Company, Ltd. Thermosensitive recording material
US4641147A (en) * 1985-02-22 1987-02-03 Tokyo Electric Co., Ltd. Thermal printer
US4720449A (en) * 1985-06-03 1988-01-19 Polaroid Corporation Thermal imaging method
US4728633A (en) * 1985-07-29 1988-03-01 Fuji Photo Film Co., Ltd. Recording material
US4803148A (en) * 1986-06-09 1989-02-07 Fuji Photo Film Co., Ltd. Light-sensitive material containing silver halide, reducing agent and polymerizable compound
US4826976A (en) * 1984-09-04 1989-05-02 Polaroid Corporation Color-shifted dyes with thermally unstable carbamate moiety comprising T-alkoxycarbonyl group
US5177262A (en) * 1991-07-19 1993-01-05 Polaroid Corporation Process and composition for use in photographic materials containing hydroquinones
US5256619A (en) * 1990-07-05 1993-10-26 Nippon Shokubai Co., Ltd. Heat-sensitive recording material
US5278031A (en) * 1992-10-23 1994-01-11 Polaroid Corporation Process for thermochemical generation of squaric acid and for thermal imaging, and imaging medium for use therein
US5350870A (en) * 1991-05-06 1994-09-27 Polaroid Corporation Thermal imaging methods and materials
US5395948A (en) * 1992-03-17 1995-03-07 Ciba-Geigy Corporation Fluoran color formers
US5427996A (en) * 1992-09-09 1995-06-27 Mitsubishi Paper Mills Limited Heat-sensitive recording sheet
US5559075A (en) * 1994-05-02 1996-09-24 Agfa-Gevaert Recording material for direct thermal imaging
US5663115A (en) * 1994-03-01 1997-09-02 Kabushiki Kaisha Toshiba Thermal recording medium and recording method
US5869420A (en) * 1995-07-05 1999-02-09 Kabushiki Kaisha Toshiba Rewritable thermal recording medium
US6010808A (en) * 1997-02-10 2000-01-04 Kabushiki Kaisha Toshiba Rewritable thermal recording medium and recording method
US6054246A (en) * 1998-07-01 2000-04-25 Polaroid Corporation Heat and radiation-sensitive imaging medium, and processes for use thereof
US6162931A (en) * 1996-04-12 2000-12-19 Molecular Probes, Inc. Fluorinated xanthene derivatives
US6165706A (en) * 1998-04-07 2000-12-26 Fuji Photo Film Co., Ltd. Photothemographic element
US6420131B1 (en) * 1999-08-19 2002-07-16 Gentest Corporation Use of fluorescein aryl ethers in high throughput cytochrome P450 inhibition assays
US6537410B2 (en) * 2000-02-01 2003-03-25 Polaroid Corporation Thermal transfer recording system
US20040171817A1 (en) * 2003-02-28 2004-09-02 Allen Richard M. Novel dye complexes and use thereof in imaging members and methods
US6801233B2 (en) * 2001-05-30 2004-10-05 Polaroid Corporation Thermal imaging system
US7098168B2 (en) * 2001-12-20 2006-08-29 Fuji Photo Film Co., Ltd. Heat-sensitive recording material
US20060232642A1 (en) * 2005-04-06 2006-10-19 Zink Imaging, Llc Multicolor thermal imaging method and thermal imaging member for use therein
US20060293523A1 (en) * 2005-05-12 2006-12-28 Zink Imaging, Llc Novel rhodamine dyes
US20080187866A1 (en) * 2003-02-28 2008-08-07 Zink Imaging, Llc Novel dyes and use thereof in imaging members and methods
US20080238967A1 (en) * 2001-05-30 2008-10-02 Zink Imaging, Llc Print head pulsing techniques for multicolor printers
US20090137389A1 (en) * 2006-05-12 2009-05-28 Zink Imaging, Inc. Novel color-forming compounds and use thereof in imaging members and methods
US20100099556A1 (en) * 2003-02-28 2010-04-22 Zink Imaging, Inc. Imaging System

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE96668C (en) *
SE361374B (en) 1968-10-01 1973-10-29 American Cyanamid Co
JPS5316323B2 (en) * 1972-06-28 1978-05-31
GB1463815A (en) 1973-09-26 1977-02-09 Ciba Geigy Ag Heterocyclic substituted fluoran compounds their manufacture and use
JPS6043318B2 (en) * 1978-07-18 1985-09-27 富士写真フイルム株式会社 thermal recording paper
JPS5627393A (en) * 1979-08-13 1981-03-17 Ricoh Co Ltd Thermorecording material
JPS57150845A (en) * 1981-03-13 1982-09-17 Fuji Photo Film Co Ltd Silver halide photographic material
JPS5838192A (en) * 1981-09-01 1983-03-05 Mita Ind Co Ltd Heat-sensitive coloring recording material
JPS5962666A (en) 1982-10-01 1984-04-10 Hodogaya Chem Co Ltd Fluorane compound
DE3374315D1 (en) 1982-10-01 1987-12-10 Hodogaya Chemical Co Ltd Fluoran compounds
JPH0416382A (en) * 1990-05-10 1992-01-21 Sumitomo Seika Chem Co Ltd Thermal recording material
JP2874356B2 (en) 1990-06-28 1999-03-24 王子製紙株式会社 Fluoran compound and thermal recording medium using the compound
JPH05255340A (en) * 1992-03-17 1993-10-05 Nippon Soda Co Ltd New fluorane compound and recording material using the same
JP2806714B2 (en) * 1992-04-28 1998-09-30 富士写真フイルム株式会社 Fluoran compound and method for producing the same
US6656879B2 (en) 1992-06-25 2003-12-02 Ricoh Company, Ltd. Method of reversible selective manifestation of different states of functional element
JPH06103790A (en) * 1992-09-17 1994-04-15 Mitsubishi Electric Corp Non-volatile semiconductor memory
US5325116A (en) 1992-09-18 1994-06-28 Texas Instruments Incorporated Device for writing to and reading from optical storage media
ES2112409T3 (en) * 1992-09-30 1998-04-01 Ciba Geigy Ag CONCENTRATED AQUEOUS LIQUID COMPOSITIONS OF COLOR FORMERS.
JP3374382B2 (en) 1993-06-18 2003-02-04 日本曹達株式会社 Novel fluoran compound and coloring material using the same
JPH07304972A (en) 1994-05-09 1995-11-21 Yamamoto Chem Inc Fluoroan compound, and recording material same and thermochromic material each containing the same
GB2311075A (en) 1997-04-26 1997-09-17 Zeneca Ltd Ester or amide containing xanthene dyes for use in ink jet or hot melt inks
JP3581047B2 (en) 1999-06-24 2004-10-27 グンゼ株式会社 Thermoreversible multicolor recording medium
JP2002248863A (en) 2001-02-26 2002-09-03 Ricoh Co Ltd Reversible heat-sensitive recording medium and method for processing image thereof
US7176317B2 (en) * 2003-06-26 2007-02-13 Xerox Corporation Colorant compounds

Patent Citations (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2417897A (en) * 1945-06-16 1947-03-25 Xdmethylaminophenyl
US3539375A (en) * 1966-06-01 1970-11-10 Ncr Co Thermo-responsive record sheet
US3488705A (en) * 1967-12-04 1970-01-06 Eastman Kodak Co Thermally unstable organic acid salts of triarylmethane dyes as sensitizers for organic photoconductors
US3745009A (en) * 1968-10-09 1973-07-10 Eastman Kodak Co Photographic elements and light-absorbing layers
US3832212A (en) * 1968-10-09 1974-08-27 Eastman Kodak Co Heat-sensitive copying systems
USRE29168E (en) * 1968-10-09 1977-04-05 Eastman Kodak Company Photographic elements with light absorbing layers
US3939831A (en) * 1974-03-04 1976-02-24 Intreprinderea Flacara Rosie Process for preparing medicinal dressings
US4097288A (en) * 1977-02-25 1978-06-27 Lawton William R Heat sensitive recording composition containing a complexed phenolics and a spiropyran or leuco lactone
US4226912A (en) * 1978-02-15 1980-10-07 Kanzaki Paper Manufacturing Co., Ltd. Heat-sensitive recording material
US4232552A (en) * 1978-09-28 1980-11-11 Akzona Incorporated Temperature indicating compositions of matter
US4243052A (en) * 1979-01-08 1981-01-06 Stimtech, Inc. Disposable electrode
US4264701A (en) * 1979-04-24 1981-04-28 Polaroid Corporation Magenta dye developers
US4390616A (en) * 1979-11-30 1983-06-28 Fuji Photo Film Co., Ltd. Image recording members
US4436920A (en) * 1979-11-30 1984-03-13 Fuji Photo Film Co., Ltd. Image recording members
US4405788A (en) * 1979-12-26 1983-09-20 Polaroid Corporation Bicyclo nitrogenheterocyclic substituted sulfofluoresceins, fluoresceins and xanthenes
US4380629A (en) * 1980-04-21 1983-04-19 Matsushita Electric Industrial Company, Limited Styryl-like compounds showing a color-developing and bleaching behavior with improved stability and prolonged lifetime
US4415633A (en) * 1980-08-12 1983-11-15 Fuji Photo Film Co., Ltd. Heat-sensitive recording material
US4401717A (en) * 1980-11-21 1983-08-30 Fuji Photo Film Co., Ltd. Heat-sensitive recording material
US4544936A (en) * 1982-05-28 1985-10-01 Fuji Xerox Co., Ltd. Heat-sensitive recording sheet
US4554936A (en) * 1984-03-16 1985-11-26 American Sterilizer Company Washing machine container coupling apparatus
US4602263A (en) * 1984-09-04 1986-07-22 Polaroid Corporation Thermal imaging method
US4826976A (en) * 1984-09-04 1989-05-02 Polaroid Corporation Color-shifted dyes with thermally unstable carbamate moiety comprising T-alkoxycarbonyl group
US4636819A (en) * 1985-02-01 1987-01-13 Ricoh Company, Ltd. Thermosensitive recording material
US4641147A (en) * 1985-02-22 1987-02-03 Tokyo Electric Co., Ltd. Thermal printer
US4720449A (en) * 1985-06-03 1988-01-19 Polaroid Corporation Thermal imaging method
US4728633A (en) * 1985-07-29 1988-03-01 Fuji Photo Film Co., Ltd. Recording material
US4803148A (en) * 1986-06-09 1989-02-07 Fuji Photo Film Co., Ltd. Light-sensitive material containing silver halide, reducing agent and polymerizable compound
US5256619A (en) * 1990-07-05 1993-10-26 Nippon Shokubai Co., Ltd. Heat-sensitive recording material
US5350870A (en) * 1991-05-06 1994-09-27 Polaroid Corporation Thermal imaging methods and materials
US5338644A (en) * 1991-07-19 1994-08-16 Polaroid Corporation Process and composition for use in photographic materials containing hydroquihones
US5177262A (en) * 1991-07-19 1993-01-05 Polaroid Corporation Process and composition for use in photographic materials containing hydroquinones
US5395948A (en) * 1992-03-17 1995-03-07 Ciba-Geigy Corporation Fluoran color formers
US5427996A (en) * 1992-09-09 1995-06-27 Mitsubishi Paper Mills Limited Heat-sensitive recording sheet
US5278031A (en) * 1992-10-23 1994-01-11 Polaroid Corporation Process for thermochemical generation of squaric acid and for thermal imaging, and imaging medium for use therein
US5401619A (en) * 1992-10-23 1995-03-28 Polaroid Corporation Process for thermochemical generation of acid and for thermal imaging, and imaging medium for use therein
US5534393A (en) * 1992-10-23 1996-07-09 Polaroid Corporation Process for thermochemical generation of acid and for thermal imaging
US5667943A (en) * 1992-10-23 1997-09-16 Polaroid Corporation Process for thermochemical generation of acid and for thermal imaging, and imaging medium for use therein
US5663115A (en) * 1994-03-01 1997-09-02 Kabushiki Kaisha Toshiba Thermal recording medium and recording method
US5559075A (en) * 1994-05-02 1996-09-24 Agfa-Gevaert Recording material for direct thermal imaging
US5869420A (en) * 1995-07-05 1999-02-09 Kabushiki Kaisha Toshiba Rewritable thermal recording medium
US6162931A (en) * 1996-04-12 2000-12-19 Molecular Probes, Inc. Fluorinated xanthene derivatives
US6229055B1 (en) * 1996-04-12 2001-05-08 Molecular Probes, Inc. Synthesis of fluorinated xanthene derivatives
US6010808A (en) * 1997-02-10 2000-01-04 Kabushiki Kaisha Toshiba Rewritable thermal recording medium and recording method
US6165706A (en) * 1998-04-07 2000-12-26 Fuji Photo Film Co., Ltd. Photothemographic element
US6054246A (en) * 1998-07-01 2000-04-25 Polaroid Corporation Heat and radiation-sensitive imaging medium, and processes for use thereof
US6420131B1 (en) * 1999-08-19 2002-07-16 Gentest Corporation Use of fluorescein aryl ethers in high throughput cytochrome P450 inhibition assays
US6537410B2 (en) * 2000-02-01 2003-03-25 Polaroid Corporation Thermal transfer recording system
US6801233B2 (en) * 2001-05-30 2004-10-05 Polaroid Corporation Thermal imaging system
US20080238967A1 (en) * 2001-05-30 2008-10-02 Zink Imaging, Llc Print head pulsing techniques for multicolor printers
US7098168B2 (en) * 2001-12-20 2006-08-29 Fuji Photo Film Co., Ltd. Heat-sensitive recording material
US20080058525A1 (en) * 2003-02-28 2008-03-06 Zink Imaging, Llc Novel dye complexes and use thereof in imaging members and methods
US20080058524A1 (en) * 2003-02-28 2008-03-06 Zink Imaging, Llc Novel dyes and use thereof in thermal imaging members and methods
US20040204317A1 (en) * 2003-02-28 2004-10-14 Kap-Soo Cheon Novel dyes and use thereof in imaging members and methods
US6951952B2 (en) * 2003-02-28 2005-10-04 Polaroid Corporation Dyes
US7008759B2 (en) * 2003-02-28 2006-03-07 Polaroid Corporation Dyes and use thereof in imaging members and methods
US20040176248A1 (en) * 2003-02-28 2004-09-09 Chu Peter K. Imaging system
US20100099556A1 (en) * 2003-02-28 2010-04-22 Zink Imaging, Inc. Imaging System
US20100016154A1 (en) * 2003-02-28 2010-01-21 Zink Imaging, Inc. Imaging system
US7504360B2 (en) * 2003-02-28 2009-03-17 Zink Imaging, Inc. Imaging system
US7176161B2 (en) * 2003-02-28 2007-02-13 Zink Imaging, Llc Imaging system
US7220868B2 (en) * 2003-02-28 2007-05-22 Zink Imaging, Llc Process for the preparation of novel dyes for use in imaging members
US20070123421A1 (en) * 2003-02-28 2007-05-31 Zink Imaging, Llc. Imaging system
US20070224552A1 (en) * 2003-02-28 2007-09-27 Zink Imaging, Llc Process for the preparation of novel dyes for use in imaging members
US7279264B2 (en) * 2003-02-28 2007-10-09 Zink Imaging, Llc Dyes and use thereof in thermal imaging members and methods
US7282317B2 (en) * 2003-02-28 2007-10-16 Zink Imaging, Llc Dye complexes and use thereof in imaging members and methods
US20040176617A1 (en) * 2003-02-28 2004-09-09 Kap-Soo Cheon Novel dyes
US20040191668A1 (en) * 2003-02-28 2004-09-30 Kap-Soo Cheon Novel dyes and use thereof in imaging members and methods
US20040171817A1 (en) * 2003-02-28 2004-09-02 Allen Richard M. Novel dye complexes and use thereof in imaging members and methods
US20080187866A1 (en) * 2003-02-28 2008-08-07 Zink Imaging, Llc Novel dyes and use thereof in imaging members and methods
US7408563B2 (en) * 2005-04-06 2008-08-05 Zink Imaging Llc Multicolor thermal imaging method and thermal printer
US20060232642A1 (en) * 2005-04-06 2006-10-19 Zink Imaging, Llc Multicolor thermal imaging method and thermal imaging member for use therein
US20060293185A1 (en) * 2005-05-12 2006-12-28 Zink Imaging, Llc Thermal imaging members and methods
US20060293523A1 (en) * 2005-05-12 2006-12-28 Zink Imaging, Llc Novel rhodamine dyes
US20090137389A1 (en) * 2006-05-12 2009-05-28 Zink Imaging, Inc. Novel color-forming compounds and use thereof in imaging members and methods

Also Published As

Publication number Publication date
US8722574B2 (en) 2014-05-13
EP1879750A2 (en) 2008-01-23
JP2008544877A (en) 2008-12-11
WO2006124602A2 (en) 2006-11-23
US20150119237A1 (en) 2015-04-30
WO2006124560A3 (en) 2009-04-16
EP1879876A4 (en) 2009-03-18
US20060293185A1 (en) 2006-12-28
US7829497B2 (en) 2010-11-09
WO2006124602A3 (en) 2007-12-06
EP1879750A4 (en) 2012-03-14
WO2006124560A2 (en) 2006-11-23
US20060293523A1 (en) 2006-12-28
US20130059726A1 (en) 2013-03-07
JP2008540774A (en) 2008-11-20
US20110045972A1 (en) 2011-02-24
EP1879876A2 (en) 2008-01-23
US9505255B2 (en) 2016-11-29

Similar Documents

Publication Publication Date Title
US20110105754A1 (en) Novel rhodamine dyes
US7279264B2 (en) Dyes and use thereof in thermal imaging members and methods
EP0244399B1 (en) Novel phenazine dyes
US7807607B2 (en) Color-forming compounds and use thereof in imaging members and methods
US7704667B2 (en) Dyes and use thereof in imaging members and methods
EP0220515A1 (en) Fluoran derivatives, process for preparation thereof and recording material containing the same
US4814320A (en) Heat-sensitive recording material
CN101228147A (en) Novel rhodamine dyes
JPS62270662A (en) Azaphthalide compound and color forming recording material obtained by using same
WO2023186517A1 (en) Benzofluoran-based compounds as thermochromic dyes and their use in imaging systems
JPS62121769A (en) Fluoran derivative, production thereof and recording material containing the same
JPH0250910B2 (en)
JPS58122964A (en) Fluoran compound and production thereof
JPH08193169A (en) Fluoran compound and color-developing recording material using same
WO2008034003A2 (en) Imaging compositions, imaging methods, and imaging members
JPS59142254A (en) Novel fluoran derivative and thermal recording material using the same
JPH0358386B2 (en)

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION