US20110144656A1 - Robotically controlled medical instrument - Google Patents

Robotically controlled medical instrument Download PDF

Info

Publication number
US20110144656A1
US20110144656A1 US12/960,861 US96086110A US2011144656A1 US 20110144656 A1 US20110144656 A1 US 20110144656A1 US 96086110 A US96086110 A US 96086110A US 2011144656 A1 US2011144656 A1 US 2011144656A1
Authority
US
United States
Prior art keywords
tool
section
instrument
medical instrument
cables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/960,861
Inventor
Woojin Lee
Andres Chamorro, III
Barry Weitzner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hansen Medical Inc
Original Assignee
Hansen Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/011,449 external-priority patent/US20020087048A1/en
Priority claimed from US10/023,024 external-priority patent/US20020095175A1/en
Priority claimed from US10/012,845 external-priority patent/US7169141B2/en
Priority claimed from US10/008,964 external-priority patent/US20020128661A1/en
Priority claimed from US10/011,371 external-priority patent/US7090683B2/en
Application filed by Hansen Medical Inc filed Critical Hansen Medical Inc
Priority to US12/960,861 priority Critical patent/US20110144656A1/en
Publication of US20110144656A1 publication Critical patent/US20110144656A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0469Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0483Hand-held instruments for holding sutures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/06Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
    • A61B17/062Needle manipulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/72Micromanipulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/77Manipulators with motion or force scaling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J3/00Manipulators of master-slave type, i.e. both controlling unit and controlled unit perform corresponding spatial movements
    • B25J3/04Manipulators of master-slave type, i.e. both controlling unit and controlled unit perform corresponding spatial movements involving servo mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/104Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3462Trocars; Puncturing needles with means for changing the diameter or the orientation of the entrance port of the cannula, e.g. for use with different-sized instruments, reduction ports, adapter seals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00026Conductivity or impedance, e.g. of tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00084Temperature
    • A61B2017/00088Temperature using thermistors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00318Steering mechanisms
    • A61B2017/00323Cables or rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00318Steering mechanisms
    • A61B2017/00331Steering mechanisms with preformed bends
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00371Multiple actuation, e.g. pushing of two buttons, or two working tips becoming operational
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • A61B2017/2902Details of shaft characterized by features of the actuating rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2927Details of heads or jaws the angular position of the head being adjustable with respect to the shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2932Transmission of forces to jaw members
    • A61B2017/2933Transmission of forces to jaw members camming or guiding means
    • A61B2017/2936Pins in guiding slots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2932Transmission of forces to jaw members
    • A61B2017/2939Details of linkages or pivot points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2059Mechanical position encoders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms
    • A61B2034/306Wrists with multiple vertebrae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • A61B2034/715Cable tensioning mechanisms for removing slack
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • A61B2034/742Joysticks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • A61B2034/744Mouse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • A61B2090/365Correlation of different images or relation of image positions in respect to the body augmented reality, i.e. correlating a live optical image with another image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • A61B2090/506Supports for surgical instruments, e.g. articulated arms using a parallelogram linkage, e.g. panthograph
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • A61B90/57Accessory clamps
    • A61B2090/571Accessory clamps for clamping a support arm to a bed or other supports
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • A61B5/015By temperature mapping of body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • A61B5/4893Nerves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras

Definitions

  • U.S. application Ser. No. 10/299,588 is also a continuation-in-part of U.S. application Ser. No. 10/023,024 (now abandoned), Ser. No. 10/011,371 (now U.S. Pat. No. 7,090,683), Ser. No. 10/011,449 (now abandoned), Ser. No. 10/010,150 (now U.S. Pat. No. 7,214,230), Ser. No. 10/022,038 (now abandoned), Ser. No. 10/012,586 (now U.S. Pat. No. 7,371,210), all filed on Nov. 16, 2001, and all of which claim the benefit of U.S. Provisional Application No. 60/269,200, filed Feb. 15, 2001, 60/276,217, filed Mar. 15, 2001, 60/276,086, filed Mar. 15, 2001, 60/276,152, filed Mar. 15, 2001, and 60/293,346, filed May 24, 2001.
  • surgeons sits at a master station remotely located from the patient and surgical instrument, and controls the movements of the surgical instrument with an input device.
  • surgeon manipulates the input device with one or both hands, and the instrument replicates the hand and finger movements of the surgeon. Because these replicated movements can be quite complex, the surgical instrument is controlled to move with multiple degrees-of-freedom.
  • a medical instrument assembly comprises an elongated shaft, a tool carried by the distal end of the elongated shaft for performing a medical procedure on a patient, and a plurality of controllably bendable sections spaced along the elongated shaft and disposed proximal to the tool.
  • the controllably bendable sections are flexible.
  • the medical instrument assembly further comprises a plurality of actuation elements extending within the elongated shaft for respectively actuating the controllably bendable sections.
  • the medical instrument assembly further comprises another plurality of actuation elements extending within the elongated shaft for respectively actuating the controllably bendable sections.
  • the actuation elements respectively terminate in distal regions of the controllably bendable sections.
  • the medical instrument assembly further comprises transition segments located at the distal regions of the controllably bendable sections, wherein the actuation elements respectively terminate in the transition segments.
  • the medical instrument assembly further comprises another actuation element extending within the elongated shaft for actuating the tool.
  • the medical instrument assembly may further comprise means for decoupling motion at the controllably bendable sections from the tool actuation.
  • Each of the actuation elements may include a cable.
  • each of the actuation elements may further include a sleeve disposed about the cable to prevent compression of the respective cable and a helical spring disposed about the respective sleeve.
  • the medical instrument assembly further comprises an instrument coupler mounted to the proximal end of the elongated shaft, with the instrument coupler configured for coupling an electromechanical drive to the actuation elements.
  • the instrument coupler carries a plurality of rotatable wheels to which the actuation elements are respectively mounted, and an adapter coupler to which the instrument coupler is configured for being removably mated, with the adapter coupler configured for coupling the electromechanical drive to the adapter coupler.
  • the medical instrument assembly may further comprise cabling extending from the adapter coupler and configured for coupling the drive unit to the adapter coupler.
  • the medical instrument assembly further comprises a carriage on which the instrument coupler is mounted.
  • a robotic medical system comprises the previously described medical instrument assembly, a user interface configured for generating at least one command, a drive unit coupled to the plurality of actuating elements of the medical instrument assembly, and an electric controller configured, in response to the command(s), for directing the drive unit to moves the actuating elements to actuate the controllably bendable sections.
  • the command(s) comprises movements at the user interface
  • the electric controller is configured for directing the drive unit to move the actuating elements to effect movements of the controllably bendable sections corresponding to a movements at the user interface.
  • the user interface is located remotely from the drive unit, the electrical controller is coupled to the drive unit via external cabling, and the drive unit is coupled to the actuating element via external cabling.
  • FIG. 1 is a perspective view illustrating a telerobotic system with which the concepts of the present invention may be practiced
  • FIG. 2 is a schematic diagram illustrating the degrees-of-freedom associated with the slave station of FIG. 1 ;
  • FIG. 3 is a plan view of the instrument insert of the present invention including the stem section and tool;
  • FIG. 4 is a cross-sectional view as taken along line 4 - 4 of FIG. 3 and illustrating further details of the stem section;
  • FIG. 5 is a perspective view of another embodiment of the tool of the present invention employing a flexible wrist section adjacent the tool;
  • FIG. 6 is an exploded perspective view of the embodiment of FIG. 5 ;
  • FIG. 7 is a cross-sectional view of the embodiment of FIG. 5 and as taken along line 7 - 7 of FIG. 6 ;
  • FIG. 8 is a longitudinal cross-sectional view of the embodiment illustrated in FIGS. 5-7 and showing further details at the wrist flexure;
  • FIG. 9 is a longitudinal cross-sectional view similar to that shown in FIG. 8 but for still another embodiment of the present invention using a single actuation element;
  • FIG. 10 is an enlarged fragmentary view of further details of the actuation element at the center of the wrist section
  • FIG. 11 is a cross-sectional view through the actuation element of FIG. 10 as taken along line 11 - 11 ;
  • FIG. 12 is a cross-sectional view through still another embodiment of the actuation element
  • FIG. 13 is still a further cross-sectional view of a further embodiment of the actuation element
  • FIG. 14 is a perspective view of yet another embodiment of the present invention employing a slotted flexible wrist section and a detachable and preferably disposable tool;
  • FIG. 15 is a cross-sectional view through the embodiment of FIG. 14 as taken along line 15 - 15 of FIG. 14 ;
  • FIG. 15A is a fragmentary cross-sectional view of an alternate embodiment of the flexible section
  • FIG. 16 is an exploded perspective view of the embodiment of FIG. 14 showing the detached tool in cross-section;
  • FIG. 17 is a further perspective view of the embodiment of FIG. 14 ;
  • FIGS. 18-20 illustrate sequential cross-sectional views showing the mating of the tool with the distal end of the instrument
  • FIG. 21 is a schematic diagram illustrating principles of the present invention in a catheter or flexible instrument using multiple controllable bendable sections along the instrument;
  • FIG. 22 is a schematic diagram of an embodiment of an instrument with both elbow and wrist pivot joints, as well as a disposable tool
  • FIG. 23 is a schematic diagram of an embodiment of an instrument with just a wrist pivot joint, as well as a disposable tool
  • FIG. 24 is a diagram showing further details of a wrist joint useable with a disposable tool
  • FIG. 25 is a partially cut-away schematic view of another joint construction
  • FIG. 26 is a perspective view of a another embodiment of a tool
  • FIG. 27 is an exploded perspective view of the tool of FIG. 26 illustrating separate components thereof;
  • FIG. 27A is an exploded fragmentary view of one form of resilient member used in the embodiment of FIG. 27 ;
  • FIG. 27B is an exploded fragmentary view of another form of resilient member used in the embodiment of FIG. 27 ;
  • FIG. 28 is a side elevation view of the tool depicted in FIGS. 26 and 27 ;
  • FIG. 29 is an enlarged partial top plan view as seen along line 29 - 29 of
  • FIG. 28 and illustrating further details of the tool
  • FIG. 30 is a cross-sectional view as taken along line 30 - 30 of FIG. 29 showing the tool of the present invention with the jaws in a partially open position;
  • FIG. 31 is a cross-sectional view like that illustrated in FIG. 30 but with the jaws in a fully closed position;
  • FIG. 32 is a somewhat schematic cross-sectional view of the first embodiment of the tool with the resilient pad partially compressed in grasping a small diameter item such as a thread or suture;
  • FIG. 33 is a somewhat schematic cross-sectional view of the first embodiment of the tool with the resilient pad essentially fully compressed in grasping a larger diameter item such as a needle;
  • FIG. 34 is a perspective view of a second embodiment of the invention employing a flexure gap in one of the jaws;
  • FIG. 35 is an exploded perspective view of the tool of this second embodiment of the invention.
  • FIG. 36 is a plan view of the tool of FIGS. 34 and 35 ;
  • FIG. 37 is a cross-sectional view taken along line 37 - 37 of FIG. 36 with the jaws having a slight gap at their closed position;
  • FIG. 38 is a cross-sectional view like that illustrated in FIG. 37 but with the jaws grasping a needle or the like, and with the flexure gap in a substantially closed position;
  • FIG. 39 is a cross-sectional view similar to that depicted in FIGS. 37 and 38 , and of yet another embodiment of the invention illustrating the tool in a partially open position;
  • FIG. 40 is a cross-sectional view the same as that depicted in the embodiment of FIG. 39 but with the jaws in a more closed position;
  • FIG. 41 is a perspective view of an embodiment of a flexible or bendable shaft segment just proximal to the tool
  • FIG. 42 is a cross-sectional view of the embodiment of FIG. 41 as taken along line 17 - 17 of FIG. 16 , and with the jaws in a substantially open position;
  • FIG. 43 is an enlarged partial cross-sectional view similar to that shown in FIG. 42 but with the jaws in a closed position;
  • FIG. 44 is an exploded perspective view showing the components including the flexible or bendable segment of FIG. 41 ;
  • FIG. 45 is a side elevation view of the flexible or bendable section itself
  • FIG. 46 is a cross-sectional view through the flexible or bendable section as taken along line 46 - 46 of FIG. 45 ;
  • FIG. 47 is a cross-sectional view through the flexible or bendable section as taken along line 47 - 47 of FIG. 45 ;
  • FIG. 48A is a perspective view of an alternate embodiment of the tool and flexible section
  • FIG. 48B is an exploded perspective view of the tool and flexible section illustrated in FIG. 48A ;
  • FIG. 48C is a fragmentary perspective view showing a portion of the flexible section shown in FIG. 48B ;
  • FIG. 48D is a plan view of the flexible section illustrated in FIGS. 48A-48C .
  • FIG. 49 illustrates a flexible instrument being used in a stomach of a subject in accordance with the invention.
  • FIG. 50A is a schematic of a flexible instrument with a pull-type cable to operate the end of the instrument in accordance with the invention.
  • FIG. 50B is cross-sectional view of a bendable section of the flexible instrument of FIG. 50A in accordance with the invention.
  • FIG. 1 illustrates a surgical instrument system 10 that includes a master station M at which a surgeon 2 manipulates an input device, and a slave station S including a surgical instrument illustrated generally at 14 .
  • the input device is illustrated at 3 being manipulated by the hand or hands of the surgeon.
  • the surgeon is illustrated as seated in a comfortable chair 4 , and the forearms of the surgeon are typically resting upon armrests 5 .
  • FIG. 1 illustrates a master assembler 7 associated with the master station a and a slave assembly 8 , also referred to as a drive unit, associated with the slave station S.
  • Assemblies 7 and 8 are interconnected by cabling 6 with a controller 9 , which typically has associated with it one or more displays and a keyboard.
  • the drive unit 8 is located remotely from the operative site and is preferably positioned a distance away from the sterile field.
  • the drive unit 8 is controlled by a computer system that is part of the controller 9 .
  • the master station M may also be referred to as a user interface vis-vis the controller 9 .
  • the computer translates the commands issued at the user interface into an electronically driven motion in the drive unit 8 , and the surgical instrument, which is tethered to the drive unit through the cabling connections, produces the desired replicated motion. That is, the controller 9 couples the master station M and the slave station S and is operated in accordance with a computer algorithm, to be described in further detail below.
  • the controller 9 receives a command from the input device 3 and controls the movement of the surgical instrument 14 so as to replicate the input manipulation.
  • FIG. 1 also shows a patient P, upon whom the surgical procedure is performed, lying on an operating table T.
  • the surgical instrument 14 includes two separate instruments one on either side of an endoscope 13 .
  • the endoscope 13 includes a camera to remotely view the operation site.
  • the camera may be mounted on the distal end of the instrument insert, or may be positioned away from the site to provide an additional perspective on the surgical operation.
  • FIG. 1 three separate incisions are shown in the patient P, two side incisions for accommodating the surgical instruments and a central incision that accommodates the viewing endoscope. A drape covering the patient is also shown with a single opening.
  • the surgical instrument 14 also includes a surgical adaptor or guide 15 and an instrument insert or member 16 .
  • the surgical adaptor 15 is basically a passive mechanical device, driven by the attached cable array. Although the surgical adaptor can be easily seen in FIG. 1 , the instrument member 16 ( FIG. 3 ) is not clearly illustrated as it extends through the adaptor 15 .
  • the instrument insert 16 carries at its distal end a tool 18 , described in greater detail below.
  • surgical instrument Although reference is made herein to a “surgical instrument,” it is contemplated that the principles of this invention also apply to other medical instruments, not necessarily for surgery, and including, but not limited to, such other implements as catheters, as well as diagnostic and therapeutic instruments and implements.
  • FIG. 1 there is illustrated cabling 12 coupling the instrument 14 to the drive unit 8 .
  • the cabling 12 is preferably detachable from the drive unit 8 .
  • the surgical adaptor 15 may be of relatively simple construction. It may thus be designed for particular surgical applications such as abdominal, cardiac, spinal, arthroscopic, sinus, neural, etc.
  • the instrument insert 16 couples to the adaptor 15 , and essentially provides a means for exchanging the instrument tools.
  • the tools may include, for example, forceps, scissors, needle drivers, electrocautery, etc.
  • a surgeon can manipulate the input device 3 at a surgeon's interface 11 , to effect a desired motion of the tool 18 within the patient.
  • the movement of the handle or hand assembly at input device 3 is interpreted by the controller 9 to control the movement of the tool 18 .
  • the surgical instrument 14 is preferably mounted on a rigid post 19 that is affixed to but removable from the surgical table T. This mounting arrangement permits the instrument to remain fixed relative to the patient even if the table is repositioned. In accordance with the present invention the concepts can be practiced even with a single surgical instrument, although, in FIG. 1 there are illustrated two such instruments.
  • the surgical instruments 14 are connected to the respective drive units 8 with cablings that include two mechanical cable-in-conduit bundles 21 and 22 .
  • These cable bundles 21 and 22 may terminate at two connection modules, which removably attach to the drive unit 8 .
  • connection modules 23 and 24 can be found in the earlier co-pending application No. PCT/US00/12553, the entire contents of which are incorporated herein by reference. Although two cable bundles are described here, it is to be understood that more or fewer cable bundles can be used.
  • the drive unit 8 is preferably located outside the sterile field, it may be draped with a sterile barrier so that it can be operated within the sterile field.
  • the tool 18 of the surgical instrument 14 is inserted into the patient through an incision or opening, and the instrument 14 is then mounted to the rigid post 19 using a mounting bracket 25 .
  • the cable bundles 21 and 22 are then extended away from the operative area to the drive unit 8 , and the connection modules of the cable bundles are engaged into the drive unit 8 .
  • Instrument inserts 16 may then be passed through the surgical adaptor 15 , and coupled laterally with the surgical adaptor 15 through an adaptor coupler, as described below in further detail.
  • the instrument 14 is controlled by the input device 3 , which is manipulated by the surgeon. Movement of the hand assembly produces proportional movement of the instrument 14 through the coordinating action of the controller 9 . It is typical for the movement of a single hand control to control movement of a single instrument.
  • FIG. 1 shows a second input device that is used to control an additional instrument. Accordingly, in FIG. 1 two input devices associated with the two instruments are illustrated.
  • the surgeon's interface 11 is in electrical communication with the controller 9 primarily by way of the cabling 6 through the master assembly 7 .
  • Cabling 6 also couples the controller 9 to the actuation or drive unit 8 .
  • the actuation or drive unit 8 is in mechanical communication with the instrument 14 .
  • the mechanical communication with the instrument allows the electromechanical components to be removed from the operative region, and preferably from the sterile field.
  • the surgical instrument 14 provides a number of independent motions, or degrees-of-freedom, to the tool 18 . These degrees-of-freedom are provided by both the surgical adaptor 15 and the instrument insert 16 .
  • FIG. 2 Shown in FIG. 2 is a schematic representation of the joint movement associated with the slave station S.
  • the first joint movement J 1 represents a pivoting notion of the instrument about the pivot pin 225 at axis 225 A.
  • the movement relating to joint J 2 which is a transitional movement of the carriage 226 on the rails 224 to move the carriage as well as the instrument 14 , supported therefrom, in the direction indicated by the arrow 227 in FIG. 2 towards and away from the operative site OS.
  • the cabling in the bundle 21 controls both the J 1 and J 21 movements.
  • the distal end of the guide tube 17 extends to the operation site OS.
  • the operation site may be defined as the general area in close proximity to where movement of the tool occurs, usually in the viewing area of the endoscope and away from the incision.
  • FIG. 2 also depicts the rotary motion of both the adaptor tube 17 and the instrument stem. These are illustrated in FIG. 2 as respective motions or joints J 3 (adaptor tube rotation) and J 4 (instrument stem rotation). Motion J 5 indicates a wrist pivot or, alternatively, a wrist flexure. Finally, motions J 6 and J 7 represent the end jaw motions of the tool 18 .
  • joints J 4 -J 7 allows the instrument insert 16 to be actuated with four degrees-of-freedom.
  • the insert 16 and adaptor 15 provide the surgical instrument 14 with seven degrees-of-freedom.
  • four degrees-of-freedom are described here for the instrument insert 16 , it is to be understood that greater or fewer numbers of degrees-of-freedom are possible with different instrument inserts. For example an energized insert with only one gripper may be useful for electro-surgery applications, while an insert with an additional linear motion may provide stapling capability.
  • FIG. 2 shows the incision point along the dashed line 485 , and a cannula 487 that in some surgical procedures is used in combination with a trocar to pierce the skin at the incision.
  • the guide tube 17 is inserted through the flexible cannula 487 so that the tool is at the operative site OS.
  • the cannula typically has a port at which a gas such as carbon dioxide enters for insufflating the patient.
  • the cannula also is usually provided with a switch or button that can be actuated to desufflate.
  • the cannula is used primarily for guiding the instrument, but may include a valve mechanism for preventing escape of gas from the body.
  • FIG. 3 is a plan view showing an instrument insert including the tool 18 , and elongated sections including a rigid section 302 and a flexible section 303 , with the tool 18 mounted at the end of the flexible stem section 303 .
  • the coupler 300 includes one or more wheels that laterally engage wheels of the coupler associated with the surgical adaptor.
  • the coupler 300 also includes an axial wheel 306 that also engages a wheel on the adaptor.
  • the axial engagement wheel 306 is fixed to the rigid stem 302 , and is used to rotate the tool axially at the distal end of the flexible stem section 303 .
  • FIG. 3 illustrates the base coupler 300 of the instrument insert 16 with wheels 330 , 332 , and 334 that have half-moon construction for engagement with mating like wheels of the adaptor. These wheels are meant to mate with the corresponding wheels of the adaptor. Also illustrated in FIG. 3 are capstans or idler pulleys 340 , 342 , and 344 associated with wheels 330 , 332 , and 334 , respectively.
  • Each wheel of the coupler has two cables that are affixed to the wheel and wrapped about opposite sides at its base.
  • the lower cable rides over one of the idler pulleys or capstans, which routes the cables toward the center of the instrument stem 302 .
  • the cables are kept near the center of the instrument stem, since the closer the cables are to the central axis of the stem, the less disturbance the cables experience as the stem section moves (rotates).
  • the cables may then be routed individually through plastic tubes that may be affixed, respectively, to the proximal end of the rigid stem 302 and the distal end of the flexible stem section 303 .
  • the cables may each be enclosed in separate plastic tubes or sheathes only in the flexible section of the instrument stem (see, e.g., bundle 284 in FIG. 4 ).
  • the tubes assist in maintaining constant length pathways for the cables as they move longitudinally within the instrument stem.
  • the coupler 300 there are six cables that connect to each of the wheels. Two cables connect to each wheel and one of these cables extends about the associated idler pulley or capstan. These are illustrated in FIG. 3 as idler pulleys 340 , 342 and 344 . Thus, six separate cables extend through the rigid stem 302 and down through the flexible stem section 303 to the area of the tool.
  • Associated with the wheels 330 , 332 , and 334 are six cables that extend through the sections 302 and 303 , as illustrated in FIG. 4 .
  • One set of these cables controls the pivoting, such as the pivoting movement about pin 620 .
  • the other cables control the operation at the gripping jaws. For example, one pair of cables may control the movement of the lower jaw 652 , while another cable pair may control the operation of the upper jaw 650 .
  • FIG. 4 there is shown the rigid section 302 and the flexible section 303 of the instrument insert 16 .
  • a series of six cables, illustrated at arrow 280 in FIG. 4 extend through these sections and may be considered as separated into three sets for controlling the tool 18 , to provide the motions indicated in FIG. 2 as J 5 -J 7 .
  • the cabling is supported near to the center axis of the rigid and flexible sections. Note that “de-coupling” simply means that any one controlled action associated with the tool, when performed, does not interfere with other controlled actions that may not be selected at the time that the one controlled action is taking place.
  • the cables On the rigid section side of the block 282 the cables may be unsupported as shown or they could be held within a plastic sleeve either individually and/or as a group. Because the cables are maintained in tension and the rigid section is not meant to bend or flex, the cables can be held in position by being supported, as a group, at the center of block 282 .
  • each individual cable is preferably held within a cable sleeve, such as illustrated in FIGS. 6 and 8 , to be described later in further detail.
  • the cables contained in the sleeves 292 are twisted, for example, 180 degrees over say 8 inches.
  • spacers 286 may be spaced along the flexible section 303 to hold the bundle 284 at the center of the section 303 .
  • the individual cable sleeves also define a substantially fixed length pathway for each cable so that even though the instrument may move or rotate, the cable lengths should stay the same within the flexible stem section.
  • the sleeves may be held in fixed position at their ends such as at block 282 at one end and at the tool 18 at the other end.
  • the outer flexible tube 288 may be a pliable plastic preferably having a fluted or bellows-like configuration, as illustrated.
  • the limited twisting of the cable bundle prevents the formation of kinks or loops in individual cables that might occur if the cables were straight and parallel through the flexible section.
  • This twisting also provides the de-coupling between motions, so that actuation of one of the degrees-of-freedom (J 5 -J 7 ) does not cause a responding action at another degree-of-freedom (J 5 -J 7 ).
  • the twisting essentially occurs between the block 282 and the location where the bundle enters the wrist joint (for example, the entry to base 600 ).
  • the 180 degree twisting of the bundle ensures that the cable sheathes are neither stretched nor compressed, even as the bendable section is bent or rotated.
  • the construction of one form of tool is illustrated in FIGS. 3 and 4 .
  • the tool 18 includes the base 600 , link 601 , upper grip or jaw 650 and lower grip or jaw 652 .
  • the base 600 is affixed to the flexible stem section 303 .
  • this flexible section may be constructed of a ribbed plastic. This flexible section allows the instrument to readily bend through the curved actuator tube 17 .
  • the link 601 is rotatably connected to the base 600 about an axis 620 A represented by pivot pin 620 .
  • the upper and lower jaws 650 and 652 are rotatably connected to the link about axis 605 , where axis 605 is essentially perpendicular to the wrist axis at pin 620 .
  • Another pivot pin defines axis 605 .
  • the cabling may travel through the instrument insert stem (section 303 ) and through a hole in the base 600 , wrapping around a curved surface on link 601 , and then attaches on link 601 .
  • Tension on one set of cables rotates the link 601 , and tension on other cables operates the upper and lower grips 650 and 652 , about axis pin 605 .
  • the cabling is provided in pairs to provide an opposing action operation, including opposite routing paths, on the opposite sides of the instrument insert.
  • the set of cables that control the jaws travels through the stem 302 , 303 and though holes in the base 600 . These cables then pass between two fixed posts 621 that constrain the cables so that they pass substantially through an axis 620 A, which defines the rotational motion of the link 601 .
  • This construction allows free rotation of the link 601 with essentially no length changes in the cables that actuate the jaws. In other words, these cables, which actuate the grips 650 and 652 , are effectively decoupled from the motion of link 601 .
  • These cables pass over rounded sections and terminate on grips (or jaws) 650 and 652 , respectively. Tension on one pair of cables rotate grips 650 and 652 counter-clockwise about axis 605 .
  • Another set of cables provides the clockwise motion to grips or jaws 650 and 652 , respectively.
  • the ends of the cables can be secured at the jaws 650 and 652 with the use of an adhesive such as epoxy glue, or the cables could be crimped or pinned to the jaw.
  • the instrument 16 slides through the guide tube 17 of adaptor 15 , and laterally engages the adaptor coupler 230 pivotally mounted to the base piece 234 .
  • the base piece 234 is rotationally mounted to the guide tube 17 , and is affixed to the linear slider or carriage 226 .
  • the carriage 226 is pivotally mounted at the pivot 225 about the axis 225 A.
  • FIGS. 2-4 employs a fixed wrist pivot.
  • FIGS. 5-8 An alternate construction is shown in FIGS. 5-8 in which there is provided, in place of a wrist pivot, a controllable flexing or bending section.
  • FIGS. 5-8 similar reference characters are used for many of the parts as they correspond to elements found in FIGS. 2-4 .
  • the construction in FIG. 5 may be employed with a stem section such as illustrated in FIGS. 3 and 4 with a curved guide tube.
  • the tool 18 includes an upper grip or jaw 650 and a lower grip or jaw 652 , supported from a link 601 .
  • Each of the jaws 650 , 652 as well as the link 601 may be constructed of metal, or alternatively, the link 601 may be constructed of a hard plastic.
  • the link 601 is engaged with the end of the flexible stem section 303 .
  • FIG. 4 shows the ribbed or fluted plastic construction of the flexible stem section 303 .
  • the section 303 may be smooth, at least at its distal end, as shown at 304 in FIG. 5 .
  • both sections 302 and 303 can be rigid depending upon the particular application.
  • FIG. 5 shows only the end of the stem section 303 (at 304 ), terminating in bending or flexing section 660 .
  • Section 660 may be integrally formed with the rest of section 303 .
  • This section 660 is controllably bendable or flexible usually from a remote location such as in accordance with the telerobotic system 10 of FIG. 1 .
  • the stem section 303 is preferably constructed so as to be flexible and may have either fluted or smooth outer surfaces.
  • flexibility and bending is enhanced by a bellows configuration 662 having saw-tooth shape of peaks and valleys as shown in FIG. 8 .
  • the distal end of the bending section 660 terminates with an opening 666 for receiving the end 668 of the link 601 .
  • the bellows configuration may be made of a single piece of material. Alternatively, the bellows configuration 662 may be made of segments connected together, for example, by welds. In any case, the bellows configuration 662 is a unibody construction.
  • the bending or flexing section 660 is constructed to have orthogonal bending movements to provide both pitch and yaw movement of the tool. This is accomplished by using four cables separated at 90.degree. intervals. These four cables include the cables 606 , 607 , 616 , and 617 . The operation of cables 606 and 607 provides flexing in one degree-of-freedom while an added degree-of-freedom (orthogonal to the just mentioned one degree-of-freedom) is provided by operation of cables 616 and 617 . As illustrated in FIG. 8 , these cables extend through the bellows about half way between each peak and valley and thus run in parallel but close to the outer periphery of the flexible section 660 .
  • Each of the cables 606 , 607 , 616 , and 617 terminate in a respective ball end 606 A, 607 A, 616 A, and 617 A, tensioned against an end wall 615 .
  • These same cables also are supported by and extend through retainer block 621 . Within section 304 these cables also run near the outer wall as shown to the left in FIG. 8 where cables 616 and 617 are illustrated.
  • the cables 608 , 609 , 610 , and 611 extend through the flexible stem section 303 and also through the retainer block 621 , flexing section 660 , and the wall 615 . These cables extend to the respective jaws ( 650 , 652 ) to control the operation thereof in a manner similar to that described previously in connection with FIGS. 2-4 .
  • the tool actuation cables extend through the center of the bellows and are supported and retained between block 621 and wall 615 by the center sheath 290 .
  • the center sheath 290 may be constructed of a soft plastic material, and has an inner diameter sufficient to receive the bundle of cables, and an outer diameter that fits with little clearance against the inner diameter of the bellows 662 .
  • the sheath 290 extends between the block 621 and the wall 615 and is dimensioned to hold the cables, as a bundle, at the center axis of the bellows section. Keeping the bundle near the center axis provides proper de-coupling between the various degrees-of-freedom.
  • each of the cables is contained in its own cable sleeve 292 .
  • These sleeves are sufficiently stiff to maintain constant cable lengths within the flexible or bendable section.
  • these sleeves are shown extending between retainer block 621 and wall 615 .
  • the cables are shown extending from the sleeve when the cables reach the end tool.
  • FIG. 8 also illustrates the aforementioned twisting of the cables that assists in providing the de-coupling action between the tool operation and the controlled flexing or bending.
  • the cables are twisted about 180 degrees between the block 621 and wall 615 .
  • the bellows section itself, may have a length of about one to three inches. Also, more than one bellows section may be used to provide controlled bending at more than one location. In that case separate control cabling is used for each section (see, e.g., FIG. 21 described later).
  • the limited twisting of the cable bundle prevents the formation of kinks or loops in individual cables that might occur if the cables were left straight and parallel to one another.
  • This twisting also de-couples certain degrees of motions, so that actuation of one of the degrees-of-freedom does not cause a responding action at another degree-of-freedom.
  • the twisting occurs between the block 621 and the location where the bundle enters the wrist joint, i.e., the entry to base 601 .
  • the individual cable sleeves also define a substantially fixed length pathway for each cable so that even though the instrument may move or rotate the cable lengths stay the same within the section 660 .
  • the cross-sectional view of FIG. 8 gives details of the cabling in bending section 660 .
  • the sheath 290 extends essentially between block 621 and wall 615 and houses the twisted cables/sleeves.
  • the individual sleeves 292 can be considered as terminating at respective ends in blocks 621 and 631 .
  • Each of the sleeves may be glued or secured in any other appropriate manner in its supporting end block. This prevents the sleeves from moving axially as the cables are activated.
  • the sleeves are preferably constructed of a plastic that is flexible and yet has sufficient rigidity so they do not kink when the cables are activated.
  • the sleeves also define fixed length pathways that do not compress or elongate as the cables are operated.
  • the 180 degrees twist in the cables/sleeves occurs essentially between blocks 621 and 631 .
  • This “twisting” of the center cables/sleeves allows the section 660 to be controllably bent, while preventing or minimizing any transfer of motion to the tool operating cables.
  • this arrangement also prevents cross-coupling from the tool operation to the bending control, so that the tool operation alone does not cause any undesired bending of the section 660 .
  • FIGS. 9-13 there is shown another embodiment that includes bellows which can be bent of flexed in a controllable manner, for example, through a user interface like that shown in FIG. 1 .
  • Similar reference characters are used in FIG. 9 as those used in describing the embodiment of FIG. 5 .
  • the embodiment of FIG. 9 provides a single cable (or rod) actuation that simplifies the instrument construction, particularly at the tool end of the instrument. The single actuation is possible because the flexible section has two degrees-of-freedom to provide both pitch and yaw.
  • the tool 18 includes an upper grip or jaw 650 and a lower grip or jaw 652 , supported from a housing 670 .
  • Each of the jaws 650 , 652 , as well as the housing 670 may be constructed of metal, or alternatively, the housing 670 may be constructed of a hard plastic.
  • the housing 670 is engaged to the flexible stem section 303 with the bellows 662 .
  • the flexible stem section 303 can be a ribbed or fluted plastic construction like that shown in FIG. 4 , or alternatively, the section 303 may be smooth as shown at 304 in FIG. 9 .
  • the jaws are operated from a single push/pull cable 672 that extends through the instrument stem and through the bellows 662 of the flexible or bendable section 660 .
  • the cable is centered in the various sections as depicted in FIG. 9 so that when the bendable section is activated, no movement is transferred to the tool actuation cable.
  • the bellows section 662 expands on one side and compresses on the other side, leaving the center portion unchanged in length, and thus not effecting the cable action.
  • the jaws themselves are supported by a link bar arrangement shown at 675 that is appropriately secured at the distal end of the cable 672 . In the position shown in FIG. 9 the jaws are open, but by pulling on the cable away from the jaws the proximal end the link bar 675 pivots and closes the jaws 650 , 652 .
  • FIG. 9 shows only the end portion of the stem section 303 , i.e., the portion at 304 , terminating in bending or flexing section 660 .
  • This section 660 is bent or flexed in a controllable manner usually from a remote location as depicted FIG. 1 .
  • the stem section 303 is preferably constructed to be flexible and may have either fluted or smooth outer surfaces. Also, at the bending or flexing section 660 , flexibility and bending is enhanced by means of constructing this section with a bellows configuration 66 having peaks and valleys in a saw-tooth shape arrangement as illustrated in the cross-sectional view of FIG. 9 .
  • the distal end of the bending section 660 has an opening for receiving the end of the housing 670 .
  • a wall 615 is positioned at the distal end of the bellows 662 .
  • the bending or flexing section 660 can be bent to provide both pitch and yaw degrees of motion to the tool. This is accomplished by using four cables 606 , 607 , 616 , and 617 that are separated at 90.degree. intervals. The operation of cables 606 and 607 provides flexing in one degree-of-freedom while another degree-of-freedom is provided by the operation of cables 616 and 617 . As illustrated in FIG. 9 , these cables extend through the bellows about half way between each peak and valley of the respective bellows, and thus are parallel and near the outer periphery of the flexible section 660 .
  • Each of the cables 606 , 607 , 616 , and 617 terminates in a respective ball end 606 A, 607 A, 616 A, and 617 A, tensioned against the end wall 615 .
  • These cables also are supported by and extend through retainer block 621 . Within section 304 these cables also run near the inner surface of the outer wall of the section 304 , as shown to the left in FIG. 9 where cables 616 and 617 are illustrated.
  • the single actuation cable 672 provides all the action that is required to operate the tool, which simplifies the construction of the instrument and makes it easier to keep the single cable centered in the instrument.
  • a supporting sleeve 680 that receives the cable 672 with a snug fit.
  • the sleeve 680 ( FIG. 10 ) is preferably constructed of a polyethylene plastic such as PEEK which has the flexibility to flex with bending at the section 660 , but at the same time is sufficiently rigid to properly retain and hold the supported cable 672 to enable the cable to readily slide within the supporting sleeve 680 when performing its function.
  • Sleeve 680 defines a fixed length for the cable and does not allow any expansion or compression of the cable or sleeve.
  • the sleeve 680 may extend from the wall 615 back through the retainer block 621 and into the flexible section of the instrument, as shown in FIG. 9 .
  • the sleeve 680 may extend only through the section 660 and terminate at block 621 .
  • a helical spring 682 having an outer diameter to allow it to fit snugly within the inner diameter of the bellows 662 .
  • a helical spring 682 having an outer diameter to allow it to fit snugly within the inner diameter of the bellows 662 .
  • Opposite ends of the helical spring 682 are located between the block 621 and wall 615 .
  • FIG. 10 shows the spring shape and the relationship of the helical spring to the sleeve 680 and the actuation cable 672 .
  • the coils of the spring are shown spaced apart, but they can be more closely spaced then shown or completely closed.
  • the spring 682 may be free-floating about the sleeve 680 , and is preferably not engaged in any passage in the end supports, such as the passage in block 621 .
  • the sleeve 680 receives the cable 672 and is fixed in position relative to block 621 and wall 615 . Passages are provided in block 621 and wall 615 , and a glue or other securing arrangement is preferably used to hold the sleeve fixed at the block 621 and wall 615 .
  • the spring 682 is also used as a filler or spacer between the sleeve 680 and the bellows 662 inner surface.
  • the spring provides a fixed position spacer since it is typically a metal, and thus will maintain the centering of the sleeve/cable, and yet is also flexible enough to bend when the section 660 is bent in a controlled manner.
  • the sleeve itself is preferably made of plastic such as PEEK which has sufficient strength to receive and guide the cable, yet is flexible enough so that it will not kink or distort, and thus keeps the cable in a proper state for activation, and defines a fixed length for the cable.
  • the cable length at the center axis of section 660 does not change when the section 660 is bent. That is, the bellows shortens on one side and expands on the other side while keeping the center axis length unchanged. In this way when bending occurs at section 660 there is no transfer of motion to the cable 672 which could undesirably move the jaws. Hence, the bending motion is de-coupled from the tool operation motion, and vice versa.
  • FIG. 11 is a cross-sectional view taken along line 11 - 11 of FIG. 10 showing the centered cable 672 , plastic sleeve 680 , and the helical spring 682 .
  • FIG. 12 is a similar cross-sectional view but for an alternate embodiment using only the center cable 672 and the sleeve 680 .
  • the sleeve 680 is larger in outer diameter in comparison to the sleeve shown in FIG. 11 so that there is a proper and close fit between the sleeve and the inside of the bellows.
  • FIG. 13 is a cross-sectional view through another embodiment of the cable support.
  • This embodiment also has the center cable 672 contained within the sleeve 680 , but in place of the spring 682 there is instead used a spacer 681 made of, for example, plastic, to keep the sleeve and cable centered in the bellows.
  • the spacer 681 may be constructed of a softer plastic than the sleeve 680 , or may be made of a plastic foam material.
  • FIG. 9 One of the benefits of the embodiment of FIG. 9 is that only a single cable is necessary to activate the tool. Recall that the pitch and yaw of the tool is controlled at the flexible wrist section 660 shown in FIG. 9 .
  • This arrangement lends itself to making the tool disposable or at the very least detachable from the instrument body so that it can be replaced with a substitute tool.
  • a detachable embodiment of the present invention is illustrated in FIG. 14 and the companion views are shown in FIGS. 15-20 . Besides being detachable this arrangement also makes it possible to provide at least a resposable and preferably a disposable instrument tip or tool.
  • FIG. 14 a disposable tip is illustrated in conjunction with a flexible shaft or tube having a remotely controllable bending or flexing section 700 .
  • the medical instrument may include an elongated shaft, such as shaft section 710 shown in FIGS. 14 and 15 , having proximal and distal ends, and a tool, such as graspers 702 and 704 , supported from the distal end of the elongated shaft and useable in performing a medical procedure on a subject.
  • the distal end of the elongated shaft and the tool have respective removably engaging portions that are readily engagable for positioning the tool at the distal end of the elongated shaft, and readily disengagable for removal of the tool from the distal end of the elongated shaft.
  • the tool may be detachable to facilitae substituting another tool, or the tool may be constructed to be readily disposable.
  • the removably engaging portions may be snap-fitted together, or, as illustrated here, may be provided by a screw interlock between the distal end of the instrument shaft and the base or housing of the tool. Also, other forms of detachable engaging portions are considered as falling within the scope of the present invention.
  • the detachable or disposable tool is used with a flexible controllably bendable section.
  • the disposable tool can be used with a wrist pivot or even a pair of successive wrist pivots that are orthogonal to one another for providing pitch and yaw movement at the tool.
  • the disposable tool in this version is also preferably actuated by a single actuation element, cable or the like.
  • the tool is actuated by a single tendon or cable 736 that extends through the flexible section 700 .
  • the bending or flexing section 700 is constructed to have orthogonal bending movements by pulling on four cables 706 , 707 , 716 , and 717 separated at about 90.degree. intervals, and by using a center support 726 with ribs 712 extending from the center support 726 and defining slots 714 between adjacent ribs, as depicted in FIG. 15 .
  • the ribs 712 extend from a center support 726 that has extending therethrough a passage for receiving the cable 736 positioned within a sheath 730 .
  • the ribs 712 also provide a guide structure to the four cables 706 , 707 , 716 , and 717 .
  • the bending section 700 is a unibody construction that extends from the end of tube section 710 , which itself may be flexible, and it may be smooth as shown, or may be fluted as illustrated in FIG. 4 .
  • This version enables the bending section to be bent in orthogonal directions by the use of the four cables 706 , 707 , 716 , and 717 .
  • the operation of cables 706 and 707 provides flexing in one degree-of-freedom while another orthogonal degree-of-freedom is provided by the operation of cables 716 and 717 .
  • Each of the cables 706 , 707 , 716 , and 717 has at their terminating ends respective balls 706 A, 707 A, 716 A, and 717 A that may be held in corresponding recesses in a distal end wall 719 of the flexible section 700 .
  • a bellows arrangement such as shown in FIG. 5 or 9 can be used.
  • the structure shown in FIGS. 14-17 preferably includes a plastic stiffener sheath or sleeve 730 that surrounds the cable 736 , and that fits closely within the passage of the center support wall 726 .
  • the sleeve 730 is preferably constructed of a polyethylene plastic such as PEEK which has enough flexibility to flex with the bending section section 700 , but at the same time is sufficiently rigid to properly retain, center and hold the supported cable to allow the cable 736 to readily slide within the supporting sleeve 730 in performing its function.
  • the sleeve 730 may extend from the distal end of the flex section 700 , back through the passage in the wall 726 , and into the shaft section 710 of the instrument, as shown in FIG. 15 .
  • FIG. 15A there is shown an alternate embodiment for the bending section 700 in which the sleeve 730 is eliminated.
  • the passage in the wall 726 is dimensioned to directly and snugly receive the cable 736 with a close tolerance fit but having sufficient clearance to allow the cable to readily slide in the instrument.
  • the grippers 702 and 704 are supported for opening and closing by the use of a pivot pin 735 that extends along axis 735 A in a housing 740 .
  • a pivot pin 735 that extends along axis 735 A in a housing 740 .
  • the pin 735 may be supported at its ends on opposite sides of housing 740 .
  • the tool also includes a pivot linkage 742 that intercouples the grippers with the actuation cable 736 such that as the linkage is moved in the axial direction by the cable 736 to open or close the jaws (or grippers).
  • a pivot linkage 742 that intercouples the grippers with the actuation cable 736 such that as the linkage is moved in the axial direction by the cable 736 to open or close the jaws (or grippers).
  • FIG. 15 the linkage and tool are shown in solid outline in the closed position, which corresponds to a “pulling” of the cable in a direction away from the tool.
  • FIG. 15 also shows, in dotted outline, the linkage and grippers in an open position, which corresponds to a “pushing” of the cable in a direction toward the tool.
  • the grippers themselves are prevented from any axial movement by the support at pin 735 , so when the linkage is operated from the cable 736 the resulting action is either opening or closing of the grippers, depending upon the direction of longitudinal translation of the actuating cable 736 .
  • removably engaging portions which in the illustrated embodiment are formed by mating threaded portions. Further, these mating portions are provided both with respect to the actuation element (cable) as well as the stationary components of the tool and tube.
  • the tool housing has a threaded portion 746 with female threads
  • the distal end of the flexible section 700 as shown in FIG. 16
  • the end of the actuation cable 736 is terminated at block 750 , passing through a center passage in the threaded portion 748 .
  • the block 750 interacting with arms 751 , allows longitudinal sliding of the cable 736 , but prevents rotation thereof so that the tool can be screwed onto the shaft without rotating the actuation cable.
  • the block 750 supports a male threaded shaft 753 that is adapted to mate with the tool.
  • the threaded portion at 753 may have twice the threads per length as the threaded portion 748 .
  • the block 750 interacts with the arms as the tool is fully engaged to compensate for differences in thread pitch between the engaging members.
  • FIG. 17 shows the end of this linkage supporting a female threaded piece 760 .
  • the female piece 760 is threaded onto the male threaded shaft 753 in the direction indicated by the rotational direction arrow 770 .
  • FIGS. 18-20 there is shown the sequence of steps to attach the instrument tip to the shaft of the instrument. These views are somewhat schematic and are for the purpose of merely illustrating the steps taken in attaching the tool to the instrument shaft.
  • FIG. 18 the tool is first illustrated with its housing 740 about to engage at threaded female piece 760 with the corresponding threaded male shaft 753 .
  • the threads of pieces 760 and shaft 753 are finer that the threaded portions 748 and 746 .
  • the threaded piece 760 and shaft 753 are designed such that only about four turns are necessary to fully seat these members together.
  • the sections 746 and 748 have courser threads so that it takes, say, only about two turns to engage the two sections together.
  • FIG. 19 illustrates the positions of the various components after two turns have occurred between threaded shaft 753 and threaded piece 760 , and the other outer mating threaded sections are to engage.
  • the threaded portions 746 and 748 engage and after two more turns of the tool, the tool is fully engaged with the shaft, as illustrated in FIG. 20 .
  • the detents are also engaged so that the tool is, in essence, locked to the instrument shaft and ready for use.
  • the block 750 is free to move inward away from the tool.
  • FIG. 21 there is shown an embodiment having a detachable and disposable tool, and particularly adapted for application to a flexible instrument including a catheter.
  • a detachable and disposable tool and particularly adapted for application to a flexible instrument including a catheter.
  • the tool is operated remotely in a telerobotic manner from a user device such as shown in FIG. 1 .
  • the use of multiple controllably bendable segments as shown in FIG. 21 is particularly advantageous in a flexible instrument to assist in guidance thereof such as, for example, in vessels or arteries.
  • FIG. 21 shows primarily the distal end of a flexible instrument with the more proximal portions of the instrument being supported and driven in a manner similar to that illustrated in FIGS. 1 and 2 .
  • the flexible instrument 800 has two bending sections 810 and 815 spaced along the instrument shaft that are remotely actuable. In other configurations, these sections 810 and 815 can be formed directly in series, and more than two controllable segments can be used.
  • a tool 820 is positioned at the distal end of the instrument, and is preferably constructed to be disposable and may be substantially the same as the tool illustrated in FIGS. 14-17 including the interengaging portions for detachability of both the tool body and the tool actuation element. As shown in FIG.
  • a cable 825 is used as the actuation element. Also illustrated in FIG. 21 are instrument transition segments 830 and 835 , which may be similarly constructed as the flexible section 303 shown in FIG. 4 . Alternatively, one or both of these sections 830 , 835 may be rigid.
  • the actuation elements (cables) that are not used to operate a particular section run preferably through the center of the respective section to provide the proper de-coupling between the various degrees of movement.
  • the center cable bundle 840 through the section 810 includes the cables to operate section 815 and the tool 820 .
  • each section 810 , 815 is controlled with both pitch and yaw movements, then four cables are used to actuate each section.
  • the actuation of each section is similar to the actuation of the embodiments shown earlier in FIGS. 5 and 9 .
  • the aforementioned “twisting” concept is also preferably used in each of these sections 810 , 815 where multiple cables are running through them, particularly in section 810 where five cables extend along the center of the section (four for actuation of the section 815 and one for tool actuation) similar to that shown in FIG. 8 .
  • FIG. 21 shows two of these cables terminating at 812 and used to operate and move the section 810 with one degree of freedom. Two other cables (displaced about 90 degrees) also terminate at the same general area and are used to operate the bending section 810 with the other degree-of-freedom.
  • section 835 four cables at 836 branch outwardly and terminate at the end of section 815 at 837 to control the flexing of section 815 .
  • section 815 there is thus only the single tool actuation cable 825 contained in a sheath extending through the center of the section.
  • FIG. 21 shows only two of the cables 836 for controlling one of the degrees-of-freedom of movement of the section 815 , there are two other cables (displaced about 90 degrees) that also terminate at the same location for the other degree-of-freedom of control of section 815 .
  • FIG. 8 can be made for the operation of the bending movement of the sections with the use of the cables.
  • FIG. 21 may be used for any number of different surgical procedures. Flexible instruments of this general type are shown in co-pending applications that have been incorporated herein by reference in their entirety. Although FIG. 21 shows four cables that are used to actuate a respective bending section, more or fewer cables can be used in each section. For example, if only one degree-of-freedom is desired in section 810 then only two actuating cables are employed to control bending in only one plane. The instrument may also be controlled for rotation to provide another degree-of-freedom.
  • FIGS. 22 and 23 disclose in a schematic manner this same disposability feature as applies to an instrument, whether flexible or rigid, that employs a wrist pivot or wrist and elbow pivot.
  • FIG. 22 is a schematic diagram of the instrument illustrating both elbow and wrist pivot joints, as well as the disposable tool.
  • FIG. 23 shows just a wrist pivot joint with a disposable tool. More specific details of portions of the diagrams can be found in earlier embodiments described herein.
  • FIGS. 22 and 23 like reference characters are used to identify like parts.
  • an instrument 900 that includes both an elbow joint 905 and a wrist joint 910 . These joints allow for orthogonal motions of the various segments about respective axes 905 A and 910 A. Both of these joints are driven by cabling in a manner as described earlier, such as in the pivot arrangement shown in FIGS. 3 and 4 . This cabling preferably runs through the center of the instrument as previously described.
  • the instrument 900 also includes an end tool 920 driven from a cable or rod 925 . This tool construction and its actuation element may be the same as described in FIGS. 14-17 , and would include separate interengagable/disengagable portions as previously described.
  • FIG. 23 there is shown an instrument 930 that includes only a single wrist joint 910 , along with the tool 920 actuated by means of the actuation element 925 .
  • tool 920 is preferably readily detachable in the manner shown in FIGS. 14-17 and is thus readily disposable.
  • the instrument may be controllably rotated as indicated by the arrow 927 in FIG. 23 .
  • FIG. 24 illustrates a wrist or other joint that may be used for the joints shown FIGS. 22 and 23 .
  • FIG. 24 shows a ball joint 950 with intercoupling sections 951 and 952 .
  • An actuation cable 954 is also illustrated extending through sections 951 and 952 as well as through the middle of the joint 950 .
  • the joint 950 may be of a conventional type using mating outer pieces at 956 that enable the sections 951 and 952 to have relative rotation therebetween.
  • a sheath 958 that encloses the cable 954 , and that is preferably fixed in position at the top and bottom of the joint.
  • the sheath is flexible and yet sufficiently durable so as to define a fixed length for the cable to extend through, even as the joint is actuated to rotate or pivot.
  • Appropriate cabling may be provided for control of the joint 950 .
  • This type of joint is particularly advantageous in that the center of the joint is open and does not interfere at all with the passing of the actuation cable 954 and sheath 958 through the joint 950 . Again, by maintaining the cable at the center of the joint, as illustrated, even as the joint is actuated there is no adverse effect on the actuation cable. In other words as the joint rotates it does not change the length of the cable 954 , and thus these separate actions are de-coupled from each other.
  • FIG. 25 a further description of a wrist or other joint is illustrated that may be used for the joints shown in FIGS. 22 and 23 .
  • FIG. 25 shows a ball joint 960 intercoupling sections 961 and 962 .
  • An actuation cable 964 is also illustrated extending through sections 961 and 962 as well as through the middle of the joint 960 .
  • the joint 960 may be a conventional joint using mating outer pieces at 966 that enable the sections 961 and 962 to have relative rotation therebetween.
  • Appropriate cabling may be provided for control of the joint 960 .
  • a funnel like surface illustrated at 970 that directs the cable to an output orifice 972 where the cable is coupled into the section 962 .
  • This funnel surface 970 holds the cable such that as the sections experience relative rotation while the length of the cable within the joint is maintained at a fairly fixed length.
  • the tool 18 is within the scope of the invention, such as that illustrated in FIGS. 26-33 .
  • a set of jaws is illustrated in the figures, but it is understood that other types of tool constructions may also be used with the concepts of the present invention.
  • the instrument shaft may be a rigid shaft, a flexible shaft, or combinations thereof.
  • the tool 18 includes four basic members including the base 1020 , link 1021 , upper grip or jaw 1022 and lower grip or jaw 1023 .
  • the base 1020 is affixed to the instrument shaft 1010 .
  • the instrument shaft 1010 may be rigid or flexible depending upon the particular use. If the shaft 1010 is flexible it may be constructed, for example, of a ribbed plastic material. A flexible shaft or section thereof would, in particular, be used in conjunction with a curved guide tube so that the instrument readily bends through the curved adaptor guide tube.
  • link 1021 is rotatably connected to the base 1020 about wrist pivot axis 1025 with a wrist pivot pin at 1026 .
  • the upper and lower jaws 1022 and 1023 are rotatably connected to the link 1021 about axis 1028 with a pivot pin 1030 , where axis 1028 is essentially perpendicular to axis 1025 .
  • the jaws may also be referred to as grippers or graspers.
  • Cable 1036 - 1041 actuate the wrist, namely the link 1021 , as well as the end effector or tool 18 .
  • Cable 1036 extends through the instrument shaft and through a hole in the base 1020 , wraps around curved surface 1032 on link 1021 , and then attaches on link 1021 at 1034 .
  • Tension on cable 1036 rotates the link 1021 , as well as the upper and lower jaws 1022 and 1023 , about axis 1025 .
  • Cable 1037 provides the opposing action to cable 1036 , and goes through the same routing pathway, but on the opposite side of the instrument shaft. Cable 1037 is also attached to link 1021 generally at 1034 .
  • Cables 1038 and 1040 also travel through the instrument shaft 1030 and though holes in the base 1020 .
  • the cables 1038 and 1040 then pass between two fixed posts 1035 . These posts constrain the cables to pass substantially through the axis 1025 about which the link 1021 rotates.
  • This construction allows the link 1021 to rotate freely with minimal length changes in cables 1038 - 1041 .
  • the cables 1038 - 1041 which actuate the jaws 1022 and 1023 , are essentially decoupled from the motion of link 1021 .
  • Cables 1038 and 1040 pass over rounded sections and terminate on jaws 1022 and 1023 , respectively.
  • the application of tension on cables 1038 and 1040 rotate jaws 1022 and 1023 counter-clockwise about axis 1028 .
  • cables 1039 and 1041 pass through the same routing pathway as cables 1038 and 1040 , but on the opposite side of the instrument. These cables 1039 and 1041 provide the clockwise motion to grips or jaws 1022 and 1023 , respectively. The ends of cables 1038 - 1041 may be secured at 1033 of the jaws 1022 and 1023 .
  • the tool 18 includes a rotation piece 1045 , a linkage 1046 and slotted linkage 1048 .
  • the rotation piece 1045 has a centrally disposed hole 1045 A that is adapted to receive the pivot pin 1030 .
  • the pivot pin 1030 also passes through holes 1023 A in one jaw member and holes 1022 A in the other jaw member.
  • the pin 1030 is secured in respective holes in the arms 1029 of the link 1021 in a well-known manner to rotatably support the jaw members from the link 1021 .
  • the rotation piece 1045 also carries an actuation pin 1050 extending in the same direction as the pivot pin 1030 , and parallel thereto.
  • the actuation pin 1050 extends into curved J-shaped slots 1052 in respective jaw flanges 1054 of jaw 1023 .
  • the actuation pin 1050 is also received by the linkage 1048 through the end hole 1048 A, and the linkage is supported between the spaced flanges 1054 of the jaw 1023 .
  • At the slotted end of the linkage 1048 there is a set of holes 10488 that receive the pin 1056 .
  • the linkage 1048 also pivotally attaches with the linkage 1046 by virtue of the pin 1056 passing through the holes 10468 and 10488 .
  • the pin 1056 is also positioned in the slots 1052 of the flanges 1054 , and thus moves along the slots to different positions, two of which are illustrated in FIGS. 30 and 31 . When the jaws are fully closed, the pin 1056 is at the very top of the slot 1052 as illustrated in FIG. 31 .
  • FIG. 30 shows the pin 1056 in a lower position which occurs when the jaws are partially opened.
  • the pin 1050 likewise is in different positions in the slot 52 depending upon the position of the jaws.
  • the linkage 1046 is also supported at its other end at hole 1046 A by the pin 1058 .
  • the pin 1058 also passes through a set of holes 10228 in the base of the jaw 1022 .
  • the linkage 1046 fits in a slot at the base of the jaw 1022 , and the pin 1058 passes through both the base of the jaw 1022 as well as the linkage 1046 .
  • the pin 1058 also preferably has a compliant member such as a set of resilient members disposed about at least a portion thereof, as illustrated in FIGS. 30 and 31 , at 1060 , in an uncompressed position.
  • FIG. 31 shows the resilient cups 1060 uncompressed
  • FIG. 32 shows the resilient cups partially compressed when the jaws are grasping a small diameter member such as a suture S.
  • FIG. 33 shows the cups 1060 essentially fully compressed, when the jaws are grasping a larger diameter member such as a needle N.
  • the cups 1060 may fit about the pin 1058 , and be disposed in the base of the jaw 1022 .
  • the holes 10228 that receive the cups 1060 are of somewhat elongated shape, such as illustrated in FIGS. 27A , 27 B, 30 , and 31 .
  • the jaws 1022 and 1023 apply a smaller but sufficient force to hold a smaller diameter item, such as the suture S than when holding a larger item such as a needle N.
  • This force is primarily a function of the resiliency of the cups 1060 .
  • the tool is constructed so that when the jaws are holding an item the size of a needle N the cups 1060 are essentially fully compressed, and a maximum grasping force is applied to the needle N. This is particularly desirable for important surgery techniques for the securing and controlling of the needle.
  • the pin 1056 When the jaws 1022 and 1023 first make contact with an item positioned between them, the pin 1056 is in a contact position A′ ( FIG. 33 ) for a larger item such as the needle N, or further up the slot 1052 at a position A ( FIG. 32 ) for a smaller item such as the suture S. When a sufficient force is applied to the item with the jaws, the pin 1056 moves to a locked position B ( FIGS. 32 and 33 ), regardless of the size of the item being grasped.
  • FIGS. 27A and 27B Other embodiments of the resilient members are shown in the fragmentary exploded views of FIGS. 27A and 27B .
  • the embodiment of FIG. 27A uses a pair of cups 1060 A, while the embodiment of FIG. 27B uses only a single cup.
  • the same reference characters are used as in FIG. 27 to identify like components.
  • the cups 1060 A are positioned within respective holes 1022 B. They may be positioned with the use of an adhesive.
  • the cups 1060 A are thus be located at opposite ends of the pin 1058 . When the jaws are in the closed position, these cups 1060 A are compressed as the pin 1058 rides downwardly in the somewhat elongated hole or slot 1022 B.
  • FIG. 27A uses a pair of cups 1060 A
  • FIG. 27B uses only a single cup.
  • the same reference characters are used as in FIG. 27 to identify like components.
  • the cups 1060 A are positioned within respective holes 1022 B. They may be positioned with the use of an adhesive.
  • the single cup 1060 B is of somewhat larger shape than the cups 1060 A and is located between the spaced walls of the base 1022 C.
  • the link 1046 is positioned between these walls, as is the cup 1060 B.
  • the cup 1060 B may also be secured in position by an adhesive.
  • the cup 1060 B is engaged by the end of the link 1046 .
  • the pin 1058 also rides within the elongated slots 1022 B and when the jaws are moved to a closed position the end of link 1046 bears against the cup 1060 B.
  • the actuation cables for the end effector include the cables 1038 - 1041 .
  • One set of cables actuates the rotation piece 1045
  • the other set of cables actuates the jaw 1023 .
  • the other jaw 1022 is actuated through the coupling provided from the rotation piece 1045 to the jaw 1022 , including pin 1050 and the associated linkages 1046 and 1048 controlled via pins riding in slots 1052 .
  • These linkages provide direct drive from the rotation piece 1045 to the base of the jaw 1022 , to control the pivoting motion of that jaw, controlled usually from a remote location.
  • FIGS. 34-38 Another embodiment of the tool 18 is illustrated in FIGS. 34-38 , where FIG. 34 is a perspective view of the tool while FIG. 35 is an exploded perspective view showing the separate components of the tool.
  • FIG. 34 is a perspective view of the tool while FIG. 35 is an exploded perspective view showing the separate components of the tool.
  • the same reference characters are used to designate similar components.
  • the tool 18 shown in FIGS. 34-38 includes four basic members including a base 1020 , a link 1021 attached to the base, an upper grip or jaw 1022 , and a lower grip or jaw 1023 .
  • the base is affixed to an instrument shaft in a manner similar to that depicted in FIG. 26 .
  • the instrument shaft may be rigid or flexible depending upon the particular use.
  • the link 1021 may be rotatably connected to the base about a wrist axis such as the axis 1025 of the just previously described embodiment.
  • the upper and lower jaws 1022 and 1023 are rotatably connected to the link 1021 about axis 1028 with a pin 1030 that is substantially perpendicular to axis 1025 .
  • Cable 1036 - 1041 actuate the wrist, namely the link 1021 , as well as the end effector or tool 18 .
  • Cable 1036 extends through the instrument shaft and through a hole in the base, wraps around curved surface 1032 on link 1021 , and then attaches on link 1021 at 1034 ( FIG. 35 ).
  • Tension on cable 1036 rotates the link 1021 , and the upper and lower jaws 1022 and 1023 , about the wrist axis.
  • Cable 1037 provides the opposing action to cable 1036 , and goes through the same routing pathway, but on the opposite side of the instrument shaft. Cable 1037 is also attached to link 1021 generally at 1034 .
  • Cables 1038 and 1040 also travel through the instrument shaft and though holes in the base.
  • the cables 1038 and 1040 then pass between two fixed posts that are similar to the posts 1035 in FIG. 26 . These posts constrain the cables so that they pass substantially through the wrist axis about which the link 1021 rotates.
  • This construction allows the link 1021 to freely rotate with minimal length changes in cables 1038 - 1041 .
  • the cables 1038 - 1041 which actuate the jaws 1022 and 1023 , are decoupled from the motion of link 1021 .
  • Cables 1038 and 1040 pass over rounded sections and terminate on jaws 1022 and 1023 , respectively.
  • the application of tension on cables 1038 and 1040 rotate jaws 1022 and 1023 counter-clockwise about axis 1028 .
  • cables 1039 and 1041 pass through the same routing pathway as cables 1038 and 1040 , but on the opposite side of the instrument. These cables 1039 and 1041 provide the clockwise motion to jaws 1022 and 1023 , respectively. The ends of cables 1038 - 1041 are secured at 1033 of the jaws 1022 and 1023 .
  • the tool 18 includes the rotation piece 1045 , along with linkage pair 1066 and straight linkage 1068 .
  • the rotation piece 1045 has a central hole 1045 A that receives the pivot pin 1030 .
  • the pivot pin 1030 also passes through holes 1023 A in one jaw member and hole 1022 A in the other jaw member.
  • the pin 1030 is secured to respective holes in the arms 1029 of the link 1021 to rotatably support the jaw members from the link 1021 .
  • the rotation piece 1045 also carries an actuation pin 1050 extending in the same direction as the pivot pin 1030 , and parallel thereto.
  • the actuation pin 1050 extends into curved slots 1052 in respective jaw flanges 1054 of jaw 1023 , as shown in FIGS. 35 , 37 , and 38 .
  • the actuation pin 1050 is also received through an end hole 1068 A of the linkage 1068 , and the linkage is supported between the spaced flanges 1054 of the jaw 1023 .
  • a hole 10688 that receives the pin 1076 .
  • the linkage 1068 also pivotally attaches with the linkage pair 1066 by virtue of the pin 1076 passing through the holes 1066 B and 1068 B.
  • the pin 1076 is also positioned in the slots 1052 of the flanges 1054 , and thus moves along the slots to different positions, two of which are illustrated in FIGS. 37 and 38 . When the jaws are in a substantially closed position, the pin 1076 is at the top of the slot 1052 as illustrated in FIG. 37 . When the jaws are in other positions, the pin 1050 will reside in different positions in the slot 1052 .
  • the linkages 1066 are also supported at its other ends at holes 1066 A the pin 1078 .
  • the pin 1078 also passes through a hole 10228 in the base of the jaw 1022 .
  • the base has a support wall 1022 D in which the hole 10228 is located.
  • the linkage pair 1066 fits on opposite sides of the wall 1022 D, and the pin 1078 passes through both the base of the jaw 1022 as well as the linkage pair 1066 .
  • the actuation cables for the end effector or tool include the cables 1038 - 1041 .
  • One set of cables actuates the rotation piece 1045
  • the other set of cables actuates the jaw 1023 .
  • the other jaw 1022 is actuated through the coupling provided from the rotation piece 1045 to the jaw 1022 , including pin 1050 and the associated linkages 1046 and 1048 riding in slots 1052 .
  • These linkages provide direct drive from the rotation piece 1045 to the base of the jaw 1022 , to control the pivoting motion of that jaw, typically from a remote location.
  • control of the grasping force on an item is provided primarily by means of a slot or gap in one of the jaws.
  • This is illustrated in FIGS. 34-38 by the gap 1031 located near the base 1022 C in the jaw 1022 .
  • FIGS. 35 , 37 , and 38 show in particular the shape and depth of the gap 1031 .
  • the gap 1031 is located above a hinge 1044 where the jaw can deflect when grasping and holding an item, regardless of its size, and with a firm grasping force.
  • the gap 1031 may be terminated in a tubular passage 1031 A to enhance the hinging effect of the hinge 1044 .
  • the hinge 1044 acts as a compliance member similar to the resilient members 1060 described with reference to FIGS. 27-33 .
  • FIGS. 37 and 38 the jaws 1022 , 1023 are shown in a substantially closed position in FIG. 37 grasping a suture S. In that position it is noted that both of the pins 1050 and 1076 are substantially at their top transition locations.
  • FIG. 38 illustrates the jaws 1022 , 1023 grasping an item such as a needle N that causes the jaw 1022 to flex and consequently the gap 31 to close up. This flexure enables the application of a varied grasping force at the tip of the jaws. When the links are at the end of their travel, the jaw 1022 flexes when the jaws 102 , 1023 grasp an item. The amount of flexure depends on the diameter of the item being grasped.
  • the jaws 1022 flexes to a lesser extent when a smaller diameter item such as a suture S is being grasped then when a larger item such as a needle N is being held. That is, to grasp a smaller item, the gap 1031 closes to a lesser extent, while the jaw. As still apply a sufficient holding force to the item. This force is primarily a function of the resiliency at the gap, as defined primarily by the flexure capability at the hinge 1044 . The larger the diameter of the item being held, the larger the corresponding holding force.
  • the tool is constructed so that, for an item the size of a needle, as shown in FIG.
  • the gap 1031 is fully closed with the sides of the top of the gap touching, with a maximum grasping force being applied to the needle N. This is particularly desirable for the securing and controlling of the needle in important surgery techniques.
  • the pin 1076 is at a contact position A′ ( FIG. 38 ) when the jaws first make contact with a larger item such as the needle N, or further up the slot 1052 at a contact position A ( FIG. 37 ) when the jaws contact a smaller item such as the suture S. Regardless of the size of the item, the pin moves to a locked position B ( FIGS. 37 and 38 ) when the sufficient force is applied to lock the jaws onto the item.
  • a “locked” position B of the pins or jaws corresponds to a position wherein the linkages are disposed at right angles to each other.
  • the linkages 1046 and 1048 are disposed at right angles (90 degrees) to each other. This provides virtually infinite grasping force with essentially no back drive at the jaws.
  • the linkages 1066 and 1068 that are disposed at right angles when locked.
  • FIGS. 39 and 40 This embodiment has a structure very similar to that described in detail in FIGS. 26-33 .
  • the resilient cup 1060 there is provided a modified jaw slot configuration.
  • the slots 1052 in jaw 1023 have a curved segment 1052 A, and a straight segment 1052 B.
  • the J-slots 1052 also have a contiguous end slot 1052 C that extends back toward the tip of the jaw tip.
  • the overall slot configuration is C-shaped.
  • the jaws are in a substantially open position with a gap G 1 as noted when the jaw members 1022 , 1023 are locked onto and the needle N, with the pin 1056 located at a locked position B.
  • the pin 1056 Before the jaws make contact with the needle N, the pin 1056 may be out of the end slot 1052 C, and the pins 1050 and 1056 are located at different positions along the slots 1052 depending upon the degree of openness of the jaws.
  • the pin 1056 When the jaws contact the needle N, the pin 1056 is at a contact position A′.
  • the jaws In FIG. 40 the jaws are in a substantially closed position with a small gap G 2 as the jaws grasp a smaller item such as a suture S.
  • the pin 1056 now moves further into the end slots 1052 C to the locked position B, as the jaws apply a grasping force to an item to lock the suture between the jaws.
  • the pin 1056 When contact is first made between the jaws and the suture, the pin 1056 is located at the contact position A further up the slot 1052 than the contact position A′ of FIG. 39 . Thus, depending upon the size thereof, the pin 1056 moves to a greater or lesser extent into the slots 1052 C.
  • the pins 1050 and 1056 are in the position illustrated in FIG. 39 with there being a maximum grasping force applied to the item by virtue of the links 1046 and 1048 being positioned at 90 degrees relative to each other.
  • the pins rotate slightly further clockwise with the pin 1056 moving into the slot 1052 C as illustrated in FIG. 40 .
  • the jaw and linkages move together as a rigid body while closing against the suture.
  • slots 1052 C like the resilient member 1060 ( FIGS. 27-33 ) and the hinge 1044 ( FIGS. 37 and 38 ), are accommodating mechanisms that allow a closing force to be applied to grasped items of different sizes as the force is applied to the grasped item as the jaws close to a position at which the jaws remain open.
  • the accommodating mechanisms described above like the slots 1052 C ( FIGS. 39 and 40 ), the resilient member 1060 ( FIGS. 27-33 ), and the hinge 1044 ( FIGS. 37 and 38 , can be implemented in other types of grasping mechanisms as well, such as those described in U.S. application Ser. No. 09/827,643 (now U.S. Pat. No. 6,554,844), filed Apr. 6, 2001, and U.S. application Ser. No. 10/014,143 (now abandoned), filed Nov. 16, 2001, the entire contents of which are incorporated herein by reference.
  • the medical instrument includes a jaw or work members controlled by a drive mechanism that is used to open and close the jaws or work members for applying an increased force to an item grasped between the jaws or work members.
  • the accommodating mechanisms described above such as the slots 1052 C ( FIGS. 39 and 40 ), the resilient member 1060 ( FIGS. 27-33 ), and the hinge 1044 ( FIGS. 37 and 38 , each have the characteristic of providing a maximum grasping force at what may be considered a maximum grasping position. This corresponds to the positions illustrated, and discussed previously, in FIGS. 33 , 38 , and 39 .
  • the instrument is constructed so that this maximum position corresponds to a predetermined size or diameter items that is to be grasped, usually a needle in this case.
  • a predetermined size or diameter items that is to be grasped usually a needle in this case.
  • the grasping force is progressively less.
  • the force is less because the compliant member is compressed less.
  • the linkage does not go to the top of the J-slot and thus the applied force is also less in that case, as the linkages are not yet to a maximum force 90 degree position.
  • the accommodating mechanism allows the jaws or work members to be closed beyond this maximum grasping position in order to grasp items of various sizes, particularly smaller size items. Again, this is illustrated by way of example in FIG. 32 where the jaws go past their maximum grasping position, closing to a closer position therebetween, in grasping the suture S. In FIG. 37 this is illustrated by the jaws closing to grasp the suture S with less force being imposed by the flexure at the jaw 1022 . This is also illustrated in FIGS. 39 and 40 . In FIG. 39 the jaws are at their maximum grasping position. In FIG. 40 the jaws are closed beyond this maximum grasping position to grasp the smaller size suture S.
  • the accommodating mechanism in this case may be considered as including the slot segment 1052 C that enables further rotation of the linkages to the position illustrated in FIG. 40 .
  • FIGS. 41-47 another embodiment of a flexible or bending segment with a unibody construction which can be used with any suitable end effector like the tools 18 described above, whether used with a rigid shaft body or a flexible shaft body or combinations thereof.
  • one of the benefits of the embodiment shown in FIGS. 41-47 is that only a single cable 1136 needs to be coupled to the tool 18 to actuate it.
  • the pitch and yaw of the tool 18 is controlled at the flexible section 1100 shown in FIG. 41 .
  • This arrangement also lends itself to making the tool disposable or at the very least detachable from the instrument body to facilitate substituting another tool.
  • a tool can be constructed that is readily detachable from the instrument.
  • the bendable section 1100 is depicted near the tool, the bendable section can be located at other locations further away from the tool. Since the tool 18 of the embodiment shown in FIGS. 41-47 requires only a single actuation cable, it is simpler to operate than the wrist/tool combination shown in FIGS. 26 and 27 . Recall, in the wrist arrangement, a pivot axis does not accommodate single cable actuation. Thus, with the wrist unit one has to use a far more complex cabling scheme, such as, by way of example, the cabling arrangement illustrated in U.S. Pat. Nos. 6,312,435 and 6,206,903. Furthermore, the single cable actuation provides a more simplified design that readily lends itself to a variety of tool constructions.
  • the instrument In order for the various degrees of motions to be decoupled from each other, and for the proper overall functioning of the distal end of the instrument, the instrument has certain preferred characteristics, particularly at the flexible or bendable section of the instrument shaft. These characteristics are listed below but are not in any particular order of significance. Embodiments can employ at least one of these characteristics. Furthermore, although these characteristics are listed with reference to the embodiment described in FIGS. 41-44 , one or more of the characteristics can apply as well to any of the other embodiments described earlier.
  • a first characteristic is that the actuation element for the tool be centered in the flexible or bendable section. In this way, during any bending operation the center of the flexible or bendable section tends to maintain the same length, even though opposed outer surfaces of the section may, respectively, expand and contract. This, in essence, means that the bending action is not erroneously transferred to the actuation element for the tool, hence, de-coupling the bending operation from the tool actuation, and vice versa.
  • a second characteristic is that the flexible or bendable section of the instrument shaft be readily flexible without the application of undue force.
  • This bendable section in a preferred embodiment, is to have orthogonal bending characteristics, hence providing two degrees of freedom (DOF) to the distal tool, for example, yaw and pitch.
  • DOF degrees of freedom
  • a substantial portion of the flexible or bendable section is located as near to the center neutral axis 1111 of the section as physically possible. This is achieved by the spaced rib construction including the ribs 1112 shown in the drawings.
  • the slots 1114 defined by these ribs 1112 provide void areas, leaving more material near the center neutral axis, as depicted in FIG. 45 .
  • a third characteristic relates to the torsional nature of the flexible or bendable section.
  • the bendable section is torsionally stiff, then upon controlled rotation of the instrument shaft, there is no an undesired twisting action imparted on the shaft particularly at the flexible or bendable section 1100 .
  • a substantial portion of the material forming the flexible or bendable section is located at the periphery of the flexible or bendable section. This may be achieved by having portions of the section extend to an outer surface.
  • this is accomplished by providing radial ridges, such as the ridges 1120 shown in the drawings. Furthermore, these ridges are alternated between horizontal and vertical positions to, at the same time, to provide the orthogonal bending or flexing.
  • a fourth characteristic is that the flexible or bendable section of the instrument shaft is constructed so that there is little or no end-to-end compression.
  • the flexible or bendable section maintains a relatively constant length regardless of the motion actuations that occur in the multiple degrees of freedom movement of the instrument.
  • a stiff member is provided to maintain the ends of the flexible or bendable section at a fixed spacing. This may be achieved by providing the stiff member as a centrally located stiff sleeve that receives and supports the sliding motion of the actuation element for operation of the distal tool.
  • This stiff member is preferably fixed at its opposite ends to the bendable section to maintain the fixed length of the section, thereby preventing end-to-end compression. At least part of this member may include the sleeve 1182 depicted in FIG. 43 .
  • the medical instrument may include an elongated shaft, such as shaft section 1110 shown in FIGS. 41 and 42 , having proximal and distal ends; and the tool 18 with jaws 102 and 104 , supported from the distal end of the elongated shaft and useable in performing a medical procedure on a subject.
  • the tool 18 is actuated preferably by a single tendon or cable 1136 that extends through the flexible section 1100 .
  • the bending or flexing section 1100 is constructed to bend in orthogonal directions with the use of four cables separated at about 90.degree. intervals and by using a center support with ribs and slots about the entire periphery of the bending section 1100 , as depicted in FIGS. 42-44 .
  • This orthogonal bending may also be referred to as bi-axial bending, meaning bending in separate axes.
  • the ribs 1112 define corresponding slots 1114 , and also define at each of their centers a center support passage 1118 that has the cable 1136 extending through it, as well as other cable support members described in further detail later.
  • the bending section 1100 extends from the end of tube section 1110 , which itself may be flexible, may be smooth as shown, or may be fluted, and may have other controllable bending sections disposed along its length.
  • cables 1106 , 1107 , 1116 and 1117 To bend the bending section 1100 in orthogonal directions, use is made of the four cables 1106 , 1107 , 1116 and 1117 .
  • the operation of cables 1106 and 1107 provides flexing in one degree-of-freedom while an added orthogonal degree-of-freedom is provided by operation of cables 1116 and 1117 .
  • Each of the cables 1106 , 1107 , 1116 , and 1117 have at their terminating ends respective balls 1106 A, 1107 A, 1116 A, and 1117 A that may be held in corresponding recesses in a distal end wall 1119 ( FIG. 45 ) of the flexible section 1100 .
  • the bending section 1100 includes a series of spaced ribs 1112 positioned, in parallel, with the plane of each rib extending orthogonal to the neutral axis 1111 of the section 1100 .
  • an end rib connects to the shaft section 1110 , while at the distal end there is provided the distal end wall 1119 that supports the ends of the cables.
  • Each of the ribs 1112 are held in spaced relationship by means of the alternating ridges 1120 . As depicted in FIG. 43 these ridges are identified as horizontal ridges 1120 A, alternating with vertical ridges 11208 .
  • This structure provides support at the center passage for the actuating cable 1136 , while also providing torsional strength to prevent undesired twisting at the shaft section 1100 .
  • the jaws 1102 and 1104 are supported for opening and closing by means of a pivot pin 1135 that extends along a pivot axis. These grippers may be supported in link 1140 , and the pin 1135 may be supported at its ends in opposite sides of link 1140 .
  • the tool also includes a pivot linkage 1142 that intercouples between the grippers and the actuation cable 1136 .
  • the pivot linkage 1142 includes linkages 1142 A and 1142 B. At one end, each of the linkages 1142 A and 1142 B connects to respective jaws 1104 and 1102 . At the other end, the linkages 1142 A and 11428 are pivotally supported at end 1137 of cable 1136 . Opposed pins extend from end 1137 for engagement with the linkages 1142 A and 1142 B.
  • the jaws 1102 and 1104 are shown having recesses 1102 A and 1104 A for accommodating the respective linkages 1142 B and 1142 A.
  • FIG. 42 the jaws 1102 and 1104 are shown in their open position with the linkages 1142 A and 11428 shown in a forward pivoted configuration.
  • FIG. 43 illustrates the jaws 1102 and 1104 in a closed position with the linkages 1142 A and 1142 B shown in an in-line configuration. As the linkage 1142 is moved in an axial direction by the cable 1136 , this action opens and closes the jaws or grippers. This corresponds to a “pushing” of the cable in a direction toward the tool.
  • FIG. 43 shows the linkage and grippers in a closed position.
  • the structure shown in FIGS. 41-47 preferably also includes a plastic cable sheath 1180 , a plastic stiffener sheath or sleeve 1182 that surrounds the cable 1136 and the sheath 1180 , and that fits closely in the center passage 1118 , and an outer silicon spacer 1184 .
  • the sleeve 1182 is preferably constructed of a polyethylene plastic such as PEEK which has flexibility to allow the sleeve 1182 to bend with the section 1100 , but at the same time is sufficiently stiff (particularly end-to-end) to properly retain, center and hold the supported cable to enable the cable to readily slide within the sheath 1180 and the supporting sleeve 1182 , in performing its function.
  • the sleeve 1182 is illustrated extending from the distal end of the bendable section 1100 , back through the passage, to the more proximal end of the bendable section 1100 .
  • FIGS. 42 and 43 also show the use of an adhesive, at 1186 , such an epoxy adhesive for anchoring opposite ends of the sheath 1180 and the sleeve 1182 to opposite ends of the bendable section 1100 .
  • an adhesive such as epoxy adhesive for anchoring opposite ends of the sheath 1180 and the sleeve 1182 to opposite ends of the bendable section 1100 .
  • FIG. 45 Other features of the bending section are shown in FIG. 45 in a side elevation view, while FIGS. 46 and 47 illustrate cross-sectional views, with one through one of the ridges 1120 A and the other through one of the ridges 11208 .
  • the respective ridges 1120 A and 11208 are arranged at about 90 degrees to each other.
  • the section 1100 is easily bendable while being torsionally stiff, and has other improved characteristics as well. Details of these characteristics are best described with reference to FIGS. 45-47 by considering a particular cross-section such as the cross-section in FIG. 45 taken along line 46 - 46 .
  • FIG. 45 it is clear that, at that location and with the orientation of the section 1100 as shown, there is a substantial void created by the slot 1114 , so that the majority of the section material is located at the center of the section. This is consistent with the desired bendability at that location, since, in general, a structure becomes more bendable as its diameter deceases.
  • the void area mentioned is also illustrated in the cross-sectional view of FIG. 46 at 1115 .
  • the section 1100 is constructed so that there is preferably a relatively large center passage 1118 , leaving more material toward the outer periphery, which is desired for providing enhanced torsional stiffness. Note that this material is the material of the ridge itself. Thus, for torsional stiffness it is desired to have a void near the middle and more material located away from the middle.
  • the rib and ridge arrangement shown in the drawings thus provides in a single structure a bendable section that provides two degrees of freedom (biaxial motion) that is also torsionally stiff.
  • the bending characteristics enable the transfer of two degrees of freedom to the tool, rather than just one degree of freedom as with a conventional wrist joint.
  • the torsional stiffness enables direct rotational transfer to the tool through the bendable section and without any twisting at the bendable section.
  • the first characteristic relates to the centering of the actuation element. This is carried out primarily with the use of the center passage and the associated sheath 1180 , sleeve 1182 , and the spacer 1184 .
  • the second characteristic relates to the ease of bending. This is accomplished primarily with the ribbed construction with void peripheral areas.
  • the third characteristic relates to the torsion stiffness that is accomplished primarily by the alternating ridges.
  • the fourth characteristic relates to the end-to-end compression.
  • the center passage is provided with the stiff sleeve 1182 , and the opposite ends of the sheath 1180 and sleeve 1182 fixed in place, and the section 1100 has a ridged construction.
  • FIGS. 41-47 disclose one version of an end effector employing jaws 1102 and 1104 , in combination with, linkage 1142 .
  • other tool constructions are also contemplated as falling within the scope of the present invention including ones that provide a mechanical advantage at the tip of the jaws or other work elements.
  • a single cable is used for tool actuation. (See, for example, FIGS. 9 , 15 , and 42 .)
  • FIGS. 48A-48D there is illustrated yet another embodiment of a flexible section 1660 with a unibody construction.
  • the tool 18 attached to the distal end of the flexible section 1660 includes an upper grip or jaw 1602 and a lower grip or jaw 603 , supported from a link 1601 .
  • Each of the jaws 1602 , 1603 , as well as the link 1601 may be constructed of metal, or alternatively, the link 1601 may be constructed of a hard plastic.
  • the link 1601 is engaged with the distal end of the flexible stem section 1302 .
  • FIG. 48C shows the distal end of the stem section 1302 , terminating in a bending or flexing section 1660 .
  • the flexible section 1660 flexing and bending is enhanced by the arrangement of diametrically-disposed slots 1662 that define ribs 1664 between the slots.
  • the flexible section 1660 also has a longitudinally extending wall 1665 , through which cabling extends, particularly for the operation of the tool jaws.
  • the wall 1665 can also be thought of as opposed ridges that extend outward from the center of the flexible section 1660 .
  • the very distal end of the bending section 1660 terminates with an opening 1666 for receiving the end 1668 of the link 1601 .
  • the cabling 1608 - 1611 is preferably at the center of the flex section at wall 1665 to effectively decouple flex or bending motions from tool motions.
  • FIGS. 48A-48D also show cables 1606 and 1607 which couple through the bending section 1660 and terminate at ball ends 1606 A and 1607 A, respectively, and urge against the end of the bendable section in opening 1666 .
  • FIG. 48D illustrates the cable 1607 having been pulled in the direction of arrow 1670 so as to flex the section 1660 as depicted in the figure. Pulling on the other cable 1606 causes a bending in the opposite direction.
  • FIG. 48B has a separate link 1601 .
  • this link 1601 may be fabricated integrally with, and as part of the bending section 1660 .
  • the link 1601 would then be constructed of a relatively hard plastic rather than the metal link as illustrated in FIG. 48B and would be integral with section 1660 .
  • the tool may include a variety of articulated tools such as: jaws, scissors, graspers, needle holders, micro dissectors, staple appliers, tackers, suction irrigation tools and clip appliers.
  • the tool may include a non-articulated tool such as: a cutting blade, probe, irrigator, catheter or suction orifice.
  • the bending section itself may be non-actuated. As such, even when the bending movements of the bending section are not controlled by a surgeon, the one or more degrees-of-freedom of movement of the bending section allows it to conform to orifices or lumens within the patient's body as the section is advanced through the body.
  • bendable sections such as in FIG. 5 , 14 , 21 , or 41 . These may be used, as illustrated herein, in conjunction with instrument systems as described in, for example, FIG. 1 where the instrument is inserted laparoscopically. Alternatively, these concepts may also be used in flexible instrument systems more like that described in FIG. 21 wherein the bendable sections can be located at various positions along the instrument shaft or body. In this case the bendable section or sections may be used both for guidance toward an operative site, such as for guidance through an anatomic lumen or vessel, or for operation or manipulation at an operative site.
  • the bendable section located close to but just proximal of the distal end effector or tool.
  • This bendable section positioning provides for proper manipulation of the tool at the operative site.
  • the bendable section preferably has a length in a range on the order of 3 ⁇ 4 inch to 4 inches.
  • the distance between the tool pivot point and the distal end of the bendable section is preferably equal to or less than the length of the bendable section.
  • FIG. 49 an example of a flexible instrument 2000 is shown in use in a stomach 2002 of a patient.
  • the instrument 2000 includes an elongated portion 2004 , which itself is flexible, and an articulated bendable section 2006 .
  • Any embodiments of the tool 18 described can be mounted at the terminal end of the bendable section 2006 .
  • the bendable section 2006 can be any one of the different embodiments described earlier such as those shown in FIG. 5 , 14 , 21 , or 41 .
  • the flexible instrument 2000 is inserted through a body lumen such as the esophagus 2008 , and the tool 18 is directed to the operative site 2009 .
  • the instrument 2000 can lean against some element of the anatomy such as a wall 2010 of the stomach to brace the instrument during the medical procedure, while the bendable section 2006 and the tool 18 are articulated as described above.
  • a flexible instrument 2100 may include a bendable section 2102 that can be operated with one or more pull cables 2104 to manipulate the tip 2106 of the bendable section.
  • the tip 2106 may be provided with an embodiment of the tool 18 described above that is positioned at the operative site to perform a medical procedure.
  • At least one cable 2104 is attached at or near the tip 2106 of the bendable section 2102 , and extends from its point of attachment through an aperture 2108 at a position spaced a selected distance along the length of the bendable section 2102 away from the distal end.
  • the remainder of the cable 2109 extends from the aperture 2108 through a shaft 2110 of the instrument 2100 and is coupled, for example, to a drive unit 8 , like that described earlier, that applies a tension to the cable 2104 to controllably bend the bendable section 2102 .
  • the bendable section 2102 may have a circular cross section, or in some embodiments, the bendable section is provided with one or more grooves or valleys 2112 ( FIG. 50B ) along its length. As such, while the instrument 2100 is inserted into the patient, the cables 2104 lie along the grooves 2112 , which prevents the cables 2104 from inadvertently catching any body element. As appropriate tension is applied to a particular cable, it effectively “pops” out of the groove 2112 as the tip of the bendable section 2102 is pulled towards the aperture 2108 .
  • the bendable section 2102 is provided with a center tube 2114 through which the actuation element for the tool 18 extends.

Abstract

A medical instrument assembly comprises an elongated shaft, a tool carried by the distal end of the elongated shaft for performing a medical procedure on a patient, a plurality of controllably bendable sections spaced along the elongated shaft and disposed proximal to the tool, a plurality of actuation elements extending within the elongated shaft for respectively actuating the controllably bendable sections, and an instrument coupler mounted to the proximal end of the elongated shaft, with the instrument coupler configured for coupling an electromechanical drive to the actuation elements. A robotic medical system comprises the previously described medical instrument assembly, a user interface configured for generating at least one command, a drive unit coupled to the plurality of actuating elements of the medical instrument assembly, and an electric controller configured, in response to the command(s), for directing the drive unit to moves the actuating elements to actuate the controllably bendable sections.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 12/024,039, filed Jan. 31, 2008, which is a continuation of U.S. application Ser. No. 10/976,066, filed Oct. 28, 2004, (now U.S. Pat. No. 7,608,083), which is a continuation of U.S. application Ser. No. 10/299,588, filed Nov. 18, 2002 (now abandoned), which claims the benefit of U.S. Provisional Application No. 60/332,287, filed Nov. 21, 2001, 60/344,124, filed Dec. 21, 2001, and 60/382,532, filed May 22, 2002, and is a continuation-in-part of U.S. application Ser. No. 10/014,143 (now abandoned), Ser. No. 10/008,964 (now abandoned), Ser. No. 10/013,046 (now abandoned), Ser. No. 10/011,450 (now abandoned), Ser. No. 10/008,457 (now U.S. Pat. No. 6,949,106), Ser. No. 10/008,871 (now U.S. Pat. No. 6,843,793), all filed Nov. 16, 2001, and Ser. No. 10/012,845, filed Nov. 16, 2001 (now U.S. Pat. No. 7,169,141), each of which claim the benefit of U.S. Provisional Application No. 60/279,087, filed Mar. 27, 2001.
  • U.S. application Ser. No. 10/299,588 is also a continuation-in-part of U.S. application Ser. No. 10/023,024 (now abandoned), Ser. No. 10/011,371 (now U.S. Pat. No. 7,090,683), Ser. No. 10/011,449 (now abandoned), Ser. No. 10/010,150 (now U.S. Pat. No. 7,214,230), Ser. No. 10/022,038 (now abandoned), Ser. No. 10/012,586 (now U.S. Pat. No. 7,371,210), all filed on Nov. 16, 2001, and all of which claim the benefit of U.S. Provisional Application No. 60/269,200, filed Feb. 15, 2001, 60/276,217, filed Mar. 15, 2001, 60/276,086, filed Mar. 15, 2001, 60/276,152, filed Mar. 15, 2001, and 60/293,346, filed May 24, 2001.
  • This application is also related to U.S. application Ser. No. 12/023,981, now U.S. Pat. No. 7,744,608, and Ser. No. 12/024,013, now U.S. Pat. No. 7,819,884, both of which were filed on Jan. 31, 2008.
  • The entire teachings of the above applications are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • Various types of instruments are used to perform surgical procedures on living subjects such as human patients. Typically, in the past, the surgeon held the instrument and inserted it into the patient to an internal surgical site. The surgeon then manually manipulated the instrument to perform the operation at the site. These instruments have been used to perform a number of surgical procedures including holding a needle to suture a region of the surgical site, cutting tissue, and grasping tissue and blood vessels.
  • Recently, some have proposed using telerobotic surgical systems to perform certain surgical procedures. With these systems, the surgeon sits at a master station remotely located from the patient and surgical instrument, and controls the movements of the surgical instrument with an input device. In some systems, the surgeon manipulates the input device with one or both hands, and the instrument replicates the hand and finger movements of the surgeon. Because these replicated movements can be quite complex, the surgical instrument is controlled to move with multiple degrees-of-freedom.
  • SUMMARY OF THE INVENTION
  • In accordance with a first aspect of the present inventions, a medical instrument assembly is provided. The medical instrument assembly comprises an elongated shaft, a tool carried by the distal end of the elongated shaft for performing a medical procedure on a patient, and a plurality of controllably bendable sections spaced along the elongated shaft and disposed proximal to the tool. In one embodiment, the controllably bendable sections are flexible. The medical instrument assembly further comprises a plurality of actuation elements extending within the elongated shaft for respectively actuating the controllably bendable sections.
  • In one embodiment, the medical instrument assembly further comprises another plurality of actuation elements extending within the elongated shaft for respectively actuating the controllably bendable sections. In another embodiment, the actuation elements respectively terminate in distal regions of the controllably bendable sections. In another embodiment, the medical instrument assembly further comprises transition segments located at the distal regions of the controllably bendable sections, wherein the actuation elements respectively terminate in the transition segments. In still another embodiment, the medical instrument assembly further comprises another actuation element extending within the elongated shaft for actuating the tool. In this case, the medical instrument assembly may further comprise means for decoupling motion at the controllably bendable sections from the tool actuation. Each of the actuation elements may include a cable. In this case, each of the actuation elements may further include a sleeve disposed about the cable to prevent compression of the respective cable and a helical spring disposed about the respective sleeve.
  • The medical instrument assembly further comprises an instrument coupler mounted to the proximal end of the elongated shaft, with the instrument coupler configured for coupling an electromechanical drive to the actuation elements. In one embodiment, the instrument coupler carries a plurality of rotatable wheels to which the actuation elements are respectively mounted, and an adapter coupler to which the instrument coupler is configured for being removably mated, with the adapter coupler configured for coupling the electromechanical drive to the adapter coupler. The medical instrument assembly may further comprise cabling extending from the adapter coupler and configured for coupling the drive unit to the adapter coupler. In another embodiment, the medical instrument assembly further comprises a carriage on which the instrument coupler is mounted.
  • In accordance with a second aspect of the present inventions, a robotic medical system is provided. The robotic medical system comprises the previously described medical instrument assembly, a user interface configured for generating at least one command, a drive unit coupled to the plurality of actuating elements of the medical instrument assembly, and an electric controller configured, in response to the command(s), for directing the drive unit to moves the actuating elements to actuate the controllably bendable sections.
  • In one embodiment, the command(s) comprises movements at the user interface, and the electric controller is configured for directing the drive unit to move the actuating elements to effect movements of the controllably bendable sections corresponding to a movements at the user interface. In another embodiment, the user interface is located remotely from the drive unit, the electrical controller is coupled to the drive unit via external cabling, and the drive unit is coupled to the actuating element via external cabling.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
  • FIG. 1 is a perspective view illustrating a telerobotic system with which the concepts of the present invention may be practiced;
  • FIG. 2 is a schematic diagram illustrating the degrees-of-freedom associated with the slave station of FIG. 1;
  • FIG. 3 is a plan view of the instrument insert of the present invention including the stem section and tool;
  • FIG. 4 is a cross-sectional view as taken along line 4-4 of FIG. 3 and illustrating further details of the stem section;
  • FIG. 5 is a perspective view of another embodiment of the tool of the present invention employing a flexible wrist section adjacent the tool;
  • FIG. 6 is an exploded perspective view of the embodiment of FIG. 5;
  • FIG. 7 is a cross-sectional view of the embodiment of FIG. 5 and as taken along line 7-7 of FIG. 6;
  • FIG. 8 is a longitudinal cross-sectional view of the embodiment illustrated in FIGS. 5-7 and showing further details at the wrist flexure;
  • FIG. 9 is a longitudinal cross-sectional view similar to that shown in FIG. 8 but for still another embodiment of the present invention using a single actuation element;
  • FIG. 10 is an enlarged fragmentary view of further details of the actuation element at the center of the wrist section;
  • FIG. 11 is a cross-sectional view through the actuation element of FIG. 10 as taken along line 11-11;
  • FIG. 12 is a cross-sectional view through still another embodiment of the actuation element;
  • FIG. 13 is still a further cross-sectional view of a further embodiment of the actuation element;
  • FIG. 14 is a perspective view of yet another embodiment of the present invention employing a slotted flexible wrist section and a detachable and preferably disposable tool;
  • FIG. 15 is a cross-sectional view through the embodiment of FIG. 14 as taken along line 15-15 of FIG. 14;
  • FIG. 15A is a fragmentary cross-sectional view of an alternate embodiment of the flexible section;
  • FIG. 16 is an exploded perspective view of the embodiment of FIG. 14 showing the detached tool in cross-section;
  • FIG. 17 is a further perspective view of the embodiment of FIG. 14;
  • FIGS. 18-20 illustrate sequential cross-sectional views showing the mating of the tool with the distal end of the instrument;
  • FIG. 21 is a schematic diagram illustrating principles of the present invention in a catheter or flexible instrument using multiple controllable bendable sections along the instrument;
  • FIG. 22 is a schematic diagram of an embodiment of an instrument with both elbow and wrist pivot joints, as well as a disposable tool;
  • FIG. 23 is a schematic diagram of an embodiment of an instrument with just a wrist pivot joint, as well as a disposable tool;
  • FIG. 24 is a diagram showing further details of a wrist joint useable with a disposable tool;
  • FIG. 25 is a partially cut-away schematic view of another joint construction;
  • FIG. 26 is a perspective view of a another embodiment of a tool;
  • FIG. 27 is an exploded perspective view of the tool of FIG. 26 illustrating separate components thereof;
  • FIG. 27A is an exploded fragmentary view of one form of resilient member used in the embodiment of FIG. 27;
  • FIG. 27B is an exploded fragmentary view of another form of resilient member used in the embodiment of FIG. 27;
  • FIG. 28 is a side elevation view of the tool depicted in FIGS. 26 and 27;
  • FIG. 29 is an enlarged partial top plan view as seen along line 29-29 of
  • FIG. 28 and illustrating further details of the tool;
  • FIG. 30 is a cross-sectional view as taken along line 30-30 of FIG. 29 showing the tool of the present invention with the jaws in a partially open position;
  • FIG. 31 is a cross-sectional view like that illustrated in FIG. 30 but with the jaws in a fully closed position;
  • FIG. 32 is a somewhat schematic cross-sectional view of the first embodiment of the tool with the resilient pad partially compressed in grasping a small diameter item such as a thread or suture;
  • FIG. 33 is a somewhat schematic cross-sectional view of the first embodiment of the tool with the resilient pad essentially fully compressed in grasping a larger diameter item such as a needle;
  • FIG. 34 is a perspective view of a second embodiment of the invention employing a flexure gap in one of the jaws;
  • FIG. 35 is an exploded perspective view of the tool of this second embodiment of the invention;
  • FIG. 36 is a plan view of the tool of FIGS. 34 and 35;
  • FIG. 37 is a cross-sectional view taken along line 37-37 of FIG. 36 with the jaws having a slight gap at their closed position;
  • FIG. 38 is a cross-sectional view like that illustrated in FIG. 37 but with the jaws grasping a needle or the like, and with the flexure gap in a substantially closed position;
  • FIG. 39 is a cross-sectional view similar to that depicted in FIGS. 37 and 38, and of yet another embodiment of the invention illustrating the tool in a partially open position;
  • FIG. 40 is a cross-sectional view the same as that depicted in the embodiment of FIG. 39 but with the jaws in a more closed position;
  • FIG. 41 is a perspective view of an embodiment of a flexible or bendable shaft segment just proximal to the tool;
  • FIG. 42 is a cross-sectional view of the embodiment of FIG. 41 as taken along line 17-17 of FIG. 16, and with the jaws in a substantially open position;
  • FIG. 43 is an enlarged partial cross-sectional view similar to that shown in FIG. 42 but with the jaws in a closed position;
  • FIG. 44 is an exploded perspective view showing the components including the flexible or bendable segment of FIG. 41;
  • FIG. 45 is a side elevation view of the flexible or bendable section itself;
  • FIG. 46 is a cross-sectional view through the flexible or bendable section as taken along line 46-46 of FIG. 45;
  • FIG. 47 is a cross-sectional view through the flexible or bendable section as taken along line 47-47 of FIG. 45;
  • FIG. 48A is a perspective view of an alternate embodiment of the tool and flexible section;
  • FIG. 48B is an exploded perspective view of the tool and flexible section illustrated in FIG. 48A;
  • FIG. 48C is a fragmentary perspective view showing a portion of the flexible section shown in FIG. 48B; and
  • FIG. 48D is a plan view of the flexible section illustrated in FIGS. 48A-48C.
  • FIG. 49 illustrates a flexible instrument being used in a stomach of a subject in accordance with the invention.
  • FIG. 50A is a schematic of a flexible instrument with a pull-type cable to operate the end of the instrument in accordance with the invention.
  • FIG. 50B is cross-sectional view of a bendable section of the flexible instrument of FIG. 50A in accordance with the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A description of preferred embodiments of the invention follows.
  • The surgical robotic system of the present invention, as illustrated in the accompanying drawings, although preferably used to perform minimally invasive surgery, can also be used to perform other procedures as well, such as open or endoscopic surgical procedures. FIG. 1 illustrates a surgical instrument system 10 that includes a master station M at which a surgeon 2 manipulates an input device, and a slave station S including a surgical instrument illustrated generally at 14. In FIG. 1 the input device is illustrated at 3 being manipulated by the hand or hands of the surgeon. The surgeon is illustrated as seated in a comfortable chair 4, and the forearms of the surgeon are typically resting upon armrests 5.
  • FIG. 1 illustrates a master assembler 7 associated with the master station a and a slave assembly 8, also referred to as a drive unit, associated with the slave station S. Assemblies 7 and 8 are interconnected by cabling 6 with a controller 9, which typically has associated with it one or more displays and a keyboard.
  • As shown in FIG. 1, the drive unit 8 is located remotely from the operative site and is preferably positioned a distance away from the sterile field. The drive unit 8 is controlled by a computer system that is part of the controller 9. The master station M may also be referred to as a user interface vis-vis the controller 9. The computer translates the commands issued at the user interface into an electronically driven motion in the drive unit 8, and the surgical instrument, which is tethered to the drive unit through the cabling connections, produces the desired replicated motion. That is, the controller 9 couples the master station M and the slave station S and is operated in accordance with a computer algorithm, to be described in further detail below. The controller 9 receives a command from the input device 3 and controls the movement of the surgical instrument 14 so as to replicate the input manipulation. FIG. 1 also shows a patient P, upon whom the surgical procedure is performed, lying on an operating table T.
  • In the embodiment illustrated in FIG. 1, the surgical instrument 14 includes two separate instruments one on either side of an endoscope 13. The endoscope 13 includes a camera to remotely view the operation site. The camera may be mounted on the distal end of the instrument insert, or may be positioned away from the site to provide an additional perspective on the surgical operation. In certain situations, it may be desirable to provide the endoscope through an opening other than the one used by the surgical instrument 14. In this regard, in FIG. 1 three separate incisions are shown in the patient P, two side incisions for accommodating the surgical instruments and a central incision that accommodates the viewing endoscope. A drape covering the patient is also shown with a single opening.
  • The surgical instrument 14 also includes a surgical adaptor or guide 15 and an instrument insert or member 16. The surgical adaptor 15 is basically a passive mechanical device, driven by the attached cable array. Although the surgical adaptor can be easily seen in FIG. 1, the instrument member 16 (FIG. 3) is not clearly illustrated as it extends through the adaptor 15. The instrument insert 16 carries at its distal end a tool 18, described in greater detail below.
  • Although reference is made herein to a “surgical instrument,” it is contemplated that the principles of this invention also apply to other medical instruments, not necessarily for surgery, and including, but not limited to, such other implements as catheters, as well as diagnostic and therapeutic instruments and implements.
  • In FIG. 1 there is illustrated cabling 12 coupling the instrument 14 to the drive unit 8. The cabling 12 is preferably detachable from the drive unit 8. Furthermore, the surgical adaptor 15 may be of relatively simple construction. It may thus be designed for particular surgical applications such as abdominal, cardiac, spinal, arthroscopic, sinus, neural, etc. As indicated previously, the instrument insert 16 couples to the adaptor 15, and essentially provides a means for exchanging the instrument tools. The tools may include, for example, forceps, scissors, needle drivers, electrocautery, etc.
  • During use, a surgeon can manipulate the input device 3 at a surgeon's interface 11, to effect a desired motion of the tool 18 within the patient. The movement of the handle or hand assembly at input device 3 is interpreted by the controller 9 to control the movement of the tool 18.
  • The surgical instrument 14 is preferably mounted on a rigid post 19 that is affixed to but removable from the surgical table T. This mounting arrangement permits the instrument to remain fixed relative to the patient even if the table is repositioned. In accordance with the present invention the concepts can be practiced even with a single surgical instrument, although, in FIG. 1 there are illustrated two such instruments.
  • The surgical instruments 14 are connected to the respective drive units 8 with cablings that include two mechanical cable-in-conduit bundles 21 and 22. These cable bundles 21 and 22 may terminate at two connection modules, which removably attach to the drive unit 8. For further details of the connection modules 23 and 24 can be found in the earlier co-pending application No. PCT/US00/12553, the entire contents of which are incorporated herein by reference. Although two cable bundles are described here, it is to be understood that more or fewer cable bundles can be used. Furthermore, although the drive unit 8 is preferably located outside the sterile field, it may be draped with a sterile barrier so that it can be operated within the sterile field.
  • In the preferred technique to set up the system, the tool 18 of the surgical instrument 14 is inserted into the patient through an incision or opening, and the instrument 14 is then mounted to the rigid post 19 using a mounting bracket 25. The cable bundles 21 and 22 are then extended away from the operative area to the drive unit 8, and the connection modules of the cable bundles are engaged into the drive unit 8. Instrument inserts 16 (FIG. 3) may then be passed through the surgical adaptor 15, and coupled laterally with the surgical adaptor 15 through an adaptor coupler, as described below in further detail.
  • As just mentioned, the instrument 14 is controlled by the input device 3, which is manipulated by the surgeon. Movement of the hand assembly produces proportional movement of the instrument 14 through the coordinating action of the controller 9. It is typical for the movement of a single hand control to control movement of a single instrument. However, FIG. 1 shows a second input device that is used to control an additional instrument. Accordingly, in FIG. 1 two input devices associated with the two instruments are illustrated.
  • The surgeon's interface 11 is in electrical communication with the controller 9 primarily by way of the cabling 6 through the master assembly 7. Cabling 6 also couples the controller 9 to the actuation or drive unit 8. While the cabling 6 transmits electrical signals, the actuation or drive unit 8 is in mechanical communication with the instrument 14. The mechanical communication with the instrument allows the electromechanical components to be removed from the operative region, and preferably from the sterile field. The surgical instrument 14 provides a number of independent motions, or degrees-of-freedom, to the tool 18. These degrees-of-freedom are provided by both the surgical adaptor 15 and the instrument insert 16.
  • Shown in FIG. 2 is a schematic representation of the joint movement associated with the slave station S. The first joint movement J1 represents a pivoting notion of the instrument about the pivot pin 225 at axis 225A. Also illustrated is the movement relating to joint J2 which is a transitional movement of the carriage 226 on the rails 224 to move the carriage as well as the instrument 14, supported therefrom, in the direction indicated by the arrow 227 in FIG. 2 towards and away from the operative site OS. The cabling in the bundle 21 controls both the J1 and J21 movements. It is further noted that the distal end of the guide tube 17 extends to the operation site OS. The operation site may be defined as the general area in close proximity to where movement of the tool occurs, usually in the viewing area of the endoscope and away from the incision.
  • FIG. 2 also depicts the rotary motion of both the adaptor tube 17 and the instrument stem. These are illustrated in FIG. 2 as respective motions or joints J3 (adaptor tube rotation) and J4 (instrument stem rotation). Motion J5 indicates a wrist pivot or, alternatively, a wrist flexure. Finally, motions J6 and J7 represent the end jaw motions of the tool 18.
  • The combination of joints J4-J7 allows the instrument insert 16 to be actuated with four degrees-of-freedom. When coupled to the surgical adaptor 15, the insert 16 and adaptor 15 provide the surgical instrument 14 with seven degrees-of-freedom. Although four degrees-of-freedom are described here for the instrument insert 16, it is to be understood that greater or fewer numbers of degrees-of-freedom are possible with different instrument inserts. For example an energized insert with only one gripper may be useful for electro-surgery applications, while an insert with an additional linear motion may provide stapling capability.
  • With regard to the incision point, FIG. 2 shows the incision point along the dashed line 485, and a cannula 487 that in some surgical procedures is used in combination with a trocar to pierce the skin at the incision. The guide tube 17 is inserted through the flexible cannula 487 so that the tool is at the operative site OS. The cannula typically has a port at which a gas such as carbon dioxide enters for insufflating the patient. The cannula also is usually provided with a switch or button that can be actuated to desufflate. The cannula is used primarily for guiding the instrument, but may include a valve mechanism for preventing escape of gas from the body.
  • FIG. 3 is a plan view showing an instrument insert including the tool 18, and elongated sections including a rigid section 302 and a flexible section 303, with the tool 18 mounted at the end of the flexible stem section 303. The coupler 300 includes one or more wheels that laterally engage wheels of the coupler associated with the surgical adaptor. The coupler 300 also includes an axial wheel 306 that also engages a wheel on the adaptor. The axial engagement wheel 306 is fixed to the rigid stem 302, and is used to rotate the tool axially at the distal end of the flexible stem section 303.
  • FIG. 3 illustrates the base coupler 300 of the instrument insert 16 with wheels 330, 332, and 334 that have half-moon construction for engagement with mating like wheels of the adaptor. These wheels are meant to mate with the corresponding wheels of the adaptor. Also illustrated in FIG. 3 are capstans or idler pulleys 340, 342, and 344 associated with wheels 330, 332, and 334, respectively.
  • Each wheel of the coupler has two cables that are affixed to the wheel and wrapped about opposite sides at its base. The lower cable rides over one of the idler pulleys or capstans, which routes the cables toward the center of the instrument stem 302. The cables are kept near the center of the instrument stem, since the closer the cables are to the central axis of the stem, the less disturbance the cables experience as the stem section moves (rotates). The cables may then be routed individually through plastic tubes that may be affixed, respectively, to the proximal end of the rigid stem 302 and the distal end of the flexible stem section 303. Alternatively, the cables may each be enclosed in separate plastic tubes or sheathes only in the flexible section of the instrument stem (see, e.g., bundle 284 in FIG. 4). The tubes assist in maintaining constant length pathways for the cables as they move longitudinally within the instrument stem.
  • As for the coupler 300, there are six cables that connect to each of the wheels. Two cables connect to each wheel and one of these cables extends about the associated idler pulley or capstan. These are illustrated in FIG. 3 as idler pulleys 340, 342 and 344. Thus, six separate cables extend through the rigid stem 302 and down through the flexible stem section 303 to the area of the tool.
  • Associated with the wheels 330, 332, and 334 are six cables that extend through the sections 302 and 303, as illustrated in FIG. 4. One set of these cables controls the pivoting, such as the pivoting movement about pin 620. The other cables control the operation at the gripping jaws. For example, one pair of cables may control the movement of the lower jaw 652, while another cable pair may control the operation of the upper jaw 650.
  • In FIG. 4 there is shown the rigid section 302 and the flexible section 303 of the instrument insert 16. A series of six cables, illustrated at arrow 280 in FIG. 4 extend through these sections and may be considered as separated into three sets for controlling the tool 18, to provide the motions indicated in FIG. 2 as J5-J7. To de-couple wrist control from jaw control, the cabling is supported near to the center axis of the rigid and flexible sections. Note that “de-coupling” simply means that any one controlled action associated with the tool, when performed, does not interfere with other controlled actions that may not be selected at the time that the one controlled action is taking place. This may be controlled to some extent by using a retainer block 282 within these sections between the sections 302 and 303, as depicted in FIG. 4. On the rigid section side of the block 282 the cables may be unsupported as shown or they could be held within a plastic sleeve either individually and/or as a group. Because the cables are maintained in tension and the rigid section is not meant to bend or flex, the cables can be held in position by being supported, as a group, at the center of block 282.
  • From the other side of block 282 the cables extend through in a bundle 284. Also, each individual cable is preferably held within a cable sleeve, such as illustrated in FIGS. 6 and 8, to be described later in further detail. Also, as shown in FIG. 8 the cables contained in the sleeves 292 are twisted, for example, 180 degrees over say 8 inches. As also shown in FIG. 4, spacers 286 may be spaced along the flexible section 303 to hold the bundle 284 at the center of the section 303. The individual cable sleeves also define a substantially fixed length pathway for each cable so that even though the instrument may move or rotate, the cable lengths should stay the same within the flexible stem section. The sleeves may be held in fixed position at their ends such as at block 282 at one end and at the tool 18 at the other end. The outer flexible tube 288 may be a pliable plastic preferably having a fluted or bellows-like configuration, as illustrated.
  • The limited twisting of the cable bundle prevents the formation of kinks or loops in individual cables that might occur if the cables were straight and parallel through the flexible section. This twisting also provides the de-coupling between motions, so that actuation of one of the degrees-of-freedom (J5-J7) does not cause a responding action at another degree-of-freedom (J5-J7). The twisting essentially occurs between the block 282 and the location where the bundle enters the wrist joint (for example, the entry to base 600). The 180 degree twisting of the bundle ensures that the cable sheathes are neither stretched nor compressed, even as the bendable section is bent or rotated.
  • The construction of one form of tool is illustrated in FIGS. 3 and 4. The tool 18 includes the base 600, link 601, upper grip or jaw 650 and lower grip or jaw 652. The base 600 is affixed to the flexible stem section 303. As illustrated in the drawings, this flexible section may be constructed of a ribbed plastic. This flexible section allows the instrument to readily bend through the curved actuator tube 17.
  • The link 601 is rotatably connected to the base 600 about an axis 620A represented by pivot pin 620. The upper and lower jaws 650 and 652 are rotatably connected to the link about axis 605, where axis 605 is essentially perpendicular to the wrist axis at pin 620. Another pivot pin defines axis 605.
  • Six cables actuate the separate members 600-603 of the tool. The cabling may travel through the instrument insert stem (section 303) and through a hole in the base 600, wrapping around a curved surface on link 601, and then attaches on link 601. Tension on one set of cables rotates the link 601, and tension on other cables operates the upper and lower grips 650 and 652, about axis pin 605. The cabling is provided in pairs to provide an opposing action operation, including opposite routing paths, on the opposite sides of the instrument insert.
  • The set of cables that control the jaws travels through the stem 302, 303 and though holes in the base 600. These cables then pass between two fixed posts 621 that constrain the cables so that they pass substantially through an axis 620A, which defines the rotational motion of the link 601. This construction allows free rotation of the link 601 with essentially no length changes in the cables that actuate the jaws. In other words, these cables, which actuate the grips 650 and 652, are effectively decoupled from the motion of link 601. These cables pass over rounded sections and terminate on grips (or jaws) 650 and 652, respectively. Tension on one pair of cables rotate grips 650 and 652 counter-clockwise about axis 605. Another set of cables provides the clockwise motion to grips or jaws 650 and 652, respectively. The ends of the cables can be secured at the jaws 650 and 652 with the use of an adhesive such as epoxy glue, or the cables could be crimped or pinned to the jaw.
  • The instrument 16 slides through the guide tube 17 of adaptor 15, and laterally engages the adaptor coupler 230 pivotally mounted to the base piece 234. The base piece 234 is rotationally mounted to the guide tube 17, and is affixed to the linear slider or carriage 226. The carriage 226, in turn, is pivotally mounted at the pivot 225 about the axis 225A.
  • The embodiment of the invention illustrated in FIGS. 2-4 employs a fixed wrist pivot. An alternate construction is shown in FIGS. 5-8 in which there is provided, in place of a wrist pivot, a controllable flexing or bending section. In FIGS. 5-8, similar reference characters are used for many of the parts as they correspond to elements found in FIGS. 2-4. The construction in FIG. 5 may be employed with a stem section such as illustrated in FIGS. 3 and 4 with a curved guide tube.
  • In the embodiment illustrated in FIGS. 5-8, the tool 18 includes an upper grip or jaw 650 and a lower grip or jaw 652, supported from a link 601. Each of the jaws 650, 652 as well as the link 601, may be constructed of metal, or alternatively, the link 601 may be constructed of a hard plastic. The link 601 is engaged with the end of the flexible stem section 303. In this regard reference may also be made to FIG. 4 that shows the ribbed or fluted plastic construction of the flexible stem section 303. Alternatively, the section 303 may be smooth, at least at its distal end, as shown at 304 in FIG. 5. In still another embodiment both sections 302 and 303 can be rigid depending upon the particular application.
  • FIG. 5 shows only the end of the stem section 303 (at 304), terminating in bending or flexing section 660. Section 660 may be integrally formed with the rest of section 303. This section 660 is controllably bendable or flexible usually from a remote location such as in accordance with the telerobotic system 10 of FIG. 1. The stem section 303 is preferably constructed so as to be flexible and may have either fluted or smooth outer surfaces. Also, at the flexible section 660, flexibility and bending is enhanced by a bellows configuration 662 having saw-tooth shape of peaks and valleys as shown in FIG. 8. The distal end of the bending section 660 terminates with an opening 666 for receiving the end 668 of the link 601. The bellows configuration may be made of a single piece of material. Alternatively, the bellows configuration 662 may be made of segments connected together, for example, by welds. In any case, the bellows configuration 662 is a unibody construction.
  • In the embodiment shown in FIGS. 5-8, the bending or flexing section 660 is constructed to have orthogonal bending movements to provide both pitch and yaw movement of the tool. This is accomplished by using four cables separated at 90.degree. intervals. These four cables include the cables 606, 607, 616, and 617. The operation of cables 606 and 607 provides flexing in one degree-of-freedom while an added degree-of-freedom (orthogonal to the just mentioned one degree-of-freedom) is provided by operation of cables 616 and 617. As illustrated in FIG. 8, these cables extend through the bellows about half way between each peak and valley and thus run in parallel but close to the outer periphery of the flexible section 660. Each of the cables 606, 607, 616, and 617 terminate in a respective ball end 606A, 607A, 616A, and 617A, tensioned against an end wall 615. These same cables also are supported by and extend through retainer block 621. Within section 304 these cables also run near the outer wall as shown to the left in FIG. 8 where cables 616 and 617 are illustrated.
  • As for the operation of the tool, the cables 608, 609, 610, and 611 extend through the flexible stem section 303 and also through the retainer block 621, flexing section 660, and the wall 615. These cables extend to the respective jaws (650, 652) to control the operation thereof in a manner similar to that described previously in connection with FIGS. 2-4.
  • As is apparent from FIGS. 6-8, within the bellows 662, the tool actuation cables extend through the center of the bellows and are supported and retained between block 621 and wall 615 by the center sheath 290. The center sheath 290 may be constructed of a soft plastic material, and has an inner diameter sufficient to receive the bundle of cables, and an outer diameter that fits with little clearance against the inner diameter of the bellows 662. The sheath 290 extends between the block 621 and the wall 615 and is dimensioned to hold the cables, as a bundle, at the center axis of the bellows section. Keeping the bundle near the center axis provides proper de-coupling between the various degrees-of-freedom.
  • Also, within the bellows 662 each of the cables is contained in its own cable sleeve 292. These sleeves are sufficiently stiff to maintain constant cable lengths within the flexible or bendable section. In FIG. 8 these sleeves are shown extending between retainer block 621 and wall 615. As shown in the right most portion of FIG. 8, the cables are shown extending from the sleeve when the cables reach the end tool. FIG. 8 also illustrates the aforementioned twisting of the cables that assists in providing the de-coupling action between the tool operation and the controlled flexing or bending. The cables are twisted about 180 degrees between the block 621 and wall 615. The bellows section itself, may have a length of about one to three inches. Also, more than one bellows section may be used to provide controlled bending at more than one location. In that case separate control cabling is used for each section (see, e.g., FIG. 21 described later).
  • As with the earlier described embodiment, the limited twisting of the cable bundle prevents the formation of kinks or loops in individual cables that might occur if the cables were left straight and parallel to one another. This twisting also de-couples certain degrees of motions, so that actuation of one of the degrees-of-freedom does not cause a responding action at another degree-of-freedom. The twisting occurs between the block 621 and the location where the bundle enters the wrist joint, i.e., the entry to base 601. By twisting the cables through 180 degrees, the placement of all the cables is displaced from one end of the bundle to the other by 180 degrees. The individual cable sleeves also define a substantially fixed length pathway for each cable so that even though the instrument may move or rotate the cable lengths stay the same within the section 660.
  • The cross-sectional view of FIG. 8 gives details of the cabling in bending section 660. The sheath 290 extends essentially between block 621 and wall 615 and houses the twisted cables/sleeves. The individual sleeves 292 can be considered as terminating at respective ends in blocks 621 and 631. Each of the sleeves may be glued or secured in any other appropriate manner in its supporting end block. This prevents the sleeves from moving axially as the cables are activated. The sleeves are preferably constructed of a plastic that is flexible and yet has sufficient rigidity so they do not kink when the cables are activated. The sleeves also define fixed length pathways that do not compress or elongate as the cables are operated.
  • The 180 degrees twist in the cables/sleeves occurs essentially between blocks 621 and 631. This “twisting” of the center cables/sleeves allows the section 660 to be controllably bent, while preventing or minimizing any transfer of motion to the tool operating cables. Similarly, this arrangement also prevents cross-coupling from the tool operation to the bending control, so that the tool operation alone does not cause any undesired bending of the section 660.
  • Referring now to FIGS. 9-13 there is shown another embodiment that includes bellows which can be bent of flexed in a controllable manner, for example, through a user interface like that shown in FIG. 1. Similar reference characters are used in FIG. 9 as those used in describing the embodiment of FIG. 5. Unlike the embodiment shown in FIG. 5, the embodiment of FIG. 9 provides a single cable (or rod) actuation that simplifies the instrument construction, particularly at the tool end of the instrument. The single actuation is possible because the flexible section has two degrees-of-freedom to provide both pitch and yaw.
  • In the embodiment illustrated in FIGS. 9-13, the tool 18 includes an upper grip or jaw 650 and a lower grip or jaw 652, supported from a housing 670. Each of the jaws 650, 652, as well as the housing 670, may be constructed of metal, or alternatively, the housing 670 may be constructed of a hard plastic. The housing 670 is engaged to the flexible stem section 303 with the bellows 662. The flexible stem section 303 can be a ribbed or fluted plastic construction like that shown in FIG. 4, or alternatively, the section 303 may be smooth as shown at 304 in FIG. 9.
  • In FIG. 9 the jaws are operated from a single push/pull cable 672 that extends through the instrument stem and through the bellows 662 of the flexible or bendable section 660. The cable is centered in the various sections as depicted in FIG. 9 so that when the bendable section is activated, no movement is transferred to the tool actuation cable. In essence, the bellows section 662 expands on one side and compresses on the other side, leaving the center portion unchanged in length, and thus not effecting the cable action. The jaws themselves are supported by a link bar arrangement shown at 675 that is appropriately secured at the distal end of the cable 672. In the position shown in FIG. 9 the jaws are open, but by pulling on the cable away from the jaws the proximal end the link bar 675 pivots and closes the jaws 650, 652.
  • FIG. 9 shows only the end portion of the stem section 303, i.e., the portion at 304, terminating in bending or flexing section 660. This section 660 is bent or flexed in a controllable manner usually from a remote location as depicted FIG. 1. The stem section 303 is preferably constructed to be flexible and may have either fluted or smooth outer surfaces. Also, at the bending or flexing section 660, flexibility and bending is enhanced by means of constructing this section with a bellows configuration 66 having peaks and valleys in a saw-tooth shape arrangement as illustrated in the cross-sectional view of FIG. 9. The distal end of the bending section 660 has an opening for receiving the end of the housing 670. A wall 615 is positioned at the distal end of the bellows 662.
  • In the embodiment shown in FIG. 9, the bending or flexing section 660 can be bent to provide both pitch and yaw degrees of motion to the tool. This is accomplished by using four cables 606, 607, 616, and 617 that are separated at 90.degree. intervals. The operation of cables 606 and 607 provides flexing in one degree-of-freedom while another degree-of-freedom is provided by the operation of cables 616 and 617. As illustrated in FIG. 9, these cables extend through the bellows about half way between each peak and valley of the respective bellows, and thus are parallel and near the outer periphery of the flexible section 660. Each of the cables 606, 607, 616, and 617 terminates in a respective ball end 606A, 607A, 616A, and 617A, tensioned against the end wall 615. These cables also are supported by and extend through retainer block 621. Within section 304 these cables also run near the inner surface of the outer wall of the section 304, as shown to the left in FIG. 9 where cables 616 and 617 are illustrated.
  • As mentioned previously, the single actuation cable 672 provides all the action that is required to operate the tool, which simplifies the construction of the instrument and makes it easier to keep the single cable centered in the instrument. To accomplish this, there is provided a supporting sleeve 680 that receives the cable 672 with a snug fit. The sleeve 680 (FIG. 10) is preferably constructed of a polyethylene plastic such as PEEK which has the flexibility to flex with bending at the section 660, but at the same time is sufficiently rigid to properly retain and hold the supported cable 672 to enable the cable to readily slide within the supporting sleeve 680 when performing its function. Sleeve 680 defines a fixed length for the cable and does not allow any expansion or compression of the cable or sleeve. The sleeve 680 may extend from the wall 615 back through the retainer block 621 and into the flexible section of the instrument, as shown in FIG. 9. Alternatively, the sleeve 680 may extend only through the section 660 and terminate at block 621.
  • In addition to the sleeve 680, there is provided, about the sleeve 680, a helical spring 682 having an outer diameter to allow it to fit snugly within the inner diameter of the bellows 662. Note that there is a relatively close fit between the cable 672, sleeve 680, and helical spring 682 within the bellows 662. Opposite ends of the helical spring 682 are located between the block 621 and wall 615. FIG. 10 shows the spring shape and the relationship of the helical spring to the sleeve 680 and the actuation cable 672. In FIG. 10, the coils of the spring are shown spaced apart, but they can be more closely spaced then shown or completely closed.
  • The spring 682 may be free-floating about the sleeve 680, and is preferably not engaged in any passage in the end supports, such as the passage in block 621. The sleeve 680, on the other hand receives the cable 672 and is fixed in position relative to block 621 and wall 615. Passages are provided in block 621 and wall 615, and a glue or other securing arrangement is preferably used to hold the sleeve fixed at the block 621 and wall 615. The spring 682 is also used as a filler or spacer between the sleeve 680 and the bellows 662 inner surface. The spring provides a fixed position spacer since it is typically a metal, and thus will maintain the centering of the sleeve/cable, and yet is also flexible enough to bend when the section 660 is bent in a controlled manner. The sleeve itself is preferably made of plastic such as PEEK which has sufficient strength to receive and guide the cable, yet is flexible enough so that it will not kink or distort, and thus keeps the cable in a proper state for activation, and defines a fixed length for the cable.
  • By maintaining the sleeve 680 fixed in position at the block 621 and wall 615, the cable length at the center axis of section 660 does not change when the section 660 is bent. That is, the bellows shortens on one side and expands on the other side while keeping the center axis length unchanged. In this way when bending occurs at section 660 there is no transfer of motion to the cable 672 which could undesirably move the jaws. Hence, the bending motion is de-coupled from the tool operation motion, and vice versa.
  • FIG. 11 is a cross-sectional view taken along line 11-11 of FIG. 10 showing the centered cable 672, plastic sleeve 680, and the helical spring 682. FIG. 12 is a similar cross-sectional view but for an alternate embodiment using only the center cable 672 and the sleeve 680. In FIG. 12 the sleeve 680 is larger in outer diameter in comparison to the sleeve shown in FIG. 11 so that there is a proper and close fit between the sleeve and the inside of the bellows.
  • FIG. 13 is a cross-sectional view through another embodiment of the cable support. This embodiment also has the center cable 672 contained within the sleeve 680, but in place of the spring 682 there is instead used a spacer 681 made of, for example, plastic, to keep the sleeve and cable centered in the bellows. The spacer 681 may be constructed of a softer plastic than the sleeve 680, or may be made of a plastic foam material.
  • One of the benefits of the embodiment of FIG. 9 is that only a single cable is necessary to activate the tool. Recall that the pitch and yaw of the tool is controlled at the flexible wrist section 660 shown in FIG. 9. This arrangement lends itself to making the tool disposable or at the very least detachable from the instrument body so that it can be replaced with a substitute tool. A detachable embodiment of the present invention is illustrated in FIG. 14 and the companion views are shown in FIGS. 15-20. Besides being detachable this arrangement also makes it possible to provide at least a resposable and preferably a disposable instrument tip or tool.
  • In FIG. 14 a disposable tip is illustrated in conjunction with a flexible shaft or tube having a remotely controllable bending or flexing section 700. The medical instrument may include an elongated shaft, such as shaft section 710 shown in FIGS. 14 and 15, having proximal and distal ends, and a tool, such as graspers 702 and 704, supported from the distal end of the elongated shaft and useable in performing a medical procedure on a subject. The distal end of the elongated shaft and the tool have respective removably engaging portions that are readily engagable for positioning the tool at the distal end of the elongated shaft, and readily disengagable for removal of the tool from the distal end of the elongated shaft. The tool may be detachable to facilitae substituting another tool, or the tool may be constructed to be readily disposable. The removably engaging portions may be snap-fitted together, or, as illustrated here, may be provided by a screw interlock between the distal end of the instrument shaft and the base or housing of the tool. Also, other forms of detachable engaging portions are considered as falling within the scope of the present invention.
  • As shown in FIG. 14, the detachable or disposable tool is used with a flexible controllably bendable section. In another version the disposable tool can be used with a wrist pivot or even a pair of successive wrist pivots that are orthogonal to one another for providing pitch and yaw movement at the tool. The disposable tool in this version is also preferably actuated by a single actuation element, cable or the like.
  • In FIGS. 14 and 15, in a manner similar to that shown in FIG. 9, the tool is actuated by a single tendon or cable 736 that extends through the flexible section 700. To provide the pitch and yaw action at the tool, the bending or flexing section 700 is constructed to have orthogonal bending movements by pulling on four cables 706, 707, 716, and 717 separated at about 90.degree. intervals, and by using a center support 726 with ribs 712 extending from the center support 726 and defining slots 714 between adjacent ribs, as depicted in FIG. 15. The ribs 712 extend from a center support 726 that has extending therethrough a passage for receiving the cable 736 positioned within a sheath 730. The ribs 712 also provide a guide structure to the four cables 706, 707, 716, and 717. The bending section 700 is a unibody construction that extends from the end of tube section 710, which itself may be flexible, and it may be smooth as shown, or may be fluted as illustrated in FIG. 4.
  • This version enables the bending section to be bent in orthogonal directions by the use of the four cables 706, 707, 716, and 717. The operation of cables 706 and 707 provides flexing in one degree-of-freedom while another orthogonal degree-of-freedom is provided by the operation of cables 716 and 717. Each of the cables 706, 707, 716, and 717 has at their terminating ends respective balls 706A, 707A, 716A, and 717A that may be held in corresponding recesses in a distal end wall 719 of the flexible section 700. Note that in place of the slotted bending section 700, a bellows arrangement such as shown in FIG. 5 or 9 can be used.
  • The structure shown in FIGS. 14-17 preferably includes a plastic stiffener sheath or sleeve 730 that surrounds the cable 736, and that fits closely within the passage of the center support wall 726. The sleeve 730 is preferably constructed of a polyethylene plastic such as PEEK which has enough flexibility to flex with the bending section section 700, but at the same time is sufficiently rigid to properly retain, center and hold the supported cable to allow the cable 736 to readily slide within the supporting sleeve 730 in performing its function. The sleeve 730 may extend from the distal end of the flex section 700, back through the passage in the wall 726, and into the shaft section 710 of the instrument, as shown in FIG. 15.
  • Referring to FIG. 15A there is shown an alternate embodiment for the bending section 700 in which the sleeve 730 is eliminated. In this case, the passage in the wall 726 is dimensioned to directly and snugly receive the cable 736 with a close tolerance fit but having sufficient clearance to allow the cable to readily slide in the instrument.
  • The grippers 702 and 704 are supported for opening and closing by the use of a pivot pin 735 that extends along axis 735A in a housing 740. Referring to FIG. 16 there is shown in partial cross-section the housing 740, pin 735, and grippers 702 and 704. The pin 735 may be supported at its ends on opposite sides of housing 740. The tool also includes a pivot linkage 742 that intercouples the grippers with the actuation cable 736 such that as the linkage is moved in the axial direction by the cable 736 to open or close the jaws (or grippers). In FIG. 15 the linkage and tool are shown in solid outline in the closed position, which corresponds to a “pulling” of the cable in a direction away from the tool. FIG. 15 also shows, in dotted outline, the linkage and grippers in an open position, which corresponds to a “pushing” of the cable in a direction toward the tool. The grippers themselves are prevented from any axial movement by the support at pin 735, so when the linkage is operated from the cable 736 the resulting action is either opening or closing of the grippers, depending upon the direction of longitudinal translation of the actuating cable 736.
  • For the tool shown in FIGS. 14-17 to be detachable there is provided removably engaging portions, which in the illustrated embodiment are formed by mating threaded portions. Further, these mating portions are provided both with respect to the actuation element (cable) as well as the stationary components of the tool and tube. Thus, the tool housing has a threaded portion 746 with female threads, and the distal end of the flexible section 700, as shown in FIG. 16, has a threaded portion 748 with male threads. The end of the actuation cable 736, as shown in FIGS. 16 and 17, is terminated at block 750, passing through a center passage in the threaded portion 748. The block 750, interacting with arms 751, allows longitudinal sliding of the cable 736, but prevents rotation thereof so that the tool can be screwed onto the shaft without rotating the actuation cable. The block 750 supports a male threaded shaft 753 that is adapted to mate with the tool. The threaded portion at 753 may have twice the threads per length as the threaded portion 748. Also, the block 750 interacts with the arms as the tool is fully engaged to compensate for differences in thread pitch between the engaging members.
  • As previously indicated, the tool grippers are operated with the linkage 742. FIG. 17 shows the end of this linkage supporting a female threaded piece 760. To engage the tool with the instrument shaft, the female piece 760 is threaded onto the male threaded shaft 753 in the direction indicated by the rotational direction arrow 770.
  • Referring to FIGS. 18-20, there is shown the sequence of steps to attach the instrument tip to the shaft of the instrument. These views are somewhat schematic and are for the purpose of merely illustrating the steps taken in attaching the tool to the instrument shaft.
  • In FIG. 18 the tool is first illustrated with its housing 740 about to engage at threaded female piece 760 with the corresponding threaded male shaft 753. It is noted that the threads of pieces 760 and shaft 753 are finer that the threaded portions 748 and 746. Also, the threaded piece 760 and shaft 753 are designed such that only about four turns are necessary to fully seat these members together. On the other hand the sections 746 and 748 have courser threads so that it takes, say, only about two turns to engage the two sections together. When the tool is fully engaged there is a detent arrangement provided between the interlocking members to lock them in their final position. This is shown in the drawings by interlocking tab 780 of housing 740, and recess 782 associated with the flexible section 700.
  • FIG. 19 illustrates the positions of the various components after two turns have occurred between threaded shaft 753 and threaded piece 760, and the other outer mating threaded sections are to engage. Next the threaded portions 746 and 748 engage and after two more turns of the tool, the tool is fully engaged with the shaft, as illustrated in FIG. 20. In that position the detents are also engaged so that the tool is, in essence, locked to the instrument shaft and ready for use. It is also noted in FIG. 20 that because of the difference in thread pitch between the fine and course threads, the block 750 is free to move inward away from the tool.
  • Referring now to FIG. 21, there is shown an embodiment having a detachable and disposable tool, and particularly adapted for application to a flexible instrument including a catheter. Features of the earlier described embodiments may be used with the embodiment of FIG. 21. Again, although not necessary, in a preferred embodiment the tool is operated remotely in a telerobotic manner from a user device such as shown in FIG. 1. The use of multiple controllably bendable segments as shown in FIG. 21 is particularly advantageous in a flexible instrument to assist in guidance thereof such as, for example, in vessels or arteries.
  • FIG. 21 shows primarily the distal end of a flexible instrument with the more proximal portions of the instrument being supported and driven in a manner similar to that illustrated in FIGS. 1 and 2. Rather than having only one bending or flexing section as described above, the flexible instrument 800 has two bending sections 810 and 815 spaced along the instrument shaft that are remotely actuable. In other configurations, these sections 810 and 815 can be formed directly in series, and more than two controllable segments can be used. A tool 820 is positioned at the distal end of the instrument, and is preferably constructed to be disposable and may be substantially the same as the tool illustrated in FIGS. 14-17 including the interengaging portions for detachability of both the tool body and the tool actuation element. As shown in FIG. 21, a cable 825 is used as the actuation element. Also illustrated in FIG. 21 are instrument transition segments 830 and 835, which may be similarly constructed as the flexible section 303 shown in FIG. 4. Alternatively, one or both of these sections 830, 835 may be rigid.
  • In each of the instrument sections shown in FIG. 21 the actuation elements (cables) that are not used to operate a particular section run preferably through the center of the respective section to provide the proper de-coupling between the various degrees of movement. Thus, the center cable bundle 840 through the section 810 includes the cables to operate section 815 and the tool 820.
  • If the two controllable sections 810 and 815 are controlled with both pitch and yaw movements, then four cables are used to actuate each section. Thus, the actuation of each section is similar to the actuation of the embodiments shown earlier in FIGS. 5 and 9. The aforementioned “twisting” concept is also preferably used in each of these sections 810, 815 where multiple cables are running through them, particularly in section 810 where five cables extend along the center of the section (four for actuation of the section 815 and one for tool actuation) similar to that shown in FIG. 8.
  • Thus, nine cables extend through section 830, five in the center bundle 840 and four extending through and about the periphery of section 810 to provide the controlled bending of section 810. FIG. 21 shows two of these cables terminating at 812 and used to operate and move the section 810 with one degree of freedom. Two other cables (displaced about 90 degrees) also terminate at the same general area and are used to operate the bending section 810 with the other degree-of-freedom.
  • Next, in section 835 four cables at 836 branch outwardly and terminate at the end of section 815 at 837 to control the flexing of section 815. In section 815 there is thus only the single tool actuation cable 825 contained in a sheath extending through the center of the section. Although FIG. 21 shows only two of the cables 836 for controlling one of the degrees-of-freedom of movement of the section 815, there are two other cables (displaced about 90 degrees) that also terminate at the same location for the other degree-of-freedom of control of section 815. Again, reference to FIG. 8 can be made for the operation of the bending movement of the sections with the use of the cables.
  • The instrument shown in FIG. 21 may be used for any number of different surgical procedures. Flexible instruments of this general type are shown in co-pending applications that have been incorporated herein by reference in their entirety. Although FIG. 21 shows four cables that are used to actuate a respective bending section, more or fewer cables can be used in each section. For example, if only one degree-of-freedom is desired in section 810 then only two actuating cables are employed to control bending in only one plane. The instrument may also be controlled for rotation to provide another degree-of-freedom.
  • In the embodiment of the invention shown in FIGS. 14-17, the tool is readily disposable. By providing a bendable section that can control both pitch and yaw movement of the tool, the tool itself becomes actuable with a single cable or rod. Now, FIGS. 22 and 23 disclose in a schematic manner this same disposability feature as applies to an instrument, whether flexible or rigid, that employs a wrist pivot or wrist and elbow pivot.
  • FIG. 22 is a schematic diagram of the instrument illustrating both elbow and wrist pivot joints, as well as the disposable tool. FIG. 23 shows just a wrist pivot joint with a disposable tool. More specific details of portions of the diagrams can be found in earlier embodiments described herein.
  • In FIGS. 22 and 23 like reference characters are used to identify like parts. In FIG. 22 there is provided an instrument 900 that includes both an elbow joint 905 and a wrist joint 910. These joints allow for orthogonal motions of the various segments about respective axes 905A and 910A. Both of these joints are driven by cabling in a manner as described earlier, such as in the pivot arrangement shown in FIGS. 3 and 4. This cabling preferably runs through the center of the instrument as previously described. The instrument 900 also includes an end tool 920 driven from a cable or rod 925. This tool construction and its actuation element may be the same as described in FIGS. 14-17, and would include separate interengagable/disengagable portions as previously described.
  • In FIG. 23 there is shown an instrument 930 that includes only a single wrist joint 910, along with the tool 920 actuated by means of the actuation element 925. Again tool 920 is preferably readily detachable in the manner shown in FIGS. 14-17 and is thus readily disposable. To provide another degree-of-freedom the instrument may be controllably rotated as indicated by the arrow 927 in FIG. 23.
  • FIG. 24 illustrates a wrist or other joint that may be used for the joints shown FIGS. 22 and 23. FIG. 24 shows a ball joint 950 with intercoupling sections 951 and 952. An actuation cable 954 is also illustrated extending through sections 951 and 952 as well as through the middle of the joint 950. The joint 950 may be of a conventional type using mating outer pieces at 956 that enable the sections 951 and 952 to have relative rotation therebetween. At least within the joint itself, there is provided a sheath 958 that encloses the cable 954, and that is preferably fixed in position at the top and bottom of the joint. The sheath is flexible and yet sufficiently durable so as to define a fixed length for the cable to extend through, even as the joint is actuated to rotate or pivot.
  • Appropriate cabling may be provided for control of the joint 950. This type of joint is particularly advantageous in that the center of the joint is open and does not interfere at all with the passing of the actuation cable 954 and sheath 958 through the joint 950. Again, by maintaining the cable at the center of the joint, as illustrated, even as the joint is actuated there is no adverse effect on the actuation cable. In other words as the joint rotates it does not change the length of the cable 954, and thus these separate actions are de-coupled from each other.
  • Referring now to FIG. 25, a further description of a wrist or other joint is illustrated that may be used for the joints shown in FIGS. 22 and 23. FIG. 25 shows a ball joint 960 intercoupling sections 961 and 962. An actuation cable 964 is also illustrated extending through sections 961 and 962 as well as through the middle of the joint 960. Here again, the joint 960 may be a conventional joint using mating outer pieces at 966 that enable the sections 961 and 962 to have relative rotation therebetween. Within the joint itself, there may be provided a sheath that encloses the cable 964 and that may be preferably fixed in position at the top and bottom of the joint.
  • Appropriate cabling may be provided for control of the joint 960. In this particular joint rather than being completely open as in FIG. 24 there is provided a funnel like surface illustrated at 970 that directs the cable to an output orifice 972 where the cable is coupled into the section 962. This funnel surface 970 holds the cable such that as the sections experience relative rotation while the length of the cable within the joint is maintained at a fairly fixed length.
  • Other embodiments of the tool 18 are within the scope of the invention, such as that illustrated in FIGS. 26-33. A set of jaws is illustrated in the figures, but it is understood that other types of tool constructions may also be used with the concepts of the present invention. Also, the instrument shaft may be a rigid shaft, a flexible shaft, or combinations thereof.
  • The tool 18 includes four basic members including the base 1020, link 1021, upper grip or jaw 1022 and lower grip or jaw 1023. The base 1020 is affixed to the instrument shaft 1010. The instrument shaft 1010 may be rigid or flexible depending upon the particular use. If the shaft 1010 is flexible it may be constructed, for example, of a ribbed plastic material. A flexible shaft or section thereof would, in particular, be used in conjunction with a curved guide tube so that the instrument readily bends through the curved adaptor guide tube.
  • In the embodiment of FIGS. 26-33, link 1021 is rotatably connected to the base 1020 about wrist pivot axis 1025 with a wrist pivot pin at 1026. The upper and lower jaws 1022 and 1023 are rotatably connected to the link 1021 about axis 1028 with a pivot pin 1030, where axis 1028 is essentially perpendicular to axis 1025. The jaws may also be referred to as grippers or graspers.
  • Six cables 1036-1041 actuate the wrist, namely the link 1021, as well as the end effector or tool 18. Cable 1036 extends through the instrument shaft and through a hole in the base 1020, wraps around curved surface 1032 on link 1021, and then attaches on link 1021 at 1034. Tension on cable 1036 rotates the link 1021, as well as the upper and lower jaws 1022 and 1023, about axis 1025. Cable 1037 provides the opposing action to cable 1036, and goes through the same routing pathway, but on the opposite side of the instrument shaft. Cable 1037 is also attached to link 1021 generally at 1034.
  • Cables 1038 and 1040 also travel through the instrument shaft 1030 and though holes in the base 1020. The cables 1038 and 1040 then pass between two fixed posts 1035. These posts constrain the cables to pass substantially through the axis 1025 about which the link 1021 rotates. This construction allows the link 1021 to rotate freely with minimal length changes in cables 1038-1041. In other words, the cables 1038-1041, which actuate the jaws 1022 and 1023, are essentially decoupled from the motion of link 1021. Cables 1038 and 1040 pass over rounded sections and terminate on jaws 1022 and 1023, respectively. The application of tension on cables 1038 and 1040 rotate jaws 1022 and 1023 counter-clockwise about axis 1028.
  • Finally, as shown in FIG. 27, the cables 1039 and 1041 pass through the same routing pathway as cables 1038 and 1040, but on the opposite side of the instrument. These cables 1039 and 1041 provide the clockwise motion to grips or jaws 1022 and 1023, respectively. The ends of cables 1038-1041 may be secured at 1033 of the jaws 1022 and 1023.
  • In addition to the jaws 1022 and 1023, the tool 18 includes a rotation piece 1045, a linkage 1046 and slotted linkage 1048. The rotation piece 1045 has a centrally disposed hole 1045A that is adapted to receive the pivot pin 1030. The pivot pin 1030 also passes through holes 1023A in one jaw member and holes 1022A in the other jaw member. The pin 1030 is secured in respective holes in the arms 1029 of the link 1021 in a well-known manner to rotatably support the jaw members from the link 1021. The rotation piece 1045 also carries an actuation pin 1050 extending in the same direction as the pivot pin 1030, and parallel thereto. The actuation pin 1050 extends into curved J-shaped slots 1052 in respective jaw flanges 1054 of jaw 1023.
  • The actuation pin 1050 is also received by the linkage 1048 through the end hole 1048A, and the linkage is supported between the spaced flanges 1054 of the jaw 1023. At the slotted end of the linkage 1048 there is a set of holes 10488 that receive the pin 1056. The linkage 1048 also pivotally attaches with the linkage 1046 by virtue of the pin 1056 passing through the holes 10468 and 10488. The pin 1056 is also positioned in the slots 1052 of the flanges 1054, and thus moves along the slots to different positions, two of which are illustrated in FIGS. 30 and 31. When the jaws are fully closed, the pin 1056 is at the very top of the slot 1052 as illustrated in FIG. 31. FIG. 30 shows the pin 1056 in a lower position which occurs when the jaws are partially opened. The pin 1050 likewise is in different positions in the slot 52 depending upon the position of the jaws.
  • The linkage 1046 is also supported at its other end at hole 1046A by the pin 1058. The pin 1058 also passes through a set of holes 10228 in the base of the jaw 1022. The linkage 1046 fits in a slot at the base of the jaw 1022, and the pin 1058 passes through both the base of the jaw 1022 as well as the linkage 1046. The pin 1058 also preferably has a compliant member such as a set of resilient members disposed about at least a portion thereof, as illustrated in FIGS. 30 and 31, at 1060, in an uncompressed position. FIG. 31 shows the resilient cups 1060 uncompressed, while FIG. 32 shows the resilient cups partially compressed when the jaws are grasping a small diameter member such as a suture S. FIG. 33 shows the cups 1060 essentially fully compressed, when the jaws are grasping a larger diameter member such as a needle N. The cups 1060 may fit about the pin 1058, and be disposed in the base of the jaw 1022. The holes 10228 that receive the cups 1060 are of somewhat elongated shape, such as illustrated in FIGS. 27A, 27B, 30, and 31.
  • With further reference to FIGS. 32 and 33, the jaws 1022 and 1023 apply a smaller but sufficient force to hold a smaller diameter item, such as the suture S than when holding a larger item such as a needle N. This force is primarily a function of the resiliency of the cups 1060. Thus, the larger the diameter of the item being held, the larger the corresponding holding force. The tool is constructed so that when the jaws are holding an item the size of a needle N the cups 1060 are essentially fully compressed, and a maximum grasping force is applied to the needle N. This is particularly desirable for important surgery techniques for the securing and controlling of the needle. When the jaws 1022 and 1023 first make contact with an item positioned between them, the pin 1056 is in a contact position A′ (FIG. 33) for a larger item such as the needle N, or further up the slot 1052 at a position A (FIG. 32) for a smaller item such as the suture S. When a sufficient force is applied to the item with the jaws, the pin 1056 moves to a locked position B (FIGS. 32 and 33), regardless of the size of the item being grasped.
  • Other embodiments of the resilient members are shown in the fragmentary exploded views of FIGS. 27A and 27B. The embodiment of FIG. 27A uses a pair of cups 1060A, while the embodiment of FIG. 27B uses only a single cup. In FIGS. 27A and 27B the same reference characters are used as in FIG. 27 to identify like components. In the embodiment of FIG. 27A the cups 1060A are positioned within respective holes 1022B. They may be positioned with the use of an adhesive. The cups 1060A are thus be located at opposite ends of the pin 1058. When the jaws are in the closed position, these cups 1060A are compressed as the pin 1058 rides downwardly in the somewhat elongated hole or slot 1022B. In the embodiment of FIG. 27B the single cup 1060B is of somewhat larger shape than the cups 1060A and is located between the spaced walls of the base 1022C. The link 1046 is positioned between these walls, as is the cup 1060B. The cup 1060B may also be secured in position by an adhesive. The cup 1060B is engaged by the end of the link 1046. In this embodiment the pin 1058 also rides within the elongated slots 1022B and when the jaws are moved to a closed position the end of link 1046 bears against the cup 1060B. In still another embodiment one may use all three cups to provide additional resiliency.
  • The actuation cables for the end effector include the cables 1038-1041. One set of cables actuates the rotation piece 1045, while the other set of cables actuates the jaw 1023. The other jaw 1022 is actuated through the coupling provided from the rotation piece 1045 to the jaw 1022, including pin 1050 and the associated linkages 1046 and 1048 controlled via pins riding in slots 1052. These linkages provide direct drive from the rotation piece 1045 to the base of the jaw 1022, to control the pivoting motion of that jaw, controlled usually from a remote location.
  • Another embodiment of the tool 18 is illustrated in FIGS. 34-38, where FIG. 34 is a perspective view of the tool while FIG. 35 is an exploded perspective view showing the separate components of the tool. In this embodiment the same reference characters are used to designate similar components.
  • The tool 18 shown in FIGS. 34-38 includes four basic members including a base 1020, a link 1021 attached to the base, an upper grip or jaw 1022, and a lower grip or jaw 1023. The base is affixed to an instrument shaft in a manner similar to that depicted in FIG. 26. As before, the instrument shaft may be rigid or flexible depending upon the particular use.
  • In the embodiment shown in FIGS. 34-38, the link 1021 may be rotatably connected to the base about a wrist axis such as the axis 1025 of the just previously described embodiment. The upper and lower jaws 1022 and 1023 are rotatably connected to the link 1021 about axis 1028 with a pin 1030 that is substantially perpendicular to axis 1025.
  • Six cables 1036-1041 actuate the wrist, namely the link 1021, as well as the end effector or tool 18. Cable 1036 extends through the instrument shaft and through a hole in the base, wraps around curved surface 1032 on link 1021, and then attaches on link 1021 at 1034 (FIG. 35). Tension on cable 1036 rotates the link 1021, and the upper and lower jaws 1022 and 1023, about the wrist axis. Cable 1037 provides the opposing action to cable 1036, and goes through the same routing pathway, but on the opposite side of the instrument shaft. Cable 1037 is also attached to link 1021 generally at 1034.
  • Cables 1038 and 1040 also travel through the instrument shaft and though holes in the base. The cables 1038 and 1040 then pass between two fixed posts that are similar to the posts 1035 in FIG. 26. These posts constrain the cables so that they pass substantially through the wrist axis about which the link 1021 rotates. This construction allows the link 1021 to freely rotate with minimal length changes in cables 1038-1041. Hence, the cables 1038-1041, which actuate the jaws 1022 and 1023, are decoupled from the motion of link 1021. Cables 1038 and 1040 pass over rounded sections and terminate on jaws 1022 and 1023, respectively. The application of tension on cables 1038 and 1040 rotate jaws 1022 and 1023 counter-clockwise about axis 1028.
  • Finally, as shown in FIG. 35, the cables 1039 and 1041 pass through the same routing pathway as cables 1038 and 1040, but on the opposite side of the instrument. These cables 1039 and 1041 provide the clockwise motion to jaws 1022 and 1023, respectively. The ends of cables 1038-1041 are secured at 1033 of the jaws 1022 and 1023.
  • In addition to the jaws 1022 and 1023, the tool 18 includes the rotation piece 1045, along with linkage pair 1066 and straight linkage 1068. The rotation piece 1045 has a central hole 1045A that receives the pivot pin 1030. The pivot pin 1030 also passes through holes 1023A in one jaw member and hole 1022A in the other jaw member. The pin 1030 is secured to respective holes in the arms 1029 of the link 1021 to rotatably support the jaw members from the link 1021. The rotation piece 1045 also carries an actuation pin 1050 extending in the same direction as the pivot pin 1030, and parallel thereto. The actuation pin 1050 extends into curved slots 1052 in respective jaw flanges 1054 of jaw 1023, as shown in FIGS. 35, 37, and 38.
  • The actuation pin 1050 is also received through an end hole 1068A of the linkage 1068, and the linkage is supported between the spaced flanges 1054 of the jaw 1023. At the other end of the linkage 1068 there is a hole 10688 that receives the pin 1076. The linkage 1068 also pivotally attaches with the linkage pair 1066 by virtue of the pin 1076 passing through the holes 1066B and 1068B. The pin 1076 is also positioned in the slots 1052 of the flanges 1054, and thus moves along the slots to different positions, two of which are illustrated in FIGS. 37 and 38. When the jaws are in a substantially closed position, the pin 1076 is at the top of the slot 1052 as illustrated in FIG. 37. When the jaws are in other positions, the pin 1050 will reside in different positions in the slot 1052.
  • The linkages 1066 are also supported at its other ends at holes 1066A the pin 1078. The pin 1078 also passes through a hole 10228 in the base of the jaw 1022. At that point the base has a support wall 1022D in which the hole 10228 is located. The linkage pair 1066 fits on opposite sides of the wall 1022D, and the pin 1078 passes through both the base of the jaw 1022 as well as the linkage pair 1066.
  • The actuation cables for the end effector or tool include the cables 1038-1041. One set of cables actuates the rotation piece 1045, while the other set of cables actuates the jaw 1023. The other jaw 1022 is actuated through the coupling provided from the rotation piece 1045 to the jaw 1022, including pin 1050 and the associated linkages 1046 and 1048 riding in slots 1052. These linkages provide direct drive from the rotation piece 1045 to the base of the jaw 1022, to control the pivoting motion of that jaw, typically from a remote location.
  • In the embodiment shown in FIGS. 35-38, control of the grasping force on an item is provided primarily by means of a slot or gap in one of the jaws. This is illustrated in FIGS. 34-38 by the gap 1031 located near the base 1022C in the jaw 1022. FIGS. 35, 37, and 38 show in particular the shape and depth of the gap 1031. The gap 1031 is located above a hinge 1044 where the jaw can deflect when grasping and holding an item, regardless of its size, and with a firm grasping force. The gap 1031 may be terminated in a tubular passage 1031A to enhance the hinging effect of the hinge 1044. Hence the hinge 1044 acts as a compliance member similar to the resilient members 1060 described with reference to FIGS. 27-33.
  • Referring now in particular to FIGS. 37 and 38, the jaws 1022, 1023 are shown in a substantially closed position in FIG. 37 grasping a suture S. In that position it is noted that both of the pins 1050 and 1076 are substantially at their top transition locations. FIG. 38 illustrates the jaws 1022, 1023 grasping an item such as a needle N that causes the jaw 1022 to flex and consequently the gap 31 to close up. This flexure enables the application of a varied grasping force at the tip of the jaws. When the links are at the end of their travel, the jaw 1022 flexes when the jaws 102, 1023 grasp an item. The amount of flexure depends on the diameter of the item being grasped. Thus, the jaws 1022 flexes to a lesser extent when a smaller diameter item such as a suture S is being grasped then when a larger item such as a needle N is being held. That is, to grasp a smaller item, the gap 1031 closes to a lesser extent, while the jaw. As still apply a sufficient holding force to the item. This force is primarily a function of the resiliency at the gap, as defined primarily by the flexure capability at the hinge 1044. The larger the diameter of the item being held, the larger the corresponding holding force. The tool is constructed so that, for an item the size of a needle, as shown in FIG. 38, the gap 1031 is fully closed with the sides of the top of the gap touching, with a maximum grasping force being applied to the needle N. This is particularly desirable for the securing and controlling of the needle in important surgery techniques. Here again, the pin 1076 is at a contact position A′ (FIG. 38) when the jaws first make contact with a larger item such as the needle N, or further up the slot 1052 at a contact position A (FIG. 37) when the jaws contact a smaller item such as the suture S. Regardless of the size of the item, the pin moves to a locked position B (FIGS. 37 and 38) when the sufficient force is applied to lock the jaws onto the item.
  • In connection with both of the embodiments described in respective FIG. 26-33, and FIGS. 34-38, there has been described a “locked” position B of the pins or jaws. This locked position corresponds to a position wherein the linkages are disposed at right angles to each other. In other words, for example, in FIG. 31 in that locked position the linkages 1046 and 1048 are disposed at right angles (90 degrees) to each other. This provides virtually infinite grasping force with essentially no back drive at the jaws. Regarding the embodiment in FIGS. 34-38 it would be the linkages 1066 and 1068 that are disposed at right angles when locked.
  • Reference is now made to another embodiment of the invention illustrated in FIGS. 39 and 40. This embodiment has a structure very similar to that described in detail in FIGS. 26-33. However, in place of the resilient cup 1060 there is provided a modified jaw slot configuration. As indicated previously the slots 1052 in jaw 1023 have a curved segment 1052A, and a straight segment 1052B. In this embodiment the J-slots 1052 also have a contiguous end slot 1052C that extends back toward the tip of the jaw tip. Hence, the overall slot configuration is C-shaped. In FIG. 39 the jaws are in a substantially open position with a gap G1 as noted when the jaw members 1022, 1023 are locked onto and the needle N, with the pin 1056 located at a locked position B. Before the jaws make contact with the needle N, the pin 1056 may be out of the end slot 1052C, and the pins 1050 and 1056 are located at different positions along the slots 1052 depending upon the degree of openness of the jaws. When the jaws contact the needle N, the pin 1056 is at a contact position A′. In FIG. 40 the jaws are in a substantially closed position with a small gap G2 as the jaws grasp a smaller item such as a suture S. In this position the pin 1056 now moves further into the end slots 1052C to the locked position B, as the jaws apply a grasping force to an item to lock the suture between the jaws. When contact is first made between the jaws and the suture, the pin 1056 is located at the contact position A further up the slot 1052 than the contact position A′ of FIG. 39. Thus, depending upon the size thereof, the pin 1056 moves to a greater or lesser extent into the slots 1052C.
  • To hold a large diameter item such as a needle, the pins 1050 and 1056 are in the position illustrated in FIG. 39 with there being a maximum grasping force applied to the item by virtue of the links 1046 and 1048 being positioned at 90 degrees relative to each other. For smaller diameter items such as a suture, the pins rotate slightly further clockwise with the pin 1056 moving into the slot 1052C as illustrated in FIG. 40. When the pin 1056 moves into the slot 1052C, the jaw and linkages move together as a rigid body while closing against the suture.
  • In sum the slots 1052C, like the resilient member 1060 (FIGS. 27-33) and the hinge 1044 (FIGS. 37 and 38), are accommodating mechanisms that allow a closing force to be applied to grasped items of different sizes as the force is applied to the grasped item as the jaws close to a position at which the jaws remain open.
  • The accommodating mechanisms described above like the slots 1052C (FIGS. 39 and 40), the resilient member 1060 (FIGS. 27-33), and the hinge 1044 (FIGS. 37 and 38, can be implemented in other types of grasping mechanisms as well, such as those described in U.S. application Ser. No. 09/827,643 (now U.S. Pat. No. 6,554,844), filed Apr. 6, 2001, and U.S. application Ser. No. 10/014,143 (now abandoned), filed Nov. 16, 2001, the entire contents of which are incorporated herein by reference.
  • In each of the aforementioned embodiments described herein the medical instrument includes a jaw or work members controlled by a drive mechanism that is used to open and close the jaws or work members for applying an increased force to an item grasped between the jaws or work members. The accommodating mechanisms described above such as the slots 1052C (FIGS. 39 and 40), the resilient member 1060 (FIGS. 27-33), and the hinge 1044 (FIGS. 37 and 38, each have the characteristic of providing a maximum grasping force at what may be considered a maximum grasping position. This corresponds to the positions illustrated, and discussed previously, in FIGS. 33, 38, and 39. In each of the embodiments the instrument is constructed so that this maximum position corresponds to a predetermined size or diameter items that is to be grasped, usually a needle in this case. For item smaller or larger than this size the grasping force is progressively less. In the instance of the embodiment of FIGS. 26-33, for smaller items such as the suture S, the force is less because the compliant member is compressed less. For the case of an item larger than the needle N, the linkage does not go to the top of the J-slot and thus the applied force is also less in that case, as the linkages are not yet to a maximum force 90 degree position.
  • In all three of the described embodiments the accommodating mechanism allows the jaws or work members to be closed beyond this maximum grasping position in order to grasp items of various sizes, particularly smaller size items. Again, this is illustrated by way of example in FIG. 32 where the jaws go past their maximum grasping position, closing to a closer position therebetween, in grasping the suture S. In FIG. 37 this is illustrated by the jaws closing to grasp the suture S with less force being imposed by the flexure at the jaw 1022. This is also illustrated in FIGS. 39 and 40. In FIG. 39 the jaws are at their maximum grasping position. In FIG. 40 the jaws are closed beyond this maximum grasping position to grasp the smaller size suture S. The accommodating mechanism in this case may be considered as including the slot segment 1052C that enables further rotation of the linkages to the position illustrated in FIG. 40.
  • Other embodiments of the flexible or bending segment are within the scope of the invention. For example, there is shown in FIGS. 41-47 another embodiment of a flexible or bending segment with a unibody construction which can be used with any suitable end effector like the tools 18 described above, whether used with a rigid shaft body or a flexible shaft body or combinations thereof. As with some of the embodiments described earlier, one of the benefits of the embodiment shown in FIGS. 41-47 is that only a single cable 1136 needs to be coupled to the tool 18 to actuate it. The pitch and yaw of the tool 18 is controlled at the flexible section 1100 shown in FIG. 41. This arrangement also lends itself to making the tool disposable or at the very least detachable from the instrument body to facilitate substituting another tool. Here again, because of the simplified construction at the tip of the instrument, a tool can be constructed that is readily detachable from the instrument.
  • Although the bendable section 1100 is depicted near the tool, the bendable section can be located at other locations further away from the tool. Since the tool 18 of the embodiment shown in FIGS. 41-47 requires only a single actuation cable, it is simpler to operate than the wrist/tool combination shown in FIGS. 26 and 27. Recall, in the wrist arrangement, a pivot axis does not accommodate single cable actuation. Thus, with the wrist unit one has to use a far more complex cabling scheme, such as, by way of example, the cabling arrangement illustrated in U.S. Pat. Nos. 6,312,435 and 6,206,903. Furthermore, the single cable actuation provides a more simplified design that readily lends itself to a variety of tool constructions.
  • In order for the various degrees of motions to be decoupled from each other, and for the proper overall functioning of the distal end of the instrument, the instrument has certain preferred characteristics, particularly at the flexible or bendable section of the instrument shaft. These characteristics are listed below but are not in any particular order of significance. Embodiments can employ at least one of these characteristics. Furthermore, although these characteristics are listed with reference to the embodiment described in FIGS. 41-44, one or more of the characteristics can apply as well to any of the other embodiments described earlier.
  • A first characteristic is that the actuation element for the tool be centered in the flexible or bendable section. In this way, during any bending operation the center of the flexible or bendable section tends to maintain the same length, even though opposed outer surfaces of the section may, respectively, expand and contract. This, in essence, means that the bending action is not erroneously transferred to the actuation element for the tool, hence, de-coupling the bending operation from the tool actuation, and vice versa.
  • A second characteristic is that the flexible or bendable section of the instrument shaft be readily flexible without the application of undue force. This bendable section, in a preferred embodiment, is to have orthogonal bending characteristics, hence providing two degrees of freedom (DOF) to the distal tool, for example, yaw and pitch. To accomplish this, at a particular bend location, a substantial portion of the flexible or bendable section is located as near to the center neutral axis 1111 of the section as physically possible. This is achieved by the spaced rib construction including the ribs 1112 shown in the drawings. The slots 1114 defined by these ribs 1112 provide void areas, leaving more material near the center neutral axis, as depicted in FIG. 45. Reference has been made to a neutral axis 1111 of the bendable section 1100. In actuality there is for a particular bend direction a neutral plane that during a bend is maintained at a fixed length.
  • A third characteristic relates to the torsional nature of the flexible or bendable section. The more stiff the section is torsionally (twisting moment) the less likely there will be an undesired twisting of the bendable section that accompanies controlled rotation thereof. In other words, if the bendable section is torsionally stiff, then upon controlled rotation of the instrument shaft, there is no an undesired twisting action imparted on the shaft particularly at the flexible or bendable section 1100. To accomplish this, at a particular bend location, a substantial portion of the material forming the flexible or bendable section is located at the periphery of the flexible or bendable section. This may be achieved by having portions of the section extend to an outer surface. In the embodiment described here this is accomplished by providing radial ridges, such as the ridges 1120 shown in the drawings. Furthermore, these ridges are alternated between horizontal and vertical positions to, at the same time, to provide the orthogonal bending or flexing.
  • A fourth characteristic is that the flexible or bendable section of the instrument shaft is constructed so that there is little or no end-to-end compression. In other words, the flexible or bendable section maintains a relatively constant length regardless of the motion actuations that occur in the multiple degrees of freedom movement of the instrument. To accomplish this, a stiff member is provided to maintain the ends of the flexible or bendable section at a fixed spacing. This may be achieved by providing the stiff member as a centrally located stiff sleeve that receives and supports the sliding motion of the actuation element for operation of the distal tool. This stiff member is preferably fixed at its opposite ends to the bendable section to maintain the fixed length of the section, thereby preventing end-to-end compression. At least part of this member may include the sleeve 1182 depicted in FIG. 43.
  • Referring again to FIG. 41 there is disclosed one embodiment of the tool 18, used in conjunction with a flexible shaft or tube having a remotely controllable bending or flexing section 1100. The medical instrument may include an elongated shaft, such as shaft section 1110 shown in FIGS. 41 and 42, having proximal and distal ends; and the tool 18 with jaws 102 and 104, supported from the distal end of the elongated shaft and useable in performing a medical procedure on a subject. In FIGS. 42 and 43 the tool 18 is actuated preferably by a single tendon or cable 1136 that extends through the flexible section 1100. In order to provide the pitch and yaw action at the tool, the bending or flexing section 1100 is constructed to bend in orthogonal directions with the use of four cables separated at about 90.degree. intervals and by using a center support with ribs and slots about the entire periphery of the bending section 1100, as depicted in FIGS. 42-44. This orthogonal bending may also be referred to as bi-axial bending, meaning bending in separate axes. The ribs 1112 define corresponding slots 1114, and also define at each of their centers a center support passage 1118 that has the cable 1136 extending through it, as well as other cable support members described in further detail later. The bending section 1100 extends from the end of tube section 1110, which itself may be flexible, may be smooth as shown, or may be fluted, and may have other controllable bending sections disposed along its length.
  • To bend the bending section 1100 in orthogonal directions, use is made of the four cables 1106, 1107, 1116 and 1117. The operation of cables 1106 and 1107 provides flexing in one degree-of-freedom while an added orthogonal degree-of-freedom is provided by operation of cables 1116 and 1117. Each of the cables 1106, 1107, 1116, and 1117 have at their terminating ends respective balls 1106A, 1107A, 1116A, and 1117A that may be held in corresponding recesses in a distal end wall 1119 (FIG. 45) of the flexible section 1100.
  • The bending section 1100, as indicated previously, includes a series of spaced ribs 1112 positioned, in parallel, with the plane of each rib extending orthogonal to the neutral axis 1111 of the section 1100. At the proximal end of the bendable section, an end rib connects to the shaft section 1110, while at the distal end there is provided the distal end wall 1119 that supports the ends of the cables. Each of the ribs 1112 are held in spaced relationship by means of the alternating ridges 1120. As depicted in FIG. 43 these ridges are identified as horizontal ridges 1120A, alternating with vertical ridges 11208. This structure provides support at the center passage for the actuating cable 1136, while also providing torsional strength to prevent undesired twisting at the shaft section 1100.
  • The jaws 1102 and 1104 are supported for opening and closing by means of a pivot pin 1135 that extends along a pivot axis. These grippers may be supported in link 1140, and the pin 1135 may be supported at its ends in opposite sides of link 1140. The tool also includes a pivot linkage 1142 that intercouples between the grippers and the actuation cable 1136. The pivot linkage 1142 includes linkages 1142A and 1142B. At one end, each of the linkages 1142A and 1142B connects to respective jaws 1104 and 1102. At the other end, the linkages 1142A and 11428 are pivotally supported at end 1137 of cable 1136. Opposed pins extend from end 1137 for engagement with the linkages 1142A and 1142B. The jaws 1102 and 1104 are shown having recesses 1102A and 1104A for accommodating the respective linkages 1142B and 1142A.
  • In FIG. 42 the jaws 1102 and 1104 are shown in their open position with the linkages 1142A and 11428 shown in a forward pivoted configuration. FIG. 43 illustrates the jaws 1102 and 1104 in a closed position with the linkages 1142A and 1142B shown in an in-line configuration. As the linkage 1142 is moved in an axial direction by the cable 1136, this action opens and closes the jaws or grippers. This corresponds to a “pushing” of the cable in a direction toward the tool. FIG. 43, on the other hand, shows the linkage and grippers in a closed position. This corresponds to a “pulling” of the cable in a direction away from the tool with the specific linkages 1142A and 11428 shown in an in-line configuration in their final closed position. The grippers themselves are prevented from any axial movement by the support at pin 1135, so when the linkage is operated from the cable 1136 the resulting action is either opening or closing of the grippers, depending upon the direction of forward-to-back translation of the actuating cable 1136.
  • The structure shown in FIGS. 41-47 preferably also includes a plastic cable sheath 1180, a plastic stiffener sheath or sleeve 1182 that surrounds the cable 1136 and the sheath 1180, and that fits closely in the center passage 1118, and an outer silicon spacer 1184. The sleeve 1182 is preferably constructed of a polyethylene plastic such as PEEK which has flexibility to allow the sleeve 1182 to bend with the section 1100, but at the same time is sufficiently stiff (particularly end-to-end) to properly retain, center and hold the supported cable to enable the cable to readily slide within the sheath 1180 and the supporting sleeve 1182, in performing its function. In FIG. 42 the sleeve 1182 is illustrated extending from the distal end of the bendable section 1100, back through the passage, to the more proximal end of the bendable section 1100.
  • Reference has been made previously to the single actuation cable 1136 that provides all the action that is required to operate the tool. This greatly simplifies the construction and makes it easier to keep the single cable centered in the instrument. As indicated previously this centering feature maintains the same length of the actuation element, even though opposed outer surfaces of the section itself may, respectively, expand and contract during bending. This, in essence, means that the bending action is not erroneously transferred to the actuation element, hence, the bending operation is de-coupled from tool actuation, and vice versa.
  • FIGS. 42 and 43 also show the use of an adhesive, at 1186, such an epoxy adhesive for anchoring opposite ends of the sheath 1180 and the sleeve 1182 to opposite ends of the bendable section 1100. By maintaining the sheath 1180 and sleeve 1182 fixed in position at their ends, when the section 1100 is controlled to bend, the cable length at the center or neutral axis of section 1100 does not change. Furthermore, at the ribbed bendable section, on one side the section shortens and on the other side it expands while keeping the center or neutral axis length unchanged. In this way when bending occurs at section 1100 there is no transfer of motion to the cable 1136 which could undesirably move the jaws. The bending motion is thus de-coupled from the tool operation motion, and vice versa.
  • Other features of the bending section are shown in FIG. 45 in a side elevation view, while FIGS. 46 and 47 illustrate cross-sectional views, with one through one of the ridges 1120A and the other through one of the ridges 11208. The respective ridges 1120A and 11208 are arranged at about 90 degrees to each other.
  • As described earlier, the section 1100 is easily bendable while being torsionally stiff, and has other improved characteristics as well. Details of these characteristics are best described with reference to FIGS. 45-47 by considering a particular cross-section such as the cross-section in FIG. 45 taken along line 46-46. In viewing FIG. 45 it is clear that, at that location and with the orientation of the section 1100 as shown, there is a substantial void created by the slot 1114, so that the majority of the section material is located at the center of the section. This is consistent with the desired bendability at that location, since, in general, a structure becomes more bendable as its diameter deceases. The void area mentioned is also illustrated in the cross-sectional view of FIG. 46 at 1115.
  • To understand how the bending section 1100 can be torsionally stiff while also being bendable, reference is also made to the same location at the line 46-46, but with the section rotated through 90 degrees. This is the same as looking at the cross-sectional view depicted in FIG. 47. In other words, one is thus considering the location through the ridge 1120A. The section 1100 is constructed so that there is preferably a relatively large center passage 1118, leaving more material toward the outer periphery, which is desired for providing enhanced torsional stiffness. Note that this material is the material of the ridge itself. Thus, for torsional stiffness it is desired to have a void near the middle and more material located away from the middle.
  • The rib and ridge arrangement shown in the drawings thus provides in a single structure a bendable section that provides two degrees of freedom (biaxial motion) that is also torsionally stiff. The bending characteristics enable the transfer of two degrees of freedom to the tool, rather than just one degree of freedom as with a conventional wrist joint. The torsional stiffness enables direct rotational transfer to the tool through the bendable section and without any twisting at the bendable section.
  • Mention has been made previously of the four characteristics of the bendable section described herein. The first characteristic relates to the centering of the actuation element. This is carried out primarily with the use of the center passage and the associated sheath 1180, sleeve 1182, and the spacer 1184. The second characteristic relates to the ease of bending. This is accomplished primarily with the ribbed construction with void peripheral areas. The third characteristic relates to the torsion stiffness that is accomplished primarily by the alternating ridges. Lastly, the fourth characteristic relates to the end-to-end compression. To prevent the bendable section from compressing from end-to-end during an operation, particularly during tool actuation, to facilitate proper tool operation, the center passage is provided with the stiff sleeve 1182, and the opposite ends of the sheath 1180 and sleeve 1182 fixed in place, and the section 1100 has a ridged construction.
  • It is noted that FIGS. 41-47 disclose one version of an end effector employing jaws 1102 and 1104, in combination with, linkage 1142. However, other tool constructions are also contemplated as falling within the scope of the present invention including ones that provide a mechanical advantage at the tip of the jaws or other work elements.
  • Also, in various embodiments described herein only a single cable is used for tool actuation. (See, for example, FIGS. 9, 15, and 42.) In these embodiments it is preferable to provide at least the opposite ends of the actuation cables with enhanced stiffness, particularly where the cable is unsupported. For example, in FIG. 42 this might be in the distal section of cable 1136 exiting from wall 1119 to the jaws of the tool. This stiffness can be provided by treating the ends of the cable with a harder metal coating, or by other means that will provide a stiffer end section.
  • Turning now to FIGS. 48A-48D, there is illustrated yet another embodiment of a flexible section 1660 with a unibody construction. The tool 18 attached to the distal end of the flexible section 1660 includes an upper grip or jaw 1602 and a lower grip or jaw 603, supported from a link 1601. Each of the jaws 1602, 1603, as well as the link 1601, may be constructed of metal, or alternatively, the link 1601 may be constructed of a hard plastic. The link 1601 is engaged with the distal end of the flexible stem section 1302. FIG. 48C shows the distal end of the stem section 1302, terminating in a bending or flexing section 1660. Also, at the flexible section 1660, flexing and bending is enhanced by the arrangement of diametrically-disposed slots 1662 that define ribs 1664 between the slots. The flexible section 1660 also has a longitudinally extending wall 1665, through which cabling extends, particularly for the operation of the tool jaws. The wall 1665 can also be thought of as opposed ridges that extend outward from the center of the flexible section 1660. The very distal end of the bending section 1660 terminates with an opening 1666 for receiving the end 1668 of the link 1601. The cabling 1608-1611 is preferably at the center of the flex section at wall 1665 to effectively decouple flex or bending motions from tool motions.
  • To operate the tool, reference is made to the cables 1608, 1609, 1610, and 1611. All of these cablings extend through the flexible stem section and also through the wall 1665 as illustrated in FIG. 48C. The cables extend to the respective jaws 1602, 1603 for controlling operation thereof in a manner similar to that described previously in connection with FIGS. 5-8. FIGS. 48A-48D also show cables 1606 and 1607 which couple through the bending section 1660 and terminate at ball ends 1606A and 1607A, respectively, and urge against the end of the bendable section in opening 1666. When these cables are pulled individually, they can cause a bending of the wrist at the bending or flexing section 1660. FIG. 48D illustrates the cable 1607 having been pulled in the direction of arrow 1670 so as to flex the section 1660 as depicted in the figure. Pulling on the other cable 1606 causes a bending in the opposite direction.
  • By virtue of the slots 1662 forming the ribs 1664, there is provided a structure that bends quite easily, while the wall or opposed ridges 1665 provide some torsional rigidity to the flexing section 1660. The wall 1665 bends by compressing at the slots in the manner illustrated in FIG. 48D. This construction eliminates the need for a wrist pin or hinge.
  • The embodiment illustrated in FIG. 48B has a separate link 1601. However, in an alternate embodiment, this link 1601 may be fabricated integrally with, and as part of the bending section 1660. For this purpose the link 1601 would then be constructed of a relatively hard plastic rather than the metal link as illustrated in FIG. 48B and would be integral with section 1660.
  • Mention has also been made of various forms of tools that can be used. The tool may include a variety of articulated tools such as: jaws, scissors, graspers, needle holders, micro dissectors, staple appliers, tackers, suction irrigation tools and clip appliers. In addition, the tool may include a non-articulated tool such as: a cutting blade, probe, irrigator, catheter or suction orifice. Moreover, the bending section itself may be non-actuated. As such, even when the bending movements of the bending section are not controlled by a surgeon, the one or more degrees-of-freedom of movement of the bending section allows it to conform to orifices or lumens within the patient's body as the section is advanced through the body.
  • There have been described herein a number of different embodiments of bendable sections such as in FIG. 5, 14, 21, or 41. These may be used, as illustrated herein, in conjunction with instrument systems as described in, for example, FIG. 1 where the instrument is inserted laparoscopically. Alternatively, these concepts may also be used in flexible instrument systems more like that described in FIG. 21 wherein the bendable sections can be located at various positions along the instrument shaft or body. In this case the bendable section or sections may be used both for guidance toward an operative site, such as for guidance through an anatomic lumen or vessel, or for operation or manipulation at an operative site. In the more rigid system where the instrument is meant to enter the body, for example, through an incision, such as laparoscopically, then it is preferred to have the bendable section located close to but just proximal of the distal end effector or tool. This bendable section positioning provides for proper manipulation of the tool at the operative site. In this case the bendable section preferably has a length in a range on the order of ¾ inch to 4 inches. Also, the distance between the tool pivot point and the distal end of the bendable section is preferably equal to or less than the length of the bendable section.
  • Referring to FIG. 49, an example of a flexible instrument 2000 is shown in use in a stomach 2002 of a patient. The instrument 2000 includes an elongated portion 2004, which itself is flexible, and an articulated bendable section 2006. Any embodiments of the tool 18 described can be mounted at the terminal end of the bendable section 2006. The bendable section 2006 can be any one of the different embodiments described earlier such as those shown in FIG. 5, 14, 21, or 41. In operation, the flexible instrument 2000 is inserted through a body lumen such as the esophagus 2008, and the tool 18 is directed to the operative site 2009. As shown, the instrument 2000 can lean against some element of the anatomy such as a wall 2010 of the stomach to brace the instrument during the medical procedure, while the bendable section 2006 and the tool 18 are articulated as described above.
  • In certain implementations, as shown in FIG. 50A, a flexible instrument 2100 may include a bendable section 2102 that can be operated with one or more pull cables 2104 to manipulate the tip 2106 of the bendable section. The tip 2106 may be provided with an embodiment of the tool 18 described above that is positioned at the operative site to perform a medical procedure. At least one cable 2104 is attached at or near the tip 2106 of the bendable section 2102, and extends from its point of attachment through an aperture 2108 at a position spaced a selected distance along the length of the bendable section 2102 away from the distal end. The remainder of the cable 2109 extends from the aperture 2108 through a shaft 2110 of the instrument 2100 and is coupled, for example, to a drive unit 8, like that described earlier, that applies a tension to the cable 2104 to controllably bend the bendable section 2102.
  • The bendable section 2102 may have a circular cross section, or in some embodiments, the bendable section is provided with one or more grooves or valleys 2112 (FIG. 50B) along its length. As such, while the instrument 2100 is inserted into the patient, the cables 2104 lie along the grooves 2112, which prevents the cables 2104 from inadvertently catching any body element. As appropriate tension is applied to a particular cable, it effectively “pops” out of the groove 2112 as the tip of the bendable section 2102 is pulled towards the aperture 2108. For certain embodiments of the tool 18, the bendable section 2102 is provided with a center tube 2114 through which the actuation element for the tool 18 extends.
  • While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims. For example, mention has been made of the bi-axial bending of the bendable section of the instrument. However, the principles of the present invention may also apply to a bendable section that has only one degree-of-freedom, in which case the bendable section would only be controlled by one set of control cables rather than the two sets described earlier.
  • This invention can be implemented and combined with other applications, systems, and apparatuses, for example, those discussed in greater detail in U.S. Provisional Application No. 60/332,287, filed Nov. 21, 2001, the entire contents of which are incorporated herein by reference, as well as those discussed in greater detail in each of the following documents, all of which are incorporated herein by reference in their entirety:
  • U.S. Pat. Nos. 6,197,017 and 6,432,112, PCT Application Ser. No. PCT/US00/12553 filed May 9, 2000, and U.S. application Ser. No. 09/827,643 (now U.S. Pat. No. 6,554,844), filed Apr. 6, 2001, Ser. No. 10/034,871 (now U.S. Pat. No. 6,810,281), filed Dec. 21, 2001, Ser. No. 10/270,741 (now abandoned), filed Oct. 11, 2002, Ser. No. 10/270,743, filed Oct. 11, 2002, Ser. No. 10/270,740 (now abandoned), filed Oct. 11, 2002, Ser. No. 10/077,233 (now U.S. Pat. No. 7,297,142), filed Feb. 15, 2002, and Ser. No. 10/097,923 (now U.S. Pat. No. 6,860,878), filed Mar. 15, 2002.

Claims (18)

1. A robotically controlled medical instrument comprising:
an elongated shaft having proximal and distal ends;
a tool supported from the distal end of said elongated shaft and useable in performing a medical procedure on a subject;
the distal end of said elongated shaft and the tool having respective removably engaging portions that are readily engagable for positioning the tool at the distal end of said elongated shaft in operative position relative to said elongated shaft, and readily disengagable for removal of said tool from the distal end of said elongated shaft.
2. The medical instrument of claim 1 further including a mechanically drivable mechanism at the proximal end of said elongated shaft.
3. The medical instrument of claim 2 wherein said mechanically drivable mechanism, elongated shaft, and tool comprise a single piece disposable unit.
4. The medical instrument of claim 2 wherein said mechanically drivable mechanism has at least one coupling tendon extending via said elongated shaft for operating said tool.
5. The medical instrument of claim 4 wherein said tool is controlled remotely from an electrical controller.
6. The medical instrument of claim 5 wherein said electrical controller couples from a user interface controlled by an operator to remotely and telerobotically control said tool.
7. The medical instrument of claim 1 wherein said tool is disposable.
8. The medical instrument of claim 1 wherein said tool is readily disengagable to allow the substitution of a different tool at the distal end of said elongated shaft.
9. The medical instrument of claim 1 wherein said elongated shaft has a segment thereof that is controllably bendable.
10. The medical instrument of claim 1 wherein said engaging portions include mating threaded portions.
11. The medical instrument of claim 1 including at least one actuation element extending via said elongated shaft and for control of said tool.
12. The medical instrument of claim 11 wherein said actuation element and said tool have removably engaging sections that are readily engagable to provide mechanical drive from the actuation element to the tool, and readily disengagable for removal of said tool from said actuation element.
13. The medical instrument of claim 11 wherein said actuation element includes a tendon that is sufficiently rigid to enable linear translation relative to said tool for actuation and deactuation of said tool.
14. A robotically controlled medical instrument comprising: an elongated support shaft having proximal and distal ends; and a tool supported from the distal end of said elongated support shaft and controllable in performing a medical procedure on a subject; said tool being removably coupled with the distal end of said elongated support shaft.
15. The medical instrument of claim 14 wherein said disposable tool is readily attachable to and detachable from said elongated support shaft.
16. The medical instrument of claim 14 further including a mechanically drivable mechanism disposed at the proximal end of the elongated support shaft and having extending therefrom at least one control tendon coupling to said tool for operation thereof.
17. The medical instrument of claim 14 wherein said tool is actuated remotely via a computer from a user interface device.
18. A flexible surgical instrument comprising a controllably flexible elongated section having a distal end for positioning at an anatomical site of interest of a subject, and at least one cable attached at or near the distal end of the section, the cable extending from its point of attachment exteriorly of the section through an aperture in the section at a position spaced a selected distance along the length of the section away from the distal end, a proximal end of the cable extending from the aperture through the shaft and being tensionable to controllably bend the flexible section.
US12/960,861 2001-02-15 2010-12-06 Robotically controlled medical instrument Abandoned US20110144656A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/960,861 US20110144656A1 (en) 2001-02-15 2010-12-06 Robotically controlled medical instrument

Applications Claiming Priority (26)

Application Number Priority Date Filing Date Title
US26920001P 2001-02-15 2001-02-15
US27608601P 2001-03-15 2001-03-15
US27621701P 2001-03-15 2001-03-15
US27615201P 2001-03-15 2001-03-15
US27908701P 2001-03-27 2001-03-27
US29334601P 2001-05-24 2001-05-24
US10/011,449 US20020087048A1 (en) 1998-02-24 2001-11-16 Flexible instrument
US10/023,024 US20020095175A1 (en) 1998-02-24 2001-11-16 Flexible instrument
US10/012,845 US7169141B2 (en) 1998-02-24 2001-11-16 Surgical instrument
US10/008,964 US20020128661A1 (en) 1998-02-24 2001-11-16 Surgical instrument
US10/008,871 US6843793B2 (en) 1998-02-24 2001-11-16 Surgical instrument
US10/011,450 US20020128662A1 (en) 1998-02-24 2001-11-16 Surgical instrument
US10/013,046 US20020138082A1 (en) 1998-02-24 2001-11-16 Surgical instrument
US10/008,457 US6949106B2 (en) 1998-02-24 2001-11-16 Surgical instrument
US10/022,038 US20020087148A1 (en) 1998-02-24 2001-11-16 Flexible instrument
US10/011,371 US7090683B2 (en) 1998-02-24 2001-11-16 Flexible instrument
US10/010,150 US7214230B2 (en) 1998-02-24 2001-11-16 Flexible instrument
US10/014,143 US20020120252A1 (en) 1998-02-24 2001-11-16 Surgical instrument
US10/012,586 US7371210B2 (en) 1998-02-24 2001-11-16 Flexible instrument
US33228701P 2001-11-21 2001-11-21
US34412401P 2001-12-21 2001-12-21
US38253202P 2002-05-22 2002-05-22
US10/299,588 US20030135204A1 (en) 2001-02-15 2002-11-18 Robotically controlled medical instrument with a flexible section
US10/976,066 US7608083B2 (en) 2001-02-15 2004-10-28 Robotically controlled medical instrument with a flexible section
US12/024,039 US7854738B2 (en) 2001-02-15 2008-01-31 Robotically controlled medical instrument
US12/960,861 US20110144656A1 (en) 2001-02-15 2010-12-06 Robotically controlled medical instrument

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/024,039 Continuation US7854738B2 (en) 2001-02-15 2008-01-31 Robotically controlled medical instrument

Publications (1)

Publication Number Publication Date
US20110144656A1 true US20110144656A1 (en) 2011-06-16

Family

ID=46281551

Family Applications (6)

Application Number Title Priority Date Filing Date
US10/299,588 Abandoned US20030135204A1 (en) 2001-02-15 2002-11-18 Robotically controlled medical instrument with a flexible section
US10/976,066 Expired - Fee Related US7608083B2 (en) 2001-02-15 2004-10-28 Robotically controlled medical instrument with a flexible section
US12/024,013 Expired - Fee Related US7819884B2 (en) 2001-02-15 2008-01-31 Robotically controlled medical instrument
US12/023,981 Expired - Lifetime US7744608B2 (en) 2001-02-15 2008-01-31 Robotically controlled medical instrument
US12/024,039 Expired - Fee Related US7854738B2 (en) 2001-02-15 2008-01-31 Robotically controlled medical instrument
US12/960,861 Abandoned US20110144656A1 (en) 2001-02-15 2010-12-06 Robotically controlled medical instrument

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US10/299,588 Abandoned US20030135204A1 (en) 2001-02-15 2002-11-18 Robotically controlled medical instrument with a flexible section
US10/976,066 Expired - Fee Related US7608083B2 (en) 2001-02-15 2004-10-28 Robotically controlled medical instrument with a flexible section
US12/024,013 Expired - Fee Related US7819884B2 (en) 2001-02-15 2008-01-31 Robotically controlled medical instrument
US12/023,981 Expired - Lifetime US7744608B2 (en) 2001-02-15 2008-01-31 Robotically controlled medical instrument
US12/024,039 Expired - Fee Related US7854738B2 (en) 2001-02-15 2008-01-31 Robotically controlled medical instrument

Country Status (1)

Country Link
US (6) US20030135204A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105286999A (en) * 2015-10-15 2016-02-03 天津大学 Minimally invasive surgery instrument with tail end self-rotation function
WO2017006375A1 (en) * 2015-07-09 2017-01-12 川崎重工業株式会社 Surgical robot
WO2017006376A1 (en) * 2015-07-09 2017-01-12 川崎重工業株式会社 Surgical robot
WO2020017605A1 (en) * 2018-07-18 2020-01-23 リバーフィールド株式会社 Joint of medical instrument and medical instrument
JP2020018835A (en) * 2018-07-18 2020-02-06 リバーフィールド株式会社 Joint of medical instrument and medical instrument
JP2020026021A (en) * 2018-08-14 2020-02-20 日本発條株式会社 Bending structure and joint function part using the same
US10695536B2 (en) 2001-02-15 2020-06-30 Auris Health, Inc. Catheter driver system
JP2020192377A (en) * 2016-02-05 2020-12-03 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Surgical apparatus
EP3750502A1 (en) * 2014-09-04 2020-12-16 Memic Innovative Surgery Ltd. Device and system including mechanical arms
US11083528B2 (en) 2017-03-09 2021-08-10 Memic Innovative Surgery Ltd. Input arm for control of a surgical mechanical arm
EP3868305A1 (en) * 2020-02-19 2021-08-25 UCL Business Ltd End-effector for endoscopic surgical instrument
WO2021181493A1 (en) * 2020-03-10 2021-09-16 オリンパス株式会社 Medical manipulator
US11198226B2 (en) 2015-07-09 2021-12-14 Kawasaki Jukogyo Kabushiki Kaisha Surgical robot
JP2022017549A (en) * 2015-07-17 2022-01-25 デカ・プロダクツ・リミテッド・パートナーシップ Robotic surgery system, method and apparatus
JP7212427B1 (en) * 2021-09-01 2023-01-25 リバーフィールド株式会社 Treatment instrument unit
US11771511B2 (en) 2016-03-09 2023-10-03 Momentis Surgical Ltd Modular device comprising mechanical arms
US11779410B2 (en) 2017-03-09 2023-10-10 Momentis Surgical Ltd Control console including an input arm for control of a surgical mechanical arm
EP4034025A4 (en) * 2019-09-27 2023-12-20 Auris Health, Inc. Robotically-actuated medical retractors

Families Citing this family (906)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5417210A (en) * 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5792135A (en) * 1996-05-20 1998-08-11 Intuitive Surgical, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US7789875B2 (en) * 1998-02-24 2010-09-07 Hansen Medical, Inc. Surgical instruments
US7713190B2 (en) 1998-02-24 2010-05-11 Hansen Medical, Inc. Flexible instrument
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US7594912B2 (en) 2004-09-30 2009-09-29 Intuitive Surgical, Inc. Offset remote center manipulator for robotic surgery
US7635390B1 (en) 2000-01-14 2009-12-22 Marctec, Llc Joint replacement component having a modular articulating surface
DE60134236D1 (en) * 2000-07-20 2008-07-10 Kinetic Surgical Llc MANUALLY CONTROLLED SURGICAL TOOL WITH JOINT
US7766894B2 (en) 2001-02-15 2010-08-03 Hansen Medical, Inc. Coaxial catheter system
US7699835B2 (en) * 2001-02-15 2010-04-20 Hansen Medical, Inc. Robotically controlled surgical instruments
US20030135204A1 (en) * 2001-02-15 2003-07-17 Endo Via Medical, Inc. Robotically controlled medical instrument with a flexible section
US7708741B1 (en) 2001-08-28 2010-05-04 Marctec, Llc Method of preparing bones for knee replacement surgery
US8010180B2 (en) 2002-03-06 2011-08-30 Mako Surgical Corp. Haptic guidance system and method
US9155544B2 (en) * 2002-03-20 2015-10-13 P Tech, Llc Robotic systems and methods
EP2070487B1 (en) 2002-08-13 2014-03-05 NeuroArm Surgical, Ltd. Microsurgical robot system
CN1774220A (en) 2003-02-14 2006-05-17 德普伊斯派尔公司 In-situ formed intervertebral fusion device and method
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
JP4791967B2 (en) * 2003-05-21 2011-10-12 ザ・ジョンズ・ホプキンス・ユニバーシティー Devices, systems and methods for minimally invasive surgery of mammalian throat and other parts of body
US8562640B2 (en) * 2007-04-16 2013-10-22 Intuitive Surgical Operations, Inc. Tool with multi-state ratcheted end effector
US8182417B2 (en) * 2004-11-24 2012-05-22 Intuitive Surgical Operations, Inc. Articulating mechanism components and system for easy assembly and disassembly
US7090637B2 (en) * 2003-05-23 2006-08-15 Novare Surgical Systems, Inc. Articulating mechanism for remote manipulation of a surgical or diagnostic tool
US7410483B2 (en) 2003-05-23 2008-08-12 Novare Surgical Systems, Inc. Hand-actuated device for remote manipulation of a grasping tool
US8100824B2 (en) * 2003-05-23 2012-01-24 Intuitive Surgical Operations, Inc. Tool with articulation lock
US8007511B2 (en) 2003-06-06 2011-08-30 Hansen Medical, Inc. Surgical instrument design
US7121781B2 (en) * 2003-06-11 2006-10-17 Intuitive Surgical Surgical instrument with a universal wrist
JP4664909B2 (en) * 2003-06-17 2011-04-06 タイコ ヘルスケア グループ リミテッド パートナーシップ Surgical stapling device
US7686826B2 (en) * 2003-10-30 2010-03-30 Cambridge Endoscopic Devices, Inc. Surgical instrument
US7147650B2 (en) * 2003-10-30 2006-12-12 Woojin Lee Surgical instrument
US7338513B2 (en) 2003-10-30 2008-03-04 Cambridge Endoscopic Devices, Inc. Surgical instrument
US7842028B2 (en) * 2005-04-14 2010-11-30 Cambridge Endoscopic Devices, Inc. Surgical instrument guide device
JP3944172B2 (en) * 2004-01-27 2007-07-11 オリンパス株式会社 Surgical instrument
US8052636B2 (en) * 2004-03-05 2011-11-08 Hansen Medical, Inc. Robotic catheter system and methods
JP4755638B2 (en) 2004-03-05 2011-08-24 ハンセン メディカル,インク. Robotic guide catheter system
US8021326B2 (en) * 2004-03-05 2011-09-20 Hansen Medical, Inc. Instrument driver for robotic catheter system
US7976539B2 (en) 2004-03-05 2011-07-12 Hansen Medical, Inc. System and method for denaturing and fixing collagenous tissue
US7974681B2 (en) * 2004-03-05 2011-07-05 Hansen Medical, Inc. Robotic catheter system
US7909873B2 (en) * 2006-12-15 2011-03-22 Soteira, Inc. Delivery apparatus and methods for vertebrostenting
US7632265B2 (en) 2004-05-28 2009-12-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Radio frequency ablation servo catheter and method
US10258285B2 (en) 2004-05-28 2019-04-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for automated creation of ablation lesions
US7974674B2 (en) 2004-05-28 2011-07-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for surface modeling
US10863945B2 (en) 2004-05-28 2020-12-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system with contact sensing feature
US8755864B2 (en) 2004-05-28 2014-06-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for diagnostic data mapping
US8528565B2 (en) 2004-05-28 2013-09-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for automated therapy delivery
US9782130B2 (en) 2004-05-28 2017-10-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system
US7828808B2 (en) 2004-06-07 2010-11-09 Novare Surgical Systems, Inc. Link systems and articulation mechanisms for remote manipulation of surgical or diagnostic tools
US7678117B2 (en) * 2004-06-07 2010-03-16 Novare Surgical Systems, Inc. Articulating mechanism with flex-hinged links
US7241290B2 (en) 2004-06-16 2007-07-10 Kinetic Surgical, Llc Surgical tool kit
US8353897B2 (en) * 2004-06-16 2013-01-15 Carefusion 2200, Inc. Surgical tool kit
US8005537B2 (en) 2004-07-19 2011-08-23 Hansen Medical, Inc. Robotically controlled intravascular tissue injection system
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US10646292B2 (en) 2004-09-30 2020-05-12 Intuitive Surgical Operations, Inc. Electro-mechanical strap stack in robotic arms
US9261172B2 (en) 2004-09-30 2016-02-16 Intuitive Surgical Operations, Inc. Multi-ply strap drive trains for surgical robotic arms
US9700334B2 (en) 2004-11-23 2017-07-11 Intuitive Surgical Operations, Inc. Articulating mechanisms and link systems with torque transmission in remote manipulation of instruments and tools
US7785252B2 (en) * 2004-11-23 2010-08-31 Novare Surgical Systems, Inc. Articulating sheath for flexible instruments
US20060201130A1 (en) * 2005-01-31 2006-09-14 Danitz David J Articulating mechanisms with joint assembly and manual handle for remote manipulation of instruments and tools
US7789874B2 (en) * 2005-05-03 2010-09-07 Hansen Medical, Inc. Support assembly for robotic catheter system
US9492240B2 (en) * 2009-06-16 2016-11-15 Intuitive Surgical Operations, Inc. Virtual measurement tool for minimally invasive surgery
US8971597B2 (en) * 2005-05-16 2015-03-03 Intuitive Surgical Operations, Inc. Efficient vision and kinematic data fusion for robotic surgical instruments and other applications
US8155910B2 (en) 2005-05-27 2012-04-10 St. Jude Medical, Atrial Fibrillation Divison, Inc. Robotically controlled catheter and method of its calibration
JP2006334695A (en) * 2005-05-31 2006-12-14 Kyoto Univ Remote control device
US7618413B2 (en) * 2005-06-22 2009-11-17 Boston Scientific Scimed, Inc. Medical device control system
JP2009500086A (en) 2005-07-01 2009-01-08 ハンセン メディカル,インク. Robotic guide catheter system
US8409175B2 (en) * 2005-07-20 2013-04-02 Woojin Lee Surgical instrument guide device
US8591583B2 (en) 2005-08-16 2013-11-26 Benvenue Medical, Inc. Devices for treating the spine
AU2006279558B2 (en) 2005-08-16 2012-05-17 Izi Medical Products, Llc Spinal tissue distraction devices
US8366773B2 (en) * 2005-08-16 2013-02-05 Benvenue Medical, Inc. Apparatus and method for treating bone
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7673781B2 (en) 2005-08-31 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling device with staple driver that supports multiple wire diameter staples
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US9962168B2 (en) 2005-12-20 2018-05-08 CroJor, LLC Method and apparatus for performing minimally invasive arthroscopic procedures
US8679097B2 (en) * 2005-12-20 2014-03-25 Orthodynamix Llc Method and devices for minimally invasive arthroscopic procedures
US10702285B2 (en) 2005-12-20 2020-07-07 Quantum Medical Innovations, LLC Method and apparatus for performing minimally invasive arthroscopic procedures
WO2007075989A2 (en) * 2005-12-20 2007-07-05 Orthodynamix Llc Method and devices for minimally invasive arthroscopic procedures
EP1983903B1 (en) * 2006-01-27 2014-03-19 Medtronic, Inc. Ablation device and system for guiding ablation device into a patient's body
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8236010B2 (en) 2006-03-23 2012-08-07 Ethicon Endo-Surgery, Inc. Surgical fastener and cutter with mimicking end effector
US8105350B2 (en) * 2006-05-23 2012-01-31 Cambridge Endoscopic Devices, Inc. Surgical instrument
US7615067B2 (en) 2006-06-05 2009-11-10 Cambridge Endoscopic Devices, Inc. Surgical instrument
US8409244B2 (en) * 2007-04-16 2013-04-02 Intuitive Surgical Operations, Inc. Tool with end effector force limiter
US8986196B2 (en) * 2006-06-13 2015-03-24 Intuitive Surgical Operations, Inc. Minimally invasive surgery instrument assembly with reduced cross section
US7862554B2 (en) * 2007-04-16 2011-01-04 Intuitive Surgical Operations, Inc. Articulating tool with improved tension member system
US9561045B2 (en) * 2006-06-13 2017-02-07 Intuitive Surgical Operations, Inc. Tool with rotation lock
DE102006028001B4 (en) * 2006-06-14 2009-11-26 Paul Peschke Gmbh Surgical grasping forceps
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US8029531B2 (en) 2006-07-11 2011-10-04 Cambridge Endoscopic Devices, Inc. Surgical instrument
US20080021278A1 (en) * 2006-07-24 2008-01-24 Leonard Robert F Surgical device with removable end effector
US7708758B2 (en) * 2006-08-16 2010-05-04 Cambridge Endoscopic Devices, Inc. Surgical instrument
DE102006040529A1 (en) * 2006-08-30 2008-03-13 Paul Peschke Gmbh Surgical grasping forceps
US7648519B2 (en) 2006-09-13 2010-01-19 Cambridge Endoscopic Devices, Inc. Surgical instrument
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US9456877B2 (en) 2006-12-01 2016-10-04 Boston Scientific Scimed, Inc. Direct drive instruments and methods of use
US20100241136A1 (en) * 2006-12-05 2010-09-23 Mark Doyle Instrument positioning/holding devices
US8105382B2 (en) 2006-12-07 2012-01-31 Interventional Spine, Inc. Intervertebral implant
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US20080169332A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Surgical stapling device with a curved cutting member
WO2008097853A2 (en) 2007-02-02 2008-08-14 Hansen Medical, Inc. Mounting support assembly for suspending a medical instrument driver above an operating table
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
CA2678006C (en) 2007-02-21 2014-10-14 Benvenue Medical, Inc. Devices for treating the spine
US20090001130A1 (en) 2007-03-15 2009-01-01 Hess Christopher J Surgical procedure using a cutting and stapling instrument having releasable staple-forming pockets
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
JP5074069B2 (en) * 2007-03-29 2012-11-14 オリンパスメディカルシステムズ株式会社 Multi-joint bending mechanism and medical device with multi-joint bending mechanism
US8377044B2 (en) * 2007-03-30 2013-02-19 Ethicon Endo-Surgery, Inc. Detachable end effectors
US20080262492A1 (en) * 2007-04-11 2008-10-23 Cambridge Endoscopic Devices, Inc. Surgical Instrument
WO2008131303A2 (en) 2007-04-20 2008-10-30 Hansen Medical, Inc. Optical fiber shape sensing systems
US20090138025A1 (en) * 2007-05-04 2009-05-28 Hansen Medical, Inc. Apparatus systems and methods for forming a working platform of a robotic instrument system by manipulation of components having controllably rigidity
US8409245B2 (en) * 2007-05-22 2013-04-02 Woojin Lee Surgical instrument
US7810693B2 (en) * 2007-05-30 2010-10-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with articulatable end effector
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US9005238B2 (en) * 2007-08-23 2015-04-14 Covidien Lp Endoscopic surgical devices
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8257386B2 (en) * 2007-09-11 2012-09-04 Cambridge Endoscopic Devices, Inc. Surgical instrument
ITRM20070476A1 (en) * 2007-09-14 2009-03-15 Uni Degli Studi Di Roma Rl A S MOBILE PLATFORM CONTROLLED WITH SELECTIVE SENSING, IN PARTICULAR FOR ENDOSCOPIC SURGICAL DEVICES
KR100911248B1 (en) * 2007-10-17 2009-08-07 국립암센터 Small caliber laparoscope surgical apparatus
US8289385B2 (en) * 2009-02-13 2012-10-16 Seektech, Inc. Push-cable for pipe inspection system
US20090112059A1 (en) 2007-10-31 2009-04-30 Nobis Rudolph H Apparatus and methods for closing a gastrotomy
JP5128904B2 (en) * 2007-10-31 2013-01-23 株式会社東芝 manipulator
US8480657B2 (en) 2007-10-31 2013-07-09 Ethicon Endo-Surgery, Inc. Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ
US20100262162A1 (en) * 2007-12-28 2010-10-14 Terumo Kabushiki Kaisha Medical manipulator and medical robot system
US20090171147A1 (en) * 2007-12-31 2009-07-02 Woojin Lee Surgical instrument
EP2471493A1 (en) 2008-01-17 2012-07-04 Synthes GmbH An expandable intervertebral implant and associated method of manufacturing the same
JP5258314B2 (en) * 2008-02-01 2013-08-07 テルモ株式会社 Medical manipulator and medical robot system
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
JP5410110B2 (en) 2008-02-14 2014-02-05 エシコン・エンド−サージェリィ・インコーポレイテッド Surgical cutting / fixing instrument with RF electrode
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US20090240660A1 (en) * 2008-03-18 2009-09-24 Morgan Christopher B Integration for intelligence data systems
CA2720580A1 (en) 2008-04-05 2009-10-08 Synthes Usa, Llc Expandable intervertebral implant
US10405936B2 (en) 2008-04-11 2019-09-10 The Regents Of The University Of Michigan Parallel kinematic mechanisms with decoupled rotational motions
US9869339B2 (en) 2008-04-11 2018-01-16 Flexdex, Inc. End-effector jaw closure transmission systems for remote access tools
CN103961050B (en) * 2008-04-18 2016-09-28 福蒂美迪克斯外科医疗器材有限公司 A kind of instrument for endoscopic applications
EA023597B1 (en) * 2008-04-18 2016-06-30 Фортимедикс Сёрджикал Б.В. Instrument for endoscopic applications
US9357708B2 (en) * 2008-05-05 2016-06-07 Energid Technologies Corporation Flexible robotic manipulation mechanism
US8771260B2 (en) * 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8679003B2 (en) 2008-05-30 2014-03-25 Ethicon Endo-Surgery, Inc. Surgical device and endoscope including same
US8906035B2 (en) 2008-06-04 2014-12-09 Ethicon Endo-Surgery, Inc. Endoscopic drop off bag
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US8361112B2 (en) 2008-06-27 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical suture arrangement
US9179832B2 (en) 2008-06-27 2015-11-10 Intuitive Surgical Operations, Inc. Medical robotic system with image referenced camera control using partitionable orientational and translational modes
WO2009158708A1 (en) * 2008-06-27 2009-12-30 Allegiance Corporation Flexible wrist-type element and methods of manufacture and use thereof
US8479173B2 (en) * 2008-07-09 2013-07-02 International Business Machines Corporation Efficient and self-balancing verification of multi-threaded microprocessors
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US9204923B2 (en) 2008-07-16 2015-12-08 Intuitive Surgical Operations, Inc. Medical instrument electronically energized using drive cables
GB0813990D0 (en) * 2008-07-31 2008-09-10 Surgical Innovations Ltd Endoscopic surgical instrument
US8968355B2 (en) * 2008-08-04 2015-03-03 Covidien Lp Articulating surgical device
US8801752B2 (en) * 2008-08-04 2014-08-12 Covidien Lp Articulating surgical device
US8465475B2 (en) 2008-08-18 2013-06-18 Intuitive Surgical Operations, Inc. Instrument with multiple articulation locks
US8409200B2 (en) 2008-09-03 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical grasping device
US9679499B2 (en) * 2008-09-15 2017-06-13 Immersion Medical, Inc. Systems and methods for sensing hand motion by measuring remote displacement
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US20100114081A1 (en) 2008-11-05 2010-05-06 Spectranetics Biasing laser catheter: monorail design
US8317746B2 (en) * 2008-11-20 2012-11-27 Hansen Medical, Inc. Automated alignment
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US20110264136A1 (en) * 2008-12-12 2011-10-27 Seung Wook Choi Surgical instrument
US8702773B2 (en) 2008-12-17 2014-04-22 The Spectranetics Corporation Eccentric balloon laser catheter
US8830224B2 (en) 2008-12-31 2014-09-09 Intuitive Surgical Operations, Inc. Efficient 3-D telestration for local robotic proctoring
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US20100198248A1 (en) * 2009-02-02 2010-08-05 Ethicon Endo-Surgery, Inc. Surgical dissector
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
CN102341048A (en) 2009-02-06 2012-02-01 伊西康内外科公司 Driven surgical stapler improvements
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8423182B2 (en) * 2009-03-09 2013-04-16 Intuitive Surgical Operations, Inc. Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems
US20100249497A1 (en) * 2009-03-30 2010-09-30 Peine William J Surgical instrument
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US9254123B2 (en) 2009-04-29 2016-02-09 Hansen Medical, Inc. Flexible and steerable elongate instruments with shape control and support elements
DE202009012796U1 (en) 2009-05-29 2009-11-26 Aesculap Ag Surgical instrument
DE202009012793U1 (en) 2009-05-29 2010-01-28 Aesculap Ag Surgical instrument
US9155592B2 (en) * 2009-06-16 2015-10-13 Intuitive Surgical Operations, Inc. Virtual measurement tool for minimally invasive surgery
US8827134B2 (en) 2009-06-19 2014-09-09 Covidien Lp Flexible surgical stapler with motor in the head
US20110022078A1 (en) 2009-07-23 2011-01-27 Cameron Dale Hinman Articulating mechanism
WO2011025886A1 (en) * 2009-08-26 2011-03-03 Carefusion 2200, Inc. Mechanisms for positioning and/or holding surgical instruments and performing other functions, and methods of manufacture and use thereof
US20110071541A1 (en) 2009-09-23 2011-03-24 Intuitive Surgical, Inc. Curved cannula
US8551115B2 (en) * 2009-09-23 2013-10-08 Intuitive Surgical Operations, Inc. Curved cannula instrument
US8623028B2 (en) 2009-09-23 2014-01-07 Intuitive Surgical Operations, Inc. Surgical port feature
US8465476B2 (en) * 2009-09-23 2013-06-18 Intuitive Surgical Operations, Inc. Cannula mounting fixture
US8888789B2 (en) 2009-09-23 2014-11-18 Intuitive Surgical Operations, Inc. Curved cannula surgical system control
US9474540B2 (en) 2009-10-08 2016-10-25 Ethicon-Endo-Surgery, Inc. Laparoscopic device with compound angulation
ES2388867B1 (en) * 2009-10-27 2013-09-18 Universitat Politècnica De Catalunya MINIMALLY INVASIVE LAPAROSCOPIC SURGERY CLAMPS.
US20110098704A1 (en) 2009-10-28 2011-04-28 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8357161B2 (en) * 2009-10-30 2013-01-22 Covidien Lp Coaxial drive
US8398633B2 (en) * 2009-10-30 2013-03-19 Covidien Lp Jaw roll joint
US8608652B2 (en) 2009-11-05 2013-12-17 Ethicon Endo-Surgery, Inc. Vaginal entry surgical devices, kit, system, and method
US20110112517A1 (en) * 2009-11-06 2011-05-12 Peine Willliam J Surgical instrument
US8935003B2 (en) * 2010-09-21 2015-01-13 Intuitive Surgical Operations Method and system for hand presence detection in a minimally invasive surgical system
US8521331B2 (en) * 2009-11-13 2013-08-27 Intuitive Surgical Operations, Inc. Patient-side surgeon interface for a minimally invasive, teleoperated surgical instrument
CN102596058B (en) * 2009-11-13 2015-10-21 直观外科手术操作公司 There is the end effector of the close mechanism established again
CN102596087B (en) * 2009-11-13 2015-07-22 直观外科手术操作公司 Motor interface for parallel drive shafts within an independently rotating member
US9259275B2 (en) * 2009-11-13 2016-02-16 Intuitive Surgical Operations, Inc. Wrist articulation by linked tension members
US8996173B2 (en) 2010-09-21 2015-03-31 Intuitive Surgical Operations, Inc. Method and apparatus for hand gesture control in a minimally invasive surgical system
CN102596062B (en) * 2009-11-13 2016-08-24 直观外科手术操作公司 Flex socket, robotic manipulator and there is the operating theater instruments of passive flexible shaft
EP2489323B1 (en) 2009-11-13 2018-05-16 Intuitive Surgical Operations, Inc. Surgical tool with a compact wrist
DE102009056982A1 (en) * 2009-12-07 2011-06-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Surgical manipulation instrument
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US8496574B2 (en) 2009-12-17 2013-07-30 Ethicon Endo-Surgery, Inc. Selectively positionable camera for surgical guide tube assembly
US8353487B2 (en) 2009-12-17 2013-01-15 Ethicon Endo-Surgery, Inc. User interface support devices for endoscopic surgical instruments
US9028483B2 (en) 2009-12-18 2015-05-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8506564B2 (en) 2009-12-18 2013-08-13 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
CA2786480C (en) 2010-01-26 2018-01-16 Novolap Medical Ltd. Articulating medical instrument
US9005198B2 (en) 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9339341B2 (en) 2010-02-08 2016-05-17 Intuitive Surgical Operations, Inc. Direct pull surgical gripper
US10376331B2 (en) 2010-02-12 2019-08-13 Intuitive Surgical Operations, Inc. Sheaths for jointed instruments
US9089351B2 (en) 2010-02-12 2015-07-28 Intuitive Surgical Operations, Inc. Sheath for surgical instrument
WO2011115311A1 (en) * 2010-03-15 2011-09-22 주식회사 아덴 Surgical tool
JP4837117B2 (en) * 2010-04-14 2011-12-14 ファナック株式会社 Linear arrangement of robot arm
US9226760B2 (en) * 2010-05-07 2016-01-05 Ethicon Endo-Surgery, Inc. Laparoscopic devices with flexible actuation mechanisms
US8562592B2 (en) 2010-05-07 2013-10-22 Ethicon Endo-Surgery, Inc. Compound angle laparoscopic methods and devices
US9033998B1 (en) * 2010-05-13 2015-05-19 Titan Medical Inc. Independent roll wrist mechanism
US20110282357A1 (en) 2010-05-14 2011-11-17 Intuitive Surgical Operations, Inc. Surgical system architecture
US8661927B2 (en) * 2010-05-14 2014-03-04 Intuitive Surgical Operations, Inc. Cable re-ordering device
US9764481B2 (en) * 2010-06-10 2017-09-19 Carefusion 2200, Inc. Flexible wrist-type element
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
US9592063B2 (en) 2010-06-24 2017-03-14 DePuy Synthes Products, Inc. Universal trial for lateral cages
TW201215379A (en) 2010-06-29 2012-04-16 Synthes Gmbh Distractible intervertebral implant
KR102038654B1 (en) 2010-07-09 2019-10-30 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 A surgical device including an electrosurgical instrument and cover
CA2806278C (en) * 2010-07-28 2020-08-04 Medrobotics Corporation Surgical positioning and support system
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US20120065645A1 (en) * 2010-09-10 2012-03-15 Mark Doyle Protective sheath
CA2811450A1 (en) * 2010-09-14 2012-03-22 The Johns Hopkins University Robotic system to augment endoscopes
US9314306B2 (en) 2010-09-17 2016-04-19 Hansen Medical, Inc. Systems and methods for manipulating an elongate member
US9402682B2 (en) 2010-09-24 2016-08-02 Ethicon Endo-Surgery, Llc Articulation joint features for articulating surgical device
JP5707824B2 (en) * 2010-09-29 2015-04-30 ソニー株式会社 Control device and control method
AU2011308701B2 (en) 2010-09-30 2013-11-14 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and an alignment matrix
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US8777004B2 (en) 2010-09-30 2014-07-15 Ethicon Endo-Surgery, Inc. Compressible staple cartridge comprising alignment members
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US9402732B2 (en) 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US8992421B2 (en) 2010-10-22 2015-03-31 Medrobotics Corporation Highly articulated robotic probes and methods of production and use of such probes
US8951288B2 (en) 2010-11-09 2015-02-10 Benvenue Medical, Inc. Devices and methods for treatment of a bone fracture
US20120190970A1 (en) 2010-11-10 2012-07-26 Gnanasekar Velusamy Apparatus and method for stabilizing a needle
AU2011338931B2 (en) 2010-11-11 2017-02-09 Medrobotics Corporation Introduction devices for highly articulated robotic probes and methods of production and use of such probes
JP2012115471A (en) * 2010-11-30 2012-06-21 Olympus Corp Medical treatment instrument, and manipulator
WO2012074564A1 (en) 2010-12-02 2012-06-07 Freehand Endoscopic Devices, Inc. Surgical tool
US9119655B2 (en) 2012-08-03 2015-09-01 Stryker Corporation Surgical manipulator capable of controlling a surgical instrument in multiple modes
US9921712B2 (en) 2010-12-29 2018-03-20 Mako Surgical Corp. System and method for providing substantially stable control of a surgical tool
US20120191086A1 (en) 2011-01-20 2012-07-26 Hansen Medical, Inc. System and method for endoluminal and translumenal therapy
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
CN106473789B (en) 2011-02-15 2020-07-24 直观外科手术操作公司 System for indicating clamping prediction
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
JP2012187311A (en) * 2011-03-11 2012-10-04 Olympus Corp Medical treatment tool and manipulator
CN102210610B (en) * 2011-03-17 2013-06-05 北京航空航天大学 Pushing mechanism for minimally invasive surgical robot
US9049987B2 (en) 2011-03-17 2015-06-09 Ethicon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US9168050B1 (en) 2011-03-24 2015-10-27 Cambridge Endoscopic Devices, Inc. End effector construction
EP3488802A1 (en) 2011-04-06 2019-05-29 Medrobotics Corporation Articulating surgical tools and tool sheaths, and methods of deploying the same
DE102011001973A1 (en) 2011-04-12 2012-10-18 Aesculap Ag control device
BR112013027794B1 (en) 2011-04-29 2020-12-15 Ethicon Endo-Surgery, Inc CLAMP CARTRIDGE SET
US9161771B2 (en) 2011-05-13 2015-10-20 Intuitive Surgical Operations Inc. Medical instrument with snake wrist structure
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US20140094825A1 (en) * 2011-06-02 2014-04-03 Medrobotics Corporation Robotic systems, robotic system user interfaces, human interface devices for controlling robotic systems and methods of controlling robotic systems
WO2012178018A2 (en) 2011-06-24 2012-12-27 Benvenue Medical, Inc. Devices and methods for treating bone tissue
CA2841182A1 (en) * 2011-07-11 2013-01-17 EON Surgical Ltd. Laparoscopic graspers
US20130023859A1 (en) * 2011-07-21 2013-01-24 Tyco Healthcare Group Lp Articulating Links with Middle Link Control System
US9138166B2 (en) 2011-07-29 2015-09-22 Hansen Medical, Inc. Apparatus and methods for fiber integration and registration
JP6005950B2 (en) 2011-08-04 2016-10-12 オリンパス株式会社 Surgery support apparatus and control method thereof
JP6081061B2 (en) 2011-08-04 2017-02-15 オリンパス株式会社 Surgery support device
JP5841451B2 (en) 2011-08-04 2016-01-13 オリンパス株式会社 Surgical instrument and control method thereof
JP5953058B2 (en) 2011-08-04 2016-07-13 オリンパス株式会社 Surgery support device and method for attaching and detaching the same
JP6021353B2 (en) 2011-08-04 2016-11-09 オリンパス株式会社 Surgery support device
JP6009840B2 (en) 2011-08-04 2016-10-19 オリンパス株式会社 Medical equipment
JP6000641B2 (en) 2011-08-04 2016-10-05 オリンパス株式会社 Manipulator system
JP6021484B2 (en) 2011-08-04 2016-11-09 オリンパス株式会社 Medical manipulator
EP2740434A4 (en) * 2011-08-04 2015-03-18 Olympus Corp Medical manipulator and method for controlling same
EP2740435B8 (en) 2011-08-04 2018-12-19 Olympus Corporation Surgical support apparatus
WO2013018897A1 (en) * 2011-08-04 2013-02-07 オリンパス株式会社 Surgical implement and medical treatment manipulator
JP5936914B2 (en) 2011-08-04 2016-06-22 オリンパス株式会社 Operation input device and manipulator system including the same
JP5931497B2 (en) 2011-08-04 2016-06-08 オリンパス株式会社 Surgery support apparatus and assembly method thereof
US8945174B2 (en) * 2011-08-15 2015-02-03 Intuitive Surgical Operations, Inc. Medical instrument with flexible jaw mechanism
KR102122822B1 (en) * 2011-08-15 2020-06-15 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Medical instrument with flexible jaw and/or flexible wrist mechanisms
US9005196B2 (en) * 2011-08-16 2015-04-14 Boston Scientific Scimed, Inc. Medical device handles and related methods of use
WO2013026012A1 (en) * 2011-08-18 2013-02-21 President And Fellows Of Harvard College Hybrid snake robot for minimally invasive intervention
EP3213697B1 (en) 2011-09-02 2020-03-11 Stryker Corporation Surgical instrument including a housing, a cutting accessory that extends from the housing and actuators that establish the position of the cutting accessory relative to the housing
JP6395605B2 (en) 2011-09-13 2018-09-26 メドロボティクス コーポレイション Highly articulated probe having anti-twist link arrangement, formation method thereof, and medical procedure execution method
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
WO2013063674A1 (en) 2011-11-04 2013-05-10 Titan Medical Inc. Apparatus and method for controlling an end-effector assembly
US8911429B2 (en) 2011-11-04 2014-12-16 The Johns Hopkins University Steady hand micromanipulation robot
EP2773277B1 (en) 2011-11-04 2016-03-02 Titan Medical Inc. Apparatus for controlling an end-effector assembly
JP5856817B2 (en) * 2011-11-16 2016-02-10 オリンパス株式会社 Medical treatment tool and manipulator having the same
US9113899B2 (en) * 2011-11-29 2015-08-25 Covidien Lp Coupling mechanisms for surgical instruments
CN108262741A (en) 2011-12-21 2018-07-10 美的洛博迪克斯公司 The application method of the securing device of probe, the forming method of the device and the device is hinged for the height with chain regulating device
US8652031B2 (en) 2011-12-29 2014-02-18 St. Jude Medical, Atrial Fibrillation Division, Inc. Remote guidance system for medical devices for use in environments having electromagnetic interference
US9956042B2 (en) 2012-01-13 2018-05-01 Vanderbilt University Systems and methods for robot-assisted transurethral exploration and intervention
EP2809245B1 (en) 2012-02-02 2020-04-29 Great Belief International Limited Mechanized multi-instrument surgical system
US8419720B1 (en) 2012-02-07 2013-04-16 National Advanced Endoscopy Devices, Incorporated Flexible laparoscopic device
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US8585114B2 (en) * 2012-02-22 2013-11-19 Carter J. Kovarik Selectively bendable remote gripping tool
US9901245B2 (en) 2012-02-22 2018-02-27 Carter J. Kovarik Selectively bendable remote gripping tool
US9592066B2 (en) 2012-02-22 2017-03-14 Carter J. Kovarik Selectively bendable remote gripping tool
US8985659B2 (en) 2012-02-22 2015-03-24 Carter J. Kovarik Fish netting tool
US9832980B2 (en) 2012-02-22 2017-12-05 Carter J. Kovarik Selectively bendable remote gripping tool
US8807615B2 (en) 2012-02-22 2014-08-19 Carter J. Kovarik Selectively bendable remote gripping tool
US8833817B2 (en) 2012-02-22 2014-09-16 Carter J. Kovarik Selectively bendable animal waste scooper for sanitary handling of animal droppings
USD780547S1 (en) 2013-08-08 2017-03-07 Carter J. Kovarik Pick up device with flexible shaft portion
US10226266B2 (en) 2012-02-22 2019-03-12 Carter J. Kovarik Selectively bendable remote gripping tool
US11083475B2 (en) 2012-02-22 2021-08-10 Carter J. Kovarik Medical device to remove an obstruction from a body lumen, vessel or organ
US9095127B2 (en) 2012-02-22 2015-08-04 Carter J. Kovarik Selectively bendable remote gripping tool
US9010320B2 (en) * 2012-03-12 2015-04-21 Furman Medical Llc Manually articulated intubation stylet, intubation device and intubation method
RU2014143258A (en) 2012-03-28 2016-05-20 Этикон Эндо-Серджери, Инк. FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS
CN104334098B (en) 2012-03-28 2017-03-22 伊西康内外科公司 Tissue thickness compensator comprising capsules defining a low pressure environment
MX353040B (en) 2012-03-28 2017-12-18 Ethicon Endo Surgery Inc Retainer assembly including a tissue thickness compensator.
US9539726B2 (en) 2012-04-20 2017-01-10 Vanderbilt University Systems and methods for safe compliant insertion and hybrid force/motion telemanipulation of continuum robots
US9549720B2 (en) 2012-04-20 2017-01-24 Vanderbilt University Robotic device for establishing access channel
US9687303B2 (en) * 2012-04-20 2017-06-27 Vanderbilt University Dexterous wrists for surgical intervention
KR101372189B1 (en) * 2012-04-27 2014-03-07 한양대학교 에리카산학협력단 Surgical robot enabled to change positions of end-effectors
US9427255B2 (en) 2012-05-14 2016-08-30 Ethicon Endo-Surgery, Inc. Apparatus for introducing a steerable camera assembly into a patient
WO2013184560A1 (en) * 2012-06-07 2013-12-12 Medrobotics Corporation Articulating surgical instruments and methods of deploying the same
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US20130345596A1 (en) * 2012-06-25 2013-12-26 David S. Zimmon Apparatus and methods for removing and collecting biopsy specimens from biopsy devices with fixation and preparation for histopathological processing or other analysis
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US20140005718A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Multi-functional powered surgical device with external dissection features
US20140005640A1 (en) * 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical end effector jaw and electrode configurations
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
EP2869779B1 (en) 2012-07-03 2019-02-27 KUKA Deutschland GmbH Surgical instrument arrangement
US9078662B2 (en) 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
DE102012212510B4 (en) * 2012-07-17 2014-02-13 Richard Wolf Gmbh Endoscopic instrument
US9545290B2 (en) 2012-07-30 2017-01-17 Ethicon Endo-Surgery, Inc. Needle probe guide
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US9572623B2 (en) 2012-08-02 2017-02-21 Ethicon Endo-Surgery, Inc. Reusable electrode and disposable sheath
KR101364053B1 (en) * 2012-08-03 2014-02-19 한국과학기술연구원 Guide Tube for Microsurgical Instruments
CN112932672A (en) 2012-08-03 2021-06-11 史赛克公司 Systems and methods for robotic surgery
US9820818B2 (en) 2012-08-03 2017-11-21 Stryker Corporation System and method for controlling a surgical manipulator based on implant parameters
US9226796B2 (en) 2012-08-03 2016-01-05 Stryker Corporation Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path
WO2014026104A1 (en) 2012-08-09 2014-02-13 Castro Michael Salvatore Surgical tool positioning systems
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
US9700310B2 (en) 2013-08-23 2017-07-11 Ethicon Llc Firing member retraction devices for powered surgical instruments
JP6385935B2 (en) 2012-09-17 2018-09-05 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Method and system for assigning input devices to remotely operated surgical instrument functions
US10631939B2 (en) 2012-11-02 2020-04-28 Intuitive Surgical Operations, Inc. Systems and methods for mapping flux supply paths
US10864048B2 (en) 2012-11-02 2020-12-15 Intuitive Surgical Operations, Inc. Flux disambiguation for teleoperated surgical systems
US20140148673A1 (en) 2012-11-28 2014-05-29 Hansen Medical, Inc. Method of anchoring pullwire directly articulatable region in catheter
US9463022B2 (en) * 2012-12-17 2016-10-11 Ethicon Endo-Surgery, Llc Motor driven rotary input circular stapler with lockable flexible shaft
EP2976188B1 (en) * 2013-02-27 2019-04-24 Olympus Corporation Manipulator
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
US9326767B2 (en) 2013-03-01 2016-05-03 Ethicon Endo-Surgery, Llc Joystick switch assemblies for surgical instruments
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US9839481B2 (en) * 2013-03-07 2017-12-12 Intuitive Surgical Operations, Inc. Hybrid manual and robotic interventional instruments and methods of use
KR102274277B1 (en) 2013-03-13 2021-07-08 스트리커 코포레이션 System for arranging objects in an operating room in preparation for surgical procedures
EP2996611B1 (en) 2013-03-13 2019-06-26 Stryker Corporation Systems and software for establishing virtual constraint boundaries
US10058343B2 (en) 2013-03-14 2018-08-28 Covidien Lp Systems for performing endoscopic procedures
US20140277334A1 (en) 2013-03-14 2014-09-18 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US10085783B2 (en) 2013-03-14 2018-10-02 Izi Medical Products, Llc Devices and methods for treating bone tissue
US9326822B2 (en) 2013-03-14 2016-05-03 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US20140296869A1 (en) 2013-03-14 2014-10-02 Intuitive Surgical Operations, Inc. Surgical instrument shaft
US9687230B2 (en) 2013-03-14 2017-06-27 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US11006975B1 (en) 2013-03-15 2021-05-18 Southern Methodist University Steerable extendable devices
US20140276936A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Active drive mechanism for simultaneous rotation and translation
US9271663B2 (en) * 2013-03-15 2016-03-01 Hansen Medical, Inc. Flexible instrument localization from both remote and elongation sensors
US9282993B1 (en) 2013-03-15 2016-03-15 Southern Methodist University Steerable extendable devices
US9408669B2 (en) 2013-03-15 2016-08-09 Hansen Medical, Inc. Active drive mechanism with finite range of motion
EP2967521B1 (en) 2013-03-15 2019-12-25 SRI International Electromechanical surgical system
CN105073057B (en) * 2013-03-18 2017-07-04 奥林巴斯株式会社 Manipulator
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9357984B2 (en) 2013-04-23 2016-06-07 Covidien Lp Constant value gap stabilizer for articulating links
KR20140129702A (en) * 2013-04-30 2014-11-07 삼성전자주식회사 Surgical robot system and method for controlling the same
US9913695B2 (en) 2013-05-02 2018-03-13 Medrobotics Corporation Robotic system including a cable interface assembly
US9517059B2 (en) 2013-05-20 2016-12-13 Medrobotics Corporation Articulating surgical instruments and method of deploying the same
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US10278683B2 (en) 2013-06-19 2019-05-07 Titan Medical Inc. Articulated tool positioner and system employing same
US10085746B2 (en) 2013-06-28 2018-10-02 Covidien Lp Surgical instrument including rotating end effector and rotation-limiting structure
US9358004B2 (en) 2013-06-28 2016-06-07 Covidien Lp Articulating apparatus for endoscopic procedures
WO2015023888A1 (en) * 2013-08-15 2015-02-19 Intuitive Surgical Operations, Inc. Instrument shaft for computer-assisted surgical system
US10076348B2 (en) 2013-08-15 2018-09-18 Intuitive Surgical Operations, Inc. Rotary input for lever actuation
US10550918B2 (en) 2013-08-15 2020-02-04 Intuitive Surgical Operations, Inc. Lever actuated gimbal plate
EP3033029B1 (en) * 2013-08-15 2020-07-15 Intuitive Surgical Operations, Inc. Reusable surgical instrument with single-use tip and integrated tip cover
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
JP6196110B2 (en) * 2013-09-25 2017-09-13 テルモ株式会社 Long member for medical use
KR102111621B1 (en) 2013-11-05 2020-05-18 삼성전자주식회사 Manipulator
US9295522B2 (en) 2013-11-08 2016-03-29 Covidien Lp Medical device adapter with wrist mechanism
CN105828738B (en) 2013-12-20 2018-10-09 奥林巴斯株式会社 Flexible manipulator guide member and flexible manipulator
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9642620B2 (en) * 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9968354B2 (en) 2013-12-23 2018-05-15 Ethicon Llc Surgical staples and methods for making the same
AU2014374201A1 (en) 2013-12-30 2016-07-07 Medrobotics Corporation Articulated robotic probes
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
KR20230056068A (en) * 2014-02-21 2023-04-26 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Articulatable members having constrained motion, and related devices and methods
JP6664331B2 (en) 2014-02-21 2020-03-13 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Mechanical joints and related systems and methods
JP6462004B2 (en) 2014-02-24 2019-01-30 エシコン エルエルシー Fastening system with launcher lockout
US20140166725A1 (en) 2014-02-24 2014-06-19 Ethicon Endo-Surgery, Inc. Staple cartridge including a barbed staple.
US10166061B2 (en) 2014-03-17 2019-01-01 Intuitive Surgical Operations, Inc. Teleoperated surgical system equipment with user interface
US20150272571A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Surgical instrument utilizing sensor adaptation
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
US20150272557A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Modular surgical instrument system
US20170007224A1 (en) * 2014-03-31 2017-01-12 Human Extensions Ltd. Steerable medical device
US10285763B2 (en) 2014-04-02 2019-05-14 Intuitive Surgical Operations, Inc. Actuation element guide with twisting channels
JP6296869B2 (en) * 2014-04-09 2018-03-20 オリンパス株式会社 Treatment instrument and surgical system
CN106456158B (en) 2014-04-16 2019-02-05 伊西康内外科有限责任公司 Fastener cartridge including non-uniform fastener
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
BR112016023807B1 (en) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US10046140B2 (en) 2014-04-21 2018-08-14 Hansen Medical, Inc. Devices, systems, and methods for controlling active drive systems
CN103919591B (en) * 2014-04-24 2016-04-13 中国科学院深圳先进技术研究院 A kind of Transnasal endoscopy operation auxiliary robot
CN106413620B (en) * 2014-04-28 2019-07-05 柯惠Lp公司 For accommodating the surgical assembly of force transmitting member
CA3193139A1 (en) 2014-05-05 2015-11-12 Vicarious Surgical Inc. Virtual reality surgical device
JP6284438B2 (en) * 2014-06-12 2018-02-28 オリンパス株式会社 manipulator
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US10258359B2 (en) 2014-08-13 2019-04-16 Covidien Lp Robotically controlling mechanical advantage gripping
WO2016025134A2 (en) 2014-08-13 2016-02-18 Covidien Lp Robotically controlling mechanical advantage gripping
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US11357483B2 (en) * 2014-09-26 2022-06-14 Intuitive Surgical Operations, Inc. Surgical instrument with flexible shaft and actuation element guide
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US10492863B2 (en) 2014-10-29 2019-12-03 The Spectranetics Corporation Laser energy delivery devices including laser transmission detection systems and methods
EP3212103B1 (en) 2014-10-29 2021-12-15 The Spectranetics Corporation Laser energy delivery devices including laser transmission detection systems and methods
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10603135B2 (en) * 2014-10-30 2020-03-31 Intuitive Surgical Operations, Inc. System and method for an articulated arm based tool guide
JP6408024B2 (en) * 2014-10-30 2018-10-17 オリンパス株式会社 Medical treatment tool
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
CN104434318B (en) * 2014-12-17 2016-05-25 上海交通大学 A kind of operating theater instruments end structure of micro-wound operation robot
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
EP3243478A4 (en) * 2015-01-06 2018-09-05 Olympus Corporation Operation input device and medical manipulator system
KR101710256B1 (en) * 2015-01-19 2017-02-24 고려대학교 산학협력단 Robotic joint device using wire and module-type robotic joint system using wire
CN104546066B (en) * 2015-01-22 2017-02-22 中国科学院深圳先进技术研究院 Passive type nasal endoscopic surgery assisting robot
JP6664407B2 (en) * 2015-02-19 2020-03-13 コヴィディエン リミテッド パートナーシップ Surgical assembly and method of use
CN106794023A (en) * 2015-02-26 2017-05-31 奥林巴斯株式会社 Medical intervention utensil
US20160249910A1 (en) 2015-02-27 2016-09-01 Ethicon Endo-Surgery, Llc Surgical charging system that charges and/or conditions one or more batteries
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US11134968B2 (en) * 2015-03-16 2021-10-05 Cilag Gmbh International Surgical jaw coupling methods and devices
GB201504787D0 (en) * 2015-03-20 2015-05-06 Cambridge Medical Robotics Ltd User interface for a robot
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
EP3282952B1 (en) 2015-04-03 2019-12-25 The Regents Of The University Of Michigan Tension management apparatus for cable-driven transmission
CN104856760A (en) * 2015-04-16 2015-08-26 段友建 Automatic nursing device for orthopedic inspection
JP6498281B2 (en) * 2015-04-17 2019-04-10 オリンパス株式会社 Medical manipulator
US10039532B2 (en) 2015-05-06 2018-08-07 Covidien Lp Surgical instrument with articulation assembly
US9486927B1 (en) * 2015-05-20 2016-11-08 Google Inc. Robotic gripper with multiple pairs of gripping fingers
WO2016190049A1 (en) 2015-05-28 2016-12-01 オリンパス株式会社 Sheath member, manipulator, and manipulator system
US10335149B2 (en) 2015-06-18 2019-07-02 Ethicon Llc Articulatable surgical instruments with composite firing beam structures with center firing support member for articulation support
CA2987654A1 (en) 2015-06-23 2016-12-29 Covidien Lp Surgical end effectors with mechanical advantage
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10213203B2 (en) 2015-08-26 2019-02-26 Ethicon Llc Staple cartridge assembly without a bottom cover
CN108348233B (en) 2015-08-26 2021-05-07 伊西康有限责任公司 Surgical staple strip for allowing changing staple characteristics and achieving easy cartridge loading
MX2022006191A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US9814451B2 (en) 2015-10-02 2017-11-14 Flexdex, Inc. Handle mechanism providing unlimited roll
US11896255B2 (en) 2015-10-05 2024-02-13 Flexdex, Inc. End-effector jaw closure transmission systems for remote access tools
US10959797B2 (en) 2015-10-05 2021-03-30 Flexdex, Inc. Medical devices having smoothly articulating multi-cluster joints
ITUB20155057A1 (en) 2015-10-16 2017-04-16 Medical Microinstruments S R L Robotic surgery set
ITUB20154977A1 (en) * 2015-10-16 2017-04-16 Medical Microinstruments S R L Medical instrument and method of manufacture of said medical instrument
US11504104B2 (en) 2015-10-20 2022-11-22 Lumendi Ltd. Medical instruments for performing minimally-invasive procedures
AU2016341269B2 (en) 2015-10-20 2021-09-02 Lumendi Ltd. Medical instruments for performing minimally-invasive procedures
US11446081B2 (en) 2015-10-20 2022-09-20 Lumedi Ltd. Medical instruments for performing minimally-invasive procedures
US10058393B2 (en) 2015-10-21 2018-08-28 P Tech, Llc Systems and methods for navigation and visualization
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
JP6944939B2 (en) 2015-12-31 2021-10-06 ストライカー・コーポレイション Systems and methods for performing surgery on a patient's target site as defined by a virtual object
US10932861B2 (en) 2016-01-14 2021-03-02 Auris Health, Inc. Electromagnetic tracking surgical system and method of controlling the same
US10932691B2 (en) 2016-01-26 2021-03-02 Auris Health, Inc. Surgical tools having electromagnetic tracking components
BR122022007763B1 (en) 2016-02-05 2023-03-14 Board Of Regents Of The University Of Texas System METHOD FOR THE PREPARATION OF AN IONIC ELECTROACTIVE POLYMER ACTUATOR OF A TUBULAR MEDICAL DEVICE
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
JP6911054B2 (en) 2016-02-09 2021-07-28 エシコン エルエルシーEthicon LLC Surgical instruments with asymmetric joint composition
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10583270B2 (en) 2016-03-14 2020-03-10 Covidien Lp Compound curve navigation catheter
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US11324554B2 (en) 2016-04-08 2022-05-10 Auris Health, Inc. Floating electromagnetic field generator system and method of controlling the same
WO2017175373A1 (en) 2016-04-08 2017-10-12 オリンパス株式会社 Flexible manipulator
KR102429815B1 (en) 2016-04-14 2022-08-08 트랜스엔테릭스 서지컬, 인크. Electromechanical Surgical System Including Linear Driven Instrument Rolls
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US10542964B2 (en) * 2016-05-25 2020-01-28 Medtronic, Inc. Interventional medical device retrieval
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
JP6957532B2 (en) 2016-06-24 2021-11-02 エシコン エルエルシーEthicon LLC Staple cartridges including wire staples and punched staples
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
USD822206S1 (en) 2016-06-24 2018-07-03 Ethicon Llc Surgical fastener
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
CN109688981A (en) 2016-06-28 2019-04-26 Eit 新兴移植技术股份有限公司 Distensible, adjustable angle intervertebral cage
JP7023877B2 (en) 2016-06-28 2022-02-22 イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー Expandable and angle-adjustable range-of-motion intervertebral cage
CN109069206B (en) 2016-06-30 2021-08-17 直观外科手术操作公司 System and method for fault reaction mechanism for medical robotic system
KR102400881B1 (en) 2016-07-14 2022-05-24 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 multi-cable medical device
US11007024B2 (en) 2016-07-14 2021-05-18 Intuitive Surgical Operations, Inc. Geared grip actuation for medical instruments
US20190231451A1 (en) 2016-07-14 2019-08-01 Intuitive Surgical Operations, Inc. Geared roll drive for medical instrument
US10463439B2 (en) 2016-08-26 2019-11-05 Auris Health, Inc. Steerable catheter with shaft load distributions
US11241559B2 (en) 2016-08-29 2022-02-08 Auris Health, Inc. Active drive for guidewire manipulation
KR20220143778A (en) 2016-09-09 2022-10-25 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Push-pull surgical instrument end effector actuation using flexible tension member
US11432836B2 (en) 2016-09-14 2022-09-06 Intuitive Surgical Operations, Inc. Joint assemblies with cross-axis flexural pivots
US11039835B2 (en) * 2016-09-15 2021-06-22 Intuitive Surgical Operations, Inc. Medical device drive system
WO2018052810A1 (en) 2016-09-15 2018-03-22 Intuitive Surgical Operations, Inc. Medical device drive system
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US10743859B2 (en) 2016-10-21 2020-08-18 Covidien Lp Surgical end effectors
US10617409B2 (en) 2016-10-21 2020-04-14 Covidien Lp Surgical end effectors
US11298123B2 (en) 2016-10-21 2022-04-12 Covidien Lp Surgical end effectors
US11241290B2 (en) 2016-11-21 2022-02-08 Intuitive Surgical Operations, Inc. Cable length conserving medical instrument
EP3576596A4 (en) 2016-12-02 2021-01-06 Vanderbilt University Steerable endoscope with continuum manipulator
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US11202682B2 (en) 2016-12-16 2021-12-21 Mako Surgical Corp. Techniques for modifying tool operation in a surgical robotic system based on comparing actual and commanded states of the tool relative to a surgical site
AU2017379816B2 (en) 2016-12-20 2020-02-20 Verb Surgical Inc. Sterile adapter control system and communication interface for use in a robotic surgical system
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US20180168598A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Staple forming pocket arrangements comprising zoned forming surface grooves
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
US20180168647A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments having end effectors with positive opening features
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10835246B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
JP2020501779A (en) 2016-12-21 2020-01-23 エシコン エルエルシーEthicon LLC Surgical stapling system
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10524789B2 (en) 2016-12-21 2020-01-07 Ethicon Llc Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US10888309B2 (en) 2017-01-31 2021-01-12 Covidien Lp Surgical fastener devices with geometric tubes
EP3579736A4 (en) 2017-02-09 2020-12-23 Vicarious Surgical Inc. Virtual reality surgical tools system
US10357321B2 (en) 2017-02-24 2019-07-23 Intuitive Surgical Operations, Inc. Splayed cable guide for a medical instrument
US10806898B2 (en) 2017-03-30 2020-10-20 University Of Hawaii Steerable surgical devices with shape memory alloy wires
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
IT201700041991A1 (en) 2017-04-14 2018-10-14 Medical Microinstruments Spa ROBOTIC ASSEMBLY FOR MICROSURGERY
IT201700041980A1 (en) 2017-04-14 2018-10-14 Medical Microinstruments Spa ROBOTIC ASSEMBLY FOR MICROSURGERY
US11278366B2 (en) 2017-04-27 2022-03-22 Canon U.S.A., Inc. Method for controlling a flexible manipulator
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
WO2018229889A1 (en) * 2017-06-14 2018-12-20 オリンパス株式会社 Manipulator
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11141154B2 (en) 2017-06-27 2021-10-12 Cilag Gmbh International Surgical end effectors and anvils
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US20190000461A1 (en) 2017-06-28 2019-01-03 Ethicon Llc Surgical cutting and fastening devices with pivotable anvil with a tissue locating arrangement in close proximity to an anvil pivot axis
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
EP4070740A1 (en) 2017-06-28 2022-10-12 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US11007641B2 (en) 2017-07-17 2021-05-18 Canon U.S.A., Inc. Continuum robot control methods and apparatus
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
CN109381261B (en) * 2017-08-14 2022-10-28 新加坡国立大学 Surgical operation arm and surgical operation robot
WO2019055701A1 (en) 2017-09-13 2019-03-21 Vanderbilt University Continuum robots with multi-scale motion through equilibrium modulation
EP3681368A4 (en) 2017-09-14 2021-06-23 Vicarious Surgical Inc. Virtual reality surgical camera system
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10973600B2 (en) * 2017-09-29 2021-04-13 Ethicon Llc Power axle wrist for robotic surgical tool
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
WO2019073859A1 (en) * 2017-10-12 2019-04-18 日本発條株式会社 Bending structure and flexible tube for medical manipulator
US10624708B2 (en) * 2017-10-26 2020-04-21 Ethicon Llc Auto cable tensioning system
US10952708B2 (en) 2017-10-30 2021-03-23 Ethicon Llc Surgical instrument with rotary drive selectively actuating multiple end effector functions
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11129634B2 (en) 2017-10-30 2021-09-28 Cilag Gmbh International Surgical instrument with rotary drive selectively actuating multiple end effector functions
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10932804B2 (en) 2017-10-30 2021-03-02 Ethicon Llc Surgical instrument with sensor and/or control systems
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
EP3709908A4 (en) 2017-11-13 2021-08-18 Vicarious Surgical Inc. Virtual reality wrist assembly
CN107928790B (en) * 2017-12-01 2020-05-05 微创(上海)医疗机器人有限公司 Snake-shaped surgical instrument
EP3723650A4 (en) 2017-12-14 2021-08-18 Intuitive Surgical Operations, Inc. Medical tools having tension bands
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
JP7005773B2 (en) 2018-01-04 2022-01-24 コヴィディエン リミテッド パートナーシップ Robotic surgical instruments including high range of motion wrist assembly with torque transmission and mechanical manipulation
USD874655S1 (en) 2018-01-05 2020-02-04 Medrobotics Corporation Positioning arm for articulating robotic surgical system
EP3752074A4 (en) 2018-02-12 2022-03-23 Intuitive Surgical Operations, Inc. Surgical instrument with lockout mechanism
EP3761897A4 (en) 2018-03-07 2021-11-24 Intuitive Surgical Operations, Inc. Low-friction, small profile medical tools having easy-to-assemble components
US11298126B2 (en) 2018-05-02 2022-04-12 Covidien Lp Shipping wedge for end effector installation onto surgical devices
IL259807B (en) 2018-06-04 2020-02-27 Valuebiotech Israel Ltd Articulation arm link
US11116500B2 (en) 2018-06-28 2021-09-14 Covidien Lp Surgical fastener applying device, kits and methods for endoscopic procedures
US11259798B2 (en) 2018-07-16 2022-03-01 Intuitive Surgical Operations, Inc. Medical devices having tissue grasping surfaces and features for manipulating surgical needles
US11612447B2 (en) 2018-07-19 2023-03-28 Intuitive Surgical Operations, Inc. Medical devices having three tool members
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
WO2020041228A1 (en) * 2018-08-20 2020-02-27 Safavi Abbasi Sam Neuromuscular enhancement system
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
KR102256826B1 (en) * 2018-08-31 2021-05-27 한양대학교 에리카산학협력단 Flexible mechanism
CN110870793A (en) * 2018-08-31 2020-03-10 新加坡国立大学 Mechanical arm, minimally invasive surgery robot and manufacturing method thereof
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11213287B2 (en) 2018-11-15 2022-01-04 Intuitive Surgical Operations, Inc. Support apparatus for a medical retractor device
US11291514B2 (en) 2018-11-15 2022-04-05 Intuitive Surgical Operations, Inc. Medical devices having multiple blades and methods of use
EP3897405A4 (en) * 2018-12-21 2022-09-14 Intuitive Surgical Operations, Inc. Actuation mechanisms for surgical instruments
EP3897402A4 (en) 2018-12-21 2023-02-08 Intuitive Surgical Operations, Inc. Surgical instruments having mechanisms for identifying and/or deactivating stapler cartridges
WO2020131290A1 (en) 2018-12-21 2020-06-25 Intuitive Surgical Operations, Inc. Articulation assemblies for surgical instruments
US11234783B2 (en) 2018-12-28 2022-02-01 Titan Medical Inc. Articulated tool positioner for robotic surgery system
JP2020121391A (en) * 2019-01-31 2020-08-13 川崎重工業株式会社 Robot and method for operating the same
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
CN110772334B (en) * 2019-04-25 2023-11-10 深圳市精锋医疗科技股份有限公司 Surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
CN110037758A (en) * 2019-05-15 2019-07-23 成都五义医疗器械有限公司 A kind of installation pedestal and elongated shaft assembly
US20200360078A1 (en) * 2019-05-16 2020-11-19 Intuitive Surgical Operations, Inc. Insert guide members for surgical instruments, and related devices, systems, and methods
US11123146B2 (en) 2019-05-30 2021-09-21 Titan Medical Inc. Surgical instrument apparatus, actuator, and drive
CN110215240A (en) * 2019-05-30 2019-09-10 南开大学 A kind of end effector mechanism of single-hole laparoscopic surgery
EP3975875A4 (en) 2019-05-31 2023-02-01 Intuitive Surgical Operations, Inc. Staple cartridge for a surgical instrument
US11523817B2 (en) 2019-06-27 2022-12-13 Covidien Lp Endoluminal pursestring device
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11786325B2 (en) 2019-07-02 2023-10-17 Intuitive Surgical Operations, Inc. Remotely controlling a system using video
US11751959B2 (en) * 2019-07-16 2023-09-12 Asensus Surgical Us, Inc. Dynamic scaling for a robotic surgical system
US20210137624A1 (en) * 2019-07-16 2021-05-13 Transenterix Surgical, Inc. Dynamic scaling of surgical manipulator motion based on surgeon stress parameters
CN110368091A (en) * 2019-07-23 2019-10-25 南开大学 A kind of single hole abdominal operation robot system
US20210030425A1 (en) * 2019-07-29 2021-02-04 Boston Scientific Scimed, Inc. Tissue clipping device
US11771507B2 (en) 2019-08-21 2023-10-03 Cilag Gmbh International Articulable wrist with flexible member and pivot guides
US11480068B2 (en) 2019-10-15 2022-10-25 General Electric Company Systems and method of servicing a turbomachine
CN113347916A (en) 2019-10-15 2021-09-03 因普瑞缇夫护理公司 System and method for multivariate stroke detection
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
USD944985S1 (en) 2019-12-19 2022-03-01 Covidien Lp Positioning guide cuff
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11197675B2 (en) 2019-12-19 2021-12-14 Covidien Lp Positioning guide for surgical instruments and surgical instrument systems
USD944984S1 (en) 2019-12-19 2022-03-01 Covidien Lp Tubular positioning guide
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
CN111388083B (en) * 2020-03-26 2023-04-11 平阴县中医医院 Multi-angle operation electric coagulation forceps for stomatology department
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
US11197725B1 (en) 2020-06-19 2021-12-14 Remedy Robotics, Inc. Systems and methods for guidance of intraluminal devices within the vasculature
ES2891180A1 (en) * 2020-07-14 2022-01-26 Univ Madrid Carlos Iii Link for soft joint and soft joint comprising said link (Machine-translation by Google Translate, not legally binding)
US20220031351A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with differential articulation joint arrangements for accommodating flexible actuators
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11737774B2 (en) * 2020-12-04 2023-08-29 Covidien Lp Surgical instrument with articulation assembly
US11819200B2 (en) 2020-12-15 2023-11-21 Covidien Lp Surgical instrument with articulation assembly
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US20220304715A1 (en) * 2021-03-24 2022-09-29 Ethicon Llc Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11744603B2 (en) * 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage
KR102378015B1 (en) * 2021-05-28 2022-03-24 주식회사 엔도로보틱스 Tendon-sheath driving apparatus and robot arm driving apparatus
US20220378424A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a firing lockout
WO2023278789A1 (en) 2021-07-01 2023-01-05 Remedy Robotics, Inc. Vision-based position and orientation determination for endovascular tools
US11707332B2 (en) 2021-07-01 2023-07-25 Remedy Robotics, Inc. Image space control for endovascular tools
US11903572B2 (en) 2021-09-14 2024-02-20 Nuvasive, Inc. Surgical instruments, systems, and methods with optical sensors
US20230100415A1 (en) * 2021-09-29 2023-03-30 Cilag Gmbh International Surgical sealing systems for instrument stabilization
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
CN115005993B (en) * 2022-05-31 2023-09-22 四川省肿瘤医院 Bending mechanism and surgical mechanical arm using same
CN115281746B (en) * 2022-07-04 2023-10-31 中国科学院自动化研究所 Flexible end-controllable medical instrument feeding system and feeding method

Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2978118A (en) * 1959-11-03 1961-04-04 Raymond C Goertz Manipulator for slave robot
US3190286A (en) * 1961-10-31 1965-06-22 Bausch & Lomb Flexible viewing probe for endoscopic use
US3266059A (en) * 1963-06-19 1966-08-16 North American Aviation Inc Prestressed flexible joint for mechanical arms and the like
US4393728A (en) * 1979-03-16 1983-07-19 Robotgruppen Hb Flexible arm, particularly a robot arm
US4654024A (en) * 1985-09-04 1987-03-31 C.R. Bard, Inc. Thermorecanalization catheter and method for use
US4750475A (en) * 1985-08-14 1988-06-14 Kabushiki Kaisha Machida Seisakusho Operating instrument guide mechanism for endoscope apparatus
US4998923A (en) * 1988-08-11 1991-03-12 Advanced Cardiovascular Systems, Inc. Steerable dilatation catheter
US5078140A (en) * 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
US5084054A (en) * 1990-03-05 1992-01-28 C.R. Bard, Inc. Surgical gripping instrument
US5086401A (en) * 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5116180A (en) * 1988-07-18 1992-05-26 Spar Aerospace Limited Human-in-the-loop machine control loop
US5184601A (en) * 1991-08-05 1993-02-09 Putman John M Endoscope stabilizer
US5209747A (en) * 1990-12-13 1993-05-11 Knoepfler Dennis J Adjustable angle medical forceps
US5287861A (en) * 1992-10-30 1994-02-22 Wilk Peter J Coronary artery by-pass method and associated catheter
US5295958A (en) * 1991-04-04 1994-03-22 Shturman Cardiology Systems, Inc. Method and apparatus for in vivo heart valve decalcification
US5382885A (en) * 1993-08-09 1995-01-17 The University Of British Columbia Motion scaling tele-operating system with force feedback suitable for microsurgery
US5382685A (en) * 1992-10-05 1995-01-17 Basf Aktiengesellschaft Preparation of O-substituted hydroxylammonium salts
US5389100A (en) * 1991-11-06 1995-02-14 Imagyn Medical, Inc. Controller for manipulation of instruments within a catheter
US5395367A (en) * 1992-07-29 1995-03-07 Wilk; Peter J. Laparoscopic instrument with bendable shaft and removable actuator
US5397323A (en) * 1992-10-30 1995-03-14 International Business Machines Corporation Remote center-of-motion robot for surgery
US5402801A (en) * 1991-06-13 1995-04-04 International Business Machines Corporation System and method for augmentation of surgery
US5409019A (en) * 1992-10-30 1995-04-25 Wilk; Peter J. Coronary artery by-pass method
US5410638A (en) * 1993-05-03 1995-04-25 Northwestern University System for positioning a medical instrument within a biotic structure using a micromanipulator
US5417210A (en) * 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5480422A (en) * 1993-07-20 1996-01-02 Biosense, Inc. Apparatus for treating cardiac arrhythmias
US5492131A (en) * 1994-09-06 1996-02-20 Guided Medical Systems, Inc. Servo-catheter
US5497784A (en) * 1991-11-18 1996-03-12 Intelliwire, Inc. Flexible elongate device having steerable distal extremity
US5515478A (en) * 1992-08-10 1996-05-07 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5606979A (en) * 1993-05-28 1997-03-04 The Microspring Company Inc. Guide wire
US5618294A (en) * 1994-05-24 1997-04-08 Aust & Taylor Medical Corporation Surgical instrument
US5620415A (en) * 1993-01-29 1997-04-15 Smith & Dyonics, Inc. Surgical instrument
US5624398A (en) * 1996-02-08 1997-04-29 Symbiosis Corporation Endoscopic robotic surgical tools and methods
US5626595A (en) * 1992-02-14 1997-05-06 Automated Medical Instruments, Inc. Automated surgical instrument
US5626553A (en) * 1995-06-05 1997-05-06 Vision-Sciences, Inc. Endoscope articulation system to reduce effort during articulation of an endoscope
US5631973A (en) * 1994-05-05 1997-05-20 Sri International Method for telemanipulation with telepresence
US5632758A (en) * 1992-02-14 1997-05-27 Automated Medical Instruments, Inc. Automated surgical instrument
US5746759A (en) * 1992-06-24 1998-05-05 Microsurge, Inc. Reusable endoscopic surgical instrument
US5754741A (en) * 1992-08-10 1998-05-19 Computer Motion, Inc. Automated endoscope for optimal positioning
US5855583A (en) * 1996-02-20 1999-01-05 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5855553A (en) * 1995-02-16 1999-01-05 Hitchi, Ltd. Remote surgery support system and method thereof
US5861024A (en) * 1997-06-20 1999-01-19 Cardiac Assist Devices, Inc Electrophysiology catheter and remote actuator therefor
US5860992A (en) * 1996-01-31 1999-01-19 Heartport, Inc. Endoscopic suturing devices and methods
US5868755A (en) * 1997-01-16 1999-02-09 Atrion Medical Products, Inc. Sheath retractor mechanism and method
US5876325A (en) * 1993-11-02 1999-03-02 Olympus Optical Co., Ltd. Surgical manipulation system
US5878193A (en) * 1992-08-10 1999-03-02 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5907664A (en) * 1992-08-10 1999-05-25 Computer Motion, Inc. Automated endoscope system for optimal positioning
US6033378A (en) * 1990-02-02 2000-03-07 Ep Technologies, Inc. Catheter steering mechanism
US6036636A (en) * 1996-11-18 2000-03-14 Olympus Optical Co., Ltd. Endoscope with tip portion disposed on distal side of insertion portion
US6058323A (en) * 1996-11-05 2000-05-02 Lemelson; Jerome System and method for treating select tissue in a living being
US6063095A (en) * 1996-02-20 2000-05-16 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US6077287A (en) * 1997-06-11 2000-06-20 Endius Incorporated Surgical instrument
US6171234B1 (en) * 1998-09-25 2001-01-09 Scimed Life Systems, Inc. Imaging gore loading tool
US6179856B1 (en) * 1989-07-05 2001-01-30 Medtronic Ave, Inc. Coaxial PTCA catheter with anchor joint
US6197017B1 (en) * 1998-02-24 2001-03-06 Brock Rogers Surgical, Inc. Articulated apparatus for telemanipulator system
US6203525B1 (en) * 1996-12-19 2001-03-20 Ep Technologies, Inc. Catheterdistal assembly with pull wires
US6206903B1 (en) * 1999-10-08 2001-03-27 Intuitive Surgical, Inc. Surgical tool with mechanical advantage
US6223100B1 (en) * 1992-01-21 2001-04-24 Sri, International Apparatus and method for performing computer enhanced surgery with articulated instrument
US6221070B1 (en) * 1996-10-18 2001-04-24 Irvine Biomedical, Inc. Steerable ablation catheter system having disposable shaft
US6233504B1 (en) * 1998-04-16 2001-05-15 California Institute Of Technology Tool actuation and force feedback on robot-assisted microsurgery system
US6233474B1 (en) * 1996-11-05 2001-05-15 Jerome Lemelson System and method for treating select tissue in a living being
US6231565B1 (en) * 1997-06-18 2001-05-15 United States Surgical Corporation Robotic arm DLUs for performing surgical tasks
US6236432B1 (en) * 1997-03-15 2001-05-22 Lg Electronics Inc. MPEG II system with PES decoder
US6315184B1 (en) * 1999-06-02 2001-11-13 Powermed, Inc. Stapling device for use with an electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US6341231B1 (en) * 1994-09-15 2002-01-22 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US6346072B1 (en) * 1996-12-12 2002-02-12 Intuitive Surgical, Inc. Multi-component telepresence system and method
US6352503B1 (en) * 1998-07-17 2002-03-05 Olympus Optical Co., Ltd. Endoscopic surgery apparatus
US6364888B1 (en) * 1996-09-09 2002-04-02 Intuitive Surgical, Inc. Alignment of master and slave in a minimally invasive surgical apparatus
US6369834B1 (en) * 1996-04-04 2002-04-09 Massachusetts Institute Of Technology Method and apparatus for determining forces to be applied to a user through a haptic interface
US6371907B1 (en) * 1996-11-18 2002-04-16 Olympus Optical Co., Ltd. Endoscope apparatus driving manipulation wires with drive motor in drum portion
US6377011B1 (en) * 2000-01-26 2002-04-23 Massachusetts Institute Of Technology Force feedback user interface for minimally invasive surgical simulator and teleoperator and other similar apparatus
US6375471B1 (en) * 1998-07-10 2002-04-23 Mitsubishi Electric Research Laboratories, Inc. Actuator for independent axial and rotational actuation of a catheter or similar elongated object
US6394998B1 (en) * 1999-01-22 2002-05-28 Intuitive Surgical, Inc. Surgical tools for use in minimally invasive telesurgical applications
US6397323B1 (en) * 1995-07-12 2002-05-28 Mitsubishi Denki Kabushiki Kaisha Data processor having an instruction decoder
US6517565B1 (en) * 1999-06-02 2003-02-11 Power Medical Interventions, Inc. Carriage assembly for controlling a steering wire steering mechanism within a flexible shaft
US6522906B1 (en) * 1998-12-08 2003-02-18 Intuitive Surgical, Inc. Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure
US6554844B2 (en) * 1998-02-24 2003-04-29 Endovia Medical, Inc. Surgical instrument
US6565554B1 (en) * 1999-04-07 2003-05-20 Intuitive Surgical, Inc. Friction compensation in a minimally invasive surgical apparatus
US6569084B1 (en) * 1999-03-31 2003-05-27 Olympus Optical Co., Ltd. Endoscope holder and endoscope device
US6676684B1 (en) * 2001-09-04 2004-01-13 Intuitive Surgical, Inc. Roll-pitch-roll-yaw surgical tool
US6685698B2 (en) * 2000-07-27 2004-02-03 Intuitive Surgical, Inc. Roll-pitch-roll surgical tool
US6692485B1 (en) * 1998-02-24 2004-02-17 Endovia Medical, Inc. Articulated apparatus for telemanipulator system
US6699235B2 (en) * 2001-06-29 2004-03-02 Intuitive Surgical, Inc. Platform link wrist mechanism
US6702826B2 (en) * 2000-06-23 2004-03-09 Viacor, Inc. Automated annular plication for mitral valve repair
US6720988B1 (en) * 1998-12-08 2004-04-13 Intuitive Surgical, Inc. Stereo imaging system and method for use in telerobotic systems
US6726675B1 (en) * 1998-03-11 2004-04-27 Navicath Ltd. Remote control catheterization
US6728599B2 (en) * 2001-09-07 2004-04-27 Computer Motion, Inc. Modularity system for computer assisted surgery
US6726699B1 (en) * 2000-08-15 2004-04-27 Computer Motion, Inc. Instrument guide
US6837883B2 (en) * 1998-11-20 2005-01-04 Intuitive Surgical, Inc. Arm cart for telerobotic surgical system
US6840938B1 (en) * 2000-12-29 2005-01-11 Intuitive Surgical, Inc. Bipolar cauterizing instrument
US6843793B2 (en) * 1998-02-24 2005-01-18 Endovia Medical, Inc. Surgical instrument
US6852107B2 (en) * 2002-01-16 2005-02-08 Computer Motion, Inc. Minimally invasive surgical training using robotics and tele-collaboration
US6858005B2 (en) * 2000-04-03 2005-02-22 Neo Guide Systems, Inc. Tendon-driven endoscope and methods of insertion
US6860878B2 (en) * 1998-02-24 2005-03-01 Endovia Medical Inc. Interchangeable instrument
US6860877B1 (en) * 2000-09-29 2005-03-01 Computer Motion, Inc. Heart stabilizer support arm
US6994708B2 (en) * 2001-04-19 2006-02-07 Intuitive Surgical Robotic tool with monopolar electro-surgical scissors
US7025064B2 (en) * 1996-02-20 2006-04-11 Intuitive Surgical Inc Method and apparatus for performing minimally invasive cardiac procedures
US7169141B2 (en) * 1998-02-24 2007-01-30 Hansen Medical, Inc. Surgical instrument
US7214230B2 (en) * 1998-02-24 2007-05-08 Hansen Medical, Inc. Flexible instrument
US7819884B2 (en) * 2001-02-15 2010-10-26 Hansen Medical, Inc. Robotically controlled medical instrument

Family Cites Families (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1455925A (en) * 1965-06-11 1966-10-21 Commissariat Energie Atomique Solidarity device
US3923166A (en) 1973-10-11 1975-12-02 Nasa Remote manipulator system
US4078766A (en) * 1977-04-11 1978-03-14 Saurwein Albert C Powered nail extractor
US4604016A (en) 1983-08-03 1986-08-05 Joyce Stephen A Multi-dimensional force-torque hand controller having force feedback
IL74460A (en) * 1983-09-02 1990-01-18 Istec Ind & Technologies Ltd Surgical implement particularly useful for suturing prosthetic valves
JPH0829509B2 (en) * 1986-12-12 1996-03-27 株式会社日立製作所 Control device for manipulator
US4979949A (en) 1988-04-26 1990-12-25 The Board Of Regents Of The University Of Washington Robot-aided system for surgery
US4887612A (en) * 1988-04-27 1989-12-19 Esco Precision, Inc. Endoscopic biopsy forceps
US5052402A (en) * 1989-01-31 1991-10-01 C.R. Bard, Inc. Disposable biopsy forceps
US5172700A (en) * 1989-01-31 1992-12-22 C. R. Bard, Inc. Disposable biopsy forceps
US4977886A (en) * 1989-02-08 1990-12-18 Olympus Optical Co., Ltd. Position controlling apparatus
US5271384A (en) 1989-09-01 1993-12-21 Mcewen James A Powered surgical retractor
US4941454A (en) 1989-10-05 1990-07-17 Welch Allyn, Inc. Servo actuated steering mechanism for borescope or endoscope
US5072361A (en) * 1990-02-01 1991-12-10 Sarcos Group Force-reflective teleoperation control system
US5174278A (en) * 1990-11-26 1992-12-29 Beth Babkow Downward rotating speculum with conical shaped blades
US5329923A (en) * 1991-02-15 1994-07-19 Lundquist Ingemar H Torquable catheter
US5217453A (en) * 1991-03-18 1993-06-08 Wilk Peter J Automated surgical system and apparatus
US5217003A (en) 1991-03-18 1993-06-08 Wilk Peter J Automated surgical system and apparatus
US5347987A (en) * 1991-04-08 1994-09-20 Feldstein David A Self-centering endoscope system
US5339799A (en) 1991-04-23 1994-08-23 Olympus Optical Co., Ltd. Medical system for reproducing a state of contact of the treatment section in the operation unit
ATE150954T1 (en) 1991-07-29 1997-04-15 Smith & Nephew Richards Inc TONGS
US5271381A (en) * 1991-11-18 1993-12-21 Vision Sciences, Inc. Vertebrae for a bending section of an endoscope
GB9201214D0 (en) 1992-01-21 1992-03-11 Mcmahon Michael J Surgical retractors
DE69331315T2 (en) * 1992-01-27 2002-08-22 Medtronic Inc ANULOPLASTIC AND SEAM RINGS
US5254130A (en) * 1992-04-13 1993-10-19 Raychem Corporation Surgical device
US5238002A (en) * 1992-06-08 1993-08-24 C. R. Bard, Inc. Disposable biopsy forceps
US5325845A (en) * 1992-06-08 1994-07-05 Adair Edwin Lloyd Steerable sheath for use with selected removable optical catheter
US5372147A (en) 1992-06-16 1994-12-13 Origin Medsystems, Inc. Peritoneal distension robotic arm
US5361768A (en) * 1992-06-30 1994-11-08 Cardiovascular Imaging Systems, Inc. Automated longitudinal position translator for ultrasonic imaging probes, and methods of using same
US5337732A (en) 1992-09-16 1994-08-16 Cedars-Sinai Medical Center Robotic endoscopy
US5662587A (en) 1992-09-16 1997-09-02 Cedars Sinai Medical Center Robotic endoscopy
US5330502A (en) * 1992-10-09 1994-07-19 Ethicon, Inc. Rotational endoscopic mechanism with jointed drive mechanism
US5429144A (en) * 1992-10-30 1995-07-04 Wilk; Peter J. Coronary artery by-pass method
US5330466A (en) 1992-12-01 1994-07-19 Cardiac Pathways Corporation Control mechanism and system and method for steering distal extremity of a flexible elongate member
JP2648274B2 (en) 1993-01-28 1997-08-27 三鷹光器株式会社 Medical position detection device
US5643294A (en) 1993-03-01 1997-07-01 United States Surgical Corporation Surgical apparatus having an increased range of operability
US5636634A (en) * 1993-03-16 1997-06-10 Ep Technologies, Inc. Systems using guide sheaths for introducing, deploying, and stabilizing cardiac mapping and ablation probes
JP2501030Y2 (en) * 1993-03-29 1996-06-12 株式会社アイエル Flexible position fixing device for equipment
WO1994026167A1 (en) * 1993-05-14 1994-11-24 Sri International Remote center positioner
CA2167367A1 (en) * 1993-07-21 1995-02-02 Charles H. Klieman Surgical instrument for endoscopic and general surgery
US5462529A (en) * 1993-09-29 1995-10-31 Technology Development Center Adjustable treatment chamber catheter
US5634897A (en) * 1993-10-08 1997-06-03 Lake Region Manufacturing, Inc. Rheolytic occlusion removal catheter system and method
US5540649A (en) 1993-10-08 1996-07-30 Leonard Medical, Inc. Positioner for medical instruments
WO1995016396A1 (en) 1993-12-15 1995-06-22 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5571083A (en) * 1994-02-18 1996-11-05 Lemelson; Jerome H. Method and system for cell transplantation
DE4417400A1 (en) 1994-05-18 1995-11-23 D T I Dr Trippe Ingenieurgesel Carrier system made of proboscis, which can be adjusted in their spatial shape
US5766196A (en) * 1994-06-06 1998-06-16 Tnco, Inc. Surgical instrument with steerable distal end
US5821920A (en) 1994-07-14 1998-10-13 Immersion Human Interface Corporation Control input device for interfacing an elongated flexible object with a computer system
US6120433A (en) 1994-09-01 2000-09-19 Olympus Optical Co., Ltd. Surgical manipulator system
US6463361B1 (en) 1994-09-22 2002-10-08 Computer Motion, Inc. Speech interface for an automated endoscopic system
US5752973A (en) * 1994-10-18 1998-05-19 Archimedes Surgical, Inc. Endoscopic surgical gripping instrument with universal joint jaw coupler
DE19509116C2 (en) * 1995-03-16 2000-01-05 Deutsch Zentr Luft & Raumfahrt Flexible structure
US5814038A (en) 1995-06-07 1998-09-29 Sri International Surgical manipulator for a telerobotic system
US5649956A (en) 1995-06-07 1997-07-22 Sri International System and method for releasably holding a surgical instrument
AU6480096A (en) 1995-06-30 1997-02-05 Ross-Hime Designs, Inc. Robotic manipulator
US5784542A (en) * 1995-09-07 1998-07-21 California Institute Of Technology Decoupled six degree-of-freedom teleoperated robot system
US5825982A (en) 1995-09-15 1998-10-20 Wright; James Head cursor control interface for an automated endoscope system for optimal positioning
US5800333A (en) 1996-02-20 1998-09-01 United States Surgical Corporation Afterloader provided with remote control unit
US5971976A (en) 1996-02-20 1999-10-26 Computer Motion, Inc. Motion minimization and compensation system for use in surgical procedures
US6436107B1 (en) 1996-02-20 2002-08-20 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5833658A (en) * 1996-04-29 1998-11-10 Levy; Robert J. Catheters for the delivery of solutions and suspensions
US5746753A (en) * 1996-05-13 1998-05-05 Boston Scientific Corporation Needle grasping apparatus
US5792135A (en) 1996-05-20 1998-08-11 Intuitive Surgical, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US5807377A (en) 1996-05-20 1998-09-15 Intuitive Surgical, Inc. Force-reflecting surgical instrument and positioning mechanism for performing minimally invasive surgery with enhanced dexterity and sensitivity
US6496099B2 (en) 1996-06-24 2002-12-17 Computer Motion, Inc. General purpose distributed operating room control system
US6911916B1 (en) 1996-06-24 2005-06-28 The Cleveland Clinic Foundation Method and apparatus for accessing medical data over a network
GB2315020A (en) * 1996-07-11 1998-01-21 Intravascular Res Ltd Ultrasonic visualisation catheters
US6080170A (en) * 1996-07-26 2000-06-27 Kensey Nash Corporation System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels
US6652546B1 (en) * 1996-07-26 2003-11-25 Kensey Nash Corporation System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels
US5957941A (en) * 1996-09-27 1999-09-28 Boston Scientific Corporation Catheter system and drive assembly thereof
US5827313A (en) * 1996-09-27 1998-10-27 Boston Scientific Corporation Device for controlled longitudinal movement of an operative element within a catheter sheath and method
US5904647A (en) * 1996-10-08 1999-05-18 Asahi Kogyo Kabushiki Kaisha Treatment accessories for an endoscope
US5828197A (en) 1996-10-25 1998-10-27 Immersion Human Interface Corporation Mechanical interface having multiple grounded actuators
US6132441A (en) 1996-11-22 2000-10-17 Computer Motion, Inc. Rigidly-linked articulating wrist with decoupled motion transmission
US6331181B1 (en) 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US6146355A (en) 1996-12-30 2000-11-14 Myelotec, Inc. Steerable catheter
US5964717A (en) * 1997-01-06 1999-10-12 Symbiosis Corporation Biopsy forceps having detachable handle and distal jaws
US6290675B1 (en) 1997-01-09 2001-09-18 Endosonics Corporation Device for withdrawing a catheter
US5928248A (en) * 1997-02-14 1999-07-27 Biosense, Inc. Guided deployment of stents
US5938678A (en) * 1997-06-11 1999-08-17 Endius Incorporated Surgical instrument
WO1999000059A1 (en) * 1997-06-27 1999-01-07 The Trustees Of Columbia University In The City Of New York Method and apparatus for circulatory valve repair
US5977886A (en) * 1997-10-10 1999-11-02 Ericsson Inc. Systems and methods for communicating between a user input device and an application using adaptively selected code sets
EP0917886B1 (en) * 1997-10-23 2003-10-01 Schneider (Europe) GmbH Seal for catheter assembly with dilation and occlusion balloon
US7090683B2 (en) * 1998-02-24 2006-08-15 Hansen Medical, Inc. Flexible instrument
US6004271A (en) * 1998-05-07 1999-12-21 Boston Scientific Corporation Combined motor drive and automated longitudinal position translator for ultrasonic imaging system
US6096004A (en) 1998-07-10 2000-08-01 Mitsubishi Electric Information Technology Center America, Inc. (Ita) Master/slave system for the manipulation of tubular medical tools
WO2000007503A1 (en) 1998-08-04 2000-02-17 Intuitive Surgical, Inc. Manipulator positioning linkage for robotic surgery
US6319227B1 (en) * 1998-08-05 2001-11-20 Scimed Life Systems, Inc. Automatic/manual longitudinal position translator and rotary drive system for catheters
US6332889B1 (en) * 1998-08-27 2001-12-25 Onux Medical, Inc. Surgical suturing instrument and method of use
US6267781B1 (en) 1998-08-31 2001-07-31 Quantum Therapeutics Corp. Medical device and methods for treating valvular annulus
US6398755B1 (en) * 1998-10-06 2002-06-04 Scimed Life Systems, Inc. Driveable catheter system
US6490490B1 (en) 1998-11-09 2002-12-03 Olympus Optical Co., Ltd. Remote operation support system and method
US6468265B1 (en) * 1998-11-20 2002-10-22 Intuitive Surgical, Inc. Performing cardiac surgery without cardioplegia
US6951535B2 (en) 2002-01-16 2005-10-04 Intuitive Surgical, Inc. Tele-medicine system that transmits an entire state of a subsystem
US6459926B1 (en) 1998-11-20 2002-10-01 Intuitive Surgical, Inc. Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery
US6398726B1 (en) * 1998-11-20 2002-06-04 Intuitive Surgical, Inc. Stabilizer for robotic beating-heart surgery
US6799065B1 (en) 1998-12-08 2004-09-28 Intuitive Surgical, Inc. Image shifting apparatus and method for a telerobotic system
US6325808B1 (en) 1998-12-08 2001-12-04 Advanced Realtime Control Systems, Inc. Robotic system, docking station, and surgical tool for collaborative control in minimally invasive surgery
US6620173B2 (en) 1998-12-08 2003-09-16 Intuitive Surgical, Inc. Method for introducing an end effector to a surgical site in minimally invasive surgery
US6770081B1 (en) 2000-01-07 2004-08-03 Intuitive Surgical, Inc. In vivo accessories for minimally invasive robotic surgery and methods
US6309397B1 (en) 1999-12-02 2001-10-30 Sri International Accessories for minimally invasive robotic surgery and methods
US6493608B1 (en) 1999-04-07 2002-12-10 Intuitive Surgical, Inc. Aspects of a control system of a minimally invasive surgical apparatus
US6451027B1 (en) 1998-12-16 2002-09-17 Intuitive Surgical, Inc. Devices and methods for moving an image capture device in telesurgical systems
KR100299210B1 (en) 1999-03-12 2001-09-22 박호군 Master device having force reflective function
US6594552B1 (en) 1999-04-07 2003-07-15 Intuitive Surgical, Inc. Grip strength with tactile feedback for robotic surgery
US6424885B1 (en) 1999-04-07 2002-07-23 Intuitive Surgical, Inc. Camera referenced control in a minimally invasive surgical apparatus
EP1176921B1 (en) 1999-05-10 2011-02-23 Hansen Medical, Inc. Surgical instrument
US6793652B1 (en) * 1999-06-02 2004-09-21 Power Medical Interventions, Inc. Electro-mechanical surgical device
US6626899B2 (en) * 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
JP4576521B2 (en) * 1999-06-25 2010-11-10 ハンセン メディカル, インコーポレイテッド Apparatus and method for treating tissue
US6788018B1 (en) 1999-08-03 2004-09-07 Intuitive Surgical, Inc. Ceiling and floor mounted surgical robot set-up arms
US6936001B1 (en) 1999-10-01 2005-08-30 Computer Motion, Inc. Heart stabilizer
US6817972B2 (en) 1999-10-01 2004-11-16 Computer Motion, Inc. Heart stabilizer
US6485489B2 (en) * 1999-10-02 2002-11-26 Quantum Cor, Inc. Catheter system for repairing a mitral valve annulus
US6491691B1 (en) 1999-10-08 2002-12-10 Intuitive Surgical, Inc. Minimally invasive surgical hook apparatus and method for using same
US6312435B1 (en) 1999-10-08 2001-11-06 Intuitive Surgical, Inc. Surgical instrument with extended reach for use in minimally invasive surgery
JP2001157661A (en) * 1999-12-02 2001-06-12 Asahi Optical Co Ltd Connection structure of operating wire for endoscope
US6645196B1 (en) * 2000-06-16 2003-11-11 Intuitive Surgical, Inc. Guided tool change
US20020087151A1 (en) * 2000-12-29 2002-07-04 Afx, Inc. Tissue ablation apparatus with a sliding ablation instrument and method
EP1303228B1 (en) 2001-02-15 2012-09-26 Hansen Medical, Inc. Flexible surgical instrument
US6783524B2 (en) 2001-04-19 2004-08-31 Intuitive Surgical, Inc. Robotic surgical tool with ultrasound cauterizing and cutting instrument
US6817974B2 (en) 2001-06-29 2004-11-16 Intuitive Surgical, Inc. Surgical tool having positively positionable tendon-actuated multi-disk wrist joint
US6587750B2 (en) 2001-09-25 2003-07-01 Intuitive Surgical, Inc. Removable infinite roll master grip handle and touch sensor for robotic surgery
US6793653B2 (en) 2001-12-08 2004-09-21 Computer Motion, Inc. Multifunctional handle for a medical robotic system

Patent Citations (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2978118A (en) * 1959-11-03 1961-04-04 Raymond C Goertz Manipulator for slave robot
US3190286A (en) * 1961-10-31 1965-06-22 Bausch & Lomb Flexible viewing probe for endoscopic use
US3266059A (en) * 1963-06-19 1966-08-16 North American Aviation Inc Prestressed flexible joint for mechanical arms and the like
US4393728A (en) * 1979-03-16 1983-07-19 Robotgruppen Hb Flexible arm, particularly a robot arm
US4750475A (en) * 1985-08-14 1988-06-14 Kabushiki Kaisha Machida Seisakusho Operating instrument guide mechanism for endoscope apparatus
US4654024A (en) * 1985-09-04 1987-03-31 C.R. Bard, Inc. Thermorecanalization catheter and method for use
US5078140A (en) * 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
US5116180A (en) * 1988-07-18 1992-05-26 Spar Aerospace Limited Human-in-the-loop machine control loop
US4998923A (en) * 1988-08-11 1991-03-12 Advanced Cardiovascular Systems, Inc. Steerable dilatation catheter
US6179856B1 (en) * 1989-07-05 2001-01-30 Medtronic Ave, Inc. Coaxial PTCA catheter with anchor joint
US6033378A (en) * 1990-02-02 2000-03-07 Ep Technologies, Inc. Catheter steering mechanism
US5084054A (en) * 1990-03-05 1992-01-28 C.R. Bard, Inc. Surgical gripping instrument
US5086401A (en) * 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5299288A (en) * 1990-05-11 1994-03-29 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5209747A (en) * 1990-12-13 1993-05-11 Knoepfler Dennis J Adjustable angle medical forceps
US5295958A (en) * 1991-04-04 1994-03-22 Shturman Cardiology Systems, Inc. Method and apparatus for in vivo heart valve decalcification
US5402801A (en) * 1991-06-13 1995-04-04 International Business Machines Corporation System and method for augmentation of surgery
US6024695A (en) * 1991-06-13 2000-02-15 International Business Machines Corporation System and method for augmentation of surgery
US5184601A (en) * 1991-08-05 1993-02-09 Putman John M Endoscope stabilizer
US5389100A (en) * 1991-11-06 1995-02-14 Imagyn Medical, Inc. Controller for manipulation of instruments within a catheter
US5520644A (en) * 1991-11-18 1996-05-28 Intelliwire, Inc. Flexible elongate device having steerable distal extremity and apparatus for use therewith and method
US5497784A (en) * 1991-11-18 1996-03-12 Intelliwire, Inc. Flexible elongate device having steerable distal extremity
US6223100B1 (en) * 1992-01-21 2001-04-24 Sri, International Apparatus and method for performing computer enhanced surgery with articulated instrument
US5632758A (en) * 1992-02-14 1997-05-27 Automated Medical Instruments, Inc. Automated surgical instrument
US5626595A (en) * 1992-02-14 1997-05-06 Automated Medical Instruments, Inc. Automated surgical instrument
US5417210A (en) * 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5746759A (en) * 1992-06-24 1998-05-05 Microsurge, Inc. Reusable endoscopic surgical instrument
US5395367A (en) * 1992-07-29 1995-03-07 Wilk; Peter J. Laparoscopic instrument with bendable shaft and removable actuator
US5754741A (en) * 1992-08-10 1998-05-19 Computer Motion, Inc. Automated endoscope for optimal positioning
US5515478A (en) * 1992-08-10 1996-05-07 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5878193A (en) * 1992-08-10 1999-03-02 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5907664A (en) * 1992-08-10 1999-05-25 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5382685A (en) * 1992-10-05 1995-01-17 Basf Aktiengesellschaft Preparation of O-substituted hydroxylammonium salts
US5397323A (en) * 1992-10-30 1995-03-14 International Business Machines Corporation Remote center-of-motion robot for surgery
US5287861A (en) * 1992-10-30 1994-02-22 Wilk Peter J Coronary artery by-pass method and associated catheter
US5409019A (en) * 1992-10-30 1995-04-25 Wilk; Peter J. Coronary artery by-pass method
US5620415A (en) * 1993-01-29 1997-04-15 Smith & Dyonics, Inc. Surgical instrument
US5410638A (en) * 1993-05-03 1995-04-25 Northwestern University System for positioning a medical instrument within a biotic structure using a micromanipulator
US5606979A (en) * 1993-05-28 1997-03-04 The Microspring Company Inc. Guide wire
US5480422A (en) * 1993-07-20 1996-01-02 Biosense, Inc. Apparatus for treating cardiac arrhythmias
US5382885A (en) * 1993-08-09 1995-01-17 The University Of British Columbia Motion scaling tele-operating system with force feedback suitable for microsurgery
US5876325A (en) * 1993-11-02 1999-03-02 Olympus Optical Co., Ltd. Surgical manipulation system
US5631973A (en) * 1994-05-05 1997-05-20 Sri International Method for telemanipulation with telepresence
US5618294A (en) * 1994-05-24 1997-04-08 Aust & Taylor Medical Corporation Surgical instrument
US5492131A (en) * 1994-09-06 1996-02-20 Guided Medical Systems, Inc. Servo-catheter
US6341231B1 (en) * 1994-09-15 2002-01-22 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US5855553A (en) * 1995-02-16 1999-01-05 Hitchi, Ltd. Remote surgery support system and method thereof
US5626553A (en) * 1995-06-05 1997-05-06 Vision-Sciences, Inc. Endoscope articulation system to reduce effort during articulation of an endoscope
US6397323B1 (en) * 1995-07-12 2002-05-28 Mitsubishi Denki Kabushiki Kaisha Data processor having an instruction decoder
US5860992A (en) * 1996-01-31 1999-01-19 Heartport, Inc. Endoscopic suturing devices and methods
US5624398A (en) * 1996-02-08 1997-04-29 Symbiosis Corporation Endoscopic robotic surgical tools and methods
US7025064B2 (en) * 1996-02-20 2006-04-11 Intuitive Surgical Inc Method and apparatus for performing minimally invasive cardiac procedures
US6063095A (en) * 1996-02-20 2000-05-16 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5855583A (en) * 1996-02-20 1999-01-05 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US6369834B1 (en) * 1996-04-04 2002-04-09 Massachusetts Institute Of Technology Method and apparatus for determining forces to be applied to a user through a haptic interface
US6364888B1 (en) * 1996-09-09 2002-04-02 Intuitive Surgical, Inc. Alignment of master and slave in a minimally invasive surgical apparatus
US6221070B1 (en) * 1996-10-18 2001-04-24 Irvine Biomedical, Inc. Steerable ablation catheter system having disposable shaft
US6058323A (en) * 1996-11-05 2000-05-02 Lemelson; Jerome System and method for treating select tissue in a living being
US6233474B1 (en) * 1996-11-05 2001-05-15 Jerome Lemelson System and method for treating select tissue in a living being
US6371907B1 (en) * 1996-11-18 2002-04-16 Olympus Optical Co., Ltd. Endoscope apparatus driving manipulation wires with drive motor in drum portion
US6036636A (en) * 1996-11-18 2000-03-14 Olympus Optical Co., Ltd. Endoscope with tip portion disposed on distal side of insertion portion
US6346072B1 (en) * 1996-12-12 2002-02-12 Intuitive Surgical, Inc. Multi-component telepresence system and method
US6203525B1 (en) * 1996-12-19 2001-03-20 Ep Technologies, Inc. Catheterdistal assembly with pull wires
US5868755A (en) * 1997-01-16 1999-02-09 Atrion Medical Products, Inc. Sheath retractor mechanism and method
US6236432B1 (en) * 1997-03-15 2001-05-22 Lg Electronics Inc. MPEG II system with PES decoder
US6077287A (en) * 1997-06-11 2000-06-20 Endius Incorporated Surgical instrument
US6231565B1 (en) * 1997-06-18 2001-05-15 United States Surgical Corporation Robotic arm DLUs for performing surgical tasks
US5861024A (en) * 1997-06-20 1999-01-19 Cardiac Assist Devices, Inc Electrophysiology catheter and remote actuator therefor
US6692485B1 (en) * 1998-02-24 2004-02-17 Endovia Medical, Inc. Articulated apparatus for telemanipulator system
US7169141B2 (en) * 1998-02-24 2007-01-30 Hansen Medical, Inc. Surgical instrument
US6843793B2 (en) * 1998-02-24 2005-01-18 Endovia Medical, Inc. Surgical instrument
US6197017B1 (en) * 1998-02-24 2001-03-06 Brock Rogers Surgical, Inc. Articulated apparatus for telemanipulator system
US7214230B2 (en) * 1998-02-24 2007-05-08 Hansen Medical, Inc. Flexible instrument
US6554844B2 (en) * 1998-02-24 2003-04-29 Endovia Medical, Inc. Surgical instrument
US6860878B2 (en) * 1998-02-24 2005-03-01 Endovia Medical Inc. Interchangeable instrument
US7371210B2 (en) * 1998-02-24 2008-05-13 Hansen Medical, Inc. Flexible instrument
US6726675B1 (en) * 1998-03-11 2004-04-27 Navicath Ltd. Remote control catheterization
US6385509B2 (en) * 1998-04-16 2002-05-07 California Institute Of Technology Tool actuation and force feedback on robot-assisted microsurgery system
US6233504B1 (en) * 1998-04-16 2001-05-15 California Institute Of Technology Tool actuation and force feedback on robot-assisted microsurgery system
US6375471B1 (en) * 1998-07-10 2002-04-23 Mitsubishi Electric Research Laboratories, Inc. Actuator for independent axial and rotational actuation of a catheter or similar elongated object
US6352503B1 (en) * 1998-07-17 2002-03-05 Olympus Optical Co., Ltd. Endoscopic surgery apparatus
US6171234B1 (en) * 1998-09-25 2001-01-09 Scimed Life Systems, Inc. Imaging gore loading tool
US6837883B2 (en) * 1998-11-20 2005-01-04 Intuitive Surgical, Inc. Arm cart for telerobotic surgical system
US6720988B1 (en) * 1998-12-08 2004-04-13 Intuitive Surgical, Inc. Stereo imaging system and method for use in telerobotic systems
US6522906B1 (en) * 1998-12-08 2003-02-18 Intuitive Surgical, Inc. Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure
US6394998B1 (en) * 1999-01-22 2002-05-28 Intuitive Surgical, Inc. Surgical tools for use in minimally invasive telesurgical applications
US6569084B1 (en) * 1999-03-31 2003-05-27 Olympus Optical Co., Ltd. Endoscope holder and endoscope device
US6565554B1 (en) * 1999-04-07 2003-05-20 Intuitive Surgical, Inc. Friction compensation in a minimally invasive surgical apparatus
US6315184B1 (en) * 1999-06-02 2001-11-13 Powermed, Inc. Stapling device for use with an electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US6517565B1 (en) * 1999-06-02 2003-02-11 Power Medical Interventions, Inc. Carriage assembly for controlling a steering wire steering mechanism within a flexible shaft
US6206903B1 (en) * 1999-10-08 2001-03-27 Intuitive Surgical, Inc. Surgical tool with mechanical advantage
US6377011B1 (en) * 2000-01-26 2002-04-23 Massachusetts Institute Of Technology Force feedback user interface for minimally invasive surgical simulator and teleoperator and other similar apparatus
US6858005B2 (en) * 2000-04-03 2005-02-22 Neo Guide Systems, Inc. Tendon-driven endoscope and methods of insertion
US6702826B2 (en) * 2000-06-23 2004-03-09 Viacor, Inc. Automated annular plication for mitral valve repair
US6685698B2 (en) * 2000-07-27 2004-02-03 Intuitive Surgical, Inc. Roll-pitch-roll surgical tool
US6726699B1 (en) * 2000-08-15 2004-04-27 Computer Motion, Inc. Instrument guide
US6860877B1 (en) * 2000-09-29 2005-03-01 Computer Motion, Inc. Heart stabilizer support arm
US6840938B1 (en) * 2000-12-29 2005-01-11 Intuitive Surgical, Inc. Bipolar cauterizing instrument
US7819884B2 (en) * 2001-02-15 2010-10-26 Hansen Medical, Inc. Robotically controlled medical instrument
US6994708B2 (en) * 2001-04-19 2006-02-07 Intuitive Surgical Robotic tool with monopolar electro-surgical scissors
US6699235B2 (en) * 2001-06-29 2004-03-02 Intuitive Surgical, Inc. Platform link wrist mechanism
US6676684B1 (en) * 2001-09-04 2004-01-13 Intuitive Surgical, Inc. Roll-pitch-roll-yaw surgical tool
US6728599B2 (en) * 2001-09-07 2004-04-27 Computer Motion, Inc. Modularity system for computer assisted surgery
US6852107B2 (en) * 2002-01-16 2005-02-08 Computer Motion, Inc. Minimally invasive surgical training using robotics and tele-collaboration

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10695536B2 (en) 2001-02-15 2020-06-30 Auris Health, Inc. Catheter driver system
US11116589B2 (en) 2014-09-04 2021-09-14 Memic Innovative Surgery Ltd. Control of device including mechanical arms
EP3750502A1 (en) * 2014-09-04 2020-12-16 Memic Innovative Surgery Ltd. Device and system including mechanical arms
US11517378B2 (en) 2014-09-04 2022-12-06 Momentis Surgical Ltd Device and system including mechanical arms
US11198226B2 (en) 2015-07-09 2021-12-14 Kawasaki Jukogyo Kabushiki Kaisha Surgical robot
EP3321048A4 (en) * 2015-07-09 2019-03-20 Kawasaki Jukogyo Kabushiki Kaisha Surgical robot
EP3321047A4 (en) * 2015-07-09 2019-03-20 Kawasaki Jukogyo Kabushiki Kaisha Surgical robot
JP7257102B2 (en) 2015-07-09 2023-04-13 川崎重工業株式会社 surgical robot
JPWO2017006375A1 (en) * 2015-07-09 2018-04-19 川崎重工業株式会社 Surgical robot
JP7148242B2 (en) 2015-07-09 2022-10-05 川崎重工業株式会社 surgical robot
JPWO2017006376A1 (en) * 2015-07-09 2018-04-19 川崎重工業株式会社 Surgical robot
WO2017006376A1 (en) * 2015-07-09 2017-01-12 川崎重工業株式会社 Surgical robot
US10881475B2 (en) 2015-07-09 2021-01-05 Kawasaki Jukogyo Kabushiki Kaisha Surgical robot
WO2017006375A1 (en) * 2015-07-09 2017-01-12 川崎重工業株式会社 Surgical robot
JP2022017549A (en) * 2015-07-17 2022-01-25 デカ・プロダクツ・リミテッド・パートナーシップ Robotic surgery system, method and apparatus
JP7434252B2 (en) 2015-07-17 2024-02-20 デカ・プロダクツ・リミテッド・パートナーシップ Robotic surgical systems, methods, and devices
CN105286999A (en) * 2015-10-15 2016-02-03 天津大学 Minimally invasive surgery instrument with tail end self-rotation function
JP2020192377A (en) * 2016-02-05 2020-12-03 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Surgical apparatus
JP2020192376A (en) * 2016-02-05 2020-12-03 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Surgical apparatus
JP7047031B2 (en) 2016-02-05 2022-04-04 ボード オブ リージェンツ,ザ ユニバーシティ オブ テキサス システム Surgical equipment
US11771511B2 (en) 2016-03-09 2023-10-03 Momentis Surgical Ltd Modular device comprising mechanical arms
US11083528B2 (en) 2017-03-09 2021-08-10 Memic Innovative Surgery Ltd. Input arm for control of a surgical mechanical arm
US11779410B2 (en) 2017-03-09 2023-10-10 Momentis Surgical Ltd Control console including an input arm for control of a surgical mechanical arm
JP2020018835A (en) * 2018-07-18 2020-02-06 リバーフィールド株式会社 Joint of medical instrument and medical instrument
WO2020017605A1 (en) * 2018-07-18 2020-01-23 リバーフィールド株式会社 Joint of medical instrument and medical instrument
JP2020026021A (en) * 2018-08-14 2020-02-20 日本発條株式会社 Bending structure and joint function part using the same
JP7096179B2 (en) 2018-08-14 2022-07-05 日本発條株式会社 Flexion structure and joint function part using it
CN112566759A (en) * 2018-08-14 2021-03-26 日本发条株式会社 Bending structure and joint functional unit using same
JP7373613B2 (en) 2018-08-14 2023-11-02 日本発條株式会社 Bending structure and joint function part using the same
WO2020036085A1 (en) * 2018-08-14 2020-02-20 日本発條株式会社 Bending structure and joint function part
EP4034025A4 (en) * 2019-09-27 2023-12-20 Auris Health, Inc. Robotically-actuated medical retractors
WO2021165647A1 (en) * 2020-02-19 2021-08-26 Ucl Business Ltd End-effector for endoscopic surgical instrument
EP3868305A1 (en) * 2020-02-19 2021-08-25 UCL Business Ltd End-effector for endoscopic surgical instrument
WO2021181493A1 (en) * 2020-03-10 2021-09-16 オリンパス株式会社 Medical manipulator
JP7212427B1 (en) * 2021-09-01 2023-01-25 リバーフィールド株式会社 Treatment instrument unit
WO2023032070A1 (en) * 2021-09-01 2023-03-09 リバーフィールド株式会社 Treatment instrument unit

Also Published As

Publication number Publication date
US20050216033A1 (en) 2005-09-29
US7819884B2 (en) 2010-10-26
US7744608B2 (en) 2010-06-29
US7854738B2 (en) 2010-12-21
US7608083B2 (en) 2009-10-27
US20030135204A1 (en) 2003-07-17
US20080177284A1 (en) 2008-07-24
US20080177283A1 (en) 2008-07-24
US20080177282A1 (en) 2008-07-24

Similar Documents

Publication Publication Date Title
US7854738B2 (en) Robotically controlled medical instrument
US7699835B2 (en) Robotically controlled surgical instruments
US20220257096A1 (en) Guide tube systems and methods
US8303576B2 (en) Interchangeable surgical instrument
US7758569B2 (en) Interchangeable surgical instrument
US7901399B2 (en) Interchangeable surgical instrument
US20020038116A1 (en) Surgical instrument
US20100249497A1 (en) Surgical instrument
US20080269727A1 (en) Surgical instrument guide device
US20110238108A1 (en) Surgical instrument

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION