US20110188707A1 - System and Method for Pleographic Subject Identification, Targeting, and Homing Utilizing Electromagnetic Imaging in at Least One Selected Band - Google Patents

System and Method for Pleographic Subject Identification, Targeting, and Homing Utilizing Electromagnetic Imaging in at Least One Selected Band Download PDF

Info

Publication number
US20110188707A1
US20110188707A1 US13/040,335 US201113040335A US2011188707A1 US 20110188707 A1 US20110188707 A1 US 20110188707A1 US 201113040335 A US201113040335 A US 201113040335A US 2011188707 A1 US2011188707 A1 US 2011188707A1
Authority
US
United States
Prior art keywords
subject
band
image
images
pleographic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/040,335
Inventor
Michael Shutt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halberd Match Corp
Original Assignee
Halberd Match Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/558,520 external-priority patent/US20100067806A1/en
Application filed by Halberd Match Corp filed Critical Halberd Match Corp
Priority to US13/040,335 priority Critical patent/US20110188707A1/en
Publication of US20110188707A1 publication Critical patent/US20110188707A1/en
Priority to US14/822,979 priority patent/US20150347832A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/255Detecting or recognising potential candidate objects based on visual cues, e.g. shapes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/103Static body considered as a whole, e.g. static pedestrian or occupant recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/143Sensing or illuminating at different wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image

Definitions

  • the present invention relates generally to data processing systems and methods for automatic recognition of images captured using various electromagnetic (EM) imaging systems and techniques, and more particularly to a system and method for applying pleographic processing for subject identification, recognition, matching, targeting, and/or homing, utilizing one or more EM imaging systems, devices, in at least one selected EM band.
  • EM electromagnetic
  • thermal imagers were originally developed for military use and have slowly migrated into other fields as varied as electrical inspections, energy home inspection audits and a wide array of applications. Advanced optics and sophisticated software interfaces continue to enhance the versatility of these devices.
  • Thermal/IR cameras are used for night vision applications that are employed extensively by the United States armed forces. Thermal/IR cameras are incorporated into many air, sea and land vehicles.
  • Military thermal imaging is used for remote sensing, night vision, weapon sighting, perimeter security, installation surveillance & force protection among other applications.
  • the above-incorporated '520 Application remedies the disadvantages of all previously known and currently available image analysis and biometric solutions, by providing a platform-independent image analysis system architecture and technology platform comprising a plurality of scalable novel image/object recognition and processing techniques that are capable of dramatically improving the efficacy, reliability, and accuracy of conventional and future surveillance, detection, identification, verification, matching, navigation, and similar types of systems utilizing image acquisition/analysis of any kind.
  • the use of the novel pleographic platform solutions taught and described in the '520 Application advantageously provides unequaled levels of tolerance to degradation in quality, decrease in available portion, increased noise, and variation in positioning and/or orientation in the images being analyzed as compared to the corresponding reference image(s), regardless of the EM band(s) in which the images were captured.
  • FIG. 1 shows exemplary infrared (IR) images of a human body utilized in the operation of at least one exemplary embodiment of the system and method of the present invention
  • FIGS. 2 and 3 show exemplary joint matching between various exemplary IR EM band images of FIG. 1 , above;
  • FIG. 4 shows exemplary thermal images of a human body utilized in the operation of at least one exemplary embodiment of the system and method of the present invention
  • FIG. 5 shows exemplary BTP Grayscale images of a human body utilized in the operation of at least one exemplary embodiment of the system and method of the present invention
  • FIG. 6 shows exemplary joint matching between various exemplary BTP Grayscale EM band images of FIG. 5 , above;
  • FIG. 7 shows a reference pleogram (a), and a central fragment thereof (b), generated and utilized in various embodiments of the system and method of the present invention
  • FIG. 8 shows a matched pleogram between two specific BTP Grayscale images of FIG. 5 ;
  • FIG. 9 shows an actual match between two specific BTP Grayscale images of FIG. 5 .
  • the various embodiments of the system and method of the present invention are directed to applications of pleographic image processing techniques, such as disclosed in the '520 Application, for subject identification, recognition, matching, targeting, and/or homing, utilizing one or more EM imaging systems, devices, in at least one predetermined selected EM band (such as IR, thermal imaging, etc.), to essentially provide an advanced biometric technology based on IR/thermal image utilization (described herein by way of example only, in the context of a remote personnel identification application).
  • EM imaging systems such as IR, thermal imaging, etc.
  • PIP pleographic image processing
  • This PIP platform recognition technique is primarily focused on reliable object capture and identification against a pre-accumulated reference library/database, which in the case of the present invention, by way of example may be IR Body Thermal Patterns.
  • the PIP platform recognition technique is especially effective under conditions with strong real-time limitations, such as uncertain object positions, arbitrary signal distortions, and others, because it utilizes novel spatial response surfaces—herein called pleograms—that are unique for each observed image that are used for matching.
  • the PIP platform recognition technique provides high reliability in comparison with raw image matching.
  • the ID procedures exploited in this technique remain workable even if body thermal patterns (BTP) are partially degraded and measurements are corrupted.
  • This matching technique is image source independent and applicable to most remote measurements and imaging in virtually any EM radiation band, such as optical (e.g. visible light, infrared, laser, X-ray, radar, lidar, etc
  • the PIP platform recognition method is ID area independent so it may be applied to the head/facial zone, chest, shoulders, or entire body, etc.
  • the inventive data processing system and method enable automatic recognition of images captured using various electromagnetic (EM) imaging systems and techniques, and more particularly to a system and method for applying pleographic processing for subject identification, recognition, matching, targeting, and or homing, utilizing one or more EM imaging systems, devices, in at least one selected EM band.
  • EM electromagnetic
  • thermal images have been obtained using a conventional compact infrared camera meeting appropriate dust and splashproof standards, that is insensitive to visible light, and that is thus capable of working equally well in a bright sunny environment as well as in total darkness.
  • Infrared radiation can be used to remotely capture the human IR pattern as a thermal picture.
  • Thermography thermal imaging
  • Thermography is mainly used in military and industrial applications; the range of modern highly sensitive thermal cameras is limited practically by the direct vision distance.
  • a typical Military-grade infrared handheld unit can detect a human object at 16 km
  • Thermographic cameras detect radiation in the infrared range of the electromagnetic spectrum (roughly 900-14,000 nanometers or 0.9-14 ⁇ m) and produce images of that radiation field. Since infrared radiation is emitted by all objects based on their temperatures, thermography makes it possible to observe one's environment without any illumination.
  • FIG. 1 Sample human body IR images are shown FIG. 1 .
  • image (a) is considered as a reference
  • images (b) and (c) are the captured ones in the process of surveillance (realizing that these are closer than many practical applications).
  • BTP Body Thermal Patterns
  • the system and method of the present invention are based on a novel core approach to object recognition development, described in this section below, that resolves existing problems in the remote subject identification, etc. field including, but not limited to: 1) Algorithm synthesis for the arbitrary nature of real observations; 2) Reconciling the inherent discordance between reference data and real-time observations; 3) Countering of unpredictable geometric distortions such as angle variations, rotations, and non-linear scale variations; and 4) Ability to work under conditions of poor lightning, low contrast, and poor resolution.
  • inventive pleogram recognition and matching technology and algorithms provide one or more unique advantages, that may include, but that are not limited to, at least one of the following advantages:
  • Reciprocal recognition has been conducted for the images displayed in FIG. 1 , after a grayscale transform. Images (a) and (b) are approximately of the same position (although some BTP differences are seen); image (a) is considered as a reference. Image (c) is rotated by ⁇ 20 degrees. Joint match between images (a) and (b) with the use of a simplified binary algorithms [1] are shown in FIG. 2 and FIG. 3 .
  • the left image is a reference; the small green squares indicate a reference fragment automatically selected (in this case just from the image center).
  • the matching metrics may be displayed in a window entitled Score. As it can be seen, the match score is high (about 0.92 where the ideal score is equal to 1.0) and recognition provides a low shift. This allows estimating match outcomes as successful and reliable.
  • the capture range may vary depending on need (but for exemplary images illustrated in the various FIGs., the capture range was approximately 30 ft).
  • the captured images of the same person are shown in FIG. 4
  • the grayscale BTP images are shown in FIG. 5 .
  • Joint mapping of images 5 ( a ) and 5 ( b ) runs successfully and reliably; at the same time, reciprocal recognition of images 5 ( a ) and 5 ( c ) using simplified algorithms (i.e., not using the novel PIP approach) provides an uncertain match, as is seen in FIG. 6 .
  • the substantially more powerful pleographic techniques of the system and method of the present invention advantageously provide much more desirable results.
  • the pleogram for the reference FIG. 5( a ) appears as image (a) in the FIG. 7 .
  • High scores and visually correct match positioning define the accurate and reliable object identification by the inventive system and method, with the expected correct recognition probability being greater than 0.9.

Abstract

The inventive data processing system and method enable automatic recognition of images captured using various electromagnetic (EM) imaging systems and techniques, and more particularly to a system and method for applying pleographic processing for subject identification, recognition, matching, targeting, and or homing, utilizing one or more EM imaging systems, devices, in at least one selected EM band.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present patent application claims priority from the commonly assigned co-pending U.S. provisional patent application No. 61/310,694 entitled “System and Method for Pleographic Subject Identification, Targeting, and Homing Utilizing Electromagnetic Imaging in at Least One Selected Band”, filed Mar. 4, 2010. The present application is also a continuation-in-part of, and claims priority from, the commonly assigned co-pending U.S. patent application Ser. No. 12/558,520 entitled “System and Method for Pleographic Recognition, Matching, and Identification of Images and Objects”, filed on Sep. 14, 2009, which in turn claims the benefit from the commonly assigned expired U.S. provisional patent application No. 61/191,836 entitled “Pleographic Recognition Technology for Object Matching and Identification”, filed on Sep. 12, 2008.
  • FIELD OF THE INVENTION
  • The present invention relates generally to data processing systems and methods for automatic recognition of images captured using various electromagnetic (EM) imaging systems and techniques, and more particularly to a system and method for applying pleographic processing for subject identification, recognition, matching, targeting, and/or homing, utilizing one or more EM imaging systems, devices, in at least one selected EM band.
  • BACKGROUND OF THE INVENTION
  • There is a significant need in a wide variety of military, law enforcement and commercial (e.g., security, access control, etc.) applications for a way of remotely identifying, recognizing, and/or matching various subjects utilizing various imaging techniques. Military applications also have additional unique requirements for image-based targeting and/pr homing of various subjects. Additionally, while the goals of detection of presence and movement of subjects, as well as general identification of subject type/profile are useful, there is also a great need for a capability of using remote biometric identification to identify/match specific subjects remotely without need for their cooperation.
  • Furthermore, infrared (IR) cameras and thermal imagers were originally developed for military use and have slowly migrated into other fields as varied as electrical inspections, energy home inspection audits and a wide array of applications. Advanced optics and sophisticated software interfaces continue to enhance the versatility of these devices. Thermal/IR cameras are used for night vision applications that are employed extensively by the United States armed forces. Thermal/IR cameras are incorporated into many air, sea and land vehicles. Military thermal imaging is used for remote sensing, night vision, weapon sighting, perimeter security, installation surveillance & force protection among other applications.
  • Therefore, given the availability, reasonable cost, useful “night vision” capabilities of infrared and thermal imaging systems, as well as unique “through-a-barrier” capabilities of thermal imaging systems, it is also very desirable to be able to apply the functionality of biometric recognition/verification techniques to such non-conventional imaging capabilities.
  • However, conventional visual spectrum image processing/recognition techniques are of very limited use with thermal/IR images which contain far less uniquely identifiable information than conventional images. Fortunately, a novel patent-pending Pleographic Image Analysis (PIA) technology platform, and its modular components, shown and described in a co-pending commonly assigned U.S. patent application entitled “SYSTEM AND METHOD FOR PLEOGRAPHIC RECOGNITION, MATCHING, AND IDENTIFICATION OF IMAGES AND OBJECTS”, A/N: 12/558,520, (hereinafter the '520 Application), which is hereby incorporated by reference herein in its entirety.
  • The above-incorporated '520 Application remedies the disadvantages of all previously known and currently available image analysis and biometric solutions, by providing a platform-independent image analysis system architecture and technology platform comprising a plurality of scalable novel image/object recognition and processing techniques that are capable of dramatically improving the efficacy, reliability, and accuracy of conventional and future surveillance, detection, identification, verification, matching, navigation, and similar types of systems utilizing image acquisition/analysis of any kind. Furthermore, the use of the novel pleographic platform solutions taught and described in the '520 Application, advantageously provides unequaled levels of tolerance to degradation in quality, decrease in available portion, increased noise, and variation in positioning and/or orientation in the images being analyzed as compared to the corresponding reference image(s), regardless of the EM band(s) in which the images were captured.
  • Therefore, it would be very desirable to provide a system and method for application of pleographic image processing techniques for subject identification, recognition, matching, targeting, and/or homing, utilizing one or more EM imaging systems, devices, in at least one predetermined selected EM band (such as IR, thermal imaging, etc.).
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the drawings, wherein like reference characters denote corresponding or similar elements throughout the various figures:
  • FIG. 1 shows exemplary infrared (IR) images of a human body utilized in the operation of at least one exemplary embodiment of the system and method of the present invention;
  • FIGS. 2 and 3 show exemplary joint matching between various exemplary IR EM band images of FIG. 1, above;
  • FIG. 4 shows exemplary thermal images of a human body utilized in the operation of at least one exemplary embodiment of the system and method of the present invention;
  • FIG. 5 shows exemplary BTP Grayscale images of a human body utilized in the operation of at least one exemplary embodiment of the system and method of the present invention;
  • FIG. 6 shows exemplary joint matching between various exemplary BTP Grayscale EM band images of FIG. 5, above;
  • FIG. 7 shows a reference pleogram (a), and a central fragment thereof (b), generated and utilized in various embodiments of the system and method of the present invention;
  • FIG. 8 shows a matched pleogram between two specific BTP Grayscale images of FIG. 5; and
  • FIG. 9 shows an actual match between two specific BTP Grayscale images of FIG. 5.
  • SUMMARY OF THE INVENTION
  • The various embodiments of the system and method of the present invention are directed to applications of pleographic image processing techniques, such as disclosed in the '520 Application, for subject identification, recognition, matching, targeting, and/or homing, utilizing one or more EM imaging systems, devices, in at least one predetermined selected EM band (such as IR, thermal imaging, etc.), to essentially provide an advanced biometric technology based on IR/thermal image utilization (described herein by way of example only, in the context of a remote personnel identification application).
  • The use of the pleographic image processing (PIP) platform of the '520 Application (incorporating novel image comparison approaches based on 3D identification procedures) which, inter alia, improves the efficacy of existing observation, detection, and identification systems, will advantageously substantially increase target identification reliability, while reducing processing time and camera and image resolution requirements.
  • This PIP platform recognition technique is primarily focused on reliable object capture and identification against a pre-accumulated reference library/database, which in the case of the present invention, by way of example may be IR Body Thermal Patterns. The PIP platform recognition technique is especially effective under conditions with strong real-time limitations, such as uncertain object positions, arbitrary signal distortions, and others, because it utilizes novel spatial response surfaces—herein called pleograms—that are unique for each observed image that are used for matching.
  • Due to an inherent redundancy, quite comparable with holographic measurements, pleograms are extremely informative and stable making this technique practically immune to strong image distortions that are typical for remote human surveillance. Additionally, the PIP platform recognition technique provides high reliability in comparison with raw image matching. The ID procedures exploited in this technique remain workable even if body thermal patterns (BTP) are partially degraded and measurements are corrupted. This matching technique is image source independent and applicable to most remote measurements and imaging in virtually any EM radiation band, such as optical (e.g. visible light, infrared, laser, X-ray, radar, lidar, etc Additionally, the PIP platform recognition method is ID area independent so it may be applied to the head/facial zone, chest, shoulders, or entire body, etc.
  • High reliability and accuracy of the PIP platform recognition method and system providing implementation thereof, are claimed and demonstrated. It is important to note that no cooperation from the subject is required.
  • Other objects and features of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • The inventive data processing system and method enable automatic recognition of images captured using various electromagnetic (EM) imaging systems and techniques, and more particularly to a system and method for applying pleographic processing for subject identification, recognition, matching, targeting, and or homing, utilizing one or more EM imaging systems, devices, in at least one selected EM band.
  • It should be noted that in various illustrative examples below, thermal images have been obtained using a conventional compact infrared camera meeting appropriate dust and splashproof standards, that is insensitive to visible light, and that is thus capable of working equally well in a bright sunny environment as well as in total darkness.
  • 1. Brief Scientific Discussion 1.1. System Requirements
  • For practical implementation, in the system and method of the present invention, of the '520 Application pleographic approach using IR, a human phenomenology or signature must be defined and justified to provide the following features:
      • 1. A range of acquisition as far as possible.
      • 2. Acquisition requires minimal/negligible cooperation from the subject.
      • 3. A novel biometric signature that must be unique for the subject and that is observable independent of a disguised feature (clothes, glasses, beard, etc).
  • Infrared radiation can be used to remotely capture the human IR pattern as a thermal picture. Thermography (thermal imaging) is mainly used in military and industrial applications; the range of modern highly sensitive thermal cameras is limited practically by the direct vision distance. For example, a typical Military-grade infrared handheld unit can detect a human object at 16 km
  • 1.2. Thermal Imaging
  • Thermographic cameras detect radiation in the infrared range of the electromagnetic spectrum (roughly 900-14,000 nanometers or 0.9-14 μm) and produce images of that radiation field. Since infrared radiation is emitted by all objects based on their temperatures, thermography makes it possible to observe one's environment without any illumination.
  • Sample human body IR images are shown FIG. 1. For an initial example, image (a) is considered as a reference, images (b) and (c) are the captured ones in the process of surveillance (realizing that these are closer than many practical applications).
  • As it is seen from the FIG. 1 images, specific inherent thermal areas are available for observation and further ID under conditions of different view angles and body positioning. The observed images are referred to below as Body Thermal Patterns (BTP).
  • The BTP uniqueness and usability for the subject ID have yet to be developed and proven; however, initial testing (see Experimental Data section below) has resulted in promising outcomes.
  • 1.3. Spatial Recognition for Subject Identification
  • The system and method of the present invention, are based on a novel core approach to object recognition development, described in this section below, that resolves existing problems in the remote subject identification, etc. field including, but not limited to: 1) Algorithm synthesis for the arbitrary nature of real observations; 2) Reconciling the inherent discordance between reference data and real-time observations; 3) Countering of unpredictable geometric distortions such as angle variations, rotations, and non-linear scale variations; and 4) Ability to work under conditions of poor lightning, low contrast, and poor resolution.
  • The inventive pleogram recognition and matching technology and algorithms (such as disclosed in the '520 Application) provide one or more unique advantages, that may include, but that are not limited to, at least one of the following advantages:
      • The method uses all available information about the observations
      • No specific assumption regarding the noise distributions are required—any arbitrary distortions are admissible for statistically optimal algorithm synthesis
      • Ability to work with low quality object images due to the pleogram redundancy
      • Significant tolerance to imperfect images and conditions—the image could be strongly damaged
      • Relatively low pipeline computations and increase in processing speed
      • Low requirements on the object's spatial uncertainty
      • Satisfied reliability under conditions of partially degraded sensors
    2. Predicted Accuracy and Stability of the Phenomenology 2.1. Experimental Data
  • Reciprocal recognition has been conducted for the images displayed in FIG. 1, after a grayscale transform. Images (a) and (b) are approximately of the same position (although some BTP differences are seen); image (a) is considered as a reference. Image (c) is rotated by ˜20 degrees. Joint match between images (a) and (b) with the use of a simplified binary algorithms [1] are shown in FIG. 2 and FIG. 3. In FIG. 2, the left image is a reference; the small green squares indicate a reference fragment automatically selected (in this case just from the image center).
  • The matching metrics may be displayed in a window entitled Score. As it can be seen, the match score is high (about 0.92 where the ideal score is equal to 1.0) and recognition provides a low shift. This allows estimating match outcomes as successful and reliable.
  • Close results are shown for images 1(a) and 1(c) joint match (see FIG. 3). The right match is obvious and is deemed as reliable. Due to the body rotation the matching Score is noticeably lower (0.72).
  • 2.2. Method of Acquisition and Predicted Acquisition Time Thermal Images
  • Most industrial thermal cameras that can readily be used for thermal image capture, performs such capture practically instantly. The capture range may vary depending on need (but for exemplary images illustrated in the various FIGs., the capture range was approximately 30 ft). The captured images of the same person are shown in FIG. 4, while the grayscale BTP images (after a camera zoom) are shown in FIG. 5.
  • Joint mapping of images 5(a) and 5(b) runs successfully and reliably; at the same time, reciprocal recognition of images 5(a) and 5(c) using simplified algorithms (i.e., not using the novel PIP approach) provides an uncertain match, as is seen in FIG. 6.
  • 2.3. Pleographic Image Matching
  • The substantially more powerful pleographic techniques of the system and method of the present invention, advantageously provide much more desirable results. The pleogram for the reference FIG. 5( a), appears as image (a) in the FIG. 7.
  • Its central fragment 7(b) is later used for matching against corresponding pleograms for images 5(b) and 5(c). Matching results are shown by way of example in FIG. 8 (a PIP program's operation is indicated by yellow squares).
  • Matching scores of 0.996 and 0.948, respectively, clearly demonstrate and prove that the novel PIP methodology achieves reliable recognition. When referenced back to the original images from FIG. 5, the PIP program provides the regions matched in FIG. 9).
  • High scores and visually correct match positioning, define the accurate and reliable object identification by the inventive system and method, with the expected correct recognition probability being greater than 0.9.
  • 3. Key Points and Conclusions Relating to the Inventive System and Method
      • 1. IR thermal human body signature is an attractive candidate technology for reliable personnel identification; existing IR cameras are usable for these purposes.
      • 2. Predicted minimum/maximum range of subject in proximity to sensor: the BTP acquisition range is limited by the minimum focus distance of 1-2 ft and direct vision distance only. The uniqueness of long-distance pleograms based on human IR images needs to be determined.
      • 3. BTP capture can occur in real time as a regular photo, i.e. practically instantaneously. No cooperation from the subject is required.
      • 4. Mechanisms to potentially increase range between subject and sensor: the method and hardware allows the focus distance variations accommodating to a desirable BTP acquisition range.
  • Thus, while there have been shown and described and pointed out fundamental novel features of the invention as applied to preferred embodiments thereof, it will be understood that various omissions and substitutions and changes in the form and details of the devices and methods illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit of the invention. For example, it is expressly intended that all combinations of those elements and/or method steps which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the invention. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended'hereto.

Claims (2)

1. A data processing method, implemented in conjunction with at least one electromagnetic imaging system that is operable to capture at least one image, of at least one predetermined subject, in at least one predetermined electromagnetic band, comprising the steps of:
(a) capturing, by the at least one electromagnetic imaging system, the at least one image in the at least one predetermined electromagnetic band, as at least one subject image;
(b) applying at least one pleographic image processing technique to process said at least one subject image, for at least one selected purpose of: identification of the at least one subject, recognition of the at least one subject, matching of the at least one subject to at least one previously identified subject, targeting of the at least one subject, and or homing onto the at least one subject.
2. The data processing method of claim 1, wherein said at least one electromagnetic band is selected from a group of: visible light band, infrared band, lasing band, X-ray band, radar band, and lidar band.
US13/040,335 2008-09-12 2011-03-04 System and Method for Pleographic Subject Identification, Targeting, and Homing Utilizing Electromagnetic Imaging in at Least One Selected Band Abandoned US20110188707A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/040,335 US20110188707A1 (en) 2008-09-12 2011-03-04 System and Method for Pleographic Subject Identification, Targeting, and Homing Utilizing Electromagnetic Imaging in at Least One Selected Band
US14/822,979 US20150347832A1 (en) 2008-09-12 2015-08-11 System and method for pleographic subject identification, targeting, and homing utilizing electromagnetic imaging in at least one selected band

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US19183608P 2008-09-12 2008-09-12
US12/558,520 US20100067806A1 (en) 2008-09-12 2009-09-14 System and method for pleographic recognition, matching, and identification of images and objects
US31069410P 2010-03-04 2010-03-04
US13/040,335 US20110188707A1 (en) 2008-09-12 2011-03-04 System and Method for Pleographic Subject Identification, Targeting, and Homing Utilizing Electromagnetic Imaging in at Least One Selected Band

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/558,520 Continuation-In-Part US20100067806A1 (en) 2008-09-12 2009-09-14 System and method for pleographic recognition, matching, and identification of images and objects

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/822,979 Continuation US20150347832A1 (en) 2008-09-12 2015-08-11 System and method for pleographic subject identification, targeting, and homing utilizing electromagnetic imaging in at least one selected band

Publications (1)

Publication Number Publication Date
US20110188707A1 true US20110188707A1 (en) 2011-08-04

Family

ID=44341684

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/040,335 Abandoned US20110188707A1 (en) 2008-09-12 2011-03-04 System and Method for Pleographic Subject Identification, Targeting, and Homing Utilizing Electromagnetic Imaging in at Least One Selected Band
US14/822,979 Abandoned US20150347832A1 (en) 2008-09-12 2015-08-11 System and method for pleographic subject identification, targeting, and homing utilizing electromagnetic imaging in at least one selected band

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/822,979 Abandoned US20150347832A1 (en) 2008-09-12 2015-08-11 System and method for pleographic subject identification, targeting, and homing utilizing electromagnetic imaging in at least one selected band

Country Status (1)

Country Link
US (2) US20110188707A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10594956B2 (en) 2016-09-27 2020-03-17 Rxsafe Llc Verification system for a pharmacy packaging system
US11595595B2 (en) 2016-09-27 2023-02-28 Rxsafe Llc Verification system for a pharmacy packaging system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110411570B (en) * 2019-06-28 2020-08-28 武汉高德智感科技有限公司 Infrared human body temperature screening method based on human body detection and human body tracking technology

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5579471A (en) * 1992-11-09 1996-11-26 International Business Machines Corporation Image query system and method
US5636292A (en) * 1995-05-08 1997-06-03 Digimarc Corporation Steganography methods employing embedded calibration data
US5913205A (en) * 1996-03-29 1999-06-15 Virage, Inc. Query optimization for visual information retrieval system
US6628808B1 (en) * 1999-07-28 2003-09-30 Datacard Corporation Apparatus and method for verifying a scanned image
US6721463B2 (en) * 1996-12-27 2004-04-13 Fujitsu Limited Apparatus and method for extracting management information from image
US20050054910A1 (en) * 2003-07-14 2005-03-10 Sunnybrook And Women's College Health Sciences Centre Optical image-based position tracking for magnetic resonance imaging applications
US7054509B2 (en) * 2000-10-21 2006-05-30 Cardiff Software, Inc. Determining form identification through the spatial relationship of input data
US7130466B2 (en) * 2000-12-21 2006-10-31 Cobion Ag System and method for compiling images from a database and comparing the compiled images with known images
US20070263907A1 (en) * 2006-05-15 2007-11-15 Battelle Memorial Institute Imaging systems and methods for obtaining and using biometric information
US7324711B2 (en) * 2004-02-26 2008-01-29 Xerox Corporation Method for automated image indexing and retrieval
US20100054525A1 (en) * 2008-08-27 2010-03-04 Leiguang Gong System and method for automatic recognition and labeling of anatomical structures and vessels in medical imaging scans

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5579471A (en) * 1992-11-09 1996-11-26 International Business Machines Corporation Image query system and method
US5751286A (en) * 1992-11-09 1998-05-12 International Business Machines Corporation Image query system and method
US5636292A (en) * 1995-05-08 1997-06-03 Digimarc Corporation Steganography methods employing embedded calibration data
US5636292C1 (en) * 1995-05-08 2002-06-18 Digimarc Corp Steganography methods employing embedded calibration data
US5913205A (en) * 1996-03-29 1999-06-15 Virage, Inc. Query optimization for visual information retrieval system
US6721463B2 (en) * 1996-12-27 2004-04-13 Fujitsu Limited Apparatus and method for extracting management information from image
US6628808B1 (en) * 1999-07-28 2003-09-30 Datacard Corporation Apparatus and method for verifying a scanned image
US7054509B2 (en) * 2000-10-21 2006-05-30 Cardiff Software, Inc. Determining form identification through the spatial relationship of input data
US7130466B2 (en) * 2000-12-21 2006-10-31 Cobion Ag System and method for compiling images from a database and comparing the compiled images with known images
US20050054910A1 (en) * 2003-07-14 2005-03-10 Sunnybrook And Women's College Health Sciences Centre Optical image-based position tracking for magnetic resonance imaging applications
US7324711B2 (en) * 2004-02-26 2008-01-29 Xerox Corporation Method for automated image indexing and retrieval
US20070263907A1 (en) * 2006-05-15 2007-11-15 Battelle Memorial Institute Imaging systems and methods for obtaining and using biometric information
US7844081B2 (en) * 2006-05-15 2010-11-30 Battelle Memorial Institute Imaging systems and methods for obtaining and using biometric information
US20100054525A1 (en) * 2008-08-27 2010-03-04 Leiguang Gong System and method for automatic recognition and labeling of anatomical structures and vessels in medical imaging scans

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10594956B2 (en) 2016-09-27 2020-03-17 Rxsafe Llc Verification system for a pharmacy packaging system
US11039091B2 (en) 2016-09-27 2021-06-15 Rxsafe Llc Verification system for a pharmacy packaging system
US11595595B2 (en) 2016-09-27 2023-02-28 Rxsafe Llc Verification system for a pharmacy packaging system

Also Published As

Publication number Publication date
US20150347832A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
US9830506B2 (en) Method of apparatus for cross-modal face matching using polarimetric image data
Lagorio et al. Liveness detection based on 3D face shape analysis
Hu et al. A polarimetric thermal database for face recognition research
Bhattacharjee et al. What you can't see can help you-extended-range imaging for 3d-mask presentation attack detection
Smith et al. Tracking multiple objects outside the line of sight using speckle imaging
Bouchrika et al. On using gait in forensic biometrics
EP2375216B1 (en) 3-D imaging system and method using partial-coherence speckle interference tomography
US8896701B2 (en) Infrared concealed object detection enhanced with closed-loop control of illumination by.mmw energy
US8660324B2 (en) Textured pattern sensing using partial-coherence speckle interferometry
CN111079600A (en) Pedestrian identification method and system with multiple cameras
US20150347832A1 (en) System and method for pleographic subject identification, targeting, and homing utilizing electromagnetic imaging in at least one selected band
US20150097936A1 (en) Non-Contact Fingerprinting Systems with Afocal Optical Systems
JP5100958B2 (en) Method and apparatus for creating a three-dimensional quantitative representation of a surface of an object, and a method for identifying an object indexed in a previously cataloged archive of multiple objects, and a computer-readable medium
US10915737B2 (en) 3D polarimetric face recognition system
CN104539874A (en) Human body mixed monitoring system and method fusing pyroelectric sensing with cameras
EP2711730A1 (en) Monitoring of people and objects
Xie et al. LiTag: localization and posture estimation with passive visible light tags
US20150103341A1 (en) Method of identification from a spatial and spectral object model
Negied Human biometrics: Moving towards thermal imaging
Bourlai Mid-wave IR face recognition systems
US20170024603A1 (en) Biometric image optimization using light fields
Vakil et al. An information theoretic metric for identifying optimum solution for normalized cross correlation based similarity measures
Bashir et al. Video surveillance for biometrics: long-range multi-biometric system
Li et al. A non-cooperative long-range biometric system for maritime surveillance
Chu et al. A parametric study of deep perceptual model on visible to thermal face recognition

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION