US20110112462A1 - Pharmaceutical agent delivery in a stimulating medical device - Google Patents

Pharmaceutical agent delivery in a stimulating medical device Download PDF

Info

Publication number
US20110112462A1
US20110112462A1 US12/935,909 US93590909A US2011112462A1 US 20110112462 A1 US20110112462 A1 US 20110112462A1 US 93590909 A US93590909 A US 93590909A US 2011112462 A1 US2011112462 A1 US 2011112462A1
Authority
US
United States
Prior art keywords
pharmaceutical agent
nerve cells
population
cochlea
recipient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/935,909
Inventor
John Parker
James F. Patrick
Paul Carter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cochlear Ltd
Original Assignee
Cochlear Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cochlear Ltd filed Critical Cochlear Ltd
Priority to US12/935,909 priority Critical patent/US20110112462A1/en
Assigned to COCHLEAR AMERICAS reassignment COCHLEAR AMERICAS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARTER, PAUL, PATRICK, JAMES F., PARKER, JOHN L.
Assigned to COCHLEAR LIMITED reassignment COCHLEAR LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COCHLEAR AMERICAS
Assigned to COCHLEAR LIMITED reassignment COCHLEAR LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COCHLEAR AMERICAS
Publication of US20110112462A1 publication Critical patent/US20110112462A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/70Adaptation of deaf aid to hearing loss, e.g. initial electronic fitting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
    • H04R25/604Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
    • H04R25/606Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/05General characteristics of the apparatus combined with other kinds of therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0662Ears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14276Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body specially adapted for implantation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4957Sound device making
    • Y10T29/49572Hearing aid component making

Definitions

  • FIG. 9 is a diagram of a pharmaceutical agent source in accordance with embodiments of the present invention.
  • external component 442 comprises a behind-the-ear (BTE) device 434 and one or more sound input components 424 .
  • Sound input component 424 is configured to receive a sound signal 203 .
  • Sound input component 424 may comprise, for example, one or more microphones, a telecoil, or an electrical input which connects cochlear implant 400 to FM hearing systems, MP3 players, musical instruments, computers, televisions, mobile phones, etc.
  • sound signal 403 may comprise a sound wave or an electrical audio signal.
  • sound input component 424 comprises a microphone 424 which may be a directional microphone and/or an omni-directional microphone. Sound input component 424 outputs signals 409 representing received sound signal 403 to sound processing unit 450 within BTE 434 .
  • a pharmaceutical agent may be delivered to evoke a hearing percept of a received sound signal.
  • pharmaceutical agent controller 462 operates based on data signals 472 .
  • electrical stimulation controller 460 and electrical contacts 430 may be unnecessary.
  • a pharmaceutical agent is stored as a hydrogel rather than as a fluid within a reservoir.
  • the pharmaceutical agents are applied to reduce the firing threshold in a specific region of the cochlea, a substantial portion of the cochlea, or in nerve cells adjacent specific electrodes.

Abstract

A stimulating medical device comprising a stimulating assembly implantable proximate to nerve cells of a recipient having at least one agent delivery port and a plurality of electrical contacts; an electrical stimulation controller configured to generate electrical stimulation signals for application to a first population of the nerve cells via one or more of the plurality of electrical contacts; a pharmaceutical agent source configured to provide a pharmaceutical agent to the at least one delivery port for application to a second population of the nerve cells; and a pharmaceutical agent controller configured to control one or more of the pharmaceutical agent source and the at least one delivery port to cause selective application of the pharmaceutical agent to the second population of nerve cells.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a National Stage Application of International Application No. PCT/US2009/38942, filed Mar. 31, 2009, and claims the benefit of U.S. Provisional Patent Application 61/041,185; filed Mar. 31, 2008, which is hereby incorporated by reference herein. This application is a continuation-in-part of and claims priority to U.S. patent application Ser. No. 12/440,815, entitled “A Stimulating Medical Device,” filed Mar. 11, 2009, which is a national stage application of PCT/AU07/00728, filed May 25, 2007, which claims priority to Australian Provisional Application No. AU 2006902833, filed May 25, 2006, the entire contents and disclosures of which are hereby incorporated by reference herein.
  • BACKGROUND
  • 1. Field of the Invention
  • The present invention relates generally to a stimulating medical device and, more particularly, to pharmaceutical agent delivery in a stimulating medical device.
  • 2. Related Art
  • Medical devices having one or more implantable components, generally referred to as implantable medical devices herein, have provided a wide range of therapeutic benefits to patients over recent decades. As such, the type of implantable devices and the range of functions performed thereby have increased over the years. Particular types of implantable medical devices, referred to as stimulating medical devices, are used to stimulate the nerve cells of the device recipient. A notable use for such stimulating medical devices is in recipients who suffer from various forms of hearing loss.
  • Hearing loss, which may be due to many different causes, is generally of two types, conductive and sensorineural. In some cases, a person suffers from hearing loss of both types. Conductive hearing loss occurs when the normal mechanical pathways for sound to reach the cochlea, and thus the sensory hair cells therein, are impeded, for example, by damage to the ossicles. Individuals who suffer from conductive hearing loss typically have some form of residual hearing because the hair cells in the cochlea are undamaged. As a result, individuals suffering from conductive hearing loss typically receive an acoustic hearing aid. Acoustic hearing aids stimulate an individual's cochlea by providing an amplified sound to the cochlea that causes mechanical motion of the cochlear fluid.
  • In many people who are profoundly deaf, however, the reason for their deafness is sensorineural hearing loss. Sensorineural hearing loss occurs when there is damage to the inner ear, or to the nerve pathways from the inner ear to the brain. As such, those suffering from some forms of sensorineural hearing loss are thus unable to derive suitable benefit from conventional acoustic hearing aids. As a result, hearing prostheses that apply electrical stimulation signals to nerve cells of the recipient's auditory system have been developed to provide the sensations of hearing to persons whom do not derive adequate benefit from conventional hearing aids. Such electrically-stimulating hearing prostheses apply electrical stimulation to nerve cells of the recipient's auditory system thereby providing the recipient with a hearing percept.
  • As used herein, the recipient's auditory system includes all sensory system components used to perceive a sound signal, such as hearing sensation receptors, neural pathways, including the auditory nerve and spiral ganglion, and parts of the brain used to sense sounds. Hearing prostheses that apply electrical stimulation signals to the recipient include, for example, auditory brain stimulators and cochlear prostheses (commonly referred to as cochlear prosthetic devices, cochlear implants, cochlear devices, and the like; simply “cochlear implants” herein.)
  • Oftentimes sensorineural hearing loss is due to the absence or destruction of the cochlear hair cells which transduce acoustic signals into nerve impulses. It is for this purpose that cochlear implants have been developed. Conventional cochlear implants provide a recipient with a hearing percept by delivering electrical stimulation signals directly to the auditory nerve cells, thereby bypassing absent or defective hair cells that normally transduce acoustic vibrations into neural activity. Such devices generally use an electrode array implanted in the cochlea so that the electrodes may differentially activate auditory neurons that normally encode differential pitches of sound.
  • SUMMARY
  • In one aspect of the present invention, a cochlear implant is provided. The cochlear implant comprises a stimulating assembly implantable in a cochlea of a recipient having at least one agent delivery port and a plurality of electrical contacts; an electrical stimulation controller configured to generate electrical stimulation signals for application to a first population of cochlea nerve cells via one or more of the plurality of electrical contacts; a pharmaceutical agent source configured to provide a pharmaceutical agent to the at least one delivery port for application to a second population of cochlea nerve cells; and a pharmaceutical agent controller configured to control one or more of the pharmaceutical agent source and the at least one delivery port to cause selective application of the pharmaceutical agent to the second population of nerve cells.
  • In another aspect of the present invention, a method for stimulating the cochlear of a recipient with a cochlear implant comprising a stimulating assembly implantable in a cochlea of a recipient having at least one agent delivery port and a plurality of electrical contacts is provided. The method comprises: generating electrical stimulation signals; applying the electrical stimulation signals to a first population of cochlea nerve cells via one or more of the plurality of electrical contacts; applying a pharmaceutical agent to a second population of cochlea nerve cells via the at least one delivery port.
  • In a still other aspect of the present invention, a stimulating medical device is provided. The stimulating medical device comprises a stimulating assembly implantable proximate to nerve cells of a recipient having at least one agent delivery port and a plurality of electrical contacts; an electrical stimulation controller configured to generate electrical stimulation signals for application to a first population of the nerve cells via one or more of the plurality of electrical contacts; a pharmaceutical agent source configured to provide a pharmaceutical agent to the at least one delivery port for application to a second population of the nerve cells; and a pharmaceutical agent controller configured to control one or more of the pharmaceutical agent source and the at least one delivery port to cause selective application of the pharmaceutical agent to the second population of nerve cells.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the present invention are described below with reference to the attached drawings, in which:
  • FIG. 1 is a perspective view of an implanted cochlear implant which may be advantageously configured to implement embodiments of the present invention;
  • FIG. 2A is a perspective, partially cut-away view of a cochlea exposing the canals and nerve fibers of the cochlea;
  • FIG. 2B is a cross-sectional view of one turn of the canals of a human cochlea;
  • FIG. 3 is graph illustrating the various phases of an idealized action potential as the potential passes through a nerve cell, illustrated in membrane voltage versus time;
  • FIG. 4 is a detailed functional block diagram illustrating the components of a cochlear implant in accordance with embodiments of the present invention;
  • FIG. 5 is a side view of the implantable component of a cochlear implant in accordance with embodiments of the present invention;
  • FIG. 6 is a cross-sectional side view of a portion of a stimulating assembly in accordance with embodiments of the present invention;
  • FIG. 7A is a side view of an implantable stimulating assembly in accordance with embodiments of the present invention;
  • FIG. 7B is a side view of an implantable stimulating assembly in accordance with embodiments of the present invention;
  • FIG. 8 is a diagram of a pharmaceutical agent source in accordance with embodiments of the present invention;
  • FIG. 9 is a diagram of a pharmaceutical agent source in accordance with embodiments of the present invention;
  • FIG. 10A illustrate the responses of a recipient's cochlear prior to, and following, the delivery of a pharmaceutical agent to the cochlea;
  • FIG. 10B illustrate the responses of a recipient's cochlear prior to, and following, the delivery of a pharmaceutical agent to the cochlea;
  • FIG. 11 is a flowchart illustrating the operations performed by a cochlear implant in accordance with embodiments of the present invention;
  • FIG. 12A is a flowchart illustrating the operations performed by a cochlear implant in accordance with embodiments of the present invention;
  • FIG. 12B is a detailed flowchart illustrating the operations performed by a cochlear implant in accordance with embodiments of FIG. 12A; and
  • FIG. 13 is a flowchart illustrating the operations performed by a cochlear implant in accordance with embodiments of the present invention.
  • DETAILED DESCRIPTION
  • Aspects of the present invention are generally directed to a stimulating medical device configured to apply a pharmaceutical agent to the nerve cells of a recipient. The stimulating medical device delivers the pharmaceutical agent alone, or in combination with electrical stimulation signals.
  • In particular embodiments, the stimulating medical device comprises an implantable stimulating assembly having delivery ports and electrical contacts. A pharmaceutical agent source delivers pharmaceutical agents to the recipient's nerve cells via the delivery ports, and an electrical stimulation controller generates electrical stimulation signals that are applied to the nerve cells via the electrical contacts.
  • Embodiments of the present invention may be implemented in various types of stimulating medical devices such as functional electrical stimulators, cochlear prostheses, auditory brain stimulators, etc. As noted, cochlear implants stimulate auditory nerve cells, bypassing absent or defective hair cells that normally transduce acoustic vibrations into neural activity. Conventional cochlear implants generally use an array of electrodes, sometimes referred to as electrical contacts herein, inserted into or adjacent the cochlea so that the electrical contacts may activate auditory neurons that normally encode differential pitches of sound. Auditory brain stimulators are used to treat a smaller number of recipients, such as those with bilateral degeneration of the auditory nerve. The auditory brain stimulator comprises an array of electrical contacts configured to be positioned, for example, proximal to the recipient's brainstem. When implanted, the electrical contacts apply electrical stimulation signals to the cochlear nucleus in the brainstem, resulting in a hearing sensation by the recipient. For ease of illustration, the present invention will be described herein primarily in connection with cochlear implants. However, it should be appreciated that embodiments of the present invention, regardless of whether described herein, may be implemented in any stimulating medical device now known or later developed.
  • FIG. 1 is a perspective view of an exemplary cochlear implant 120 in which embodiments of the present invention may be implemented. The relevant components of the recipient's ear are described below, followed by a description of cochlear implant 120.
  • In a fully functional ear, outer ear 101 comprises an auricle 110 and an ear canal 102. An acoustic pressure or sound wave 103 is collected by auricle 110 and channeled into and through ear canal 102. Disposed across the distal end of ear cannel 102 is a tympanic membrane 104 which vibrates in response to sound wave 103. This vibration is coupled to oval window or fenestra ovalis 112 through three bones of middle ear 105, collectively referred to as the ossicles 106 and comprising the malleus 108, the incus 109 and the stapes 111. Bones 108, 109 and 111 of middle ear 105 serve to filter and amplify sound wave 103, causing oval window 112 to articulate, or vibrate in response to vibration of tympanic membrane 104. This vibration sets up waves of fluid motion of the perilymph within cochlea 140. Such fluid motion, in turn, activates tiny hair cells (not shown) inside cochlea 140. Activation of the hair cells causes appropriate nerve impulses to be generated and transferred via neural pathways through the spiral ganglion cells (not shown) and auditory nerve 114 to the brain (also not shown) where they are perceived as sound.
  • Cochlear implant 100 comprises an external component 142 which is directly or indirectly attached to the body of the recipient, and an internal component 144 which is temporarily or permanently implanted in the recipient. External component 142 typically comprises one or more acoustic pickup devices, such as microphone 124, for detecting sound, a sound processing unit 126, a power source (not shown), and an external transmitter unit 128. External transmitter unit 128 comprises an external coil 130 and, preferably, a magnet (not shown) secured directly or indirectly to external coil 130. Sound processing unit 126 processes the output of a sound input component, shown as microphone 124 that is positioned in the depicted embodiment adjacent auricle 110 of the recipient. Sound processing unit 126 generates encoded signals, sometimes referred to herein as encoded data signals, which are provided to external transmitter unit 128 via a cable (not shown).
  • Internal component 144 comprises, in this depicted embodiment, an internal receiver unit 132, a stimulator unit 120, and an elongate stimulating assembly 118. Internal receiver unit 132 comprises an internal coil 136, and preferably, a magnet (also not shown) fixed relative to the internal coil. Internal receiver unit 132 and stimulator unit 120 are hermetically sealed within a biocompatible housing, sometimes collectively referred to as a stimulator/receiver unit. The magnets facilitate the operational alignment of the external and internal coils, enabling internal coil 136 to receive power and stimulation data from external coil 130, as noted above. Elongate stimulating assembly 118 has a proximal end connected to stimulator unit 120, and a distal end implanted in cochlea 140. Electrode assembly 118 extends from stimulator unit 120 to cochlea 140 through mastoid bone 119. In some embodiments, stimulating assembly 118 may be implanted at least in basal region 116, and sometimes further. For example, stimulating assembly 118 may extend towards apical end of cochlea 140, referred to as cochlea apex 134. In certain circumstances, stimulating assembly 118 may be inserted into cochlea 140 via a cochleostomy 122. In other circumstances, a cochleostomy may be formed through round window 121, oval window 112, the promontory 123 or through an apical turn 147 of cochlea 140.
  • Stimulating assembly 118 comprises a longitudinally aligned and distally extending array 146 of stimulating electrical contacts 148, sometimes referred to as contact array 146 herein, disposed along a length thereof. Although contact array 146 may be disposed on stimulating assembly 118, in most practical applications, contact array 146 is integrated into stimulating assembly 118. As such, for all embodiments of stimulating assembly 118, contact array 146 is generally referred to herein as being disposed in stimulating assembly 118. As described below, stimulator unit 120 generates stimulation signals which are applied by contacts 148 to cochlea 140, thereby stimulating auditory nerve 114. Also as described below, stimulating assembly 118 comprises one or more delivery ports (not shown) to deliver a pharmaceutical agent to cochlea nerve cells.
  • In certain embodiments, external coil 130 transmits electrical signals (i.e., power and stimulation data) to internal coil 136 via a radio frequency (RF) link, as noted above. Internal coil 136 is typically a wire antenna coil comprised of multiple turns of electrically insulated single-strand or multi-strand platinum or gold wire. The electrical insulation of internal coil 136 is provided by a flexible silicone molding (not shown). In use, implantable receiver unit 132 may be positioned in a recess of the temporal bone adjacent auricle 110 of the recipient.
  • Although FIG. 1 illustrates a cochlear implant 100 having an external component 142, it should be appreciated that embodiments of the present invention may be implemented in other cochlear implant embodiments, such as a totally implantable cochlear implant.
  • Relevant aspects of cochlea 140 are described next below with reference to FIGS. 2A-2C. FIG. 2A is a perspective view of cochlea 140 partially cut-away to display the canals and nerve fibers of the cochlea. FIG. 2B is a cross-sectional view of one turn of the canals of cochlea 140. To facilitate understanding, the following description will reference the cochlea illustrated in FIGS. 2A and 2B as cochlea 140, which was introduced above with reference to FIG. 1.
  • Referring to FIG. 2A, cochlea 140 is a conical spiral structure comprising three parallel fluid-filled canals or ducts, collectively and generally referred to herein as canals 202. Canals 202 comprise the tympanic canal 208, also referred to as the scala tympani 208, the vestibular canal 204, also referred to as the scala vestibuli 204, and the median canal 206, also referred to as the scala media 206. Cochlea 140 has a conical shaped central axis, the modiolus 212, that forms the inner wall of scala vestibuli 204 and scala tympani 208. Tympanic and vestibular canals 208, 204 transmit pressure, while medial canal 206 contains the organ of corti 210 which detects pressure impulses and responds with electrical impulses which travel along auditory nerve 114 to the brain (not shown).
  • Cochlea 140 spirals about modiolus 212 several times and terminates at cochlea apex 134. Modiolus 212 is largest near its base where it corresponds to first turn 241 of cochlea 140. The size of modiolus 212 decreases in the regions corresponding to medial 242 and apical turns 246 of cochlea 140.
  • Referring now to FIG. 2B, separating canals 202 of cochlear 140 are various membranes and other tissue. The Ossicous spiral lamina 222 projects from modiolus 212 to separate scala vestibuli 204 from scala tympani 208. Toward lateral side 218 of scala tympani 208, a basilar membrane 224 separates scala tympani 208 from scala media 206. Similarly, toward lateral side 218 of scala vestibuli 204, a vestibular membrane 226, also referred to as the Reissner's membrane 226, separates scala vestibuli 204 from scala media 206.
  • Portions of cochlea 140 are encased in a bony capsule 216. Bony capsule 216 resides on lateral side 218 (the right side as illustrated in FIG. 2B), of cochlea 140. Spiral ganglion cells 214 reside on the opposing medial side 220 (the left side as illustrated in FIG. 2B) of cochlea 140. A spiral ligament membrane 230 is located between lateral side 218 of spiral tympani 208 and bony capsule 216, and between lateral side 218 of scala media 206 and bony capsule 216. Spiral ligament 230 also typically extends around at least a portion of lateral side 218 of scala vestibuli 204.
  • The fluid in tympanic and vestibular canals 208, 204, referred to as perilymph, has different properties than that of the fluid which fills scala media 206 and which surrounds organ of Corti 210, referred to as endolymph. Sound entering auricle 110 causes pressure changes in cochlea 140 to travel through the fluid-filled tympanic and vestibular canals 208, 204. As noted, organ of Corti 210 is situated on basilar membrane 224 in scala media 206. It contains rows of 16,000-20,000 hair cells (not shown) which protrude from its surface. Above them is the tectoral membrane 232 which moves in response to pressure variations in the fluid-filled tympanic and vestibular canals 208, 204. Small relative movements of the layers of membrane 232 are sufficient to cause the hair cells in the endolymph to move thereby causing the creation of a voltage pulse or action potential which travels along the associated nerve fiber 228. Nerve fibers 228, embedded within spiral lamina 222, connect the hair cells with the spiral ganglion cells 214 which form auditory nerve 114. The action potential is relayed via neural pathways through the auditory nerve 114 to the auditory areas of the brain (not shown) for processing.
  • The place along basilar membrane 224 where maximum excitation of the hair cells occurs determines the perception of pitch and loudness according to the place theory. Due to this anatomical arrangement, cochlea 140 has characteristically been referred to as being “tonotopically mapped.” That is, regions of cochlea 140 toward basal region 116 are responsive to high frequency signals, while regions of cochlea 140 toward apical end 116 are responsive to low frequency signals. These tonotopical properties of cochlea 140 are exploited in a cochlear implant by delivering stimulation signals within a predetermined frequency range to a region of the cochlea that is most sensitive to that particular frequency range.
  • As is well known in the art, the human auditory system is composed of many structural components, some of which are connected extensively by neural pathways comprising bundles of nerve cells (neurons). Each nerve cell has a cell membrane which acts as a barrier to prevent intercellular fluid from mixing with extracellular fluid. The intercellular and extracellular fluids have different concentrations of ions, which leads to a difference in charge between the fluids. This difference in charge across the cell membrane is referred to herein as the membrane potential (Vm) of the nerve cell. Nerve cells use membrane potentials to transmit signals between different parts of the auditory system.
  • In nerve cells that are at rest (i.e., not transmitting a nerve signal) the membrane potential is referred to as the resting potential of the nerve cell. Upon receipt of a stimulus, the electrical properties of a nerve cell membrane are subjected to abrupt changes, referred to herein as a nerve action potential, or simply action potential. The action potential represents the transient depolarization and repolarization of the nerve cell membrane. The action potential causes electrical signal transmission along the conductive core (axon) of a nerve cell. Signals may be then transmitted along a group or population of nerve cells via such propagating action potentials.
  • FIG. 3 is graph illustrating the various phases of an idealized action potential 302 as the potential passes through a nerve cell in accordance with embodiments of the present invention. The action potential is presented as membrane voltage in millivolts (mV) versus time. As would be appreciated by one of ordinary skill in the art, the membrane voltages and times shown in FIG. 3 are provided for illustration purposes only. The actual voltages may vary depending on the individual. As such, this illustrative example should not be construed as limiting the present invention.
  • In the example of FIG. 3, prior to application of a stimulus 318 to the nerve cell, the resting potential of the nerve cell is approximately −70 mV. Stimulus 318 is applied at a first time. In normal hearing, this stimulus is provided as a result of the movement of the hair cells of the cochlea. Movement of these hair cells results in the release of a nerve impulse. As discussed in greater detail below, in embodiments of the present invention the stimulus results from the application of one or more of an electrical stimulation signal and a therapeutic agent to the nerve cell.
  • As shown in FIG. 3, following application of stimulus 318, the nerve cell begins to depolarize. Depolarization of the nerve cell refers to the fact that the voltage of the cell becomes more positive following stimulus 318. When the membrane of the nerve cell becomes depolarized beyond the cell's critical threshold, the nerve cell undergoes an action potential. This action potential is sometimes referred to as the “firing” of the nerve cell. As used herein, the critical threshold of a nerve cell, group of nerve cells, etc. refers to the threshold level at which the nerve cell, group of nerve cells, etc. will undergo an action potential. In the example illustrated in FIG. 3, the critical threshold level for firing of the nerve cell is approximately −50 mV. As would be appreciated, the critical threshold and other transitions may be different for various recipients. As such, the values provided in FIG. 3 are merely illustrative. For consistency, a critical threshold of −50 mV will be used herein, but such usage should not be considered to limit the present invention
  • The course of this action potential in the nerve cell can be generally divided into five phases. These five phases are shown in FIG. 3 as a rising phase 304, a peak phase 305, a falling phase 306, an undershoot phase 314, and finally a refractory period 317. During rising phase 304, the membrane voltage continues to depolarize. The point at which depolarization ceases is shown as peak phase 305. In the illustrative embodiment of FIG. 3, at this peak phase 305, the membrane voltage reaches a maximum value of approximately 40 mV.
  • Following peak phase 305, the action potential underfoes falling phase 306. During falling phase 306, the membrane voltage becomes increasingly more negative, sometimes referred to as hyperpolarization of the nerve cell. This hyperpolarization causes the membrane voltage to temporarily become more negatively charged then when the nerve cell is at rest. This phase is referred to as the undershoot phase 314 of action potential 302. Following this undershoot, there is a time period during which it is impossible or difficult for the nerve cells to fire. This time period is referred to as refractory period 317.
  • Action potential 302 illustrated in FIG. 3 may travel along, for example the auditory nerve, without diminishing or fading out because the action potential is regenerated each nerve cell. This regeneration occurs because an action potential at one nerve cell raises the voltage at adjacent nerve cells. This induced rise in voltage depolarizes adjacent nerve cells thereby provoking a new action potential therein.
  • As noted above, the nerve cell must obtain a membrane voltage above a critical threshold before the nerve cell may fire. Illustrated in FIG. 3 are several failed initiations 316 which occur as a result of stimuli which were insufficient to raise the membrane voltage above the critical threshold value to result in an action potential.
  • In normal hearing there is a level of spontaneous or random nerve activity in the absence of sound that is inaudible to an individual. This spontaneous nerve activity is the result of the random release of neurotransmitters by the cochlea hair cells. When a neurotransmitter is randomly released (in the absence of sound), the neurotransmitter causes the spontaneous firing of an auditory nerve cell. Many of these combine to cause a level of inherent background noise. However, in cochlear implant recipients and other individuals, such as individuals suffering from tinnitus, this spontaneous nerve activity is lacking.
  • One aspect of the present invention is directed to invoking stochastic or random activity within a nerve cell, referred to as pseudospontaneous nerve activity, through the delivery of one or more pharmaceutical agents to the recipient's cochlea. In certain embodiments, this pseudospontaneous nerve activity replicates the spontaneous or random nerve activity experienced by individuals with normal hearing. By replicating the naturally occurring spontaneous activity cochlear implants may provide stimulated hearing that more closely replicates natural hearing. This may advantageously facilitate more accurate speech perceptions and/or the suppression of tinnitus.
  • In these embodiments of the present invention, the cochlear implant applies threshold reducing pharmaceutical agents such as a brain derived neurotrophic factor (BDNF), an ionic species such as sodium or potassium, etc., to a population of cochlea nerve cells. These applied pharmaceutical agents encourage, facilitate or allow the pseudospontaneous nerve activity that is below the recipient's perception or auditory threshold. Specifically, the pharmaceutical agent is used to lower the firing threshold of the nerve to the point where a particular background spontaneous nerve firing rate is achieved. The spontaneous firing of the nerve cells is unperceivable by the recipient. As used herein, pharmaceutical agents refer to any artificial or naturally occurring drug, medicine, pharmaceutical, hormone suitable for the desired purpose.
  • As noted above, electrical stimulation signals applied to a recipient's cochlea must have a minimum intensity in order to evoke a hearing percept. Specifically, the electrical stimulation signals must have an intensity which increases the membrane voltage of the cells from the resting level (resting potential) to a level at which the nerve cells will fire, referred to as the recipient's auditory threshold level. Certain embodiments of the present invention reduce the intensity required of electrical stimulations to evoke a hearing percept by delivering a threshold reducing pharmaceutical agent to the cochlea prior to or during application of electrical stimulation signals. Therefore, because the nerve cells will fire more readily, hearing percepts may be evoked using lower intensity electrical stimulation signals.
  • In an alternative embodiment of the present invention, the cochlear implant is configured to apply pharmaceutical agents to the recipient's cochlea to evoke a hearing percept. As discussed in greater detail below, these embodiments apply the pharmaceutical agents under the control of a speech processor so that the recipient may perceive a sound signal received by the cochlear implant.
  • In further aspects of the present invention, a pharmaceutical agent is delivered to a recipient's nerve cells to increase neural survival. For example, cochlear nerve cells which are not used to receive a hearing percept will eventually become non-functional. In other words, non-used spiral ganglion or other cells will die and thus lose the ability to transmit electrical potentials. Certain aspects of the present invention are directed to increasing the neural survival rate of such unused cochlear nerve cells in a cochlear implant recipient. In these aspects, a pharmaceutical agent is delivered to the non-used nerve cells to cause the nerve cells to fire, thereby prolonging the cell's usable life span. The firing of these nerve cells is unperceivable by the recipient.
  • FIG. 4 is a detailed functional block diagram of a cochlear implant 400 that may be used to implement the above and other embodiments of the present invention. As shown, elements of cochlear implant 400 that have substantially the same or similar structures and/or perform substantially the same or similar functions as elements of cochlear implant 100 are illustrated in FIG. 4 using a 400 series reference number having two right digits which are the same as the right two digits as the corresponding element of FIG. 1. For example, as shown, cochlear implant 400 comprises an embodiment of external component 142 of FIG. 1, referred to as external component 442.
  • In the illustrative embodiment of FIG. 4, external component 442 comprises a behind-the-ear (BTE) device 434 and one or more sound input components 424. Sound input component 424 is configured to receive a sound signal 203. Sound input component 424 may comprise, for example, one or more microphones, a telecoil, or an electrical input which connects cochlear implant 400 to FM hearing systems, MP3 players, musical instruments, computers, televisions, mobile phones, etc. As such, sound signal 403 may comprise a sound wave or an electrical audio signal. In the embodiment of FIG. 4, sound input component 424 comprises a microphone 424 which may be a directional microphone and/or an omni-directional microphone. Sound input component 424 outputs signals 409 representing received sound signal 403 to sound processing unit 450 within BTE 434.
  • BTE 434 is configured to be worn behind the ear of the recipient and, as described herein, may comprise various sound processing and other components. Microphone 424 may be positionable on BTE 434 or elsewhere on the recipient.
  • As would be appreciated by those of ordinary skill in the art, although the embodiments of FIG. 4 are described with reference to external component 442 configured as a BTE, other configurations of external component 442 may also be implemented in embodiments of the present invention. For example, in certain embodiments, external component 442 may be configured as a body-worn sound processing unit instead of, or in combination with, a component that is worn behind the ear. In other embodiments, external component 442 may be omitted and microphone 424 as well as the components residing in BTE device 434 may be implanted in the recipient. Such an arrangement of a cochlear implant is sometimes referred to as a totally-implantable cochlear implant. For ease of description, embodiments of the present invention will be primarily described herein with reference to cochlear implants having external components. However, embodiments of the present invention may be equally implemented in any cochlear implant now known or later developed.
  • BTE device 434 comprises a sound processing unit 450, a transmitter 452 and a control module 454. As noted above, microphone 424 receives a sound signal and delivers corresponding electrical signals 409 to a preprocessor 432 of sound processing unit 450. Prep-processor 432 may comprise various combinations of preamplifiers, automatic gain controllers, and Analog-to Digital-Converters used to convert signal 409 in a digital signal 411 for use by sound processor 446.
  • As would be appreciated, in certain embodiments of the present invention, pre-processor 432 may be implemented as a component of sound input component 424. It should also be appreciated that in certain embodiments, one or more components of pre-processor module 432 may not be necessary. For example, in certain embodiments, sound signal 403 received by sound input component 424 comprises a digitized signal received from, for example, a FM hearing system, MP3 player, television, mobile phones, etc. In these embodiments, the received signal may be provided directly to sound processor 446.
  • Sound processor 446 performs sound processing operations to convert electrical signals 411 received from preprocessor 432 into one or more encoded data signals 472 which are then transmitted to internal component 444 by transmitter 452. There are numerous strategies that may be implemented by sound processor 446 to convert signals 411 into encoded data signals 472. Embodiments of the present invention may be used in combination with any processing strategy now or later developed.
  • Embodiments of cochlear implant 400 may locally store several processing strategies as a software program or otherwise, any one of which may be selected depending, for example, on the recipient's listening environment. For example, a recipient may choose one strategy for a low noise environment, such as a conversation in an enclosed room, and a second strategy for a high noise environment, such as on a public street. The programmed speech strategies may be different versions of the same speech strategy, each programmed with different parameters or settings.
  • External component 442 may further comprise a control module 454. Control module 454 may be configured to receive control inputs from a recipient, an external device, or internally generated events, commands or interrupts. Control module 454 controls sound processing unit 450 and/or transmission of signals to internal component 444. As described below, in one embodiment, control module causes a control signal 475 to be transmitted to internal component 444.
  • In the embodiments illustrated in FIG. 4, internal component 444 comprises a stimulator/receiver unit 402, a stimulating assembly 418 and a pharmaceutical agent source 478. Stimulator/receiver unit 402 comprises a receiver module 458 that receives from transmitter 452 encoded data signals 472 and control signal 475. Stimulator/receiver unit 402 includes an electrical stimulation controller 460 that generates electrical stimulation signals 463 which are applied to the recipient via electrical contacts 430 of stimulating assembly 418. Electrical stimulation controller 460 generates electrical stimulation signals 463 based on encoded data signals 472 and cause perception of sound signal 403 by the recipient.
  • As noted, internal component comprises agent pharmaceutical agent source 478 which is fluidically coupled to agent delivery ports 420 in stimulating assembly 418. An agent released by pharmaceutical agent source 478 is applied to the nerve cells of the recipient's cochlea via agent delivery ports 420. Stimulator/receiver unit 402 includes a pharmaceutical agent controller 462 that controls the delivery of pharmaceutical agents to the recipient's cochlea. Specifically, pharmaceutical agent controller 462 comprises a port control module 474 to control ports 420 via, for example, electrical signals 465, and a source control module 476 to control the release of pharmaceutical agents from pharmaceutical agent source 478 to stimulating assembly 418. In the illustrative embodiment of FIG. 4, a coupling member, such as a catheter or tube 484, fluidically couples pharmaceutical agent source 478 to ports 420 in stimulating assembly 418.
  • As described below, in certain embodiments, pharmaceutical agent controller 462 causes a pharmaceutical agent to be applied based on control signal 475. In certain embodiments, stimulator/receiver unit 402 may cause concurrent application of the pharmaceutical agent and electrical stimulation signals 463.
  • As noted, in embodiments of the present invention, a pharmaceutical agent may be delivered to evoke a hearing percept of a received sound signal. In such embodiments, pharmaceutical agent controller 462 operates based on data signals 472. Furthermore, because the sound is perceived based on applied pharmaceutical agents, electrical stimulation controller 460 and electrical contacts 430 may be unnecessary.
  • FIG. 5 is a simplified side view of an embodiment of internal component 444. As noted, internal component 444 comprises a stimulator/receiver unit 402 which, as described above, receives encoded signals from an external component of the cochlear implant. Internal component 444 terminates in a stimulating assembly 418 that comprises an extra-cochlear region 510 and an intra-cochlear region 512. Intra-cochlear region 512 is configured to be implanted in the recipient's cochlea and has disposed thereon an array 516 of electrical contacts. Stimulating assembly 418 further includes one or more delivery ports 420.
  • In certain embodiments, stimulating assembly 418 is configured to adopt a curved configuration during and or after implantation into the recipient's cochlea. To achieve this, in certain embodiments, stimulating assembly 418 is pre-curved to the same general curvature of a recipient's cochlea. In such embodiments, of stimulating assembly 418 is sometimes referred to as perimodiolar stimulating assembly and is typically held straight by, for example, a stiffening stylet (not shown) which is removed during implantation so that the stimulating assembly may adopt its curved configuration when in the cochlea. Other methods of implantation, as well as other stimulating assemblies which adopt a curved configuration, may be used in alternative embodiments of the present invention.
  • In other embodiments, stimulating assembly 418 is a non-perimodiolar stimulating assembly which does not adopt a curved configuration. For example, stimulating assembly 418 may comprise a straight stimulating assembly or a mid-scala assembly which assumes a mid-scala position during or following implantation. In further embodiments, cochlear implant 400 could include a stimulating assembly implantable into a natural crevice in the cochlea that allows for the hydrodynamic nature of the cochlea to be maintained, or an assembly positioned adjacent to the cochlea.
  • Internal component 444 further comprises a lead region 508 coupling stimulator/receiver unit 402 to stimulating assembly 418. Lead region 508 comprises a helix region 504 and a transition region 506. Helix region 504 is a section of lead region 508 in which electrical leads are would helically. Transition region 506 connects helix region 504 to stimulating assembly 418. Electrical stimulation signals generated by stimulator/receiver unit 402 are applied to contact array 416 via lead region 508. Helix region 504 prevents lead region 508, and thus the connection between stimulator/receiver 402 and stimulating assembly 418, from being damaged due to movement of internal component 444 which may occur, for example, during mastication.
  • As detailed above with reference to FIG. 4, stimulator/receiver unit 402 includes an electrical stimulation controller 460 (not shown) and a pharmaceutical agent controller 462 (also not shown). Pharmaceutical agent controller 462 controls the delivery of pharmaceutical agents from pharmaceutical agent source 478 to the cochlea. Specifically, agent controller 462 cause delivery of pharmaceutical agents to the cochlea in various temporal and spatial patterns and profiles, for example, by releasing a pharmaceutical agent in a continuous or pulsatile manner, and/or targeting areas of the cochlea. As described below, this delivery control is provided by controlling one or more of pharmaceutical agent source 478 and delivery ports 420.
  • In the embodiments of FIG. 5, pharmaceutical agent source 478 is physically separate from stimulator/receiver unit 402. Pharmaceutical agent source 478 is coupled to stimulating assembly 418 via a catheter or tube 484. For example, in embodiments of the present invention, pharmaceutical agent source 478 comprises a reservoir (not shown) for storing pharmaceutical agents. Pharmaceutical agent source 478 may be located underneath and proximate or adjacent to the recipient's skin so that the reservoir may be refilled when the agent therein is depleted. For example, the reservoir may include a post-operatively accessible refill port configured to receive a syringe therein. The syringe provides the pharmaceutical agent via an injection through the skin.
  • In certain embodiments of the present invention, pharmaceutical agent source 478 comprises an active infusion device. Such an active infusion device includes a pharmaceutical agent reservoir, a peristaltic pump to pump the agent from the reservoir, and a catheter port to connect pharmaceutical agent source 478 to a catheter. The catheter extends from agent source 478 to stimulating assembly 418. Pharmaceutical agent source 478 in accordance with such embodiments of the present invention may also include a battery to power the pump, an electronic module to control the flow rate of the pump, and possibly an antenna to permit the remote programming or control of the pump. It should be appreciated that agent source 478 may be secured internally or externally to the recipient.
  • In alternative embodiments of the present invention, pharmaceutical agent source 478 comprises a passive infusion device that does not include a pump. In such embodiments, pharmaceutical agent source 478 includes a pressurized reservoir that delivers the pharmaceutical agent to stimulating assembly 418 via a catheter. The pressurization of the reservoir is provided by a syringe capable of delivering pharmaceutical agents to the reservoir.
  • As detailed below, in alternative embodiments of the present invention, pharmaceutical agent source 478 may be integrated in stimulator/receiver unit 402 or stimulating assembly 418. In such embodiments, pharmaceutical agent source 478 comprises a reservoir within stimulating assembly 418. The reservoir may be connected to a post-operatively accessible refill element. The post-operatively accessible refill element may comprise an additional reservoir positioned underneath the skin as described above, or the refill element may comprise a refill port positioned underneath and proximate to the skin. In both cases, the refill element may be connected to the reservoir in stimulating assembly 418 via a catheter.
  • In embodiments of the present invention, delivery ports 420 are controllable to alter the flow rate through the ports. Such control may be provided by the implant, or externally, via, for example, electrical or mechanical signals, heat, etc.
  • Other systems and methods for delivering a pharmaceutical agent are within the scope of the present invention. For example, in one embodiment, a pharmaceutical agent is stored as a hydrogel rather than as a fluid within a reservoir.
  • As noted above, embodiments of the present invention are generally directed to a cochlear implant configured to apply combinations of electrical stimulation signals and pharmaceutical agents to a recipient's cochlea. As discussed in greater detail below, the cochlear implant is configured to control the timing, location, etc. of the delivery in order to cause a desired effect on a population of the recipient's cochlea nerve cells. FIG. 6 is a cross-sectional side view of a portion of an elongate stimulating assembly 618 which may be used in accordance with embodiments of the present invention to apply pharmaceutical agents and electrical stimulation signals to the recipient's cochlea. As noted above, elongate stimulating assembly 618 has a proximal end connected to a stimulator/receiver unit (not shown) and a distal end implantable in a recipient's cochlea. FIG. 6 illustrates a portion that is implantable into the cochlea.
  • Stimulating assembly 618 comprises a longitudinally aligned and distally extending array 646 of stimulating electrical contacts 630. Electrical contacts 630 receive electrical stimulation signals from the receiver/stimulator unit via one or more wires (not shown). The received electrical stimulation signals are then applied to the recipient's cochlea nerve cells. Stimulating assembly 618 further includes a plurality of pharmaceutical agent delivery ports 620 to apply agents to the cochlea. In this exemplary arrangement, delivery ports 620 include channels 622 which fluidically couple the ports to a pharmaceutical agent source, shown in FIG. 6 as agent reservoir 678 within stimulating assembly 618.
  • In certain embodiments, reservoir 678 may be coupled to an additional reservoir or refill element positioned outside of the cochlea. As noted, the stimulator/receiver unit includes one or more modules to control the operation of delivery ports 620, channel 622 and/or a pump (not shown) connected to reservoir 678 in order to control the delivery of the pharmaceutical agent to the recipient. For example, in one embodiment, the flow rate through delivery ports is electrically controllable. In other embodiments, channels 622 comprise controllable ion channels. FIGS. 8 and 9 illustrate exemplary arrangements for controlling a pharmaceutical agent source.
  • As noted above, a pharmaceutical agent may be applied to the recipient in accordance with embodiments of the present invention for a variety of purposes. For example, in one embodiment of the present invention, a pharmaceutical agent is applied to evoke stochastic or random activity within a nerve cell, referred to as pseudospontaneous nerve activity. This pseudospontaneous nerve activity replicates the spontaneous or random nerve activity experienced by individuals with normal hearing. By replicating the naturally occurring spontaneous activity cochlear implants may provide stimulated hearing that more closely replicates natural hearing. This may advantageously facilitate more accurate speech perceptions and/or the suppression of tinnitus.
  • In such embodiments of the present invention, a pharmaceutical agent is applied to the cochlea nerve cells in a desired temporal and spatial pattern to cause pseudospontaneous nerve activity in one or more regions of the cochlea. For example, in certain embodiments, the pharmaceutical agents are applied to evoke pseudospontaneous nerve activity in a specific region of the cochlea, a substantial portion of the cochlea, or in nerve cells adjacent specific electrical contacts. The pharmaceutical agent may be applied in a continuous or pulsatile manner. In certain embodiments, a BDNF is used to generate the pseudospontaneous nerve activity.
  • In embodiments of the present invention, the system is designed to control the level of pseudospontaneous nerve activity. That is, the cochlear implant may be designed such that the applied pharmaceutical agent causes a desired level of background random firing within the cochlea nerve cells. The level of pseudospontaneous nerve activity may be measured using, for example, neural response telemetry, and the system may adjust the delivery of the pharmaceutical agent (i.e. concentration, quantity, location, etc.) to obtain the desired level of random activity.
  • Also as noted above, electrical stimulation signals applied to a recipient's cochlea must have a minimum intensity in order to evoke a hearing percept. In other words, the electrical stimulation signals must have an intensity which increases the membrane voltage of the cells from the resting level (resting potential) to a level at which the nerve cells will fire. This level at which the nerve cells will fire is the recipient's auditory threshold level. Certain embodiments of the present invention apply to a population of cochlea nerve cells a pharmaceutical agent that reduces the recipient's auditory threshold level. Thus, electrical stimulation signals having a lower intensity will cause the nerve cells to fire.
  • In such embodiments, a threshold reducing pharmaceutical agent a brain derived neurotrophic factor (BDNF), ionic species, etc. is applied to the cochlea nerve cells in a desired temporal and spatial pattern. The pharmaceutical agent may be applied in a continuous or pulsatile manner. After the applied pharmaceutical agent reduces the firing threshold of the nerve cells, electrical stimulation signals generated based on a received sound signal are applied via electrical contacts. Due to the lower threshold of the nerve cells resulting from the pharmaceutical agent, the intensity of the electrical stimulation signals may be lower. This lower intensity results in the use of less power than is required in conventional cochlear implants. Furthermore, the lower intensity results in less spread of the electrical stimulation signals to nerve cells adjacent the stimulated cells. This reduced spread may provide for improved stimulation strategies which simultaneously or concurrently apply electrical stimulation signals via adjacent electrical contacts.
  • For example, in certain embodiments, the pharmaceutical agents are applied to reduce the firing threshold in a specific region of the cochlea, a substantial portion of the cochlea, or in nerve cells adjacent specific electrodes.
  • The firing threshold of a cochlear nerve cell depends on the concentration of ionic species at the cochlear nucleus, which is the first obligatory synapse in the ascending auditory path. In certain embodiments of the present invention, the firing threshold is lowered by delivering an ionic species to nerve cells adjacent or in proximity to one or more electrical contacts which are to apply electrical stimulation signals. In such embodiments, the pharmaceutical agent source contains an ionic species, and an ion channel terminating in a delivery port that applies the ionic species to the cochlea nerve cells adjacent to, or in close proximity to the delivery port. In other embodiments, a BDNF is used to lower firing threshold of the cochlea nerve cells.
  • In a further embodiment of the present invention, the cochlear implant is configured to apply pharmaceutical agents to the recipient's cochlea nerve cells to evoke a hearing percept of a received sound signal. In such embodiments, the pharmaceutical agent is applied under the control of a sound processor so that the recipient may perceive a sound signal received by the cochlear implant.
  • In such embodiments, the stimulating assembly comprises an array of delivery ports distributed along the length thereof. Similar to the arrangement of electrodes in conventional cochlear implants, the delivery ports are arranged on the assembly such that various regions of the tonotopically mapped cochlear are in proximity to the delivery ports. In other words, delivery ports are positioned adjacent nerve cells that are particularly sensitive to certain frequencies. Thus, a cochlear implant in accordance with embodiments of the present invention that uses pharmaceutical agents to evoke a hearing percept may be operated in a manner which is similar to conventional electrically stimulating cochlear implants. Specifically, sound signals within a certain frequency range are perceived by the recipient by delivering a pharmaceutical agent via delivery ports adjacent the nerve cells corresponding to the received frequency.
  • In embodiments of the present invention, the amount of pharmaceutical agent applied, as well as the concentration of the agent, may impact the response of the nerve cells to the pharmaceutical agent. Thus, the amount of agent released from different delivery ports 620 may be different depending on the desired application and the properties of the nerve cell population proximate to a delivery port.
  • Furthermore, in alternative embodiments of the present invention, the concentration of the pharmaceutical agent, or the agent itself, can differ between delivery ports 620. In such embodiments, the pharmaceutical agent source may be configured to deliver different agents or different concentrations of agents to different ports.
  • FIG. 6 illustrates embodiments of the present invention in which delivery ports 620 are each disposed adjacent an electrical contact 630. It will be understood that the number and placement of the delivery ports 620 and electrical contacts 630 can be varied without departing from the scope of the present invention. FIGS. 7A and 7B are side views of stimulating assembly 618 illustrating alternative arrangements of delivery ports 620 and electrical contacts 630. For ease of illustration, electrical contacts 630 are depicted as rectangles and delivery ports 620 are depicted as ovals. These exemplary shapes are provided only to facilitate understanding of embodiments of the present invention and do not define or limit electrical contacts 630 or delivery ports 620 in any manner.
  • In FIG. 7A, a distal portion 616A of a stimulating assembly 618A is illustrated. As shown, electrical contacts 630 and delivery ports 620 are arranged in an alternating fashion. In other words, in the illustrated arrangement of FIG. 7A, no delivery ports 620 are adjacent other delivery ports. Similarly, no electrical contacts 630 are adjacent other electrical contacts. In contrast, as shown in FIG. 7B, a smaller number of delivery ports 620 are dispersed along distal portion 616B.
  • FIG. 8 is a diagram illustrating a pharmaceutical agent source 802 for delivering pulses of a pharmaceutical agent to a recipient's cochlea in accordance with embodiments of the present invention. As shown, pharmaceutical agent source 802 comprises a reservoir 826 coupled to an outlet port, such as a delivery port 820. Disposed between reservoir 826 and delivery port 820 is an agent chamber 810 bound by two unidirectional valves 816. Agent chamber 810 is substantially filled with a pharmaceutical agent. In operation, pulses or cycles of electrical current are applied to opposing electrodes 806 in agent chamber 810 via heating element 812. Application of the electrical current to electrodes 806 results in the rapid heating and expansion of the agent within agent chamber 810 through, for example, thermal expansion and/or cavitation as the pharmaceutical agent near electrodes 806 boil. This expansion forces an amount of the agent in chamber 810 through unidirectional valve 816A towards delivery port 820. This is shown by arrow 821. Unidirectional valve 816B prevents the flow of the pharmaceutical agent towards reservoir 822. After the delivery of electrical current to electrodes 806 is stopped, the pharmaceutical agent within chamber 810 cools and contracts. This contraction draws additional agent from reservoir 826 through unidirectional valve 416B into chamber 810, shown by arrow 822.
  • As would be appreciated, the embodiments illustrated in FIG. 8 are used for pharmaceutical agents that do not experience property changes as the result of the application of heat thereto. If a heat sensitive pharmaceutical agent is used, the above described valve and chamber system may still be used, but heating element 812 is replaced with an electro-mechanical actuator which, when activated, is configured to change the physical volume of chamber 810. In such embodiments, the walls of agent chamber 810 are flexible so that the actuator contracts chamber 810 to force pharmaceutical agent out of unidirectional valve 816A, and expands chamber 810 to draw pharmaceutical agent in from reservoir 826. Suitable electro-mechanical actuators include piezoelectric devices, coil and magnet systems and electret devices. In both of the systems described with reference to FIG. 8, the amount of pharmaceutical agent applied to the cochlea can be controlled by controlling the amount and rate of the driving current applied to the chamber or actuator.
  • In the illustrative embodiment of FIG. 8, pharmaceutical agent source 802 is shown in close proximity to delivery port 820. It would be appreciated that source 802 is not necessarily close to delivery port 820. For example, a pharmaceutical agent released from valve 816A may be provided to a catheter connecting system 802 to delivery port 820.
  • Furthermore, in certain embodiments, a single pharmaceutical agent source 802 may be provided to deliver a pharmaceutical agent to multiple delivery ports 820. In alternative embodiments, multiple pharmaceutical agent sources 802 may be provided.
  • FIG. 9 is a diagram illustrating a pharmaceutical agent source 902 for delivering pulses of a pharmaceutical agent to a recipient's cochlea in accordance with embodiments of the present invention. As shown, pharmaceutical agent source 902 comprises an osmotic pump 940 to provide a pharmaceutical agent to a delivery port 920 via catheter 944.
  • As shown, osmotic pump 940 includes a housing 942 having a flexible reservoir 926 containing a pharmaceutical agent therein. A second portion of housing 942 comprises an ionic chamber 946 that contains a fluid having a lower ionic concentration that fluid external to housing 942. An osmotic membrane 950 forms a part of housing 942 which separates ionic chamber 946 from the external fluid. Osmotic pump 940 relies upon an osmotic pressure difference between the ionic chamber 946 and the external fluid to release the pharmaceutical agent from reservoir 946. Specifically, the osmotic pressure difference causes water to flow into the pump through the semi-permeable osmotic membrane 950. As the water enters ionic chamber 946, ionic chamber 946 exerts a force 952 that compresses flexible reservoir 926, thereby displacing the pharmaceutical agent from reservoir 926.
  • In the illustrative embodiment of FIG. 9, pharmaceutical agent source 902 is shown in close proximity to delivery port 920. It would be appreciated that source 902 is not necessarily close to delivery port 920. Furthermore, in certain embodiments, a single pharmaceutical agent source 902 may be provided to deliver a pharmaceutical agent to multiple delivery ports 920. In alternative embodiments, multiple pharmaceutical agent sources 902 may be provided.
  • As detailed above, electrical stimulation signals applied to a recipient's cochlea must have a minimum intensity in order to evoke a hearing percept. In other words, the electrical stimulation signals must have an intensity which increases the membrane voltage of the cells from the resting level (resting potential) to a level at which the nerve cells will fire. This level at which the nerve cells will fire is the recipient's auditory threshold level. Certain embodiments of the present invention apply to a population of cochlea nerve cells a pharmaceutical agent that reduces the recipient's auditory threshold level. Thus, electrical stimulation signals having a lower intensity will cause the nerve cells to fire.
  • In such embodiments, a threshold reducing pharmaceutical agent a brain derived neurotrophic factor (BDNF), ionic species, etc. is applied to the cochlea nerve cells in a desired temporal and spatial pattern. The pharmaceutical agent may be applied in a continuous or pulsatile manner. After the applied pharmaceutical agent reduces the firing threshold of the nerve cells, electrical stimulation signals generated based on a received sound signal are applied via electrical contacts. Due to the lower threshold of the nerve cells resulting from the pharmaceutical agent, the intensity of the electrical stimulation signals may be lower. This lower intensity results in the use of less power than is required in conventional cochlear implants. Furthermore, the lower intensity results in less spread of the electrical stimulation signals to nerve cells adjacent the stimulated cells. This reduced spread may provide for improved stimulation strategies which simultaneously apply electrical stimulation signals via adjacent electrical contacts.
  • FIGS. 10A and 10B illustrate embodiments of the present invention in which pharmaceutical agents are applied to reduce the firing threshold of nerve cells. Specifically, the left-side graphs of FIGS. 10A and 10B illustrate the current required to evoke a hearing percept of a sound signal at different regions of the cochlear prior to delivery of a threshold reducing pharmaceutical agent to the cochlea nerve cells. The right-side graphs of FIGS. 10A and 10B illustrate the reduced current required to evoke a hearing percept of a sound signal at the regions of the cochlear following delivery of a threshold reducing pharmaceutical agent to the cochlea nerve cells.
  • FIG. 11 is a flowchart illustrating the operations performed by a cochlear implant in accordance with embodiments of the present invention to lower a recipient's threshold as described above with reference to FIGS. 10A and 10B. The method begins at block 1102. At block 1104, a sound signal is received by the cochlear implant. At block 1106, a threshold reducing pharmaceutical agent is applied to a recipient's cochlea 140 (FIG. 1). At block 1108, electrical stimulation signals are generated based on the received sound signal, and are applied to cochlea 140. As described above, these electrical stimulation signals have an intensity which is lower than that required to evoke a hearing percept in conventional cochlear implants. The method then ends at block 1110. As would be appreciated by one of ordinary skill in the art, the operations of blocks 1106 and 1108 may occur concurrently, with appropriate delays for generation and/or application of electrical stimulation signals so that the membrane voltage of the nerve cells increases to the critical threshold.
  • As described above, in certain embodiments of the present invention, a pharmaceutical agent may be applied to the recipient to evoke pseudospontaneous nerve activity. This pseudospontaneous nerve activity replicates the spontaneous or random nerve activity experienced by individuals with normal hearing. In such embodiments of the present invention, a pharmaceutical agent is applied to the cochlea nerve cells in a desired temporal and spatial pattern to cause pseudospontaneous nerve activity in one or more regions of the cochlea. FIG. 12A is a high level flowchart illustrating the operations performed by a cochlear implant in accordance with such embodiments of the present invention. The stimulation process begins at block 1202. At block 1204, a pharmaceutical agent is applied to one or more regions of the recipient's nerve cells to encourage, facilitate or allow pseudospontaneous nerve activity. The stimulation process then ends at block 1208.
  • FIG. 12B is a detailed flowchart illustrating the operations that may be performed in accordance with embodiments of block 1204 of FIG. 12A. The operations begin at block 1210. At block 1212, a decision is made if a sound signal has been received and/or whether the signal should be processed. If a received sound signal is to be processed, the method progresses to blocks 1214 and 1215. At block 1215, a pharmaceutical agent is applied to the recipient's nerve cells to encourage, facilitate or allow pseudospontaneous nerve activity. At block 1214, electrical stimulation signals based on the received sound signal are generated and applied to the recipient's nerve cells. The operations of blocks 1215 and 1214 may occur sequentially or concurrently. The operations then end at block 1222.
  • Returning to block 1212, if no sound signal is to be processed, the method progresses to block 1218. A block 1218 a determination is made as to whether pseudospontaneous auditory nerve activity is desired. If pseudospontaneous auditory nerve activity is not desired, the method ends at block 1222. However, if pseudospontaneous auditory nerve activity is desired, the method continues to block 1220. At block 1220, a pharmaceutical agent is applied to the recipient's nerve cells to encourage, facilitate or allow pseudospontaneous nerve activity. The method then ends at block 1222.
  • In a further embodiment of the present invention, the cochlear implant is configured to apply pharmaceutical agents to the recipient's cochlea to evoke a hearing percept of a received sound signal. The pharmaceutical agent is applied under the control of a sound processor so that the recipient may perceive a sound signal received by the cochlear implant. In certain such embodiments, the cochlea does not require the ability to electrically stimulate the cochlea.
  • In such embodiments, the stimulating assembly comprises an array of delivery ports distributed along the length thereof. Similar to the arrangement of electrodes in conventional cochlear implants, the delivery ports are arranged on the assembly such that various regions of the tonotopically mapped cochlear are in proximity to the delivery ports. In other words, delivery ports are positioned adjacent nerve cells that are particularly sensitive to certain frequencies. Thus, a cochlear implant in accordance with embodiments of the present invention that uses pharmaceutical agents to evoke a hearing percept may be operated in a manner which is similar to conventional electrically stimulating cochlear implants. Specifically, sound signals within a certain frequency range are perceived by the recipient by delivering a pharmaceutical agent via delivery ports adjacent the nerve cells corresponding to the received frequency.
  • FIG. 13 is a flowchart illustrating the operations performed by a cochlear implant in accordance with such embodiments of the present invention. The method begins at block 1302. At block 1304, a sound signal is received by the implant. At block 1306, the cochlear implant delivers a pharmaceutical agent to the recipient's cochlea. The pharmaceutical agent is applied to evoke a hearing perception of the received sound signal. The method then ends at block 1308.
  • Although embodiments of the present invention have been primarily described with reference to a cochlear implant, it should be appreciated that alternative embodiments may be implanted in a variety of stimulating medical devices or prosthetic hearing devices such as acoustic hearing aids, middle ear implants, brain stem implants, or any combination of these, or other implanted devices. For example, embodiments may be implemented in a device implantable in the cochlear nucleus, the superior olive, the nucleus of the lateral lemniscus, the inferior colliculus, the medial geniculate body, the auditory cortex, Subthalamic Nucleus (STN), the Globus Pallidus (GPi), and/or the Thalamus.
  • All documents, patents, journal articles and other materials cited in the present application are hereby incorporated by reference.
  • Although the present invention has been fully described in conjunction with several embodiments thereof with reference to the accompanying drawings, it is to be understood that various changes and modifications may be apparent to those skilled in the art. Such changes and modifications are to be understood as included within the scope of the present invention as defined by the appended claims, unless they depart there from.

Claims (28)

1-19. (canceled)
20. A method for stimulating the cochlear of a recipient with a cochlear implant comprising a stimulating assembly implantable in a cochlea of a recipient having at least one agent delivery port and a plurality of electrical contacts, the method comprising:
generating electrical stimulation signals;
applying the electrical stimulation signals to a first population of cochlea nerve cells via one or more of the plurality of electrical contacts; and
applying a pharmaceutical agent to a second population of cochlea nerve cells via the at least one delivery port.
21. The method of claim 20, wherein the cochlear implant comprises a pharmaceutical agent source fluidically coupled to the at least one delivery port, and wherein applying the pharmaceutical agent to the second population of cochlea nerve cells comprises:
controlling the release of the pharmaceutical agent from pharmaceutical agent source.
22. The method of claim 20, wherein applying the pharmaceutical agent to the second population of cochlea nerve cells comprises:
controlling the release of pharmaceutical agents from the at least one delivery port.
23. The method of claim 20, wherein applying a pharmaceutical agent to a second population of cochlea nerve cells comprises:
applying the pharmaceutical agent to reduce the firing threshold of the second population of nerve cells.
24. The method of claim 23, wherein the first population of nerve cells and the second population of nerve cells comprise substantially the same nerve cells, the method further comprising:
applying the pharmaceutical agent to the nerve cells prior to delivering the electrical stimulation signals to the nerve cells.
25. The method of claim 24, further comprising:
receiving a sound signal at a sound input component;
generating data signals based on the received sound signal;
generating electrical stimulation signals based on the data signals; and
applying the generated electrical stimulation signals at an intensity which is below the recipient's auditory threshold to evoke hearing perception by the recipient of the received sound signal.
26. The method of claim 20, wherein applying a pharmaceutical agent to a second population of cochlea nerve cells comprises:
applying the pharmaceutical agent to evoke pseudospontaneous nerve activity in the second population of cochlea nerve cells.
27. The method of claim 20, wherein the cochlear implant further comprises a sound input component configured to receive a sound signal and a sound processor configured to generate data signals based on the received sound signal, the method further comprising:
applying the pharmaceutical agent to the second population of nerve cells to evoke hearing perception by the recipient of the received sound signal.
28.-29. (canceled)
30. A stimulating medical device, comprising:
a stimulating assembly implantable proximate to nerve cells of a recipient having at least one agent delivery port and a plurality of electrical contacts;
an electrical stimulation controller configured to generate electrical stimulation signals for application to a first population of the nerve cells via one or more of the plurality of electrical contacts;
a pharmaceutical agent source configured to provide a pharmaceutical agent to the at least one delivery port for application to a second population of the nerve cells; and
a pharmaceutical agent controller configured to control one or more of the pharmaceutical agent source and the at least one delivery port to cause selective application of the pharmaceutical agent to the second population of nerve cells.
31. The stimulating medical device of claim 30, wherein the agent controller is configured to cause application of the pharmaceutical agent to the second population of nerve cells in order reduce the firing threshold of the nerve cells.
32. The stimulating medical device of claim 31, wherein the first population of nerve cells and the second population of nerve cells comprise substantially the same nerve cells, and wherein the device further comprises:
a sound input component configured to receive a sound signal; and
a sound processor configured to generate data signals based on the received sound signal;
wherein the electrical stimulation controller is configured to generate the electrical stimulation signals based on the data signals, and wherein application of the electrical stimulation signals at an intensity which is below the recipient's auditory threshold results in a hearing perception by the recipient of the received sound signal.
33. The stimulating medical device of claim 30, wherein the pharmaceutical agent controller is configured to apply the pharmaceutical agent to the second population of nerve cells in order to evoke pseudospontaneous nerve activity in the second population of nerve cells.
34. (canceled)
35. The stimulating medical device of claim 30, further comprising:
a sound input component configured to receive a sound signal; and
a sound processor configured to generate data signals based on the received sound signal;
wherein the pharmaceutical agent controller is configured to cause application of the pharmaceutical agent to the second population of nerve cells to evoke a hearing perception by the recipient of the received sound signal.
36. (canceled)
37. The stimulating medical device of claim 30, wherein the pharmaceutical agent source comprises a reservoir configured to be implanted underneath and proximate to the skin of the recipient.
38.-39. (canceled)
40. The stimulating medical device of claim 30, wherein the pharmaceutical agent source comprises a reservoir positioned in the stimulating assembly fluidically coupled to the at least one delivery port.
41.-42. (canceled)
43. The stimulating medical device of claim 30, wherein the pharmaceutical agent source comprises an active infusion device operated under the control of the pharmaceutical agent controller.
44. The stimulating medical device of claim 30, wherein the pharmaceutical agent source comprises a passive infusion device operated under the control of the pharmaceutical agent controller.
45. The stimulating medical device of claim 30, wherein the pharmaceutical agent source comprises an ion pump operated under the control of the pharmaceutical agent controller.
46. The stimulating medical device of claim 30, wherein the pharmaceutical agent source comprises:
a reservoir configured to store the pharmaceutical agent;
an agent chamber configured to receive an amount of the pharmaceutical agent from the reservoir;
a first unidirectional valve disposed between the reservoir and the agent chamber, and a second unidirectional valve disposed between the agent chamber and an outlet port; and
an element under the control of the pharmaceutical agent controller configured to expand on or more of the pharmaceutical agent within the agent chamber and the agent chamber so as to cause release of a portion of the pharmaceutical agent from the agent chamber via the second unidirectional valve.
47. The stimulating medical device of claim 30, wherein the at least one delivery port comprises an electrically operable ion channel.
48. The stimulating medical device of claim 30, wherein the pharmaceutical agent controller is configured to control the flow rate of the pharmaceutical agent through the at least one delivery port.
49.-60. (canceled)
US12/935,909 2008-03-31 2009-03-31 Pharmaceutical agent delivery in a stimulating medical device Abandoned US20110112462A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/935,909 US20110112462A1 (en) 2008-03-31 2009-03-31 Pharmaceutical agent delivery in a stimulating medical device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US4118508P 2008-03-31 2008-03-31
US12/935,909 US20110112462A1 (en) 2008-03-31 2009-03-31 Pharmaceutical agent delivery in a stimulating medical device
PCT/US2009/038942 WO2009124042A2 (en) 2008-03-31 2009-03-31 Pharmaceutical agent delivery in a stimulating medical device

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US12/440,815 Continuation-In-Part US9026205B2 (en) 2006-05-25 2007-05-25 Stimulating device
PCT/AU2007/000728 Continuation-In-Part WO2007137335A1 (en) 2006-05-25 2007-05-25 A stimulating device
PCT/US2009/038942 A-371-Of-International WO2009124042A2 (en) 2006-05-25 2009-03-31 Pharmaceutical agent delivery in a stimulating medical device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/916,865 Continuation US8892201B2 (en) 2006-05-25 2013-06-13 Pharmaceutical agent delivery in a stimulating medical device

Publications (1)

Publication Number Publication Date
US20110112462A1 true US20110112462A1 (en) 2011-05-12

Family

ID=41117259

Family Applications (28)

Application Number Title Priority Date Filing Date
US12/167,871 Expired - Fee Related US8852251B2 (en) 2008-03-31 2008-07-03 Mechanical fixation system for a prosthetic device
US12/167,851 Expired - Fee Related US8216287B2 (en) 2008-03-31 2008-07-03 Tangential force resistant coupling for a prosthetic device
US12/167,796 Expired - Fee Related US8401213B2 (en) 2008-03-31 2008-07-03 Snap-lock coupling system for a prosthetic device
US12/167,825 Abandoned US20090248085A1 (en) 2008-03-31 2008-07-03 Tissue injection fixation system for a prosthetic device
US12/167,668 Active 2031-08-08 US8363871B2 (en) 2008-03-31 2008-07-03 Alternative mass arrangements for bone conduction devices
US12/167,728 Expired - Fee Related US8526641B2 (en) 2008-03-31 2008-07-03 Customizable mass arrangements for bone conduction devices
US12/168,572 Expired - Fee Related US8154173B2 (en) 2008-03-31 2008-07-07 Mechanically amplified piezoelectric transducer
US12/168,529 Active 2031-01-17 US8150083B2 (en) 2008-03-31 2008-07-07 Piezoelectric bone conduction device having enhanced transducer stroke
US12/168,620 Active 2031-09-25 US8655002B2 (en) 2008-03-31 2008-07-07 Piercing conducted bone conduction device
US12/168,603 Expired - Fee Related US8532321B2 (en) 2008-03-31 2008-07-07 Hearing device having one or more in-the-canal vibrating extensions
US12/168,636 Abandoned US20090248155A1 (en) 2008-03-31 2008-07-07 Transcutaneous magnetic bone conduction device
US12/168,653 Expired - Fee Related US8170252B2 (en) 2008-03-31 2008-07-07 Dual percutaneous anchors bone conduction device
US12/251,443 Active 2031-05-28 US8831260B2 (en) 2008-03-31 2008-10-14 Bone conduction hearing device having acoustic feedback reduction system
US12/251,437 Abandoned US20090247813A1 (en) 2008-03-31 2008-10-14 Bone conduction hearing device having acoustic feedback reduction system
US12/398,586 Expired - Fee Related US8433081B2 (en) 2008-03-31 2009-03-05 Bone conduction devices generating tangentially-directed mechanical force using a linearly moving mass
US12/935,895 Active 2029-09-01 US8532322B2 (en) 2008-03-31 2009-03-31 Bone conduction device for a single sided deaf recipient
US12/935,906 Active 2030-09-07 US8657734B2 (en) 2008-03-31 2009-03-31 Implantable universal docking station for prosthetic hearing devices
US12/935,905 Active 2031-06-02 US8731205B2 (en) 2008-03-31 2009-03-31 Bone conduction device fitting
US12/935,650 Abandoned US20110029031A1 (en) 2008-03-31 2009-03-31 Bimodal hearing prosthesis
US12/935,909 Abandoned US20110112462A1 (en) 2008-03-31 2009-03-31 Pharmaceutical agent delivery in a stimulating medical device
US12/935,887 Active 2031-09-22 US9955270B2 (en) 2008-03-31 2009-03-31 Bone conduction device fitting
US12/935,901 Active 2032-02-14 US8945216B2 (en) 2008-03-31 2009-03-31 Objective fitting of a hearing prosthesis
US12/688,491 Expired - Fee Related US8509461B2 (en) 2008-03-31 2010-01-15 Bone conduction devices generating tangentially-directed mechanical force using a rotationally moving mass
US13/965,718 Abandoned US20130345496A1 (en) 2008-03-31 2013-08-13 Bone Conduction Devices Generating Tangentially-Directed Mechanical Force Using a Rotationally Moving Mass
US14/072,398 Active US9602931B2 (en) 2008-03-31 2013-11-05 Bone conduction device
US15/464,090 Active 2031-04-11 US11570552B2 (en) 2008-03-31 2017-03-20 Bone conduction device
US15/958,212 Pending US20180376255A1 (en) 2008-03-31 2018-04-20 Bone conduction device fitting
US18/103,215 Pending US20230179929A1 (en) 2008-03-31 2023-01-30 Bone conduction device

Family Applications Before (19)

Application Number Title Priority Date Filing Date
US12/167,871 Expired - Fee Related US8852251B2 (en) 2008-03-31 2008-07-03 Mechanical fixation system for a prosthetic device
US12/167,851 Expired - Fee Related US8216287B2 (en) 2008-03-31 2008-07-03 Tangential force resistant coupling for a prosthetic device
US12/167,796 Expired - Fee Related US8401213B2 (en) 2008-03-31 2008-07-03 Snap-lock coupling system for a prosthetic device
US12/167,825 Abandoned US20090248085A1 (en) 2008-03-31 2008-07-03 Tissue injection fixation system for a prosthetic device
US12/167,668 Active 2031-08-08 US8363871B2 (en) 2008-03-31 2008-07-03 Alternative mass arrangements for bone conduction devices
US12/167,728 Expired - Fee Related US8526641B2 (en) 2008-03-31 2008-07-03 Customizable mass arrangements for bone conduction devices
US12/168,572 Expired - Fee Related US8154173B2 (en) 2008-03-31 2008-07-07 Mechanically amplified piezoelectric transducer
US12/168,529 Active 2031-01-17 US8150083B2 (en) 2008-03-31 2008-07-07 Piezoelectric bone conduction device having enhanced transducer stroke
US12/168,620 Active 2031-09-25 US8655002B2 (en) 2008-03-31 2008-07-07 Piercing conducted bone conduction device
US12/168,603 Expired - Fee Related US8532321B2 (en) 2008-03-31 2008-07-07 Hearing device having one or more in-the-canal vibrating extensions
US12/168,636 Abandoned US20090248155A1 (en) 2008-03-31 2008-07-07 Transcutaneous magnetic bone conduction device
US12/168,653 Expired - Fee Related US8170252B2 (en) 2008-03-31 2008-07-07 Dual percutaneous anchors bone conduction device
US12/251,443 Active 2031-05-28 US8831260B2 (en) 2008-03-31 2008-10-14 Bone conduction hearing device having acoustic feedback reduction system
US12/251,437 Abandoned US20090247813A1 (en) 2008-03-31 2008-10-14 Bone conduction hearing device having acoustic feedback reduction system
US12/398,586 Expired - Fee Related US8433081B2 (en) 2008-03-31 2009-03-05 Bone conduction devices generating tangentially-directed mechanical force using a linearly moving mass
US12/935,895 Active 2029-09-01 US8532322B2 (en) 2008-03-31 2009-03-31 Bone conduction device for a single sided deaf recipient
US12/935,906 Active 2030-09-07 US8657734B2 (en) 2008-03-31 2009-03-31 Implantable universal docking station for prosthetic hearing devices
US12/935,905 Active 2031-06-02 US8731205B2 (en) 2008-03-31 2009-03-31 Bone conduction device fitting
US12/935,650 Abandoned US20110029031A1 (en) 2008-03-31 2009-03-31 Bimodal hearing prosthesis

Family Applications After (8)

Application Number Title Priority Date Filing Date
US12/935,887 Active 2031-09-22 US9955270B2 (en) 2008-03-31 2009-03-31 Bone conduction device fitting
US12/935,901 Active 2032-02-14 US8945216B2 (en) 2008-03-31 2009-03-31 Objective fitting of a hearing prosthesis
US12/688,491 Expired - Fee Related US8509461B2 (en) 2008-03-31 2010-01-15 Bone conduction devices generating tangentially-directed mechanical force using a rotationally moving mass
US13/965,718 Abandoned US20130345496A1 (en) 2008-03-31 2013-08-13 Bone Conduction Devices Generating Tangentially-Directed Mechanical Force Using a Rotationally Moving Mass
US14/072,398 Active US9602931B2 (en) 2008-03-31 2013-11-05 Bone conduction device
US15/464,090 Active 2031-04-11 US11570552B2 (en) 2008-03-31 2017-03-20 Bone conduction device
US15/958,212 Pending US20180376255A1 (en) 2008-03-31 2018-04-20 Bone conduction device fitting
US18/103,215 Pending US20230179929A1 (en) 2008-03-31 2023-01-30 Bone conduction device

Country Status (4)

Country Link
US (28) US8852251B2 (en)
EP (6) EP2269241A1 (en)
CN (1) CN102047692B (en)
WO (23) WO2009121098A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170095202A1 (en) * 2015-10-02 2017-04-06 Earlens Corporation Drug delivery customized ear canal apparatus
US10034103B2 (en) 2014-03-18 2018-07-24 Earlens Corporation High fidelity and reduced feedback contact hearing apparatus and methods
US10154352B2 (en) 2007-10-12 2018-12-11 Earlens Corporation Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management
US10178483B2 (en) 2015-12-30 2019-01-08 Earlens Corporation Light based hearing systems, apparatus, and methods
US10237663B2 (en) 2008-09-22 2019-03-19 Earlens Corporation Devices and methods for hearing
WO2019058330A1 (en) * 2017-09-22 2019-03-28 Cochlear Limited Trans middle ear-inner ear fluid flow implementations
US10284964B2 (en) 2010-12-20 2019-05-07 Earlens Corporation Anatomically customized ear canal hearing apparatus
US10492010B2 (en) 2015-12-30 2019-11-26 Earlens Corporations Damping in contact hearing systems
US10516951B2 (en) 2014-11-26 2019-12-24 Earlens Corporation Adjustable venting for hearing instruments
US10516949B2 (en) 2008-06-17 2019-12-24 Earlens Corporation Optical electro-mechanical hearing devices with separate power and signal components
US10531206B2 (en) 2014-07-14 2020-01-07 Earlens Corporation Sliding bias and peak limiting for optical hearing devices
US11102594B2 (en) 2016-09-09 2021-08-24 Earlens Corporation Contact hearing systems, apparatus and methods
US11166114B2 (en) 2016-11-15 2021-11-02 Earlens Corporation Impression procedure
US11212626B2 (en) 2018-04-09 2021-12-28 Earlens Corporation Dynamic filter
US11350226B2 (en) 2015-12-30 2022-05-31 Earlens Corporation Charging protocol for rechargeable hearing systems
US11516603B2 (en) 2018-03-07 2022-11-29 Earlens Corporation Contact hearing device and retention structure materials
US11890438B1 (en) * 2019-09-12 2024-02-06 Cochlear Limited Therapeutic substance delivery

Families Citing this family (210)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8260430B2 (en) 2010-07-01 2012-09-04 Cochlear Limited Stimulation channel selection for a stimulating medical device
AUPS318202A0 (en) 2002-06-26 2002-07-18 Cochlear Limited Parametric fitting of a cochlear implant
WO2005097255A1 (en) 2004-04-02 2005-10-20 Advanced Bionics Corporation Electric and acoustic stimulation fitting systems and methods
US7801617B2 (en) 2005-10-31 2010-09-21 Cochlear Limited Automatic measurement of neural response concurrent with psychophysics measurement of stimulating device recipient
US8965520B2 (en) 2004-06-15 2015-02-24 Cochlear Limited Automatic determination of the threshold of an evoked neural response
US8571675B2 (en) 2006-04-21 2013-10-29 Cochlear Limited Determining operating parameters for a stimulating medical device
WO2008014498A2 (en) * 2006-07-27 2008-01-31 Cochlear Americas Hearing device having a non-occluding in the-canal vibrating component
US7841446B2 (en) * 2007-04-30 2010-11-30 Kimberly-Clark Worldwide, Inc. Bandless hearing protector and method
SE531053C2 (en) * 2007-05-24 2008-12-02 Cochlear Ltd Vibrator
DE102007031872B4 (en) * 2007-07-09 2009-11-19 Siemens Audiologische Technik Gmbh hearing Aid
EP2178479B1 (en) 2007-07-20 2015-06-17 Cochlear Americas Coupling apparatus for a bone anchored hearing device
US8271101B2 (en) 2007-08-29 2012-09-18 Advanced Bionics Modular drug delivery system for minimizing trauma during and after insertion of a cochlear lead
US8190271B2 (en) 2007-08-29 2012-05-29 Advanced Bionics, Llc Minimizing trauma during and after insertion of a cochlear lead
US8852251B2 (en) * 2008-03-31 2014-10-07 Cochlear Limited Mechanical fixation system for a prosthetic device
US8144909B2 (en) * 2008-08-12 2012-03-27 Cochlear Limited Customization of bone conduction hearing devices
US9497555B2 (en) * 2008-08-16 2016-11-15 Envoy Medical Corporation Implantable middle ear transducer having improved frequency response
USRE48797E1 (en) 2009-03-25 2021-10-26 Cochlear Limited Bone conduction device having a multilayer piezoelectric element
DE102009014770A1 (en) * 2009-03-25 2010-09-30 Cochlear Ltd., Lane Cove vibrator
EP2252079A1 (en) * 2009-05-14 2010-11-17 Oticon A/S Bone anchored bone conductive hearing aid
WO2010138911A1 (en) * 2009-05-29 2010-12-02 Otologics, Llc Implantable auditory stimulation system and method with offset implanted microphones
EP2440166B1 (en) * 2009-06-09 2016-12-14 Dalhousie University Subcutaneous piezoelectric bone conduction hearing aid
US8965021B2 (en) * 2009-06-09 2015-02-24 Dalhousie University Subcutaneous piezoelectric bone conduction hearing aid actuator and system
US20120253105A1 (en) * 2009-10-21 2012-10-04 Woodwelding Ag Method of anchoring an acoustic element in a bone of the craniomaxillofacial region and acoustic element
US20120229000A1 (en) * 2009-11-10 2012-09-13 Massachusetts Institute Of Technology Phased array buckling actuator
AU2010200485A1 (en) 2010-02-10 2011-08-25 Cochlear Limited Percutaneous implant
US8594356B2 (en) * 2010-04-29 2013-11-26 Cochlear Limited Bone conduction device having limited range of travel
US8625828B2 (en) * 2010-04-30 2014-01-07 Cochlear Limited Hearing prosthesis having an on-board fitting system
DK2393309T3 (en) * 2010-06-07 2020-01-20 Oticon Medical As Apparatus and method for applying a vibration signal to a human skull bone
US9301059B2 (en) 2010-06-07 2016-03-29 Advanced Bionics Ag Bone conduction hearing aid system
US8564080B2 (en) 2010-07-16 2013-10-22 Qualcomm Incorporated Magnetic storage element utilizing improved pinned layer stack
US9056204B2 (en) 2010-10-29 2015-06-16 Cochlear Limited Universal implant
KR101600070B1 (en) 2010-12-27 2016-03-08 로무 가부시키가이샤 Transmitter/receiver unit and receiver unit
US9313306B2 (en) 2010-12-27 2016-04-12 Rohm Co., Ltd. Mobile telephone cartilage conduction unit for making contact with the ear cartilage
JP5783352B2 (en) 2011-02-25 2015-09-24 株式会社ファインウェル Conversation system, conversation system ring, mobile phone ring, ring-type mobile phone, and voice listening method
CN103503484B (en) 2011-03-23 2017-07-21 耳蜗有限公司 The allotment of hearing device
US9107013B2 (en) 2011-04-01 2015-08-11 Cochlear Limited Hearing prosthesis with a piezoelectric actuator
US9872990B2 (en) 2011-05-13 2018-01-23 Saluda Medical Pty Limited Method and apparatus for application of a neural stimulus
AU2012255671B2 (en) 2011-05-13 2016-10-06 Saluda Medical Pty Limited Method and apparatus for measurement of neural response - a
WO2012155189A1 (en) 2011-05-13 2012-11-22 National Ict Australia Ltd Method and apparatus for estimating neural recruitment - f
US20120294466A1 (en) * 2011-05-18 2012-11-22 Stefan Kristo Temporary anchor for a hearing prosthesis
US8787608B2 (en) 2011-05-24 2014-07-22 Cochlear Limited Vibration isolation in a bone conduction device
US10419861B2 (en) 2011-05-24 2019-09-17 Cochlear Limited Convertibility of a bone conduction device
US9313589B2 (en) 2011-07-01 2016-04-12 Cochlear Limited Method and system for configuration of a medical device that stimulates a human physiological system
US20130018218A1 (en) * 2011-07-14 2013-01-17 Sophono, Inc. Systems, Devices, Components and Methods for Bone Conduction Hearing Aids
US20130030242A1 (en) * 2011-07-26 2013-01-31 Michael R. Ruehring Dog anxiety relief bone conduction audio device, system
US11843918B2 (en) * 2011-10-11 2023-12-12 Cochlear Limited Bone conduction implant
US9301068B2 (en) 2011-10-19 2016-03-29 Cochlear Limited Acoustic prescription rule based on an in situ measured dynamic range
US9167361B2 (en) * 2011-11-22 2015-10-20 Cochlear Limited Smoothing power consumption of an active medical device
US9031274B2 (en) 2012-09-06 2015-05-12 Sophono, Inc. Adhesive bone conduction hearing device
US9119010B2 (en) 2011-12-09 2015-08-25 Sophono, Inc. Implantable sound transmission device for magnetic hearing aid, and corresponding systems, devices and components
US20140121447A1 (en) * 2012-07-16 2014-05-01 Sophono, Inc Cover for Magnetic Implant in a Bone Conduction Hearing Aid System, and Corresponding Devices, Components and Methods
US9210521B2 (en) * 2012-07-16 2015-12-08 Sophono, Inc. Abutment attachment systems, mechanisms, devices, components and methods for bone conduction hearing aids
US9258656B2 (en) 2011-12-09 2016-02-09 Sophono, Inc. Sound acquisition and analysis systems, devices and components for magnetic hearing aids
US9022917B2 (en) 2012-07-16 2015-05-05 Sophono, Inc. Magnetic spacer systems, devices, components and methods for bone conduction hearing aids
US9179228B2 (en) 2011-12-09 2015-11-03 Sophono, Inc. Systems devices, components and methods for providing acoustic isolation between microphones and transducers in bone conduction magnetic hearing aids
US9736601B2 (en) 2012-07-16 2017-08-15 Sophono, Inc. Adjustable magnetic systems, devices, components and methods for bone conduction hearing aids
US9526810B2 (en) 2011-12-09 2016-12-27 Sophono, Inc. Systems, devices, components and methods for improved acoustic coupling between a bone conduction hearing device and a patient's head or skull
AU2012358871B2 (en) * 2011-12-22 2015-06-18 Med-El Elektromedizinische Geraete Gmbh Magnet arrangement for bone conduction hearing implant
US11641552B2 (en) 2011-12-23 2023-05-02 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11540066B2 (en) 2011-12-23 2022-12-27 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11638099B2 (en) 2011-12-23 2023-04-25 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11528562B2 (en) 2011-12-23 2022-12-13 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11665482B2 (en) 2011-12-23 2023-05-30 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11575994B2 (en) 2011-12-23 2023-02-07 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11601761B2 (en) 2011-12-23 2023-03-07 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11343626B2 (en) 2011-12-23 2022-05-24 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11483661B2 (en) 2011-12-23 2022-10-25 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11595760B2 (en) 2011-12-23 2023-02-28 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11463814B2 (en) 2011-12-23 2022-10-04 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11641551B2 (en) 2011-12-23 2023-05-02 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11399234B2 (en) 2011-12-23 2022-07-26 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11611834B2 (en) 2011-12-23 2023-03-21 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11540057B2 (en) 2011-12-23 2022-12-27 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11716575B2 (en) 2011-12-23 2023-08-01 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
JP5676016B2 (en) * 2011-12-27 2015-02-25 京セラ株式会社 Vibration device, sound generator, speaker system, electronic equipment
KR101863831B1 (en) 2012-01-20 2018-06-01 로무 가부시키가이샤 Portable telephone having cartilage conduction section
US8891795B2 (en) * 2012-01-31 2014-11-18 Cochlear Limited Transcutaneous bone conduction device vibrator having movable magnetic mass
CA2867081C (en) 2012-03-12 2020-02-11 The Hospital For Sick Children Systems and methods for balance stabilization
US9288591B1 (en) 2012-03-14 2016-03-15 Google Inc. Bone-conduction anvil and diaphragm
JP5812926B2 (en) * 2012-04-12 2015-11-17 京セラ株式会社 Electronics
US20130281764A1 (en) * 2012-04-19 2013-10-24 Göran Björn Transcutaneous bone conduction device
JP6017828B2 (en) * 2012-05-02 2016-11-02 京セラ株式会社 Electronic device, control method, and control program
WO2013179274A2 (en) * 2012-05-31 2013-12-05 Cochlear Limited Convertibility of a bone conduction device
CN108833639B (en) 2012-06-29 2020-11-24 株式会社精好 Earphone and stereo earphone
US9420388B2 (en) * 2012-07-09 2016-08-16 Med-El Elektromedizinische Geraete Gmbh Electromagnetic bone conduction hearing device
US9049527B2 (en) 2012-08-28 2015-06-02 Cochlear Limited Removable attachment of a passive transcutaneous bone conduction device with limited skin deformation
US9049515B2 (en) * 2012-10-08 2015-06-02 Keith Allen Clow Wireless communication device
US8873770B2 (en) 2012-10-11 2014-10-28 Cochlear Limited Audio processing pipeline for auditory prosthesis having a common, and two or more stimulator-specific, frequency-analysis stages
DK2908904T3 (en) 2012-11-06 2020-12-14 Saluda Medical Pty Ltd SYSTEM FOR CONTROLING THE ELECTRICAL CONDITION OF TISSUE
US20140179985A1 (en) * 2012-12-21 2014-06-26 Marcus ANDERSSON Prosthesis adapter
SG11201503060SA (en) * 2012-12-21 2015-05-28 Widex As Hearing aid fitting system and a method of fitting a hearing aid system
US11095994B2 (en) 2013-02-15 2021-08-17 Cochlear Limited Conformable pad bone conduction device
US20140270291A1 (en) * 2013-03-15 2014-09-18 Mark C. Flynn Fitting a Bilateral Hearing Prosthesis System
US9516434B2 (en) 2013-05-09 2016-12-06 Cochlear Limited Medical device coupling arrangement
CN105377146B (en) * 2013-05-13 2018-06-12 耳和颅底中心专业公司 For transmitting the system and method that osteoacusis stimulated and be used to measure the gravirecepter function of inner ear
US9895097B2 (en) 2013-05-13 2018-02-20 Ear and Skull Base Center, P.C. Systems and methods for delivering bone conduction stimuli to and for measuring gravitation receptor functions of the inner ear
CN105307719B (en) 2013-05-30 2018-05-29 格雷厄姆·H.·克雷西 Local nerve stimulation instrument
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
WO2015024581A1 (en) * 2013-08-19 2015-02-26 Advanced Bionics Ag Device and method for neural cochlea stimulation
WO2015025829A1 (en) * 2013-08-23 2015-02-26 ローム株式会社 Portable telephone
US9554223B2 (en) 2013-08-28 2017-01-24 Cochlear Limited Devices for enhancing transmissions of stimuli in auditory prostheses
US9949712B1 (en) * 2013-09-06 2018-04-24 John William Millard Apparatus and method for measuring the sound transmission characteristics of the central nervous system volume of humans
US10455336B2 (en) * 2013-10-11 2019-10-22 Cochlear Limited Devices for enhancing transmissions of stimuli in auditory prostheses
US11412334B2 (en) * 2013-10-23 2022-08-09 Cochlear Limited Contralateral sound capture with respect to stimulation energy source
WO2015060230A1 (en) 2013-10-24 2015-04-30 ローム株式会社 Bracelet-type transmission/reception device and bracelet-type notification device
DE102013112319A1 (en) * 2013-11-08 2015-05-13 Cortec Gmbh Holding device for the body-external transmitter unit
AU2014353891B2 (en) 2013-11-22 2020-02-06 Saluda Medical Pty Ltd Method and device for detecting a neural response in a neural measurement
EP3085109B1 (en) * 2013-12-16 2018-10-31 Sonova AG Method and apparatus for fitting a hearing device
US11368801B2 (en) 2014-01-06 2022-06-21 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11368800B2 (en) 2014-01-06 2022-06-21 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11375324B2 (en) 2014-01-06 2022-06-28 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11418895B2 (en) 2014-01-06 2022-08-16 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11363392B2 (en) 2014-01-06 2022-06-14 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
EP2897378B1 (en) * 2014-01-21 2020-08-19 Oticon Medical A/S Hearing aid device using dual electromechanical vibrator
US11240613B2 (en) 2014-01-30 2022-02-01 Cochlear Limited Bone conduction implant
EP3110501B1 (en) 2014-02-28 2019-06-19 Advanced Bionics AG Systems for facilitating post-implant acoustic-only operation of an electro-acoustic stimulation ("eas") sound processor
EP3550857B1 (en) * 2014-03-28 2020-10-14 Oticon Medical A/S Magnetic means assembly for bone conducting hearing aid
US20150287043A1 (en) * 2014-04-02 2015-10-08 Avaya Inc. Network-based identification of device usage patterns that can indicate that the user has a qualifying disability
ES2749050T3 (en) * 2014-04-07 2020-03-18 Boehringer Ingelheim Int Inhalation training device and system to implement a patient's inhalation process
PL3129087T3 (en) 2014-04-07 2020-09-21 Boehringer Ingelheim International Gmbh Method, electronic device, inhalation training system for practicing and/or controlling an inhalation process of a patient
US9998837B2 (en) 2014-04-29 2018-06-12 Cochlear Limited Percutaneous vibration conductor
WO2015168735A1 (en) 2014-05-05 2015-11-12 Saluda Medical Pty Ltd Improved neural measurement
WO2015183723A1 (en) 2014-05-27 2015-12-03 Sophono, Inc. Systems, devices, components and methods for reducing feedback between microphones and transducers in bone conduction magnetic hearing devices
GB201409547D0 (en) * 2014-05-29 2014-07-16 Gill Instr Ltd An electroacoustic transducer
WO2015191047A1 (en) 2014-06-10 2015-12-17 The Regents Of The University Of Michigan Mechanical amplifier for energy harvester
US20150367130A1 (en) * 2014-06-18 2015-12-24 Cochlear Limited Internal pressure management system
US9800982B2 (en) 2014-06-18 2017-10-24 Cochlear Limited Electromagnetic transducer with expanded magnetic flux functionality
US20150382114A1 (en) * 2014-06-25 2015-12-31 Marcus ANDERSSON System for adjusting magnetic retention force in auditory prostheses
EP3180808B1 (en) * 2014-08-15 2018-12-12 Thorlabs, Inc. Amplified piezo actuator with coarse adjustment
JP6551919B2 (en) 2014-08-20 2019-07-31 株式会社ファインウェル Watch system, watch detection device and watch notification device
US10469963B2 (en) 2014-08-28 2019-11-05 Cochlear Limited Suspended components in auditory prostheses
WO2016063133A1 (en) * 2014-10-20 2016-04-28 Cochlear Limited Control button configurations for auditory prostheses
WO2016090436A1 (en) 2014-12-11 2016-06-16 Saluda Medical Pty Ltd Method and device for feedback control of neural stimulation
WO2016098820A1 (en) * 2014-12-18 2016-06-23 ローム株式会社 Cartilage conduction hearing device using electromagnetic-type vibration unit, and electromagnetic-type vibration unit
CN104507039B (en) * 2014-12-27 2019-03-01 北京智谷睿拓技术服务有限公司 Communication means and user equipment
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
CN105310826B (en) * 2015-03-12 2017-10-24 汪勇 A kind of skin listens acoustic device and its listens method for acoustic
TWI609589B (en) * 2015-05-14 2017-12-21 陳光超 Hearing auxiliary device and hearing auxiliary processing method
EP3302689B1 (en) 2015-05-28 2019-02-27 Advanced Bionics AG Cochlear implants having mri-compatible magnet apparatus
TW201709941A (en) * 2015-06-03 2017-03-16 賽諾菲阿凡提斯德意志有限公司 Audible indicator
TW201709940A (en) * 2015-06-03 2017-03-16 賽諾菲阿凡提斯德意志有限公司 Audible indicator
TW201707737A (en) 2015-06-03 2017-03-01 賽諾菲阿凡提斯德意志有限公司 Drug delivery device
TW201711713A (en) * 2015-06-03 2017-04-01 賽諾菲阿凡提斯德意志有限公司 Drug delivery device
US9992584B2 (en) * 2015-06-09 2018-06-05 Cochlear Limited Hearing prostheses for single-sided deafness
US10130807B2 (en) 2015-06-12 2018-11-20 Cochlear Limited Magnet management MRI compatibility
US20160381473A1 (en) 2015-06-26 2016-12-29 Johan Gustafsson Magnetic retention device
KR102056550B1 (en) 2015-07-15 2019-12-16 파인웰 씨오., 엘티디 Robots and Robotic Systems
ES2884329T3 (en) 2015-08-13 2021-12-10 Shenzhen Voxtech Co Ltd Bone conduction speaker
US9872115B2 (en) * 2015-09-14 2018-01-16 Cochlear Limited Retention magnet system for medical device
US10917730B2 (en) 2015-09-14 2021-02-09 Cochlear Limited Retention magnet system for medical device
JP6551929B2 (en) 2015-09-16 2019-07-31 株式会社ファインウェル Watch with earpiece function
AU2016323458B2 (en) * 2015-09-18 2018-11-08 Med-El Elektromedizinische Geraete Gmbh Bone conduction transducer system with adjustable retention force
US10412510B2 (en) 2015-09-25 2019-09-10 Cochlear Limited Bone conduction devices utilizing multiple actuators
BR112018007248A2 (en) 2015-11-19 2018-11-06 Halliburton Energy Services Inc sensor system for use in a wellbore and method
WO2017087004A1 (en) 2015-11-20 2017-05-26 Advanced Bionics Ag Cochlear implants and magnets for use with same
US9967685B2 (en) * 2015-12-16 2018-05-08 Cochlear Limited Bone conduction skin interface
US10009698B2 (en) * 2015-12-16 2018-06-26 Cochlear Limited Bone conduction device having magnets integrated with housing
WO2017105510A1 (en) 2015-12-18 2017-06-22 Advanced Bionics Ag Cochlear implants having mri-compatible magnet apparatus and associated methods
WO2017105511A1 (en) 2015-12-18 2017-06-22 Advanced Bionics Ag Cochlear implants having mri-compatible magnet apparatus
EP3393109B1 (en) 2016-01-19 2020-08-05 FINEWELL Co., Ltd. Pen-type transceiver device
WO2017139891A1 (en) 2016-02-17 2017-08-24 Dalhousie University Piezoelectric inertial actuator
US11071869B2 (en) 2016-02-24 2021-07-27 Cochlear Limited Implantable device having removable portion
AU2017298233B2 (en) * 2016-07-19 2019-05-30 Med-El Elektromedizinische Geraete Gmbh Opto-acoustic selective mechanical stimulation of the vestibular system
US10123138B2 (en) 2016-07-26 2018-11-06 Cochlear Limited Microphone isolation in a bone conduction device
AU2017312615B2 (en) * 2016-08-17 2020-04-02 Scott Technologies, Inc. Respirator mask with integrated bone conduction transducer
EP3293985B1 (en) * 2016-09-12 2021-03-24 Sonion Nederland B.V. Receiver with integrated membrane movement detection
US11432084B2 (en) * 2016-10-28 2022-08-30 Cochlear Limited Passive integrity management of an implantable device
US11253193B2 (en) * 2016-11-08 2022-02-22 Cochlear Limited Utilization of vocal acoustic biomarkers for assistive listening device utilization
US10646718B2 (en) 2016-11-15 2020-05-12 Advanced Bionics Ag Cochlear implants and magnets for use with same
US10499854B2 (en) 2016-11-25 2019-12-10 Cochlear Limited Eliminating acquisition-related artifacts in electrophysiological recording
US11595768B2 (en) 2016-12-02 2023-02-28 Cochlear Limited Retention force increasing components
US11128967B2 (en) 2017-02-23 2021-09-21 Cochlear Limited Transducer placement for growth accommodation
DE102017105529A1 (en) * 2017-03-15 2018-09-20 Epcos Ag Garment and use of the garment
CN106954166A (en) * 2017-03-22 2017-07-14 杭州索菲康医疗器械有限公司 A kind of bone conduction hearing assistance device
WO2018190813A1 (en) 2017-04-11 2018-10-18 Advanced Bionics Ag Cochlear implants with retrofit magnets
US10419843B1 (en) * 2017-04-18 2019-09-17 Facebook Technologies, Llc Bone conduction transducer array for providing audio
US11364384B2 (en) 2017-04-25 2022-06-21 Advanced Bionics Ag Cochlear implants having impact resistant MRI-compatible magnet apparatus
EP3618795A4 (en) * 2017-05-05 2021-04-14 Badri Amurthur Stimulation methods and apparatus
EP3630265A1 (en) 2017-05-22 2020-04-08 Advanced Bionics AG Methods and apparatus for use with cochlear implants having magnet apparatus with magnetic material particles
US20180352348A1 (en) * 2017-06-06 2018-12-06 Sonitus Technologies Inc. Bone conduction device
US11035830B2 (en) * 2017-06-23 2021-06-15 Cochlear Limited Electromagnetic transducer with dual flux
US11223912B2 (en) 2017-07-21 2022-01-11 Cochlear Limited Impact and resonance management
US10646712B2 (en) 2017-09-13 2020-05-12 Advanced Bionics Ag Cochlear implants having MRI-compatible magnet apparatus
US11471679B2 (en) 2017-10-26 2022-10-18 Advanced Bionics Ag Headpieces and implantable cochlear stimulation systems including the same
US11400232B2 (en) 2017-11-03 2022-08-02 Sanofi Drug delivery device
EP3703783A1 (en) 2017-11-03 2020-09-09 Sanofi Drug delivery device
US10953225B2 (en) 2017-11-07 2021-03-23 Neurostim Oab, Inc. Non-invasive nerve activator with adaptive circuit
WO2019155374A1 (en) * 2018-02-06 2019-08-15 Cochlear Limited Prosthetic cognitive ability increaser
EP3753265A4 (en) * 2018-02-13 2021-10-27 Cochlear Limited Intra-operative determination of vibratory coupling efficiency
EP3752245B1 (en) 2018-02-15 2022-04-06 Advanced Bionics AG Headpieces and implantable cochlear stimulation systems including the same
US20210023371A1 (en) * 2018-03-13 2021-01-28 Cochlear Limited Electrical field usage in cochleas
US10602258B2 (en) 2018-05-30 2020-03-24 Facebook Technologies, Llc Manufacturing a cartilage conduction audio device
CN112400328B (en) 2018-08-08 2022-10-14 科利耳有限公司 Electromagnetic transducer with new specific interface geometry
WO2020035778A2 (en) 2018-08-17 2020-02-20 Cochlear Limited Spatial pre-filtering in hearing prostheses
JP2020053948A (en) 2018-09-28 2020-04-02 株式会社ファインウェル Hearing device
DE102018220731B3 (en) 2018-11-30 2020-06-04 Med-El Elektromedizinische Geräte GmbH Electroacoustic transducer for implantation in an ear, method for producing such an and cochlear implant system
KR20220025834A (en) 2019-06-26 2022-03-03 뉴로스팀 테크놀로지스 엘엘씨 Non-invasive neural activators with adaptive circuits
WO2021003087A1 (en) * 2019-07-03 2021-01-07 Earlens Corporation Piezoelectric transducer for tympanic membrane
CN110353633A (en) * 2019-07-08 2019-10-22 宁波磁性材料应用技术创新中心有限公司 A kind of wearable product
KR102170372B1 (en) * 2019-08-13 2020-10-27 주식회사 세이포드 Sound anchor for transmitting sound to human tissues in the ear canal and semi-implantable hearing aid having the same
WO2021067750A1 (en) * 2019-10-02 2021-04-08 NOTO Technologies Limited Bone conduction communication system and method of operation
WO2021126921A1 (en) 2019-12-16 2021-06-24 Neurostim Solutions, Llc Non-invasive nerve activator with boosted charge delivery
AU2021258132A1 (en) * 2020-04-19 2022-12-15 Sonova Ag Systems and methods for remote administration of hearing tests
WO2021220078A1 (en) * 2020-04-27 2021-11-04 Cochlear Limited Pinnal device
US11483639B2 (en) * 2020-06-16 2022-10-25 New York University Sound sensing system
CN111698608B (en) * 2020-07-02 2022-02-01 立讯精密工业股份有限公司 Bone conduction earphone
US20230336933A1 (en) * 2020-10-22 2023-10-19 Cochlear Limited Shaped piezoelectric actuator for medical implant
CN112535808B (en) * 2020-12-25 2022-10-25 哈尔滨工业大学 Cochlear electrode implanting device
WO2023148651A1 (en) * 2022-02-02 2023-08-10 Cochlear Limited High impedance tissue mounting of implantable transducer
WO2024052753A1 (en) * 2022-09-06 2024-03-14 Cochlear Limited Auditory device with vibrating external actuator compatible with bilateral operation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4922926A (en) * 1987-10-16 1990-05-08 Siemens Aktiengesellschaft Arrangement for delivering medications in an implantable medical device
US6263225B1 (en) * 1994-02-09 2001-07-17 University Of Iowa Research Foundation Stereotactic electrode assembly
US6309410B1 (en) * 1998-08-26 2001-10-30 Advanced Bionics Corporation Cochlear electrode with drug delivery channel and method of making same
US20040078057A1 (en) * 2000-11-14 2004-04-22 Peter Gibson Apparatus for delivery of pharmaceuticals to the cochlea
US20040106953A1 (en) * 2002-10-04 2004-06-03 Yomtov Barry M. Medical device for controlled drug delivery and cardiac monitoring and/or stimulation
US20040127942A1 (en) * 2002-10-04 2004-07-01 Yomtov Barry M. Medical device for neural stimulation and controlled drug delivery
US20050171579A1 (en) * 2001-11-09 2005-08-04 Claudia Tasche Stimulating device
US20060287689A1 (en) * 2002-11-29 2006-12-21 Cochlear Limited Cochlear implant drug delivery device
US20100256697A1 (en) * 2006-05-25 2010-10-07 Cochlear Limited Stimulating device

Family Cites Families (271)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US245555A (en) 1881-08-09 Ohaeles h
US41595A (en) 1864-02-16 Improvement in vyagon-brakes
US2045403A (en) * 1933-05-24 1936-06-23 Sonotone Corp Piezoelectric device
US2045404A (en) * 1933-05-24 1936-06-23 Sonotone Corp Piezoelectric vibrator device
US2045427A (en) 1933-05-24 1936-06-23 Sonotone Corp Bone-conduction hearing-aid
US2239550A (en) 1939-11-20 1941-04-22 Aurex Corp Bone conduction hearing device
US3104049A (en) * 1959-12-30 1963-09-17 Ibm High purity vacuum systems
US3733445A (en) * 1967-07-03 1973-05-15 Dyna Magnetic Devices Inc Inertial reaction transducers
US3594514A (en) * 1970-01-02 1971-07-20 Medtronic Inc Hearing aid with piezoelectric ceramic element
US3809829A (en) * 1973-01-16 1974-05-07 Sonotone Corp Acoustic cros hearing aid
US4006321A (en) * 1974-02-20 1977-02-01 Industrial Research Products, Inc. Transducer coupling system
US3995644A (en) 1975-09-16 1976-12-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Percutaneous connector device
US4025964A (en) * 1976-07-30 1977-05-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Magnetic electrical connectors for biomedical percutaneous implants
US4291203A (en) * 1979-09-11 1981-09-22 Gaspare Bellafiore Hearing aid device
US4352960A (en) 1980-09-30 1982-10-05 Baptist Medical Center Of Oklahoma, Inc. Magnetic transcutaneous mount for external device of an associated implant
US4407389A (en) * 1981-01-19 1983-10-04 Johnson Rubein V Vented acoustic ear mold for hearing aids
JPH0312000Y2 (en) * 1981-04-20 1991-03-22
US4419995A (en) * 1981-09-18 1983-12-13 Hochmair Ingeborg Single channel auditory stimulation system
SE431705B (en) * 1981-12-01 1984-02-20 Bo Hakansson COUPLING, PREFERRED FOR MECHANICAL TRANSMISSION OF SOUND INFORMATION TO THE BALL OF A HEARING DAMAGED PERSON
US4504967A (en) * 1982-12-16 1985-03-12 The Marmon Group, Inc. Method and apparatus for damping spurious vibration in spring reverberation units
JPS59178986A (en) 1983-03-28 1984-10-11 Nec Corp Mechanical amplifying mechanism
US4628907A (en) * 1984-03-22 1986-12-16 Epley John M Direct contact hearing aid apparatus
SE447947B (en) * 1985-05-10 1986-12-22 Bo Hakansson DEVICE FOR A HORSE DEVICE
US4606329A (en) * 1985-05-22 1986-08-19 Xomed, Inc. Implantable electromagnetic middle-ear bone-conduction hearing aid device
US5015225A (en) 1985-05-22 1991-05-14 Xomed, Inc. Implantable electromagnetic middle-ear bone-conduction hearing aid device
US4612915A (en) * 1985-05-23 1986-09-23 Xomed, Inc. Direct bone conduction hearing aid device
US4791673A (en) * 1986-12-04 1988-12-13 Schreiber Simeon B Bone conduction audio listening device and method
JP2592615B2 (en) 1987-09-16 1997-03-19 日本特殊陶業株式会社 Electrostrictive drive
JPH01290272A (en) 1988-05-18 1989-11-22 Tsuin Denki Kk Displacement magnifying device of laminated piezoelectric actuator
US4944301A (en) * 1988-06-16 1990-07-31 Cochlear Corporation Method for determining absolute current density through an implanted electrode
US4952835A (en) 1988-12-27 1990-08-28 Ford Aerospace Corporation Double saggital push stroke amplifier
US4964106A (en) 1989-04-14 1990-10-16 Edo Corporation, Western Division Flextensional sonar transducer assembly
US5047994A (en) * 1989-05-30 1991-09-10 Center For Innovative Technology Supersonic bone conduction hearing aid and method
DE3940632C1 (en) * 1989-06-02 1990-12-06 Hortmann Gmbh, 7449 Neckartenzlingen, De Hearing aid directly exciting inner ear - has microphone encapsulated for implantation in tympanic cavity or mastoid region
US5052930A (en) * 1989-11-22 1991-10-01 Lodde Jean Pierre Dental implant and method of implantation
FR2659009A1 (en) 1990-03-02 1991-09-06 Tari Roger HEARING AID DEVICE COMPRISING AN IMPLANTED AND AUTONOMOUS HEARING AID WITH DIRECT BONE CONDUCTION.
JPH0456531A (en) * 1990-06-26 1992-02-24 Matsushita Electric Ind Co Ltd Voice input device
DE4104358A1 (en) * 1991-02-13 1992-08-20 Implex Gmbh IMPLANTABLE HOER DEVICE FOR EXCITING THE INNER EAR
AU657332B2 (en) * 1991-06-06 1995-03-09 Cochlear Limited Percutaneous connector
DE4133000C2 (en) 1991-10-04 1993-11-18 Siegfried Dipl Ing Kipke Piezo-hydraulic module for the implementation of tactile information
US5338287A (en) * 1991-12-23 1994-08-16 Miller Gale W Electromagnetic induction hearing aid device
JP3056866B2 (en) * 1992-02-17 2000-06-26 アルパイン株式会社 Automatic volume control method
US5245245A (en) * 1992-05-04 1993-09-14 Motorola, Inc. Mass-loaded cantilever vibrator
US5323468A (en) * 1992-06-30 1994-06-21 Bottesch H Werner Bone-conductive stereo headphones
US5344494A (en) * 1993-01-21 1994-09-06 Smith & Nephew Richards, Inc. Method for cleaning porous and roughened surfaces on medical implants
US5471721A (en) 1993-02-23 1995-12-05 Research Corporation Technologies, Inc. Method for making monolithic prestressed ceramic devices
US5909498A (en) * 1993-03-25 1999-06-01 Smith; Jerry R. Transducer device for use with communication apparatus
US5554096A (en) * 1993-07-01 1996-09-10 Symphonix Implantable electromagnetic hearing transducer
US5800336A (en) * 1993-07-01 1998-09-01 Symphonix Devices, Inc. Advanced designs of floating mass transducers
US5913815A (en) 1993-07-01 1999-06-22 Symphonix Devices, Inc. Bone conducting floating mass transducers
US5460593A (en) * 1993-08-25 1995-10-24 Audiodontics, Inc. Method and apparatus for imparting low amplitude vibrations to bone and similar hard tissue
US5430801A (en) * 1993-12-14 1995-07-04 Hill; Frank C. Hearing aid
US5444324A (en) 1994-07-25 1995-08-22 Western Atlas International, Inc. Mechanically amplified piezoelectric acoustic transducer
US5825894A (en) * 1994-08-17 1998-10-20 Decibel Instruments, Inc. Spatialization for hearing evaluation
SE503791C2 (en) * 1994-12-02 1996-09-02 P & B Res Ab Hearing aid device
SE503790C2 (en) * 1994-12-02 1996-09-02 P & B Res Ab Displacement device for implant connection at hearing aid
US5683249A (en) * 1995-03-22 1997-11-04 Den-Mat Corporation Dental implant process and treated prosthetic
FR2734711B1 (en) * 1995-05-31 1997-08-29 Bertin & Cie HEARING AID WITH A COCHLEAR IMPLANT
US5606621A (en) * 1995-06-14 1997-02-25 Siemens Hearing Instruments, Inc. Hybrid behind-the-ear and completely-in-canal hearing aid
US5949895A (en) * 1995-09-07 1999-09-07 Symphonix Devices, Inc. Disposable audio processor for use with implanted hearing devices
US5772575A (en) * 1995-09-22 1998-06-30 S. George Lesinski Implantable hearing aid
FR2740276B1 (en) 1995-10-20 1997-12-26 Cedrat Rech AMPLIFIED PIEZOACTIVE ACTUATOR WITH HIGH STRAIGHTNESS
FR2740349B1 (en) * 1995-10-30 1997-11-21 Dynastar Skis Sa VIBRATION DAMPING DEVICE FOR MOUNTING ON A SPORTS ARTICLE
WO1997029708A1 (en) * 1996-02-14 1997-08-21 Walter Lorenz Surgical, Inc. Bone fastener and instrument for insertion thereof
US5805571A (en) 1996-03-19 1998-09-08 Zwan; Bryan J. Dynamic communication line analyzer apparatus and method
DE19618964C2 (en) * 1996-05-10 1999-12-16 Implex Hear Tech Ag Implantable positioning and fixing system for actuator and sensory implants
EP0963683B1 (en) * 1996-05-24 2005-07-27 S. George Lesinski Improved microphones for an implantable hearing aid
JP3680891B2 (en) * 1996-07-01 2005-08-10 セイコーエプソン株式会社 Optical scanning device
US6001129A (en) 1996-08-07 1999-12-14 St. Croix Medical, Inc. Hearing aid transducer support
US5899847A (en) * 1996-08-07 1999-05-04 St. Croix Medical, Inc. Implantable middle-ear hearing assist system using piezoelectric transducer film
DE69629814T2 (en) 1996-10-01 2004-08-05 Phonak Ag Volume Limit
AT403867B (en) * 1996-10-11 1998-06-25 Resound Viennatone Hoertechnol HEARING AID
US6010532A (en) * 1996-11-25 2000-01-04 St. Croix Medical, Inc. Dual path implantable hearing assistance device
US5771298A (en) * 1997-01-13 1998-06-23 Larson-Davis, Inc. Apparatus and method for simulating a human mastoid
US5999856A (en) * 1997-02-21 1999-12-07 St. Croix Medical, Inc. Implantable hearing assistance system with calibration and auditory response testing
WO1998040038A1 (en) * 1997-03-13 1998-09-17 Prosthetic Design, Inc. Adjustable pyramidal link plate assembly for a prosthetic limb
US5991419A (en) * 1997-04-29 1999-11-23 Beltone Electronics Corporation Bilateral signal processing prosthesis
US5781646A (en) * 1997-05-09 1998-07-14 Face; Samuel A. Multi-segmented high deformation piezoelectric array
SE514631C2 (en) 1997-06-06 2001-03-26 P & B Res Ab Device for implants for anchoring and energy transfer
US6315710B1 (en) * 1997-07-21 2001-11-13 St. Croix Medical, Inc. Hearing system with middle ear transducer mount
US6325755B1 (en) * 1997-08-07 2001-12-04 St. Croix Medical, Inc. Mountable transducer assembly with removable sleeve
DE19739594C2 (en) * 1997-09-10 2001-09-06 Daimler Chrysler Ag Electrostrictive actuator
US6674867B2 (en) * 1997-10-15 2004-01-06 Belltone Electronics Corporation Neurofuzzy based device for programmable hearing aids
US6068590A (en) * 1997-10-24 2000-05-30 Hearing Innovations, Inc. Device for diagnosing and treating hearing disorders
SE513670C2 (en) * 1997-12-18 2000-10-16 Grogrunden Ab Nr 444 Percutaneous bone anchored transducer
US6366863B1 (en) * 1998-01-09 2002-04-02 Micro Ear Technology Inc. Portable hearing-related analysis system
US6631295B2 (en) * 1998-02-13 2003-10-07 University Of Iowa Research Foundation System and method for diagnosing and/or reducing tinnitus
EP0936840A1 (en) * 1998-02-16 1999-08-18 Daniel F. àWengen Implantable hearing aid
US6549633B1 (en) * 1998-02-18 2003-04-15 Widex A/S Binaural digital hearing aid system
US6137889A (en) * 1998-05-27 2000-10-24 Insonus Medical, Inc. Direct tympanic membrane excitation via vibrationally conductive assembly
US6267731B1 (en) * 1998-06-05 2001-07-31 St. Croix Medical, Inc. Method and apparatus for reduced feedback in implantable hearing assistance systems
US6681022B1 (en) * 1998-07-22 2004-01-20 Gn Resound North Amerca Corporation Two-way communication earpiece
US6217508B1 (en) * 1998-08-14 2001-04-17 Symphonix Devices, Inc. Ultrasonic hearing system
DE19840211C1 (en) * 1998-09-03 1999-12-30 Implex Hear Tech Ag Transducer for partially or fully implantable hearing aid
US6039685A (en) * 1998-09-14 2000-03-21 St. Croix Medical, Inc. Ventable connector with seals
US6022509A (en) * 1998-09-18 2000-02-08 Johnson & Johnson Professional, Inc. Precision powder injection molded implant with preferentially leached texture surface and method of manufacture
SE516866C2 (en) * 1998-09-24 2002-03-12 Nobel Biocare Ab Bone anchor, has lateral support for absorbing lateral forces so that it can be stressed immediately after anchoring into position
US6463157B1 (en) 1998-10-06 2002-10-08 Analytical Engineering, Inc. Bone conduction speaker and microphone
KR100282067B1 (en) * 1998-12-30 2001-09-29 조진호 Transducer of Middle Ear Implant Hearing Aid
US6366678B1 (en) * 1999-01-07 2002-04-02 Sarnoff Corporation Microphone assembly for hearing aid with JFET flip-chip buffer
US6554861B2 (en) * 1999-01-19 2003-04-29 Gyrus Ent L.L.C. Otologic prosthesis
US6496585B1 (en) * 1999-01-27 2002-12-17 Robert H. Margolis Adaptive apparatus and method for testing auditory sensitivity
JP3004644B1 (en) * 1999-03-03 2000-01-31 株式会社コミュータヘリコプタ先進技術研究所 Rotary blade flap drive
US6094492A (en) * 1999-05-10 2000-07-25 Boesen; Peter V. Bone conduction voice transmission apparatus and system
US6754537B1 (en) * 1999-05-14 2004-06-22 Advanced Bionics Corporation Hybrid implantable cochlear stimulator hearing aid system
WO2000069512A1 (en) * 1999-05-14 2000-11-23 Advanced Bionics Corporation Hybrid implantable cochlear stimulator hearing aid system
DE19935029C2 (en) * 1999-07-26 2003-02-13 Phonak Ag Staefa Implantable arrangement for mechanically coupling a driver part to a coupling point
DE19948375B4 (en) 1999-10-07 2004-04-01 Phonak Ag Arrangement for mechanically coupling a driver to a coupling point of the ossicle chain
US6629922B1 (en) * 1999-10-29 2003-10-07 Soundport Corporation Flextensional output actuators for surgically implantable hearing aids
US6554761B1 (en) * 1999-10-29 2003-04-29 Soundport Corporation Flextensional microphones for implantable hearing devices
US6231410B1 (en) * 1999-11-01 2001-05-15 Arctic Cat Inc. Controlled thrust steering system for watercraft
DE19961068C1 (en) 1999-12-17 2001-01-25 Daimler Chrysler Ag Piezoelectric actuator system has two piezoelectric actuators connected in one half of clocked amplifier bridge circuit controlled via pulse-width modulated signal
WO2001047595A1 (en) * 1999-12-27 2001-07-05 Alza Corporation Osmotic beneficial agent delivery system
US6436028B1 (en) * 1999-12-28 2002-08-20 Soundtec, Inc. Direct drive movement of body constituent
US6940989B1 (en) * 1999-12-30 2005-09-06 Insound Medical, Inc. Direct tympanic drive via a floating filament assembly
US7266209B1 (en) * 2000-01-05 2007-09-04 David William House Cochlear implants with a stimulus in the human ultrasonic range and method for stimulating a cochlea
TW511391B (en) * 2000-01-24 2002-11-21 New Transducers Ltd Transducer
US6885753B2 (en) * 2000-01-27 2005-04-26 New Transducers Limited Communication device using bone conduction
SE516270C2 (en) * 2000-03-09 2001-12-10 Osseofon Ab Electromagnetic vibrator
DE20004499U1 (en) * 2000-03-14 2000-12-07 Daimler Chrysler Ag Aerodynamic flow profile with leading edge flap
DE10017332C2 (en) * 2000-04-07 2002-04-18 Daimler Chrysler Ag Piezoelectric actuator for flap control on the rotor blade of a helicopter
US6602202B2 (en) * 2000-05-19 2003-08-05 Baycrest Centre For Geriatric Care System and methods for objective evaluation of hearing using auditory steady-state responses
US7399282B2 (en) * 2000-05-19 2008-07-15 Baycrest Center For Geriatric Care System and method for objective evaluation of hearing using auditory steady-state responses
US6517476B1 (en) * 2000-05-30 2003-02-11 Otologics Llc Connector for implantable hearing aid
AUPQ787500A0 (en) 2000-05-31 2000-06-22 Enersave Environmental Services Pty Ltd A power supply altering means
US20020172386A1 (en) * 2000-06-02 2002-11-21 Erich Bayer Otoplasty for behind-the-ear hearing aids
SE523123C2 (en) * 2000-06-02 2004-03-30 P & B Res Ab Hearing aid that works with the principle of bone conduction
SE0002072L (en) 2000-06-02 2001-05-21 P & B Res Ab Vibrator for leg anchored and leg conduit hearing aids
SE0002073L (en) 2000-06-02 2001-05-21 P & B Res Ab Vibrator for leg anchored and leg conduit hearing aids
DE10031832C2 (en) * 2000-06-30 2003-04-30 Cochlear Ltd Hearing aid for the rehabilitation of a hearing disorder
SE523765C2 (en) 2000-07-12 2004-05-18 Entific Medical Systems Ab Screw-shaped anchoring element for permanent anchoring of leg anchored hearing aids and ear or eye prostheses in the skull
US6631197B1 (en) * 2000-07-24 2003-10-07 Gn Resound North America Corporation Wide audio bandwidth transduction method and device
JP3745602B2 (en) * 2000-07-27 2006-02-15 インターナショナル・ビジネス・マシーンズ・コーポレーション Body set type speaker device
DE10041726C1 (en) * 2000-08-25 2002-05-23 Implex Ag Hearing Technology I Implantable hearing system with means for measuring the coupling quality
US20020039427A1 (en) * 2000-10-04 2002-04-04 Timothy Whitwell Audio apparatus
CA2323983A1 (en) 2000-10-19 2002-04-19 Universite De Sherbrooke Programmable neurostimulator
KR100347595B1 (en) * 2000-11-02 2002-08-07 심윤주 method of automatically fitting hearing aids
US6505076B2 (en) * 2000-12-08 2003-01-07 Advanced Bionics Corporation Water-resistant, wideband microphone subassembly
DE10062236C2 (en) * 2000-12-14 2003-11-27 Phonak Ag Staefa Fixation element for an implantable microphone
US7166953B2 (en) * 2001-03-02 2007-01-23 Jon Heim Electroactive polymer rotary clutch motors
US6643378B2 (en) 2001-03-02 2003-11-04 Daniel R. Schumaier Bone conduction hearing aid
DE10114838A1 (en) * 2001-03-26 2002-10-10 Implex Ag Hearing Technology I Fully implantable hearing system
US7616771B2 (en) * 2001-04-27 2009-11-10 Virginia Commonwealth University Acoustic coupler for skin contact hearing enhancement devices
SE523125C2 (en) 2001-06-21 2004-03-30 P & B Res Ab Vibrator for vibration generation in bone anchored hearing aids
SE523100C2 (en) * 2001-06-21 2004-03-30 P & B Res Ab Leg anchored hearing aid designed for the transmission of sound
SE523124C2 (en) 2001-06-21 2004-03-30 P & B Res Ab Coupling device for a two-piece leg anchored hearing aid
AUPR604801A0 (en) 2001-06-29 2001-07-26 Cochlear Limited Multi-electrode cochlear implant system with distributed electronics
US6775389B2 (en) * 2001-08-10 2004-08-10 Advanced Bionics Corporation Ear auxiliary microphone for behind the ear hearing prosthetic
GB0119652D0 (en) * 2001-08-11 2001-10-03 Stanmore Implants Worldwide Surgical implant
US6875166B2 (en) * 2001-09-06 2005-04-05 St. Croix Medical, Inc. Method for creating a coupling between a device and an ear structure in an implantable hearing assistance device
US7127078B2 (en) * 2001-10-03 2006-10-24 Advanced Bionics Corporation Implanted outer ear canal hearing aid
US6786860B2 (en) * 2001-10-03 2004-09-07 Advanced Bionics Corporation Hearing aid design
US6879695B2 (en) * 2001-10-03 2005-04-12 Advanced Bionics Corporation Personal sound link module
US6840908B2 (en) 2001-10-12 2005-01-11 Sound Id System and method for remotely administered, interactive hearing tests
US20030112992A1 (en) * 2001-12-14 2003-06-19 Rapps Gary M. Self-retaining element for a behind-the-ear communication device
US7630507B2 (en) * 2002-01-28 2009-12-08 Gn Resound A/S Binaural compression system
US6879693B2 (en) * 2002-02-26 2005-04-12 Otologics, Llc. Method and system for external assessment of hearing aids that include implanted actuators
FR2836536B1 (en) * 2002-02-26 2004-05-14 Cedrat Technologies PIEZOELECTRIC VALVE
US6626909B2 (en) * 2002-02-27 2003-09-30 Kingsley Richard Chin Apparatus and method for spine fixation
EP1490148A2 (en) * 2002-04-01 2004-12-29 Med-El Elektromedizinische Geräte GmbH Reducing effect of magnetic and electromagnetic fields on an implants magnet and/or electronic
SE522164C2 (en) 2002-05-10 2004-01-20 Osseofon Ab Device for electromagnetic vibrator
US7695441B2 (en) * 2002-05-23 2010-04-13 Tympany, Llc Automated diagnostic hearing test
FR2841429B1 (en) * 2002-06-21 2005-11-11 Mxm HEARING AID DEVICE FOR THE REHABILITATION OF PATIENTS WITH PARTIAL NEUROSENSORY DEATHS
CA2494661A1 (en) * 2002-07-26 2004-02-05 Oakley, Inc. Wireless interactive headset
KR100390003B1 (en) 2002-10-02 2003-07-04 Joo Bae Kim Bone-conduction speaker using vibration plate and mobile telephone using the same
US20040133250A1 (en) * 2002-09-10 2004-07-08 Vibrant Med-El Hearing Technology Gmbh Implantable medical devices with multiple transducers
JP2004166174A (en) 2002-09-20 2004-06-10 Junichi Suzuki External auditory meatus insertion type bone conduction receiver, and external auditory meatus insertion type bone conduction hearing aid
WO2004030572A2 (en) * 2002-10-02 2004-04-15 Otologics Llc Retention apparatus for an external portion of a semi-implantable hearing aid
FR2845440B1 (en) * 2002-10-03 2006-03-31 Sagem DEVICE FOR CONTROLLING VALVES
WO2004034934A2 (en) * 2002-10-15 2004-04-29 Ludwig Arwed Implant for implanting under the scalp for the magnetic fixing of a prosthesis
US7033313B2 (en) * 2002-12-11 2006-04-25 No. 182 Corporate Ventures Ltd. Surgically implantable hearing aid
EP1435757A1 (en) * 2002-12-30 2004-07-07 Andrzej Zarowski Device implantable in a bony wall of the inner ear
US7331961B2 (en) * 2003-01-10 2008-02-19 Abdou M Samy Plating system for bone fixation and subsidence and method of implantation
FR2850217A1 (en) * 2003-01-17 2004-07-23 Cedrat Technologies PIEZOACTIVE ACTUATOR WITH AMPLIFIED MOVEMENT
US6999818B2 (en) * 2003-05-23 2006-02-14 Greatbatch-Sierra, Inc. Inductor capacitor EMI filter for human implant applications
GB2398969B (en) 2003-02-27 2006-07-05 Ericsson Telefon Ab L M Message management
US7045932B2 (en) * 2003-03-04 2006-05-16 Exfo Burleigh Prod Group Inc Electromechanical translation apparatus
JP2004274593A (en) * 2003-03-11 2004-09-30 Temuko Japan:Kk Bone conduction speaker
US7486798B2 (en) * 2003-04-08 2009-02-03 Mayur Technologies, Inc. Method and apparatus for tooth bone conduction microphone
US6787860B1 (en) * 2003-05-01 2004-09-07 Macronix International Co., Ltd. Apparatus and method for inhibiting dummy cell over erase
US7599508B1 (en) * 2003-05-08 2009-10-06 Advanced Bionics, Llc Listening device cap
SE526548C2 (en) 2003-05-30 2005-10-04 Entific Medical Systems Ab Device for implants
ATE527829T1 (en) * 2003-06-24 2011-10-15 Gn Resound As BINAURAL HEARING AID SYSTEM WITH COORDINATED SOUND PROCESSING
SE526099C2 (en) 2003-06-30 2005-07-05 Entific Medical Systems Ab Device for wireless signal and energy transfer for medical implants
DE10331956C5 (en) * 2003-07-16 2010-11-18 Siemens Audiologische Technik Gmbh Hearing aid and method for operating a hearing aid with a microphone system, in which different Richtcharaktistiken are adjustable
US7442164B2 (en) * 2003-07-23 2008-10-28 Med-El Elektro-Medizinische Gerate Gesellschaft M.B.H. Totally implantable hearing prosthesis
US20060018488A1 (en) * 2003-08-07 2006-01-26 Roar Viala Bone conduction systems and methods
GB0321617D0 (en) * 2003-09-10 2003-10-15 New Transducers Ltd Audio apparatus
US20050059970A1 (en) * 2003-09-17 2005-03-17 Eric Kolb Bone fixation systems
US20070213788A1 (en) * 2003-09-19 2007-09-13 Osberger Mary J Electrical stimulation of the inner ear in patients with unilateral hearing loss
SE525631C2 (en) * 2003-09-19 2005-03-22 P & B Res Ab Method and apparatus for attenuating resonant frequency
SE527006C2 (en) * 2003-10-22 2005-12-06 Entific Medical Systems Ab Device for curing or reducing stuttering
US7241258B2 (en) * 2003-11-07 2007-07-10 Otologics, Llc Passive vibration isolation of implanted microphone
US20050101830A1 (en) * 2003-11-07 2005-05-12 Easter James R. Implantable hearing aid transducer interface
WO2005072168A2 (en) * 2004-01-20 2005-08-11 Sound Techniques Systems Llc Method and apparatus for improving hearing in patients suffering from hearing loss
US7765005B2 (en) * 2004-02-12 2010-07-27 Greatbatch Ltd. Apparatus and process for reducing the susceptability of active implantable medical devices to medical procedures such as magnetic resonance imaging
US7651460B2 (en) * 2004-03-22 2010-01-26 The Board Of Regents Of The University Of Oklahoma Totally implantable hearing system
US7840020B1 (en) * 2004-04-01 2010-11-23 Otologics, Llc Low acceleration sensitivity microphone
US7214179B2 (en) * 2004-04-01 2007-05-08 Otologics, Llc Low acceleration sensitivity microphone
US6942696B1 (en) * 2004-04-28 2005-09-13 Clarity Corporation Ossicular prosthesis adjusting device
US7021676B2 (en) * 2004-05-10 2006-04-04 Patrik Westerkull Connector system
US8244365B2 (en) * 2004-05-10 2012-08-14 Cochlear Limited Simultaneous delivery of electrical and acoustical stimulation in a hearing prosthesis
US7160244B2 (en) * 2004-05-10 2007-01-09 Patrik Westerkull Arrangement for a hearing aid
US20060098833A1 (en) * 2004-05-28 2006-05-11 Juneau Roger P Self forming in-the-ear hearing aid
US7344564B2 (en) * 2004-06-08 2008-03-18 Spinal Generations, Llc Expandable spinal stabilization device
US8965520B2 (en) * 2004-06-15 2015-02-24 Cochlear Limited Automatic determination of the threshold of an evoked neural response
US7867160B2 (en) * 2004-10-12 2011-01-11 Earlens Corporation Systems and methods for photo-mechanical hearing transduction
US7421087B2 (en) * 2004-07-28 2008-09-02 Earlens Corporation Transducer for electromagnetic hearing devices
US20060041318A1 (en) * 2004-08-19 2006-02-23 Shannon Donald T Laminar skin-bone fixation transcutaneous implant and method for use thereof
US7376237B2 (en) * 2004-09-02 2008-05-20 Oticon A/S Vibrator for bone-conduction hearing
US7065223B2 (en) * 2004-09-09 2006-06-20 Patrik Westerkull Hearing-aid interconnection system
US7302071B2 (en) * 2004-09-15 2007-11-27 Schumaier Daniel R Bone conduction hearing assistance device
US20060082158A1 (en) * 2004-10-15 2006-04-20 Schrader Jeffrey L Method and device for supplying power from acoustic energy
KR100610192B1 (en) * 2004-10-27 2006-08-09 경북대학교 산학협력단 piezoelectric oscillator
US7116794B2 (en) * 2004-11-04 2006-10-03 Patrik Westerkull Hearing-aid anchoring element
JP4864901B2 (en) * 2004-11-30 2012-02-01 アドバンスド・バイオニクス・アクチエンゲゼルシャフト Implantable actuator for hearing aid
FI20041625A (en) * 2004-12-17 2006-06-18 Nokia Corp A method for converting an ear canal signal, an ear canal converter, and a headset
GB0500616D0 (en) 2005-01-13 2005-02-23 Univ Dundee Hearing implant
JP5088788B2 (en) 2005-01-27 2012-12-05 コクレア リミテッド Implantable medical devices
SE528279C2 (en) 2005-02-21 2006-10-10 Entific Medical Systems Ab Vibrator for bone conductive hearing aid
WO2006091838A2 (en) * 2005-02-24 2006-08-31 Morphogeny, Llc Linked slideable and interlockable rotatable components
US8142344B2 (en) * 2005-02-25 2012-03-27 Advanced Bionics Ag Fully implantable hearing aid system
US8241224B2 (en) * 2005-03-16 2012-08-14 Sonicom, Inc. Test battery system and method for assessment of auditory function
US20060211910A1 (en) * 2005-03-18 2006-09-21 Patrik Westerkull Microphone system for bone anchored bone conduction hearing aids
CA2648480C (en) 2005-04-05 2014-01-14 Cropley Holdings Ltd. Household appliances which utilize an electrolyzer and electrolyzer that may be used therein
DE102005017493A1 (en) * 2005-04-15 2006-10-19 Siemens Audiologische Technik Gmbh Hearing aid with two different output transducers and fitting procedure
DE102006026288A1 (en) * 2005-06-09 2007-01-04 Siegert, Ralf, Prof. Dr. Dr.med. Bone conduction hearing aid is held by U arranged magnet pair with open end facing magnets implanted in skull
DE102005031249A1 (en) * 2005-07-04 2007-04-05 Schäfer, Günter Willy Dental full or partial implant, has jaw anchorages with head area supporting implant, where implant is held in jaw bone by anchorages and retains movement path axially in direction of jaw bone in mounted condition
US7822215B2 (en) * 2005-07-07 2010-10-26 Face International Corp Bone-conduction hearing-aid transducer having improved frequency response
DE102005061150A1 (en) * 2005-07-23 2007-02-01 Kurz, Hans-Rainer Device and method for configuring a hearing aid
AU2006283905B2 (en) * 2005-08-22 2009-12-03 3Win N.V. A combined set comprising a vibrator actuator and an implantable device
US20070053536A1 (en) * 2005-08-24 2007-03-08 Patrik Westerkull Hearing aid system
US7796771B2 (en) * 2005-09-28 2010-09-14 Roberta A. Calhoun Bone conduction hearing aid fastening device
US7753838B2 (en) * 2005-10-06 2010-07-13 Otologics, Llc Implantable transducer with transverse force application
WO2007052251A2 (en) 2005-10-31 2007-05-10 Audiodent Israel Ltd. Miniature bio-compatible piezoelectric transducer apparatus
WO2007102894A2 (en) * 2005-11-14 2007-09-13 Oticon A/S Hearing aid system
US7869610B2 (en) * 2005-11-30 2011-01-11 Knowles Electronics, Llc Balanced armature bone conduction shaker
US7670278B2 (en) * 2006-01-02 2010-03-02 Oticon A/S Hearing aid system
JP2007184722A (en) 2006-01-05 2007-07-19 Nagasaki Univ Bone conduction hearing-aid and bone conduction speaker
US8246532B2 (en) * 2006-02-14 2012-08-21 Vibrant Med-El Hearing Technology Gmbh Bone conductive devices for improving hearing
TWI318539B (en) * 2006-05-24 2009-12-11 Univ Chung Yuan Christian Implant bone conduction hearing aids
US7844070B2 (en) 2006-05-30 2010-11-30 Sonitus Medical, Inc. Methods and apparatus for processing audio signals
AR062036A1 (en) * 2006-07-24 2008-08-10 Med El Elektromed Geraete Gmbh MOBILE COIL ACTUATOR FOR MIDDLE EAR IMPLANTS
WO2008014498A2 (en) 2006-07-27 2008-01-31 Cochlear Americas Hearing device having a non-occluding in the-canal vibrating component
AU2008232540A1 (en) * 2007-03-29 2008-10-09 Vibrant Med-El Hearing Technology Gmbh Implantable auditory stimulation systems having a transducer and a transduction medium
WO2008134642A1 (en) * 2007-04-27 2008-11-06 Personics Holdings Inc. Method and device for personalized voice operated control
SE531053C2 (en) * 2007-05-24 2008-12-02 Cochlear Ltd Vibrator
EP2178479B1 (en) 2007-07-20 2015-06-17 Cochlear Americas Coupling apparatus for a bone anchored hearing device
US9071914B2 (en) * 2007-08-14 2015-06-30 Insound Medical, Inc. Combined microphone and receiver assembly for extended wear canal hearing devices
US8433080B2 (en) * 2007-08-22 2013-04-30 Sonitus Medical, Inc. Bone conduction hearing device with open-ear microphone
WO2009055698A1 (en) * 2007-10-25 2009-04-30 Massachusetts Institute Of Technology Strain amplification devices and methods
DK2066140T3 (en) * 2007-11-28 2016-04-18 Oticon Medical As Method of mounting a bone anchored hearing aid for a user and bone anchored bone conducting hearing system.
DK2083582T3 (en) * 2008-01-28 2013-11-11 Oticon Medical As Bone conductive hearing aid with connection
SE533430C2 (en) * 2008-02-20 2010-09-28 Osseofon Ab Implantable vibrator
US8626307B2 (en) 2008-03-25 2014-01-07 Cochlear Limited Integrated circuit configuration
US8852251B2 (en) * 2008-03-31 2014-10-07 Cochlear Limited Mechanical fixation system for a prosthetic device
US20100137675A1 (en) * 2008-03-31 2010-06-03 Cochlear Limited Bone conduction devices generating tangentially-directed mechanical force using a rotationally moving mass
US9445213B2 (en) * 2008-06-10 2016-09-13 Qualcomm Incorporated Systems and methods for providing surround sound using speakers and headphones
US8396239B2 (en) * 2008-06-17 2013-03-12 Earlens Corporation Optical electro-mechanical hearing devices with combined power and signal architectures
US8144909B2 (en) * 2008-08-12 2012-03-27 Cochlear Limited Customization of bone conduction hearing devices
CN102176947A (en) 2008-10-07 2011-09-07 Med-El电气医疗器械有限公司 Cochlear implant sound processor for sleeping with tinnitus suppression and alarm function
SE0900372A1 (en) 2009-03-24 2010-06-15 Osseofon Ab Leg conduit vibrator design with improved high frequency response
DE102009014770A1 (en) * 2009-03-25 2010-09-30 Cochlear Ltd., Lane Cove vibrator
EP2252079A1 (en) * 2009-05-14 2010-11-17 Oticon A/S Bone anchored bone conductive hearing aid
AU2010307296B2 (en) 2009-10-13 2014-09-04 Dermaport, Inc. Neural stimulator with percutaneous connectivity
AU2010200485A1 (en) 2010-02-10 2011-08-25 Cochlear Limited Percutaneous implant
US8594356B2 (en) * 2010-04-29 2013-11-26 Cochlear Limited Bone conduction device having limited range of travel
DE102010028460B4 (en) * 2010-04-30 2014-01-23 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg A method of fabricating a semiconductor device having a reduced defect rate in contacts, comprising replacement gate electrode structures using an intermediate cladding layer
US11843918B2 (en) 2011-10-11 2023-12-12 Cochlear Limited Bone conduction implant
DK2592848T3 (en) 2011-11-08 2019-10-07 Oticon Medical As Acoustic transmission method and listening device
US9998837B2 (en) 2014-04-29 2018-06-12 Cochlear Limited Percutaneous vibration conductor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4922926A (en) * 1987-10-16 1990-05-08 Siemens Aktiengesellschaft Arrangement for delivering medications in an implantable medical device
US6263225B1 (en) * 1994-02-09 2001-07-17 University Of Iowa Research Foundation Stereotactic electrode assembly
US6309410B1 (en) * 1998-08-26 2001-10-30 Advanced Bionics Corporation Cochlear electrode with drug delivery channel and method of making same
US20040078057A1 (en) * 2000-11-14 2004-04-22 Peter Gibson Apparatus for delivery of pharmaceuticals to the cochlea
US20050171579A1 (en) * 2001-11-09 2005-08-04 Claudia Tasche Stimulating device
US20040106953A1 (en) * 2002-10-04 2004-06-03 Yomtov Barry M. Medical device for controlled drug delivery and cardiac monitoring and/or stimulation
US20040127942A1 (en) * 2002-10-04 2004-07-01 Yomtov Barry M. Medical device for neural stimulation and controlled drug delivery
US20060287689A1 (en) * 2002-11-29 2006-12-21 Cochlear Limited Cochlear implant drug delivery device
US20100256697A1 (en) * 2006-05-25 2010-10-07 Cochlear Limited Stimulating device

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10154352B2 (en) 2007-10-12 2018-12-11 Earlens Corporation Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management
US10863286B2 (en) 2007-10-12 2020-12-08 Earlens Corporation Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management
US11483665B2 (en) 2007-10-12 2022-10-25 Earlens Corporation Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management
US10516950B2 (en) 2007-10-12 2019-12-24 Earlens Corporation Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management
US10516949B2 (en) 2008-06-17 2019-12-24 Earlens Corporation Optical electro-mechanical hearing devices with separate power and signal components
US11310605B2 (en) 2008-06-17 2022-04-19 Earlens Corporation Optical electro-mechanical hearing devices with separate power and signal components
US10516946B2 (en) 2008-09-22 2019-12-24 Earlens Corporation Devices and methods for hearing
US11057714B2 (en) 2008-09-22 2021-07-06 Earlens Corporation Devices and methods for hearing
US10743110B2 (en) 2008-09-22 2020-08-11 Earlens Corporation Devices and methods for hearing
US10237663B2 (en) 2008-09-22 2019-03-19 Earlens Corporation Devices and methods for hearing
US10511913B2 (en) 2008-09-22 2019-12-17 Earlens Corporation Devices and methods for hearing
US11743663B2 (en) 2010-12-20 2023-08-29 Earlens Corporation Anatomically customized ear canal hearing apparatus
US10284964B2 (en) 2010-12-20 2019-05-07 Earlens Corporation Anatomically customized ear canal hearing apparatus
US10609492B2 (en) 2010-12-20 2020-03-31 Earlens Corporation Anatomically customized ear canal hearing apparatus
US11153697B2 (en) 2010-12-20 2021-10-19 Earlens Corporation Anatomically customized ear canal hearing apparatus
US11317224B2 (en) 2014-03-18 2022-04-26 Earlens Corporation High fidelity and reduced feedback contact hearing apparatus and methods
US10034103B2 (en) 2014-03-18 2018-07-24 Earlens Corporation High fidelity and reduced feedback contact hearing apparatus and methods
US11259129B2 (en) 2014-07-14 2022-02-22 Earlens Corporation Sliding bias and peak limiting for optical hearing devices
US10531206B2 (en) 2014-07-14 2020-01-07 Earlens Corporation Sliding bias and peak limiting for optical hearing devices
US11800303B2 (en) 2014-07-14 2023-10-24 Earlens Corporation Sliding bias and peak limiting for optical hearing devices
US10516951B2 (en) 2014-11-26 2019-12-24 Earlens Corporation Adjustable venting for hearing instruments
US11252516B2 (en) 2014-11-26 2022-02-15 Earlens Corporation Adjustable venting for hearing instruments
US20170095202A1 (en) * 2015-10-02 2017-04-06 Earlens Corporation Drug delivery customized ear canal apparatus
US11058305B2 (en) 2015-10-02 2021-07-13 Earlens Corporation Wearable customized ear canal apparatus
US10292601B2 (en) 2015-10-02 2019-05-21 Earlens Corporation Wearable customized ear canal apparatus
US11070927B2 (en) 2015-12-30 2021-07-20 Earlens Corporation Damping in contact hearing systems
US10178483B2 (en) 2015-12-30 2019-01-08 Earlens Corporation Light based hearing systems, apparatus, and methods
US11516602B2 (en) 2015-12-30 2022-11-29 Earlens Corporation Damping in contact hearing systems
US10779094B2 (en) 2015-12-30 2020-09-15 Earlens Corporation Damping in contact hearing systems
US10492010B2 (en) 2015-12-30 2019-11-26 Earlens Corporations Damping in contact hearing systems
US10306381B2 (en) 2015-12-30 2019-05-28 Earlens Corporation Charging protocol for rechargable hearing systems
US11337012B2 (en) 2015-12-30 2022-05-17 Earlens Corporation Battery coating for rechargable hearing systems
US11350226B2 (en) 2015-12-30 2022-05-31 Earlens Corporation Charging protocol for rechargeable hearing systems
US11540065B2 (en) 2016-09-09 2022-12-27 Earlens Corporation Contact hearing systems, apparatus and methods
US11102594B2 (en) 2016-09-09 2021-08-24 Earlens Corporation Contact hearing systems, apparatus and methods
US11166114B2 (en) 2016-11-15 2021-11-02 Earlens Corporation Impression procedure
US11671774B2 (en) 2016-11-15 2023-06-06 Earlens Corporation Impression procedure
EP3684311A4 (en) * 2017-09-22 2021-06-09 Cochlear Limited Trans middle ear-inner ear fluid flow implementations
WO2019058330A1 (en) * 2017-09-22 2019-03-28 Cochlear Limited Trans middle ear-inner ear fluid flow implementations
US20200238062A1 (en) * 2017-09-22 2020-07-30 Cochlear Limited Trans middle ear-inner ear fluid flow implementations
US11806492B2 (en) * 2017-09-22 2023-11-07 Cochlear Limited Trans middle ear-inner ear fluid flow implementations
US11516603B2 (en) 2018-03-07 2022-11-29 Earlens Corporation Contact hearing device and retention structure materials
US11212626B2 (en) 2018-04-09 2021-12-28 Earlens Corporation Dynamic filter
US11564044B2 (en) 2018-04-09 2023-01-24 Earlens Corporation Dynamic filter
US11890438B1 (en) * 2019-09-12 2024-02-06 Cochlear Limited Therapeutic substance delivery

Also Published As

Publication number Publication date
US20090247810A1 (en) 2009-10-01
US8401213B2 (en) 2013-03-19
US8526641B2 (en) 2013-09-03
US20110029031A1 (en) 2011-02-03
EP2265318A1 (en) 2010-12-29
WO2009124035A3 (en) 2009-12-30
CN102047692B (en) 2014-07-30
EP2272260A4 (en) 2011-05-04
US8532321B2 (en) 2013-09-10
US20090248085A1 (en) 2009-10-01
US20090248086A1 (en) 2009-10-01
US20090247812A1 (en) 2009-10-01
WO2009121114A9 (en) 2009-11-05
CN102047692A (en) 2011-05-04
WO2009121115A9 (en) 2009-11-05
EP2269386A4 (en) 2012-12-12
US11570552B2 (en) 2023-01-31
WO2009121097A1 (en) 2009-10-08
EP2271282A2 (en) 2011-01-12
EP2269388A1 (en) 2011-01-05
WO2009121109A1 (en) 2009-10-08
EP2269386B1 (en) 2018-08-01
US8852251B2 (en) 2014-10-07
WO2009121109A9 (en) 2009-11-05
EP2269388A4 (en) 2011-06-29
WO2009121116A1 (en) 2009-10-08
US20090248155A1 (en) 2009-10-01
WO2009121106A9 (en) 2009-11-05
WO2009121118A9 (en) 2009-11-05
US8154173B2 (en) 2012-04-10
EP2265318A4 (en) 2011-06-29
US20110034755A1 (en) 2011-02-10
US20180376255A1 (en) 2018-12-27
EP2269241A1 (en) 2011-01-05
WO2009121113A9 (en) 2009-11-05
WO2009124005A3 (en) 2010-01-07
WO2009124010A3 (en) 2009-12-30
US20090252353A1 (en) 2009-10-08
WO2009121111A1 (en) 2009-10-08
US8150083B2 (en) 2012-04-03
US8831260B2 (en) 2014-09-09
US8216287B2 (en) 2012-07-10
WO2009124005A2 (en) 2009-10-08
WO2009124038A1 (en) 2009-10-08
US20110026721A1 (en) 2011-02-03
US20090245554A1 (en) 2009-10-01
WO2009121116A9 (en) 2009-11-05
WO2009121098A9 (en) 2009-11-05
US20090247814A1 (en) 2009-10-01
WO2009124035A2 (en) 2009-10-08
US20090245553A1 (en) 2009-10-01
WO2009124036A2 (en) 2009-10-08
WO2009121104A9 (en) 2009-11-05
WO2009121118A1 (en) 2009-10-08
US20140193011A1 (en) 2014-07-10
US20170257710A1 (en) 2017-09-07
WO2009121117A9 (en) 2009-12-23
WO2009121113A1 (en) 2009-10-08
US8655002B2 (en) 2014-02-18
US20090247813A1 (en) 2009-10-01
WO2009124008A1 (en) 2009-10-08
EP2269386A2 (en) 2011-01-05
US8509461B2 (en) 2013-08-13
WO2009121098A1 (en) 2009-10-08
WO2009121108A1 (en) 2009-10-08
US20090245557A1 (en) 2009-10-01
US9955270B2 (en) 2018-04-24
US20090245556A1 (en) 2009-10-01
US9602931B2 (en) 2017-03-21
US20100121134A1 (en) 2010-05-13
WO2009121101A9 (en) 2009-11-05
US8532322B2 (en) 2013-09-10
WO2009121097A9 (en) 2009-11-05
WO2009121115A1 (en) 2009-10-08
US20110190882A1 (en) 2011-08-04
WO2009121108A9 (en) 2009-11-05
WO2009121105A1 (en) 2009-10-08
US8945216B2 (en) 2015-02-03
US20090245555A1 (en) 2009-10-01
WO2009121114A1 (en) 2009-10-08
US8657734B2 (en) 2014-02-25
WO2009121104A1 (en) 2009-10-08
WO2010008630A1 (en) 2010-01-21
EP2272260A1 (en) 2011-01-12
EP2271282A4 (en) 2011-04-06
WO2009124042A3 (en) 2010-01-07
US20090247811A1 (en) 2009-10-01
US8433081B2 (en) 2013-04-30
WO2009121117A1 (en) 2009-10-08
US8170252B2 (en) 2012-05-01
EP2269388B1 (en) 2021-07-28
WO2009124036A3 (en) 2009-12-30
US20090248023A1 (en) 2009-10-01
US20230179929A1 (en) 2023-06-08
WO2009121105A9 (en) 2009-11-05
US8363871B2 (en) 2013-01-29
WO2009121111A9 (en) 2009-11-05
US20110026748A1 (en) 2011-02-03
WO2009124010A2 (en) 2009-10-08
WO2009121106A1 (en) 2009-10-08
WO2009124042A2 (en) 2009-10-08
US20130345496A1 (en) 2013-12-26
US8731205B2 (en) 2014-05-20
US20110022119A1 (en) 2011-01-27
WO2009121101A1 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
US20110112462A1 (en) Pharmaceutical agent delivery in a stimulating medical device
US8892201B2 (en) Pharmaceutical agent delivery in a stimulating medical device
US20100030130A1 (en) Pharmaceutical intervention for modulation of neural plasticity
US8355793B2 (en) Optical neural stimulating device having a short stimulating assembly
US8396570B2 (en) Combined optical and electrical neural stimulation
US8249724B2 (en) Elongate implantable carrier member having an embedded stiffener
US8019436B2 (en) Electrode assembly for a stimulating medical device
US20100174330A1 (en) Neural-stimulating device for generating pseudospontaneous neural activity
US20060079950A1 (en) Cochlear endosteal electrode carrier member
US20090306745A1 (en) Electrode assembly for delivering longitudinal and radial stimulation
JP2008528190A (en) Stimulation device
US8406888B2 (en) Implantable cochlear access device
US8447409B2 (en) Electroneural interface for a medical implant
US20120245534A1 (en) Drug Delivery Electrode with Temporary Fill Tube
US20210001113A1 (en) Prosthesis management of body physiology
US8792999B2 (en) Implantable tissue stimulating electrode assembly
EP3310310B1 (en) Apparatus for treatment of menière's disease
US9440073B2 (en) Cochlear implant stimulation
US20100030301A1 (en) Electrical stimulation for modulation of neural plasticity
US20150100011A1 (en) Development of Active Cells with a Stimulating Prosthesis
US20240066290A1 (en) Medical implant electrodes with controlled porosity

Legal Events

Date Code Title Description
AS Assignment

Owner name: COCHLEAR AMERICAS, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARKER, JOHN L.;PATRICK, JAMES F.;CARTER, PAUL;SIGNING DATES FROM 20090907 TO 20091211;REEL/FRAME:023674/0216

AS Assignment

Owner name: COCHLEAR LIMITED, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COCHLEAR AMERICAS;REEL/FRAME:024364/0970

Effective date: 20100411

AS Assignment

Owner name: COCHLEAR LIMITED, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COCHLEAR AMERICAS;REEL/FRAME:024378/0461

Effective date: 20100411

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION