US20110180231A1 - Method for producing a continuous casting mold and a continuous casting mold produced by this method - Google Patents

Method for producing a continuous casting mold and a continuous casting mold produced by this method Download PDF

Info

Publication number
US20110180231A1
US20110180231A1 US13/025,903 US201113025903A US2011180231A1 US 20110180231 A1 US20110180231 A1 US 20110180231A1 US 201113025903 A US201113025903 A US 201113025903A US 2011180231 A1 US2011180231 A1 US 2011180231A1
Authority
US
United States
Prior art keywords
mold
continuous casting
casting mold
casting
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/025,903
Inventor
Gereon Fehlemann
Albrecht Girgensohn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Siemag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102005023745.2A external-priority patent/DE102005023745B4/en
Application filed by SMS Siemag AG filed Critical SMS Siemag AG
Priority to US13/025,903 priority Critical patent/US20110180231A1/en
Publication of US20110180231A1 publication Critical patent/US20110180231A1/en
Assigned to SMS SIEMAG AKTIENGESELLSCHAFT reassignment SMS SIEMAG AKTIENGESELLSCHAFT CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SMS DEMAG AKTIENGESELLSCHAFT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/057Manufacturing or calibrating the moulds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/303752Process

Definitions

  • the invention concerns a method for producing a continuous casting mold, in which machining is carried out on at least one surface which is in contact with molten material during the normal use of the mold.
  • the invention also concerns a continuous casting mold.
  • Continuous casting molds which are characterized by a special surface modification, especially for the purpose of favorably affecting heat transfer from the steel into the mold wall.
  • EP 1 099 496 A1 proposes that mold plates be completely or partially provided with surface texture to reduce heat flow.
  • the texture is preferably produced by sand blasting or shot peening after machining. This makes it possible to increase the roughness of the surface of the mold that is in contact with molten material during normal use of the continuous casting mold.
  • JP 10 193 042 A describes a continuous casting mold in which longitudinal grooves are systematically formed in the surface of the broad-side plates. This is intended to reduce the heat flux density in the liquid metal level in order to avoid longitudinal cracks.
  • JP 02 020 645 A discloses a continuous casting mold in which longitudinal grooves and transverse grooves are formed in the broad-side plates in a predetermined grid pattern. The goal here is also to reduce the heat flux density in the liquid metal level and thus to reduce the risk of longitudinal cracks.
  • the grooves that are formed are in the range of 0.5 to 1.0 mm; the grid spacing is about 5-10 mm.
  • AT 269 392 discloses a continuous casting mold in which the goal is likewise to reduce the heat flux density, especially in the upper part of the mold. This is achieved by a greater wall thickness in the upper part of the mold or by the use of more strongly insulating material in this area.
  • the upper area of the mold either can consist entirely of this material or can be coated with this material on the water side.
  • FR 2 658 440 describes a continuous casting mold in which local reduction of the heat flux density is realized by forming grooves in the hot side of the mold and filling these grooves with a second material of lower thermal conductivity. In addition, the entire surface of the mold is coated with this second material.
  • JP 06 134 553 A and JP 03 128 149 A describe roughening the surface of casting rolls, which is intended in this application to reduce the heat flux density.
  • the thickness and the structure of the casting flux layer between the mold wall and the strand shell are critical determinants of the magnitude of the heat flux density between the steel and the mold and thus of the thermal load on both the strand shell and the mold material. Therefore, strong stresses can arise in the strand shell due to local changes and changes over time in the casting flux layer, and these stresses can cause longitudinal cracks, especially in steel grades that are susceptible to cracking.
  • the surface of the mold is also subject to strong mechanical stresses due to alternating thermal loading. Therefore, the maximum heat flow in the area of the liquid metal level should be low and as uniform as possible in order to reduce the risk of cracking, especially in steel grades that are susceptible to longitudinal cracking.
  • An additional goal is to keep the friction between the broad sides and the narrow sides of the mold as low as possible during adjustment of the narrow sides. Finally, it is desirable to reduce the thermal stress in the liquid metal level by means of a low heat flux density for the purpose of increasing the service life of the mold.
  • the goal of the invention is to develop a continuous casting mold and a method for producing it, with which the aforementioned desired characteristics can be achieved as effectively as possible, with the least possible production expense, and thus at low cost.
  • the solution to this problem with respect to a method is characterized by the fact that machining that produces an anisotropically textured surface is carried out as the last processing step or as one of the last processing steps in the production of the surface of the mold.
  • Anisotropy is understood to mean that the surface characteristics vary with the surface direction in which they are determined. In connection with the mold surface in question here, this means especially that various parameters, such as roughness, have different values when measured in the casting direction from their values perpendicular to the casting direction, i.e., in the direction transverse to the casting direction.
  • the continuous casting mold which has at least one machined surface that has contact with molten material during its normal use, is characterized by the fact that at least part of the surface has an anisotropic structure.
  • the surface of the mold has greater roughness in the casting direction than in the direction transverse to the casting direction, in each case as viewed in the plane of the surface.
  • the anisotropically textured surface can have elevations and depressions formed and oriented in rows that run in the direction transverse to the casting direction.
  • the elevations and depressions can be formed as corrugations, whose peaks and valleys run in the direction transverse to the casting direction; in this connection, the corrugations preferably have an essentially rounded shape in cross section. It has been found to be effective if the height of the corrugations is 2 ⁇ m to 250 ⁇ m, and especially 10 ⁇ m to 50 ⁇ m.
  • the height of the corrugations on the surface can remain constant or can be varied in the casting direction and/or in the direction transverse to the casting direction.
  • the proposal of the invention is thus aimed at producing the desired anisotropic surface structure in the last step of the machining operation to shape the surface of the mold.
  • the machined surface can be shaped in such a way that the macroscopic structure produced in the casting direction is different from that produced transverse to the casting direction.
  • the microscopic roughness of the surface can also be formed differently in the casting direction and the direction transverse to the casting direction.
  • the desired surface texture is produced during the machining of the mold surface.
  • further processing steps e.g., forming grooves in the surface, coating the surface in the area of the liquid metal level, or roughening the surface by sand blasting or shot peening, are not necessary, which makes the proposal of the invention economical.
  • the advantageous anisotropic surface texture can thus be produced without great expense not only during the production of the molds but also during each reworking of the mold surface, which is necessary at certain intervals of time.
  • the shaping of the mold surfaces in the manner described with macroscopic elevations oriented transversely to the casting direction, or the roughness that is greater in the casting direction than in the direction transverse to the casting direction also reduces the friction between the broad sides and the narrow sides during adjustment of the narrow sides in the case of molds that consist of individual mold plates (e.g., slab, thin slab).
  • FIG. 1 shows a schematic representation of a mold plate with an anisotropic surface and an enlarged view of the surface topology.
  • FIG. 2 shows a schematic three-dimensional view of the profile of the surface of the mold plate.
  • FIG. 3 shows an enlarged view of section A-B in FIG. 1 .
  • FIG. 1 shows a view of that surface of a mold plate of a continuous casting mold 1 which is in contact with molten material (steel) or the solidified strand shell during the use of the continuous casting mold 1 .
  • the strand shell passes the mold plate in casting direction G.
  • the surface 2 is provided with a special texture:
  • the surface topology, especially the roughness, of the surface 2 is anisotropically formed, i.e., different roughness values are measured in casting direction G and in direction Q transverse to the casting direction G.
  • the mold plate is provided with large numbers of elevations and depressions, which are shown in FIG. 1 in a highly schematic way. These elevations and depressions are produced during the last machining operation in the production of the mold plate.
  • the surface of the mold plate is milled by traverse milling, for example, with the use of a milling cutter with a diameter of 100-150 mm, which is provided with standard indexable cutter inserts, e.g., made of cemented carbide alloy.
  • the material removal during the last machining step is less than 1 mm, and preferably less than 0.5 mm.
  • impressions and the structure of the elevations and depressions on the surface of the mold can be systematically adjusted according to the selected material removal and other milling parameters, such as speed of rotation, feed rate, peripheral speed, spacing of the milled rows, coolant, milling direction, and angle of attack of the tool relative to the surface of the plate (set angle).
  • the desired surface texture can be produced by a grinding process.
  • the surface can be ground in rows.
  • the shape of the wavelike elevations and depressions can be produced by the surface contour of the grinding disk or by the angle of attack of the grinding disk relative to the surface of the plate.
  • FIG. 2 shows a three-dimensional view of the profile of the surface after the final machining.
  • the roughness of the surface is greater in the casting direction G than in the direction Q transverse to the casting direction G.
  • the mold plate is thus provided with a large number of elevations and depressions, which are shown only in a highly schematic way in FIG. 1 . These elevations and depressions are produced during the last machining operation in the production of the mold plate.
  • the height H of the elevations and depressions, which are oriented in rows, is seen in FIG. 3 and is typically in the range of 2 ⁇ m to 250 ⁇ m, which can be controlled by the choice of milling parameters.

Abstract

A continuous casting mold having at least one mechanically machined surface that is in contact with molten material during normal use of the mold in order to achieve a uniform distribution of the heat flux over the mold.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a Divisional Application of U.S. patent application Ser. No. 11/885,808, filed Sep. 6, 2007, which is a 371 of International application PCT/EP2006/002164, filed Mar. 9, 2006, which claims priority of DE 10 2005 011 532.2, filed Mar. 10, 2005, and DE 10 2005 023 745.2, filed May 24, 2005, the priority of these applications is hereby claimed and these applications are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention concerns a method for producing a continuous casting mold, in which machining is carried out on at least one surface which is in contact with molten material during the normal use of the mold. The invention also concerns a continuous casting mold.
  • 2. Description of the Related Art
  • Continuous casting molds are known which are characterized by a special surface modification, especially for the purpose of favorably affecting heat transfer from the steel into the mold wall.
  • EP 1 099 496 A1 proposes that mold plates be completely or partially provided with surface texture to reduce heat flow. The texture is preferably produced by sand blasting or shot peening after machining. This makes it possible to increase the roughness of the surface of the mold that is in contact with molten material during normal use of the continuous casting mold.
  • JP 10 193 042 A describes a continuous casting mold in which longitudinal grooves are systematically formed in the surface of the broad-side plates. This is intended to reduce the heat flux density in the liquid metal level in order to avoid longitudinal cracks.
  • JP 02 020 645 A discloses a continuous casting mold in which longitudinal grooves and transverse grooves are formed in the broad-side plates in a predetermined grid pattern. The goal here is also to reduce the heat flux density in the liquid metal level and thus to reduce the risk of longitudinal cracks.
  • The grooves that are formed are in the range of 0.5 to 1.0 mm; the grid spacing is about 5-10 mm.
  • AT 269 392 discloses a continuous casting mold in which the goal is likewise to reduce the heat flux density, especially in the upper part of the mold. This is achieved by a greater wall thickness in the upper part of the mold or by the use of more strongly insulating material in this area. In this regard, the upper area of the mold either can consist entirely of this material or can be coated with this material on the water side.
  • FR 2 658 440 describes a continuous casting mold in which local reduction of the heat flux density is realized by forming grooves in the hot side of the mold and filling these grooves with a second material of lower thermal conductivity. In addition, the entire surface of the mold is coated with this second material.
  • JP 06 134 553 A and JP 03 128 149 A describe roughening the surface of casting rolls, which is intended in this application to reduce the heat flux density.
  • SUMMARY OF THE INVENTION
  • The previously known measures are intended to bring about improved thermodynamic behavior of the mold and especially its walls and improved suitability for use in continuous casting. In general, one strives for good adhesion of the casting flux to the mold plate and uniform distribution of the heat flow over the entire mold.
  • The thickness and the structure of the casting flux layer between the mold wall and the strand shell are critical determinants of the magnitude of the heat flux density between the steel and the mold and thus of the thermal load on both the strand shell and the mold material. Therefore, strong stresses can arise in the strand shell due to local changes and changes over time in the casting flux layer, and these stresses can cause longitudinal cracks, especially in steel grades that are susceptible to cracking. However, the surface of the mold is also subject to strong mechanical stresses due to alternating thermal loading. Therefore, the maximum heat flow in the area of the liquid metal level should be low and as uniform as possible in order to reduce the risk of cracking, especially in steel grades that are susceptible to longitudinal cracking.
  • An additional goal is to keep the friction between the broad sides and the narrow sides of the mold as low as possible during adjustment of the narrow sides. Finally, it is desirable to reduce the thermal stress in the liquid metal level by means of a low heat flux density for the purpose of increasing the service life of the mold.
  • The measures that have previously been proposed achieve these goals only partially or at relatively high production expense.
  • Therefore, the goal of the invention is to develop a continuous casting mold and a method for producing it, with which the aforementioned desired characteristics can be achieved as effectively as possible, with the least possible production expense, and thus at low cost.
  • In accordance with the invention, the solution to this problem with respect to a method is characterized by the fact that machining that produces an anisotropically textured surface is carried out as the last processing step or as one of the last processing steps in the production of the surface of the mold.
  • This is preferably accomplished by employing a milling process or a grinding process as the last processing step.
  • Anisotropy is understood to mean that the surface characteristics vary with the surface direction in which they are determined. In connection with the mold surface in question here, this means especially that various parameters, such as roughness, have different values when measured in the casting direction from their values perpendicular to the casting direction, i.e., in the direction transverse to the casting direction.
  • In accordance with the invention, the continuous casting mold, which has at least one machined surface that has contact with molten material during its normal use, is characterized by the fact that at least part of the surface has an anisotropic structure.
  • In one embodiment of the invention, the surface of the mold has greater roughness in the casting direction than in the direction transverse to the casting direction, in each case as viewed in the plane of the surface.
  • The anisotropically textured surface can have elevations and depressions formed and oriented in rows that run in the direction transverse to the casting direction. The elevations and depressions can be formed as corrugations, whose peaks and valleys run in the direction transverse to the casting direction; in this connection, the corrugations preferably have an essentially rounded shape in cross section. It has been found to be effective if the height of the corrugations is 2 μm to 250 μm, and especially 10 μm to 50 μm.
  • The height of the corrugations on the surface can remain constant or can be varied in the casting direction and/or in the direction transverse to the casting direction.
  • The proposal of the invention is thus aimed at producing the desired anisotropic surface structure in the last step of the machining operation to shape the surface of the mold. In this regard, the machined surface can be shaped in such a way that the macroscopic structure produced in the casting direction is different from that produced transverse to the casting direction. The microscopic roughness of the surface can also be formed differently in the casting direction and the direction transverse to the casting direction.
  • Greater roughness in the casting direction and a macroscopic structure of the surface with elevations running in rows transverse to the casting direction result in better adhesion of the casting flux layer to the mold plate near the liquid metal level, so that it is not so easily rubbed off—completely or only locally—by the strand. At the same time, both the increased roughness and the macroscopic structure of the surface cause the heat flow to be reduced and evened out, which also results in a reduction of the tendency towards longitudinal cracking. In addition, the reduction of the heat flux density in the liquid metal level reduces the thermal stresses in the mold plate, which increases the service life of the mold plates.
  • Furthermore, it is advantageous that the desired surface texture is produced during the machining of the mold surface. This means that further processing steps, e.g., forming grooves in the surface, coating the surface in the area of the liquid metal level, or roughening the surface by sand blasting or shot peening, are not necessary, which makes the proposal of the invention economical. The advantageous anisotropic surface texture can thus be produced without great expense not only during the production of the molds but also during each reworking of the mold surface, which is necessary at certain intervals of time.
  • In addition, the shaping of the mold surfaces in the manner described with macroscopic elevations oriented transversely to the casting direction, or the roughness that is greater in the casting direction than in the direction transverse to the casting direction, also reduces the friction between the broad sides and the narrow sides during adjustment of the narrow sides in the case of molds that consist of individual mold plates (e.g., slab, thin slab).
  • BRIEF DESCRIPTION OF THE DRAWING
  • In the drawing:
  • FIG. 1 shows a schematic representation of a mold plate with an anisotropic surface and an enlarged view of the surface topology.
  • FIG. 2 shows a schematic three-dimensional view of the profile of the surface of the mold plate.
  • FIG. 3 shows an enlarged view of section A-B in FIG. 1.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 shows a view of that surface of a mold plate of a continuous casting mold 1 which is in contact with molten material (steel) or the solidified strand shell during the use of the continuous casting mold 1. The strand shell passes the mold plate in casting direction G. To achieve the advantages explained above, the surface 2 is provided with a special texture: The surface topology, especially the roughness, of the surface 2 is anisotropically formed, i.e., different roughness values are measured in casting direction G and in direction Q transverse to the casting direction G.
  • In this connection, the mold plate is provided with large numbers of elevations and depressions, which are shown in FIG. 1 in a highly schematic way. These elevations and depressions are produced during the last machining operation in the production of the mold plate. In the last machining step, the surface of the mold plate is milled by traverse milling, for example, with the use of a milling cutter with a diameter of 100-150 mm, which is provided with standard indexable cutter inserts, e.g., made of cemented carbide alloy. The material removal during the last machining step is less than 1 mm, and preferably less than 0.5 mm. Impressions and the structure of the elevations and depressions on the surface of the mold can be systematically adjusted according to the selected material removal and other milling parameters, such as speed of rotation, feed rate, peripheral speed, spacing of the milled rows, coolant, milling direction, and angle of attack of the tool relative to the surface of the plate (set angle).
  • Alternatively, the desired surface texture can be produced by a grinding process. As in the case of milling, the surface can be ground in rows. In this regard, the shape of the wavelike elevations and depressions can be produced by the surface contour of the grinding disk or by the angle of attack of the grinding disk relative to the surface of the plate.
  • FIG. 2 shows a three-dimensional view of the profile of the surface after the final machining. Here it is apparent that the roughness of the surface is greater in the casting direction G than in the direction Q transverse to the casting direction G. The mold plate is thus provided with a large number of elevations and depressions, which are shown only in a highly schematic way in FIG. 1. These elevations and depressions are produced during the last machining operation in the production of the mold plate.
  • The height H of the elevations and depressions, which are oriented in rows, is seen in FIG. 3 and is typically in the range of 2 μm to 250 μm, which can be controlled by the choice of milling parameters.

Claims (9)

1. A continuous casting mold having at least one machined surface that is contactable with molten material during normal use, wherein at least part of the surface has an anisotropic structure so that the surface has a roughness with different values when measured in a casting direction than values when measured in a direction transverse to the casting direction.
2. The continuous casting mold in accordance with claim 1, wherein the surface has greater roughness in the casting direction than in the direction transverse to the casting direction.
3. The continuous casting mold in accordance with claim 1, wherein the surface has elevations and depressions formed and oriented in rows that run in the direction transverse to the casting direction.
4. The continuous casting mold in accordance with claim 3, wherein the elevations and depressions are formed as corrugations with peaks and valleys that run in the direction transverse to the casting direction.
5. The continuous casting mold in accordance with claim 4, wherein the corrugations have an essentially rounded shape in cross section.
6. The continuous casting mold in accordance with claim 4, wherein the corrugations have a height of 2 μm to 250 μm,
7. The continuous casting mold in accordance with claim 6, wherein the corrugations have a height of 10 μm to 50 μm.
8. The continuous casting mold in accordance with claim 4, wherein the corrugations have a uniform height in the casting direction.
9. The continuous casting mold in accordance with claim 4, wherein the corrugations have a varying height in the casting direction.
US13/025,903 2005-03-10 2011-02-11 Method for producing a continuous casting mold and a continuous casting mold produced by this method Abandoned US20110180231A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/025,903 US20110180231A1 (en) 2005-03-10 2011-02-11 Method for producing a continuous casting mold and a continuous casting mold produced by this method

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE102005011532 2005-03-10
DE102005011532.2 2005-03-10
DE102005023745.2 2005-05-24
DE102005023745.2A DE102005023745B4 (en) 2005-03-10 2005-05-24 Process for producing a continuous casting mold and continuous casting mold
PCT/EP2006/002164 WO2006094803A1 (en) 2005-03-10 2006-03-09 Method for producing a continuous casting mold and corresponding continuous casting mold
US88580807A 2007-09-06 2007-09-06
US13/025,903 US20110180231A1 (en) 2005-03-10 2011-02-11 Method for producing a continuous casting mold and a continuous casting mold produced by this method

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2006/002164 Division WO2006094803A1 (en) 2005-03-10 2006-03-09 Method for producing a continuous casting mold and corresponding continuous casting mold
US88580807A Division 2005-03-10 2007-09-06

Publications (1)

Publication Number Publication Date
US20110180231A1 true US20110180231A1 (en) 2011-07-28

Family

ID=36266231

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/885,808 Abandoned US20080173422A1 (en) 2005-03-10 2006-03-10 Method For Producing A Continuous Casting Mold And Corresponding Continuous Casting Mold
US13/025,903 Abandoned US20110180231A1 (en) 2005-03-10 2011-02-11 Method for producing a continuous casting mold and a continuous casting mold produced by this method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/885,808 Abandoned US20080173422A1 (en) 2005-03-10 2006-03-10 Method For Producing A Continuous Casting Mold And Corresponding Continuous Casting Mold

Country Status (8)

Country Link
US (2) US20080173422A1 (en)
EP (1) EP1855824B1 (en)
JP (1) JP4559520B2 (en)
KR (1) KR101152678B1 (en)
CN (1) CN101137453B (en)
CA (1) CA2597100C (en)
ES (1) ES2864578T3 (en)
WO (1) WO2006094803A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5606824B2 (en) 2010-08-18 2014-10-15 株式会社不二製作所 Mold surface treatment method and mold surface-treated by the above method
DE102013114326A1 (en) * 2013-12-18 2015-06-18 Thyssenkrupp Steel Europe Ag Casting mold for casting molten steel
JP6413991B2 (en) * 2015-09-14 2018-10-31 Jfeスチール株式会社 How to clean the slab surface

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4250950A (en) * 1978-11-03 1981-02-17 Swiss Aluminium Ltd. Mould with roughened surface for casting metals
US4665969A (en) * 1984-04-13 1987-05-19 Hans Horst Continuous casting apparatus
JPH08206786A (en) * 1995-01-31 1996-08-13 Shinko Metal Prod Kk Mold for continuous casting
US5797444A (en) * 1995-03-08 1998-08-25 Km Europa Metal Aktiengesellschaft Ingot mold for the continuous casting of metals
US6112805A (en) * 1994-12-28 2000-09-05 Nippon Steel Corporation Continuous casting mold for billet
US6142212A (en) * 1997-10-31 2000-11-07 Sms Schloemann-Siemag Aktiengesellschaft Continuous casting mold and method
US20010035279A1 (en) * 1999-12-29 2001-11-01 Christian Reusser Method and apparatus for the working of cavity walls of continuous casting molds
US20020166653A1 (en) * 2000-05-12 2002-11-14 Hideaki Yamamura Cooling drum for continuously casting thin cast piece and fabricating method and device therefor and thin cast piece and continuous casting method therefor

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150819A (en) * 1974-10-31 1976-05-04 Kawasaki Steel Co RENZOKUCHUZO YOIGATA
SU537749A1 (en) * 1975-07-01 1976-12-05 Украинский научно-исследовательский институт металлов Crystallizer
JPS54141330A (en) * 1978-04-27 1979-11-02 Nippon Kokan Kk Surface curving process for cast mold for continuous cating
JPS6192756A (en) * 1984-10-12 1986-05-10 Sumitomo Metal Ind Ltd Continuous casting method of preventing surface cracking of ingot and casting mold
JPH0220645A (en) * 1988-07-08 1990-01-24 Nkk Corp Mold for continuously casting steel
JPH03128149A (en) * 1989-10-13 1991-05-31 Ishikawajima Harima Heavy Ind Co Ltd Twin roll type continuous casting machine
FR2684904B1 (en) * 1991-12-11 1994-03-18 Usinor Sacilor CYLINDER FOR A CONTINUOUS CASTING MACHINE FOR METAL STRIPS, CORRESPONDING CONTINUOUS CASTING MACHINE AND METHOD FOR PRODUCING SUCH A CYLINDER.
JP2974521B2 (en) * 1992-10-27 1999-11-10 新日本製鐵株式会社 Mold for continuous casting of thin cast slab and surface processing method thereof
JPH07178526A (en) * 1993-11-09 1995-07-18 Sumitomo Metal Ind Ltd Continuous casting method anf apparatus therefor
JP2971747B2 (en) * 1994-08-09 1999-11-08 住友重機械工業株式会社 Mold wall of continuous casting mold
JPH0994634A (en) * 1995-09-29 1997-04-08 Kawasaki Steel Corp Water cooling mold for continuous casting
JPH09276994A (en) * 1996-04-22 1997-10-28 Nippon Steel Corp Mold for continuous casting
JP3380413B2 (en) * 1997-01-07 2003-02-24 新日本製鐵株式会社 Mold for continuous casting of molten steel
DE19919777C2 (en) * 1998-10-24 2001-07-26 Sms Demag Ag Process for the production of broad side plates for continuous molds
DE19953905A1 (en) * 1999-11-10 2001-05-17 Sms Demag Ag Method and device for reducing the heat dissipation of a continuous casting mold
CN1201885C (en) * 2002-06-18 2005-05-18 鞍山科技大学 Crytallizer for inner wall of continuous casting coated groove
DE10256751B4 (en) * 2002-10-17 2019-09-12 Sms Group Gmbh Continuous casting mold for casting strands of metals, in particular of steel materials
US7848950B2 (en) * 2004-12-28 2010-12-07 American Express Travel Related Services Company, Inc. Method and apparatus for collaborative filtering of card member transactions

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4250950A (en) * 1978-11-03 1981-02-17 Swiss Aluminium Ltd. Mould with roughened surface for casting metals
US4665969A (en) * 1984-04-13 1987-05-19 Hans Horst Continuous casting apparatus
US6112805A (en) * 1994-12-28 2000-09-05 Nippon Steel Corporation Continuous casting mold for billet
JPH08206786A (en) * 1995-01-31 1996-08-13 Shinko Metal Prod Kk Mold for continuous casting
US5797444A (en) * 1995-03-08 1998-08-25 Km Europa Metal Aktiengesellschaft Ingot mold for the continuous casting of metals
US6142212A (en) * 1997-10-31 2000-11-07 Sms Schloemann-Siemag Aktiengesellschaft Continuous casting mold and method
US20010035279A1 (en) * 1999-12-29 2001-11-01 Christian Reusser Method and apparatus for the working of cavity walls of continuous casting molds
US20020166653A1 (en) * 2000-05-12 2002-11-14 Hideaki Yamamura Cooling drum for continuously casting thin cast piece and fabricating method and device therefor and thin cast piece and continuous casting method therefor

Also Published As

Publication number Publication date
EP1855824B1 (en) 2021-02-17
US20080173422A1 (en) 2008-07-24
CN101137453A (en) 2008-03-05
WO2006094803A1 (en) 2006-09-14
ES2864578T3 (en) 2021-10-14
JP4559520B2 (en) 2010-10-06
JP2008532767A (en) 2008-08-21
CA2597100C (en) 2013-01-22
CN101137453B (en) 2012-09-05
CA2597100A1 (en) 2006-09-14
KR20070110271A (en) 2007-11-16
KR101152678B1 (en) 2012-06-15
EP1855824A1 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
US7156152B2 (en) Process for the continuous production of a think steel strip
US4250950A (en) Mould with roughened surface for casting metals
CN102575332A (en) Low CTE slush molds with textured surface, and method of making and using the same
JP4659706B2 (en) Continuous casting mold
EP0396862B1 (en) A pair of cooling rolls for a twin-roll type cooling apparatus for producing rapidly solidified strip
US20110180231A1 (en) Method for producing a continuous casting mold and a continuous casting mold produced by this method
GB2034217A (en) Moulds with Roughened Surface for Casting Metals
JP2007516839A (en) Mold cavity for molds for continuous casting of billets and blooms
JPS60184449A (en) Drum type continuous casting machine
CA1203663A (en) Method for manufacturing of steel casting
JP2003507190A (en) Molds for continuous casting of steel billets and blooms
US6474401B1 (en) Continuous casting mold
KR20160099641A (en) Casting mould for casting steel melt
JPH0994634A (en) Water cooling mold for continuous casting
DE102005023745B4 (en) Process for producing a continuous casting mold and continuous casting mold
JP4845697B2 (en) Continuous casting mold
JP3100541B2 (en) Continuous casting method of round billet and mold used in the method
RU2085327C1 (en) Crystallizer for continuous steel slab casting machine
CN116710217A (en) Aluminum strip casting without parting agent
JP2021030258A (en) Water-cooled mold for continuous casting, and continuous casting method for steel
JP5624007B2 (en) Continuous casting method
KR20040097142A (en) Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
KR100711799B1 (en) Casting roll of twin roll strip caster
JP2828401B2 (en) Metal sheet casting drum and method of manufacturing the same
KR20090104540A (en) Magnesium alloys plate casting device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SMS SIEMAG AKTIENGESELLSCHAFT, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:SMS DEMAG AKTIENGESELLSCHAFT;REEL/FRAME:035439/0044

Effective date: 20090325

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION